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Abstract

Blind Separation of Convolved Sources Using the Independent

Component Analysis and Information Maximization Approach

Md. Hasanuzzaman

Independent Component Analysis (ICA) is very closely.related to the method called
blind source separation (BSS) or blind signal separation. In Independent Component
Analysis (ICA) components are assumed statistically independent which we call inde-
pendent source signal. In our thesis we have considered only noiseless ICA case. In a
number of real-world signal processing applications, signals from various independent
sources may get distorted by environmental factors that can be represented as convo-
lutive mixtures of original signals received at the sensors. In this thesis, the effects of
environmental factors and modeling assumptions on the performance capabilities of in-
dependent component analysis-based techniques are investigated. The so-called blind
source separation feedback network architecture that is capable of coping with con-
volutive mixtures of sources is derived using Bell and Sejnowski’s information maxi-
mization principle. We developed ideal solutions for separation of independent source
signals from the convolutive mixtures that is applicable to an arbitrary NV x N feedback
network architecture. A number of simulation case studies corresponding to various
types of environment filters are presented using synthetically generated data. Different

kinds of filter structures have been taken into accounts and the adaptation rules for those
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filters have been derived based on information maximization principle. Also how the
distribution of filters as well as the order of the mixing environmental filters affect the
quality of the recovered signals have also been investigated. The effect of noise at each
sensor and also the effect of SNR while generating the synthetic data have been taken
into consideration. The location of poles and zeros of the mixing filters and the initial
values of demixing filters have significant effect on the stability of the whole system.
Measures have been taken to keep the whole system stable and workable. Constant

values of adaptation rate have been used in different epochs.
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Chapter 1

Introduction

Representing the observation data in suitable way by using a suitable transformation is
the central problem in neural network research, statistics and signal processing. The
data is represented in a manner which facilitates the subsequent analysis of the data
[1]. There are many applications of this analysis of this data, e.g., in data compression,
pattern recognition, de-noising visualization or some other areas.

Let us assume x to be a random variable of dimension m and s to be a random

variable of dimension 7. Then our basic goal is to find a function f such that

s = f(x) (1.1)

where the transformed vector s = (4, 82, 83, .., 8,) | of dimension n will have some
desirable properties. Our aim is to represent s as a linear transform of the observed

variables x which is as follows:

s = Wx (1.2)

where the matrix W needs to be determined. Finding a suitable linear trasnformation

is necessary because using linear transformations makes the problem computationally



simpler. It also makes the problem conceptually easier and facilitates the interpretation
of the results. There are several methods developed to find a suitable linear transforma-
tion, e.g., principal component analysis, factor analysis, projection pursuit, independent
component analysis and some others [1]. The optimality of the linear transformation
can be defined by some indexes, e.g., by the optimal dimension reduction W, statistical
“interestingness” of the estimated components s;, simplicity and computational com-
plexity of the transformation W or may be some other criteria.

Independent component analysis (ICA) is one of the most popular methods for find-
ing a linear transformation. There are many applications of independent component
analysis and it has drawn wide-spread attention for its application in different areas [1].
In ICA the main objective is to find a transformation such that the components s; are
made statistically as independent from each other as possible. Some major applica-
tions of ICA are the blind source separation, feature extraction, redundency reduction,
exploratory data analysis as well as projection pursuit. In blind source separation, the
components s;(t) are called source signals or original signals. In fact, these signals
are the uncorrupted signals which are unknown. The only known variables are the ob-
served values of x which is a discrete-time signal x(¢), ¢ = 1,2, ... of dimension m. We,
then, try to recover the original source signals from the linear mixtures of the observed
variables z; by using a transformation so that the transformed signals are statistically
as independent from each other as possible. Feature extraction is another major ap-
plication of ICA which is widely used in neurosciences, in which s; is the coefficient
of the i-th feature in the observed vector x. We shall discuss some second-order and

higher-order methods in brief in the next section [1].

1.1 Classical linear transformations

There are varieties of use of classical linear transformations in statistics, neuroscience,
and statistical and geoseismic signal processing. The basic goal in these linear transfor-

mations is to find a suitable linear representation of a random variable. There are some



methods which have been developed to find this linear transformation. In this section,
we shall discuss some second-order and higher-order classical methods for finding the
linear trasnformations. We shall use centered variables in all the methods discussed in
this section . The centered variables are obtained by subtracting the means of the ran-
dom vector from its original values. Let us denote by x¢ as the original non-centered

variable. Then the centered variable x can be computed as x = x¢o — E{X¢}.

1.1.1 Second-order methods

Because of the simplicity of the computation, second-order methods are the most popu-
lar methods for finding a linear transform as in equation (1.2). Very often it requires only
classical matrix manipulations. As the name implies only second-order information is
required to find the linear transformation in this classical methods. The distribution of a
random variable, x, is fully determined by the information contained in the covariance

of the variable x if the variable, x, has a normal, or Gaussian distribution.

In most of the higher-order methods [2—5] the aim is to find a meaningful represen-
tation of the data. But the second-order methods try to find a faithful representation of
the data, which is unlike higher-order methods. In this section we will discuss two clas-
sical second-order methods which are principal component analysis and factor analysis

[6-8].

Principal component analysis

There are numerous applications of principal component analysis, or PCA (see [7, 8]),
in statistics, signal processing, and neural computing for its simplicity of computation.
In PCA usually the dimension of the observation data is taken higher than that of orig-
inal source signals, m >> n. Then the aim in PCA 1is to reduce the dimension of
the data in the mean-square sense [8]. There are several advantages of this optimal
dimensional reuction technique. First, the computation is reduced in the subsequent

processing stages. Second, since the last . — n components are mostly due to the



noise, therefore, noise reduction is also achieved in this method. Third, sometimes it
is useful to find the projection into a very small dimensional subspace to visualize the
data.

We can define PCA by using a recursive formula. According to this formula, w;,

the direction of the first principal component is given by:

w, = arg max E{(w'w)?} (1.3)

Hwll=1
Infact, w; gives the projection on the direction in which the variance of the projection

is maximized. The k-th principal component is computed as the principal component

of the residual as follows after determining the first £ — 1 principal components:

E-1
w; = arg max E{[w’(x — Zw,;w;rx)]Q} (1.4)
i=1

ltwll=1

Having determined w;, the principal components are computed according to the for-
mulla s; = wlx. But in practice principal components are computed from the eigen
vectors, w;, of the covariance matrix C, where C = E{xx”}. In this case, w; corre-

sponds to the n largest eigenvalues of the covariance matrix C.

Factor analysis

Factor analysis [6, 7] and PCA are closely related in the sense that both of these methods
are used as dimension reduction techniques. The basic difference has been made by

adding a noise vector 7 in the following generative model:

x = As+n (1.5)

where both the noise vector n and the vector of observed variable x have the same di-

mension that is m. s is the vector of the latent variables, i.e., variables that can not be

4



observed or unknown. In order to apply this method both the latent variables of s and
noise vector n must be Gaussian. Because all of the information of Gaussian variables
are contained in the covariance matrix which is the second order central moment. Also
the dimension of s should be lower than the dimension of x, otherwise dimension re-
duction will not be possible.

There are two cases we can consider, the first one is when the noise covarince matrix
of the noise vector is known and the second one is when the noise covarince matrix is
unknown. For the first case, usually there are two methods to perfrom the factor analy-
sis [7]. The method of principal factors is the first method where PCA is applied on the
data x so that the noise effect is considered. In this method it is assumed that the covari-
ance matrix of noise vector, Y, is known where > = E{nn”}. At first the covariance
matrix, C, of the observed vector, x, is computed and > is subtracted from it to give
out the factors. The second method is based on the maximum likelihood estimation in
which the principal components are estimated by finding the modified covariance ma-
trix, i.e., C — > . In the second case when the noise covarince matrix is unknown, some

other methods [6, 7] have been used to estimate the components.

1.1.2 Higher-order methods

PCA and other second-order statistical methods use the covarince matrix to estimate the
data model because in these techniques data is assumed to be Gaussian and the whole
information of Gaussian variables are contained in their covariance matrix. But if the
data is non-Gaussian, determining their covariance matrices will not provide the full
information about the observed data. For an instance, PCA does not consider the inde-
pendence of the data which is not same as the uncorrelatedness for non-Gaussian data.
To consider such aspects of non-Gaussian data, e.g., clustering and independence of
components higher-order statistics is needed. In this section we will give an overview
of three widely used higher-order statistical methods for estimating the model of the
non-Gaussian data. These are projection pursuit, redundancy reduction, and blind de-

convolution:



Projection pursuit

In projection pursuit [2,9—13] the main objective is to reduce the dimension in such a
way that some of the “interesting” features of the data are preserved which is in contrast
to PCA where the objective is to reduce the dimension so that the representation is as
faithful as possible in the mean-square sense.

In statistics projection pursuit has been developed for finding “interesting” projec-
tions of multidimensional data. This projections has the use in the optimal visualization
of the clustering structure of the data, density estimation and regression. It can also be
used for the dimension reduction if the objective is the visualizations of the data.

According to Huber [10] and Jones and Sibson [11] the least Gaussian distribution
show the most interesting direction of w such that the projection of the data in that
direction, w”x, has an “interesting” distribution, i.e., displays some structure and the
Gaussian distribution is the least interesting one.

In projection pursuit the “interestingness” of a direction is defined by the projection
pursuit index which is some measure of non-Gaussianity. Differential entropy [10, 11]
can be the most natural choice to define the projection pursuit index. Let us denote by
y arandom vector of density f(.) and fixed covariance. Then the differential entropy H

of y is defined as:

H(y) = — / 7 (y)og f (y)dy (1.6)

If f is a Gaussian density then the differential entropy H (y) is maximized with respect
to w. Differential entropy is very small if y has different distribution. In that case the
directions of projection pursuit is found by minimizing w?x with respect to w, con-
straining the variance of w7 x to be constant.

From the definition the estimation of entropy requires the estimation of the den-
sity of w!x, which is the problem with differential entropy. Theoratically and practi-
cally this is difficult. To solve this problem other measures of non-normality based on

weighted L? distances between the density of z and the multivariate Gaussian density

6



have been proposed [2, 12]. Two other methods are cumulant-based approximations of
differential entropy [11]. Also approximations of negentropy based on the maximum

entropy principle has also been used in [55].

Redundancy reduction

Redundancy reduction is an important characteristic of sensory processing in the brain
which has been described by Barlow [15-17,19,20] and some other authors [21-24].
The basic goal in redundancy reduction is to represent the input data in terms of com-
ponents or features such that the components are made independent of each other as
possible. For later processing stages this kind of representation of data is very useful.
According to theory, the activities of the neurons represent the values of the compo-
nents. In this method, the sum of the weight vectors of the neurons, which are weighted
by their activations, are represented by the observed vector x.

There are two methods for performing the redundency reduction. The first method
is sparse coding and the second one is predictibility minimization. In sparse coding
[16,20,22] the data x is represented using a set of neurons and everytime only a small
number of neurons is activated. In another word, only a single neuron is activated very
rarely. The data is said to be “sparse” if it has certain statistical properties and redun-
dancy reduction will be obtained roughly by this kind of coding [22]. Predictability
minimization [23] is the second method for redundancy reduction where if two random
variables are independent of each other, the information obtained from one variable can

not be used to predict the other variable.

Blind deconvolution

Blind deconvolution is an important application of Independent Component Analysis,
which has wide variety of application in signal processing. Here, we shall discuss about
this topic in brief since our work in this thesis is based on this method.

In blind deconvolution, only the observed signal z (%) is available which is ob-

tained by the convolution of original source signal s(¢), which is unknown [25-31].



Then using the convolved mixture z(¢) we try to find the separating filter h so that
s(t) = h(t) * z(1).

The filter ~A(?) may be FIR (Finite Impulse Response) or IIR (Infinite Impulse Re-
sponse) type. To ignore the truncation effects one can assume h(t) to be a FIR (Finite
Impulse Response) filter of sufficient length. If we assume that at two different points
of time the values of the signal s(t) are statistically independent then only by whitening
the signal z (¢) with some assumptions we can solve the problem. In that case, the signal
s(t) should be assumed to be non-Gaussian, and we shall have to use the higher-order

statistics [27,29] to estimate the model.

1.2 Literature review

There are many papers till now on blind source separation and independent component
analysis. In these papers different aspects of blind source separation and independent
component analysis have been discussed. Also different issues have been investigated

and different algorithms have been proposed and used to solve those problems.

In [32] the complete details of a procedure for determining the average steady-state
mean square error of a blind source separation algorithm have been given. The proce-

dure has been applied to nine existing blind source separation criteria.

In [33] a simple LMS (Least Mean Square) learning algorithm for a fully recurrent
convolutive blind source separation with transmission delay constraint has been pro-
posed. In the mixing process some assumptions are imposed on transmission delay
time, which are practically acceptable. A cost function and the learning algorithm have

been derived based on this assumption.

In [34] a new low-cost design and implementation of an improved BSS algorithm
for audio signals based on ICA technique has been proposed. It is performed by im-

plementing non-causal filters instead of causal filters within the feedback network of



the ICA based BSS method. As a result, the required length of the unmixing filters has
been reduced considerabley. The new design provides better results and faster conver-
gence compared to the case with conventional causal filters. System level approach to

the design of FPGA (Field Programmble Gate Array) prototype is adopted.

Blind source separation has also been done in frequency domain. A solution to the
classical cocktail-party problem can be the blind source separation of acoustic mixtures
aims. The inherent delays and convolutions in microphone recordings, adds a modi-
fication in the Independent Component Analysis. The separation of the source signal
has been achieved by making the assumption of statistical independence of the linearly
combined source signals. In [35] by shifting the domain of the ICA to Time-Frequency
domain and applying ICA to each of the frequency components individually the pro-

posed algorithm has provided a solution for the blind source separation problem .

In [36] a new fast-convergence algorithm for blind source separation of real convo-
lutive mixture has been evaluated in which independent component analysis and beam-
forming are combined to resolve the low-convergence problem through optimization in
ICA. The proposed method consists of the following three parts: (1) frequency-domain
ICA with direction-of-arrival (DOA) estimation, (2) null beamforming based on the es-
timated DOA, and (3) integration of (1) and (2) based on the algorithm diversity in both
iteration and frequency domain. The matrix based on null beamforming through itera-
tive optimization has temporally substituted the inverse of the mixing matrix obtained
by ICA. The temporal alteration between ICA and beamforming can realize fast and

high convergence optimization.

In [37] a new and quickly converging algorithm which uses an alternating least-
square (ALS) optimization method has been used to perform the frequency domain
joint diagonalization. It is first shown that joint diagonalization of the cross power
spectral density matrices of the signals at the output of the mixing system is sufficient

to identify the mixing system at each frequency bin up to a scale and permutation ambi-



guity. The effect of the unknown scaling ambiguities is partially resolved using a novel
initialization procedure for the ALS algorithm. The frequency dependent permutation

ambiguities has been resolved by using an efficient dyadic algorithm.

Some papers have investigated the case of moving targets. A robust real-time blind
source separation (BSS) method for moving speech signals in a room has been described
in [38]. In the first stage, the frequency domain independent component analysis (ICA)
is employed using blockwise batch algorithm. In the second stage, the separated signals
are refined by post processing using crosstalk component estimation and non-stationary
spectral subtraction. When sources are fixed, the blockwise batch algorithm achieves
better performance than an online algorithm, and the performance degradation caused
by source movement has been compensated by the postprocessing of the separated sig-

nals.

For the growing multimedia systems, under a noisy environment, more efficient sig-
nal separation methods are required to preserve the quality of voice or music recording.
In [39] an improved method using differential information has been proposed. Since a
noise component is usually independent on the other signals some of signal separation
methods are based on minimizing the dependent measure among input signals to sep-
arate a noise component. A new genetic algorithm (GA) which directly minimizes the

Kullback-Leibler divergence is proposed to separate independent signal components.

