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ABSTRACT

New MIMO Transmission Schemes with Flexible Diversity-

Multiplexing Tradeoff for Wireless Communications

Salim Abdelkareem Alkhawaldeh, Ph. D.

Concordia University, 2005

The use of multiple transmit and receive antennas can lead to significant
improvement of both the reliability and bandwidth efficiency in wireless communication
systems. This has spurred a notable recent thrust area of research and development,
namely, the so-called Multiple-Input Multiple-Output (MIMO) technology, that is aimed

at making better use of multiple antennas in wireless communications.

One of the important discoveries in MIMO communications is the existence of an
optimal tradeoff curve between data rate (bandwidth efficiency) and performance
(reliability). This and the growing diversification in data rates and quality of services of
wireless communications call for MIMO transmission schemes that can provide various
rate-performance tradeoffs. This dissertation is aimed at developing new MIMO

transmission schemes with flexible rate-performance tradeoff.
For flat fading channels, a formal approach for the design of a class of general space-
time block codes, i.e., linear dispersion codes, is developed. This results in a new multi-

layered linear coding scheme. With a common encoding structure, various rate-
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performance tradeoffs can be achieved simply by choosing the number of data layers that
enter the encoder. Once the data rate is chosen, phase shifts among input symbols can be

applied to optimize the performance without loss of mutual information.

For frequency-selective MIMO channels, a new space-time orthogonal frequency
division multiplexing (OFDM) modulation scheme is introduced to avoid the complicated
code design. This is a significant departure from the conventional MIMO OFDM design.
The benefit is that a large number of existing codes optimized for single-input fading
channels are also optimal for MIMO channels. In addition, it allows an easy spatial

multiplexing scheme to support multiple data layers and hence various data rates.

Last, a pilot-symbol-aided channel estimator is developed for the proposed MIMO
OFDM transmission scheme. It is shown that, in terms of performance, the proposed
scheme is equivalent to the conventional MMSE channel estimator but with much

reduced computational complexity.
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Chapter 1

Introduction

1.1 Literature Review

A remarkable recent advance in wireless communications is the so-called Multiple-
Input Multiple-Output (MIMO) technology. It makes use of multiple transmit and receive
antennas to achieve higher data rate and reliability. Since the discovery of the significant
gain in capacity of MIMO channels [1, 2], tremendous research and development efforts
have been invested in MIMO technology. As a result, numerous MIMO transmission
schemes have been developed. Early examples include Space-Time Trellis Codes (STTC)
[3] and Space-Time Block Codes (STBC) [4, 5] aimed at improved error performance
(reliability) and spatial multiplexing schemes [6, 7] aimed at higher data rate. A common
drawback of early MIMO transmission schemes is that they are not flexible in rate-

performance tradeoff.

Interestingly, Zheng and Tse have shown that there exists an optimal tradeoff curve



between diversity and multiplexing [8]. Since the diversity gain characterizes the error
performance as a function of Signal-to-Noise Ratio (SNR) and multiplexing gain
determines the data rate, the multiplexing-diversity tradeoff is a tradeoff between rate and
performance. Although it was shown in [8] that Diagonal Bell Labs Layered Space-Time
Architecture (D-BLAST) [6] allows optimal multiplexing-diversity tradeoff, it is not
clear how to achieve this with structured codes instead of Gaussian random codes. In
addition, space-time codes carved from properly constructed lattices achieve optimal
multiplexing-diversity tradeoff for flat fading channels [9]. However, the decoding
complexity is still prohibitively high even for a moderate number of transmit and receive

antennas.

Recently, the need to support multi-rate wireless services has attracted a great deal of
research attention to the design of MIMO transmission schemes that provide flexible
tradeoff between performance and data rate. Among these, Linear Dispersion (LD)

coding [10, 11, 12] has notable advantages.

The advantages of the LD codes, however, come at the cost of difficulties in design.
This is primarily because a simultaneous optimization of error performance and rate is
intractable. In [10], only the mutual information between transmit and receive signals is
maximized. The resultant codes do not necessarily yield optimal performance. In [11],
diversity gain is included in the optimization objectives in addition to the mutual
information. The resulting designs only yield limited performance improvement unless
SNR is very high. This is because the diversity gain as a performance index is
misleading, particularly for block codes. The diversity gain alone does not guarantee

satisfactory performance due to the existence of very small eigenvalues and hence small



determinants of the difference codeword matrices [12]. To remedy this problem, coding
gain was also taken into account in [12] but at the cost of loss in channel capacity.
Another problem with the above improved LD codes [11, 12] is that they are optimized
only for full-rate transmission and, hence, are not optimal for applications that require
high performance but less data rate. There also exist designs based on number theory but

only for very limited applications [13, 14, 15].

For frequency-selective MIMO channels, the design of space-time codes becomes
even more challenging. A popular design for wideband MIMO channels is to employ
several Orthogonal Frequency Division Multiplex (OFDM) modulators, one for each
transmit antenna, so as to allow the applications of many existing schemes developed for
flat fading channels. The use of OFDM transforms a dispersive wideband channel into a
set of flat narrowband channels to avoid the Inter-Symbol Interference (ISI) that
otherwise exists in single-carrier transmission over wideband channels. To date, OFDM
in conjunction with Space-Time Coding (STC) is widely regarded as the enabling

technology for future wireless communications [16-19].

However, it was shown in [20-22] that the space-time codes designed for both slow
and fast flat fading channels, in general, cannot achieve the full diversity gain available in
frequency-selective channels. Although design criteria have been established for MIMO
OFDM systems [20], they are difficult to apply in systematic code design. It is worthy of
noting that an approach for the design of trellis codes with full diversity was given in
[23]. However, the resulting codes usually have significantly smaller coding gain than

that of the corresponding block codes.

In [24], a linear block precoder is introduced before OFDM modulation for



frequency-selective MIMO channels. It was shown that through the design of linear
precoding, a certain frequency diversity gain can be ensured for an arbitrary space-time
code at the cost of data rate. Although this scheme allows flexible tradeoff between
diversity and rate, the tradeoff can be far from optimum because of the limitations in the

precoder.

Besides the transmission schemes, another ifnportant task in MIMO OFDM systems
is channel estimation. However, channel estimation for OFDM systems is not trivial. In
fact, it can be a difficult task for frequency-selective MIMO channels because potentially

a large number of channel taps are to be estimated.

There are two types of channel parameter estimators: decision-directed and pilot-
symbol-aided. The main idea of the decision directed estimation is to use decision
feedback of information data to track the channel variation after the initial training [25-
31]. These decision-directed schemes suffer from significant degradation in performance
when the channel varies fast. To overcome this problem, different one dimensional (1-D)
and two dimensional (2-D) interpolation filters have been proposed for pilot-symbol-
aided channel parameter estimation for OFDM systems [32-35]. Due to the frequent
appearance of pilot symbols in time, pilot-symbol-aided schemes are more capable of
tracking the channel time variation compared to the decision-directed parameter
estimation techniques. In practice, channel statistics are unknown, therefore, a robust
channel estimator based on 2-D filtering was proposed in [35]. A prominent drawback of
these filter-based schemes is that the filtering, particularly 2-D filtering, involves

tremendous amount of computation.



1.2 Problem Statements and Objectives

As mentioned in the previous section, MIMO diversity and spatial multiplexing
approaches lack the flexibility of tradeoff between bandwidth efficiency and reliability.
Although there exist schemes that provide various rate-performance tradeofts such as [10,
11, 12] for flat fading channels and [11] for ﬁequency-selective channels, the tradeoffs

are not optimal and are only within a limited range.

For channel estimation, all the existing pilot-symbol-aided schemes are based on 1-D
or 2-D interpolation filters. A prominent drawback of these schemes is their high
computational complexity, which will severely limit their applications in MIMO

channels.

Observing the above problems, our goal in this research is to develop new MIMO
transmission schemes with flexible rate-performance tradeoff. Both flat and frequency-
selective MIMO channels will be considered. For frequency-selective channels, OFDM

will be the choice of primary modulation. Three specific objectives are listed below:

e To develop a formal approach for the design of linear dispersion space-time codes for
flat fading MIMO channels. Using this formal approach, linear dispersion codes that

are flexible in rate-performance tradeoff are to be designed.

e To investigate the interaction between OFDM modulation and space-frequency
coding and to develop a new transmit diversity scheme for frequency-selective
MIMO channels. The new scheme shall allow easy code design. In addition, a spatial
multiplexing scheme will be developed to take the advantages of the new MIMO

OFDM transmission scheme. The diversity and multiplexing schemes together form a



multi-layered MIMO OFDM transmission scheme that allows flexible rate-

performance tradeoft.

e To design a robust pilot-symbol-aided channel estimator for the proposed MIMO
OFDM transmission scheme with much reduced computational complexity as

compared to the conventional filter-based estimators.

1.3 Contributions

In this dissertation, two multi-layered coding schemes are developed for flat and
frequency-selective MIMO channels, respectively. In addition, a pilot-symbol-aided

channel estimation scheme is proposed for frequency-selective fading channels.

For flat fading MIMO channels, we investigate the design of linear dispersion codes,
aiming at flexible encoding schemes that allow various rate-performance tradeoffs under
a common coding structure. First, the capacity of linear dispersion codes is studied. It is
shown that the maximum multiplexing gain of a linear dispersion code is the number of
symbols per channel use of the code (i.e., coding rate in symbols). In addition, conditions
for the linear dispersion matrices to achieve various multiplexing gains are established.
Based on this, we develop a general multi-layered linear dispersion coding scheme that
allows various multiplexing gains simply by choosing a subset of the dispersion matrices
from a larger set. When all the dispersion matrices are used, the channel capacity is
preserved. Furthermore, phase shifting among input symbols is proposed to maximize
both diversity and coding gains without loss of mutual information (i.e., multiplexing

gain). This leads to an optimization problem which is simple compared to conventional



schemes.

For frequency-selective MIMO channels with OFDM modulation, we introduce a
general multi-layered space-frequency coding scheme. In the heart of this approach is a
novel space-time OFDM modulator. The proposed space-frequency OFDM modulator
translates a MIMO channel into a Single-Input Multiple-Output (SIMO) channel without
the loss of system freedom (the available diversity gain). This translation simpliﬁes code
design as compared to that in the conventional MIMO OFDM approach. Instead of more
complicated space-time codes, those designed for single-input fading channels can be
used with the proposed space-time modulation. For bandwidth-efﬁqient applications, a
channel multiplexing scheme is developed to work with the proposed space-time
modulator. Unlike the conventional spatial multiplexing schemes, an arbitrary number of
data streams can be created and each layer occupies all the transmit antennas all the time.
As a result, all the available degrees of freedom are preserved for each layer and a full

range of optimal tradeoff between data rate and reliability is possible.

Last, we introduce a pilot-symbol-aided channel estimator for Single-Input Single-
Output SISO or SIMO OFDM systems. Since in the proposed MIMO OFDM
transmission scheme, a MIMO channel is transformed into a SIMO channel, the proposed
channel estimator can be directly used with the proposed MIMO OFDM transmission
scheme. The new channel estimator is highly robust to time variation of wireless
channels. In addition, it is equivalent to the conventional 2-D Minimum Mean-Square
Error (MMSE) channel estimator but with much reduced computational complexity. The
reduction in complexity is achieved by employing the 2-D Inverse Fast Fourier

Transform (IFFT), 2-D Fast Fourier Transform (FFT) and a 2-D weighting function



instead of a 2-D filter. The weighting function is derived based on the Mean-Square Error
(MSE) criterion and is simple to implement. For cases where channel statistics are not
available, we propose a robust estimator based on a simple 2-D windowing function.
Furthermore, we propose an enhanced channel estimator that can further improve the

performance of the robust estimator.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we discuss preliminaries that
will be useful for the subsequent development of the dissertation. In Chapter 3, we
propose a general multi-layered linear dispersion coding scheme for flat fading MIMO
channels which provides flexible rate-performance tradeoff. In Chapter 4, we introduce a
new transmit diversity scheme and discuss the design of code and interleaver for MIMO
OFDM systems. A spatial multiplexing scheme is also developed, which, in conjunction
with the proposed diversity scheme, provide various rate-performance tradeoffs over
frequency-selective fading MIMO channels. In Chapter 5, we propose a pilot-symbol-
aided channel estimator for OFDM wireless communication systems with much reduced
complexity as compared to the conventional filter based approaches. Conclusions and

future works are presented in Chapter 6.



Chapter 2

Preliminaries

In this chapter, some preliminaries pertinent to the subsequent development of the
dissertation are introduced. These include MIMO channel capacity, transmit diversity via

space-time coding, spatial multiplexing, and multiplexing-diversity tradeoff.

2.1 Capacity of MIMO Channels

Consider a MIMO fading channel between N, transmit and N, receive antennas as

shown in Figure 2.1. The path gain of the /” resolvable path from transmit antenna # to

receive antenna m is denoted by A (/) with 0</<L-1 and L as the number of

resolvable paths. Unless mentioned otherwise, a block Rayleigh fading channel model will
be assumed in this dissertation where the path gains remain constant over the duration of a

transmission block and change from block to block [3, 5, 36, 37, 38]. Also, it is assumed



Figure 2.1. A wireless fading channel with N, transmit and N, receive antennas.

that these gains are samples of independent complex Gaussian random variables with zero

mean and variance 1, i.e.,

0 (m,n, k) = (s,t,))

£l (h,, (1)]= {1 k)= ot )’

If the number of resolvable paths, L, is equal to 1, then the channel is said to be non-
[frequency-selective (flat) fading or narrowband, otherwise, it is called frequency-selective
or wideband.

Denote s,(¢) as the signal transmitted over the nth transmit antenna and y, (¢) as the

signal received at the mth receive antenna at time t, then the received vector can be written

as

10



v(t) = Niz H()s(t - 1) + v(©) @1

1 =0

where y () ={y, ) y,(t)--- Yn. O, s@t)=[s,(t)s,(t) Sy, ®]", v is the complex
Additive White Gaussian Noise (AWGN) vector with independently identically
distributed ( i.i.d.) entries of zero mean and variance Ny, i.e., v,,(t) ~ CN(0,N,), P is the
transmit power, and H(/) is the channel impulse response associated with delay / and is

given by

(1) ol (D)

H() = 2.2)

hN,,l (l) hN,,N, (l)

When the channel is known at the transmitter, its capacity can be readily found [39].
Of particular interest in this work is the case where the channel is unknown at the
transmitter. In such a case, the ergodic channel capacity sets an upper bound for a

practically achievable data rate.

The ergodic capacity of a flat fading channel with N, transmit and N, receive

antennas is given by [1, 2]

P
C=|max Elog, det| I, + HR H” 2.3
[RS 5 [”' NN, D 23)

t*70

where R, = E{ss”} is the covariance matrix of the complex Gaussian input vector s and

the expectation (F£) is taken with respect to the channel realization H. The above

maximization is achieved when the covariance matrix is identity matrix, as such R, =1,
t

and the ergodic capacity can be written as

11



C=Elog, det(INr + P HHHj 2.4
t*70
At high SNR, the above equation can be simplified to
. P
szln(N,,N,)logzﬁ—. (2.5)

0

That is, the channel capacity is the minimum of », and N, times of the capacity of a SISO

AWGN channel.

