The Impact of CMM Process Maturity Levels and Software Development Risk on the
Performance of Software Development Projects

by

Dany Di Tullio

A Thesis
in

The John Molson School of Business

Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science
in Administration at Concordia University
Montreal, Quebec, Canada

May 2005

© Dany Di Tullio, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10324-8
Our file Notre référence
ISBN: 0-494-10324-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared
By: Dany Di Tullio

Entitled: The Impact of CMM Process Maturity Levels and Software Development
Risk on the Performance of Software Development Projects

and submitted in partial fulfillment of the requirements for the degree of
Master of Science in Administration
complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

Examiner

Examiner

Supervisor

Approved by

Chair of Department or Graduate Program Director

20

Dean of Faculty

iii

ABSTRACT

The Impact of CMM Process Maturity Levels and Software Development Risk on the
Performance of Software Development Projects

Dany Di Tullio

A model of software development process maturity, the Capability Maturity Model for
Software (SW-CMM) is a staged evolutionary model which describes five levels of process
maturity through which an organization can progress to define, assess, and improve its software
development processes. Despite its ever-increasing adoption, there remain too few empirical and
generalizable findings when it comes to key questions regarding the model’s adoption.
Researchers and practitioners are still struggling to determine how CMM-based process
improvement efforts affect key organizational concerns such as software project performance and
in turn how the performance of software projects is affected by the threat of risks in today’s

dynamic and complex business environment.

In addressing this knowledge gap, this study proposes a research mode! which is
grounded in prior research and that will allow for a first known empirical examination of the
relationships between CMM process maturity levels and the performance of software
development projects while assessing the impact of software development risk on performance.
Two hypotheses were derived from the model for empirical testing. Data was collected from 107
organizations that were officially appraised at a given CMM maturity level. Results using PLS

provide considerable support for the hypotheses.

As expected, CMM software development process maturity levels have a direct and
significant impact of the performance of software development projects. Furthermore, evidence
of the negative and significant influence of software development risk on software project
performance was also found. Discussions on the potential for future research and implications for

practice are also presented.

v

DEDICATION AND ACKNOWLEDGMENTS

I would like to dedicate this thesis to my parents, Donato and France Di Tullio, and to my
brother, lan. I am grateful beyond words for your unconditional support and sound advice in all

of my endeavours.
Merci infiniement.
I would also like to extend my sincere gratitude and appreciation to my Master’s thesis advisor,
Dr. Bouchaib Bahli, for his great kindness, invaluable advice, and continuous support. You have

made my M.Sc. experience both enjoyable and rewarding.

I also thank my thesis committee members, Dr. Rustam Vahidov and Dr. El-Sayed Abou-Zeid,

for their constructive comments and feedback.

TABLE OF CONTENTS

List of Tables

List of Figures

I. Introduction

1.1 Research Questions
1.2 Research Objectives
1.3 Importance of the Research

II. Literature Review

A. The Capability Maturity Model for Software
1. An Overview of Software Process Improvement

1.1 Process Thinking in Software Development
1.2 Software Process Maturity

1.3 The Emergence of Software Process Improvement
Frameworks

1.4 The Capability Maturity Model

2. The Five Levels of Software Process Maturity

2.1 The Initial Level

2.2 The Repeatable Level
2.3 The Defined Level
2.4 The Managed Level
2.5 The Optimized Level

3. The Operational Definition of the Capability Maturity Model
for Software

3.1 The Internal Structure of the Software Process Maturity
Levels

3.2 The Process Maturity Levels

3.3 The Key Process Areas

X

11

11
12
12
13
13

14

14
15
16

3.3.1 Level 2 Key Process Areas
3.3.2 Level 3 Key Process Areas
3.3.3 Level 4 Key Process Areas
3.3.4 Level 5 Key Process Areas

3.3.5 The Internal Consistency of the Key Process
Areas

3.4 Goals
3.5 Common Features

3.6 Key Practices

4. Applying the Capability Maturity Model for Software

4.1 Team Selection

4.2 Applying the Maturity Questionnaire
4.3 Response Analysis

4.4 On-site Visit

4.5 Findings

4.6 KPA Profile

5. Organizational Impacts of CMM Software Process Maturity

5.1 Case Studies: Understanding the CMM in Specific
Organizational Setting

5.2 Empirical Research: Studying the CMM through
Empirical Investigations
B. Software Project Performance
1. Factors that Affect Software Project Performance

1.1 The Social View of Software Project Performance

1.2 The Technical View of Software Project Performance

2. Measuring Software Project Performance as a Two-Dimensional

Construct

Vi

17
18
19
20

20

21
22
24

26

27
27
27
27
28
28

29

33

35
36

36
39

42

C. Software Development Risk

1. The Concept of Risk in Information Systems Research
2. The Decision Theory Perspective of Risk
3. The Behavioural Perspective of Risk

IIL. Research Model and Hypotheses
3.1 The Conceptual Framework

3.2 Hypothesis Development

3.2.1 Software Process Maturity and Software Project Performance
3.2.2 Software Development Risk and Software Project Performance
IV. Research Methodology
4.1 Research Variables and Measures
4.1.1 CMM Software Process Maturity
4.1.2 Software Project Performance
4.1.3 Software Development Risk
4.2 Data Collection and Research Sample
4.2.1 Data Collection Procedure
4.2.2 Sample Characteristics
V. Data Analysis and Research Results
5.1 Assessment of the Measurement Model
5.1.1 Reliability Assessment

5.1.2 Convergent and Discriminant Validity Assessment

5.2 Assessment of the Structural Model

VL. Discussion of Findings

6.1 Implications for Research
6.2 Implications for Practice

6.3 Limitations of the Study

Vil

45

46
47
49

52
52
53

54
57
60
60

60
62
63
67
67
67
71
71
71

73

75

76

78
79
81

viii

VII. Conclusion 82

References 84

Appendix 90

LIST OF TABLES

Table 1: Level 2 Key Process Areas

Table 2: Level 3 Key Process Areas

Table 3: Level 4 Key Process Areas

Table 4: Level 5 Key Process Areas

Table 5: Common Features

Table 6: Summary of CMM-Based SPI Case Studies

Table 7: Studies Falling into the Social View of Software Project Performance
Table 8: Studies Falling into the Technical View of Software Project Performance
Table 9: Measure of CMM Software Process Maturity Level

Table 10: Measure of Software Project Performance

Table 11: Measure of Software Development Risk

Table 12: Sample Descriptive Statistics

Table 13: PLS Factor Loadings

Table 14: Reliability Assessments

Table 15: Variance Shared Between Constructs

ix

18
19
20
20
23
29
37
40
61
62
65
69
72
73

74

LIST OF FIGURES

Figure 1: The CMM: A Staged Evolutionary Model

Figure 2: The Internal Structure of the Software Process Maturity Levels
Figure 3: The Key Process Areas by Process Maturity Level

Figure 4: Example of a Key Practice

Figure 5: Main Steps in CMM Software Process Maturity Appraisals
Figure 6: The Conceptual Framework

Figure 7: Parameters for the Research Model

10

14

16

24

26

53

76

I. INTRODUCTION

Software systems are pervasive in today’s organizations. From small applications to
large-scale enterprise systems, software has become the informational nervous system of the
modern enterprise. The importance of software reliability is thus a major concern and stresses the
critical nature of the software development process. However, while the advancement of
information technologies continues to progress at a considerable pace, the development process in
itself seems to be having trouble keeping up (Rai and Al-Hindi, 2000). The managerial aspect of
software development projects is often undertaken without adequate planning, with poor grasp of
the overall development process, and with a lack of a well-established management framework
even as focus is shifting from a technology perspective to a more process-centric view of
software development (Rai and Al-Hindi, 2000; Humphrey, 1989). Carefully conceived
management practices are thus needed to improve software development performance and gain
improved control over uncertain and risky environments and are now emerging as viable
solutions to the software crisis (Humphrey, 1989; Barki et al., 1993; Fitzgerald and O’Kane,

1999; Barki et al., 2001).

In a direct attempt to address this, the Software Engineering Institute (SEI) at Carnegie
Mellon University recommended a set of key software process improvement areas that can be
addressed by firms wishing to improve software development. These same processes were later
integrated into an evaluative evolutionary framework called the Capability Maturity Model
(CMM) for Software (SW-CMM) (Paulk et al., 1993). The CMM for Software essentially
consists of “a coherent, ordered set of incremental improvements, all having experienced success
in the field, packaged into a roadmap that shows how effective practices can be built on one

another in a logical progression” (Herbsleb et al., 1997). Organizational adoption of the CMM is

an ever growing phenomenon. The software process maturity model is now used by major firms

in every sector of the economy and around the world (Herbsleb et al., 1997).

1.1 Research Questions

Accordingly, the CMM’s growing adoption (Herbsleb et al., 1997), the significant
implementation efforts it entails (Hayes and Zubrow, 1995), and the growing concern for risk in
software development (Barki et al., 2001), stress the need for providing answers to fundamental
questions that remain elusive. Essential to the advancement of knowledge pertaining to software
process improvement, software development risk, and more specifically to the Capability
Maturity Model and software project performance lie the following key research questions that

remain unanswered:

* What is the impact of CMM software development process maturity levels on the performance

of software development projects?

» What is the relationship between software development risk and the performance of software

development projects?

1.2 Research Objectives

To answer these questions, a new conceptual model aimed at allowing for a sound
empirical investigation is proposed. Grounded in prior research in the areas of software process
improvement, software project performancé, and risk in information systems, a series of
hypotheses are developed to test the presence (or absence) of the effects of CMM software

process maturity levels on the performance of software development projects as well as the

influence of software development risk on performance. Metrics aimed at answering each of the
above questions are used. Data is then collected to validate these measures and examine their

correlations and relationship strengths to one another.

In short, the fundamental purpose of this research endeavour consists of developing a
new conceptual framework that will for the first time provide scientifically valid and reliable
empirical evidence as to the relationships between CMM software development process maturity
levels and the performance of software development projects while assessing the influence of

software development risk on software project performance.

1.3 Importance of the Research

Despite the ever-increasing adoption of the Capability Maturity Model for Software,
there remain too few empirical and generalizable findings when it comes to key questions
regarding the model’s adoption. Researchers and practitioners are still struggling to determine
whether and how CMM-based software process improvement efforts affect key organizational
concerns such as software project performance in today’s dynamic and complex business
environment. It is time to move beyond isolated case studies and anecdotes that have so often
characterized this sort of debate in the past and adopt a sound scientific approach in researching
the Capability Maturity Model for Software (Herbsleb et al., 1997). Careful collection and
analysis of data are needed in an effort to provide both researchers and practitioners with hard
evidence that will justify the time and effort required to use the CMM to improve the software
development process and ultimately the end product (Fitzgerald and O’Kane, 1999). In

addressing this need, this study is a clear step in that direction.

The remainder of the thesis is organized as follows. A review of the relevant literature is
presented in Section 2. Section 3 contains a presentation of the conceptual framework and the
development of hypotheses. Section 4 provides details about the research methodology. Data
analysis and research results are presented in Section 5 and a discussion of the findings follows in

Section 6. Finally, a conclusion is found in Section 7.

II. LITERATURE REVIEW

The literature review is organized along the three constructs that comprise this research:
the Capability Maturity Model for Software, software project performance, and software

development risk.

A. THE CAPABILITY MATURITY MODEL FOR SOFTWARE

1. An Overview of Software Process Improvement

1.1 Process Thinking in Software Development

‘An important first step in addressing software problems is to treat the entire software task as a

process that can be controlled, measured, and improved’ (Humphrey, 1989).

In the modern business world, the shift from task-oriented thinking to a process-centric
view of the organization has been underway for several years. Michael Hammer and James
Champy were early advocates of the process view and popularized it in 1993 with the publication
of a book titled Reengineering the Corporation (Hammer and Champy, 1993). As opposed to
task-based thinking which entails the fragmentation of work into simple components and their
assignment to specialized workers, process-based thinking aligns the tasks, activities, and
behaviours of individuals within an organization toward achieving a common goal (Zahran,

1998). It proposes that we organize around outcomes, not tasks (Hammer and Champy, 1990).

These same process management principles influenced the software engineering field.

The concept of process thinking was introduced to the software industry by Watts Humphrey

through his classic book Managing the Software Process published in 1989 (Humphrey, 1989). In
this book, Humphrey stresses the fact that few software professionals ever mention technology
when discussing their key problems when it comes to software development. Instead,
uncontrolled change, arbitrary schedules, ill-defined processes, and poor process management are
but some of the major concerns mentioned (Humphrey, 1989). Hence, Humphrey proposes that
the greatest potential for improvement lies in defining and controlling the software process which
essentially consists of ‘the set of actions required to efficiently transform a user’s needs into an
effective software solution’ (Humphrey, 1989). According to this view, a process focus brings
discipline to the software project’s activities and allows each individual to align himself with his

co-worker towards achieving the project goals.

1.2 Software Process Maturity

Adopting a process view of software development requires a thorough understanding of
the concept of maturity of software processes. The concept of maturity naturally implies

immaturity which leads to the distinction between immature and mature software organizations.

In immature software organizations, software processes are generally improvised by
individuals during the course of the software development effort (Paulk et al., 1993). There are
generally no specific mechanisms in place that prescribe specific actions to be taken in particular
cases (Paulk et al., 1995). Even if there are some processes that have been decided upon, they are
not carefully followed or enforced. An important characteristic of an immature organization is its
reactive nature. Firefighting, or the focus on finding solutions to immediate crises, is frequent.
Project success largely depends on a skilled team of software developers coupled with
exceptional managers. Product functionality and quality are frequently compromised to meet

deadlines. There is little understanding by the organization of the processes involved in the

development of the software product as it frequently relies on ad hoc and chaotic, undocumented

processes (Paulk et al., 1995).

On the other hand, a mature software organization possesses the skills and abilities to
effectively manage software development and maintenance processes (Paulk et al., 1993).
Planned and documented processes provide employees with a detailed roadmap to the successful
completion of the software project. Moreover, effective organization-wide communication allows
for both new and current employees to access and understand predefined processes. Employee
roles and responsibilities within each process are clear and concise throughout the software
development endeavour and across the organization (Paulk et al., 1995). Objective quantitative
methods are used to constantly evaluate both product and process quality in an effort for
continuous improvement of both. Historical data are the basis for establishing realistic budgets
and schedules. The expected results for cost, schedule, quality, and functionality are therefore

regularly met (Paulk et al., 1995).

1.3 The Emergence of Software Process Improvement Frameworks

Software applications and systems have become ever-present in our daily lives. We
increasingly rely on software in a wide variety of areas ranging from simple text processing
applications to advanced navigational systems used to guide planetary probes and robotic rovers.
Software has become pervasive because of its power; a power to assist us with mundane
repetitive tasks and also provide us with sophisticated means for conducting a seemingly limitless

number of complex activities.

Software technology is advancing at a very rapid pace. However, despite these advances,
large numbers of software projects continue to fail at various levels. Budget, schedule, product
quality, as well as the actual completion of software projects continue to be areas of concern. The
ability to develop, deliver, and maintain software systems that are reliable, usable, and within the
prescribed budget and schedule seems to elude most organizations involved in software
development (Paulk et al., 1995). Solutions to these problems have been sought and some
proposed for many years. Lifecycle models and structured methods are some of the methods
suggested for better understanding software development activities (Zahran, 1998). Recently, a
process-oriented approach to software projects was proposed as organizations began to realize
that their fundamental problem mainly consisted of their inability to manage their software
processes (Paulk et al., 1995). This process-oriented approach to managing software development
projects has been gaining ground in the software industry ever since (Herbsleb et al., 1997).
Several frameworks were developed to address software processes, including SPICE (Software
Process Improvement and Capability dEtermination), ISO 9000-3, Bootstrap, Trillium and the
Capability Maturity Model (CMM) for Software (SW-CMM) (Krishnan et al., 1999) ' Among
these process models, the CMM for Software has emerged as one of the most widely used and

influential frameworks in the field of software development (Jalote, 2000).