In our thesis we have used mutual information for linear independent component
analysis. But some papers have also worked on nonlinear independent component anal-
ysis because this domain of independent component analysis are wide open for research.
In [40] a single network with a specialized structure, trained with a single objective
function is used for both the extraction of independent components and the estimation

of their distributions simultaneously.
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A fast algorithm for mutual information based independent component analysis has
been developed in [41]. The binning technique and the use of cardinal splines allow the
fast computation of the density estimator over a regular rid. The criterion can evaluated
quickly together with its gradient using a discretized form of the entropy and this can be
expressed in terms of the score functions. Both offline and online separation algorithms

have been developed.

Typically in multichannel blind deconvolution and convolutive blind source separa-
tion system practical gradient-based adaptive algorithms employ FIR (Finite Impulse
Response) filters for the separation of signals. The use of the FIR (Finite Impulse Re-
sponse) filters cause the inadequate use of the signal truncation within algorithms which
introduce steady-state biases into their converged solutions that lead to degraded sep-
aration and deconvolution performances. To mitigate these effects a natural gradient
multichannel blind deconvolution and source algorithm has been developed in [42] The
algorithm functions in a reasonable manner even when the filter lengths chosen are

much shorter than would be required for an accurate channel inverse.

In most of the practical cases environment between source signals and sensors are
not fixed, i. e., environment changes with time. These can be represented by time-
varying FIR (Finite Impulse Response) system. A new adaptive blind separation scheme
for sources mixed by a multiple-input multiple-output (MIMO) linearly time-varying
(LTV) FIR (Finite Impulse Response) system is proposed in [43]. In the first stage,
measured samples have been divided into a series of short segments. Then time-varying
coefficients of the mixing system are approximated by polynomials in time over each
segment. In the second stage, a two-step BSS scheme is presented. In the first step, the
conventional input/output system indentification scheme is used to estimate the time
variation and convolution effects of the mixing system, and reduce the LTV-FIR (Finite
Impulse Response) mixing system to a linearly time-invariant (LTI) instantenous sys-
tem. In the second step the mutual independence knowledge of the sources is used to

further separate the sources from the LTI instantenous system.

11



There are enormous factors which have been considered in blind source separation.
Blind source separation has also been done using time-delayed signals [44]. A modified
version of AMUSE,, called JAMUSE, has been proposed in [44]. The dimension of the
data vectors is increased by joining delayed versions of the observed mixed signals. The
new data is used to compute a matrix pencil and its generalized eigendecomposition 1s

performed as in AMUSE.

The performance of blind source separation depends on various factors. On of the
factors is contrast function. The are different kinds of contrast functions that have been
used in different papers. In [45] a sinusoidal contrast function for the blind separation
of statistically independent sources has been used. In the two-dimensional (2-D) case,
one can prove that, under the whitness constraint, the fourth-order moment-based ap-
proximation of the marginal entropy (ME) cost function yields a sinusoidal objective
function. Therefore, minimization of the new objective function 1s possible by estimat-

ing only its phase.

In a most recent paper [46] a general broadband approach to blind source separation
(BSS) for convolutive mixtures based on second-order statistics has been presented.
The concept is applicable to offline, online, and block-online algorithms by introduc-
ing a general weighting function allowing for tracking of time-varying real acoustic
environments. The new framework simultaneously exploits the nonwhiteness prop-
erty and nonstationary property of the source signals which is in contrast to traditional
narrow-band approaches. Constraints are obtained based on the broadband approach
time-domain. These constraints provide a deeper understanding of the internal permu-
tation problem in traditional narrowband frequency-domain BSS. Links between the
time-domain and the frequency-domain algorithms can be established using the so-
called generalized coherence. The cost function leads to an update equation with an

inherent normalization ensuring a robust adaptation behavior.
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1.3 Contribution of this thesis

In this thesis we have presented the ideal solution for N x N feedback network architec-
ture. Also how the distribution of filters and order of the mixing environmental filters
affect the quality of recovered independent sources have been investigated. Effects of
pole-zero location of mixing filters, noise at each sensor and SNR while generating the
synthetic data have all been considered in this thesis. We have used different FIR (Finite
Impulse Response) and IIR (Infinite Impulse Response) filter architectures to investi-
gate how their variation impacts recovery of the signal. The derivation of ideal solution
for N x N network has been done with a certain constraint when direct mixing and
demixing filters have unity gain. The adaptation rules derived for IIR (Infinite Impulse
Response) architecture and ideal solution for V x N feedback network architecture are

new in this thesis which were not done before.

1.4 Outline of this thesis

In chapter one we introduce different methods of independent component analysis

which include second-order methods and higher-order methods.

In chapter two we introduce some basic definitions of some terminologies needed to
understand the derivations of the ideal solution network and adaptation rules for N x N

feedback network architectures.

Objective functions for ICA, analysis of estimators and choice of contrast functions

and definitions of gradients and adaptation rules are included in chapter three.

The derivation of ideal solution for NV x NN feedback network architectures will be

shown 1n chapter four.

In chapter five we derive the adaptation rules for different kinds of demixing filter

architectures.
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Simulation results and discussion are introduced in chapter six.

In chapter seven the future works and conclusion are described.

1.5 Conclusions

In this chapter different methods of classical linear transformations 1.e., second-order
and higher-order methods of independent component analysis have been introduced.
There are different kinds of second-order methods i.e., principal component analysis,
factor analysis, projection pursuit and redundancy reduction. One of the higher-order

methods is blind deconvolution. We have a brief overview of all of these methods in

this chapter.
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Chapter 2

Independent Component Analysis

To begin with, we shall recall some basic definitions needed [47].

2.1 Some basic definitions

2.1.1 Distribution of a random variable

Let us denote = as a random variable. Then the cumulative distribution function of

at point z = 7y and of the event z < 1z can be defined as :

Fy(x) = P(z < zp) 2.1)

where, © < Iy means z can take any value less or equal to 7. The cdfis a nondecreasing
continuous function that usually increases monotonically and it is also negetive. The
value of cdf ranges from 0 to 1 and it is obtained when 1y is changed from -co to oc.
Thus we can write, 0 < F,(z) < 1,i.e., F;(—o0) = 0,and F,(4c0) = 1.

By taking the derivative of the cumulative distribution function of z we can find its

probability densily function which is as follows:

dF,(z)

dz o=

Pz (o) = (2.2)
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It is necessary to compute the probability density function because usually the den-
sity function rather than the cdf of a random variable 1s used to define its probability

distribution. The usual practice is to compute the cdf is by integrating the known pdf :

Py (o) = / ' pa(6)de (2.3)

o0

Very often the subscript is omitted to denote Fy(z) and p,(z) by F(z) and by p(z)

respectively for the simplicity of the expression.

2.1.2 Distribution of a random vector

Letus denote x as a random vector of dimension n and it has the components 7, s, ..., Tp

which are continuous random variables.

X = (x17x27"'7l‘n)T (24)

where 7' means the transpose because all vectors used in this thesis are column vectors.

We can define the cumulative distribution function of x as follows:

Fy(x0) = P(x < xp) (2.5)

where, P denotes the probability of the event that x < x, which means components of
vector x are less than or equal to the respective components of the vector xy. The cdf
defined in equation (2.3) is multivariate and it is an increasing function. The value of
each function of each component ranges from 0 to 1, i.e.,, 0 < Fy(z) < 1. Fy(x) =1
when all the components of x approach infinity and Fyx(x) = 0 when any component
z; — —00. Now, if px(x) of x denotes the multivariate probability density function of
x and Fy(x) denotes the cumulative distribution function of x then px(x) of x at the
point x, can be derived as the derivative of F (x) with respect to all components of the

random vector x at the point xg :
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o o0 0

px(X0) = or, 0n, Oz, (%) |x=xo (2.6)

The cumulative distribution function can be defined as :

"X 0,1 Tg,2 “TQ,n
FX(XO)—/ pX(X)dX:/ / / Px(X)dzy,...drady 2.7

where, 1 ; 1s the 7th component of the vector x;. For the range of x from —oo to co

+oo
/ px(x)dx =1 (2.8)

2.1.3 Joint and marginal distributions

Let us assume another random vaector y of dimension m and form a supervector z7 =
(xT,yT) of dimension m + n by concatenating two random vectors x and y. Then the
joint distribution function of x and y is infact the cdf of x and y and is given by the

following formulla:

Fy y(x0,¥0) = P(x < x0,y < ¥o) (2.9

where the definition used in equation (2.9) is the joint probability of the event x < x;
andy < yo. Xp and yy are two constant vectors of the same dimension as of x and y,
respectively.

Let us denote by pxy(x,y) as the joint density function of x and y which can
be computed by differentiating the known joint distribution function Fy ,(x,y) with
respect to components of the random vectors x and y. Therefore, from the inverse

relationship we can write:
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*X0 *Yo
Kﬂmw@:/ / Doy (€, dnde (2.10)

when both xg — 0o and yg — 00, the value of Fy ,(Xg, yo) approaches unity.
The marginal densitiy px(x) of x is computed by integrating px (X, y) over y and

the marginal densitiy of py(y) of y is obtained by integrating py y(x,y) over x :

px(X) — [ px,y(xa 77) d77 (21 1)
zmw:/'mwaw% 2.12)

2.1.4 Mean vector and correlation matrix

If x is a random vector, then the first moment of it, denoted by my, is called the mean

vector of x. This mean vector is expressed as the expectations of x:

ple o]

m, = F{x} = / XPx (Xx)dx (2.13)

-0

where m, has the dimension 7 and every component of it, m,, can be written as:

el oo

sp(x)dx = [ aup, (@) da (2.14)

o0

me = E{z) :/

—0Q
where z; is the 7th component of x and p,, (z;) is the marginal density of the z;.
The second moment of x is called the correlation, 7y, which is the correlation be-

tween the ith and jth components of x and defined as follows:

* 00

ry = E{ziz;} = /

=00

:L',-px(x)dX:/ / T3 T Pe, o, (Ti, Tj) A A (2.15)
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The correlation matrix of the vector x is defined as:

R, = B{xx"} (2.16)

The matrix Ry has the dimension n X n and each element of it in row ¢ and column j

is 73;. It should be noted that r;; can take both positive or negative value.

2.1.5 Covariance and joint moments

In this section we will derive the formullas for the correlation and convariance matrices
for the same and two different random vectors as well as for a single random variable.
Correlations and covariances use second-order statistics to measure the dependence be-
tween the random variables. If x is a random vector then the covariance matrix of x 1s

defined as:

C, = F{(x — my)(x — my,)"} (2.17)

where Cy 18 the notation used for the covariance matrix and it has the dimension n x
n. The covariance matrix Cy corresponds to the quantity correlation matrix R, of x.

The 1, jth element of the covariance matrix can be written as:

Ciyj = E{(ZEZ - mi)(.Z'j - mj)} (218)

where c;; is an element in the zth row and the jth column of C. The covarinace is the
central moments corresponding to the correlations r;; defined in equation (2.15). Both
the covariance matrix Cy and the correlation matrix R« have the same properties.

From the properties of the expectation operator we can write

R, = Cx +m,m,” (2.19)
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From equation (2.19) we can see that the correlation matrix becomes the covariance
matrix if the mean vector m, = 0. Usually, in independent component analysis for the
preprocessing of the observation data the estimated mean vector is subtracted from the
data vectors to make them zero-mean.

If we have a single random variable z instead of a random vector x, then the mean
value of the variable will be, m, = E{z}. The correlation matrix to the second moment
for this variable will become £ {z?} and the covariance matrix to the variance of z will

be reduced to:

0%, = E{(z — my)*} (2.20)

Then equation (2.19) will be simplified to F{z?} = o?, + m,>.
For two different random vectors x and y the expectation for the functions g(x, y)

can expressed in terms of their joint density:

E{g(x,y)} Z/OO /Oo g(X, ¥)pxy(x,y)dydx (2.21)

Again, the cross-correlation matrix of random vectors x and y is defined by the follow-

ing formulla:

Ry, = E{xy’} (2.22)

the cross-covariance matrix becomes

Cxy = B{(x ~ my)(y —my)"} (2.23)
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If the vectors x and y are of the same dimensions then the cross-correlation and covari-
ance matrices will be square matrices but if not these two matrices will not be squre.
Being square is not necessary for these two matrices. Another important property of
these matrices are generally they are not symmetric. We can write from their defini-

tions

R,, =R7,,, C,, =C7,, (2.24)

In the case of zero mean vectors of x and y the cross-corrleation and cross-covariance
matrices will be the same. Some times we need to compute the covariance matrix of the
sum of two random vectors x and y that have the same dimension. For this covariance

matrix we can write that

Crix = Cx + Cyy + Cyx + Cy (2.25)

2.1.6 Estimation of expectations

Formally, the density function is used to define the expectation of a function of a random
variable. But it is not possible to know the exact probability density function of a vector
or a scalar valued random variable. So, we can use expectations instead of probability
function which can be computed directly from the observation data. Because that is the
only available information we have.

Let us denote by g(x) a quantity of the random vector x which may be either
a scalar, vector, or a matrix. The notation used to denote the expection of g(x) is

E{g(x)}. The expection of g(x) is defined as follows:

Elg(x)} = /jm () px(x) dx (2.26)



The result of the above integration is a vector of matrix which has the same size as
of g(x). This integration is performed on each component of the vector of the matrix
individually. Let us consider the simplest case, g(x) = x. Since, we have a set of K
samples x1, X2, X3, ..., Xk available from x, using the formula [48] we can estimate the

expectations defined in equation (2.26) as follows:

K

et~ > 8x) (227)

itj=1

From equation (2.27) the sample mean m, for the mean vector m, of x can be written

as follows:

) 1 K
i, = }EZM:IXJ' (2.28)

where m, is the standard notation for an estimator of a quantity.
Similarly, if we have K sample pairs (x1,¥1), (X2,¥2), .., (Xk, Yk ) available, the
expectation equation (2.21) can be estimated instead of the joint density px y(x,y) of

the random vectors x and y and is given by the following equation:

1 K

Elg(ox)}~ 2> ax,x) (2.29)

The estimation formula for the cross-correlation matrix can be written as:

- 1 K T
R,y = Ezmzlx,-yj (2.30)
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2.1.7 Uncorreletadness and whiteness

If the cross-covariance matrix, Cy, of two random vecotrs x and y is a zero matrix
then these vectors are said to be uncorrelated. The cross-covariance matrix, Cyy of

these vectors are given by the following equation:

Cay = E{(x —my)(y —my)"} =0 (2.31)

which means,

R = E{xy"} = E{x}E{y"} = m,m] (2.32)

For two scalar random variables z and y if their covariance C;, is zero then they are

also uncorrelated:

Cay = E{(z — ma)(y — my) "} =0 (2.33)

In another way,

Ty = E{zy} = E{a}E{y} = mym, (2.34)

We can say that zero covariance means zero correlation if variables have zero-mean.
Again the different components of a random vector x are said to be uncorrelated if

the following condition of uncorrelatedness is satisfied:

Cx = E{(x — my)(x —m,)"} =D (2.35)
where D is a diagonal matrix of dimension 7 X n.
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D = diag(cyy, 20, -, Cpn) = diag(02z”0212, ey 02%) (2.36)

where 0%, = E{(z; — my )} = c; are the variances of the components z; of x and
these are the n diagonal elements D.

The zero-mean random vectors are said to be white if they have unit covariance as
well as unit correlation matrix. Therefore, the conditions for the white random vectors

arc:

m, =0,R, =C, =1 (2.37)

where I is the identity matrix of dimension n X n.