In frequency-selective MIMO OFDM systems, the impulse response of the channel

between transmit antenna n and receive antenna m can be written as [39]
L-1
B (67) =D, (D3] = 7,(0)] (2.6)
1=0

where &(7) is the Dirac Delta function, «,,,(¢,/) and 7,(z) are the complex path gain

and time delay of the /th path at time ¢, respectively. Under the assumption of slow

fading, «,, ,(¢,/) can be treated as constant over the duration of an OFDM frame, but

changes independently from frame to frame. The frequency response of the channel
between transmit antenna » and receive antenna m at tone £ and time ¢ can be expressed

as [39]

A L-1 )
H, [t,K1=H, (T k)= a,  (t,De /™" Q2.7
=0

where 7T, and Af are the frame duration and the tone spacing, respectively.

The ergodic capacity of each tone is achieved with Gaussian inputs with covariance

matrix being identity. Hence the ergodic channel capacity can be written as [39, 40]

12



1 & P
C= E;Eq)" lng det(INr +]—V—N—(I)kq)gj (28)

70

where K is the length of OFDM frame and ®, is an N, x N, channel matrix with

3

H_ [t,k] asits (m, n)-th entry.

m,n

2.2 Diversity and Design Criteria for Fixed-Rate Space-Time

Codes

Time-varying multipath fading is a fundamental problem in wireless communication
systems. To combat this problem, an effective way is to achieve diversity gain by using
multiple transmit and receive antennas. When the same signal is transmitted through
independent paths between transmit and receive antennas, multiple independently faded
replicas of this signal will be provided at the receiver. This refers to so called spatial
diversity [3-5, 41-44] in which more reliable reception can be achieved. The diversity gain
is the slope of the probability of error curve at high SNR. Figure 2.2 represents the block

diagram of a MIMO diversity communication system.

One way to exploit spatial diversity is to apply coding across time and space. Such a
technique of creating redundancy in the transmitted signal is called space-time coding.

Unlike in the 1-D communication systems, space-time modulator maps a sequence of bits

b, b, --- b, to a sequence of N,x1 vector symbols s(z)=[s(£)s,(t) - sy o1,

t=1,2,---,T. Then, the transmission rate is R = Ny bits/s/Hz .

13



Information Estimated
Bits Space-time S . bits
—»|  Encoder/ gzz;\::;e ——»p
Modulator

Figure 2.2. Block diagram of a MIMO diversity communication system.

Design criteria of space-time codes over flat fading channels can be obtained by
considering the pair-wise error probability. Assuming Maximum Likelihood (ML)
decoding and a constant channel during a transmission block (i.e., a block fading channel

as considered in this dissertation), the pair-wise error probability of codeword X being

transmitted but the decision being erroneously made in favor of X is [3]

. N, P -
PX->X)< (H (1 +A, N n (2.9)

n=1

where A, is the nth eigenvalue of the matrix (X - X)(X - 5()” . When Ni >>1, the pair-
0

wise error probability can be approximated as

o (e Y P YT
P(XaX)s(Hﬂn) (N’NO] (2.10)

n=1

where r is the rank of matrix (X — X)(X - X)H . In SISO uncoded system, the pair-wise

error probability can be approximated as

14



P(X—)X)s( ] . (2.11)

N,N,

t

Comparing (2.10) and (2.11), it can be seen that a diversity gain of N, and coding gain of

1
(H ﬂnJr are achieved. Hence, two design criteria for block flat fading channels with

n=l]

independent gains were derived in [3]:
e The Rank Criterion: In order to achieve the maximum diversity gain N N, , the matrix

(X- X)(X - X)H has to be full rank for any codewords’ pair. If (X - X)(X - f()” has

minimum rank r, then a diversity of rm is achieved.

e The Determinant Criterion: For diversity gain of rm, the coding advantage is the

minimum of the rth roots of the sum of determinants of all » x » principal cofactors of

X- X)(X - X)H taken over all codewords pairs. For diversity gain of N, N_, the
minimum of the determinant of (X — X)(X - )A()H taken over all codewords pairs must
be maximized.

It is worthy of noting that the rank and determinant criteria developed for channels

with independent fade coefficients are also applicable for spatially correlated channels.

The above design criteria were for block flat fading channels. Another representitive
extreme case is when the fading is sufficiently fast such that the channel coefficients over
two successive symbol durations are mutually independent. For such a fast fading channel,

denote V' (X, X") as the set of time instances 1 <¢ < T such that x(¢) and x'(¢) are different

where x(#) denotes the transmitted symbols at time ¢, i.e., x(¢) =[x,(¢) x, () x O

15



and let |V(X, X’)| denote the number of elements of V(X,X'). Then, the pair-wise error

probability is given by [3]

2 NI o
P(X—éX)Stevl(QX’)(||x(t)—x(t)|| N,No] . (2.12)

Hence, two design criteria for fast fading channels were derived in [3]:

e The Distance Criterion: To achieve the diversity advantage vm for any two codewords

Xand X', x(¢) and x'(¢) must be different at least for v values during T symbol

durations.

e The Product Criterion: To maximize the coding advantage, we need to maximize the

minimum products H ||x(t) - }n;'(t)”2 taken over codewords X and X'.
tev(X,X")

The above criteria can be readily used to derive systematic design procedure for trellis
space-time codes with regular structure. However, they are not easy to use in the design of
block codes. This is because the evaluation of diversity gain and coding gain over a large
number of codewords pairs for a reasonable block length is computationally prohibitive. It
is also worthy of noting that the design criteria derived using the pair-wise error
probability are for applications with a fixed data rate. These criteria do not tell how to

efficiently use bandwidth by adapting the data rate in multi-rate wireless services.

2.3 Spatial Multiplexing

In addition to spatial diversity, it is also possible to simultaneously transmit several

independent data streams for higher bandwidth efficiency in MIMO channels. The
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increase in data rate by the transmission of parallel independent data streams is called
spatial multiplexing gain and the corresponding signal processing is called spatial
multiplexing [6, 7). Traditional spatial multiplexing schemes were designed for flat
fading channels. Recently, spatial multiplexing is combined with OFDM modulation for
frequency-selective channels [45, 46]. Figure 2.3 represents the block diagram of a

spatial multiplexing communication system.

In spatial multiplexing, independent data streams are spatially multiplexed and
subsequently demultiplexed at the receiver. During every symbol period, the space-time
mapper/multiplexer maps N encoded data streams onto N, output streams, one for each

T
9

transmit antenna. If the output of the space-time mapper at time ¢ is s=[s; s, ---s) ]

then the received N, x1 vector can be written as

/—P—Hs +v (2.13)
NI

where vis an N, x1 vector realization of AWGN with 1.i.d entries v,, ~ CN(0,N,).

y

Bellow we describe D-BLAST [6] as a typical spatial multiplexing scheme. The basic
idea in D-BLAST is to create layers (logical channels) in such a way that signals from
different layers can be effectively separated from each other. To do so, the input data
stream is demultiplexed into N, streams (layers) with equal rate and each layer is divided
into substreams. Each layer is transmitted from different antennas at different time in
diagonal fashion as shown in Figure 2.4. As can be seen, the channel is partitioned into

N, logical channels one for each layer. Each layer occupies the two-dimensional channel

17



. Encoders Space-time . H < : Space-time | bits
. & > Mapper : . Signal —>
—> 3] Modulators

Processing
Stream N N, N,
vr

Figure 2.3. Block diagram of a spatial multiplexing communication system.

V.
N !
Stream 1 1 1
I Estim.

in a round-robin fashion: if at time slot 7, a layer occupies transmit antenna #, then, at
time slot #+1, the same layer will occupy transmit antenna (n+1) mod N,. Outer codes

could be used in each layer independently and each diagonal constitutes a complete

codeword.

At the receiver, the layers can be separated by using the decorrelating or MMSE
receiver and decoding is performed diagonal-by-diagonal. For each diagonal layer,
interference from lower diagonals is cancelled using the decoded information bits;
interference from the upper diagonal is eliminated by projecting the received signal onto
the null space of the upper diagonals. Since D-BLAST effectively creates N, logical
channels with equal capacity, uniform energy allocation is optimal.

Although D-BLAST achieves high bandwidth efficiency, it often results in loss of
diversity gain and, hence, loss of performance. Another drawback of this signal

processing based approach is that it often requires equal or more receive than transmit

antennas.
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Figure 2.4. Block diagram of D-BLAST.

2.4 Diversity and Multiplexing Tradeoff

As mentioned in the introduction chapter, the maximal available multiplexing and
diversity gains cannot be achieved simultaneously and there exists an optimal tradeoff. A

MIMO transmission scheme is said to achieve a spatial multiplexing gain G, if, at high

SNR, its data rate is [8]
R(SNR) = G, log(SNR) (bps/Hz). (2.14)
In other words, the multiplexing gain is defined as

G - R(SNR)

= lim . (2.15)
SNR -« log(SNR)

It is noted that the data rate R is G, times the data rate of a SISO channel with the same

SNR. This MIMO channel is equivalent to G, parallel spatial channels where
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information symbols can be transmitted independently in parallel through the spatial

channels. This result suggests that the number of degrees of freedom is equal to G,, 8].

On the other hand, a MIMO transmission scheme is said to achieve a spatial diversity

gain G, if, at high SNR, the average error probability [8]
P, ~SNR™. (2.16)
In other words, the diversity gain is defined as

G, = log(P,)

= lim ———%— . 2.17)
SNR > log(SNR)

It is important to note that if a MIMO transmission scheme has a nonzero
multiplexing gain G, , the data rate R must increase as SNR increases. Hence, the error
probabilities P, in (2.16) and (2.17) are evaluated at different data rates. It is shown in [8]
that there exists an optimal tradeoff between multiplexing and diversity, or, equivalently
between data rate and performance. The optimal tradeoff between multiplexing and
diversity is a piece-wise line shown in Figure 2.5. Specifically, the maximum diversity

gain G, of a scheme with multiplexing gain G,, <min(N,,N,) is [8]
G,=(N,-G,)N,-G,). (2.18)

As can be seen in Figure 2.5, the total number of degrees of freedom provided by the

channel is equal to min(N,,N,) and this happens when the optimal tradeoff curve

intersects the spatial multiplexing advantage axis, i.e., G =min(N,,N,) and

mmax

G, =0. In contrast, the diversity advantage is maximum when the optimal tradeoff

curve intersects diversity advantage-axis, i.e., G,,,, = N,N, and G, =0.

max
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Figure 2.5. Optimal tradeoff curve between the diversity and multiplexing gains [8].
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Chapter 3

Multi-Layered Linear Dispersion Codes

for Flat Fading MIMO Channels

3.1 Introduction

Recently, MIMO transmission schemes that provide tradeoff between performance
and data rate have attracted a great deal of research attention. One of those is LD coding
[10]. LD codes have significant advantages compared to conventional space-time block
codes. In addition to multiplexing-diversity tradeoff, LD codes subsume Vertical Bell
Labs Layered Space-Time architecture V-BLAST [7] and many existing space-time
block codes [5] as special cases, and allow suboptimal linear receivers with greatly
reduced complexity [10]. Also, they were designed for any number of transmit and

receive antennas and have simple encoding process. However, in the design of LD code,
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simultaneous optimization of error performance and rate is intractable. In [10], linear
dispersion codes were designed to maximize the mutual information between transmitted
and received signals. However, they cannot guarantee diversity and coding gains, hence,
optimal performance is not guaranteed. In contrast, Full-Diversity Full-Rate (FDFR)
codes have been proposed [11] via constellation rotation. Although these codes achieve
full diversity, a large portion of their codeword pairs have very small determinants which
results in small pair-wise coding gain. As a result, some of the diversity orders cannot be
achieved unless the SNR is extremely high. In addition to full diversity, coding gain was
considered in [12] but at the cost of loss in channel capacity. Another drawback of the
above improved LD codes in [11] and [12] is that they are optimized only for full-rate
transmission. Hence, they are not optimal for applications that require high performance

but less data rate.

To allow flexible and efficient multiplexing-diversity tradeoff, it is desirable to have a
combined spatial multiplexing and coding approach. In this chapter, the design of linear
dispersion codes is investigated, aiming at flexible encoding schemes that allow various
rate-performance tradeoffs. Based on the mutual information between transmitted and
received signals, conditions for the linear dispersion matrices to achieve various
multiplexing gains are established. This led us to develop a general multi-layer linear
dispersion coding scheme to provide various multiplexing gains simply by choosing a
subset of the dispersion matrices from a larger set. Furthermore, without loss of mutual
information, both diversity and coding gains are maximized by applying phase shifting
among input symbols. Because of the regular structure of the proposed coding scheme

(i.e., structured dispersion matrices), the optimization of phase shifts is simple and can be
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efficiently carried out by a computer search. This substantially simplifies the selection of

constellation and the number of layers (multiplexing gain) in multi-rate applications.

The rest of the chapter is organized as follows. In Section 3.2, the system model is
described and a formal approach for the design of linear dispersion codes is developed.
Based on this formal approach, a general multi-layered linear dispersion coding scheme
that allows various rate-performance tradeoffs is proposed in Section 3.3. In Section 3.4,
we compare the proposed multi-layered codes with some existing LD codes. Simulation

results are presented in Section 3.5 and conclusions are drawn in Section 3.6.

3.2 Design of Linear Dispersion Codes

In this section, we present the system model and describe our approach to the design
of linear dispersion space-time codes.

A MIMO communication system consisting of N, transmit and N, receive antennas

over a flat fading channel will be considered in this study. The complex gain of the

channel between transmit antenna »n and receive antenna m is denoted by#h,, . It is

assumed that the channel gains are samples of independent circularly symmetric complex
Gaussian random variables with zero mean and variance 1 (i.e., 4, , ~ CN(0,1)), and are
perfectly known to the receiver but unknown to the transmitter. The channel is assumed
to undergo block fading, i.e., it keeps constant over the duration of a block and varies
independently from block to block.

Linear dispersion codes are space-time block codes. With a block of K input symbols,

s=[s;5,-s¢]",an N, xT codeword matrix is constructed as [10]
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K K
S=;Mksk+;Nks; (3.1)

where M,,N, € C"" are the dispersion matrices for the kth symbol. Since the use of

dispersion matrices for the conjugates of input symbols does not provide evident
improvement [10], only the dispersion matrices for the original input symbols will be

considered in this study, i.e.,
K
S=>M,s,. (3.2)
k=1

Within one block, the received signal can be written as

Y= ’—P—HS+V (3.3)
Nt

where He C"" is the channel matrix whose (m,n)th entry is h,,, VeC" is the
additive complex Gaussian noise matrix with i.i.d entries, i.e., v, , ~ CN(0,N;), and P is

the total transmitted power with entries in S having unit variance.

Let y be the vector of length N T' formed by concatenating the 7 columns of Y, i.e.,

y = vec(Y), and similarly let v = vec(V). Then (3.3) can be rewritten as

y = —P—T-I_Ms+v: iI;IerV 34
Nt Nt

where M =[vec(M,)vec(M,)---vec(M,)] with tr(M”"M)=N,7, H=HM, and
H=1, ®H with ® as the kronecker product operator.