1.4 The Capability Maturity Model

The Capability Maturity Model focuses on the various processes involved in software
development. It presents the key elements of an effective software process in describing an
evolutionary improvement path for software organizations from ad hoc, immature processes to

mature, disciplined ones (Paulk et al.,, 1995). It was created and developed by attentive

! Henceforth, the following terms will be used interchangeably: Capability Maturity Model for Software,
SW-CMM, and CMM.

observations of best practices in both software and non-software organizations. The framework is
thus based on actual practices while reflecting the best of the state of the practice as well as the
needs of individuals performing software process improvement and software process appraisals

(Paulk et al., 1995).

It is in 1986 that the Software Engineering Institute (SEI) at Carnegie Mellon University
began developing a process maturity framework that would help firms improve their software
processes (Paulk et al., 1993). One of the main instigators of this initiative was the United States
Department of Defence which requested a method for assessing the capability of its software
contractors. An early report entitled ‘Characterizing the software process: a maturity framework’
set the foundations for the process maturity model (Humphrey, 1987). The Software Engineering
Institute later released a brief description of the process maturity framework which was later more
thoroughly presented and explained in the book Managing the Software Process (Humphrey,
1989) which largely popularized the message of software process maturity (Zahran, 1998). After
several years of working with the model, the SEI evolved the maturity framework into the

Capability Maturity Model (later renamed Software CMM or SW-CMM).

In the last several years, judging by its acceptance in the software industry, the CMM has
already been a major success. It has spread far beyond its origins in U.S. military avionics
applications, and is now used by major organizations worldwide and in every sector of the

economy (Herbsleb et al. 1997).

The Capability Maturity Model for Software provides organizations with guidelines on
how to gain control over their processes for developing and maintaining software (Paulk et al.,
1993). This set of recommended practices offers guidance to firms in selecting process

improvement strategies by determining current process maturity and identifying the issues they

10

consider crucial to the improvement of software quality and processes (Paulk et al., 1995).
Through sustained effort at improving specific activities, organizations can progressively improve

their software processes in order to achieve lasting gains in software process capability (Paulk et

al., 1995).
The Capability Maturi Figure 1
P R R The CMM: A Staged Evolutionary Model
Model is a staged evolutionary ' .
. Optimizing
Continuously Level 5
model. It categorizes software improving [Level 5]
process [
process maturity into five levels- Managed
Predictable Level 4
process [Level 4]

from level 1 (lowest) to level 5

(highest) (see Figure 1). For each Standard and Definled

consistent g‘\% [Level 3]
level, the CMM specifies key process o

Repeatable
process areas (KPA) which | pigiplined £ [Level 2]
process
consist of areas on which a firm .
Initial

should focus in order to move to a [Level 1]

higher process maturity level. Each key process area is associated with goals that represent the
requirements to be satisfied by the processes for that key process area (Jalote 2000). At different
maturity levels, key process areas can be used for assessing the capability of existing processes as
well as for identifying the areas that need to be strengthened so as to move the process to a higher
level of maturity. The five levels are Initial, Repeatable, Defined, Managed, and Optimized
(Ingalsbe et al. 2001). Level 1-Initial, is sometimes called anarchy or chaos. At this level,
system development projects follow no prescribed processes. At level 2- Repeatable, project
management processes have been established to track project costs, schedules, and functionality.
The focus is on project management, not systems development. At level 3-Defined, a standard

system development process (methodology) is purchased or developed, and its use is integrated

11

throughout the information systems unit or team within the organization. At level 4-Managed,
measurable goals for quality and productivity are established. Detailed measures of the system
- development process and product quality are collected and stored. Finally, at level 5-Optimized,
the system development process is standardized and continuously monitored and improved based

on measures and data analysis established in level 4 (Whitten et al. 2000).

2. The Five Levels of Software Process Maturity

As a staged maturity model, the CMM provides a framework comprised of five
evolutionary steps which consist of the model’s process maturity levels. These five maturity
levels represent an ordinal scale which allows organizations to situate themselves in terms of their
process capability and better understand the necessary steps that need to be taken to lay the

foundations for continuous process improvement (Paulk et al., 1995).

A maturity level is a ‘well-defined evolutionary plateau toward achieving a mature
software process’ (Paulk et al., 1995). A set of goals make up each maturity level. The
achievement of these goals ultimately results in an increase in the process capability of the

organization (Paulk et al., 1995).

2.1 The Initial Level

The initial level is typically characterized by an unstable organizational environment
when it comes to the development and maintenance of software. At this level, processes are often
chaotic and ad hoc (Humphrey, 1989). Even if there are some processes that have been decided
upon, they are not carefully followed or enforced. Product functionality and quality are

frequently compromised to meet deadlines. There is little understanding by the organization of

12

the processes involved in the development of the software product (Paulk et al., 1995). However,
in spite of this, Level 1 organizations frequently have the capacity to develop software products
that are functional albeit they may be over budget and schedule having been made possible by the

efforts and heroics of a few (Paulk et al., 1995).

2.2 The Repeatable Level

Policies for managing software projects and procedures to implement these strategies are
decided upon and established at the Repeatable Level. Moreover, it is at this level that project
management concerns are addressed. Processes are established notably to track cost, schedule,
and product functionality (Herbsleb et al., 1997). Realistic plans and project commitments are
made possible based on past experience with previous projects. Earlier project successes can now

be more easily repeated.

2.3 The Defined Level

Documentation is a key activity at the Defined Level as both software engineering and
management processes are documented, standardized, and integrated into a coherent software
process for the organization (Herbsleb et al., 1997). This organization-wide standardized
software process provides the firm with the foundation for major and continuing progress
(Humphrey, 1989). Software projects are now accomplished more effectively using the
standardized software processes which allow for stable and repeatable software engineering and

management activities (Paulk et al., 1995).

13

2.4 The Managed Level

The establishment and use of detailed measures of the software development processes
and software product quality are conducted at the Managed Level (Herbsleb et al., 1997). An
organizational measurement program allows for the specification of quantitative quality goals for
both software processes and products. Measurement data on process performance are collected
and provide the means for evaluating and controlling variations in process performance (Paulk et
al., 1995). Using these measurements, an organization’s software development processes become
quantifiable and predictable and process variations beyond prescribed limits can be quickly

identified and dealt with (Paulk et al., 1995).

2.5 The Optimized Level

Continuous process improvement is made possible at the Optimized Level. Through the
measurement tools established at the Managed Level, the organization can now identify
weaknesses in its software processes and proactively modify them. Any defects in the software
product are analyzed to determine their causes (Paulk et al., 1995). Software processes can then
be evaluated and updated to prevent known types of defects from recurring. All of this
knowledge is disseminated and applied in other projects. At the optimized level, organizations
continuously strive to improve their existing processes and innovate using new technologies and

methodologies (Paulk et al., 1995).

14

3. The Operational Definition of the Capability Maturity Model for Software

3.1 The Internal Structure of the Software Process Maturity Levels

Figure 2. The Internal Structure of the Software Process Maturity Levels

Maturity

Levels

indicate contain

Process
Capability

Key Process
Areas

achieve organized by
@ Common
Features

address contain

Key
Practices
an
describe

r'd

Implementation

Infrastructure or
Activities

The Capability Maturity Model for software is composed of constituent parts which make
up each maturity level. With the exception of the first level, each maturity level is comprised of
different elements ranging from an abstract summary down to an operational definition in the key
practices, as shown in Figure 2. Key process areas make up each maturity level and are

organized into five sections called common features. The common features provide the means

15

through which specific key practices are specified. The goals of the key process areas can be
accomplished once the key practices of the common features are collectively addressed (Paulk et

al., 1995).

3.2 The Process Maturity Levels

Process maturity levels are well-defined evolutionary steps that offer guidelines as to how
an organization can achieve a mature software process. (Paulk et al., 1995) Each level specifies a
unique level of process capability, as illustrated in Figure 1. The main objective for any
organization consists of assessing its position in the maturity model and then focus on the

elements that will allow it to advance to a higher process maturity level (Humphrey, 1989).

16

3.3 The Key Process Areas

Figure 3. The Key Process Areas by Process Maturity Level

Level 5 [Optimizing]
Process management
Technology change management
Defect prevention

Continuousty
improving .
process >§

Level 4 [Managed]
Software quality management
Quantitative process management

Predictable
process

Level 3 [Defined]

Peer reviews

Intergroup coordination
Software product engineering
Integrated software management
Training program

Organization process definition
Organization process focus

Standard and
consistent
process

Level 2 [Repeatable]

Software configuration management
Software quality assurance

Software subcontract management
Software project tracking and oversight
Software project planning
Reauirements management

Disciplined
process

Level 1 [Initial]

Each maturity level comprises a set of key process areas that indicate the areas an
organization must address in order to improve its software process (Herbsleb et al., 1997). A
group of related activities make up each key process area as shown in Figure 3. When preformed
collectively, these activities allow for the achievement of goals considered important for
enhancing process capability (Paulk et al., 1995). All the goals of a key process area must be met
for the firm to satisfy a particular key process area. Once all key process areas at a given process

maturity level are met, the organization is considered to have achieved that maturity level.

17

The CMM presents the key elements of an effective software process and therefore does
not describe all the process areas involved in the development and maintenance of software. As
the adjective “key” implies, there are process areas and processes that are not included in the
Capability Maturity Model since they are not considered key to achieving particular process

maturity levels (Paulk et al., 1995).

3.3.1 Level 2 Key Process Areas

Project management activities are the main focus of the key process areas at Level 2 as

shown in the following table (Table 1).

Table 1
Level 2 Key Process Areas

18

Key Process Area

Key Process Area Purpose

Requirements management

Establish a common understanding between the

customer and the software project corresponding to

the customer’s requirements. This common
understanding is the basis for planning and
managing the software project.

Software project planning

Establish plans for the software engineering phase

and for the overall management of the software
project.

Software project tracking and oversight

Establish an adequate tracking of the actual
progress of the software project so that effective
actions can be taken when the project deviates
from plans.

Software subcontract management

Select qualified software subcontractors and
manage the relationship effectively.

Software quality assurance

Provide management with appropriate visibility
into the software process being used throughout
the project.

Software configuration management

Maintain the integrity of the software product
throughout the project’s software lifecycle.

3.3.2 Level 3 Key Process Areas

Project and organizational issues are addressed by the key process areas at Level 3 (see

Table 2). Level 3 organizations establish an infrastructure for effective software engineering and

management for all projects undertaken (Paulk et al., 1993).

19

Table 2
Level 3 Key Process Areas

Key Process Area Key Process Area Purpose

o Establish the various responsibilities related to
Organization process focus software process activities that improve the
software process capability of the organization.

Develop and maintain a usable set of software
processes that improve the process performance
across all software projects conducted by the
organization.

Organization process definition

o Develop the skills and knowledge of workers in
Training program order for them to perform their roles and activities
effectively and in an efficient manner.

Combine and integrate management and software
engineering activities into a coherent software
Integrated software management process. The software process is tailored for the
organization based on its business environment and
technical needs of its projects.

]) Undertake a software engineering process that
Software product engineering integrates all software engineering activities
required to produce consistent software products.

o Promote the active participation and
Intergroup coordination communication of software engineers in order to
better satisfy the customer’s needs.

) Establish the means necessary to remove software
Peer reviews defects at an early stage of the software
development project.

3.3.3 Level 4 Key Process Areas

Quantitative assessments and evaluation of the software process and products are the

main concerns of the Level 4 key process areas (see Table 3).

20

Table 3
Level 4 Key Process Areas
lT(ey Process Area Key Process Area Purpose

o Control the performance of software development
Quantitative process management and maintenance processes through quantitative
evaluations of the software project.

Software quality management Assess the quality of software project products in
developing a quantitative understanding of quality.

3.3.4 Level 5 Key Process Areas

The Level 5 key process areas cover the issues that must be addressed to achieve

continuous and measurable software process improvement (Paulk et al., 1995) (see Table 4).

Table 4
Level 5 Key Process Areas

Key Process Area Key Process Area Purpose

Defect prevention Quickly identify the cause of defects in order to
prevent them from recurring.

Recognize beneficial new technologies, tools,
Technology change management methods, and processes and transfer and apply
them to the organization.

Continually improve the software processes
throughout the organization. Process change
Process change management management allows for the incremental
improvements of technology change management
and process change management and make them
available to the entire organization.

3.3.5 The Internal Consistency of the Key Process Areas

Confidence in the results of software process maturity assessments is crucial when

conducting CMM appraisals. As a theoretical model which presents evolutionary plateaus

21

indicating well-defined levels of process maturity, it is essential to evaluate the consistency and
representativeness of each CMM maturity level. CMM process maturity levels are abstract
concepts, in other words theoretical constructs that are indirectly measured by using key process

areas containing process metrics (Jung and Goldenson, 2002).

The dimensions underlying the maturity constructs in the Capability Maturity Model
were evaluated and their internal consistency (reliability) estimated through empirical research
(Jung and Goldenson, 2002). The analysis was based on 676 CMM-Based appraisals conducted
between January 2000 and April 2002. The results suggest that the Capability Maturity Model is a
comprised of three main constructs which represent maturity levels 2, 3 as well as levels 4 and 5
taken together. The internal consistency for each of these constructs was estimated using
Cronbach’s alpha (Cronbach, 1951) and exceeded the recommended value of 0.7. These
consistently high values of Cronbach’s alpha show that CMM-Based software process maturity
appraisals lead to ratings that are internally consistent with the structure of the CMM. This
empirical evidence shows that the groupings of key process areas into well-defined maturity
levels can be considered as separate constructs which comprise the CMM (Jung and Goldenson,

2002).

3.4 Goals

The goals provide a summary of the key practices of a key process area. They can be
used to determine whether a firm has successfully implemented specific key process areas (Paulk
et al., 1993). The goals refer to the scope, boundaries, and objectives of each key process area
(Paulk et al., 1993). They can be used to determine whether alternative ways of implementing a
key process area in a specific context satisfy the intent of that key process area (Paulk et al.,

1995).

22

3.5 Common Features

The key process areas that make up each maturity level are organized into five sections
called common features. The common features consist of attributes that indicate whether the
implementation of key process areas is effective, repeatable, and lasting (Paulk et al., 1995). The

five common features are presented and described in the following table (see Table 5).

23

Table 5
Common Features

Common Feature t Description

Commitment to perform consists of the actions that
must be taken by the organization to ensure that the
Commitment to perform process is established and will last. Organizational
policies and upper management support are
involved at this stage.

Ability to perform involves the conditions that
must exist in the organization or project in order
Ability to perform for software processes to be implemented
efficiently. Resources, organizational structures,
and training are typically involved at this level.

Activities performed refers to the roles and
procedures that must be in place for the successful
Activities performed implementation of a key process area. Establishing
plans and procedures, performing the required
tasks, tracing the work, and taking corrective
actions if necessary are involved at this level.

Measurement and analysis consists of the need to
measure the various processes and then conduct an
Measurement and analysis adequate analysis of the results. Measurement and
analysis could involve measurements taken to
determine whether the activities performed were
effective or not.

Verifying implementation consists of the steps
required to ensure that the activities undertaken
throughout the software project are conducted in
Verifying implementation compliance with the processes that were previously
agreed upon and implemented. Verification
usually includes software quality assurance
activities and reviews and audits performed by
management.

A process capability can be established by implementing the practices in the common
feature Activities Performed. All the other practices are the foundation through which an
organization can establish the practices described in the Activities Performed common feature

(Paulk et al., 1995).

24

3.6 Key Practices

Each key process area is described by a number of more explicit and informative
components: key practices, subpractices, and examples (Herbsleb et al., 1997). The key practices
are the activities whose contribution is the greatest when it comes to a successful implementation

of the key process areas (Paulk et al., 1995).