An n x n matrix T is said to be an orthogonal matrix if 1t rotates the coordinate
axes of a random vector z in the n-dimensional space when the matrix T is applied
to it while preserve the norms and distances. This kind of transformation is called

orthogonal transformation and 1s given by:

y =Tx, where TTT =TT" =1 (2.38)

If the random vector x is white then it will satisfy the following condition:

my, = F{Tx} =TE{x} =Tm, =0 (2.39)

and

Cy, =R, = F{Tx(Tx)"} = TE{xx"}T" = TR, TT =TT" =1  (2.40)

It is clear that there also exists infinitely many ways to decorrelate the original data,

because whiteness is a special case of the uncorrelatedness property.
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2.1.8 Statistical independence

The basic idea on which the foundation of independent component is based on is the
statistical independence. Let us consider two random variables z and y. “If knowing
the value of y does not provide any information on the value of = then we can say that
the random variable z is independent of y.”

If the joint density p, ,(z,y) of z and y can be expressed as the product of their
marginal densities p,(z) and p,(y) then variables z and y are said to be independent of

each other.

Pey(2,y) = pa(z)py(y) (2.41)

Statistical independence can also be defined in terms of the cumulative function. In
that case, the probability density function in equation (2.41) needed to be replaced by
their respective cumulative distribution functions. The basic property of two indepen-

dent random variables is:

E{g(z)h(y)} = E{g(z)}E{h(y)} (2.42)

The proof of the above property is as follows:

Blon)} ~ [ ) / T (@) h(W)pay (s, y) dyda
= [ s@n@as [ hwm

o o]

= E{g(«)}E{h(y)} (2.43)

From equation (2.42) we see that in order to compute E{g(z)h(y)} both g(z) and h(y)

must be integrable functions of z and y, respectively. If we consider only second-order
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statistics, 1.e., correlations and covariances and assume that the the random variables
have Gaussian distributions then the definition of uncorrelatedness defined in equa-
tion (2.34) becomes the special case of the definition of the statistical independence as
in equation (2.42). Statistical independence becomes uncorrelatedness when the ran-
dom variables have the Gaussian distribution.

The definition of statistical independence in equation (2.41) can be generalized for
any N number of random variables as well as for random vectors. An N number of

random vectors X, y, z, ..., are said to be statistically independent if and only if

Pxyz. (XY 2, ) = px(X)py () Pa(2) (2.44)

The generalization of the basic property in equation (2.42) is:

E{gx(x)gy(y)gs(2)} ... = E{gx(x)} E{gy(y)} E{g:(2)}..... (2.45)

“where g(x), gy(y), and g,(z) are arbitrary functions of the random variables x,y,

and z for which the expectations in equation (2.45) exist.”

2.1.9 Ordinary Entropy

Let us assume that X is a discrete-valued random variable. Then the entropy H of X is

defined as:

H(X)=-=> P(X = a)log P(X = a;) (2.46)

where P(X = a;) is the probability that X has the values a;. Entropy has different kind
of units which is based on the base of the logarithm. The typical unit is bit when the
base of the logarithm is 2. Let us assume that P(X = a;) = p, then the equation (2.46)

can be rewritten as
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f(p)

Figure 2.1: The function f in equation 2.47, plotted on the interval [0,1]
f(p) = —plogp, for 0<p<1 (2.47)

where the function f{p) is always nonnegative. It is positive for the range of the values
of p between 0 and 1 and zero for p = 0 and for p = 1 which is shown in Fig. (2.1).

Equation (2.46) can be rewritten as

H(X) = =3 J(P(X = )) (248)

From the Fig. (2.1) we can see that entropy is large if p has the values in between 0 and
1 and entropy is small if p is 0 or 1.

Basically entropy of a random variable provides the degree of information about
that variable. The larger the entropy of a random variable the more random or unpre-
dictable that variable is. On the contrary we can say smaller entropy means there is

little randomness in the variable.
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2.1.10 Differential Entropy

The difference between the ordinary entropy and the differential entropy is that the later
one is computed when the random variable is continuous-valued instead of discrete-
valued.

If z is a continuous-valued random variable with density p,(.) then its differential

entropy H is defined as :

H(z) = / Po(€) log py (€)dE = / F(pa(6)) de (2.49)

Like the ordinary entropy, differential entropy is also a measure of randomness. But
unlike the ordinary entropy differential entropy can take negetive values and it may

have large absolute value.

2.1.11 Maximality property of the Gaussian distribution

Let us consider the set of zero-mean random variables that have unit variance and can

take all the real values. The distribution of this kind of variables has the following form:

po(€) = Aexp(a€” + axf) (2.50)

Both the maximum entropy distribution of this kind of variables and the probability
densities which have the form as in equation (2.50) have Gaussian distribution.

Of all kind of distributions Gaussian distribution shows the most randomness and
entropy is small when the variable is clustered. Distributions of this kind of variables
are concentrated on certain values and it has very spiky shaped pdf. Thus we can draw
the conclusion that “a Gaussian variable has the largest entropy among all random

variables of unit variance.”
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2.1.12 Entropy of transformation

Let us consider a random vector x that has the following invertible transformation:

y = f(x) (2.51)

Our objective here is to show how the entropy of x is related to that of y, in another
way we shall try to find the function f.

The Jacobian matrix of the function f is the matrix of the partial derivative of f at
point £ and is denoted by Jf(). If the density of y is p, and that of x is p, then the

relation between p, and p, can be written by the following formulla:

1

py(n) = po (£ (n))|det JE(E " (n))| (2.52)
The entropy of y can be expressed as:
H(y) = —E{logpy(y)} (2.53)
Again,
E{logp,(y)} = Eflog[p.(f~'(y))ldetJE(E ()| ']} (2.54)

= E{logp,(x)|detJf(x)| "]}

— Bllogp.(x)} — B{log|detJE(x)]}

Thus the relation between the entropies of trasformed vector y and the input vector y

becomes:
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H(y) = H(x) + E{log|detJf(x)|} (2.55)

We can see that after the transformation the entropy has been increased by the quantity
E{log |detJf(x)|}.

Let us consider the following transformation:

y = Mx (2.56)

After transformation we obtain:

H(y) = H(x) + log|detM]| (2.57)

which means differential entropy is scale-variant. The equation in (2.57) shows that
if we multiply a random variable z by a scalar constant, « then the differential entropy

will be:

H(az) = H(z) + log | (2.58)

2.1.13 Negentropy

Negentropy is the normalized version of the ordinary entropy which is denoted by J

and can be defined as:

J(x) = H(Xgauss) — H(x) (2.59)
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where X gqu55 18 @ Gaussian random vector that has the same covariance and the correla-

tion matrix ) as of x. The entropy of X g4.ss can be computed as

1
H (Xgouss) = 5 logldet )| + 11+ log 2] (2.60)

where x has the dimension 7.

Negentropy 1s zero if and only if x has a Gaussian distribution and always non-
negetive because of the maximality property of the Gaussian distribution. Another inter-
esting property of negentropy is it is invariant in case of invertible linear transformation.
The reason is if y = Mx then we can write E{yy”} = M Y. M7 . Negentropy of the

transformed vector y can be computed as follows using the formulla in equation (2.60)

1 -
JMx = §log | det(M E M| + g[l + log 27] — (H(x) + log [M|) (2.61)
1 1 n
= ilog]det E |+ 2510g|detM| + 5[1 + log27] — H(x) — log| det M|

_ —;—log det 3+ 5[0+ log2x] — H(x) = Hxgaues) ~ H(x) = J(x)

If a random variable is multiplied by a constant then its negentropy ramains unchanged,

i.e., negentropy is scale-invariant.

2.1.14 Mutual information

Let us consider a set of n (scalar) random variables z; where ¢ = 1,...,n. Then the
mutual information / between these variables can be defined in terms of their entropies

as follows:

(23, 3, oy ) = > _H () — H(X) (2.62)
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The n components z; of x will not give any information on each other if they are in-
dependent of each other. Thus we can say that “Mutual information is a measure of
the information that members of a set of random variables have on the other random

variables in the set.”

2.1.15 Mutual information as a measure of independence

PCA and all other related methods take account only covariance but the mutual infor-
mation considers the whole dependence structure of the variables. Another important
property of mutual information is that it is always non-negative. Also for statistically
independent variables mutual information is always zero. For all of these reasons this
criterion can be used to estimate the independent components of the ICA model. If x
is the observation vector then the ICA of it can be defined as the following invertible

transformation:

s = Ax (2.63)

where A is the matrix that needs to be estimated such that mutual information of the

transformed components s; is minimized.

2.1.16 Mutual information and nongaussianity

Let us consider the invertible linear transformation y = Ax. Using the formulla in
equations (2.55) and (2.62) we can write the following formulla for the mutual infor-

mation between the components of the trasnformed vector y:

n

I(y1, Y2, o yn) = > _H(y:) — H(x) — log|det A| (2.64)

ie1
We need to satisfy the condition F{yy”} = AE{xx"} A" = I to constrain y; to be of

unit variance and be uncorrelated . Now,
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detI =1 = det(AE{xx"}AT) = (detA)(det E{xx"})(detA™) (2.65)

To make the right hand side of equation (2.65) constant det A must be constant because
det E{xx"} is the function of x only. Now, to satisfy the condition of y; to be of unit
variance we can write the relation between the mutual information among independent

components by using the the definition of negentropy:

n

I(y1, 42, -+ Yn) = cons. — > _J () (2.66)

i=1
where the constant term is independent of A.

From equation (2.66) we see that by minimizing the mutual information we can find
an invertible linear transformation A. Because the direction in which the mutual infor-
mation is minimized is approximately equivalent to finding the directions in which the
negentropy is maximized. Thus we can conclude that “ICA estimation by minimization
of mutual information is equivalent to maximizing the sum of nongaussianities of the
estimates of the independent components, when the estimates are constrained to be un-
correlated.”

Therefore for the estimation of ICA model minimization of mutual information is
more justified than using the concept of finding maximally nongaussian directions.

But, still these two criteria have some important differences:

1. By using negentropy and other measures of nongaussianity we can find the max-
ima of nongaussianity of a single projection b”x. So in this method we can esti-
mate he independent components by using the deflationary or one-by-one scheme

which is not posstble in mutual information.

2. We can reduce the optimization space by using mutual information mutual infor-
mation approach instead of using nongaussianity. The reason is the estimation of
the independent components are forced to be uncorrelated if we use nongaussian-

ity. But this is not necessary if someone use mutual information approach.
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2.2 Definition of linear independent component analy-
Sis

The definition of independent component analysis given here will be only for linear case
where as the non linear ICA also exists. In [3, 4] we find at least three basic definitions
for linear ICA. Since ICA is a new research topic, most of the research has concentrated
on the simplest one of these definitions. Let us denote by x = (zy, ..., ) " as the ob-
served m dimensional random vector.

Following is the most general definition since no assumptions on the data are made:

“Definition 1: (General definition) ICA of the random vector x consists of finding
a linear transform s = Wx so that the components s; are as independent as
possible, in the sense of mazimizing some function F(si,...,$n) that measures

independence.”

The next two definitions are no longer general definition because some assumptions
on the data have been made. The more estimation-theoretically oriented definition,

where noise has been taken into account in the ICA model is as follows:

“Definition 2: (Noisy ICA model) ICA of a random vector x consists of

estimating the following generative model for the data:

x=As+n (2.67)

. : T
where the latent variables (components) s; in the vector s = (s, ..., )" are assumed
independent. The matriz A is a constant m X n miring matriz, and N s ¢ M

dimensional random noise vector.’

Thus the ICA problem has been reduced to ordinary estimation of a latent vari-
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able model yet it is not very simple to estimate the model. Thus, most of the research

on ICA has focused on the following definition where noise vector has been omitted:

“Definition 3 (Noise — free ICA model) ICA of a random vector x consists of

estimating the following generative model for the data:

x = As (2.68)

where A and s are as in Definition 2.7

This was the earliest explicit formulation (probably) of ICA by Jutten in his PhD [49]
(see also [50]). The same model has been used by Jutten and Herault in their seminal

thesis [3].

2.3 Identifiability of the ICA model

In [4] the conditions for the ICA model has been imposed only for the noise-less case.
The basic assumption fot the ICA model is the statistical independence. But only this
assumption does not assure the identifiability of the model. There are also some other

restrictions that need to be imposed to identify the ICA model. These are as follows:

1. “All the independent components s;, with the possible exception of one compo-

nent, must be non-Gaussian.

2. The number of observed linear mixtures m must be at least as large as the number

of independent components 7, i.e., m > n.

3. The matrix A must be full column rank.”

If x and s are not simple random variables but also interpreted as the stochastic pro-

cess, then one must at least assume that this stochastic process is stationary. We also

35



need to put some other restriction of ergodicity [51]. If the process is 1.1.d. over time
all of these assumptions will be fulfilled. We can consider the stochastic process as a
random variable after imposing all of these restrictions.

In independent component analysis, the column of A and the independent compo-
nents can be estimated upto a multiplicative constant only. But, this indeterminacy is
insignificant since one can cancell the multiplicative constant of an independent com-
ponent in equation (2.68) by dividing the corresponding column of the mixing matrix
A by the same constant. The independent components are made to be unique by defin-
ing the independent components s; to have unit variances. However, these variances
for different independent components can be upto different multiplicative constants for
different independent components [4].

In PCA there is ordering of the principle components in which they are estimated.
But in ICA there is no such order in which the ICAs are estimated. There are two ways
by which we can introduce an order between the independent components. The first
way to order the ICAs is to use the norm of the columns of the mixing matrix A in the
descending order because the independent components s; contribute to their variances
z; by these norm. The second way is to use the projection pursuit index or the contrast
function which are two measures of non-Gaussianity.

Now we shall discuss the three restrictions we introduced to identify the ICA model.

To identify the ICA model [4] the first restriction of non-Gaussianity is necessary.
Only by the decorrerlation we can find the independent components if the random vari-
ables are Gaussian. Because for Gaussian random variables uncorrelatedness means
independence. Still one can identify the non-Gaussian independent components if the
ICA model consists of more than one Gaussian independent components s;.

The second restriction that has been imposed to identify the ICA model is not com-
pletely necessary. In the literature this case has been said to be under complete case,
m > n. Although there is no rigorous proofs, the mixing matrix A is still identifiable
[52] even when m < n which is called over complete case [52—-54, 56, 57]. In the over

complete case, the mixing matrix A is non invertible and as a result it is not possible to
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1dentify the realizations of the independent components. In our thesis, it 1s necessary to
impose the second assumption because most of the existing theory for ICA is not valid
over complete case.

It is also necessary to have some rank restriction on the mixing matrix that we can
say about the mixing matrix.

If we assume that the noise is independent from the components s; [S8-60] then the
noise variables can be treated as some independent components. In that case, the noisy
ICA model can be considered as a special case of the noise-free ICA model with m < n
and the same three restrictions can be introduced to identify the noisy-ICA model par-
tially. Both the mixing matrix A and the noise covariance matrix are also identifiable
[60]. But it will not guarantee the complete separation of the independent components

from noise because the realization of s; can not be identified.

2.4 Conclusions

In this chapter we have discussed the definitions of some important terminologies in
brief related to Independent Component Analysis (ICA). These terminologies have been
used throughout the whole thesis and also to derive the adaptation rules and the ideal
solutions for N x N feedback network architecture. We have also defined what is the
linear independent component analysis in this chapter. The identifiability of the ICA

model has been discussed here too.
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Chapter 3

Objective (contrast) functions for ICA

3.1 Introduction

The function which is used to estimate the data model of independent component anal-
ysis is called the objective function. For some certain class of objective functions some
authors use the term contrast functions [4]. Some times this function is called loss
function or cost function. In our thesis, we shall use the terms contrast function or
objective function because these are the most widely used conventional terms. The esti-
mation of the independent components is performed by minimizing or maximizing the
contrast function. There are different types of algorithms which are used to optimize
these contrast functions. But there is a distinction between the contrast functions and
the algorithms used to optmize these. In the following sections we will discuss the
differences between the contrast function and the algorithms, use of one unit contrast
functions, use of negentropy in contrast function, choice of contrast function based on

the estimators and the stochastic gradient rule.