Evidently, with the definition in (3.2), a linear dispersion code is completely

characterized by its K dispersion matrices, {M,}r, . Below, we will refer to a linear

dispersion code with K inputs and output matrix of size N, xT as a (7, K) LD code. If
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the input symbols are drawn from a finite alphabet of size O, the coding rate of a (7, X)

LD code is

__0]%2 0 bits per channel use. Another useful definition is the coding rate in

symbols, which is R =§ for a (7, K) LD code. As can be seen, there exist salient design

choices to achieve different coding rate. A well-designed LD encoding scheme shall
support a variety of multiplexing-diversity tradeoffs by varying the constellation size O
and/or the coding rate in symbols R. This makes LD codes particularly attractive for
future multi-rate wireless communications.

The performance of an LD code depends not only on the set of dispersion matrices
but also on the alphabet of the input symbols. This with the large number of possible
codewords even for a reasonable value of K makes the design of an LD code difficult. In
particular, a direct application of Tarokh’s well-known criteria to the design of LD codes
is impractical and also inappropriate [10]. Instead, maximizing the mutual information
has been used as the primary criterion in the design of LD codes [10]. In this design
method, Gaussian input was often assumed in order to make the optimization problem
tractable. The resulting LD codes do not necessarily lead to optimal performance for
symbols drawn from practical finite alphabets. To alleviate this problem, error probability
measures have been used as the design objective. A typical error performance measure is
the diversity gain [11]. However, diversity gain can be misleading. Small eigenvalues in
the difference matrix of a pair of codewords may not contribute to the error exponent
unless the signal-to-noise ratio is very large. Other performance measures including
coding gain [12] and union bound [47-49] have been considered. The resulting

optimization problems are highly nonlinear and symbol alphabet dependent. The
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solutions, therefore, are symbol alphabet and rate dependent and do not share a common
structure, which is undesirable for applications that require multiple or adaptive data
rates.

In order to design an LD encoding scheme that provides variable data rates and
flexible multiplexing-diversity tradeoff, a hybrid approach is needed. First, a good
encoding structure must be adopted that is able to achieve full channel capacity and, with
minimum change in encoding structure, can provide different encoding rates. Second, for
every data rate, error performance must be optimized [50].

Below, we establish a theorem that will be useful for the design of a good encoding
structure.

Theorem 3.1: For a given coding rate in symbols R<AN,, the expected mutual

information between transmitted and received signal E[I(s;y)] is maximized when the
dispersion matrices satisfy

D whent = j

GG” = .
Y {0 N, Otherwise (3-5)

where the expectation E is taken with respect to channel H, G,of size N,xRT,

t=1,---,T, consists of rows from (¢ —1)N, +1 to tN, of M, and D is any diagonal matrix
. ) ) N,
with only R nonzero diagonal entries of value e

Proof: Consider the maximization of E[/(s;y)] in terms of M. Denote D, as the matrix
consisting of rows and columns from (¢—1)N, +1 to tN, of MM"” , i.e., D, is the tth

N, x N, diagonal block of MM". Since MM is positive semi-definite, then from

(3.4) the mutual information with Gaussian inputs s is given by [1, 2]
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ElI(s;y)]= Elog, det(INrT + I:II;IH}

t70

T
<Elog, Hdet(lm + Nlj\f HD,H”J

t=1 t*70

4 P
=>» FElog,det| I, +
; 23] NN

470

HD,H”J (3.6)

The equality in (3.6) holds when all other entries in MM” that are excluded in D,
for t=1,2,---,T are zeros,i.c.,

GG =0,, Vitzj. (3.7

We now consider the optimization of each term in the summation of the last equation

of (3.6). First, note that the maximum rank of MM” is RT, hence we assume that

T
rank(D,) = R. Let trace(D,) = C,. Apparently, Z C, =trace(MM ") = N,T . Since D, is
t=1

symmetric and positive semi-definite, one can write D, =UA,U” with A, being
diagonal and U unitary. Furthermore, A, has R nonzero entries, say they are the
i;th, i,th, --- and i th diagonal entries. Let A, be the RxR matrix obtained by
collecting the rows and columns i,i,, ---,i, of A,. Similarly, let INJ, be the N, xR
matrix that collects the columns i,,i,, ---,i, 0of U. Then, it is clear that

P
Elog, det| I, +
g, ( NN

170

P

t* 70

1%11),1&1”}17510‘«;2 det(INr + ﬁK,ﬁ”] (3.8)

where H =HU . It can be easily checked that the entries of H are i.i.d complex Gaussian

random variables with zero mean and variance 1. Hence, (3.8) is maximized when the
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diagonal entries in 1N\, are equal and 1N\, = ELI z [1]- Then (3.6) can be rewritten as
R

r PC  ~~
E[I(s;y)]1< Y Elog, det| I, + L _HH? |. 3.9
[(s;y)] ; g2 ( N, NN,R } (3.9)

i

Note that log, det(I N, + xHH" ) is a concave function of x and so is

Elog, det(I N tX HH" ) Further, by the fact that Z C, = N,T, (3.9) is maximized when

=1

C, =N, fort=12,---,T,1ie, G,G,H =D where D is only diagonal matrix of R nonzero
. N .
entries of value Tt This with (3.7), has proved Theorem 3.1. 0

Two corollaries follow from Theorem 3.1.
Corollary 3.1: The maximum achievable multiplexing gain of LD codes with coding rate

in symbols R <N, i1s min(R,N,).

A coding scheme is said to preserve the channel capacity if for any realization of the

channel, say H, the instantaneous channel capacity is log, det(l vt NP HH” ]

t*7 0
Corollary 3.2: A linear dispersion code preserves the channel capacity if and only if the

coding is at least full rate (i.e., R >N, symbols per channel use) and the dispersion

matrices satisfy

x(M."M ) 1 whenk = j (3.10)
T )= ) .
kT 0 otherwise

Proof: Let R=N, in (3.5). Hence, from Theorem 3.1, the mutual information is
maximized when D=1, and MM =1 wr - As such, the instantaneous channel capacity

is
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P

I(s;y) = log, det(INr + HHH] . (3.11)

t*70

This has shown the sufficiency of the conditions. To establish the necessity, assume

R < N, or (3.10) does not hold, then it is easy to show that /(s;y) is smaller than that

given by (3.11). Hence, the corollary has been proved. ]

We are now ready to make some observations regarding to the construction of linear

dispersion matrices.

1.

Recall that the nth row of G, collects the dispersion weights of all symbols at
transmit antenna n and time ¢, i.e., G,(n,))=[M,(n, ) M,(n, t) --- M (n t)] with
M, (n,t) as the (n, f)th entry of M, . Hence we can call the nth row of G, as the
dispersion vector associated with transmit antenna » at time ¢. Equation (3.5) specifies

that all the dispersion vectors are either zero or mutually orthogonal to each other. If
one choose a multiplexing gain R < N,, then there are exactly R nonzero dispersion
vectors at a given time. In other words, only R transmit antennas are occupied at any
time.

If M,andM, have nonzero entries at different locations, 1i.e,
M, (n,0)M ,(n,t) =0, V(n, 1), then tr(M,"M ) =0.
For full diversity, each dispersion matrix must have at least N, nonzero entries at

different rows and different columns.

Our objective is to design a set of N,T dispersion matrices for a coding block of size

T. This set of dispersion matrices must satisfy (3.10) to ensure full multiplexing gain

R =N, . If the multiplexing gain R is chosen to be less than »,, one can simply take
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RT dispersion matrices from the set that satisfy (3.5). With this objective in mind and
based on the above observations, we may construct the dispersion matrices as follows.

Rule 1: The N,T dispersion matrices are divided into N, groups, each of which has T

matrices. Any two matrices from different groups must have nonzero entries at
different locations. This guarantees that the trace of the Hermitian product of any
two matrices from different groups be zero, i.¢., satisfy (3.10).

Rule 2: Assign each dispersion matrix N, nonzero entries at different columns and rows.

This ensures that a) full diversity is possible, b) any two dispersion vectors
associated either with the same transmit antenna or the same transmit time are
orthogonal to each other.

Rule 3: Within a group, apply spatial weighting to make sure any two dispersion vectors
associated with different times and different antennas are orthogonal. This can be

readily done by applying spatial weightings as will be shown in the next section.

3.3 Proposed Multi-Layered Linear Dispersion Codes for

Flat Fading MIMO Channels

In this section, the design rules established in the last section will be used to develop
a new multi-layered linear dispersion coding scheme.

In the proposed scheme the encoding is performed block by block. Each encoding
block takes NT symbols as input, (i.e., K =NT), T symbols per layer (group), and

output a codeword matrix of size N, xT", where T is an integer multiple of N,. Hence,

the transmission rate is N symbols per channel use if N layers are used. The dispersion
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matrix for the 7th symbol of layer 7 is given by

Jbimoacw,) j6; KA
Mt,ize : -\/“_]]{[‘PIA > tzl’”'7T7 izl,"'>N7 (312)

where {g,}1, is a set of phase shifts among symbols in each layer, {6,}", is a set of phase

shifts among layers, W, is an N, x N, diagonal matrix whose n” diagonal entry is

N,

¢

exp[— P2 -1 -1)

), P, is an N,xT circulant matrix whose first row has 1 as its

ith entry and zeros elsewhere, i.e,

- -
0..010 0

p=0 .. 01 , (3.13)
K 0 10 0

Aisa TxT circulant matrix given by

A=|0 0 , (3.14)
1 g 0

and |_x_| is the greatest integer smaller than or equal to x.

The construction of dispersion matrices specified in (3.12) is done according to the

design rules and satisfies (3.5) and (3.10) regardless of the values of phase shifts ¢, and
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0.. Therefore, this will allow a free choice of ¢, and 6, without loss of mutual
information. By Corollary 1, for a given number of layers 1< N < N,, a multiplexing
gain of min(N,N,) is possible. In addition, by Corollary 2, if N = N, layers are used,
the proposed construction in (3.12) preserves channel capacity.

It is interesting to note that the proposed scheme is a generalization of the scheme
proposed in [11]. The proposed scheme here is developed rigorously based on Theorem
3.1 and applies to any block length of T'. Following this development, it is now clear that
the number of layers directly determines the multiplexing gain and, hence, data rate.
Furthermore, in [11] the phase shifts were selected to ensure full rank of the difference
matrix between any two codeword pairs. The resultant codes may not have satisfactory
performance due to the existence of near-zero eigenvalues of the difference matrices
associated with a large portion of the codeword pairs. In comparison, we present below a
different strategy to optimize the performance through the design of phase shifts. Before
we proceed to optimize the phase shifts, we note that the codeword matrix for one block

is constructed as

S= iiMusu (3.15)

=l =1

where s, ; is the rth symbol of the ith layer. As can be seen from (3.12) and (3.15), the kth
symbol of the ith layer will be spatially spread using the spreading vector diag(W,) and
phase shifted before it is combined with other N, -1 symbols of the same layer.

Denoting x,, as the /th entry of the #th diagonal of S, i.e.,
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~ |
X X T 71
x x e x
T2 12 T-1,2
S=|. (3.16)
| Xr-N2n, T XN, N, T XroN
Then from (3.15) we have
79 ¢ it it ) Jon,
e’ (e @1Steen, i T€ D2Speen,; T T E qlNISN,+cN,,i) for 1<i<N
XiveN, g = JN (3.17)
0 otherwise
T

where /=1,---,N,and ¢=0,1,---,—-1.
N

‘
We now take two steps to optimize the performance. First, we consider the codeword
pairs that are most vulnerable to error. To do this, we note that the average Euclidean
distance of a pair of codewords S and S’ is
d(S,8") = Eltr(H(S - 8')(S -8)"H" |

T N,

=N, e, -l (3.18)

t=1 I=1

Hence, we consider two codewords that differ by just 1 entry in S, say x, in (3.17).
Since x;, is a linear combination of s,,,7=1,..., N, this implies that the codeword pair
will also differ at symbols x,,,x,,,...,x,y . Then, the root of the determinant of

(S—S')(S-S"" is the product of N, distances and it is given by

]&[dii (3.19)

where
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8| it ( _,) is ( _:) o o
e (e Gu\Siy =811 )T e qp\s,, =8, )t te

JN

Note that, for the codeword pairs that differ at only one diagonal in the codeword

’
qp, (SN,,l Sy ))

! —
d = Xy~ Xy =

(3.20)

matrices, the pairwise coding gain is
2z
6.=0%
It is clear that the term e’” has no effect on (3.19) because lej é"‘l =1 for any value of 6,.

Hence, we only consider the optimization of {g,}" for this purpose. Note that ¢, = Brien, -

To optimize the performance of those vulnerable codeword pairs, and hence the
associated diversity and coding gains, the phase shifts among symbols {g,}" are chosen
to maximize the minimum determinant D taken over all possible pairs

< -_— DI <! - ! 4 LIRS ! 3
S= (SU S5, SNNI) and §' = (51,1 3, SNNI), 1.e,
N .
{4}, =arg max rpp}a D. (3.21)
{5,8'

Since the symbols are taken from finite alphabets, the optimal D must be positive. In
fact, when the constellation is a complex integer ring, one can readily find phase shifts to
ensure a positive D [11]. If only one layer is used, the phase shifts obtained according to
(3.21) maximize the diversity and coding gains of the code. In general, they maximize the
diversity and coding gains of the codeword pairs that have small Euclidean distance. In
addition, we establish the following theorem that shows the bound of the diversity gain of
the code.

Theorem 3.2: In the proposed scheme, for a given number of layers 1< N <N, and

regardless of the values of {#,}",, the diversity gain is bounded as
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G, 2(N,-N+1DN,. (3.22)
Proof: First, we note the following facts:
a) With phase shifts {;iﬁt)}f";1 as defined in (3.21), if there is a nonzero entry in a diagonal

of a difference matrix E=S-S’, then all the entries at that diagonal must be
nonzero.

b) Within any contiguous &, diagonals of a difference matrix E, there are at most N
contiguous nonzero diagonals and at least N, — N contiguous zero diagonals.

By the above two facts, in any difference matrix E, one can always find a square upper

triangular submatrix of size N, — N +1 with nonzero diagonal entries. The rank of this
submatrix is full. Hence, the rank of E is at least N, — N +1. Then the diversity gain
G, 2(N, = N +1)N, . This has proved Theorem 3.2. 0

Note that the maximum multiplexing gain of the MIMO channel is min(N,,N,).
Hence, we only consider the number of layers N <min(¥,, N,). In such a case, Theorem
3.2 shows that the diversity gain of the proposed scheme is usually large except when N,
and N, are small but N is close to min(¥V,,N,). It is worthy of noting that the

improvement in performance quickly diminishes as the diversity gain increases beyond 4
[3], and in such a case, the Euclidean distance can be a good performance measure [51].
From (3.18) to (3.21), it is clear that the optimal phase shifts from (3.21) will also closely

maximize the Euclidean distance. When N, and N, are relatively small and NV is close to
min(N,, N,), the diversity gain is important. In such a case, one can apply phase shifts

{037, to ensure full diversity such as that in [11]. However, the coding gain can be close
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to zero, particularly, when the constellation is large. Therefore, we apply phase shifts
{6,}Y, among layers to maximize diversity and coding gains for all the codeword pairs

when the constellation size is small. This can be done by maximizing the minimum

coding gain G, over all possible codeword pairs, i.e,

{6}, = arg max min G,. (3.23)

5,5}

Equations (3.21) and (3.23) can be solved easily and efficiently by using a computer
search and we show some results in Tables 1, 2 and 3. In these tables, it is assumed that
¢, =6, =0 as reference. As shown in Tables 1, 2 and 3, for the same transmitted power
and data rate the multi-layer codes provide better minimum determinant D,,;, than the
single-layer codes. For example, the two-layer code with QPSK modulation has much
larger D,,;, than the one-layer code with 16PSK or 16QAM modulation. Also by using 3
transmit antennas, the three-layer code with BPSK modulation has much larger D,,;, than
the one-layer code with SPSK modulation. This shows that one shall always try to use a
larger number layers for a given data rate. Note D2, / N, is the minimum coding gain of
the codeword pairs that differ at only one diagonal. Form the tables, it can be seen that
the coding gain of the code G, becomes significantly smaller than D2 /N, when the
constellation size is relatively large. In such cases, the effect of phase shifts among layers

@ is negligible. Hence, for large constellations, only phase shifts within layers {;ﬁt)}fi‘l are

needed. However, it is worthy of mentioning that a small pair-wise coding gain does not
necessarily lead to a large pairwise error probability when the diversity gain is relatively

large. Instead, the pairwise Euclidean distance is a better indicator, which is maximized

by phase shifts {¢,)}Z’1 .
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Table 1. Optimum phase shifts and corresponding D,;, for one-layer codes.