Figure 4
Example of a Key Practice

Maturity Level:
Level 2, Repeatable
yd \
indicates contains
X

Key Process Areas:

Process Capability:

Disciplined process Software Project Planning

achieves organized by

Software estimates are
documented for use in planning
and tracking the software

Common Feature:

Activities Performed

addresses contains

X

Key Practice:

Activity 9: Estimates for the size of
the software work produets (or
changes to the size of software work
products) are derived according to a
documented procedure;

Implementation:
implementation

]

Infrastructure or describes
Activities:

Activity

Each key practice consists of a single sentence and is often followed by a detailed

description, which may include further explanations and examples (Paulk et al., 1995). These key

25

practices consists of fundamental policies, activities, and procedures for a given key process area.
Subpractices frequently consist of the detailed descriptions that follow a key practice. While the
key practices present “what” is to be done in order to achieve specific goals, they should not be
interpreted as describing “how” these same goals are to be met. As they are applied to different
contexts and organizational settings, they should always be interpreted in a rational manner to
determine whether the goals of the key process areas are successfully, although sometime maybe

differently achieved (Paulk et al., 1995).

Figure 4 provides an illustrated example of how all of the CMM’s components fall into
place, fit together, and allow for the assessment of an organization’s software process maturity.
For example, an organization that wishes to attain CMM Level 2 must address the level’s key
process areas. Software Project Planning consists of one of the KPAs at this level. In order to
tackle this key process area, specific goals must be met. Among these goals is the following:
Software estimates are documented for use in planning and tracking the software project. As key
process areas are organized by common features which contain the key practices of the KPAs, the
firm needs to establish the practices contained in the Activities Performed common feature since
they explicitly describe what must ultimately be implemented to establish a process capability
(the other common feature practices form the basis through which a firm can address the key
practices described in the Activities Performed common feature). Once this is accomplished, that
goal for the software project planning KPA is achieved. The firm is one step closer to
implementing the Software Project Planning key process area and will then address the

remainder of the KPAs necessary to achieving Level 2 process maturity (Paulk et al., 1995).

26

4. Applying the Capability Maturity Model for Software

Software process assessments ~FigureS _ .
Main Steps in CMM Software Process Maturity Appraisals

consist of the identification of

improvement priorities within an 1] l Appsl‘:liesjltli(;l;leam ‘

organization’s software process.

Organizations are appraised at a maturity Applying the Maturity

Questionnaire

2]

level by participating in a CMM-Based

Appraisal for Internal Process

Improvement (CBA-IPI) conducted by [3] | Respanse Analysis ‘

SEI-authorized Lead Appraisers.

Assessment teams make use of the CMM (4] ' On-site Visit |

as a guide which allows for the

identification and prioritization of

Process Maturity
[S] Findings
findings. Subsequently, these findings are
used to plan a process improvement
Key Process Area
strategy for the organization through the [6] Profile

guidance provided by the key practices
found in the CMM (Paulk et al., 1995). The assessments are performed in an open and
collaborative environment and successful outcomes depend on a commitment from both

management and the professional staff.

The CMM is essentially a common frame of reference for the undertaking of process
assessments and software capability evaluations. What follows is a summary of the main steps
involved in the process maturity evaluation of an organization through the use of the Capability

Maturity Model for Software (see Figure 5).

27

4.1 Team Selection

The first step involved in software process maturity assessments is to select a team. It is
important that the team be trained in the fundamental concepts of the CMM and be

knowledgeable when it comes to the specifics of the assessment method (Paulk et al., 1995).

4.2 Applying the Maturity Questionnaire

The second step requires that the representatives from the site being appraised complete
the maturity questionnaire which allows for both structured and unstructured interviews as tools

for understanding the organization’s software processes (Paulk et al., 1995).

4.3 Response Analysis

Upon completing the second step, the appraisal team performs a response analysis during
which the answers to the questions on the maturity questionnaire are tallied and areas that warrant
further investigation are identified and correspond to the CMM key process areas (Paulk et al.,

1995).

4.4 On-site Visit

The site under appraisal can now be visited by the evaluation team. Using the results of
the response analysis, the assessment team proceeds with interviews and reviews the
organization’s documentation in order to gain a more detailed understanding of the firm’s
software process. Throughout this phase, the CMM provides guidance to the team members in

questioning, reviewing, and synthesizing the data and information gathered from the various

28

interviews and documents. When determining whether the site’s implementation of the key
process areas satisfy the relevant key process area goals, the team applies professional judgement.
In the event that there are discrepancies between the CMM’s key practices and the site’s
practices, the assessment team includes its rationale for judging those key practices in the

assessment documentation (Paulk et al., 1995).

4.5 Findings

Following the on-site evaluation, the appraisal team identifies the strengths and
weaknesses of the site’s software development processes. These findings become the basis for

process improvement recommendations (Paulk et al., 1995).

4.6 KPA Profile

A key process area profile is then put together and clearly identifies where the
organization has, and has not, satisfied the goals of the key process areas . These findings and

key process area profile can then be presented to the appraised organization (Paulk et al., 1995).

5. Organizational Impacts of CMM Software Process Maturity

As the adoption of the Capability Maturity Model for Software continues to grow,

increasing efforts are undertaken to better understand the organizational impacts of software

process maturity (Herbsleb et al., 1997).

29

5.1 Case Studies: Understanding the CMM in Specific Organizational Settings

Initial assessments of the impacts of process improvement efforts mostly focused on the
assessment of whether CMM-based software process improvement ultimately impacts various
aspects of the organization. Early research into this area consisted of numerous case studies

through which specific organizations were closely observed in order to better grasp the various

effects of process improvement initiatives. Table 6 provides a summary of these studies.

Table 6

Summary of CMM-Based SPI Case Studies

Rosenbaum, 1993

Study Organization CMM-Based SPI1 Key Findings

Humpbhrey et al., Software Engineering Improved quality of work life, fewer overtime

1991 Division, Hughes Aircraft hours, fewer problems to deal with each day, a
more stable work environment, and low
software-professional turnover

Dion, 1993 Software Systems Laboratory, | Reduction in software rework and integration

Raytheon Corporation costs, decreased software retesting, gains in

schedule and budget performance

Wohlwend and Schlumberger Improved project and product communication

between software engineering centers,
improved product quality, increased percentage
of software projects completed on time,
decreased post release software product defects

Benno and Fraile,
1995

Defence Systems and
Electronic Group, Texas
Instruments

Improvement in software development
productivity and in delivered defect density

Butler, 1995

Oklahoma City Air Logistics
Center, Directorate of Aircraft
Software Division, Tinker US
Air Force Base

Improved return on investment, defect rates,
maintenance costs, and productivity

Diaz and Sligo, 1997

Government Electronics
Division, Motorola

Reduced defect density, improved cycle time
and productivity with each level except level 3

Fitzgerald and
O’Kane, 1999

Cellular Infrastructure Group,
Motorola (Ireland)

Identification of critical success factors at each
CMM level

Herbsleb et al., 1994

Bull HN Information Systems
Inc., US subsidiary of Groupe
BULL

Improved coding time and testing time and
yearly amount of defects reported by customers

Myers, 1994

Hewlett-Packard

Reduced number of delivered defects and
substantial cost savings

30

Software process improvement at the Software Engineering Division (SED) of Hughes
Aircraft in Fullerton, Califomia was one of the pioneering case studies which presented and
described an entire CMM assessment and process maturity improvement effort in an
organizational setting (Humphrey et al., 1991). After conducting a software process assessment
of the SED, the Software Engineering Institute’s assessors found the division to be at level 2. This
first assessment identified the various strengths and weaknesses of the SED while providing
recommendations for software process improvement. After implementing the proposed
suggestions, the SED was reassessed three years later and found to be a strong level 3
organization (Humphrey et al., 1991). Throughout the entire assessment process as well as the
improvement initiatives and efforts, observations were made by the assessment teams and the
personnel involved in the division’s appraisal. This process resulted in what the author’s termed
“lessons learned” (Humphrey et al.,, 1991). Among other things, the authors suggest that the
benefits from the software process appraisals and improvement efforts are worth the effort and
expense. The quality of work life at Hughes improved and the firm’s image benefited from
improved performance. Hughes’ SED had fewer overtime hours, fewer problems to deal with
each day, a more stable work environment, and low software-professional turnover (Humphrey et
al., 1991). Moreover, this case study provided individuals unfamiliar with the Capability
Maturity Model with a detailed description of just how software process maturity is addressed by

the CMM, how it is evaluated, and how it is improved upon.

A similar undertaking was conducted at Raytheon Corporation’s Software Systems
Laboratory (SSL). Raytheon is a diversified, international, technology-based company in the US
(Dion, 1993). After having been assessed at CMM Level 1, the Raytheon corporation decided
that a process improvement program would be undertaken. The improvement program resulted in
an evolution from Level 1 (Initial) to Level 3 (Defined). Various observations following the

process improvement efforts were made. Notably, software rework and integration costs were

31

reduced. Retesting also decreased about half the amount of its original value. Raytheon’s SSL’s
evolution to CMM Level 3 also resulted in gains in schedule and budget performance. After
process improvement efforts, most projects finished on or ahead of schedule and below budget
(Dion, 1993). Moreover, less tangible but equally important results were noted. Software
engineers were spending fewer late nights and weekends at the office and employee turnover was

reduced (Dion, 1993).

Schlumberger, a multinational organization, also underwent a software process
improvement program (Wohlwend and Rosenbaum, 1993). After several years of improvement
activities, positive benefits were observed. Managers noted better project and product
communication between its software engineering centers. Customers also mentioned that the
quality of the products had improved. Other positive, more quantifiable results from higher
software process maturity were also reported. Over a three year period during which software
process improvement efforts were conducted, it was found that the percentage of software
projects completed on time increased from 51% in 1990 to 94% in 1992 (Wohlwend and
Rosenbaum, 1993). Furthermore, post-release software product defects decreased from 25% of
total product defects in 1989 to 10% of total product defects by 1991 (Wohlwend and

Rosenbaum, 1993).

The Defence Systems and Electronic Group (DSEG) is a division of Texas Instruments
Inc. Their primary products are electro-optic (EO) systems, missile guidance and control
systems, and airborne radar systems (Benno and Fraile, 1995). A critical component of all these
systems is real-time software. An initial assessment of software process maturity revealed that
DSEG was a Level 1 organization. Following sustained software process improvement
initiatives, DSEG was again assessed by a licensed SEI appraiser and was determined to have

achieved Level 3 process maturity (Benno and Fraile, 1995). Following process improvement

32

programs, the organization had seen a two-fold improvement in software development

productivity and a 6.5 times improvement in delivered defect density (Benno and Fraile, 1995).

Other similar case studies are found in the literature. In an additional effort to asses the
impact of software process improvement on the organization, the economic benefits of software
process improvements were studied at the Oklahoma City Air Logistics Center, Directorate of
Aircraft Software Division located at Tinker US Air Force Base (Butler, 1995). Economic
benefits were grouped into four categories: return on investment, defect rates, maintenance costs,
and productivity (Butler, 1995). It was determined that process improvement efforts which led to
a Level 3 assessment had a positive impact on all of these categories (Butler, 1995). Similar
results were also reported at Motorola’s Government Electronics Division (GED) (Diaz and
Sligo, 1997). Notably, it was reported that each process maturity level reduced defect density
(defects per million earned assembly equivalent lines of code) by a factor of 2. However, it was
noted that cycle time (the amount of time for a baseline project to develop divided by the cycle
time for post process improvement project) and, to a lesser extent, productivity (the amount of
work produced divided by the time to produce that work) improve with each maturity level
except level 3, where they both decrease (Diaz and Sligo, 1997). The authors suggeéted that
achieving level 3 involves significant new process implementation which can negatively affect
these two metrics until the organization absorbs and adopts the processes. Motorola’s Cellular
Infrastructure Group at Cork, Ireland was also studied as it progressed from CMM level 1 in 1993
to level 4 in 1997 (Fitzgerald and O’Kane, 1999). Efforts were made to identify critical success

factors associated with the site’s progression towards level 4 (Fitzgerald and O’Kane, 1999).

Likewise, Bull HN Information Systems Inc., the US subsidiary of Groupe BULL, the
fourth-largest European systems integrator, established the Capability Maturity Model as the

source of goals for its software process improvement (Herbsleb et al., 1994). Process

33

improvement efforts were beneficial on several levels including schedule (coding time, testing
time) and quality (yearly amount of defects reported by customers) (Herbsleb et al., 1994).
Similarly, a six-year study at Hewlett-Packard found that delivered defects were reduced from 1
per thousand lines of code to 0.1 per thousand lines of code. Cost savings over 100 million dollérs

were also achieved through software process improvement (Myers, 1994).

5.2 Empirical Research: Studying the CMM and Software Process Improvement through

Empirical Investigations

In addition to numerous case studies on the organizational impacts of software process
improvement, several empirical efforts, aimed at further understanding what has been observed in

particular firms, have been undertaken.

One of these studies set out to determine the correlation, if any, between software process
maturity and software project success (Lawlis et al., 1995). In the context of this study, software
project success was defined as cost and schedule performance. Actual performance data for these
two metrics were compared to identical baseline measures in order to obtain performance indices.
Software process maturity was determined by rating various contractors according to Software
Engineering Institute CMM protocols. Data were collected from 11 US Department of Defence
contractors who had been rated on 31 software projects these organizations were developing
while their ratings were in effect. Data analysis focused on statistically correlating the cost and
schedule performance indices with the respective CMM ratings. Results showed improved cost
and schedule performance with increasing software process maturity. This correlation was more

evident in cost performance than in schedule performance (Lawlis et al., 1995).

34

In studying the effect of software process improvement on organizational performance,
other researchers proceeded with a survey of firms that had undergone CMM-based software
process improvement in order to obtain more representative results (Herbsleb and Goldenson,
1996). One of the main goals of the survey was to determine whether the performance reported
by more mature organizations was in fact superior to the performance of less mature firms.
Performance was assessed using several measures. Performance indicators included such metrics
as the firms’ ability to meet schedule and budget commitments, staff morale, customer
satisfaction, and staff productivity. A random sample of 155 firms was drawn from the SEI’s
appraisal reports database. A response rate of 83% allowed for the cross-tabulation of maturity
level and organizational performance metrics. Results showed that respondents who reported
better performance, tended to be from higher maturity firms. Statistically significant relationships
were found between higher maturity levels and ability to meet schedule, ability to meet budget,
and higher staff morale. These findings provide further support to previous research which
showed that high maturity organizations are likely to have less difficulty adhering to cost and
schedule targets (Lawlis et al., 1995). However, relationships between maturity level and product
quality, customer satisfaction, and staff productivity were not quite statistically significant, but
were all in the same direction (increased with higher process maturity levels) (Herbsleb and
Goldenson, 1996). Also, no attempt was made at assessing process performance with specific

measures of software project performance.

Other performance aspects have also been addressed such as software product quality,
system development cycle time, and development effort (Harter et al., 2000). Improvements in
process maturity entail higher product quality but also increased development efforts. However,
higher quality in turn leads to reduced cycle time and development effort in software products
(Harter et al., 2000). Furthermore, the net effect of increases in software process maturity on

development cycle time and system development effort is negative (Harter et al., 2000).

35

B. Software Project Performance

Performance measurement is a central issue in attempting to evaluate software
development projects. As organizations continue to invest substantial amounts of money in the
development and maintenance of information systems, performance issues are increasingly
considered by managers in order to assess the overall effectiveness and degree of success of IS
projects. Placed in the larger context of information systems literature, software project
performance can be considered as a more specific research area in the broader field of

information systems project performance.

Performance literature in information systems development can be broadly divided into
two streams of research: the social view of software project performance and the technical view
of software project performance (Aladwani, 2002). The social view of software project
performance refers to research which largely focuses on issues relevant to the attributes and
behaviours of project members. Software development projects are placed in their specific social
context in which human behaviours and the overall organizational environment in which software
projects take place are considered. In this view, technology factors as determinants of system
development project outcomes are largely submerged by social variables (Aladwani, 2002). On
the other hand, the technical view of software project performance consists of research which
focuses on issues relevant to the characteristics of the project in itself. Contextual variables such
as human behaviour and project management are usually overlooked in these types of studies

(Aladwani, 2002).

36

1. Factors that Affect Software Project Performance

1.1 The Social View of Software Project Performance

The social view of software project performance is largely characterized by close

attention paid to the human behavioural aspect of software development projects and its impact

on project performance.