3.2 Difference between objective functions and algorithms

The performance of the [CA method depends on both the objective function and the op-

timization algorithm. So, the ICA method can be formulated by the following equation:
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ICA method = Objective function + Optimization algorithm.

Sometimes, it is difficult to separate the objective function and the optimization algo-
rithm. But, if objective functions are explicitly formulated, any of the classical methods
such as Newton-like methods, etc can be used. The performance of the ICA method

depends on two major properties:

o The statistical properties: By choosing the proper objective function we can op-
timize any of these propeties. The examples of such properties are, e.g., consis-

tency, asymptotic variance and robustness.

e The algorithm properties: These properties depend on the choice of the suitable
optimization algorithm. The convergence speed, memory requirements and nu-

merical stability falls in this category of properties.

To optimize a single objective function one can use different optimization algorithms or

a single optimization algorithm can be used to optimize different objective functions.
There are two types of contrast functions, one unit contrast function and the multi-

unit contrast function. In the following section we will describe only one unit contrast

function.

3.3 One unit contrast functions

The contrast function which is used to estimate only one independent component each
time, is called one unit contrast function [1]. In this case we at first estimate only one
vector w, and the newly found w is combined linearly with x, i.e., wx, to estimate the
first independent component. All the independent components are estimated by using
the same method.

The one-unit contrast functions have the following usefulness:
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e Using one unit contrast function enables to estimate independent components
one after another. So one does not need to know the number of independent

components for the estmation of whole ICA model.

e By optimizing the contrast function of each neuron it is possible to construct a
neural network which is a very simple solution to construct a neural network from
the computational point of view. So, we can say that there is a direct connection

of using the unit approach to neural networks.

e There is also a direct connection of using the one unit method to projection pur-

suit.

e Using one unit approach in projection pursuit reduces the dimension of the data 1f
the input data has very large dimension. In projection pursuit one does not need to
find the independent components in order because the most interesting component
is found at first which is the least Gaussian one [1]. The independent components
are found in the descending order of non-Gaussianity if the one unit contrast
functions are optimized globally. In that case, only some of the independent
components are needed to estimate. Finding all of the independent components

are not necessary, which also reduces the computational complexity.

According to the definition of ICA, all independent components are mutually uncorre-
lated. After estimating the first independent component the rest of the components can
be estimated by using the method of decorrelation. The second independent component
is found by maximizing the one-unit contrast function under the constrain of decorre-
lation that the first component is found already. One can repeat the same procedure to
find the rest of the components. Another principle is to use the symmetric (parallel)

decorrelation [61-64].
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3.4 Contrast functions through approximations of ne-
gentropy

The objective functions, used to estimate the ICA model are conventionally cumulant-
based [4, 11,65]. But a more accurate method of the approximations of the objective
functions have been developed which is based on the maximum entropy principle [14].
It has been found this new approximations are more accurate than the conventional
cumulant-based approximations [14]. The newly developed approximations have the

following form:

J(yi) m c[E{G(y)} — E{G(v)}]? G.1

where, y; is the random variable of zero mean and unit variance, v is a Gaussian variable
of zero mean and unit variance, c is an irrelevant constant and G is any non-quadratic
function. If the variables are symmetric the generalization of the cumulant-based ap-
proximation [4] can be obtained by assuming, G (y;) = y;*.

The new objective function given by equation (3.1) can be used to estimate the ICA
model. At first, by maximizing the function J; given by the following equation we
can find the first independent component or the projection pursuit direction defined by,

Y =wix:

Ja(w) = [E{G(Ww"x)} — E{G(v)}]* (3.2)

where, w is the weight vector of dimension m with the constrain that E{(w”x)*} = 1.
After that by using the deflation scheme [1] we can find the rest of the independent
components one-by-one.

To estimate all of the components of the matrix W 1in equation (1.2) we can extend
the contrast functions for one-unit approach given by equation (3.2) by using the princi-

ple of minimizing mutual information . According to equation (2.62) ) by maximizing
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the sum of the negentropies of the components the mutual information can be mini-
mized under the constraint of decorrelation. Thus we have the following optimization
problem from the maximization of the sum of n one-unit contrast functions with the

condition of the constraint of decorrelation:

maximizeZé 1JG(wi) wrt. w;, i =1,....n (3.3)
1=

subject to E{(w”x)E{(w”;x) = 6, (3.4)

where w;, 7 = 1, ..., n is one of the rows of the matrix W. Then the independent com-
ponents are obtained from the transformation equation, s = Wx. In the next section
some algorithms have been presented as the solution of the optimization problem and

we have analyzed the properties of estimators and discussed the selection criteria of G.

3.5 Analysis of estimators and choice of contrast func-

tion

3.5.1 Behavior under the ICA data model

There are certain properties of the estimators derived in the preceeding section which
will be analyzed in this section by assuming the mixing matrix A in equation (1.2) as
a square matrix. Here, we shall consider the estimation of only a single independent
component. Let us assume that w is a vector which has been obtained by maximizing

J¢ in equation (3.2). Then we can say that w is an estimator of a row of the matrix A !

Consistency

By using the following theorem [64] we shall prove that in the ICA data model w is a

locally consistent estimator for a single independent component :
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“Theorem 1 Assume that the input data follows the ICA data model and that
is a sufficiently smooth even function. Then the set of local mazima of Jg(w)
under the constraint E{(w'x)*} = 1, includes the i-th row of the inverse of the

mizing matriz A such that the corresponding independent component s; fulfils

E{sig(si) — 9(s:) HE{G(s:)} — E{G(»)}] > 0 (3.5)

where g(.) is the derwative of G(.), and v is a standardized Gaussian variable”

According to Theorem 1, the condition happens to be true for most distributions of
the s; and selections of G. For a particular value of G(u), e.g., G(u) = u?, the con-
dition is fulfilled for any distribution of kurtosis that has the non-zero value. But there

will be many spurious optima which has been proved in [66].

Asypmtotic variance

Asymptotic variance is the second statistical property which can be used to choose the
function G'. The mean-square error of the two estimators can be obtained by compar-
ing the traces of the asymptotic covariance matrices of those estimators. It is possible
to evaluate the asymptotic variances which has been shown in [67] for some contrast
functions which are close to each other. The theorem based on the asymptotic variance

is as follows [64]:

“Theorem 2 The trace of the asymptotic (co) variance of W is minimized when

G is of the form

Gupt(u) == /ﬁ lOgﬁ(U) -+ kgu2 + kg (36)

where f;i(.) is the density function of s;, and ki, ky, ks are arbitrary constants.”

According to this theorem a good choice of G can be G, (1) = log fi(u)
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Robustness

When the single, highly erroneous observations can influence the result much then we
can say that the estimator is not robust against outliers [68]. In that case one should
choose an estimator which is robust enough against outliers. Usually those estimators
are robust that have bounded influence functions. It is not possible to have the estima-
tors which have a completely bounded influence function. But we can obtain a simple
form of robustness which is called B-robustness [68]. The theorem related to the ro-

bustness of the estimators is as follows [64]:

“Theorem 3 Assume that the data x is whitened (sphered) in a robust manner.
Then the influence function of the estimator w is never bounded for all x. However,
if h(u) = ug(u) is bounded, the influence function is bounded in sets of the form

{x | wTx/||w|| > €} for every e > 0, where g is the derivative of G.”

Usually if “a function G(u) that is bounded”, h is also bounded. Some times it
may not be possible to obtain an estimators with bounded influence function. In that

case, we should choose a function G (u) that does not grow very fast with | u |.

3.5.2 Practical choice of contrast function
Performance in the exponential power family

The theoretical results derived in the preceding section can be used to determine the

performance in the exponential power family of density functions shown below [64]:

fa(s) = krexp(ka| s | + ks (3.7)

where f, is a probability density, k), k; are normalization constants and « is a positive
parameter. Two constants ki, k, ensure that f, has the unit variance. The shapes of the

family of the densities vary depending on different values of alpha. We will consider
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here three ranges of alpha. First, if 0 < o < 2, the density has positive kurtosis and it
gives sparse shape which implies this is a super-Gaussian density. Second, if & = 2, the
distribution 1s Gaussian, and lastly, if & > 2, the density has negative kurtosis and it is

sub-Gaussian. T

Recall from the definition of asymptotic variance from Theorem 2, to estimate an
independent component the required optimal contrast function which has the density

function of the form f, is defined by the following equation:

Gopt () = |ul® (3.8)

Equation 3.8 shows that the optimal contrast function grows faster than quadratically
for sub-Gaussian densities and slower than quadratically for super-Gaussian densities.
Again from Theorem 3 of robustness, the contrast function becomes very non-robust
against outliers if G(u) increases fast with | u |. Since, practially most of the indepen-
dent components are super-Gaussian [69, 70], we can choose the following function as

the contrast function G for estimating the super-Gaussian independent components:

Gopt(u) = |u]®, where a < 2 (3.9)

The contrast function shown in equation (3.9) are not differentiable for the value of
alpha 0 when o < 1. The problem with these contrast functions can be solved by
using approximating differentiable functions that shows the qualitative behavior in the
same way. When a = 1, we can use the function G;(u) = logcosha; u where a; > 1
is a constant. In that case, the derivative of G; will be the function tanh if ¢; = 1.
The independent components are highly super-Gausstan when o < 1, i.e., , we can
approximate G, (u) for large value of u by using the Gaussian function Ga(u) =
— exp(—ayu?/2), where a; is a constant. The derivative of this function is 0 for larger

values and similar to a sigmoid for small values. Being within the framework of the
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type of the estimators shown in equations (3.3) and (3.4) this contrast function exhibits
the behaviour of a good estimator which fulfils the condition in Theorem 3 as well as is
robust enough. Experimentally, it has been found that when the values of the constant
a; lie between 1 and 2, 1.e., 1 < a; < 2 and also a, = 1, the contrast function shows

good approximations.

Choosing the Contrast Function in Practice

There are two important criteria we need to consider before using any contrast function
G.

First, the computational complexity and second, the order in which the independent
components are estimated.

The contrast function should be computationally less complex, preferably simple
and fast. Both polynomial and non-polynomial functions have certain advantages and
disadvantages over each other. Usually most of the polynomial functions are compu-
tationally faster than the non-polynomial functions, e.g., the hyperbolic tangent. Non-
polynomial functions are slower to compute but these have certain advantages which
are not possible to obtain using the polynomial functions. To avoid the computational
complexity one can use piece wise linear approximations in place of non-polynomial
functions.

If one uses the approach of one unit contrast function then the order in which the
independent components are computed should be considered. In this approach there
is no particular method of determining this order because this is highly application-
dependent. There is a relation between the contrast function to the distribution of cer-
tain independent components. Which means it is possible to influence the order by a
suitable choice of the contrast functions. Another reason is that the sizes of the basins
of the attractions of the maxima of the contrast functions are different. Usually, the
ordinary optimization methods try to find that maxima first which has large basins of
attraction.

Recall from the discussion given above about two points, we may have the following
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contrast functions and their derivatives as our choices of use:

Gy (u) = iu‘l, g (u) = u®
1
Go(u) = —;1 exp(—a2u2/2), ga(u) = uexp(—a2u2/2)

1
Gs(u) = a—llogcoshalu7 g3(u) = tanh(au)

(3.10)

(3.11)

(3.12)

where 1 < a; < 2, ap = 1. Using different contrast functions in equations (3.10), (3.11)

and (3.12) have following benefits:

e one can use (; or kurtosis is justified for the estimation if the independent com-

ponents are sub-Gaussian and when there are no outliers.

e one should use the piecewise linear approximations of G, and Gj to reduce the

computational complexity.

o for the highly super-Gaussian independent components robustness is a very im-

portant factor. In that case, G is a very good choice.

e as a general-purpose contrast function Gj is a good choice.

In the conclusion we can say that choice of the contrast function is necessary only for

the optimization of the performance of the method.

3.6 Gradient

3.6.1 Vector gradient

Let us denote by g a scalar valued function of m variables and let us assume that the

function g is differentiable

g = g(wh sy wm) = Q(W)
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where w = (wy, ..., Wy,) " is a column vector. The vector gradient of g with respect to

w is defined as:

9¢

dun
9 o
RN (3.14)

dg
Owm

where, 22 is the gradient that is a m-dimensional column vector. Two other notations

’ Ow

are Vgor Vg.

The second-order gradient of a function g with respect to w can be defined as:

029 62g
5 Bu,Z e e B
g
So | (3.15)
ow
9%g 82g
Bwnwr e Epei

The matrix defined above is called Hessian matriz of the function g(w) and it has the
dimension m x m. As we can see, each element of the Hesstan matriz is a second
order partial derivative. One important property of the Hessian matriz is that it is
always symmetric.

For an n-element vector-valued functions we can write:

g(w) = : (3.16)
gn (W)

the elements g;(w) of the matrix defined above are functions of w.
The Jacobian matriz of g with respect to w is the matrix of the partial derivatives of

the elements of the function g with respect to the elements of w and written as follows:

48



d'ull .......... 6_’11}—1‘

og

gw | o e e (3.17)
dgl 6gn
Fo e e v,

Sometimes Jg is used as the notation for the Jacobian matrix.

3.6.2 Matrix gradient

Now, let us define ¢ in a new way and that is ¢ is a scalar valued functions of the matrix
W where W = (w;;) the matrix of dimesnion m x n. Therefore, we can write the

following equation for newly defined g:

9 =9(W) = g(wi, ..., Wy, .., W) (3.18)

The matrix gradient can be defined in the same way as the vector gradient has been
defined. The 7;th element of the matrix gradient is the partial derivative of g with respect
to w;;. The matrix gradient has the dimension m x n which is same as of matrix W and

it can be written as follows:

dg dg
Boy e e Bor
dg
W | o e e e
99 dg
Fooy e e T

where, 56‘-;’—\, is used as the notation for the matrix gradient.
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3.7 Learning rules

3.7.1 Gradient descent

Most of the ICA methods aim to estimate the independent components by minimizing
a cost function j(W) with respect to a parameter matrix W. We have two kinds of
solution for solving this problem, first, the solutions without any kind of constraints and
second, the solutions under some constraints. In the later case, the number of possible
solutions is restricted by the constraints. The most common type of constraints require
the solution vector to have a bounded norm or the solution matrix to have orthonormal
columns.

The steepest descent or gradient descent is the most classic approach of minimizing
a multivariate function for the unconstrained case. In this section we shall discuss the
steepest descent or gradient descent when the solution is a vector w.

In steepest descent, our objective is to minimize a function 7(w). To do so, we start
from an initial point w(0) and at this point we estimate the gradient of j(w). After, by
choosing a suitable distance we move in the steepest descent or the negative gradient
direction. When we reach the new point, the whole procedure is followed again in an
iterative fashion and we find the next point. Thus the adaptive or update rule for the

consecutive values of ¢, say, = 1, 2, ..., becomes:

dy(w)

w(t)=w(t—1)— oz(t)aiW

’w:w(t~1) (319)

where the value of w(t) is computed at the point w(¢ — 1). The parameter «(t) is
called the learning rate or step size which defines the length of the step in the negative
gradient direction. The adaptation rule in equation (3.19) is repeated again and again;

w(t)—

and when the Euclidean distance between two consequtive values of w(t), i.e.,
w(t — 1) reaches a tolerance level, we can say the algorithm has converged.

Let us denote the difference between two consequent solutions by
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w(t) —w(—-1)=Aw (3.20)

Using the notation written above we can write the update rules as follows:

Aw = _o2IW)
ow
or,
Aw o W)
ow

where o< is the proportionality constant and the gradient vector on the right-hand side
and the vector on the left-hand side Aw of equation written above have the same direc-

tions. In terms of the programming languages the update rules can be written as:

W W — agla(:vv—)
where the symbol <— means substitution, i.e., the value of the right-hand side is com-
puted and substituted in w.