Modulation | N, | N | d;(degree) | Dmin/2 (Go)
BPSK 2 1 90 2
QPSK 2 1 45 1
8PSK 2 1 22.5 0.2929

16QAM 2 1 45 0.2

Table 2. Optimum phase shifts and corresponding D, for two-layer codes.

Modulation | N, | N | dx(degree) Ox(degree) Diin /2 G,
BPSK 212 90 90 1 1
QPSK 212 45 30,60,120,150 0.5 0.2588
§PSK 2|2 22.5 13, 32, 58,77 0.1121 | 0.0312
SQAM 212 33.5 38 0.368 | 0.0534

16QAM 212 45 18.5, 26.5, 63.5, 71.5 0.1 0.0416

Table 3. Optimum phase shifts and corresponding D,,;, for one-layer

and three-layer codes.

Modulation N, N é> #3 6, & D2 / 3
8PSK 3 1 21 63 N/A N/A 0.0031
BPSK 3 3 4 128 20 160 0.0370
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3.4 Comparison of Linear Dispersion Codes

In this section, we compare the proposed multi-layered codes with some existing LD

codes.

3.4.1 Alamouti’s Scheme

Consider channels with two transmit antennas, for which the Alamouti’s scheme is
designed for. If the number of receive antennas is more than 1, then a multiplexing gain
of 2 is possible and two layers can be used in our scheme. Suppose 7' =2 and denote the

four input symbols by s,,,s,,,5,,,5,,. If the input symbols are taken from a real

constellation (e.g., PAM), then the optimal phase shifts will be ¢, =0, ¢, =12T—, 0, =0,
0, = —721 , and the transmitted code word is

|:S1,1 + JSy, j(sl,Z + jsz,z):| (3.24)

j(Sl,Z - jsz,z) Sia— JS24

Define x, =s,, + js,, and x, = j(s;, — js,,) = js;, +5,,, then

X, X,
S :{ } (3.25)

Xy X
which is exactly the Alamouti’s scheme. Thus, the proposed scheme subsumes the
Alamouti’s scheme as a special case. For instance, the Alamouti’s scheme with 16QAM

is identical of the proposed 2-layered scheme with 4PAM and N, =T =2. Although it is

a two-layered scheme, the symbols are limited to be real. As such, it looses half the

channel capacity at high SNR when the number of receive antennas is two. On the other
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hand, the proposed scheme is possible to achieve full channel capacity regardless the

number of receive antennas.

3.4.2 Damen’s Scheme

Damen et.al. proposed LD codes for two-transmit antennas based on number theory
[14]. The codeword is constructed as

J¢ Jjo jé
B S, ters,, e’ (s, +e’"s,,)

S= (3.26)
0 . .
e’ (s, "'emsz,z) S1a _ej¢sz,1

with 6 =§. Comparing (3.26) with (3.12) when N =N, =T =2, the two schemes has

¢

identical construction except that € is constrained to be Y in Damen’s scheme. This

constraint simplifies the search of phase shifts but results loss in coding gain. On the

other hand, in the proposed scheme, ¢ is chosen to maximize the coding gain of the
codeword pairs that differ only in one layer instead of the coding gain of the code. As
such, the complexity of the search of ¢ is reduced from O(g") to O(g) where g is a

function of the constellation and N is the number of layers. Although 6 has also to be
searched in the proposed scheme, the search is only needed when the constellation size is
small. For instance, for QPSK constellation, Damen’s scheme yields the optimal coding

gain 0.2369 at ¢ =26 =0.5, while the proposed scheme yields the optimal coding gain

0.2588 at ¢ =% and 6 216[- . Note that Damen’s scheme only applies for channels with

two transmit antennas.

40



3.4.3 Ma’s Full-Diversity Full-Rate Codes

As mentioned before, the proposed scheme can be seen as a generalization of Ma’s
scheme [11], although developed with different approaches. One of the main differences
is the optimization of phase shifts. In Ma’s scheme, the phase shifts are chosen only to
ensure full rank of the difference matrix without optimizing the coding gain. This can
lead to. solutions with unsatisfactory performance because the existence of a large portion
of codeword pairs with small effective diversity gains [12]. While a direct optimization of
the error performance is intractable, a better strategy, which is taken in this chapter, is to
ensure large coding gain and diversity gain of the codeword pairs that have small
Euclidean distance. Further performance comparison of the two schemes will be

presented in the next section.

3.5 Simulation Results

In this section, we provide simulation results to compare the proposed scheme with
several existing LD codes. The channel model described in Section 3.2 was assumed and
maximum likelihood decoding was performed for all the schemes.

Figure 3.1 compares the proposed scheme with Hassibi’s scheme [10] and Ma’s
scheme [11] over a channel with two transmit and two receive antennas. The code with
the best performance in [10] was chosen. In all the schemes, two layers are employed

with BPSK modulation. The modulation block is chosen to be 4 channel uses, i.c., 8 bits

per block. As can be observed from the figure, at Block Error Rate (BLER) = 2*107*, a

performance gain of approximately 3 dB is achieved for the proposed scheme over
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Figure 3.1. BLER performance comparison of FDFR,
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Hassibi’s scheme and 1.8 dB over Ma’s scheme. This is because the proposed scheme
maximizes the diversity and coding gains without loss of mutual information. Hassibi’s
code preserves channel capacity but does not guarantee good performance since the
diversity and coding gains were not explicitly optimized. Ma’s code maximizes the
diversity gain and preserves channel capacity but does not necessarily yield high coding
gain which affects the performance of the system as discussed before.

In Figure 3.2, the performance of several two-layer codes with QPSK constellation
are provided. Again, two transmit and two receive antennas are assumed. As expected,
similar behavior as in the case of Figure 3.1 is observed. Specifically, the proposed two-
layer code performs the best, followed by Damen’s, Ma’s, and Hassibi’s codes. In
addition, performance curves of Alamout’s code and the proposed one-layer code, both
with 16QAM, are provided. As mentioned before, Alamouti’s code with 16QAM is
identical with the proposed two-layer code with 4PAM. Hence, its performance is the
worst among the two-layer codes. To examine the effects of the number of layers or
symbol coding rate on performance, one can compare the proposed two-layer and one-
layer codes. As can be seen, with the same data rate, the proposed two-layer code has
approximately 2.5 dB gain over the proposed one-layer code at BLER=0.01. This shows
that, for a given data rate, one shall choose a larger number of layers against
constellation size to achieve better performance as predicted by Theorem 3.1.

Now, we examine the effects of the number of layers on a channel that consists of
multiple transmit antennas but only one receive antenna. In such a case, the available
multiplexing gain is 1. However, codes with more layers (i.e., higher coding rate in

symbols) are expected to perform better at a practical SNR. Specifically, three transmit
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antennas were assumed. Performance curves of three full-rate codes: the proposed,
Hassibi’s, and Ma’s codes, are illustrated in Figure 3.3. With BPSK and T =3, each
modulation block consists of 9 bits. In addition, the performance of the proposed one-

layer code with 8PSK is also provided. As can be seen, the proposed 3-layer code

performs significantly better than others. At BLER 2*107, the proposed 3-layer code
has a performance gain about 2 dB over the other two full-rate codes. It is interesting to
note in this case, the proposed one-layer code outperforms the other two full-rate codes
when SNR is greater than 20dB. This is because the proposed one-layer code ensures
full-diversity gain and optimal coding gain. Although Ma’s code also enjoys full diversity
gain, some of its diversity orders may ndt contribute to the decay of error performance till
SNR is extremely high. It is also interesting to note that the two curves of the proposed 3-
layer and one-layer codes consistently have the same slopes, with the former outperforms
the latter. This, again, demonstrate that one shall maximize the number of layers for a
given target data rate. However, the effects of the number of layers is less significant than
the case shown in Figure 3.2 because there is only one receive antenna.

Last, let us compare the proposed scheme and Alamouti’s space-time block code [4]
with two transmit and one receive antennas as shown in Figure 3.4. For Alamouti’s
STBC, 16QAM modulation was used. For the proposed scheme, 2 layers and 4AM
modulation were used. This makes the data rate for both of them is equal. As can be
observed, the BLER of the proposed scheme overlaps exactly with BLER of the STBC.
This is because, the space-time block code preserves full channel capacity when the
number of transmit and receive antennas is equal to two and one, respectively. However,

the Alamouti’s STBC code only works for channels with two transmit antennas.
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In summary, the above results show that the proposed scheme provides flexible
tradeoff between performance and data rate. Furthermore, it shows that the proposed

scheme provides significant performance gain as compared to the conventional schemes.

3.6 Conclusions

In this chapter, we have investigated the design of LD codes with flexible rate-
performance tradeoff. A study on the capacity of LD coded channel was carried out. It
shows that the maximum multiplexing gain of a linear dispersion code is exactly the
coding rate defined as the number of symbols per channel use of the code. This also
implies that full-rate LD codes have to be used to preserve the channel capacity.
Conditions on the dispersion matrices for various multiplexing gains were also
established. With these results, a general multi-layered LD coding scheme has been
proposed. With the new coding scheme, various multiplexing gains can be obtained
simply by increasing the coding rate and augmenting the set of existing dispersion
matrices. Furthermore, the error performance is optimized by applying phase shifts
among input symbols without the loss of mutual information. Simulation results
demonstrated that the proposed coding scheme significantly outperforms existing space-

time block codes under various data rates.
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Chapter 4

Multi-Layered Space-Frequency Coding

for Frequency-Selective MIMO Channels

4.1 Introduction

In frequency-selective channels, the transmissions of adjacent symbols will overlap
each other, giving rise to ISI. One way to overcome the problem of ISI is to use OFDM to

transfer a frequency-selective channel into a set of flat or narrowband channels.

In the conventional MIMO OFDM [16-20], N, OFDM modulators are employed,

one for each transmit antenna. A block diagram of this approach is illustrated in Figure
4.1 where the space-time process could be a space-time encoder (e.g., [3]) and/or a spatial
multiplexer (e.g.,[6]). The data is transmitted frame by frame. The channel matrix is

made block circulant by adding a Cyclic Prefix (CP) to each frame of the signal at the
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transmitter and then removing it at the receiver. The noise-free received signal at the kth

tone after the FFT can be expressed as
Y&) =y (k) y, (k) - vy ()T
= JP/ N, A(R)[x, (k) x, (k) - Xy, 3

= JP/N, A(k)x(k) for k=1, ---, K (4.1)

where K is the FFT length, and A(k) is an N, xN, complex matrix. Denoting the

i

channel matrix associated with the /th resolvable path by H(/) =[4,,,(D],,,, A(k) canbe

written as

Ak) =Y H() exp{ii-rlg{—_l)l} (4.2)

where L is the number of resolvable paths. As can be seen from (4.2), OFDM has
transformed the frequency-selective fading channel into a set of MIMO flat subchannels.
Or from the point of view of the signal before the IFFT, the resultant channel appears as a
fast fading narrowband channel. Therefore, many of the MIMO techniques developed for

narrowband fast fading channels are directly applicable.

When space-time coding is applied before OFDM modulation, it is often called
Space-Time-Coded OFDM (STC-OFDM). In STC-OFDM, the coding is actually
performed across transmit antennas and frequency tones and, thus, is also called space-
frequency coding. Both space-time trellis codes [3], [21] and block codes [4], [46] can be
applied. However, it was shown in [20] that the conventional space-time codes in general

cannot achieve the full space and frequency diversity and suggested that new code design
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Figure 4.1. Block Diagram of a conventional MIMO OFDM transceiver.

procedures are needed. Unfortunately, code design in STC-OFDM shown in Figure 4.1 is
not trivial, owing to the facts that the encoding is a two-dimensional process and the

channel gains are correlated among different tones.
Spatial multiplexing gain can also be realized in MIMO OFDM systems. A MIMO
transmission scheme is said to achieve a spatial multiplexing gain G, if, at high SNR, it

achieves a data rate

R=G, log(1+SNR) (bps/Hz) (4.3)

which is G, times the capacity of a SISO channel with the same SNR. Along this line,
much of the recent research attention has been focused on the combined use of D-BLAST

and V-BLAST with OFDM. In these schemes, N, independently encoded data streams

i

are spatially rearranged before they are sent to the N, IFFT's as shown in Figure 4.1.
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Although encoding for each data stream is a one-dimensional process, the diversity gain
depends on the spatial arrangement of the independently encoded data streams. As a

result, code design has to consider the spatial arrangement and becomes a difficult task.

A recent study in [8] demonstrates that there exists a fundamental tradeoff between
diversity and multiplexing: The maximal available multiplexing and diversity gains
cannot be achieved simultaneously and there exists an optimal tradeoff curve.
Unfortunately, none of the aforementioned schemes are flexible in providing this

tradeoft.

To this end, we emphasize that, in the conventional MIMO OFDM approach, the
separation of the degrees of freedom in space and frequency gives rise to the difficulties
in code design as well as in providing tradeoff flexibility between reliability versus data
rate. This has motivated us to develop a new multi-layered space-frequency coding
scheme to provide various rate-performance tradeoffs. The proposed scheme is based on
a new space-time OFDM (ST-OFDM) modulation scheme that translates a MIMO
channel into a SIMO channel of the same degrees of freedom. As a result, code design
becomes much simpler and conventional codes for single-input channels can be used. In
fact, the criteria for code design coincide with those codes developed for single-input fast
fading channels. In addition, a new multiplexing scheme is developed to be used with the
proposed ST-OFDM. In the proposed multiplexing scheme, each layer sees all the
transmit antennas all the time and hence maintains all the degrees of freedom. It is further
shown that the proposed multiplexing scheme achieves a multiplexing gain that equals
the number of layers created. This, together with coding, allows a full range of optimal

tradeoffs between data rate and reliability. Several examples are given to demonstrate the
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advantages of the proposed approach over the conventional MIMO OFDM approach.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce a
new ST-OFDM modulation scheme. In Section 4.3, we discuss the design of codes and
interleavers to be used with the proposed modulation scheme. In Section 4.4, we describe
the multiplexing scheme and discuss the corresponding channel capacity and outage
probability. Last, simulation results are presented in Section 4.5 and conclusions are

drawn in Section 4.6.