Table 7

37

Studies Falling into the Social View of Software Project Performance

Study

Human Behavioral
Variable(s)

Performance
Variable(s)

Henderson and
Lee, 1992

Managerial and team
member control

Adherence to
schedules and
budgets, and amount
of work produced

Key Findings

High-performing teams exhibit high
process control by managers and high
outcome control by team members;
increases in total control behavior
increases team performance

Abdel-Hamid,
1992

Managerial succession and
employee turnover

Project costs and
duration

Managerial succession and turnover
can ultimately lead to discernable
variations in project performance in
terms of both costs and duration

Streeter, 1995

practices such as system
status and design review
meetings, more general
development group
meetings, and code
inspections

informed,
coordination success,
client satisfaction,
managers’ evaluation,
software productivity,
software quality

Robey et al., Participation, influence, Adherence to budgets, | There is a strong positive relationship
1993 conflict, and conflict schedules, and quality | between conflict resolution and
’ resolution among team of work Pij‘?Ct success and a moc.le.rate.
members rela.tlonshlp between participation and
pI'O_]CCt Success
Kraut and Team coordination Project members These aspects affect the success of

projects on several dimensions. For
instance, formal procedures such as
status and design review meetings
were found to be relatively good
predictors of software quality.

Guinan et al.,
1998

Team skill, managerial
involvement, and variance
in team experience

Stakeholder-reported
and team-reported
team performance

Team skill, managerial involvement,
and little variance in team experience
enable more effective team processes
than do software development tools
and methods

Saleem, 1996

The user’s perceived
expertise in IS
development

Extent to which users
resist and utilize the
system

Users who perceive themselves as
functional experts in IS relative to
others are unlikely to accept a system
unless they exercised a substantial
influence on its design. On the other
hand, users who do not perceive
themselves as functional IS experts
are likely to accept and use a system
regardless of the extent of their
influence on its design.

The social view of software project performance can take many forms. In studying IS

design teams for instance, Henderson and Lee (1992) addressed the concept of managerial and
team-member control and their effects on the design teams’ performance in terms of variables
such as adherence to schedules and budgets, and amount of work produced. Results from their

study of 41 actual IS design teams indicate that high-performing teams exhibit high levels of

38

control both by managers and team-members. Control behaviours are found to be positively

correlated with team performance.

Managerial succession and employee turnover are additional behavioural factors that can
influence IS project performance outcomes (Abdel-Hamid, 1992). The results of a simulation-
based laboratory study to investigate this issue revealed that managerial succession and turnover
can ultimately lead to discernable variations in project performance in terms of both costs and

duration (Abdel-Hamid, 1992).

As system development projects are rarely an individual endeavour, research into the
interaction among development team members has also garnered attention. The relationships
between participation, influence, conflict, and conflict resolution among team members have been
studied and assessed as to their influence on project success (Robey et al., 1993). Results showed
a strong positive relationship between conflict resolution and project success and a moderate
relationship between participation and project success where project success included such

aspects as adherence to budgets, schedules, and quality of work (Robey et al., 1993).

Coordination of team members has also emerged as an important variable when it comes
to studying the dynamics of groups. In software development teams, several coordination
practices are used such as system status and design review meetings, more general development
grc;up meetings, and code inspections and affect the success of projects on several dimensions
(Kraut and Streeter, 1995). For instance, formal procedures such as status and design review
meetings were found to be relatively good predictors of software quality (Kraut and Streeter,

1995).

39

The study of project performance through users has also included such variables as team
skill, managerial involvement, and variance in team experience. The two former aspects as well
as little variance in team experience were found to enable more effective team processes than do

software development tools and methods (Guinan et al., 1998).

Software project performance can also be viewed as the degree to which a system is
successful. The level of success can in turn be considered as the extent to which users resist and
utilize the system (Saleem, 1996). User participation in information systems development has
been largely researched. However, only recently has the concept of the user’s perceived expertise
in IS development been studied. In fact, research results suggest that users who perceive
themselves as functional experts in IS relative to others are unlikely to aécept a system unless
they exercised a substantial influence on its design (Saleem, 1996). On the other hand, users who
do not perceive themselves as functional IS experts are likely to accept and use a system
regardless of the extent of their influence on its design (Saleem, 1996). These findings provide
useful insights when it comes to the undertaking of high performance software development

projects in terms of ultimate system resistance and utilization by the user community.

1.2 The Technical View of Software Project Performance

The technical view of software project performance is more concerned with issues
relevant to the characteristics of the software development project in itself. Contextual variables
such as human behaviour and project management are usually overshadowed by technology, task,

process, and project characteristics (Aladwani, 2002).

Table 8

40

Studies Falling into the Technical View of Software Project Performance

Study

Technical Variables

Performance
Variables

Key Findings

Saarinen, 1990

Development time,

Time, budgetary,

Methods and tools must be adequate in every

uncertainty

level of and user phase of the development life cycle to ensure
telecommunications, | requirements Suceess.
adequacy of tools
Deephouse, Software process Software quality, | Project planning was shown to be a
1995-96 stability, design and meeting sigl?iﬁcant positive predictor of both mee'ting
reviews, software project targets pro'Ject targets anfi software product .qughty
prototyping whl'le. cross-functional teams had a mgmflcant
positive effect for software product quality
Ravichandran, Implementation of Adherence to cost | Various aspects of both the administrative
1999 information budgets, and technical dimensions were found to affect
repository, adherence to software project performan.ce; notably the
code/design reuse project schedules, | implementation of reuse-oriented reward
olicy. and reuse- svstems delive schemes (administrative dimension) is a
POTICY, ysten ry significant predictor of all four aspects of
based rewards lead tlrn‘e,' and software delivery performance while the
productivity of IS | implementation of a repository was
personnel significant in predicting the cost, delivery,
and productivity dimensions of software
delivery performance
Rai and Al- Technical process Product and Development process modeling is positively
Hindi, 2000 modeling and task process quality related to both process and product quality,

while task uncertainty is negatively related to
them. Development process modeling reduces
the negative impact of task uncertainty on
quality-oriented development outcomes.

Saarinen (1990) examined the variables that contribute most to the success of IS projects.

Variables included development time, level of telecommunications, and adequacy of tools. In

comparing a number of software development projects, the author showed the need to have

adequate methods and tools in every phase of the system development life cycle to ensure

SucCcCess.

As software project performance has many dimensions, Deephouse et al. (1995-96),

decided to focus on two specific performance aspects: software quality, and meeting project

targets. Software quality entails the extent to which the software system meets the actual needs

of the end users and meeting targets refers to the notion that in order to be successful a software

41

project should be on time and on budget. In addressing software project performance, the authors
conducted a study to assess the effectiveness of seven processes in common use during software
development projects: project planning, software process stability, cross-functional teams,
process training, prototyping, and communication with users. Results provided evidence for the
importance of two particular processes. Project planning was shown to be a significant positive
predictor of both meeting project targets and software product quality while cross-functional

teams had a significant positive effect for software product quality (Deephouse et al., 1995-96).

Software project performance has also been referred to as system delivery performance
measured through adherence to cost budgets, adherence to project schedules, systems delivery
lead time, and productivity of IS personnel (Ravichandran, 1999). Along these performance
dimensions, it was found that specific aspects of software reusability, conceptualized as a
software process innovation from administrative and technological perspectives, affect software
project performance. Software reusability is a potential strategy to tackle recurring systems
development problems such as high development costs, long systems delivery lead times, and low
levels of programmer productivity (Ravichandran, 1999). The administrative dimension of
reusability includes changes to structures and policies within the IS unit that are specifically
adopted to facilitate reuse implementation. The technological perspective relates to the
implementation of an information repository containing parameterised design and code which
facilitate software reusability when developing new systems. Various aspects of both the
administrative and technical dimensions were found to affect software project performance;
notably the implementation of reuse-oriented reward schemes (administrative dimension) is a
significant predictor of all four aspects of software delivery performance while the
implementation of a repository was significant in predicting the cost, delivery, and productivity

dimensions of software delivery performance (Ravichandran, 1999).

42

Moreover, Rai and Al-Hindi (2000) looked at the impact of development process
modeling on outcomes in software development projects. They showed that development process
modeling is positively related to both process and product quality, while task uncertainty is
negatively related to them. Development process modeling reduces the negative impact of task

uncertainty on quality-oriented development outcomes (Rai and Al-Hindi, 2000).

2. Measuring Software Project Performance as a Two-Dimensional Construct

However, an alternate view of performance has garnered consistent support throughout
the years: the assessment of software project performance as a two-dimensional construct
comprised of both a process and a product dimension (Riddle, 1984; Agresti, 1986; Cooprider
and Henderson, 1990-91; Nidumolu, 1995; Ravichandran and Rai, 2000; Rai and Al-Hindi, 2000;
Barki et al., 2001, Jiang et al., 2004). At the core of this theoretical perspective of performance is
the idea that one of the key goals of performance measurement is not only to assess and to
improve the final output (tangible or intangible) of the production processes, but to also consider
the processes used to obtain that output. The importance of adopting a two-dimensional view of
performance is also supported by the fact that there is a potential conflict between the efficiency
of the process and the quality of the product. For example, software development projects may
deliver systems of high quality while significantly exceeding budget and schedule constraints. On
the other hand, well-managed projects that consistently remain within the projected schedule and

budget targets may very well deliver products of poor quality (Nidumolu, 1995).

One of the earlier studies adopting the process/product performance perspective of
software development performance proposed assessing the effects of IS project processes and
supporting technologies on project performance (Cooprider and Henderson, 1990-91). More

specifically, the focus of the study was on IS prototyping project performance and the primary

43

determinant of performance impact: the fit between the prototyping processes and the support
technology used (Cooprider and Henderson, 1990-91). The authors’ contributions consisted of
presenting innovative perspectives on the measurement of software project performance and
providing early support for the study of performance as a two-dimensional process/product

construct (Cooprider and Henderson, 1990-91).

Variations in product and process performance have also been attributed to other factors
such as coordination mechanisms and risk drivers (Nidumolu, 1995). Two types of coordination
mechanisms are vertical and horizontal coordination. The former consists of the extent to which
coordination between the IS staff and users is conducted through authorized entities such as
steering committees and project managers. The latter involves coordination through mutual
adjustments and communications between the IS staff and users (Nidumolu, 1995). Risk drivers
include residual performance risk which is the difficulty in estimating performance-related
outcomes during the later stages of projects (Nidumolu, 1995). Research has provided evidence
of additional predictors of software project performance in project uncertainty, residual
performance risk, horizontal coordination, and the joint effects of vertical and horizontal
coordination (Nidumolu, 1995). Moreover, a more specific type of coordination in software
development projects, horizontal coordination, has been shown to predict a particular project
performance outcome: product flexibility (Nidumolu, 1996). Horizontal coordination involves the
mutual adjustments and communication between system users and IS staff while product
flexibility refers to the extent to which the software product ultimately delivered to the customer
is able to support distinctively new products or functions in response to changing business needs
(Nidumolu, 1996). While no evidence was found when it came to vertical coordination
(coordination through superiors) of project team members, horizontal coordination explained the

bulk of the variance of product flexibility (Nidumolu, 1996).

44

Additional risk-based research has also contributed to further advancing our knowledge
of the relationship between risk and performance in software development projects (Barki et al.,
2001). Specifically, results suggest that in order to increase software project performance
(process and product performance) a project’s risk management profile needs to vary according to
the project’s exposure to risk (Barki et al., 2001). In other words, projects exposed to high
degrees of risk require a different risk management profile than do low risk exposure projects.
Such a risk management profile include high information processing capability approaches in

their management as well as high levels of formal planning (Barki et al., 2001).

Software process maturity must also be considered when considering antecedents of
process and product performance in software development projects. Research results indicate
that particular CMM software process levels are positively related to project performance (Jiang
et al., 2004). Project performance was found to be influenced by certain CMM level 3
recommended activities (process engineering and organizational support activities). However,
certain CMM level 4 activities (product and process quality activities) were marginally significant
in predicting performance (Jiang et al.,, 2004). Level 2 activities were not found to have a

significant effect on software project performance variations (Jiang et al., 2004).

This two-dimensional view was also adopted in the study of software project quality and
resulted in the definition of project outcome quality in terms of product quality and process
efficiency (Ravichandran and Rai, 2000). Product quality refers to users’ perceptions when it
comes to such things as the system’s functional requirements and their satisfaction with its overall
quality. Process efficiency includes various elements related to the development project in itself
such as schedule and budget cost overruns, time spent on fixing system bugs, and the level of
backlog of development work (Ravichandran and Rai, 2000). In studying these variables, the

authors found that software quality is best attained when top management creates a management

45

infrastructure that promotes improvements in process design and encourages stakeholders to
evolve the design of the development processes (Ravichandran and Rai, 2000). Variations of this
two-dimensional view were also proposed in the study of software project quality and resulted in
the definition of project outcome quality in terms of product and process quality (Rai and Al-
Hindi, 2000). Product quality included such variables as the reliability of the application
developed as well as its maintainability. Process quality referred to budget and schedule aspects
of the development project and quality of efforts among other things (Rai and Al-Hindi, 2000).
The results suggest that software development process modeling is positively related to both
product and process quality, while task uncertainty is negatively related to them (Rai and Al-

Hindi, 2000).

C. Software Development Risk

As a large proportion of software project failures are management-related, the search for
appropriate managerial action to solve this problem has attracted much attention (Schmidt et al.,
2001). Among the proposed methods, the concept of software project risk management has
emerged as a popular topic. According to the risk management method, various actions can be
taken to reduce the chance of software project failure by identifying and analyzing threats to the
success of the project (Schmidt et al., 2001). This section will present how the concept of risk in
information systems literature has been addressed throughout the years. The section is organized
as follows. As the concept of risk in information systems can be organized into two distinct
streams of research- the rational decision theory perspective of risk and the behavioural
perspective of risk (March and Shapira, 1987; Lyytinen et al., 1998) - the following literature

review will be divided along these two dimensions. Subsequent to an introduction to these

46

distinct streams of research, risk research literature will be covered first along the rational

decision theory view followed be the behavioural view of risk.

1. The Concept of Risk in Information Systems Research

Risk theory in information systems can be divided into two separate streams of research:
the decision theory perspective (decision theoretic perspective) of risk and the behavioural

perspective of risk (March and Shapira, 1987; Lyytinen et al., 1998).

Rational decision theory addresses the concept of risk in a quantitative manner or in other
words as the variation in the distribution of possible outcomes, their odds of occurring, and their
subjective values (Arrow, 1965). In this context, a risky alternative is an option for which the
variance is large, and risk, along with the expected value of the alternative, are used as attributes
in evaluating different gambles (Arrow, 1965). Rational choice theory postulates that managers
dealing with risk first calculate alternatives and then choose one option among the available risk-
return combinations yielding the highest outcome. They thus behave in a rational (risk-aversive)

manner (Yates, 1992).

On the other hand, the behavioural perspective of risk (March and Shapira, 1987) more
accurately defines the assumptions that underline most risk management approaches. Risk
research that falls into this perspective focuses more specifically on ambiguous losses, relies on
multidimensional and qualitative models that make the management task more simple and
feasible, and seeks to avoid or master risks through sequential pruning exercises (Lyytinen et al.,

1998).

47

2. The Decision Theory Perspective of Risk

The concept of risk is ever-present when it comes to human endeavours. Consequently,
people from a variety of domains have tackled the notion of risk and proposed a wide range of
definitions to better grasp its meaning. However, despite numerous perspectives of risk,
similarities uﬁderlie the many descriptions of the concept. Many definitions of risk include two
specific dimensions (Barki et al., 1993): (1) a probability associated with an undesirable event,
and (2) the consequences of the undesirable event. For example, an early proponent of software

risk management, Boehm (1989) defined risk or risk exposure (RE) in software development as

RE = Prob(UQ) * Loss(UO) where Prob(UQ) is the probability of an unsatisfactory
outcome, and Loss(UO) is the loss to the parties affected if the outcome is

unsatisfactory. (p. 4)

According to this definition, the assessment of the probabilities of undesirable events and
their associated losses is necessary in order to measure the degree of risk. The quantitative
evaluation of risk is thus a key concern in this context (Boehm, 1989; Boehm and Ross, 1989).
Several risk analysis methodologies, which consider loss exposure (risk exposure) as a function
of the degree of vulnerability of an asset multiplied by the probability of the threat becoming a
reality, have been developed such as Livermore Risk Analysis Methodology (Guarro, 1987), the
Stochastic Dominance method (Post and Diltz, 1986), the Probabilistic Risk Assessment
(Linnerooth-Bayer and Wahlstrom, 1991), and RiskMethod and the corresponding RiskTool

(Kansild, 1997).