In the gradient descent algorithm we always move in the steepest downward direc-
tion which has a very big disadvantage. This rule may reach to the global minimum if
the function %‘:’) is very smooth and simple otherwise it may converge to the closest
local minimum. The cost functions with non-quadrectic expressions may have many
local maxima and minima. For this kind of cost functions there is no escape from the
local minima once the algorithm converges there. One possible solutions is to choose a
proper initial values.

Another important factor we need to consider is the speed of convergence of the

algorithm. Since the gradient becomes zero at the minimum point, the algorithm be-

comes very slow here. We can call the point, where the algorithm converges, as the
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local or global minimum point and let us denote the values of w at that point by w*.

Substituting this value in equation (3.19) we get have

9)(w)

w(t)—w'=w(t—1)—-w" — oz(t)—é—w—

Iw:w(t—l) (321)

By using the Taylor series expansion we can expand the gradient vector %(;‘—'Vv—) around the

point w*. Taking only the zeroth- and first-order terms the ith element can be written

as:

dy(w)
6w,—

0y)(w m 0%)(w .
lww(e_1) = 8(1U')|w_w* +3 ( )|w:w*[wj(t ~1) —w;*] + ...

j=1 awiwj

(3.22)

In terms of the Hessian matrix:

0
) ey = HOw )l 1) = ']
where H(w™) is the Hessian matrix computed at the point w = w*. Using this value in

equation (3.21) we get

w(t) — w* ~ [I— a(t)H(w")|[w(t — 1) — w']

From the above equation we can see that both the size of the Hessian matrix and the
learning rate determines the speed of the convergence. The Hessian will be small if
the cost function j(w) is very flat and the second partial derivatives is very small at the
minimum. The result is the slow convergence with the constraint that «(t) is fixed. If
the cost function is fixed, then it is impossible to change the shape of it. In that case the

only option is to choose a proper value of the step size a(t).
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But it is also very difficult to choose the proper value of «(¢) which is very essential
although. Too small values of «(¢) will result in slow convergence and too large values
of 1t will cause overshooting and instability. One possible solution to this problem is
so called momentum method where a two-step iteration is used. There are also some

adaptive rules for step size selection but that is not our objective to discuss here.

3.7.2 Stochastic gradient descent

Stochastic gradient descent is specific form of gradient descent rule where a specific
kind of cost function j(W) or y(w) is considered.

The estimation of the ICA model requires the observation data. There is no solution
in this method without any available data. Thus ICA is totally data dependent technique.

Usually, in this method following is the form of the cost functions:

J(w) = E{g(w,x)} (3.23)

where x is the available observation vector of density f(x) which is not known. E{.}
is the expectation operator with respect to this density. For the estimation of the ICA
model we must have the samples x(1),x(2), ..., available.

Before proceeding to the discussion about the types of algorithms used in this steep-
est descent algorithm we need to know how the gradient and the Hessian can be com-
puted from the cost function shown in equation (3.23). The gradient is the first deriva-
tive and the Hessian is the second dertvative of the cost function with respect to the
elements of vector w. In both of the cases, the derivatives can be taken inside the

integral operator. Thus the gradient is defined as:

a%E{g(w,x)}:é% 9(w, ) (&) d€ (3.24)
_ / [ glw, ) (©)d (3.25)



Similarly we can find the Hessian by taking the second derivatives of equation (3.23).
To find both the gradient and the Hessian of the function g(w, x) it must be differen-
tiable.

In general there are two different kinds of learning algoriths followed in the most of
the ICA methods. The first one is called batch learning and the second one is the on-
line learning. In both of the cases, the sample data of the observation vector x must be
available. Batch learning is the simplest case and it is applicable when the observations
that keep on coming do not change with time. For, batch learning the steepest descent

rule has the following form:

w(t) =w(t-1) - a(t)a%E{g(W,X(t))}!w:w(t1) (3-26)

As we can see from equation (3.26), everytime the new values of w(?) is estimated
from the previous values of w(t) which is w(¢ — 1). At every step of the iteration the
whole observation data is used to calculate the expectation of the cost function over
the sample x(1), ..., x(7T'). In fact, this mean value is used as the expection of the cost
function used in equation (3.26).

This batch algorithm will not give the true information in case of the slowly chang-
ing observation data. Because, the statistics will be changing with every new oncoming
observation data. To be able to track the changing statistics one should use the latest
observation vector x(t) at every step of the iteration instead of the mean value of the
whole observation vector in batch. In that case the equation (3.26) is changed to the

on-line learning rule where the expectation operator has been dropped:

0
w(t)=w(t—1)— a(t)a—wg(w,x)]w:w(t,l) (3.27)

Because of the changing statistics of the every new on coming observation data the
directions of the instantenous gradients change in every subsequent iteration. But the

average direction in which the algorithm proceeds is quite same as the direction in
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which steepest descent rule moves. Usually the sample vectors x(t) are chosen by the
random choice or in cycle. The better choice is the shuffling or random selection. It is
possible to obtain a good accuracy of the result after running the online learning rule
over the training set many times. If the training set is fixed it should be used several
times. That 1s why it requires many more steps to converge the on-line algorithm. If we
compare the speed, the stochastic algorithm converges much slower than the steepest
descent algorithm. But it has a great advantage over the steepest descent rule which is
computationally it is less complex than the steepest algorithm. Computational cost is
also reduced 1" times because if we have T number of sample vectors then the function
a%E{ g(w,x} is needed to compute T times and these values are summed up and
divided by T to obtain the average value. But in online-learning the function ;2 g(w, x)

is needed to compute only for once for each iteration.

3.8 Conclusions

In this chapter we have described the contrast functions needed for estimation of the
data model of independent component analysis. The importance of contrast functions,
the classifications of contrast functions, analysis of estimators and choice of contrast
functions have also been included here. The definitions of gradient, vector gradient,
matrix gradient, stochastic gradient and introduction to adaptation rules have also been

illustrated in this chapter.
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Chapter 4

Ideal solution for an NV x /N network

Kari Torokkola [71] presented the ideal solution for the separation of source signals
from observed mixtures for two sources and two sensors case. Here, we have extended
the solution for an arbitrary IV x /N network utilizing the same feedback architecture
but with certain additional conditions and assumptions. Before presenting our proposed

solution, the methodology developed in [71] is briefly reviewed.

Consider for simplicity the case of two sources expressed in the discrete-time do-

main (these results will subsequently be generalized to an arbitrary number of sources):

Xi(2) = A1 (2)51(2) + A12(2) S (2)
X2(z) = Ao (2)51(2) + Aga(2)52(2) (4.1)

where A;;(2) is the z-transform of the corresponding filter. The original sources S may

be obtained using the mixtures X according to the following expressions:

S1(z) = (A2n(2)Xi1(2) — A12(2)Xa(2))/ G (2)
52(z) = (—An(2)Xi(2) + A1 (2) Xa(2))/ G(2) 4.2)
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adjust filter maximize entropy
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W12
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A feedback network with adaptive filters for the
separation of convolved mixtures.

x2

Figure 4.1: A feedback network architecture with adaptive filters for the separation of

convolved sources.

where, G(z) = A11(2)Axn(z) — A12(2) A2 (2). By referring to Fig. (4.1) the two output

signals can be derived as

Ur(z) = Wi (2) X1 (2) + Wia(z) Us(2)
Us(z) = War(2) Ui (2) + Wae(2) Xo(2) (4.3)

Rearranging above equations we get

U1 (Z) — ng(Z) UQ(Z) = Wll(Z)Xl(Z)
— W21 (Z) Ul(Z) + UZ(Z) —= WQQ(Z)Xz(Z) (44)
We can solve two equations to get U;(z) and Us(z) in terms of X, (z) and X5(z). Those

equations are
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Wi (2) Wia(z) Waa(z)

Ui(z) = 1= Wha(2) War (2) Xi(z)+ Wia(2) ng(z)XQ(Z)
. Wn(Z W21 (Z) WQQ(Z)
— UQ(Z) = 1 W12(z) W21 (Z) X1 (Z) + 1 W12(Z) W21 (Z) XQ(Z) (45)

Ideally U, (z) should be identical to S)(z) and Us(z) should be identical to S»(z). By

equating the coefficients of X;(z) and X,(z) we get the following four equations:

A22(Z) - WH(Z)

() A (2) — A A (e) — 1= Wha(z) War (2) (46)
Ay1(2) _ Was(2) 7
A11(2)An(z) — A1a(2) Ao (z) 1 — Wia(z) Woi(2) )
—Aq2(2) _ Wis(2z) Was(2) 438)
A1(2)A(z) — A12(2)As1(2) 1 — Wia(z) Way(2) '
—As (2) _ Wii(z) Wy (2 4.9)
A11(2)Asa(z) — A12(2)As1(2) 1 — Wis(2) Wi (2) ’

Dividing equation (4.9) by equation (4.6) and equation (4.8) by equation (4.7) we get

the expressions of Wis(z) and Wa;(2) and putting those expressions in equations (4.6)
and (4.7) we obtain the expressions for Wy, (z) and Wy (z) in terms of the four demix-

ing filters A11(2), A22(2), A12(2) and As1(z), namely

Wi(z) = An(z) Y Wia(z) = —Alz(z)An(z)fl
Waa(2) = Agg(2)™F War(2) = —Ag (2) Age(2) (4.10)

However by maximizing the entropy at the output nodes will result in W;(z) and
Was(z) that are not only inverting A;1(z) and A4 (2), but also whitening the sources as
well. This can be avoided by constraining the characterization of Wi;(z) and Wy (2)
to simply constant gains. In the ideal case, Wi2(z) and Wy (2) will have the following

solution:
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WH(Z) = 1, ng(Z) = *Au(Z)AQQ(Z)il
Wan(z) =1, War(2) = — Ay (2) A (2) (4.11)

Using the above ideal solution in equation (4.11) one obtains U;(z) = S1(z)A11(2)
and Uy(z) = S2(2)Ag(z), which represent what each sensor would have observed
in the absence of interfering sources and no distorting effects. The existence of this
solution requires that A,;(z) and A52(z) have stable inverses, in addition to G (z) having
also a stable inverse. Therefore, if these conditions are not satisfied, the network is
unable to achieve the required source separation objective. Note that when both A1 (2)

and Ay (z) are set to 1, the only stable inverse requirement would be for G(z).

4.1 Idealsolution of three sources and three sensors case

Let us look at three sources in the z-transform domain for simplicity; this can be gener-

alized to any number of sources.

Xi(z) = A11(2)S1(2) + A12(2) S2(2) + A13(2)93(2)
Xo(z) = Ag1(2)81(2) + Aga(2)S2(2) + Ass(2)S3(2)
X3 (Z) = A31 (Z)Sl (Z) + A32 (Z)SQ(Z) + A33(2)53(Z) (412)

where Aj;; are the z-transforms of any kind of filters as in the two sources and two sensor

cases. By applying the delta rule we can solve the sources S in terms of the mixtures

X :
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(Ag2(2)Azs(2) — Aza(2) Ans(2)) (A13(2) Aza(2) — Ara(2) As3(2))

$i(2) = o Xi(2) + e Xo(2)
(AIQ(Z)A%(Zm;(;l)m(z)flw(z)) X(2)

6 - (A31(z)Agg(ZG)m;(j)m(Z)A?»B(Z))Xl(z)+ <AHW%(g";(j)m<Z>Al3<z”m)
+(A21(Z)A13(2";(;4)11(Z)A23(Z)) ()

o) - (Am(z)Ag,Q(?m;(f)gl<z>A22<z>> X + (A31(Z)Al‘z(';)m;(f)“(Z)A32(Z))Xg(z)

N (AH(z)Azg(gm;(j)21(Z)Au(z)) X(2) (4.13)

Now from feedback architecture of 3-sources and 3-sensors case we can write the

equations of recovered signals in z-domain

Ur(z) = Wi (2)X1(z) + Wia(2) Ua(z) + Wis(z) Us(2)
UQ(Z) = WQI(Z) Ul(Z) + WQQ(Z)XQ(Z) + ng(z) U3(Z)
U3(Z) = W31(Z) Ul(Z) -+ W32(Z) UQ(Z) + W33(Z)X3(Z) (414)

Assuming direct demixing filters Wi;(z), Was(z) and Wis(z) as unity filters and ap-

plying delta rule to solve the equations we get for U, (z), Us(z) and Us(z):

(1 — Waz(2) Wsa(2)) (Wia(2) + Wiz(2)wsa(2))

Uy(z) = e X, (2) + e Xy(2) +
(We) Wl We)

Up(z) — (Wa (2) +GI::2(Z()Z) W31(z))X1(z)+ (1- Wé::adifz)z;/V:n(Z))XZ(Z)Jr
(ote) Wl W)

Uy(z) = (Wsi(2) +GZ2(1Z()Z) Was(2)) X(2) (Wsa(2) +GZTZ()Z) Wis(2) )
G ngiz()z )W”(Z))X3(z) (4.15)



Our target is to separate the signals so that they become statistically as independent
as possible, ideally each recovered signal should be the same as its respective original

uncorrupted signal, i.e.,

(1 — Was(2) Waa(2))  (An2(2)Ass(z) — Asa(2)Ass(2))

Gy3(2) Gmz(2)

(War(2) + Was(2) War(2)) _ (Asi(2)Ass(z) — A1 (2)Ass(2))
Ga3(z) Gm3(2)

(Wai(2) + Wai(2) Waa(2)) _ (A2i(2)Asa(2) — Asi(2) Ana(2))
Gas(z) Gps(z)

(Wia(2) + Wis(2) Waa(2)) _ (Au3(2)Asa(z) — Ara(2)Ass(2))
Gas(z Gms(2)

(1 — Wis(2) Wa(2)) _ (An(z)Ass(z) — Asi(2) A1s(2))
Gy3(z) Gm3(2)

(Wsa(2) + Wai(2) Wia(2)) _ (A31(2) Ara(2) — A1 (2) Ase(2))
Gas(z) Gms(2)

(Wis(z) + Wia(2) Was(2))  (Ar2(2) Azs(2) — Az(2)A13(2))
Ga3(2) Gns(2)

(Was(2) + Wis(2) War(2)) _ (Ani(2)Azs(2) — An(2)Ars(2))
G3(2) Gns(2)

(1 — Wan(z) Wia(z) _ (An(2)An(z) — An(z)A12(2))

Gas(2) s (2) (4.16)

Let us denote the right side of the above equations as below:
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(Az2(2) Azz(2) — Aza(z) Aps(2))

Gon3(2) =5
(Az1(2)A2s(2) — An(2)Az3(2))
Cos () = B1
(A21(2)As2(2) — Az1(2)A2a(2))
Gmg(Z) = B2
(A13(2) Az2(z) — A1a(2) Ass(2)) .
G (2) = (1
(A1 (2)As3(2)) — (As1(2)A13(2)) —C
Gmg(Z)
(A31(2)A1a(2) — An(2) Aza(2))
Cos(2) =C2
(A12(2) Aoz (2) — A2a(2) A13(2))
G2 Al
(A11(2)A23(2) — A21(2)A13(2))
G (2) = A2
(A1 (2)A22(z) — An(2)A12(z)) A
Gm3(2)

Then the equations become
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(1 — Was(z) Waa(2))

Gas(2) =7

(Wa(2) +GZ2(3Z<)Z> Wal2) o0
(W (2) o ()z) Warl2)
i) + Wl e _
1 Wl o)
(Win(2) - <)z> Winlz) .
(Wis(2) +GZI(QZ<)z> Waslz)
(Was(2) +Gzzl(i<)z) Wa() _
0 W) Wile))

Dividing equation (4.23) by equation (4.25)