4.2 A New Space-Time OFDM Modulator

In this section, we introduce a ST-OFDM modulator that effectively transfers a
MIMO channel into a SIMO channel without the loss of the degrees of freedom. We

consider communications over wideband MIMO channels with N, transmit and N,

receive antennas. The gain of the /th resolvable path from transmit antenna » to receive

antenna m is denoted by 4, (/) with 0</<L-1 and L as the number of resolvable

paths. A block Rayleigh fading channel model will be assumed where the path gains
remain constant over the duration of a transmission block and change from block to
block. Furthermore, the path gains are assumed to be symmetric complex Gaussian

random variables.

In Figure 4.2, a MIMO transceiver equipped with the proposed space-time
modulation scheme is illustrated. In such a transceiver, data is transmitted frame by frame

and each frame of data is first encoded, mapped to symbols, and interleaved to form K

samples X =[x, x, ---x, ]". Here the encoder has only one output stream instead of N,
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streams as in STC-OFDM. The encoded data stream x is passed through a K-point IFFT

and the resulting signal is given by

§=——F"x (4.4)

e

where F is the FFT matrix whose (k,k,)th entry is f, , = exp{— J2r(h = Dk, —l)}.

K
The output of the IFFT, X, is used to form N, blocks with the nth block as its cyclic shift

to the top by n-1, i.e.,

"J’EK _)%1-..)%"_1]7 :Pn)’\( for n:],z,...,Nt (45)

n “n+l

where P, is an K x K circulant permutation matrix whose first row has 1 as its nth entry

and zeros elsewhere, i.e,

Pn:f.. v é . (4.6)

Clearly, P, is the identity matrix and X, =x.

The N, signal blocks will be used to form N, data matrices and then transmitted
block by block. First, for each of the N, blocks the last N, (L —1) samples are inserted at

the beginning of the block as the cyclic prefix. The resultant signals are passed through a
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Figure 4.2. Block Diagram of the proposed MIMO transceiver using space-time

OFDM transceiver.

1: N, Serial-to-Parallel (S/P) converter to form a data matrix with N, rows, which is then

transmitted over the N, transmit antennas. Assuming that N, divides X, a total of

(L-D+ ]i\]{— transmission durations are needed for each of the N, blocks and the loss in

t

bandwidth efficiency due to cyclic prefix is

(L-DN,

K+(L-1)N,’

For instance, if

K=4,N,=L=2, the 4 IFFT output samples will be used to form 2 blocks and

transmitted from right to left over the two antennas as

prefex

Xy X X | Xoxm x

XXX | xox x,
— —

prefex

The case where N, does not divide K will be addressed shortly. Since IFFT outputs
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are transmitted over both space and time, the IFFT together with the subsequent framing

process will be referred to as the ST-OFDM modulation.

At the receiver, after removing the first L-1 samples corresponding to the CP, the

signal of the nth block received by the mth antenna can be written as

S}m,,n = P/NtanPni+nn1,n
=JP/NH, i+n,, (4.7)

where n,, , is complex Gaussian noise with zero mean and variance NI, and H,, is an

n

%— x K block circulant matrix given by

t

(h!(0) 0,, - O, hi(L-1) - hI(2) hI(1)]

h,, (1) hi'(()) O, Oy, h.ﬂ(L~1) h,,(2) 3)

O leN, h;(L—l) h;(l) hrTn(O)

¢

In (4.8), hl () :[hnT%1 ) hZ;,z @ --- h;’N{ ()] collects all the channel gains from N,
transmit antennas to the mth receive antenna associated with the /th delay path. Since P,

is a permutation matrix, the rows in H,,, = H, P, are cyclic shifts of the corresponding

rows in H  to the right by »-1.

The block combiner at the receiver collects the signals from all of the N, blocks and

interleaves them sample by sample. From (4.7) and (4.8), the resulting output is given by
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I ] - H,,0, )
A JA}m,N, (l) P Hm~N, (17 :) A
Yo = ~ =\ X+n,
ym,l(z) Nt Hm,l(2’ :)
_.),}m,Nl (K/Nt)~ _Hm,N, (K/Nt > )
=JP/NH X+n, (4.9)

where H, ,(k, :) stands for the kth row of matrix H, . Note that H, (%, ) is the
cyclic shift of H,,, (%, :) to the right by n-1 and H, , = H  is block ciculant as given in
(4.8). Therefore, ﬁm is an K x K circulant matrix whose first column collects all the

N,L path gains associated with receive antenna m and is given by

b, =[h,,(0) A,y Q) By (D) - B () o by (L=1) -
B (L=1) 0 - Ok, (0) -+ £, , (O] : (4.10)

Nt

From (4.4), (4.9), (4.10), and by the fact that an FFT matrix diagonalizes a circulant

matrix of the same size, the output of the FFT at receive antenna m can be written as

FH FHX+LFn

MKJ—

_ [P Axea, (4.11)
Nt

where complex Gaussian noise z,, has zero mean and variance N I and

A,, =diag(Fh,). (4.12)
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The above equality still holds after removing all the zeros in Em and the

corresponding columns in F, i.e.,
A, = diag(Fh ). (4.13)

By (4.10), ﬁm consists of the first N,L— N, +1 and the last N, —1 entries in Em and,

correspondingly, F consists of the first N,L—-N, +1 and the last N, —1 columns of F.

As can be seen from (4.11), the original frequency-selective multiple-input channel
has now been transformed into K independent flat single-input channels. Or looking at

the time domain, (4.9) shows as if the signal X arrived at antenna m through a single-
input channel with Impulse Response (IR), Em , given by (4.10), although it was actually
transmitted over N, antennas. As a result of this channel transformation, conventional

codes designed for single-input fast fading channels can be applied. In addition, this

transformation maintains the degrees of freedom (i.e., available diversity order), which is
apparent by the fact that there are N,L independent random variables in Em. Unlike

STC-OFDM where the available system freedom is exploited by the two-dimensional
encoding process, the ST-OFDM modulation projects all the degrees of freedom onto one

virtual domain so that they can be capitalized by one-dimensional encoding. In the rest of
the chapter, Em in (4.10) and flm in (4.13) will be referred to as the IR and the effective

IR of the equivalent single-input channel, respectively.

In the above, it has been assumed that N, divides K. In case where N, does not

divide K, the same structure shown in Figure 4.2 can be used with a slightly different

framing process. The framing process now generates N, blocks as if there were N,
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transmit antennas, where N, is the smallest integer that is greater than N, and divides K.

However, for each data block, the last N; — N, streams at the output of the S/P converter

!

are not transmitted. By doing this, the impulse response h will be different from that

given in (4.10) but still has exactly N,L nonzero entries. Since this case will not change

the subsequent results, we will only consider the case where N, divides K in the rest of

the chapter.

4.3 Code and Interleaver Design

In this section, we discuss the design of codes and interleavers to be used with the
ST-OFDM modulation for applications with reasonably high SNR. For cases where SNR
is low but the available diversity is larger (e.g., there exists a large number of antennas),

conventional designs based on maximizing Euclidean distance can be used [51].

For the simplicity of analysis, we assume that channels seen by different receive

antennas are independent but those associated with one receive antenna are correlated.

That is,

E[ﬁ f ]:{O if m #m,

mom TR, if my = m,

This may happen when the transmit antennas are closely spaced but receive antennas

are sufficiently far apart. We further assume that R, has full rank and tr(R,) = N, . For a

complete treatment of more general cases, one may follow the development in [52].

As in [3], we begin with the analysis of pair-wise error probability by assuming ML
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decoding. An upper bound of the probability of codeword x being transmitted but the

decision being erroneously made in favor of x' can be found as

Px—>x)< exp(%\);—’}—’l) (4.14)

where d?(x,Xx’) is the Euclidean distance between the two codewords. By (4.11) and

(4.13), we have

& (x,x) =1 - f

¢t m=1
P I ~ o 2
=— » lIdiag(Fh,)(x—-x")| . (4.15)
a5 |
Decompose the channel correlation matrix as R, =BB” and define g, =B™'h,,.
Apparently, g _ consists of independent identically distributed (i.i.d.) symmetric
pp m 3

Gaussian random variables with zero mean and variance 1/L. We can then rewrite (4.15)

as

4 (x,x') = Niilldiag(la‘Bgm x| (4.16)

¢+ m=1
Denoting ¥ as the set collecting all the indexes corresponding to nonzero entries in
x—x,ie., V="{k|x(k)-x'(k) =0}, ﬁ‘(V,:) as the matrix consisting of those rows of F

whose indexes are in 7, and E as the diagonal matrix whose kth diagonal entry is the kth

nonzero entry of x—x’, (4.16) can be rewritten as

N, n n
d*(x,x') = %Z g"B"F(¥,.)" EYEF(V,:)Bg,, . 4.17)

t m=1
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Substituting (4.17) into (4.14) and averaging (4.14) with respect to the distribution of

|gm (k)l , the average pair-wise error probability at high SNR region can be found as

] , (4.18)

where r is the rank of Eﬁ(V,:)B or, equivalently, the rank of Ef‘(V,:), and det(A)

P(x > x') <|aat{B7 F(7,)" E"ER(,)B) exp( =
[2n]

stands for the product of all the nonzero eigenvalues of A. From the above equation, it
can be observed that a diversity gain G,(x,x)=rN, and a coding gain

1
G,(x,x") = NL [dét(BH F(V,)"E"EF(V, :)B)] r have been achieved for the codeword pair.

i

Recall that l:"(V,:) is of size |V|>< N,L with |V| being the number of entries in set V.

Furthermore, since f‘(V,:) is a submatrix of the Vandermonder matrix F, f‘(V,:) is full

rank, i.e.,
rank(F(7,)) = min(¥], N, L).
This with the fact that E has a rank |V'| leads to
r=min(/'| N,L). (4.19)

Following the definition in [53], we refer to |V| as the effective length of the codeword

pair and the minimal IV[ taking over all distinct codeword pairs as the effective length of

the code. Since we are primarily interested in codeword pairs that have the worst pair-

wise error probability, we may assume |V| < N,L in the following analysis. Under this

assumption, » = |V| Furthermore, since matrices AA” and A” A have the same set of
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nonzero eigenvalues, we can write

6,03 =i B i e |

t

- le— ﬁdet(E)|2 det(ﬁ(V, IR, F, ) )]l
= NL {H le.f det(ﬁ‘(V, IR, F(, )" )} : . (4.20)

Note that the product term Hlel.lz in the above equation is the squared product
ieV

distance of the codeword pair [53], which is independent of the channel. On the other

hand, the term det(f?(V,:)R,,F(V,:)H ) is related to the channel statistics and locations on

which a pair of codewords differ. Since the channel is unknown to the transmitter, it is
desirable to neglect this term in code design and leave its maximization by the interleaver

as will be discussed shortly.

Define the diversity and coding gains of a code as the minimal pair-wise diversity
gain and coding gain taking over all distinct codeword pairs, respectively. From the

above analysis, the diversity gain of a code is the product of N, and the effective length

of the code, and the coding gain is directly proportional to the minimal squared product

distance of the code. To summarize, we have the following design criteria:

o The Effective-Length Criterion: If a diversity gain of rN, is the design target

(r < N,L), the effective length of the code must be r.

o The Squared-Product-Distance Criterion: The minimal squared product distance of
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the code must be maximized.

It is evident that the above code design criteria are exactly those well-known criteria
for single-input fast fading channels. Therefore, the codes designed for single-input

fading channels such as those in [53] and [54] can be directly used here.

As shown in (4.20), in addition to the squared product distance, the coding gain also

depends on channel statistics and the locations of symbols in which the pair of codewords
differ. In general, maximizing the term det(ﬁ‘(V,:)R,ﬁ(V,:)H ) in (4.20) is not feasible

when channel statistics are unknown to the transmitter. However, for channels with 1.1.d.

path gains (i.e., R, = —le—I ), it was shown in [55] that det(f*‘(V, :)ﬁ'(V,:)H ) 1s maximized if

the pair of codewords differ at locations that are separate by an integer multiple of —]-<—
t

Therefore, a block interleaver with an interleaving depth % is nearly optimal for trellis
t

codes over channels with i.i.d path gains [55]. Interestingly, this is also a “good” design

for trellis codes in general. First of all, if the effective length of the code is

["|= N,L,¥(7,:) has full rank and
det(F(7, )R, B (7,2)" )= det{B (0B (7 ,1)" )det(R,) .
Hence if the two codewords differ at symbols that are _L—I]% tones apart,
¢

det(ﬁ‘(V,:)ﬁ(V,:)H ) is maximized [55]. In general when the channel is unknown to the

transmitter, we can only seek to maximize the following lower bound
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14

det(F 7, OR,F (7, )2 dat{F 7, R ()" [ 2 )

i=1

where Ag (i) is the ith smallest eigenvalue of R,. Again, the above lower bound is

. . K
maximized when the two codewords differ at symbols that are —— tones apart.

!

4.4 Channel Multiplexing

In the coded ST-OFDM described above as well as in the conventional STC-OFDM,
higher data rate can be achieved by using larger constellations. However, this is not
desirable because the constellation size and, hence, the computational complexity, grow
exponentially with the data rate. More importantly, there exists a fundamental tradeoff
between multiplexing and diversity [8]. As will be shown later in this section, the coded
ST-OFDM alone only provides a multiplexing gain 1. One approach to achieving high
data rate with reasonable complexity is to transmit multiple independent data streams in
parallel as in D-BLAST. The technique of creating a number of independent data streams

(or layers) that simultaneously share the channel is called channel multiplexing.

The ST-OFDM modulation allows a simple channel-multiplexing mechanism as
shown in Figure 4.3. As can be seen in the figure, the K encoded data streams are first

independently modulated using the ST-OFDM modulator, the N, outputs from each of

4

the layers are then weighted and summed together before they are transmitted.

The use of transmit weights effectively creates different channels for different layers.

Denote w;, as the weight associated with layer i and transmit antenna 7, then the /th
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path gain of the channel from transmit antenna 7 to receive antenna m associated with

layer i can be written as w,_h_ (/). Denoting the weight vector of layer i by

w,o=[wy Wiy o w,.J]T and collecting the weights according to the ordering of
channel gains in ﬁm into a diagonal matrix as

W, = diag| [w, W, oW Wiy, = Wial (4.21)

L-1terms

then the effective IR of the equivalent single-input channel seen by layer i at receive

antenna m can be written as
=Wh . (4.22)

It follows from (4.11) and (4.22) that the FFT output at receive antenna m is

ym = ym,i +Zm = Amixi +Zm (4'23)
i=1 NtN i=} ’

where P is the total transmit power shared by all the N layers, x; denotes the signal of the
ith layer before IFFT, y , ; is the contribution of the ith layer to the FFT output at receive

antenna m, and A,

i

is a diagonal matrix given by
A, = diag(Fh,, ) = diag(FWh,)). (4.24)

With the above channel multiplexing, the channel seen by the N coded signal streams

is an N-input N, -output channel. The channel matrix, ®, , seen by the kth tone of all the

N layers is of size N, x N and its (m, i)th entry can be found from (4.23) and (4.24) as
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Figure 4.3. Block diagram of the proposed multiplexing scheme using space-time

OFDM modulation.