However, several difficulties arise when assessing risk using a quantitative evaluation of

probabilities (Barki et al., 1993). In many cases, probability distributions of undesirable events

48

are very difficult to assess and can be unreliable (Post and Diltz, 1986). Also, it is important to
delve upon the relative nature of risk as it has been proposed that absolute risk does not exist.
Instead, it could in fact be considered a subjective concept that varies according to the perceptions
of the different individuals assessing it (Kaplan and Garrick, 1981; Keil et al., 2000). Risk would
thus involve uncertainties and loss rather than probabilities and loss (Barki et al., 1993). For
instance, in the context of a software development project, uncertainty of loss exists when
individuals possess limited information on the various factors which will affect the project
throughout its multiple phases. In fact, uncertainty of loss will have existed even if the
development team subsequently discovers that there was no probability of that particular loss
happening. In this case, given that there was no possibility of a specific loss ever happening, an
estimation of the probability of that particular loss would have been completely erroneous while

the uncertainty regarding the loss was very much present and identifiable.

Furthermore, the decision theoretic view is not consistent with empirical findings of how
managers deal with risks (March and Shapira, 1987). In fact, human decision makers are quite
insensitive to probability concepts when addressing uncertainties. Individuals do not trust, do not
understand, or simply do not utilize probability estimates (March and Shapira, 1987). Instead,
managers exhibit loss-aversive behaviours as opposed to the more rational ones proposed by
rational choice theory (Lyytinen et al., 1998). More crude characterizations are used to exclude
certain possibilities when it comes to decision making and thus render the managerial process a
sequential pruning exercise aimed at identifying and mastering risks instead of making it an

overall optimization decision (Lytinnen et al., 1998).

49

3. The Behavioural Perspective of Risk

As a result, alternative methods of assessing risk have been developed and focus on the
factors that influence the occurrence of undesirable events instead of assessing their probabilities
of occurring. Acknowledging the difficulties in making accurate estimates of probabilities and
losses in software development, Boehm (1991) subsequently proposed the use of approximate
methods. He recommended a top-level risk-identification checklist comprised of ten primary
sources of risk based on a survey of experienced project managers. The risk items include
personnel shortfalls, unrealistic schedules and budgets, developing the wrong software functions,
developing the wrong user interface, gold-plating, continuing stream of requirement changes,
shortfalls in externally furnished components, shortfalls in externally performed tasks, real-time
performance shortfalls, straining computer-science capabilities (Boehm, 1991). Additional
attempts to develop a comprehensive list of risk items were conducted by Schmidt, Lyytinen,
Keil, and Cule (2001). Using a Delphi survey to produce a rank-order list of risk factors, the
authors elicited and organized opinions of an international panel of experts through iterative,
controlled feedback. Risk factors that stood out as receiving a high rating included lack of top
management support, failure to gain user commitment, and a misunderstanding of the
requirements (Schmidt et al., 2001). It is important to note that despite the agreement with regard
to several risk factors, there were differences in opinion on the relative importance of some
factors (Schmidt et al., 2001). This finding stresses the need for caution in considering risk

factors as perceptions can vary across countries and cultures (Peterson and Kim, 2003).

In addition to identifying risk factors that may impede project progress, Ropponen and
Lyytinen (1997) studied the impact of risk management practices such as methods, resources, and
their period of use, on risk management performance or the success in managing widely

recognized risks. Instead of assessing the effect of the presence of risk factors on performance

50

outcomes, the authors focused more specifically on answering the following question: Do specific
risk management practices actually lead to the successful management of widely recognized
risks? Results supported the general claim that the use of risk management methods does in fact
improve system development performance. However, very little support was found in
determining whether specific risk management methods are instrumental in addressing specific
software risks (Ropponen and Lyytinen, 1997). Instead, it was found that overall, risks are better
managed when confronted by experienced managers coupled with such things as investing in and

obtaining experience in risk management considerations (Ropponen and Lyytinen, 1997).

Risk has also been studied as residual performance risk which is defined as the difficulty
in estimating performance-related outcomes during later stages of software development projects
(Nidumolu, 1995; Nidumolu, 1996). Project uncertainty increases residual performance risk.
Both project uncertainty and residual performance risk have a direct negative effect on project
performance. Moreover, the presence of residual performance risk reduces process control or the
extent to which the development process is under control and was not shown to have an impact
on product flexibility- the extent to which the software product is able to support new products or

functions in response to changing business needs (Nidumolu, 1996).

Finally, Barki, Rivard, and Talbot (1993) directly addressed the difficulty of coupling the

concept of risk with outcome probabilities and thus devised an instrument comprised of

uncertainty and risk variables derived from previous research in risk and uncertainty literature.

They therefore define risk as follows:

Sofiware development risk = (project uncertainty) * (magnitude of potential

loss due to project failure).

51

This definition refers to uncertainty rather than probability and assumes a single unsatisfactory

outcome: project failure (Barki et al., 1993).

The authors grouped project characteristics that influence the occurrence of project
failure along five dimensions: technological newness, application size, lack of expertise,
application complexity, and organizational environment while the magnitude of potential loss due
to project failure was assessed through 11 variables (Barki et al., 1993). Later studies found that
increased levels of fit between these five dimensions of risk exposure of a software project and its
management profile have a positive effect on software project performance (Barki et al., 2001)
and that software development risk negatively impacts software project effectiveness, thus

providing further support for the behavioural perspective of risk (Jiang and Klein, 2000).

52

III. RESEARCH MODEL AND HYPOTHESES

3.1 The Conceptual Framework

The conceptual model shown in Figure 6 was developed to answer the key research
questions that motivate this study: What is the impact of CMM process maturity levels on the
performance of sofiware development projects? What is the relationship between software

development risk and software project performance?

To answer these questions, a set of metrics pertaining to each of the three constructs used
in this research was utilized. Data was then collected to validate these metrics and examine their
relationships and relationship strengths to one another. Grounded in prior research in the areas of
software process improvement, software project performance, and risk in information systems, a
series of hypotheses were developed to test the presence (or absence) of effects in accordance
with the relationships depicted in the conceptual framework (see Figure 6). In others words, the
proposed research model will for the first time provide empirical evidence as to the relationships
between CMM software process maturity levels, software project performance, and software

development risk.

Figure 6
The Conceptual Framework

CMM
Software
Process Maturity

Level

Project

Software

Performance

Software
Development
Risk

H2 -

3.2 Hypothesis Development

53

The research model is tested across two hypotheses that allow for the exploration of

predicted relationships between the constructs. As the main objective of this study consists of

investigating the correlations between CMM software process maturity levels and the

performance of software development projects, while looking at the influence of software

development risk on software project performance, prior published findings pertaining to these

variables are presented next and ultimately lead to hypothesized relationships. A detailed

explanation of the predicted relationships between the constructs follows.

54

3.2.1 Software Process Maturity and Software Project Performance

Software process maturity has been related to performance improvements in a number of
case studies that reveal substantial value to organizations that have implemented well conceived
process improvement efforts. The quality standards incorporated into the CMM model have been

proven to increase project performance. The following cases and surveys validate this claim.

CMM-based software process improvement at the Software Engineering Division (SED)
of Hughes Aircraft in Fullerton, California improved the quality of work life and the firm’s image
benefited from improved performance. Hughes’ SED had fewer overtime hours, fewer problems
to deal with each day, a more stable work environment, and low software-professional turnover

(Humphrey et al., 1991).

Raytheon Corporation’s Software Systems Laboratory (SSL) undertook a software
process improvement effort. The improvement program resulted in an evolution from Level 1
(Initial) to Level 3 (Defined). Various observations following the process improvement efforts
were made. Notably, software rework and integration costs were reduced. Retesting also
decreased about half the amount of its original value. Raytheon’s SSL’s evolution to CMM Level
v3 also resulted in gains in schedule and budget performance. After process improvement efforts,
most projects finished on or ahead of schedule and below budget (Dion, 1993). Moreover, less
tangible but equally important results were noted. Software engineers were spending fewer late

nights and weekends at the office and employee turnover was reduced (Dion, 1993).

Schlumberger, a multinational organization, also underwent a software process
improvement program (Wohlwend and Rosenbaum, 1993). After several years of improvement

activities, positive benefits were observed. Managers noted better project and product

55

communication between its software engineering centers. Customers also mentioned that the
quality of the products had improved. Other positive, more quantifiable results from higher
software process maturity were also reported. Over a three year period during which software
process improvement efforts were conducted, it was found that the percentage of software
projects completed on time increased from 51% in 1990 to 94% in 1992 (Wohlwend and
Rosenbaum, 1993). Furthermore, post release software product defects decreased from 25% of
total product defects in 1989 to 10% of total product defects by 1991 (Wohlwend and

Rosenbaum, 1993).

The Defence Systems and Electronic Group (DSEG), a division of Texas Instruments,
following sustained software process improvement initiatives, saw a two-fold improvement in
software development productivity and a substantial improvement in delivered defect density

(Benno and Fraile, 1995).

Oklahoma City Air Logistics Center, Directorate of Aircraft Software Division located at
Tinker US Air Force Base (Butler, 1995) also benefited form several economic benefits which
were grouped into four categories: return on investment, defect rates, maintenance costs, and
productivity (Butler, 1995). It was determined that process improvement efforts which led to a
Level 3 assessment had a positive impact on all of these categories (Butler, 1995). Similar results
were also reported at Motorola’s Government Electronics Division (GED) (Diaz and Sligo,
1997). Notably, it was reported that each process maturity level reduced defect density (defects

per million earned assembly equivalent lines of code) by a factor of 2.

Likewise, Bull HN Information Systems Inc., the US subsidiary of Groupe BULL, the
fourth-largest European systems integrator, established the Capability Maturity Model as the

source of goals for its software process improvement (Herbsleb et al., 1994). Process

56

improvement efforts were beneficial on several levels including schedule (coding time, testing

time) and quality (yearly amount of defects reported by customers) (Herbsleb et al., 1994).

Similarly, a six-year study at Hewlett-Packard found that delivered defects were greatly
reduced and cost savings over 100 million dollars were achieved through software process
improvements (Myers, 1994) while a review of software process improvement efforts in 13
organizations showed improvements in cycle time, defect density, and productivity (Herbsleb et

al., 1994).

In addition, empirical research results have also provided support for the impact of
software process maturity on various organizational performance indicators. More specifically, as
organizations progress in terms of the maturity of their software processes, organizational
performance indicators such as costs and project schedule improve. High maturity organizations
are likely to have less difficulty adhering to cost and schedule targets (Lawlis et al., 1995).
Higher levels of software process maturity also positively affect staff morale as well as the ability
to meet budgets (Herbsleb and Goldenson, 1996). Other performance aspects are also addressed
such as software product quality, system development cycle time, and development effort (Harter
et al., 2000). Improvements in process maturity entail higher product quality but also increased
development efforts. However, higher quality in turn leads to reduced cycle time and
development effort in software products (Harter et al., 2000). Furthermore, the net effect of
increases in software process maturity on development cycle time and system development effort

is negative (Harter et al., 2000).

Therefore, these findings provide preliminary support for, and lead to, the following

hypothesis.

57

HYPOTHESIS 1 (H1):

The higher the CMM for Software process maturity level, the higher the level of software project

performance.

3.2.2 Software Development Risk and Software Project Performance

One of the objectives of this thesis is to further our understanding of the relationship
between the software development risk and the performance of software development projects. In
studying this relationship, let us thus address what prior research has found with regard to these

two variables.

In prior research, software development risk factors were found to negatively affect
overall software project efficiency. Individual project risk variables such as the lack of a
development team’s general expertise, the intensity of conflicts among team group members, and
the lack of clarity of role definitions among team members, are most significantly related to
project efficiency. Project efficiency incorporated such items as considerations on the amount and
quality of work, adherence to schedules and budgets, speed and efficiency, and ability to meet

goals (Jiang and Klein, 2000).

Other specific items such as top management involvement and user support in a software
development project were also found to be significantly related to a development team’s
perception of its performance. Findings indicate that when software development team members
consider their projects as not benefiting from user support and/or top management support, teams

do not perform well (Jiang et al., 2000).

58

Furthermore, project management risks were also found to be significantly related to both
the process performance and the product performance of software development projects (Wallace
et al., 2004). Indeed, such factors as organizational environment risk, user risk, requirements risk,
project complexity risk, planning and control risk, as well as team risk, have a significant
negative impact on both the process and product performance of software development projects
(Wallace et al., 2004). Taken together, these variables indicate the negative impact of project
management risk on both the process and product dimensions of performance and thus stress the
need to address software development risk when considering key organizational concern such as

the performance of software development projects (Wallace et al., 2004).

Moreover, risk has also been studied as residual performance risk which is defined as the
difficulty in estimating performance-related outcomes during later stages of software
development projects (Nidumolu, 1995; Nidumolu, 1996). Project uncertainty increases residual
performance risk while both project uncertainty and residual performance risk have a direct
negative effect on project performance (Nidumolu, 1995). Furthermore, the presence of residual
performance risk reduces process control or the extent to which the development process is under
control and was not shown to have an impact on product flexibility- the extent to which the
software product is able to support new products or functions in response to changing business
needs (Nidumolu, 1996). These findings were later further supported by recent research
undertaken in Korea (Na et al., 2004). Results in a Korean setting showed that increases in
requirements uncertainty are directly associated with increases in residual performance risk and
decreases in software project performance in terms of process and product performance in Korean
software development projects (Na et al., 2004). These findings provide additional evidence as to
the generalizability of the impact of risk on the performance of software development projects

and stress the importance of addressing risk regardless of national and cultural boundaries.

59

Recent research also observed the existence of significant relationships between how
organizations manage risk in software development and software project performance (Barki et
al., 2001). In proposing an integrative contingency model of software project risk management,
research has shown the importance of adopting appropriate risk management practices according
to the project’s level of risk exposure. For instance, high-risk projects were found to call for high
information processing capacity approaches in their management. A software development
project’s risk management profile thus needs to be adapted to its degree of exposure to risk. In
other words, projects that are more highly exposed to risk seem to require a different type of risk

management profile than do low risk exposure projects (Barki et al., 2001).

It can therefore by argued that risk plays an important role in the performance outcome of
software development projects. Specifically, a project’s level of software development risk may

very well negatively influence software project performance as is hypothesized below.

HYPOTHESIS 2 (H2):

The higher the level of sofiware development risk, the lower the level of sofiware project

performance.

60

IV. RESEARCH METHODOLOGY

4.1 Research Variables and Measures

The variables used in this study fall into three constructs: CMM software process
maturity level, software project performance, and software development risk, and were adopted
from prior research. Their relationships are illustrated in the conceptual framework previously
shown in Figure 1 where each construct is represented by a box. Each construct is described in

turn below.
4.1.1 CMM Software Process Maturity

Software process maturity levels measured on the CMM maturity scale reflect an
organization’s software process capability while allowing for a better understanding of the
necessary steps that need to be taken in order to lay the foundations for continuous software
process improvement (Paulk et al., 1995). The CMM framework is comprised of 18 key process
areas such as software project planning, organization process focus, software quality
management, and defect prevention (Paulk et al., 1995). A software process is assigned the

highest maturity level if the goals in the 18 key process areas of the CMM are met.

The CMM for Software (SW-CMM) process maturity level for each of the organizations
polled in this study was previously determined by Carnegie Mellon Software Engineering
Institute SW-CMM lead appraisers. Organizations are certified at a maturity level by participating
in an official SW-CMM-Based Appraisal for Internal Process Improvement (CBA-IPI) conducted
by SEl-authorized lead appraisers. Only individuals from officially appraised organizations were

invited to participate in the study. Respondents were asked to specify, on a scale of 1 to 5, their

61

organization’s maturity level as it was last determined by a SEl-authorized lead appraiser. The

measure is presented below in Table 9.