W13(Z) + W12(Z) W23(Z) . Al

1~ Wa(z) Wia(z) A

After cross multiplication and rearranging we get

Al — A W13(Z)

Wia(z) = AWas(2) + A1 Woy(2)

Dividing equation (4.23) by equation (4.24)

WL;(Z) -+ ng(Z) VVQg(Z) Al
Was(z) + Wiz(2) War(z) A2

Cross multiplying and rearranging we get
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. Al W23(Z) - A2 W]z(Z) W23(Z)
Wia(z) = A2 — A1 Wy (2) (4.27)

Putting the value of W)3(z) in equation (4.26) yields

Al — AALl Wos(z)— AA2Wia(z) Was(z)
W 2( ) _ A2— A1 W (2)
! A W23(Z) + Al W21 (Z)

Cross multiplying we get

AA2 ng(Z) W23(Z) — AAl ng(Z) W21 (Z) W23(Z)
+A1A2 ng(Z) W21 (Z) — A12 ng(Z) W21 (Z)z
= A1A2 — A12 W21 (Z) — AAl W23(Z) -+ AA2 W12(Z) W23(Z)

Cancelling the common terms from both sides and rearranging results in

WQg(Z)(—AAl W12(Z) W21 (Z) + AA]_)
= A1A2 — A1A2 WIQ(Z) ng (Z) — A1 ng (Z) + Al? W]Q(Z) W21 (2)2

After factorization we can write the above equation in product form as below

Was(2) AAL(1 — Wia(2) Wai(2)) = AL(1 — Wia(z) Wai(2))(A2 — A1 Wy (2))

Dividing both sides of the equation by the common factor 1 — Wiy (2) Wo (2) we

get the value of Wo3(z) as

(4.28)
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Putting the value of W3(z) in equation (4.27) We get the value of Wi3(z)

Al — A2 ng(Z)

W13(Z) = A

(4.29)

Dividing equation (4.18) by equation (4.25)

ng(Z) + WQg(Z) W31(Z) o Bl
1— War(2) Wis(z) A

Putting the value of Wy3(2) from equation (4.28) in above equation and cross multiply-

ing and rearranging we get

(A2 — AL Way(2)) War(2) = B1(1 — Wis(2) War(2)) — AWar(2)
= Bl Wa(2)(A+ Bl Wi(z))

Rearranging we get the equation for W3, (z)
o WQI(Z)(A + B1 ng(Z)) — B1

War(2) = A1War (2) — A2 (4.30)

Dividing equation (4.17) by equation (4.25) we get

1 — Wa(z)Wa(z) B

1-— W12(Z) W21 (Z) A
Putting the value of Wa3(z) from equation (4.28) in the above equation and cross

multiplying and rearranging we get the expression of Wss(2)

B(1 — Wya(2) Wy (2)) — A

W32(Z) - Al WZl (Z) hd A2

(4.31)
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Dividing equation (4.19) by equation (4.25) and using the expressions of Wj;(z) and
W32(z) from equations (4.30) and (4.31) respectively, we have

- B1+ Wzl(z)(A+Bl le(z))
— A2+ Al W21(Z)

1— W12(Z) W21 (Z)

BWsoi(2)(1— Wi {z)Wa1(2))— A z
21(2)(1 Alllff/il)(z)il,g;) Wa1(z) B9

1 — Wia(z) Wo(2) A
A WQI(Z) + Bl W12(Z) W21 (Z) - B1
(A1 Wy (z) — A2)(1 — Wia(z) Way (2))
BWay(2) — BWia(2) War(2)* — AWy (2) B2

+

(Al Way(2) — A2)(1 — Wia(2) War (2)) A
(BWn(z) = Bl)(1 - Wia(2) Wi (z)) _ B2
(A1 Wy (2) — A2)(1 — Wig(z) Woy(2) A

)
BWy(z) — Bl B2

AlWay(z) — A2~ A
ABWy (2) — AB1 =

AB1 - A2B2

Wnl?) = 5 —im

(4.32)

Putting the value of W5, (z) from equation (4.32) in equation (4.28) we get the value
of W23 (Z)

A2 — Al ng (Z)

A

(AB1—A2B2)
A2 - Al AB_A1B2

A
AA2B — A1A2B2 — AA1B1 + A1A2B2

A(AB — A1B2)
A(A2B — A1B1)

AAB — A1B2
A2B — A1B1

AB — AlB2

Was(z) (4.33)
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Dividing equation (4.21) by equation (4.25) we have

1 — W13(Z) W31 (Z) _
1 - W12(Z) ng (Z)
1 o Al—A2 W12(Z) Bl1— ng(z)(A+Bl W12(z))
A A2—- A1 Wy (2)

1-— ng(Z) ng (Z)

= A

After simplifying

AA2 — AALWay(2) — {ALB1 — A1 Wy, (2)(A + BLWia(z) — A2B1 Wyy(2)
A(A2 — AL War (2))(1 — Wig(2) War (2))

A2B1 Wiy (2) + A2Wia(2) Wy (2)(A + Bl Wip(2))}  C

A(A2Z — AL Way (2))(1 — Wia(2) War (2)) A

+

Cancelling the common terms from numerator and also from the denominator of the

left side and the right side of the equation we get

AA2 — A1B1 4+ A1B1 Wyy(2) War(2) + A2B1 Wiy(2)
(1 — Wig(2) War (2))(A241 W (2))
 AA2Wiy(2) Wa (2) — B1A2Whs(2)” War(2)
(1 — Wia(2) War(2))(A2A1 Wy (2))

=C

Factorizing the numerator in product form we get

AA2(L — (1 — Wia(2) War (2))) ALBL(L — (1 — Wiz(2) Wai(2)))
(A2A1 Way (2))(1 — Wiz(2) War(2))
A2B1 Wio(2)(1 — Wia(z) Way(2)))
(A2A1 Way (2)) (1 — Wia(2) War(2))
(AA2A1B1 4+ A2B1Wi3(2))(1 — Wia(z) War(2))
(A2A1 Wy (2))(1 — Wia(2) War (2))

C

= C
Cancelling the common terms from numerator and denominator of the left side of the

equation and putting the value of Wy, (z) we get

67



A2B1Wya(2) + AA2ALBL = C{A2 — Al(

Wai(2)

AB1 — A2B2

AB — Al1B?2 )i
 AC(A2B - A1B1)
~ AB- A1B2
_AC A2B—A1B1. A Al
=Bl AB—A1B2) Bl A2
Wials) = S (CWaz) - D455 (@30

Using the expression of Wi4(z) from equation (4.34) we can find the expression of

Wi3(2) in terms of Was(z) from equation (4.29)

W13(Z) =

Al — A2 ng(Z)

A
AL — A2 () 1) - A1
A
A2 C
ﬁ(l - EW%(Z))

1

Bl (A2 — C Was(2))

(4.35)

Now using the expressions of Wiy(z) and Ws(z) from equations (4.34) and (4.29)

respectively we can find the expression of W3, (z) from equation (4.30)

Now,

Wa1(2)(A + B1Wis(2))B1
Al Wy (2) — A2

C AlB1
o= A*{"A(szg(z)*l)"‘w
C AlB1
— R _ 1 T
A1+A2 Wos(2) + e
B A2 A2
ACW- AlB1
_ AC 23(;2* (4.36)
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War (2)(A + B1Wia(z)) — Bl =
AB1 — AZBQ(AC Was(z) + AlBl) Bl
AB — A1B2 A2
(AB1 — A2B2)(AC Was(2) + A1B1)
A2(AB — A1B2)
B1A2(AB — A1B2)
A2(AB — A1B2)
(AB1 — A2B2)(AC Wys(z) + A1B1)
AA2(A1B1A2B)
B1A2(AB — A1B2)
~ AA2(A1B142B)
AC Wy3(2)(AB1 — A2B2)
AA2(A1B1 — A2B)
AA1B1? — A1A2B1B2 — AA2BB1
AA2(A1B1 — A2B)
AlA2B1B2
T AA2(A1B1 - A2B)
AC Wy3(2)(AB1 — A2B2) + AB1(A1B1 — A2B)
AA2(A1B — A2B)
(AB1 — A2B2) LB
AlB1 — A2B ' A2
B1 — C Was(2) 24
A2

= WQg(Z)C

Wi () = 222 i;v n(2) (4.37)

In the similar way we can find the value of Wsy(2)

AB1—-A2B2 A C Al

Wia(z) War(2) = A2 A2
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AB1—-A2B2_ A  C Al

B(1— Wi(2) Wai(z)) — A= B[l — m{ﬁ(ﬁ Was(2) — 1) + 5

[(AB — A1B2) — (AB1 — A2B2){#: (5 Was(z) — 1) + 41} — A(AB — A1B2)

|- A

AB — A1B2
_ (AB— A1B2)(B — A) — B(AB1 — A2B2){ (5 Was(2) — 1) + 45}
B AB — A1B2
Now,
B(1 - Wai(z)) — A
Wals) = (1 — Wia(z) Wai(2))

Al ng(Z) — A2
(AB — A1B2)(B — A) — B(AB1 — A2B2){ (& Wa(2) — 1) — 4L
A(A1B1 — A2B)

Putting the value of Was(z) in above equation we get

AA2B?B1 — A2A2BB1 — A1A2BB1B2 + AA1A2B1B2
AA2B1(A1B1 — A2B)
+,42,42331 — AA2’BB?2
AA2B1(A1B1 — A2B)
—AA1BB1? + A1A2BB1B2 — ACB(AB1 — A2B2) Was(2)
AA2B1(A1B1 — A2B)
ABB1(A2B — A1B1) + AA2B2(A1B1 — A2B) — ACB(AB1 — A2B2) Wa3(2)
AA2B1(A1B1 — A2B)
A(A1B1 — A2B)(A2B2 — BB1)
AA2B1(A1B1 — A2B)
ACB(AB1 — A2B2Ways(2))
~ AA2B1(A1B1 — A2B)
A2B2—- BBl  BC (AB1 — A2B?2)

= 23(2)

A2B1 " A2B1 Al1B1— A2B

Bl A2 T A2B1 Wa(2)

W32(Z) =

23(2)

A2B1
_ A2B2+ B(C'Wx(z) — B1)
- A2B1
B2 AB

Bl T ABLA2(C Wa(2) — BI)
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Thus we have values for all the demixing coefficients

Was(z) = él?zfjllg;

Wis(z) — Eli(AQfC’W%(z))
Wols) = (s Wasle) = 1)+ 55
Wy(z) = Bl*j;/l/él(z)

Wi(z) = —B}I[B2—BW31(2)]

The values we have found of all demixing coefficients are in terms of A, A1, A2,
B, B1, B2, C, C1, C2. Taking the direct mixing filters Ay;(z), A22(z) and Ass(2) as
the unity filters we will find the expressions of six demixing filters in terms of mixing
filters A12(2), A13(2), A21(2), A2a(z), Azi(z) and As2(z). We do not need to find
the expressions for direct demixing filters Wii(z), Was(2) and Wss(2) because in the
derivation of adaptation rules for demixing coefficients we have assumed those as unity

filters.
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ABl1 — A2B2 =

(1 — Aiy(2) A9 (2))(Ag3(2) A1 (2) — An(2))
Gm3(z)2
(A2 (2)A13(2) — Apz(2))(As2(2) A (2) — Azi(2))
Gm3(z)2
Agz(z) Az (2) — Ao1(z) — Ara(2)Aa1(2) Ass(2) Az (2) + A12(Z)A21(z)2
Gm3(2)2
—1413(2:)%132(2)%121(2)2 + A9 (2)A13(2) Az1(2) + A1 (2) Aoz (2) Asa(2)
Gm3(2)2
N A‘Zf’éié”)l?_(z) (4.39)

AB - A1B2 =

(4.40)

Gm3(2)2

Dividing equation (4.39) by equation (4.40) we get the expression for Woy (2)

_ AB1 - A2B2
 AB — A1B2
= —As(2) (4.41)

Now,
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A2B — A1B1

Therefore,

W13 (Z)

Wis(z)

(A21(2) A13(2) — As3(2)) (1 — Agz(2)As2(2))

Gm3(2)2
—(A12(2) Ag3(2) — A13(2))(A2s(2) Az (2) — An(2))

Gm&( )2

Ay (2)A13(2) — Awz(2) Aas(2 )Am( )Asz(z) — Ans(z) + Aps(2)” Asp(2)
m3(2)°
— Ayp(2) Ags(2)° A (2) + Apa(2 )Azl( ) Aoz (2) + Az(2) A (2) Aoz (2)

Gm3 (2)2
—A13(2)An (2)

Gm3(2)2
— Aoz (2)(1 — Agz(2)Ase(2) — A12(2) A2 (2) — A13(2) As1(2) N

)— A
Gm3(2)2
A13(2)An(2) Asa(2) + A12(2) Aoz (2) As1(2))

Gm3(2)2

A2B — A1B1

5 aigs = A=n) (4.42)

Was(z) =

A2 — C'Was(2)
B1
Ay (2)A13(2) — Azs(z) + An(2)(1 — A13(2) 431 (2))
Ags(2)Az1(2) — An (2)

—Ay3(2)(A3(2) Az (2) — Ani(2))

(A23(2) Az1(2) — A2 (2))
—A13(2)(A23(2) A (2) — An(2))

(A23(2)A31(2) — An(2))

= —A13 (Z) (443)
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A

Wia(z) = E(—ZEABO) 1)+

(1 — A9(2)As1(2))
(A23(2)A31(2) — An(2))
+(A1z() 3(2 - 13()

Az (2)A13(z) — Ags(2)

21(7))
— Agn(

(1 — Ay3(2)A3(2))
(A2 (2)A13(2) — Aa(2))

{— Aas(2)
)

) —Aga(2) + Ans(2) A13(2) A (2)
(A2s(2) Az (2) 1(2)) A (2)Arz(2) — Asa(2)
N (1 — Ay2(2) A1 (2)) —As1(2)A1s(2) + Aos(z)
(A2 (2)Az1(2) — An(2)) = Aa(2)Awz(z) — Aas(2)
)

(1 — Aua(z

}

Arp(2)Aaz(2) — A1s(z)
Ag1(2) Ars(2) — Azs(z)

(1 — Ap(2)A21(2))
(A2s(2)Asn(z) — (2
Aqa(z)Ass(z
(

((A23(2)Az1(2) — An(2))
(A21(2) A1z(2) — Aga(2))

Ay3(2)

21

)
) — Aus(2)
) — Az
z2)A12(2)A
A (z)A
—Ay2(2)(Aa(2)

Az (z) — Az(2))

Az1(Z)A13(
As(z ) Az

—_~ \_/\/A/'\
l\’)
—
~_
N
~—
_I..
I
[un

v no
—~
N
~—
oS
N
w
—~
~—
b
—
w
—
S—

Wia(2) = —Az(2) (4.44)

Wi (z) =

As2(2)Az1(2) — An(2) + A (2)(1 — A13(2)An (2))
A21( )A13(z) — Az(2)
Ag3(2)As1(2) — An(z) + An(z) — An(z)Ar3(2)An (2)
Ag () Arz(2) — Azs(2)
— A3 (2)(An (2) Ar3(2) — A2(2))
(A2 (2)A13(z) — Az(2))

Wi (z) = — A (z) (4.45)
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B2 - B W31 (Z)

Wia(2) Bl

_ An(2)An (2) — An(2) + An (2)(1 — Axs(2)An(2))
Ag3(2) A (2) — An(z)
gy As(2) A5 (2) — An (7))
As22) (G ) Ane) — Am ()
(4.46)
Waz(2) = —As(z) (4.47)

The above results are the same as the results in the two sources and two sensor case

which were

Wia(z) = —Aw(z)
Wa(z) = —An(z)
Wi(z) =1
and Wa(z) = 1 (4.48)