3, (m,i) = A, (k. k) = F(k,)W,h . (4.25)
It is interesting to note that the proposed multiplexing subsumes D-BLAST and V-

BLAST multiplexing as special cases. If w, is taken as the ith standard coordinate

vector, it is vertical multiplexing; while if a time-variant weight vector is used with the

(mod(i + k,N,) +1) th standard coordinate vector as the weight vector for the kth block of

layer i (recall that there are N, blocks in each frame), then it is diagonal multiplexing.
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However, in conventional schemes that employ N, OFDM’s, the multiplexing is applied

before OFDM whereas the proposed multiplexing is applied after OFDM.

4.4.1 Weight Design

A set of good multiplexing weights shall preserve channel capacity when a maximal
number of layers is used and, in the mean time, facilitate harvesting of diversity gain
through coding. When the channel, @, is unknown to the transmitter, the channel

capacity is [1, 2]

P
log, det| I, +
g, [ NTNN

(I)(I)HJ.

t770

From the above, it is clear that any set of N =min(N,,N,) orthogonal multiplexing

weight vectors of equal L,-norm preserves the capacity. To allow easy harvesting of

diversity gain, the multiplexing weights must not be zeros for any layer at any transmit
antenna to preserve the degrees of system freedom. Apparently, both V-BLAST and D-
BLAST have zero weights. To summarize, the following two conditions are to be

satisfied:

(4.26)

wf’wj=0 Vi#j
=1 V(i,n)

|wi’n

In addition to nonzero weights, equal transmit power among antennas is also enforced in
the second condition. It will be useful to note that the first condition ensures independent

gains in the equivalent N-input N -output channel when the original channel is spatially

uncorrelated, i.e.,
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{m (i,m)~CN(O,N,) Y (i,k,m) (427

Elg, G.m)g, (j,w)]=0 Y G,m) # (j,u)
A set of weight vectors satisfying the conditions in (4.26) can be readily found as

- j2n(i-1)(n-1)
N

Win = exp(

1

) Vi=1,..,Nandn=1,...,N,. (4.28)

We conjecture that the set of multiplexing weight vectors defined in (4.28) is optimal in

the sense that it provides the best performance when random encoding is performed.

4.4.2 Code and Receiver Design

Since the weighting does not change the channel statistics, if the N layers are
independently encoded, the criteria of code design developed in the last section also
applies here. In contrast, in the conventional multiplexing approach to wideband MIMO
channels, the channel seen by each layer during a frame is either a constant channel with

N,L degrees of freedom as in V-BLAST or a time varying channel cycling among
transmit antennas with each providing N,L degrees of freedom as in D-BLAST. As a

result, the available diversity gain for each layer is reduced or difficult to obtain. To
formalize this, we consider the communication over a frequency-selective channel with
i.i.d. path gains (i.e., &, (/) ~ CN(0,1/L)) and we establish the following theorems.

Theorem 4.1: For a conventional spatial multiplexing scheme where layers are separate
in space at any time, let a codeword matrix of size N, x K collect the symbols from all

layers according to their spatial and frequency locations (i.e., whose (n, k)th entry is the

symbol to be transmitted over antenna » at tone k). Denote V, as the set collecting the
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indexes of symbols in which the two codewords X and X' differ at transmit antenna n.

Then the pair-wise diversity gain is bounded as

G;(X,X)>N, x _max
{V1~V2v"'»VN,}

U7,

1<n<N,

(4.29)

where 17" eV, and \Vni < L and the maximization is taken over all possible selections of
7.
Proof: Denote Q as the first L columns of a K x K FFT matrix and G =[QQ---Q] as a

complex matrix of size KN, xLN,. Also, denote E = lEl E,---E N,J with E, being a

diagonal matrix of size K whose kth diagonal entry, e, (k),isx,(k)— x| (k). Then, the

lower bound of the error probability between two codewords X and X' can be

PX—>X")=— HlH P
det(G"E"EG)| 4N,N,

where dét(A) denotes the product of the nonzero eigenvalues of A. Define V as the
union of N, sets {17,1 ll7n| < L} with the maximum size among all possible choices of ¥,

with sizes less than or equal to L. There must exist a permutation matrix P such that

A

PE =[E’E;]" with E, collecting rows of E with indexes in V . Denote E, as the
matrix obtained by removing columns of E_ with indexes not in V and G as the matrix

by removing rows of G with indexes cK + i withany ¢>0 and i ¢ V.

Then we have

A=E,GG"E" =E GG"E" . (4.30)
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Note that each of the N, diagonal blocks in G has at most L rows taken from Q, it is

either a generalized Vandermonde matrix of size L or a submatrix of it and, thus, GG” is

full rank and positive definite. Since I:Za is full-row rank, A in (4.30) is full rank, i.e.,
rank(A) = II7| This with the facts that A is a submatrix of matrix PEGG "E”P” and

rank(EGG "E”) = rank(PEGG”E” P ) has proved Theorem 4.1. O

Theorem 4.2: For the proposed multiplexing scheme, let a codeword matrix of size
N x K collect symbols according to their associated layers and frequency locations (i.e.,
whose (7, k)th entry is the symbol of layer 7 to be transmitted at tone k). Denote U, as the
set collecting indexes of symbols in which the two codewords differ at layer i. Then the

pair-wise diversity gain is bounded as

Gi(X,X)2 N, x_max |5

$:SeuUN U,
X (4.31)
subject to Y |SUU,|< N, L

i=1

where set S eUY U, and the maximization is taken over all possible selections S
N

satisfying Z|SUU,.| <N,L.
i=1

Proof: We first assume that there is only one receive antenna. When N, receive

antennas are used, the diversity gain is just N, times of the diversity gain when one

receive antenna is used.

From (4.23), the Euclidean distance between two codewords X and X' is given by
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2XX) =% x —x)f
(X, )—W;I| i (X = X)) (4.32)

where x, and x; are the ith columns of X and X', respectively. Let U be the union of the

N difference sets, i.e.,
N
UelJu, (4.33)
i=1

and assume that the elements, {i ,u =1,2,... ,|U|} , in U are ordered in an ascending order.

Then N diagonal matrices of size |U] can be defined as
E = diag( [x;G) —x;G) x,(,) = x/(E,) - x (i|U| )— x| (i[U[ )] ) (4.34)

where x,(k) and x](k) are the kth entries in X, and x|, respectively. It follows from

(4.24) and (4.32) that

d*(X,X") = FPN,ZN,:"E"ﬁ(U’:)W"ﬁ"z

o A (4.35)
= —Nt—NhH G"E”EGh
where ﬁ‘(U ,:) is the matrix collecting rows of F with indexes in U,
G =W/ F@,y" WIRWU,)" - WIRD,)" ] (4.36)
and
E=[EE,--- E,] (4.37)
Therefore, the pair-wise diversity gain is given as
G,(X,X") = min(N, L, rank(G"E"EG)). (4.38)
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Let S be a subset of U satisfying

i|SUU,.|S N.L. (4.39)

-1
Then there exists a permutation matrix P such that

PE=[E"E"]" (4.40)
where E_ collects rows of E associated with symbol indexes ¢ € S . By (4.39), E_ is of
size ISIx |U |N . Let g =exp(—j2x), then it follows from (4.28) that the (i k)th entry in

ﬁ‘(U ,:)W. can be written as

H

q(iu—l)(k~1)/K—i(k—1)/N, for k < NIL _N, +l

(i, ~)(k+K—N L-1)/ K-i(k-1)/ N, . (4.41)
9 for k>N, L-N, +1

g,(u, k) ={

The above equation shows that any N,L rows from matrix G make up a generalized
Vandermonde matrix and, thus, are mutually linear independent of each other. Now for
an arbitrary vector a € C|S|X1, it follows from (4.39) that a”E_ has at most N,L nonzero

entries. Consequently
a"E G =0. (4.42)
This shows that rank(EaG):ISI. By Equation (4.35) and the fact that

rank(G"E”EG) > rank(G”"E”E _G), Theorem 4.2 has been proved. O

If the same code is used for both the conventional spatial multiplexing and the

proposed multiplexing schemes and a pair of codewords may differ at arbitrary locations

due to a random interleaving, it can be shown that the lower bound of the proposed
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scheme is always larger than that of the conventional schemes. For codes with an

effective length greater than or equal to N, L, the lower bound of the diversity gain of the

conventional spatial multiplexing schemes is N,L and that of the proposed scheme is

N.LN,

. Note that the above lower bounds are obtained without considering the finite

alphabet of transmitted symbols. Practical alphabet often leads to larger diversity gain.
For instance, we have found that the proposed scheme always achieves full diversity,

N,N,L, for BPSK and QPSK modulations. In fact, full diversity gain for the proposed

scheme can be guaranteed for any constellations carved from the Gaussian integer ring by
appropriate constellation rotations similar to that in [11]. On the other hand, the above
lower bounds are indicative in that extra nonzero eigenvalues are often significantly
smaller than the first group of eigenvalues indicated by the bounds. Because of this,
constellation rotation is not pursued. In addition, the diversity loss only occurs when the

N,LN,

number of layers, N, is greater than 1, which implies N, >1 and N, >1. When

is reasonably large, say greater than 4, the benefit of extra diversity gain diminishes and a
more appropriate performance index is the Euclidean distance [51, 56, 57]. Furthermore,
if the data rate is fixed against the channel capacity as SNR increases, full diversity is

impossible [8].

Since one of the main motivations of using multiple layers is to provide high data rate
transmission with reasonable complexity. Therefore, suboptimal detection schemes rather
than the optimal ML detection schemes are of primary interest. Various suboptimal
multi-user detection schemes, such as decorrelating detection, MMSE detection, and

combined successive cancellation and linear detection, can be used to separate the layers
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such that independent decoding can be applied for each layer [6, 7]. Or iterative joint

detection and decoding schemes can be used for better performance [58].

It is worthy of noting that the N layers do not have to be independently encoded. In
fact, the proposed OFDM modulation and multiplexing schemes together create an N-

input N, -output wideband channel. Any MIMO technique developed to be used in

conjunction with OFDM such as that in [23] can also be used here.

4.4.3 Channel Capacity and Outage Probability

For the above channel multiplexing scheme, we establish the following theorem that

shows the channel capacity.
Theorem 4.3: At high SNR, the ergodic capacity (in bps/Hz) of the N-input N, -output
channel created by using a set of NV orthogonal weight vectors satisfying (4.26) is given

by

max(N,N,)

C(N) =min(N, N,) 1og(]—€—] + ) Ellog 2 ]+ ot) (4.43)

0 = N-N,|+]
where 7, has a Chi-square distribution with 2i degrees of freedom.

Proof: Note that the channel capacity is the average capacity of the K orthogonal
subchannels. For each subchannel, the channel matrix consists of entries as samples of

independent zero-mean Gaussian random variables with variance N, as shown in (4.27).

The ergodic capacity of such an N-input N, -output channel is well-known and given by

(4.43) [1] [2]. Thus, the capacity of the MIMO OFDM channel is also given by (4.43).
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This has proved Theorem 4.3. 0
As can be seen, an N-layer system with N < N_ achieves a multiplexing gain N. Note

that, in the above, the loss in bandwidth efficiency due to cyclic prefixes has been
neglected. When cyclic prefix is considered, the loss in bandwidth efficiency is
(L—I)N t
K+(L-1)N,’
To study the outage probability, we took a Monte-Carlo approach and randomly

generated ten thousand channel realizations. With N, =N, =L =4, the outage

probabilities with the conventional MIMO OFDM scheme [6] and the proposed
multiplexing scheme are compared in Figure 4.4. For both of them, the optimal receiver
was assumed. As expected, when the number of layers equals 4, the outage probability
curves of the two schemes coincide with each other. When the number of layers is less
than 4, only a subset of the transmit antennas were used in the conventional approach. As
a result, the outage probability of the conventional approach is consistently larger than
that of the proposed multiplexing scheme. It can also be observed from the figure that the
slope of the outage curve becomes steeper as the number of layers decreases. This shows

that the available diversity gain increases as the multiplexing gain decreases [8].

4.5 Simulation Results

In this section, we provide simulation results to compare the proposed approach with
the conventional approach including both diversity and multiplexing schemes. In all
simulations below, channels with i.i.d path gains were assumed and the OFDM frame

length was 64. A data frameis considered as the collection of all the information bits
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transmitted over one OFDM frame. In addition, block interleavers with appropriate
interleaving depths were employed to maximize the coding gain unless mentioned

otherwise.

As a first example, the proposed ST-OFDM in conjunction with conventional trellis
codes for single-input channels is compared with STC-OFDM. Two transmit and one
receive antennas were assumed. The channel has 4 equal-gain resolvable paths. For STC-
OFDM, two space-time trellis codes with 8 and 32 states and 4-PSK constellation given
in [3] were considered. It was conjectured that these two codes are optimal 2-ST trellis
codes for flat quasi-static fading channels in the sense that they have the maximal coding
gains [3]. For the given frequency-selective channel, the two codes provide diversity gain
2 and 3, respectively. To ensure roughly equal data rate as that of the STC-OFDM
scheme, we used 2/3 trellis codes with 8-PSK constellation [53] for the proposed scheme.
Note that the decoding complexity of a 4-PSK 2-ST trellis codes will be about twice that
of a conventional 2/3-rate 8-PSK trellis code with the same number of states. To ensure
fairness, two trellis codes with 16 and 64 states were chosen to compare with the ST
codes with 8 and 32 states, respectively. The effective lengths and, hence, the diversity
gains of the two conventional codes are, respectively, 3 and 4. In Figure 4.5, the
resulting Frame Error Rate (FER) is plotted against the SNR at each receive antenna. As
can be observed, the 8-state ST code yields the worst performance while the proposed
ST-OFDM with the 64-state trellis code provides the best performance. In addition, the

performance gap becomes larger as SNR increases due to different diversity gains.

As a second example, we compare the proposed multiplexing scheme with D-BLAST

[6] and Ma's scheme [11]. Note that D-BLAST was shown to provide the optimal
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multiplexing-diversity tradeoff as long as the outer encoder is powerful enough [8]. Two
layers were created over a channel with two transmit and two receive antennas and L = 2
equal-gain paths. A data frame of 128 bit is assigned to two layers and transmitted over
one OFDM symbol. For the proposed scheme and D-BLAST, an §8-state QPSK trellis
code with an effective length 4 was used for both layers. The minimum squared product
distance and the minimum Euclidean distance are 64 and 12 respectively. No outer code
was employed for Ma's scheme because excessively high complexity of decoding.
Interleaving was not applied and ML decoding was employed for all the three schemes.
The FER of the three schemes is plotted against SNR in Figure 4.6. As can be observed,
the proposed scheme and Ma's scheme have the same diversity gain while D-BLAST has
a smaller diversity gain. However, within the SNR range of concern, both the proposed
scheme and D-BLAST significantly outperform Ma's scheme because of their larger
coding gain. The performance gap between the proposed scheme and Ma's scheme at
FER =4%107 is about 3.5 dB. This demonstrates the advantage of trellis codes over

block codes in terms of coding gain.

As a third example, we compare the proposed multiplexing scheme with D-BLAST
using two transmit and two receive antennas with a suboptimal receiver. At the receiver,
an MMSE detector is first employed to separate the signals from different layers and then
independent decoding is performed for each layer. The conventional trellis code with 16
states with an effective length 3 [53] was used for both multiplexing schemes. The
resulting FER curves are given in Figure 4.7. As can be seen, increasing the number of
resolvable paths L from 2 to 4 has less effect on the performance of the proposed scheme.