Table 9

Measure of CMM Software Process Maturity Level
Construct Ttem Measure
CMM Software What is your CMM for Software (SW-CMM)
Process Maturity CMMLevel Maturity Level as it was last determined by a SEI-
Level authorized lead appraiser?

62

4.1.2 Software Project Performance

Table 10
Measure of Software Project Performance

Variable Item Measure
SPP1 Knowledge acquired by firm about use of key technologies
SPP2 Kno“fledge acquired by firm about use of development

techniques

SPP3 Knowledge acquired by firm about supporting users’ business
.SPP4 Overall knowledge acquired by firm through the project
SPP5 Control over project costs

Process SPP6 Control over project schedule

Performance
SPP7 Adherence to auditability and control standards
SPP8 Overall control exercised over the project
SPP9 Completeness of training provided to users
SPP10 Quality of communication between DP (data processing) and

users

SPP11 Users’ feelings of participation in project
SPP12 Overall quality of interactions with users
SPP13 Reliability of software
SPP14 Cost of software operations
SPP15 Response time
SPP16 Overall operational efficiency of software
SPP17 Ease of use of software

Product SPP18 Ability to customize outputs to various user needs

Performance SPP19 Range of outputs that can be generated
SPP20 Overall responsiveness of software to users
SPP21 Cost of adapting software to changes in business
SPP22 Speed of adapting software to changes in business
SPP23 Cost of maintaining software over lifetime
SPP24 Overall long term flexibility of software

The software project performance construct used in this study was adopted from

Nidumolu (1995, 1996) who addresses the dichotomist view of performance. The importance of

63

adopting a two-dimensional view of software project performance stems from the fact that there
is a potential conflict between the efficiency of the processes involved and the quality of the end
product. Software development projects may very well deliver systems of high quality while
significantly exceeding budget and schedule constraints. Then again, well-managed projects that
consistently remain within the projected schedule and budget targets may very well deliver
products of poor quality (Nidumolu, 1995). Nidumolu’s (1995,1996) conceptualization of
performance not only clearly addresses the importance of adopting both the process and product
perspectives of performance but is also highly significant in the context of this study as it directly
refers to the process performance of software development projects, a key measurement concern

in assessing the impact of CMM software process improvement.

Specifically, this construct is comprised of 24 items that together assess software project
performance along two dimensions: process performance which takes into account how well the
software development process went, and product performance which considers the performance
of the system, product, or output that is delivered to the end-user (Deephouse et al., 1995-1996;
Nidumolu, 1995,1996). These variables are shown in Table 10. Twelve variables assess process
performance along three dimensions: learning, control, and quality of interactions. The twelve
other variables evaluate product performance and fall into three categories as well: operational
efficiency, responsiveness, and flexibility. All 24 items were rated on a 7-point Likert-type scale

varying from 1 (very poor) to 7 (very good).

4.1.3 Software Development Risk

The instrument used to measure software development risk was adopted from Jiang and
Klein (2000) who adapted and validated the original risk measure developed by Barki, Rivard,

and Talbot (1993). The risk factors are presented in Table 11.

64

The software development risk construct is comprised of software development risk
factors grouped along five dimensions: technological acquisition, project size, degree of
expertise, organizational environment, and application complexity. The construct is comprised of
a total 46 items grouped into five dimensions of risk factors, all measured using a 7-point Likert-
type scale with anchors that range from “Strongly disagree” and “No expertise” to “Strongly

Agree” and “Outstanding Expertise”.

65

Table 11
Measure of Software Development Risk
Variable Variable Item Measure
Risk1 The new system required new hardware.
Technological N/A Risk 2 The new system required new software.
Acquisition
Risk 3 A large number of hardware suppliers were
> involved in the development of the system.
Risk 4 A large number of software suppliers were
! involved in the development of the system.
Risk 5 The?re were a large number of people on the
project team.
Project Size N/A There were a large number of different
Risk 6 “stakeholders” on the project team (e.g., IS staff,
users, consultants, suppliers, customers).
Risk 7 The project size was large.
Risk 8 There are a large number of users using the
system.
Risk 9 Ability to work with uncertain objectives
Degree of Risk 10 | Ability to work with top management
Team’s <k bili K effectivel
General Risk 11 Ability to work effectively as a team
Expertise Risk 12 Ability to understand the human implications of a
new system
Risk 13 | Ability to carry out tasks effectively
Risk 14 In-depth knowledge of the functioning of user
departments
Degree of Risk 15 | Overall knowledge of organizational operations
T E
Degree of Expertise | Risk 16 | Overall administrative experience and skill
Expertise with the Task Risk 17 Expertise in the specific application area of the
system
Risk 18 | Familiar with this type of application
Risk 19 | Development methodology used in this project
Risk 20 Development support tools used in this project
Degree of (e.g., DFD, flowcharts, ER models, CASE tools)
Team’s . S .
Development ' Project management tools L}sed in this project
Expertise RiskK21 | (e.g., PERT charts, Gantt diagrams,
walkthroughs, project management software)
Risk 22 Implementation tools used in this project (e.g.,

programming languages, database languages)

Table 11 (Continued)

66

Variable Variable Item Measure
Risk 23 User§ had a‘negatlve opinion about the system
meeting their needs.
Risk 24 [Users were not enthusiastic about the project.
Risk 25 Users were not an integral part of the development
team.
Risk 26 | Users were not available to answer questions.
Degree of Risk 27 | Users were not ready to accept the changes the
User Support S system entailed.
Risk 28 Users slowly responded to development team
requests.
Degree of . Users had negative attitudes regarding the use of
. Risk 29 . .
Expertise computers in their work.
(Continued) . Users were not actively participating in
Risk 30 . .
requirement definition.
Risk 31 Users were not very familiar with system
development tasks.
. Users had little experience with the activities
Risk 32 .
D supported by the new application
egree of Users were not very familiar with this type of
User Risk 33 | - 5o ™ Y P
Experience application.
. Users were not aware of the importance of their
Risk 34 . . .
roles in successfully completing the project.
Risk 35 Users. were not familiar with data processing as a
working tool.
Extent of Risk 36 The system rjcqulred that a large number of user
Ch tasks be modified.
anges The system led to major changes in the
Brought Risk 37 ySte J g
organization.
Risk 38 In order to develop and implement the system, the
Resource scheduled number of people-day was insufficient.
Insufficiency Risk 39 In order to develop and implement the system, the
dollar budget provided was insufficient.
Organizational Risk 40 The role of each member of the project team was
Environment Lack of not clearly defined.
Clarity of . The role of each person involved in the project
Risk 41
Role was not clearly defined.
Definitions . Communications between those involved in the
Risk 42 .
project were unpleasant.
. There was a great intensity of conflicts among
. Risk 43
Intensity of team members.
Conflicts . There was a great intensity of conflicts between
Risk 44
users and team members.
Application N/A Risk 45 | Large number of links to existing systems
Complexity Risk 46 | Large number of links to future systems

67

4.2 Data Collection and Research Sample

4.2.1 Data Collection Procedure

In order to test the relationships depicted in the research model, a survey research
methodology was adopted. Approximately 1000 officially SW-CMM-appraised organizations
were invited to answer an online questionnaire containing the items used to assess the constructs.
Invitations to participate in the study were specifically directed at individuals who were
knowledgeable about their organization’s software development projects as all of the items
pertained to software projects. As such, respondents included individuals from a variety of
positions, all related to software development projects and process improvement, including IS
executives, software project managers, as well as quality and process managers. All respondents
were assured that their responses would be kept strictly confidential and remain completely
anonymous. Data collection was conducted over a two-month period. Invitations to participate in
the study were sent to organizations through phone, e-mail, and online discussion group
invitations. Reminder phone calls and e-mails were then used in order to obtain additional

responses.

Upon completing data collection, roughly 200 questionnaires were returned. After
deleting incomplete questionnaires, 107 usable questionnaires were left. This consists of a
response rate of approximately 10%.

4.2.2 Sample Characteristics

Of the 107 returned surveys, 44% came from either project or quality managers/leaders.

Half the organizations (53%) in the sample are from the software development and IT services

68

sectors while 40% are relatively large organizations with more than 1000 employees. Moreover,
roughly half of the organizations in the sample (46%) had software development teams that had
less than 20 members for their last completed software project while 20% had more than 60 team

members. Table 12 provides the descriptive statistics for the sample.

Table 12
Sample Descriptive Statistics

Position

IS Executive
Project Manager/Leader
Quality Manager/Leader

Quality Analyst/Consultant/Engineer

Process Managetr/Leader
Software Developer/Engineer
Other

Not Reported

Average number of team members on last

software development project

3-20 members

21-40 members

41-60 members

61-80 members

81-100 members

100 + members

Not reported

Primary Sector
Software Development & Services
IT Services & Solutions
Healthcare

Finance

Government

Other

Not reported

Organization Size (Number of Employees)

Under 100 employees
101-500 employees
501-1000 employees
1001-5000

5001-50000 employees
Above 50000 employees
Not reported

25
22

12
23

22
12

17
22

26
12

16

70

Guidelines suggested by Hair et al. (1998) were followed in order to screen the
completed questionnaires for missing data and outliers. A few missing values were noted and
replacement data was generated using a mean substitution. The data set was also screened for
univariate and multivariate outliers. Since most of the variables used in the study were measured

on a 7-point scale, all of the data were kept for analysis as no extreme values were found.

71

V. DATA ANALYSIS AND RESEARCH RESULTS

5.1 Assessment of the Measurement Model

Partial least squares (PLS) was used to test the research model and hypotheses. PLS
consists of a regression-based technique that can estimate and test the relationships among
constructs. When testing a model, PLS produces loadings between items and constructs and
estimates standardized regression coefficients (i.e. beta coefficients) for the paths between the
constructs. Moreover, as PLS is a latent structural equation modeling technique that uses a
component-based approach, the demands on sample size are minimized (Chin, 1998). The
required sample size for a PLS analysis consists of ten times the number of items contained in the
largest construct (Chin et al., 1996). As the largest construct in this study was degree of user

support with 8 items, the final sample size of 107 was largely sufficient.

A PLS analysis involves two stages: (1) the assessment of the measurement model which
includes item reliability, convergent validity, and discriminant validity, and (2) the assessment of
the structural model. Taken together, the measurement model and the structural model form a
network of constructs and measures. While the items weights and loadings reveal the strength of
the measures, the estimated path coefficients indicate the strength and the sign of the theorized

relationships and thus reveal the strength of the structural model (Chin et al., 1996).
5.1.1 Reliability Assessment
In assessing the measurement model using PLS; individual item loadings, Cronbach’s

alpha coefficients, and the average extracted variances by construct were examined as a test of the

model’s reliability.

72

Table 13
PLS Factor Loadings
. . Software Project
Loadings CMM Level Risk Performance
LEV 1
RF1 0.26
RF2 0.51
RF3 0.92
RF4 0.11
RF5 0.41
PRI 0.95
PR2 0.93

The loading parameters estimated by PLS consist of the links between the measures and
the constructs. Individual item loadings help determine item reliability which indicates whether
given items measure a specific construct only. Item reliability was assessed by examining these
loadings on their respective constructs. A rule of thumb employed by many researchers is to
accept items which have a loading score of 0.707 or higher (Rivard and Huff, 1988). However, a
score of at least 0.5 is acceptable if other items measuring the same construct have a high
reliability score (Chin, 1998). Two software project risk variables met these criteria as project
size (RF2) has a value of 0.51 while degree of expertise (RF3) equals 0.92 and are shown in bold
in Table 13. Three other risk variables, technological acquisition (RF1), organizational
environment (RF4), and application complexity (RF5), were dropped as their loadings on the risk
construct were too low. In the case of the software project performance construct, both variables

have high loading values above 0.9 as shown in bold in Table 13.

Evidence of the reliability of the constructs used in the study was also obtained by

calculating Cronbach’s alpha coefficients in order to determine whether the items comprising

73

each construct are internally consistant. A score of 0.7 or higher indicates adequate construct
reliability (Nunnally, 1978). As shown in Table 14, based on this criterion, the software
development risk (a = 0.83) and software project performance (a = 0.95) constructs both

demonstrate sufficient reliability.

Furthermore, the average variance extracted (AVE) indicates whether significant variance
is shared between each variable and their respective construct. A score of 0.5 represents an
acceptable level of variance extracted (Fornell and Larcker, 1981). Based on this criterion, the
variance extracted for both constructs is more than enough. Indeed, software development risk
has an AVE of 0.84 and software project performance has an AVE of 0.97 as shown in Table 14.
Therefore, significant variance was shared between each item and their respective construct,

indicating adequate variance extracted and construct reliability.

Table 14
Reliability Assessments
Construct Reliability, a ICR AVE
ngtware Development 0.83 0.70 0.84
Risk
Software Project 0.95 0.94 0.97
Performance

5.1.2 Convergent and Discriminant Validity Assessment

In order to evaluate convergent and discriminant validity, a comparison between the
average variance extracted of each variable and the variance shared between the constructs (the
squared correlations between the constructs) was analysed as suggested by Fornell and Larcker
(1981). A PLS run was conducted to obtain the covariance matrices of all measures used to

evaluate the loadings of the different variables on their construct. High convergent validity

74

coupled with low discriminant validity is present when the loading of variables within a construct
is high on that construct and low on others. As shown in Table 13, this is the case with specific
variables for all three constructs. Indeed, both the process performance and product performance
variables (PR1 and PR2) load on their respective performance construct with reliability scores
well above 0.5 and exhibit very low loadings on other constructs. However, not all risk variables
cleanly loaded onto the software development risk construct and were therefore dropped. In other
words, they either did not show high loadings on their respective constructs (thus displaying low
convergent validity) or did not exhibit lower loadings on the other constructs (thus displaying low
discriminant validity). Indeed, technological acquisition (RF1), organizational environment
(RF4), and application complexity (RF5), were dropped as their loadings on the risk construct
were too low. All other variables whose loading values are shown in bold in Table 13 were kept

as they exhibit clear convergent and discriminant validity.

Moreover, Table 15 shows the square root of the average variance extracted for all three
constructs. It is thus obvious that each construct is distinguishable from the other constructs as the
variance shared by any two of them is less than the variance shared by a construct and its

measures. Therefore, the discriminant and convergent validity are satisfactory.

Table 15
Variance Shared Between Constructs
Construct CMM Level Risk Software Project
Performance
CMM Level 1
Risk 0.02 0.84
Software Project 0.04 0.25 0.97
Performance

75

5.2 Assessment of the Structural Model

The primary objective of this study is to provide empirical evidence as to the
relationships between CMM software process maturity levels and software project performance
while assessing the impact of software development risk on project performance. Consequently,
having validated the measures that comprise the conceptual model, advancing to the next phase of
the research will allow for an empirical assessment of the research framework and the testing of
the proposed hypotheses. Each hypothesis corresponds to a path in the conceptual model. Support
for the hypothesis can be determined by examining the sign (positive or negative) and statistical

significance for its corresponding path.

The structural model and hypotheses were therefore assessed by looking at the path
coefficients along with their level of significance. Each hypothesis was tested using PLS Graph
(Chin, 1995) which provided both of these values. Hypothesis 1 tested the relationship between
CMM software process maturity levels and software project performance. A positive relationship
was predicted. In other words, increased levels of CMM software process maturity were predicted
to lead to higher levels of software project performance. Results indicate that CMM software
process maturity levels are indeed significantly and positively associated with software project
performance (path = 0.19; p < 0.01). Hypothesis 1 is therefore supported. Moreover, hypothesis 2
tested the relationship between software development risk and software project performance and
predicted that higher levels of risk would entail lower levels of performance. The second
hypothesis was also supported as a negative and significant relationship was found (path = -0.51,
p < 0.001). Finally, the percentage of variance explained (R”) of software project performance

was 31%. A detailed figure of the structural model results appears below (see Figure 7).