Thus, generally for any N X NV network with feedback architecture and assuming direct
filters have the unity gain we can write the relationship between mixing and demixing

filters as

Wij(z) = —Ay(z) (4.49)

which is the ideal solution when direct mixing and demixing filters have unity gain.
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4.2 Conclusions

In this chapter we have derived the ideal solution for N x /N feedback network architec-
ture with a certain constraint that the direct mixing environmental and demixing filters
have unity gains. The relations found between mixing and demixing filters are essential
to verify if the whole system is stable or unstable. At first we have introduced Kari
Torokkola’s [71] feedback network architecture and his derivation of ideal solution for
two sources and two sensors case and afterwards we have extended the solution for

N x N case.
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Chapter 5

Derivation of adaptation rules

5.1 The one input and one output case

If a single input z is passed through a transforming function g(z) to get an output
variable y, both the output entropy H (y) and mutual information between the input
variable z and the output variable y are maximized when the high density parts of the
probability desnity function (pdf) f,(z) of z is aligned with the highly sloping parts
of the function ¢g(z). According to [69] “this is the idea of matching a neuron’s input-
output function to the expected distribution of signals.” When ¢(z) has a unique inverse
i.e., it increases or decreases monotonically, the pdf, f,(y), of the output variable, y, can

be expressed in terms of the pdf, f,(z), of the input variable, z, [69]:

fy(y) = 10y/01] (5.1)

where |0y/0z| means the absolute value of dy/0z. The entropy of the transformed

variable, H (y), is expressed by the following formulla:

H(y) = —E[ln fy(y)] = - / ) Ind, () dy (5.2)
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where E|.] is the expectation operator. Substituting equation (5.1) into equation (5.2)

gives

dy

ORI A ) (53)

The term E[ln f,(z)] on the right hand side of the equation (5.3) depends only on the
input variable z because this quantity is the entropy of z only. Therefore, a change in
the parameter w will not affect the term E[ln f,(z)]. So, we need to maximize the term
E [ln l%ﬂ with respect to the parameter w in order to maximize the output entropy
H{(y). We can use the so called “online”, stochastic gradient ascent learning rule for

this purpose:

Awaa—H— 0 <1n

9 (1,19
ow  Ow

oz

_(oy\ ' o [0y
)'(a?) a—w<a—x) G4

Multiplying the input by a weight w and adding a bias-weight wy to it, i.e., 4 = wz +wy

we can derive the adaptation rule for the following logistic transfer function:

1
y - (1 + eiu) (5‘5)
The term % 1s derived as:
0
o~ wy(1 - y) (5.6)
ox
0 (0dy .
a (a—) = (1 - )1+ w1 — 2y)) 5.7)

Thus the learning rule for the given logistic function is obtained by dividing equa-

tion (5.6) by equation (5.7) and calculated from the general rule of equation (5.4):
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1
Aw o -~ + z(1 - 2y) (5.8)

The learning rule for the bias-weight w, can be found in the same way:
Awy o (1 —2y) (5.9)

5.2 The general N X N Network case

Referring to Fig. 4.1 we first derive the adaptation equations in the time domain using
mixtures of two sources where g is the logistic function y = g(u) = {ryo=y. Following
Bell and Sejnowski [69], we can minimize the mutual information between outputs 4,

and g, by maximizing the entropy at the output, which is equal to maximizing E[ln|J|].

5.2.1 Two sources and two sensors case

There are two cases we can consider.

First Case

Assuming causal FIR (Finite Impulse Response)-filters for W;;, the network carries out

the following in the time domain

L11 1112

’Uq(t) = Zwlklzl(t—k)+2w1k2u2(t— k’) (510)
k=0 k=1
Ly Lo

Up(t) = Z Woa o (t — k) + Z woprty (t — k) (5.11)
k=0 k=1
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Since the direct mixing filters Wy (z) and Way(z) are assumed to have unity gain for
information maximization criterion, we don’t need to learn the update rules for these
two demixing filters and we will learn only cross demixing filters Wi, (z) and Wy, (2).

In that case equations (5.10) and (5.11) can be rewritten as follows:

Li2

w(t) = m(t) + ) wireu(t — k)

Loy

w(t) = o(t) + Y waaui(t — k)

The multivariate probabilty density function of y can be written [69]:

K(y) = (5.12)

where |J| is the absolute value of the Jacobian of the transformation. The Jacobian is

the determinant of the matrix of partial derivatives:

Oy dy1
e .
Oyz Oy
T o
J=det | ... .. ... ... (5.13)
Byn 6:’!71
B e e 5o |

in our present case we assume 7 is equal to 2. In that case |J| becomes: The derivation
proceeds as in the previous section instead of maximizing In |0y /0z|, we maximize

In|J|. Now,

n(t) = g(u) = (5.14)
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Yo(t) = g(w) =

The determinant of Jacobian matrix for above two equations is

Sy op
J =det | O O

Oy2  Oyz

oz Oz,

I 0%y
where,

on _ 0n 0w
or,  Ouy 01y
on _ 0y o
Or,  Ouy 01y
O _ O O
Or;  Ouy Ony
Oz _ Oy2 Ouy
Oy Ouy 01

From equation (5.10) and equation (5.11) we get for k = 1

Ul(t) - $1(t) -+ w112u2(t - 1)

Up(t) = 22(t) + worrwa (¢ — 1)

From equation (5.22) and (5.23) we get

Ou
85[?1 a
('3u2

Jd T2

aul

’ 3.’52

P
1 2%

’ 31’1

81

1

T ew)

Oy Oy
aiﬂz 8.’1,'2

(5.15)

(5.16)

(5.17)

(5.18)
(5.19)
(5.20)

(5.21)

(5.22)
(5.23)

(5.24)

(5.25)



where,

Oy Oy _ .’
duy = and Buy =¥

Putting the values from equations (5.24) and (5.25) in equation (5.17) we get fol-

lowing equation:

1] =w'y (5.26)

Taking logarithm on both sides of equation (5.26) we have

InlJ| =y +Iny (5.27)

Now, taking partial derivatives of In |.J| with respect to wy12 and w1 we get

om|J| _ 1 oy 1 9w
w1z 9 Ownig Yo' Ownig
Oln | J]| _ 1 oy’ N 1 dys’
Jwyy ?/1' Owyyy .’1/2’ Owsny

Aw112 X

(5.28)

A’LUQU X

(5.29)

7

oy,
By,

For the logistic function = 1 — 2y,. Thus we can write for the partial derivatives

for Wy 12 and W11 -

Oy, Oy Oy O

Ouwn1a Oy Ouy Owiro ( 1)y ua( ),

892, N ayzl Oys Ouy

- EN =0, 5.30
Owny  OYa Oug Owiio (5.30)
6y1' _ 8y1’ 8y1 8’1},1 _0
Owayr Oy Ouy Owany ’
83/2, 6:1]2/ Oys Ous ,
aw?ll ayz 6u2 6'(1}211 ( yZ)yQ Ul( )7 ( 3 )
(5.32)
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Thus the adaptation rules for two demixing filter coefficients for the first delay become

Awngg o (1 = 2y1)up(t — 1)

A'l,UQU X (1 - 2y2)u1(t - ]_) (533)

In general we can write the adaptation rule for demixing filter coefficients as follows:

Awik]- X (1 — le)'u,](t — k) (534)

Second Case

Assuming IIR (Infinite Impulse Response)-filters for Wj;, for the network of Fig. 4.1

we can write the following equations in z-domain

UI(Z) = UX1(Z) + UU2(Z) (5.35)
Up(z) = Uxo(z) + Uyi(2) (5.36)

In terms of demixing coefficients we can write

Ui(z) = Whi(2)Xa(z) + Wia(z) Us(2) (5.37)
Uy(z) = Waa(2)Xa(2) + Wa(2) Uy (2) (5.38)

where Wy, (z) and Way(z) have unity gain and Wi2(z) and Wa (z) have the following

IIR (Infinite Impulse Response) structure

L2 —k
b1 e
Wis(2) = ko b1re? (5.39)

1—- Zifl Uypoz "
La1 —k
_ b k1%
W (2) = Z’“*g; S (5.40)
1= ao 2™
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Using the above two values of Wio(z) and Wy, (z) we can write Uyo(z) and Uy, (z) as

shown below

L1 _
2 b1kez K
Uyy(z) = k=0 Us(2) (5.41)
- Ziﬁl oz "
Ziilgbwclzik

L2y _
11— Zk:1a2k12 k

Uyi(z) = Ui(2) (5.42)

In the time domain we can write

L12 L12

Uua(t) = Za1k2uu2 (t—Fk)+ ZblkZUQ (t—k) (5.43)
k=1
L21 le

uu1(t) = D aoprun (T —F) + szkﬂh (t—k) (5.44)
k=1

Now, in time domain we can write equations for u;(¢) and us(t) as

L12 L12
t) + Z(llkg’uug(t — k) + ZbleUQ(t - k) (545)
= k=0
L2 Lz
= n(t) + Zag,ﬂum ) + Zb2k1u1 (¢t — (5.46)

Following the steps used in the first case (FIR (Finite Impulse Response) case) we can
derive the adaptation rules for demixing coefficients ayxo, G2x1, b1g2 and byxo. As we
have done before the determinant of the Jacobian is the determinant of the matrix of

partial derivatives:

oy1 oy
Bay e e,
Sy dyz
Do e e
det J =det | ... ... ... .. (5.47)
6yn ayn
| o e e B |




For simplicity we assume 7 1s equal to 2. Now,

1
n(t) =g(m) = (14 e )
1
p(t) = g(wm) = Ot em) (5-48)

The determinant of the Jacobian matrix for the above two equations is

dy1  dnm

det J = det | 20 9= (5.49)
9y2 Oy
o011 Ozy

_ Oy Oy Oy Oy

| [_a_:cl%;_a—@a—@ (5.50)
when,
_g_y_ - gy_g— (5.52)
5% _ gi/_zgz_f (5.53)
g%i = 2—32—% (5.54)

There 1s no zero delay coefficients for a1xo, asx;. When k£ = 1 equation (5.45) and (5.46)

become

Ul(t) = ll(t) + auzuug(t - 1) + buQUQ(t — 1) (555)

Ug(t) = ZLz(t) -+ a211uu2(t - ]) —+ b211’U,2(t — 1) (556)
From equations (5.24) and (5.25) we get
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8u1 —1 3u1

=12 =9 5.57
8371 ’ 81}2 ( )
3u2 0u2

1.2 =0 5.58
85172 ’ 81‘1 ( )
Let, g—;’ﬁ =y and % =y
Then the equations become
0 '
=y (5.59)
I
oy
— =0 5.60
31, (5.60)
0o
— =0 5.61
o1, (5.61)
6y2 '
— = 5.62
015 Y2 ( )

Putting the above two values we get the new equation for determinant of Jacobian matrix

which 1s

I =u'p (5.63)

Taking the logarithm on both sides

InlJ|=Iny, +Iny (5.64)

Taking partial derivative of In |J| with respect to a;,2 we get

oln |J 1 oy 1 Oyy
n||: y1+ Yo

— -
a2 Y O0ai Yo Janz

(5.65)
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Like as in the FIR (Finite Impulse Response) case for the logistic function we have

!
Yy,

By 1 — 2y;. Thus we can write for the partial derivatives for a;19:

5y1’ oy Oy O
day12 - ﬁﬁaanz (5'66)
= (1 - le)ylluu‘z(t - 1)7 (5.67)

ay?’ a ! o 61_42
0ay12 - 3%4223—7‘3; Jdai1z (5.68)
= (1= 22) 10 1420 = 0, (5.69)

The adaptation rule for a;;2 becomes
Jin |J '

Aaug X I I = ﬁgfllw (570)

112

— 1 op’ Oy ouw
y1' Oy1 Ouy danrz

= ﬁ(l — 200) Y1 Uyo(t — 1)

= (1 = 2y1)uue(t — 1) (5.71)

Using the same steps as for a;;2 we can derive the adaptation rule for as;. Taking

partial derivative of In |J| with respect to gs1; we have

OnlJ| 5 ow' | 1 0w (5.72)

Aas1y y1' Oan ya' Qo211

Thus we can write for the partial derivatives for as;:

31/11 _ ayll Oy, Ouy
Oagn Byl Ouy Oagny

Yy Oys Oys Ouy ,
N = (1= 210) 95 wan (¢ — 1), 5.74
Oap;y  Oya Ouy Dagyy ( Y2)Y2 thur( ) (5.74)

=(1—20)y1 0=0 (5.73)

The adaptation rule for ag;; becomes

87



Oln | J| L oy
= g 5.75
8(1/211 Y2 da11 ( )

— 1 0w O du
y2 Oy2 Ouz daznn

= (1 - 2y2)uu (¢ — 1)

Aa211 X

Using the steps used for ai12 and ag; we can prove that the adaptation rules for a;92

and agy1, 1.€., when the delay index £ = 2 are as follows:

Aargy o (1 — 2y1)uys(t —2) (5.76)

Adgyr o (1= 2yp)uyy (1 — 2) (5.77)

In general for any delay k& the adaptation rules for a;,; will be

Aaikj X (1 — Qyi)uuj(t — k) (578)

where, + = 1, ..., N and where j = 1, ..., N. NV is the number of sources or the number

of sensors assuming that the number of sources is equal to the number of sensors.

5.2.2 Three sources and three sensors case
First case

Assuming causal FIR (Finite Impulse Response)-filters for the W;; of the network yields

the following dynamical relationships

Li2 Lig
w(t) = 2 (t) + Y woua(t — k) + > wigsug(t — k)
k=1 k=1
Loy Los
w(t) = () + Y waw(t — k) + > wzus(t — k)
k=1 k=1
L3y L3z
uz(t) = x3(t) + Z wagr g (8 — k) + Z Wsga Uz (t — k) (5.79)
k=1 k=1

The multivariate probabilty density function of y can be written as
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- A(x)
Kiy) = ] (5.80)

where |J| is the absolute value of the Jacobian of the transformation. Now,

1
n(t) = g(wm) = Otem)
1
w(t) = g(u) = A¥e )
1
y3(t) = g(us) = M tew) (5.81)

By taking the logarithm of the determinant of the Jacobian matrix and then partial
derivatives of it with respect to the demixing coefficients, the adaptation laws for wno,

w13, Wo11, W3, W311 and ws 2 may be developed as follows:

Aw112 X (1 — le)UQ(t — 1), A’U}Hg X (1 — 2y1)U3(t — 1)
A’LUQH X (1 — 2y2)u1(t — 1), A’U}ng o (1 - 2y2)u3(t — 1)

AU}311 X (1 - 2y3)u1(t - ].), A'LU312 X (1 — 2:1/3)U2(t - 1) (582)

In general, the adaptation law for the cross filter coefficients is given by

Second case

Assuming IIR (Infinite Impulse Response)-filters for the W;;’s, the network shown in
Figure 4.1 can now be represented formally according to the following equations cor-

responding to three sources

Ui(z) = Ux1(2) + Uyra(2) + Uyis(2)
Up(z) = Uxa(2) + Uyan(2) + Uyas(2)
Us(z) = Uxs(z) + Uysi(2) + Uysa(2) (5.84)
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where in terms of the demixing coefficients it can be written as

Ui(z) = Wi(z)Xi(2) + Wiz(z) Uia(2) + Wis(z) Urs(z)
Us(z) = Wa(2)Usi(2) + Waa(2) Xo(2) + Was(2) Uss(z)
Us(z) = Wii(2)Us(2) + Wia(2) Usa(2) + Waz(2) X3(2)
(5.85)

The filters W1(z), Was(z) and Wi3(z) have unity gains and Wis(z), Wis(z), Wai(2),
Was(z), Ws1(z) and Wisa(z) have following IIR (Infinite Impulse Response) structure

b gk
Wiiz) = Zk‘fljmy - j=2,3
L= 2 arkjz
Lo; bor.z—k
—oV2kj5% .
Wy(e) = —ERE o
1= 2 askjz™
Ls; Bars —k
WS]‘(Z) _ Zk:o 3kj % =12 (5,86)