This is because the diversity gain in the proposed scheme 1s 3 x 2 if ML detection is used,
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regardless of the number of resolvable paths. However, in D-BLAST, the diversity gain
will be only 2 x 2 when the number of resolvable paths is 2. Since MMSE was used, it is
expected that the actual diversity gains will be less than those provided by ML detection.
However, we believe that the diversity gain of the proposed scheme will still be larger
than that of D-BLAST when L = 2. Comparing the proposed scheme with D-BLAST
when L = 4, we can see that the two curves are in parallel. This can be explained as
follows: although both schemes have the same diversity gain, the proposed scheme has

less low-diversity codeword pairs (see Theorems 4.1 and 4.2).

To show the advantage of multiplexing over diversity in high data-rate applications,
the FER curve of a 16-PSK 16-state ST trellis code is also plotted in Figure 4.7. The code
is a delay-diversity code, i.e., the signal transmitted over antenna 2 will be the signal over
antenna 1 with a delay of one symbol duration. Apparently, this ST code has a diversity
gain of 2x2 when L = 2 and provides the same data rate as the above multiplexing
schemes. The decoding complexity is also comparable to that of the multiplexing
schemes. However, its performance is significantly worse than that of the multiplexing
schemes including both D-BLAST and the proposed multiplexing scheme. Note that the
FER curve of the 16-PSK ST code has a steeper slope because a diversity gain exactly 4

has been achieved.

Last, we provide some more simulation results of multiplexing schemes in Figure 4.8.
It was assumed that there were 4 transmit and 4 receive antennas and 4 resolvable equal-
gain paths. Using the proposed scheme and D-BLAST with the 16-state trellis code, N =
2 and N = 4 layers are created. As expected, the proposed scheme outperforms D-BLAST

in both cases. It can also be observed that the performance of 2-layer cases is

81



(q\] <
1l n | -
J -
PO | S )
—~n Ew &
. [] []
C__h__h
= Q0 Qg
(7)) . w . w
o kE o
PDLSh g
[a 8 [oR o
CO0 oM 5
[0 BT — i R - i
— 0O a0 -
1 1
1 1
T T T
| I I
o 2 I L
- o~
OO ' [
-~ ~ ~—

(434) 21eY Joug sweiS

4

1

12

10

SNR (dB)

proposed multiplexing scheme, and

b

Figure 4.7. Performance comparison of D-BLAST

STC-OFDM: 2 transmit and 2 receive antennas, MMSE receiver for multiplexing

schemes.

82



o o™
e e 7 L e e e T T
[ I R | [ T T R \\\ P | N
[ I A I | [N R I T R 48V P
[ T I T B b t [ T B _\\\\_ [ <t N
[ 1 [ R T ") 1 P
[ R | | _____,_*\\\ 1 [ n I o
T [EE TP (SR Ty EI -
[ | :___\\%_ 1 R = = N
[T O T T B i Y gV | | [ [0} [0}
[ R | 1 114 [ ' [
[ R | :k.%‘A_ ) 1 P | E o E
[ | i _\,V\___ | | [ __|nnu__|nnv
[_1,L|_w_||.\;_1\Ll|||\W§,|_|,|L||,\||.||||1_|_|_1V.|xN Cc =z CrLOO
e e | Vol [ ) IR » P ~
[ R | \\\\______ 1 1 [ = Tvd
[ I R ! [ T R i C
[ I R | ,\\\\_____,, | ! N Suwse
[ I 1 L 4 [ T A 1 | [ | m %mm
P ,l\\ ¢ R l R S, S «©
JI,JI_I_\I_II_I%I\}I.W_r_r_\_t,\I,V\,\l\_\\lliﬂ_l_b_bﬂxAB m - -~
V4 [} @]
[ R R Y P 28| [ O I i | [ | I oo 1 =
Y A A [ N T R 1 o 10 a0 a
,_,,,_\\\ ! [ I T I T 1 P
IR 1 [ I T S T ) IR 11
IR | IR | IR 1 © <
Ju_JJl#elJlli ||||| ti-l-i——t~r-r--tr—--—-—t+—+4 1 1 -
[ 1 [ T R R ! [
1 I [ T O R 1 KRN
[ I I T T R 1 b
I 1 [ I R R 1 R
| I [ I T B T \ IR
I i [ B Ry H L Lieu
; 1 R 1 [N
1 [ A R | [N
| [ I T I T 1 N
1 [ I T I T 1 Tt
1 [ T | I
| R |
| 1T i
' [ 1
l o
| [y
i |
!
1
|

o

(434) siey Joug aw

14

SNR (dB)
83

Figure 4.8. Performance comparison of D-BLAST and proposed multiplexing scheme: 4
transmit and 4 receive antennas, MMSE receiver.



significantly better than that of 4-layer cases and the gap becomes larger as SNR
increases. At an FER of 0.02, the performance gap is more than 10 dB. Of course, this
performance gain is obtained at the cost of half the data rate. This and the second

example demonstrate the importance of tradeoff designs.

4.6 Conclusions

In this chapter, we have introduced an integrated approach to achieving both diversity
and multiplexing gains for MIMO frequency-selective channels. The proposed approach
is based on a new ST-OFDM modulation scheme that translates a MIMO channel into a
SIMO channel. As a result, the design of codes to achieve diversity gain becomes easier
and conventional codes designed for single-input fast-fading channels can be used. In
addition, we developed a new multiplexing scheme to be used with the proposed ST-
OFDM. In the proposed multiplexing scheme, each layer sees all the transmit antennas all
the time. This ensures that all the available diversity gain is preserved for each layer. It
was shown that the proposed multiplexing scheme achieves a multiplexing gain that
equals the number of layers created. This, together with coding, allows a full range of
optimal tradeoffs between data rate and reliability. Simulation results have demonstrated
the flexibility in tradeoff and the superior performance of the proposed approach

compared to the traditional MIMO OFDM approach.
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Chapter 5
A Pilot-Symbol-Aided Channel Estimator

for OFDM Wireless Communications

5.1 Introduction

OFDM is an important technique for high data-rate wireless communications [59-66]
and finds applications in many communication standards such as ETSI, IEEE 802.11a
and HIPPERLANII, DAB, DVB, BRAN, ARIB and MMAC. The use of OFDM transfers
a dispersive wideband channel into a set of flat narrowband channels, so as to avoid the
ISI that otherwise exists in single-carrier transmission over wideband channels. Recently,
OFDM in conjunction with space-time coding [16-19] has also attracted a great deal of
attention as a suitable technique for realizing the high channel capacity provided by the

MIMO fading channels.

In OFDM systems, channel estimation is an important task. The knowledge about a
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channel at the receiver allows coherent demodulation, which provides a 3 dB
performance gain as compared to differential demodulation [67]. However, channel
estimation for OFDM systems is not trivial. In fact, it can be a difficult task for
frequency-selective MIMO channels because potentially a large number of channel taps

are to be estimated.

One way to estimate the channel for OFDM systems is to use decision feedback of
information data to track the channel variation after initial training [25-31]. Decision-
directed schemes of this kind suffer from significant degradation in performance when
the channel varies fast. To overcome this problem, pilot symbols can be inserted at
frequency (tone) and time in a regular fashion. At the receiver, channel coefficients at
pilot locations can be readily estimated based on known pilot symbols. Then, these
estimates of coefficients are interpolated to obtain channel coefficients at other locations.
If the 2-D Nyquist sampling condition is satisfied [68], channel coefficients at other
locations can be recovered without error from those at pilot locations. Because of the
frequent appearance of pilot symbols in time, pilot-symbol-aided schemes are more
capable of tracking the channel time variation compared to the decision-directed
parameter estimation techniques. Various 1-D interpolation filters have been proposed
[32, 33]. By contrast, 2-D filtering was proposed [34, 35] to further exploit the correlation
of channel coefficients associated with different tones at different time. In [34, 69] it was
shown that 2-D channel estimation significantly outperforms 1-D channel estimation with
respect to overhead (pilot density), MSE performance, and latency. A prominent
drawback of these schemes is that they require channel statistics that are usually

unknown. For this reason, a robust channel interpolator that requires no channel statistics
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was proposed in [35], at the cost of notable performance degradation due to noise
enhancement. Another drawback of these filter-based schemes is that the filtering,

particularly 2-D filtering, involves large amount of computation.

In this chapter, our goal is to develop a computationally efficient channel estimator for
OFDM wireless communication systems, particularly for the use of the new OFDM
MIMO scheme proposed in Chapter 4. To reduce the complexity in the aforementioned
conventional schemes based on 2-D filtering, we propose a pilot-symbol-aided channel
estimator for OFDM wireless communication systems based on 2-D weighting. The
proposed scheme is highly robust when the channel varies fast. Although, the
performance of the proposed estimator is equivalent to the 2-D interpolation filter
presented in [35], the proposed scheme is much simpler in terms of complexity. The
reduction in complexity is achieved by employing the 2-D IFFT, FFT and a 2-D
weighting function instead of a 2-D interpolating filter. For cases where channel statistics
are not available, we propose a robust estimator that involves a simple 2-D windowing
function. In addition, we propose an enhanced channel estimator that can further improve
the performance of the robust estimator. Several examples show that the proposed simple
windowing function is highly effective for realistic situations when the channel statistics

are not available.

5.2 Preliminaries

Figure 5.1 depicts the block diagram of an OFDM wireless communication system.

The baseband impulse response of the multi-path fading channel can be expressed
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Figure 5.1. The baseband model of an OFDM wireless communication system with pilot-

symbol-aided channel estimator.

as [70, 71]

h(t,7) = D, () exp {2, 7, (1) +) 241, ()]t — 7,(D]}S]7 — 7, (1)] (.1

where f, is the carrier frequency, and «,(¢),7,(¢) and f,,,(¢) are the real gain, time delay

and the Doppler shift of the /th multipath component at time ¢, respectively.

From (5.1), the impulse response of the channel can be rewritten as
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h(t,7) = ) &, (0)S[z —7,(1)] (5.2)

where o, (#) 1s the complex path gain at time £ Under the assumption of slow fading,
o, (t) can be treated as constant over the duration of a frame, but changes from frame to

frame depending on the Doppler shift. Furthermore, the path gains are assumed to be
samples of narrow-band zero-mean complex Gaussian random variables that are mutually
independent. At time ¢, the frequency response of the wireless channel presented in (5.2)

is defined as
H(t,f) = [ ht,0)e ™ de =y @, (0 ™" . (5.3)
!

From (5.3), the frequency response of the wireless channel at tone k£, of OFDM frame £,

can be defined as

Hlk, k1= H(T, kA ) = D & (K, T, ) 27" (5.4)
!

where 7, and Af are the frame duration and the tone spacing, respectively.

In OFDM systems, information bits are transmitted frame by frame. For each frame,
the K-point IFFT is first applied to the information and pilot symbols and then a cyclic
prefix (CP) of length L.-1 is inserted before the signal being transmitted. At the receiver,
the CP is removed and the remaining K samples are sent to the FFT. If L. is greater than
or equal to the length of the channel impulse response, the channel matrix becomes block
circulant and there is no interference among tones. As such, the received signal at the

output of the FFT associated with tone k, of frame &, can be written as
rlky k, ] = HIk, k, Js[k, b, 1+ 2k, &, ] (5.5)

89



where s[k,,k,] is the transmitted symbol at tone k, of frame k,, and z[k,,k,] is the FFT
of the channel noise at tone k, of frame k. If the original channel noise is white
Gaussian with zero-mean and variance o, it can be shown that z[k,,k,]is zero-mean
complex white Gaussian noise with variance o’ and E{z'[k,,k,]z[k|,k;]} =0 for any
(ky,ky) # (ki, k) where superscript * denotes conjugate operation.

If pilot symbols are inserted periodically, temporal estimates of the dispersive

channel parameters at pilot locations can be obtained from (5.5) as

ﬁ[kl;ﬁ

k,,1=rlk kzp]s*[k k,,1=Hlk, .k, 1+ [k, .k, 15" [k, , .k, ]

1p> 1p> 1p°

:H[kl

p’

k), 1+ 21k, . Ky, ] (5.6)

where k,, and k,, represent the frame and tone indices of pilot locations, respectively.

With these temporal estimates, channel coefficients at other locations may be obtained by
using a 2-D upsampling filter [35]. A prominent drawback of this approach is that the 2-

D filtering involves intensive computation.

5.3 Proposed Channel Estimation Scheme

In this section, we describe the proposed pilot-symbol-aided channel estimator,

which uses a weighting function in the delay and frequency domain.

5.3.1 Channel Estimation Based on MMSE Weighting

Figure 5.2. shows the block diagram of the proposed pilot-symbol-aided channel
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Figure 5.2. Block diagram of the proposed pilot-symbol-aided channel estimator for

OFDM wireless communication systems.

estimator. The proposed estimator is based on the observation that a 2-D filtering is
equivalent to a 2-D weighting function at the transformed domains. The proposed scheme
works block by block with each block covering a number of OFDM frames. For each
processing block, temporal estimates of channel parameters at pilot locations are first
obtained as in (5.6), and zeros are inserted at other locations to form an up-sampled
signal H [k, ,k,]. This signal is sent to the 2-D IFFT as shown in Figure 5.2. The output
signal of the 2-D IFFT is therefore at the delay and frequency domains corresponding to
tones and frames, respectively. Then, a 2-D weighting function is applied and the

weighted 2-D signal is sent to the 2-D FFT to provide the channel estimation at every

tone and frame H kK, ].

Let us denote the two-dimensional signal H [k,,k,] by HIK], where the two-element

vector is given by k =[k,,k,]" . Now let us define n ={n,,n,]" and the sampling matrix

V= Ny 0 (5.7
ok 7
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with K and Ny denoting OFDM frame length and number of frames in each processing

block, respectively. Then, the output of the 2-D IFFT can be written as

l:[n] Id tVI ZH[k]exp(]ZﬂkTV n) = h,[n]+Zz[n] (5.8)
where
h,m]={——> H [klexp(j27k"V 'n) (5.9)
" Jae Vl
with
H K] = {H [k] whenk =k (at pilot locatlons)} (5.10)
otherwise
The 2-D signal at the output of weighting function is given by
hi(n) = c[n]h[n] (5.11)

where ¢[n] is the 2-D weighting function. The optimal MMSE 2-D weighting function

can be obtained by minimizing
MSE = det(V)E{Ih[n] _c[nli [n]‘z} . (5.12)

By letting the derivative of the MSE in (5.12) be zero and solving it with respect to cfn],

we have the optimal weighting function as

E{inlh"[n]}

[n]= —
. E{jh[n]l}

(5.13)

Using (5.8), (5.13) can be written as
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_ E{in}; )}
Efn,n] 3+ p

c[n] (5.14)

where p = E{Z°[n]}.
In (5.14),

1

[det VI2

E{h[n)h)[n]} = E{ > Hlk]exp(2zk"V™'n).Y H[k]exp(- j27szV1n)}

_ g = > > HIKIH [k'Jexp(2x{k -k']"V'n) . (5.15)
|detV| k K

By substituting m =k - k',

1V|2 ZZE{H[k]H;[k -m]} exp(27zmTV1n)}

E{h[n]h;[n]} = {
d

|et

= {l—(—lelt—VlZ R, exp(27zmTV_1n)} (5.16)

where R, = E{H[k]H ,[k-m]} is the correlation function between H[k] and H K]

In similar manner,
2 1 _
E{Ihp [n][ } = {WZRW exp(2zm’V 111)} (5.17)

where R, = E{H [K]H o[k —m]} is the autocorrelation function of H ,[k].