76

Figure 7
Parameters for the Research Model

CMM
Software 0.19 **
| Process Maturity :
Level
Software
Project
Performance
Software —
Development -0.51 0.95 0.93
Risk J/ \
i Process Product
/ \ Performance Performance
0.51 0.92
¥ X
Project Size Degree of
Expertise

*:p <0.05; **: p<0.01; ***: p <0.001

In short, our analysis provides support for each hypothesis. Findings indicate that CMM
software process maturity levels are positively and significantly related to software project
performance (H1 supported) and that software development risk is negatively and significantly

related to the performance of software development projects (H2 supported).

77

V1. DISCUSSION OF FINDINGS

The objective of this study was to examine the relationship between the CMM for
Software process maturity levels and software project performance while assessing the impact of
software development risk\ on the performance of software development projects. Two key
questions that remained unanswered motivated this research: (1) What is the impact of CMM
software process maturity levels on the performance of software development projects? (2) What

is the relationship between software development risk and software project performance?

To answer these questions, a new conceptual model was proposed and tested in order to
conduct a sound empirical investigation. Metrics grounded in prior research were identified in
order to proceed with a large-scale survey research to provide answers for each of the above
questions. Data was collected from organizations that were officially CMM-appraised by SEI-
authorized lead appraisers. Respondents consisted of individuals who were knowledgeable and
could provide answers with regard to their organization’s software development projects. IS
executives, software project managers, as well as quality and process managers were some if the
positions held by participants of the study. Partial least squares (PLS) was used to test the
research model and hypotheses. The PLS analysis consisted of a two-pronged approach. First the
measurement model was validated and refined through reliability and validity tests. Second, the
structural model was assessed by examining the model’s path coefficients along with their

statistical significance. The conceptual framework was thus tested and supported.

Findings indicate that software project performance increases with higher levels of CMM
software process maturity. In other words, organizations that find themselves higher up on the
maturity ladder exhibit higher levels of performance when it comes to their software projects.

This corroborates the many claims made by various case studies regarding the benefits of

78

software process improvement initiatives based on the Capability Maturity Model (Fitzgerald and
O’Kane, 1999; Herbsleb et al., 1997; Diaz and Sligo, 1997; Herbsleb and Goldenson, 1996;
Goldenson et al., 1995; Herbsleb et al., 1994). It thus seems apparent that as a staged evolutionary
model that provides an incremental roadmap towards process control and continuous process
improvement, the CMM can now clearly be tied to performance metrics as was shown in this
empirical study. Organizations that adopt the many key practices included in the CMM can
anticipate process improvement that translates into performance increases in the form of both
process and product performance. Moreover, practicing managers must also keep in mind the
threat of software development risk. Such common factors as large software projects, software
developers’ management abilities, as well as user involvement in development projects must be
closely monitored by-any firm as evidenced by the negative influence of risk factors on a software
development project’s bottom line, its performance. Managers must therefore be mindful of the
many risks involved in software development projects while acting proactively to effectively

identify and mitigate threats that may hinder a project’s performance.

The following section discusses these findings with regard to their implications for

research and practice.

6.1 Implications for Research

This study makes significant contributions to software process improvement research. As
noted earlier, while many case studies on the benefits of CMM process improvement initiatives in
specific organizational settings have been made available, this is the first known study of its kind
to integrate CMM maturity levels, from officially appraised organizations, as a construct, along
with performance and risk variables, into a conceptual framework. This effort has not only

allowed for a preliminary empirical investigation of the impact of CMM maturity levels on

79

software project performance but also provides researchers with an new model that can be used,

expanded upon, and explored in more detail in future studies.

Many avenues for future research can be considered. Notably, it would be interesting to
further delve into each maturity level in order to examine the effectiveness of specific key process
areas with regard to performance metrics. This would provide a more detailed look into the inner
workings of each maturity level and would consist of a natural extension of this study. Moreover,
as this research has shown the significant influence of software development risk on the
performance of software development projects, it would be interesting to assess in what way
specific risk management practices incorporated into the CMM model effectively mitigate these
risk factors. For example, CMM level 3 contains an integrated software management process area
that stresses the need for managers to develop specific abilities such as methods and procedures
for identifying, managing, and communicating software risks (Paulk et al., 1993). How effective
are these methods at actually mitigating software development risks? In light of the growing
concern for risk in system development coupled with the increasing adoption of the CMM model
for software process improvement, this is one type of interrogation that requires further
investigating. Additionally, longitudinal studies also need to be considered. As the type of survey
research conducted here consists of a one-time snapshot of a given organization, precious
information could be obtained in following up on organizations that progress from one level to
the next. Performance could be assessed as organizations move up the CMM maturity scale in

order to detect and analyse performance variations.

6.2 Implications for Practice

These results are also of great interest to practicing managers as they consist of the first

known effort at linking CMM maturity levels from officially appraised organizations to

80

performance metrics in a large-scale empirical study. This study answers the challenge to move
beyond isolated case studies and anecdotes that have so often characterized this sort of debate in

the past (Herbsleb et al., 1997).

The decision for an organization to adopt a process improvement framework such as the
CMM is major. The Capability Maturity Model requires a considerable amount of time and effort
to implement. An organization roughly takes 18 to 30 months to move up one full maturity level
(Hayes and Zubrow, 1996). Moreover, official appraisals at a given maturity level are obtained by
participating in assessments conducted by SEl-authorized lead appraisers. Appraisers’ services
are typically valued at 50000$ per appraisal depending on the travel involved and the size of the
organization while many organizations also employ consulting services which can generate
considerable extra costs (Ingalsbe et al., 2001). All of these significant investments stress the
need for hard evidence that can justify the efforts required to implement CMM process
improvement initiatives. In tying CMM process maturity to software project performance, a key
organizational concern when it comes to software process improvement investments, this study
points to reliable results in terms of the payoff of CMM process improvement initiatives. This
large-scale survey of officially assessed organizations provides managers with more generalizable
findings than what was previously reported in a number of case studies (Goldenson et al., 1995).
Moreover, software managers or IS executives that may be reluctant to invest in CMM
improvement initiatives without the knowledge of the payoff now have preliminary findings that

can undoubtedly influence their ultimate decision.

81

6.3 Limitations of the Study

Although the results of the present study provide interesting insights for both researchers
and practitioners, more research is needed to overcome some of its limitations, as well as to
further explore and expand upon its findings. For one, as this consists of a preliminary study into
the effects of CMM software process maturity levels on software project performance while
assessing the influence of performance of software development risk, the internal components of
each CMM level were not included in the analysis. Therefore, it is not possible to determine
whether specific key process areas or what key practices had a greater impact on process and
product performance. Furthermore, this same limitation does not tell us whether risk management
processes incorporated into some CMM levels actually mitigate software development risk
factors as measured by the risk construct. Finally, this study consists of a static picture of given
organizations as the questionnaire specifically asked respondents to provide answers with regard
to their firm’s most recently completed software development project. Additional insights into the
variations of performance with regard to an organization’s progression on the CMM maturity
scale can be obtained through future longitudinal studies. Indeed, obtaining multiple observations
of each organization as it advances up the maturity scale would provide further insights into the

effects of CMM process improvement.

82

VII. CONCLUSION

Isolated case studies and anecdotes have often characterized the field of software process
improvement in the past (Herbsleb et al., 1997). Too little progress in the way of theoretical
development and testing has been made in this area. In an attempt to respond to this need, this
study, through a set of successive stages of testing and analysis has arrived at a new conceptual
framework that provides invaluable insight into the Capability Maturity Model for Software and
software process improvement. The variables comprising the instrument were derived from
previous research in the field of software project performance and risk in information systems
development. The resulting measurement and theoretical models were empirically tested in a
survey of more than 100 officially CMM-appraised organizations and provide invaluable insights
into CMM software process improvement and the hazards of software development risk. It has
shown substantial business benefits for organizations moving from the lower to the higher CMM
maturity levels in the form of a positive impact on software project performance assessed as both
process and product performance. Moreover, with regard to the growing concern for risk in both
research and practice, this study has contributed to providing additional evidence in terms of the
importance of managing and mitigating risk factors in software development projects as they
have been shown to clearly influence the performance of software development projects in a

negative way.

Moreover, in addition to providing initial empirical support for the findings, the research
model provides interesting avenues for future research. In fact, the research model can not only
be studied in more detail but can also be expanded upon in terms of CMM risk management
processes and their mitigating effects on software development risk. In addition, a longitudinal
study can provide additional insights into the variations of performance with regard to an

organization’s progression on the CMM maturity scale. In short, the model presented here not

83

only provides much needed empirical support for the benefits of CMM process maturity but also
consists of a solid basis that can be built upon to better understand CMM process improvement

through sound scientific investigations.

84

REFERENCES

Abdel-Hamid, T K., “Investigating the Impact of Managerial Turnover/Succession on Software
Project Performance”, Journal of Management Information Systems, Vol. 9, No. 2 (Fall 1992),
pp. 127-144

Agresti, W., (ed.), New Paradigms for Softiware Development, Washington, DC: IEEE Computer
Society Press, 1986.

Aladwani, A.M., “An Integrated Performance Model of Information Systems Projects”, Journal
of Management Information Systems, Summer 2002, Vol. 19, No. 1, pp. 185-210

Arrow, K.J., Aspects of the Theory of Risk Bearing, Yrjo Janssonin Saitid, Helsinki, Finland,
1965.

Barki, H., Rivard, S., and Talbot, J., “Toward an Assessment of Software Development Risk”,
Journal of Management Information Systems, Vol. 10, No. 2 (Fall 1993), pp. 203-225

Barki, H., Rivard, S., and Talbot, J., “An Integrative Contingency Model of Software Project Risk
Management”, Journal of Management Information Systems, Vol. 17, No. 4 (Spring 2001), pp.
37-69

Benno, S. and Frailey, D., “Software Process Improvement in DSEG- 1989-1995”, Texas
Instruments Technical Journal, (12:2), March-April 1995, pp. 20-28

Boehm, B.W., Software Risk Management. Los Alamitos, CA: IEEE Computer Society Press,
1989.

Boehm, B.W. Software Risk Management: Principles and Practices. IEEE Software, Vol. 8, No. 1
(January 1991), pp. 32-41

Boehm, B.W. and Ross, R., “Theory-W Software Project Management: Principles and
Examples”, IEEE Transactions on Software Engineering, Vol. 15, Iss. 7 (July 1989), pp. 902-916

Butler, K.L., “The Economic Benefits of Software Process Improvement”, CrossTalk, July 1995,
pp. 14-17

Chin, W.W., PLS-Graph Software, 1995, Version 2910208

Chin, W.W., Structural Equation Modeling in IS Research, ISWorld Net Virtual Meeting Center
at Temple University, 2-5 November 1998 [On-Line]. Available
http://www.interact.cis.temple.edu/~vme

Chin, W.W., Marcolin, B.L., Newsted, P.R. (1996), 4 Partial Least Squares Latent Variable
Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation
Study and Voice Mail Emotion/Adoption Study, Proceedings of International Conference on
Information Systems, Cleveland.

85

CMMI Product Team, CMMI for Software Engineering, Version 1.1, Continuous Representation
(CMMI-SW, V1.1) CMU/SEI-2002-TR-028, Pittsburgh, PA, Software Engineering Institute,
Carnegie Mellon University, 2002

CMMI Product Team, CMMI for Software Engineering, Version 1.1, Staged Representation
(CMMI-SW, V1.1) CMU/SEI-2002-TR-029, Pittsburgh, PA, Software Engmeermg Institute,
Carnegie Mellon University, 2002

Cooprider, J., and Henderson, J.A., “Technology-Process Fit: Perspectives on Achieving
Prototyping Effectiveness”, Journal of Management Information Systems, Vol. 7, No. 3 (Winter
1990-91), pp. 67-87

Cronbach, A., “Coefficient Alpha and the Internal Structure of Tests”, Psychometrika, (16:3),
September 1951, pp. 297-334

Deephouse, C., Mukhopadhyay, T., Goldenson, D., and Kellner, M., “Software Processes and
Project Performance”, Journal of Management Information Systems, Vol. 12, No. 3 (Winter
1995-96), pp. 187-205

Diaz, M., and Sligo, J., “How Software Process Improvement Helped Motorola”, IEEE Software,
Vol. 14, No. 5, September/October 1997, pp. 75-81

Dion, R., “Process Improvement and the Corporate Balance Sheet”, IEEE Software, (10:4), July
1993, pp. 28-35

Fitzgerald, B. and O’Kane, T., “A Longitudinal Study of Software Process Improvement”, /EEE
Software, Vol. 16, Iss. 3 (May-June 1999), pp. 37-45

Fornell, C., Larcker, D.F. (1981), “Structural Equation Models with Unobservable Variables and
Measurement Errors”, Journal of Marketing Research, (18:2), pp. 39-50

Goldenson, D.R. and Herbsieb, J.D., “After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success”, Software Engineering Institute,
Pittsburgh, PA, CMU/SEI-95-TR-009, ESC-TR-95-009, August 1995, pp. 1-66

Goldenson, D.R., and Gibson, D.L., “Demonstrating the Impacts and Benefits of CMMI: An
Update and Preliminary Results”, Software Engineering Institute, Pittsburgh, PA, CMU/SEI-
2003-SR-009, October 2003, pp. 1-55

Guarro, S.B., “Principles and Procedures of the LRAM Approach to Information Systems Risk
Analysis and Management”, Computers & Security, Vol. 6, No. 6 (December 1987), pp. 493-504

Guinan, P.J., Cooprider, J.G., and Faraj, S., “Enabling Software Development Team Performance
During Requirements Definition: A Bahavioral Versus Technical Approach”, Information
Systems Research, Vol. 9, No. 2 (June 1998), pp. 101-121

Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C. (1992), Multivariate Data Analysis with
Readings, 3 Edition, Macmillan, New York.

Hair, J.F., Anderson, R.L., Tatham, R.L., Black, W.C. (1998), Multivariate Data Analysis,
Prentice Hall, 1998.

86

Hammer, M. and Champy, J. (1993), Reengineering the Corporation, Nicholas Brealey
Publishing.

Hammer, M. and Champy, J., “Don’t Automate, Obliterate”, Harvard Business Review, July-
August 1990, pp. 104-112 »

Harter, D.E., Krishnan, M.S., and Slaughter, S.A., “Effects of Process Maturity on Quality, Cycle
Time, and Effort in Software Product Development”, Management Science, Vol. 46, No. 4 (April
2000), pp. 451-466

Hayes, W. and Zubrow, D., “Moving On Up: Data and Experience Doing CMM-Based Process
Improvement”, Software Engineering Institute, CMU/SEI-95-TR-008, August 1995

Henderson, J.C., and Lee, S., “Managing I/S Design Teams: A Control Theories Perspective”,
Management Science, Vol. 38, No. 6 (1992), pp. 757-777

Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., and Zubrow, D., “Benefits of CMM-Based
Software Process Improvement: Initial Results”, Technical Report CMU/SEI-94-TR-13, Software
Engineering Institute, August 1994, pp. 1-64

Herbsleb, J., and Goldenson, D.R., “A Systematic Survey of CMM Experience and Results”,
Proceedings of International Conference on Software Engineering 1996, Berlin, March 1996, pp.
25-30

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., and Paulk, M., “Software Quality and the
Capability Maturity Model”, Communications of the ACM, Vol. 40, No. 6, July 1997, pp. 30-40

Humphrey, W.S., Managing the Software Process, Reading, Mass., Addison-Wesley, 1989.