The MSE for the proposed MMSE estimator can be expressed as
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MSE = det(V)E{lh[n] ~c[n]h [n]|2} . (5.18)

By substituting (5.8) and using the orthogonality principle [72],

MSE = det(V)E{]h[n]|2 —d[n]h, [n]h*[n]}

=1-det(V)E{c[n]h,[n]i"[n]}. (5.19)
From (5.14),
MSE = 1—det(V) E{h[n]h;’[n]} E{h [n}h'[n]}
Efn,n] }+p
E{h[nlh’[n])]
=1—det(V)| ke "}nﬂl . (5.20)
Efh,n] }+p

Note, in the above, the channel has been assumed to be wide-sense stationary so that
an MMSE estimator based on Wiener theory is optimal in the sense of MSE. More robust
estimation schemes can be developed based on the Kalman filtering [73] for non
stationary channels, however, at the cost of degraded performance for realistic channels

that are closely stationary.

It is interesting at this point to compare the 2-D filtering and the proposed scheme in
terms of complexity. If the channel statistics are known, a 2-D interpolating filter can be
derived. However, this 2-D interpolating filter will need KNy multiplications for each
output sample. Of course, simplifications can be made, for instance, by shortening the

filter length, but this is at the cost of performance degradation. Note that the 2-D FFT of

. . 1 T
size KNy requires —2—10g2 KN, multiplications per sample. Hence, the proposed scheme
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(2-D IFFT, 2-D weighting, and 2-D FFT) require log,(KN,)+1 multiplications per

sample. This means the proposed scheme has much reduced computational complexity

compared to a 2-D interpolating filter.

5.3.2 Robust (Window) Estimator

In the previous subsection, we define the MMSE estimator based on the channel
statistics in (5.16) and (5.17). However channel statistics are often not available in
practice. For such cases a robust channel estimator may be obtained by taking note of the

following observations. First, A[n] will take zero values when n, is greater than or equal

to the number of resolvable paths L, which is in fact often far smaller than the FFT length

K. Furthermore, if the pilot sampling is dense enough, A[n] =M 4 [n] for n, <L where
M , is the spacing between pilot symbols in the frequency domain. By ignoring the noise

in (5.14), the weighting function ¢[n] becomes flat window function. Therefore, we

propose a robust estimator with the windowing function given by

E’[n]z{Mf’ m =L } (5.21)

0, otherwise

If the number of resolvable paths is unknown, the length of cyclic prefix can be used.

The MSE for the proposed robust (window) estimator can be expressed as
MSE = det(V)E{‘h[n] ]k [n]|2 } . (5.22)

By using (5.8) and (5.21), we obtain
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MSE = det(V) {E{|h[n]|2} ~M E{h[n]h;[n]} - M E{h"[n)h,[n]}

) (5.23)
+ M}E{h, ]} - M EE [n]}},
for ny <N, and n, < L.
In the above expression, forn, <N, and n, <L,
e (5.24)
and
E{{hn]"} = M , E{h[n)h’[n]} (5.25)
with
E{h{n}[n]} = E{h"[n]h,[n]} = M E{ph, [n]|2} . (5.26)
Then,
- det(V)M 7 oL _ olLM, LM, 5.27)

K K+*SNR

5.3.3 Enhanced Estimator

As mentioned in Section 5.3.1., the proposed scheme works block by block with
each block covering a number of OFDM frames. An enhanced estimator can be
implemented as in Figure 5.3. Suppose that the data in the previous block have been
detected. For the current processing block, temporal parameter estimates of the channel at

every location (k =1,2,---, N ) can be obtained by applying the proposed simple
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Figure 5.3. Enhanced channel parameter estimation.

windowing function presented in Section 5.3.2, using the pilot symbols. These temporal
channel estimates of the current processing block can be further improved by using a
window sliding in between previous and current processing blocks. Within each window,

the channel parameters associated with the first N, —k; frames are first refined by using

the decision feedbacks of detected symbols. Then, these improved channel estimates
together with the channel estimates associated with the last k&, OFDM frames are used to

replace the channel statistics in (5.14) in order to calculate the 2-D weighting function.

Better channel parameter estimation can be obtained by using the resulting weighting
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function. This estimator is referred to as the enhanced estimator. For slowly fading
channels, accurate estimates of the channel can be obtained, and, hence, performance
improvement over that of the robust estimator can be achieved. However, for channels
with a large Doppler shift, the performance improvement might be less than the case of
slow fading because the channel changes quickly and is less correlated from frame to

frame.

The computational complexity of the enhanced estimator can be greatly reduced by
observing that the length of the channel impulse response, L, is usually far smaller than
the OFDM frame length, K. From (5.14), the weighting function of the MMSE estimator
will have zeros for delay indexes greater than L. Therefore, the IFFT needs only generate

outputs with delay indexes less than or equal to L, and only LxN, weighting

coefficients need to be calculated. Even though L may not be known initially at the
receiver, it can be readily estimated by counting the number of IFFT outputs with

absolute values significantly larger than others after a few processing windows.

5.3.4 Grid Design

In this section, we discuss the pilot symbol grid selection of the proposed scheme.

To recover channel parameters, the 2-D sampling theorem [68] demands that

T M [, £1/2
fD,max]—;Mt < 1/2

where 7, is the one sided maximum echo delay and f}, .. is the maximum Doppler

shift. For the proposed scheme, the pilot grid is designed as M, =1 and M, <K /L

max ?
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where L__ is the maximum number of resolvable paths of the channel. For example, in

Figure 5.4, for temporal channel estimation, 10 % pilot symbols are inserted in OFDM

frames. In this case, M , =10 and M, =1. In Figure 5.5, 5 % pilot symbols are inserted

with M, =20 and M, =1.

5.4 Simulation Results and Discussion

In this section, we provide simulation results of the proposed pilot-symbol-aided
channel estimator for OFDM in wireless communication systems. For the channel model
described in Section 5.2., the available bandwidth was chosen to be 1MHz and divided
into 128 tones. This led to a symbol duration of 128 ps. In each OFDM frame, the first
and the last four tones were used as guard tones. To avoid inter-symbol interference, an
interval 32 us was added as a guard interval. Therefore, the frame length was equal to
160 ps and the subchannel symbol rate was 6.250 k symbols/s [74]. In all the simulations,
the estimation was carried out window by window, with each processing window
covering 10 OFDM frames. In Figure 5.4, within each processing window, 10 % of the
tones are reserved for pilot symbols. This 10 % grid is considered in Figures 5.6, 5.7, and
5.8. In Figure 5.5, 5 % grid is considered and used in Figure 5.9. For the enhanced
estimator that uses a sliding window approach as shown in Figure 5.3, it was assumed

that the two consecutive windows overlap by &, =1 frame. For all simulations, BPSK

modulation was assumed.

In Figure 5.6, we compare the proposed MMSE, robust, and enhanced estimators in

terms of performance for an equal-gain channel with a Doppler shift f, =40Hz. The
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Figure 5.5. Sampling grid for pilot symbols with M , =20 and M, =1.

number of resolvable paths was set to be 4 and 8. As expected, a performance gain of
approximately 3 dB is achieved for the 4-tap channel compared to the 8-tap channel.
Furthermore, in both cases, the performance gain of the enhanced estimator with respect

to the robust estimator ranges from about 3.5 dB at low SNR to 1 dB at high SNR.
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Figure 5.6. MSE of the robust, enhanced and MMSE estimators using 10% grid density

for an equal-gain channel having f, = 40Hz .
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In Figure 5.7, the MSE curves of the optimal MMSE, robust, and enhanced estimators
for an equal-gain channel with a Doppler shift f, =200Hz are given. The number of

resolvable paths was set to be 4 and 8. As can be again observed, a performance gain of
approximately 3 dB is obtained for the 4-tap channel compared to the 8-tap channel.

Comparing the case of f, =200Hz to the case of f,, =40Hz, we observe that for the
same number of resolvable paths, the robust estimator yields approximately the same
performance in both cases. The performance gain of the enhanced estimator with respect
to the robust estimator when f, =200 Hz ranges from 2.3 dB at low SNR to 0 dB at high
SNR, which is less significant than in the case of f,, = 40 Hz. This result is due to the fact
that for a large Doppler shift, the channel changes quickly and is less correlated from

frame to frame and, thus, the information feedback from previous frames is less helpful.

Figure 5.8 compares the optimal MMSE, robust, and enhanced estimators in terms of
performance for the ITU channel (Vehicular A) [75] with a Doppler shift f,, =40Hz and
fp =200Hz. As expected, behavior similar to that in the case of the equal-gain channel
is observed. In addition, all three estimators yield better performance in the current case

because the tap energy is more focused on the first one or two taps.

Figure 5.9 shows the MSE performance of the optimal MMSE, robust, and enhanced
estimators for an equal-gain 4-tap channel with Doppler shift f, =40 Hz and
fp, =200 Hz. In this case a grid density of 5% is used to show the effect of the grid

density on the performance. As expected, a performance loss of approximately 3 dB is

experienced in the case of 5% grid density compared to the case of 10% grid density.
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In summary, the above results show that the proposed robust estimator is capable of
tracking channel variation and is also robust in dealing with different pilot sampling
grids. At very-high SNR region, the performance of the robust estimator will converge to
that of the optimal MMSE. When the SNR is low and the Doppler shift is relatively
small, the performance gap between the robust and the optimal estimators is notable. In

this case, the proposed enhanced estimator is an effective way to reduce the gap.

5.5 Conclusions

In this chapter, we have investigated a pilot-symbol-aided channel estimator for
OFDM wireless systems using 2-D IFFT, 2-D FFT and a 2-D weighting function.
Compared to the decision-directed channel parameter estimator, the proposed pilot-
symbol-aided estimator is highly robust to Doppler shift. Also, the proposed channel
estimator has much reduced complexity compared to conventional 2-D interpolation
filters. The reduction in complexity is achieved by employing the 2-D IFFT, 2-D FFT and
a 2-D weighting function instead of a 2-D filter. However, channel statistics are often not
available in practice. Therefore, we proposed a robust channel estimator using simple
windowing function. Moreover, we introduced an enhanced estimator that can improve
the performance of the robust estimator. This can be obtained by using decision feedback
of decoded information symbols and sliding window approach. Simulation results
demonstrated that the robust and enhanced estimators are highly effective and robust to

channel time variation when the channel statistics are unknown.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this dissertation, we have developed two MIMO transmission schemes capable of

various rate-performance tradeoffs for flat and frequency-selective channels, respectively.

For flat fading MIMO channels, we developed a formal approach for the design of LD
codes. Based on this, we proposed a general multi-layer LD coding scheme that allows
various multiplexing gains simply by increasing the coding rate and augmenting the set
of existing dispersion matrices. To optimize the performance, we proposed to maximize
both the diversity and coding gains by applying phase shifts among input symbols
without the loss of mutual information. As a result, significant performance gain can be
achieved compared to the existing LD codes. Simulation results were provided to

demonstrate the effectiveness of the proposed scheme.
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For frequency-selective MIMO channels, we introduced a general multi-layered
space-frequency coding scheme that provides flexible tradeoff between data rate and
performance. In the proposed scheme, a new space-time OFDM modulation scheme is
introduced that translates a MIMO frequency-selective channel into a mathematically
equivalent SIMO channel. Consequently, the conventional codes designed for fast fading
single-input channels can be used to exploit diversity in both spatial and frequency
domains. It was shown that the diversity gain of the proposed scheme equals the
effective length of the conventional trellis codes used. This is in contrary to the case of
STC-OFDM where no systematic methods exist for the design of space-time trellis codes

with a given target of diversity gain.

Using the proposed space-time modulator, we also developed a channel multiplexing
scheme, which subsumes V-BLAST [7] and D-BLAST [6] as suboptimal designs. Unlike
in the conventional spatial multiplexing schemes where a data stream occupies only one
transmit antenna at a time, each of the data streams in the proposed scheme sees all the
transmit antennas at any time. This significantly simplifies the design of codes to achieve
diversity gain. Another advantage of the proposed scheme is that an arbitrary number of
data streams (layers) can be created. When the number of data streams, N, is less than or
equal to the smaller of the numbers of transmit and receive antennas, a multiplexing gain
N is achieved. Therefore, a full range of tradeoff between diversity and multiplexing
gains is possible. Simulations were carried out and results were given to show the merits

of the proposed scheme.

Last, we introduced a pilot-symbol-aided channel estimator for SIMO OFDM

systems. The proposed estimator can be directly used with the proposed ST-OFDM
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modulation scheme presented in Chapter 4. The new channel estimator is capable to track
the time variation of wireless channels compared to the decision directed schemes. Also,
it is based on 2-D IFFT, 2-D FFT and a 2-D weighting function instead of a 2-D
interpolation filter. This makes the computational complexity very low compared to the
conventional 2-D interpolation filter. In practice, channel statistics are unknown,
therefore, a robust estimator based on a simple 2-D windowing function was proposed.
To further improve the performance of the robust estimator, an enhanced channel
estimator was proposed with greatly improved performance. Simulation results
demonstrated that the proposed robust and enhanced estimators are highly effective for

realistic situations when channel statistics are not available.

6.2 Future Research Directions

As a continuation of the work in this dissertation, the following research topics can be

identified:
1. Channel Layering

The proposed multi-layered MIMO OFDM transmission scheme in chapter 4 allows
channel layering in order to achieve higher data rate. This is because the channel seen by
the information source is a one-dimensional channel, which is an interleaved version of
channels associated with all transmit antennas. Apparently, different sets of weights
applied to transmit antennas will result in different one-dimensional channels seen by the
information source. Consequently, multiple information streams can be transmitted over

different one-dimensional channels. However, two important issues remain to be
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addressed:
e Joint iterative (turbo) detection and decoding

The creation of muiltiple layers allows higher data rate for a given bandwidth.
However, as the number of layers increases, ML decoding is too complicated to
implement. To save the computation, with minimum loss in performance one can borrow

the turbo principles [58, 77] to perform joint iterative layer separation and decoding.
e Antenna weight design

So far, we have found that orthogonal codes are optimal for equal-gain multipath
fading channels. However, practibal wireless channels often have largely unbalanced
gains among resolvable paths. In this case, orthogonal codes are no longer the optimum.
More effort is required to design antenna weights based on the knowledge of channel

delay profile.
2. Channel Estimation

We have proposed a robust pilot-symbol-aided channel estimator for SIMO OFDM
systems. Next step would be to generalize our proposed estimator to the case of OFDM

MIMO channels, then optimize it for general space-time coding schemes.
3. Code Design with Asymmetrical Constellations

For SISO channels, trellis codes with asymmetrical constellations have been shown to
provide higher coding gain than the traditional trellis codes based on symmetrical
constellations [76]. We expect that the improvement in coding gain with asymmetrical
constellations will be even more significant for MIMO channels with appropriate

constellation design. This will be another research direction.
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