Humphrey, W. S., Snyder, T.R., and R. R. Willis, “Software Process Improvement at Hughes
Aircraft”, IEEE Software, Vol. 8, No. 4, July 1991, pp. 11-23

Hunter, R.B. and Thayer R.H., Software Process Improvement, Wiley-IEEE Computer Society
Press, 1st edition (November 27, 2001), 630 pages

Ingalsbe, J., Shoemaker, D., V. Jovanovic. “A Metamode! for the Capability Maturity Model for
Software”, Seventh Americas Conference on Information Systems, 2001, pp. 1305-1313

Jalote, P., CMM in Practice: Processes for Executing Sofiware Projects at InfoSys, Reading,
Mass: Addison-Wesley, 2000, pp. 372

Jiang, J. and Klein, G., “Software Development Risks to Project Effectiveness”, The Journal of
Systems and Software 52 (2000), pp. 3-10

Jiang, J., Klein, G., Means, T.L. (2000), “Project Risk Impact on Software Development Team
Performance”, Project Management Journal, (31:4), pp. 19-26

Jiang, JJ., Klein, G., Hwang, H.G., Huang, J., and Hung, S.Y., “An Exploration of the
Relationship between Software Development Process Maturity and Project Performance”,
Information & Management, Vol. 41 (2004), pp. 279-288

87

Jung, H.W. and Goldenson, D.R., The Internal Consistency of Key Process Areas in the
Capability Maturity Model (CMM) for Sofiware (SW-CMM), Software Engineering Institute,
Pittsburgh, PA, CMU/SEI-2002-TR-037, December 2002, pp. 1-71

Kinsild, K., “Integrating Risk Assessment with Cost Estimation”, JEEE Software, Vol. 14, Iss. 3
(May-June 1997), pp. 61-37

Kaplan, S., and Garrick, J.B., “On the Quantitative Definition of Risk”, Risk Analysis, Vol. 1, No.
1 (1981), pp. 11-27

Keil, M., Wallace, L., Turk, D., Dixon-Randall, G., and Nulden, U., “An Investigation of Risk
Perception and Risk Propensity on the Decision to Continue a Software Development Project”,
The Journal of Systems and Software, Vol. 53, No. 2 (August 2000), pp. 145-157

Kraut, R.E., and Streeter, L.A., “Coordination in Software Development”, Communications of the
ACM, Vol. 38, No. 3 (1995), pp. 69-81

Krishnan, M.S., Mukhopadhyay, T., and Zubrow, D., “Software Process Models and Project
Performance”, Information Systems Frontier, October 1999, Vol. 1, No. 3, pp. 267-277

Lawlis, P.K., Flowe, R.M., and Thordahl, J.B., “A Correlational Study of the CMM and Software
Development Performance”, CrossTalk, September 1995, pp. 21-25

Linnerooth-Bayer, J., and Wahlstrom, B., “Application of Probabilistic Risk Assessments: The
Selection of Appropriate Tools”, Risk Analysis, Vol. 11, No. 2 (1991), pp. 239-248

Lyytinen, K., Mathiassen, L., and Ropponen, J., “Attention Shaping and Software Risk- A
Categorical Analysis of Four Classical Risk Management Approaches”, Information Systems
Research, Vol. 9, No. 3 (September 1998), pp. 233-255

March, J.G. and Shapira, Z., “Managerial Perspectives on Risk and Risk Taking”, Management
Science, Vol. 33, No. 11 (November 1987), pp. 1404-1418

Members of the Assessment Method Integrated Team, “Standard CMMI Appraisal Method for
Process Improvement (SCAMPI), Version 1.1: Method Definition Document, CMU/SEI-2001-
HB-001, December 2001, 245 pages

Myers, W., “Hard data will lead managers to quality”, IEEE Software, 1994, Vol. 11, No. 2, pp.
100-101

Na, K.S., Li, X., Simpson, J.T., and Kim, K.Y., “Uncertainty Profile and Software Project
Performance: A Cross-National Comparison”, The Journal of Systems and Software, Vol. 70, Iss.
1-2 (February 2004), pp. 155-163

Nidumolu, S., “The Effect of Coordination and Uncertainty on Software Project Performance:
Residual Performance Risk as an Intervening Variable”, Information Systems Research, Vol. 6,
No. 3 (September 1995), pp. 191-219

88

Nidumolu, S., “A Comparison of the Structural Contingency and Risk-Based Perspectives on
Coordination in Software Development Projects”, Journal of Management Information Systems,
Vol. 13, No. 2 (Fall 1996), pp. 77-113

Nunnally, J.C., Psychometric Theory, McGraw-Hill, NY, 1978.

Paulk, M., Curtis, B., Chrissis, M. B. and Weber, C., “Capability Maturity Model for Software,
Version 1.1”, CMU/SEI-93-TR-024, Software Engineering Institute, Pittsburgh, PA, February
1993, pp. 1-82

Paulk, M., Weber, C., Curtis, B. and Chrissis, M. B., The Capability Maturity Model for
Software: Guidelines for Improving the Software Process, Addison-Wesley, 1995, pp. 1-372

Peterson, D.K. and Kim, C., “Perceptions on IS Risks and Failure Types: A Comparison of
Designers form the United States, Japan and Korea”, Journal of Global Information
Management, Vol. 11, No. 3 (July-September 2003), pp. 19-38

Post, G.V., and Diltz, D.J., “A Stochastic Dominance Approach to Risk Analysis of Computer
Systems”, MIS Quarterly, Vol. 10, No. 4 (December 1986), pp. 363-375

Rai, A. and Al-Hindi, H., “The Effects of Development Process Modeling and Task Uncertainty
on Development Quality Performance”, Information & Management, Vol. 37, No. 6 (2000), pp.
335-346

Ravichandran, T., “Software Reusability as Synchronous Innovation: A Test of Four Theoretical
Models”, European Journal of Information Systems, Vol. 8, No. 3 (1999), pp. 183-199

Ravichandran, T., and Rai, A., “Quality Management in Systems Development: An
Organizational System Perspective”, MIS Quarterly, Vo. 24, No. 3 (2000), pp. 381-416

Riddle, W., “Advancing the State of the Art in Software Prototyping”, Approaches to
Prototyping, R. Buddle, K. Kuhlenkamp, L. Mathiassen, and H. Zullighoven, eds. Berlin:
Springer-Verlag, 1984, pp. 19-28

Rivard, S., Huff, S. (1988), “Factors of Success for End-User Computing”, Communications of
ACM, (31:5), pp. 552-561

Robey, D., Smith, L.A., and Vijayasarathy, L.R., “Perceptions of Conflict and Success in
Information Systems Development Projects”, Journal of Management Information Systems, Vol.
10, No. 1 (Summer 1993), pp. 123-139

Ropponen, J. and Lyytinen, K., “Can Software Risk Management Improve System Development:
An Exploratory Study”, European Journal of Information Systems, Vol. 6, No. 1 (March 1997),
pp. 41-50

Saleem, N., “An Empirical Test of the Contingency Approach to User Participation in
Information Systems Development”, Journal of Management Information Systems, Vol. 13, No. 1
(Summer 1996), pp. 145-166

Saarinen, T. (1990), “System Development Methodology and Project Success: An Assessment of
Situational Approaches”, Information & Management, (19:3), pp. 183-193

89

Séhmidt, R., Lyytinen, K., Keil, M., and Cule, P., “Identifying Software Project Risks: An
International Delphi Study”, Journal of Management Information Systems, Spring 2001, Vol. 17,
No. 4, pp. 5-36

Sheard, S.A., “The Frameworks Quagmire”, CrossTalk, Volume 10, Number 9, 1997, pp. 17-22
Wallace, L., Keil, M., Rai, A. (2004), “How Software Project Risk Affects Project Performance:
An Investigation of the Dimensions of Risk and an Exploratory Model”, Decision Sciences,

Spring 2004, (35:2), pp. 289-321

Whitten, J.L., Bentley, L.D., Dittman, K.C., Systems Analysis and Design Methods: 5" Edition,
McGraw-Hill Irwin, New York, 2000

Wohlwend, H. and Rosenbaum, S., “Software Improvements in an International Company”,
Proceedings of the 15th international conference on Software Engineering, Baltimore, Maryland,

May 17-21, 1993, Los Alamitos, Ca.: [EEE Computer Society Press, pp. 212-220

Zahran, S., Software Process Improvement: Practical Guidelines for Business Success, Addison-
Wesley, 1998, pp. 1-447

Paulk, M., Curtis, B., Chrissis, M. B. and Weber, C., Capability Maturity Model for Software,
Version 1.1, IEEE Software, July 1993, pp. 18-27

Process Maturity Profile, Software CMM CBA IPI and SPA Appraisal Results, 2003 Mid-Year
Update, September 2003

Yates, J.F. (Ed.), Risk Taking Behavior, Wiley, Chichester, 1992

APPENDIX

90

92

What is your SW-CMM Software Process Maturity Level as it was last determined by an SEI lead
assessor? Please circle one of the following.

1 2 3 4 5
Important: When answering this survey, please always consider your organization's most recently
completed software development project.

The questions on pages 1 to 3 are about the level of risk exposure of your organization's most recently
completed software development project.

Please consider the most recently completed software development project undertaken by your firm
when considering the following statements.

These statements are scored on a 7-point scale, with responses ranging from (1) "Strongly disagree" to
(7) "Strongly agree".

> @ >
w0 2 T 8
= S
=] [=-T]
= 2 & <
=] n
The new system required the acquisition of new hardware. 1 23 45 6 7
The new system required the acquisition of new software. 1 2 3 45 6 7

A large number of hardware suppliers were involved in the development of
this system.

A large number of software suppliers were involved in the development of
this system.

There were a large number of people on the project team. 1 2 3 45 6 7

There were a large number of different “stakeholders” on the project team
(e.g., IS staff, users, consultants, suppliers, customers).

The project size was large. 1 2 3 45 6 7

There are a large number of users using the system. 1 2 3 45 6 7

93

Please evaluate the software development degree of expertise in terms of the following. These
statements are scored on a 7-point scale, with responses ranging from (1) "Neo Expertise" to (7)

"QOutstanding Expertise''.

No
Expertisc
Outstanding
Expertise

Ability to work with uncertain objectives

Ability to work with top management

Ability to work effectively as a team

Ability to understand human implications of a new system

Ability to carry out tasks effectively

Ability to carry out tasks quickly

In-depth knowledge of the functioning of user departments

Overall knowledge of organizational operations

Overall administrative experience and skill

Expertise in the specific application area of the system

Familiar with this type of application

Development methodology used in this project

12 3 45 6 7

1 2 3 45 6 7

1 2 3 45 6 7

1 2 3 45 6 7

1 2 3 4 5 6 7

1 2 3 45 6 7

1 2 3 45 6 7

1 2 3 45 6 7

1 2 3 45 6 7

1 2 3 45 6 7

1 2 3 45 6 7

1 2 3 45 6 7

\O
NS

No
Expertise
Outstanding
Expertise

Development support tools used in this project 1 2 3 4 5 6 7
Project management tools used in this project 1 2 3 45 6 7
Implementation tools used in this project 1 2 3 4 5 6 7

Please evaluate the users of the developed system in terms of the following. These statements are
scored on a 7-point scale, with responses ranging from (1) "Strongly Disagree' to (7) "Strongly
Agree''.

> @)
& 2 o Y
S o =2 =
(=3} [=2-Y/]
— @ i-<
T Aod
o= 2

p—
[S8]
(]
LN
]
SN
~

Users were not enthusiastic about the project

Users were not an integral part of the development team 1 2 3 45 6 7
Users were not available to answer questions 1 2 3 4 5 6 7
Users were not ready to accept the changes the system entailed 1 2 3 45 6 7
Users slowly responded to development team requests 1 2 3 45 6 7
Users had negative attitudes regarding the use of computers in their work 1 2 3 45 6 7

Users were not actively participating in requirement definition 1 2 3 45 6 7

\O
(V)]

P @ =S
=0 & 50 8
= &D = &
S @ S &P
B=J f=J 4
A AN

=
(%)
w
=
h
(=
3

Users were not very familiar with system development tasks

Users had little experience with the activities supported by the new

o 1 2 3 45 6 7
applications
Users were not very familiar with this type of application 1 2 3 45 6 7
Users were not aware of the importance of their roles in successfully 1 2345 6 7

completing the project

Users were not familiar with data processing as a working tool 1 2 3 45 6 7

Please evaluate your firm’s organizational environment with regard to its most recently completed
software development project in terms of the following. These statements are scored on a 7-point scale,
with responses ranging from (1) "Strongly Disagree' to (7) '"Strongly Agree''.

Agree

> >
— 3 ot
B0 N
(=T =
=] (=3
= " =
N ol ~—
n e 2

[S
[\5]
W
£~
9]
(=)
~

The system required that a large number of user tasks be modified

The system led to major changes in the organization 1 2 3 45 6 7

In order to develop and maintain the system, the scheduled number of
people-day was insufficient

In order to develop and maintain the system, the dollar budget provided was
insufficient

The role of each member of the team was not clearly defined 1 2 3 45 6 7

el
(@)}

2z 8 2

B0 = eh

=1 = o

e« [=I-Yi]

£z 5 <

= x
The role of each person involved in the project was not clearly defined 1 2 3 45 6 7
Communications between those involved in the project were unpleasant 1 2 3 45 6 7
There was a great intensity of conflicts among team members 1 2 3 45 6 7
There was a great intensity of conflicts between users and team members 1 2 3 45 6 7

Please evaluate the developed application’s complexity in terms of the following. These statements are
scored on a 7-point scale, with responses ranging from (1) "Strongly Disagree' to (7) "Strongly
Agree''.

=z 3 =
& & 2P
£2 £
na v
Large number of links to existing systems 1 2 3 45 6 7
Large number of links to future systems 1 2 3 45 6 7

If, for some reason, the developed system had not been implemented or if it had had operational
problems, what impact would this have had on your organization in terms of the following. These
statements are scored on a 7-point scale, with responses ranging from (1) "Little Impact" to (7)
"Large Impact"'.

Little
Impact
Large
Impact

Customer Relations 1 2 3 4 5 6 7

~ E - E
Financial Health 1 2 4 6 7
Reputation of the information system department 1 2 4 6 7
Profitability 1 2 4 6 7
Competitive position 1 2 4 6 7
Organizational efficiency 1 2 4 6 7
Organizational image 1 2 4 6 7
The survival of the organization 1 2 4 6 7
Market share 1 2 4 6 7
Reputation of the user department 1 2 4 6 7
Ability to carry out current operations 1 2 4 6 7

The questions on this page are about the performance of your organization's most recently completed

software development project.

How do you rate the performance of your organization's most recently completed software
development project and the software that was delivered on each of the following statements?

These statements are scored on a 7-point scale, with responses ranging from (1) "Very Poor" to (7)

"Very Good".
TG
S > O
Knowledge acquired by firm about use of key technologies 1 2 3
Knowledge acquired by firm about use of development techniques 1 2 3
Knowledge acquired by firm about supporting users’ business 1 2 3
Overall knowledge acquired by firm through the project 1 2 3

98

T
> © >0
Control over project costs 1 2 3
Control over project schedule 1 2 3
Adherence to auditability and control standards 1 2 3
Overall control exercised over the project 1 2 3
Completeness of training provided to users 1 2 3
Quality of communication between DP and users 1 2 3
Users’ feelings of participation in project 1 2 3
Overall quality of interactions with users 1 2 3
Reliability of software 1 2 3
Cost of software operations 1 2 3
Response time 1 2 3
Overall operational efficiency of software 1 2 3
Ease of use of software 1 2 3
Ability to customize outputs to various user needs 1 2 3
Range of outputs that can be generated 1 2 3
Overall responsiveness of software to users 1 2 3
Cost of adapting software to changes in business 1 2 3
Speed of adapting software to changes in business 1 2 3

99

br x5

> © >0
Cost of maintaining software over lifetime 1 2 3
Overall long term flexibility of software 1 2 3

By approximately what percentage, if any, did actual costs for the project overrun originally budgeted
costs? (indicate underrun by negative sign) %

By approximately what percentage, if any, did actual costs for the project overrun originally budgeted
completion time? (indicate underrun by negative sign) %

By approximately what percentage, if any, did actual systems and programming effort for the project
overrun originally budgeted effort? (indicate underrun by negative sign) %
Feel free to tell us about your organization. Please note that answering these questions is

optional.

What is your position inside the organization? (e.g., project manager, IS executive, system developer,
ete.)

Approximately how many team members were on your organization's most recently completed
software development project?

What is your organization's primary industry?

What are your organization's assets?

How many individuals does your organization employ?