Ls; —k
1 =2 2 ashy2

Using equation (5.86) we can obtain equations for u (), uz(t) and u3(¢) in the time

domain as
Lis L3
w(t) = n(t) + Y aotuia(t — k) + Y bows(t — k)
k=1 k=0
L1z L13
+Za1k3uul3(t — k) —+ Zblkg,Ug(t — k)
k=1 k=0
Lo L2y
UQ(t) = 172(15) + Zagkluu21(t - k) -+ Zbgklul(t — k)
k=1 k=0
Loz Las
+Za2k3uu23(t —k)+ Zkasus(t — k)
k=1 k=0
L3y L3
us(t) = 23(t) + > a1tz (t— k) + Y by (t — k)
k=1 k=0
L3z L3z
+ Casiatiuaz(t — k) + Y bseaua(t — k) (5.87)
k=1 k=0
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Following the steps used in case the FIR (Finite Impulse Response) case we can de-
rive the adaptation laws for the demixing coeflicients agu; and by;. Since there are no
zero delay coeflicients for a;; we can begin with k& = 1 . Under this condition, the

equation (5.87) becomes

ur(t) = 21(8) + a112Uy1o(t — 1) + brgus(t — 1) +
a113Uy13(t — 1) -+ bygus(t — 1)
up(t) = T(t) + a1 tyoi (E— 1) + boppug (8 — 1) +
213Uu23 (1 — 1) + byzuz(t — 1)
us(t) = z3(t) + azpuen (E— 1) + bsnnwg (¢ — 1) +
a312Uy30(t — 1) + b3joup(t — 1) (5.88)

The adaptation rules for @112, @211,0913, @312, @113 and a3 can be shown to be governed

by

Oln |J
Aayg 5 7] = (1 = 2y1)uy2(t — 1)
112
Oln |J
Aay 5 /] = (1 —2y2)uys(t — 1)
911
Oln |J
Aayz X 5 /] = (1 = 2yp) tyo3(t — 1)
a213
Oln |J
ACLg]Q X P | I - (1 - 23/3)%32(75 - 1)
asi2
Oln |J
Aaps 5 7] = (1 — 2y )uu3(t — 1)
113
Oln |J
Aag x 5 | ’ = (1 - 293)%31“ - 1) (5.89)
a311

In general, for the k' delay term the adaptation rules for a;;; becomes

Aagy oc (1 — 2y;)uy, (t — k) (5.90)

where,2=1,...,N,j =1,..., N, and NV 1s the number of sources or sensors (assuming
that the number of sources is equal to the number of sensors). The derivation of the

adaptation rules for b;; follows along the same line and are given by
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Abig o< (1 — 2y:)u(t — k) (591

5.3 Conclusions

In this chapter we have presented the adaptation rules for the demixing coefficients of
N x N feedback network architecture shown in chapter 4. At first we derived the adap-
tive rules for two sources and two sensors case and afterwards we have generalized the
adaptive rules for IV x [V architecture. In both cases we have used FIR (Finite Impulse

Response) and IIR (Infinite Impulse Response) architectures for demixing filters.
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Chapter 6

Simulation results and discussion

In this chapter, we present our simulation results for the two cases that were considered

in the previous section.

6.1 Two sources and two sensors case

Two sinusoidal signals each composed of two different frequencies are synthetically
generated. The frequencies in the first signal are 50 Hz and 75 Hz; and the frequen-
cies contained in the second signal are 50 Hz and 100 Hz. The Signal to Noise Ratio
(SNR) is set to 15 dB. These signals are then convolved with mixing filters that repre-
sent the environmental factors. Our objective is to determine the effects of variations
in the length of the mixing filters on the quality of the recovered signals. A total of
4000 data points are generated from the two signals and used in the mini-batch learning
system to learn the demixing filter coefficients. In every batch we passed 50 data points
each time and the total number of windows used was 79 for the complete data set. The
results presented below are obtained after 100 epochs through the entire data set and

correspond to what was obtained from the last window.

The simulation results are conducted for two specific scenarios, namely

(i) W15 and Ws, are FIR (Finite Impulse Response) filters so that from equation (4.11)

93



we can make Wiao(z) FIR (Finite Impulse Response) filters in three ways:

1. Aj1(2) and A2 (z) have unit gains and A12(z) and A4 (z) are FIR (Finite Impulse

Response) filters,

2. Aji(z) and Age(z) are IIR (Infinite Impulse Response) filters and A;2(z) and

As1(2) have unit gains, and

3. A11(z) and Ag(z) are IIR (Infinite Impulse Response) filters and Aj2(z) and
A9 (2) are FIR (Finite Impulse Response) filters.

(ii) W19 and W5, are IIR (Infinite Impulse Response) filters. The results obtained are

discussed below.

(i1):  As shown in Table 6.1, and as expected, with the increase in the order of
the mixing filters the correlation factor decreases and the mean square error increases
except the first one which was not desired. Clearly the higher the filter order the more
the source signals suffer from the environmental distortions. The correlation is highest
and the mean square is the minimum when the filter length of the mixing filter is set to
6. The original source signals, convolved signals at the sensors, the separated signals,

the mixing filters and, the learned coeflicients are shown in Figures 6.2, 6.1 and 6.3.
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Type of Order of mixing filter Correlation Mean Square Error
demixing
) All | A22| A12| A21|S1,Ul | S2,U2 |S1,Ul | S2,U2
Filter
Unity [Uni
my Pty b s 081 | 097 0.4 0.41
gain |gain
Case 1 Unity | Uni
n1 ni
uty| bnity) 4 | 096 0.99 0.1 0.07
gain | gain
Unity| Unity | 4 4 | 084 | 094 037 0.29
gain | gain
Unity | Uni
uty| Unity |- 4 | 069 | 092 0.67 0.5
gain | gain
Unity | Unity
2 2 ) ) 0.94 | 0.93 0.48 0.45
gain | gain
Case? | 3 , | Unity| Unityl 994 | 095 0.0001 | 0©
gain | gain
Unity | Uni
4 4 nty) Unityl - e 0.66 0.0003 | 0.0001
gain | gain
Case 3 2 2 | 2 2 0.51 0.64 1.63 1.0

Table 6.1: The summary of the results for the cases (i1)-(13) when W35 and Ws; are FIR

(Finite Impulse Response) filters.

(i2): Inthe second case we varied the filter length in the same way as we did in the
FIR (Finite Impulse Response)st case. From Table 6.1 we can see that with the increase
in the order of the two mixing filters, the correlation between the original source signals
and the recovered signals decreases. In this case, the first result 1s much better than
that in the first case. The highest correlations are 0.94 and 0.95. There is no significant
difference when the total filter length was increased from 4 to 6 in contrast to what has
happened in the first case. The correlation between the first source and the first recov-
ered signal was changed drastically from 0.81 to 0.96. The correlation is decreasing

considerably in both cases when the combined filter length is exceeding 6. Also, us-
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Figure 6.1: Pole-zero locations and magnitude response of A, and Ay

ing the same total filter length we don’t obtain the same result in two cases implying
that the distribution of mixing filters have an effect on the quality of the recovered sig-
nals. We used unity gain in the direct filters in case (i1) and in cross filters in case (i2).
Therefore, different kind of distribution of mixing filters are producing different results
having the same total mixing filter lengths. The separated signals, the mixing filters

and, the learned coeflicients are shown in Figures 6.5, 6.7 and 6.6.

(i3): In this case no filter was used with unity gain. We have used two FIR (Fi-
nite Impulse Response) and 1IR (Infinite Impulse Response) filters implying that the
environmental distortion is significant. Our proposed method was not able to separate
the signals completely and as a result the recovered signals are weakly correlated to

the source signals. Therefore, the distribution of the mixing filters used to convolve
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Original signal Convolved signal Recovered signal
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Figure 6.2: The separated signals corresponding to case (i1), second scenario.

the source signals is of utmost importance in the performance of the source separation

problem using the proposed methodology.

(ii):  The demixing coeflicients are adjusted using the adaptation laws given by
equations (5.78). In this case the recovered signals have correlations of 0.91 and 0.85.
The recovered signals, the pole-zero locations of the four filters and the learned coef-
ficients are shown in Figures 6.8, 6.7 and 6.9. The four filters are selected to be IIR
(Infinite Impulse Response). The complexity of the system implementation was in-
creased considerably by using this structure. The combined mixing filter length is set
to 11. We can state that with this higher filter length the obtained results are better, al-
though the second signal is less correlated to its respective source signal implying that

it is not separated completely.
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Figure 6.3: W;5 and Wy, from different windows after 100 iteration
6.2 Three sources and three sensors

The same information maximization approach was also utilized for three sources and
three sensors case. We synthetically generated three sinusoidal signals each composed
of two different frequencies. The frequencies in the first signal are 50 Hz and 150 Hz;
and the frequencies contained in the second signal are 50 Hz and 120 Hz and the third
signal contains 50 Hz and 75 Hz frequencies. The Signal to Noise Ratio (SNR) is set to
15 dB as in previous case. We used nine mixing environmental filters for convolution
of signals. For each cross mixing filter the constant dc gain was maintained below 0
dB. Only the direct mixing filters have unity gain. It has been done to ensure that the
signal strength coming through the direct mixing filter at each sensor is higher than the
combined signal strength coming through the other two cross mixing filters at the same

sensors. We generated a total of 4000 data points from the three signals and used then

98



dB

A

o
Imaginary part

o

Q

0 500 1000 1500 -1 -0.5 0 0.5 1
Freguency in Hz Real part

dB

X

o
Imaginary part

o

o)

0 500 1000 1500 -1 -05 0 0.5 1
Frequency in Hz Real part

Figure 6.4: Pole-zero location and magnitude response of A;; and Ago.

the mini-batch learning system to learn the demixing filter coefficients as in the the two
sources and two sensors case. In every batch we passed 50 data points each time and the
total number of windows used was 79 for the complete data set. The results presented
below are obtained after 100 epochs through the entire data set and correspond to what
was obtained from the last window.

Since the ideal solution for 3 sources and 3 sensors has been generalized for any
arbitrary number N (see equation (4.49)) the special case which is direct mixing filters
which have always unity gain, the simulation results are conducted for only one specific

scenarlios.

(i) Wi, Wis, Wy, Wos, W3 and Wis are FIR (Finite Impulse Response) filters and
Ay1(z), Ax(z) and As3(z) have unit gains and A12(2), A13(2), A21(2), Ax(2), As1(2)
and Aj,(z) are FIR (Finite Impulse Response) filters.
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Original signal Convolved signal Recovered signal in reverse order
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Figure 6.5: The separated signals corresponding to case (i2), second scenario.

We have started from filter length 1 and increased up to the length 9. There is no
combined filter length here since according to ideal solution demixing filters depend
only on that corresponding mixing filters. Each time we used all mixing filters of the
same order. How the variation of the mixing filter length affect the quality of the recov-

ered signals has been presented in tabular form in Table 6.2

In two sources and two sensors case the variations in the quality of signals and their
correlation factor with original signals was noticable with the variation of the combined
mixing filter length with same mixing filter distribution. But from Table 6.2 we can see
the correlation factor didn’t decrease gradually as the filter length increases. The reason
is that for initialization process of demixing filters we started the initial values quite
close to the ideal values and gradually increased the radius (the distance between the

ideal value and initial value) of the circle in which the initial value lies. We have found
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Figure 6.6: W5 and Wy, from different windows after 100 iteration

all initial values for same order of mixing filters didn’t give the same result. As the
radius increases the correlation factor decreases and means square increases. Finally
we have used the initial value which was giving approximately the same result as of the
one closest to the ideal solution. The highest correlation we obtained here is 0.98 and
the lowest one is 0.88. For the first reccovered signal the correlation factor has been
decreased slightly. But for the other two recovered signals some times it is increasing
and some times this is decreasing which is not desirable. For all the filter lengths from
1 to 8 we have used the same procedure which was not taken in the two sources and two
sensors case. The separated signals, pole zero locations of six mixing filters and learned

coeflicients are shown in Figure 6.10, 6.11 and 6.12 when the mixing filter length is 4.
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Figure 6.7: Pole-zero locations of A, Ase, Ao, and A .

In closing, we would like to point out some important attributes that seem to affect the

performance of the source separation system as follows:

Adaptation rate:

1. Two sources and two sensors case: Although there are a number of adaptive
schemes for adjusting the learning rates we didn’t get very good results using
these methods. Instead a constant adaptation rate was used in each iteration. In
most of the cases during the first iteration the learning rate was around 0.00007
and the next 9 iterations it was changed to 0.000001 and for the last 90 iterations
it was set to 0.0000001. Using a higher learning rate generally made the system
unstable. Our best result (case (il), second scenario) was obtained using the

learning rate of 0.000067 in the first iteration, 0.000001 in the next 9 iterations
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Figure 6.8: The separated signals corresponding to case (i1) when Wi5 and W5, are [IR
(Infinite Impulse Response) filters.

and for the last 90 iterations it was set to 0.0000001.

2. Three sources and three sensors case: We learned the demixing filter coefficients
using the learning rate of 0.00001 for the first 4 iterations, 0.000001 for the next

6 iterations and for the last 90 iterations it was set to 0.0000001.

Locations of poles and zeros: Before applying the learning procedure we need to
ensure that the resulting mixing filters will yield stable system. This can be verified
easily by using equation (4.11) corresponding to the ideal solution of the general N x N
case. Also, choosing the proper initial values for the demixing filters are important as
one has to make sure that the first initial values of the demixing filters also produce
stable output. One of the major drawbacks of this approach is that if the initial value

of demixing filters are very far from the ideal values (specified according to the ideal
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Figure 6.9: learned coefficients of a12(2), 421(2), b12(2) and by (2)

solution), this algorithm may not be able to converge to the right values. Its major
advantage and utility is its fast and easy implementation and that one does not need to

pre-whiten the observed data.

Effect of SNR:

1. For the generation of synthetic data in all of the cases we set the value of the
SNR to 15 dB. By changing the value from 5 dB to 30 dB with an increment by
5 dB each time we verified our results to determine the sensitivity of the results
if this 15 dB value is crucial or not. We did not find significant differences in the
perfromance of the system. For three sources and three sensors case a change in
SNR from 5 dB to 30 dB caused less than 0.5 percentage of change of correlation

factor when the filter length was 4.
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Order of mixing filter Correlation Mean square error

All A22 A33 |A12 |A13 A21 |A23 |A31 A32 | UL, SY | U2,S2 | U3, 83 | UL SI | U282 | U3,S3

Unity Unity Unity 1 1 1 1 1 1 0.97 0.97 0.91 0.18 0.22 0.51

gain gain gain

Unity Unity Unity 2 2 2 2 2 2 0.98 0.92 0.93 0.15 0.43 0.5

gain gain gain

Unity Unity Unity 4 4 4 4 4 4 0.95 0.95 0.95 0.27 0.28 0.31

gain gain gain

Unity Unity Unity 6 6 6 6 6 6 0.91 0.96 0.90 0.6 0.25 0.58

gain gain gain

Unity Unity Unity 8 8 8 8 8 8 0.88 0.96 0.92 0.87 0.25 0.44
| gain gain gain

Table 6.2: The summary of the results when W5, Wi3, Wy, Was, W3y, Wis are FIR

(Finite Impulse Response) filters.

2. At the sensors we always maintained higher signal to noise ratio which is very
crucial for the separtion of signals. In our case, for these specific synthetically
genrated data this signal to noise ratio must be at least 4.46 dB for successful
separation of the signals. Here the signals which are coming through the cross
mixing filters are defined as the noises at the sensors and the signal which is
coming through the direct mixing filter is defined as signal. If the combined noise
strength is higher than the signal strength then it is quite impossible to separate

the signals independently.

6.3 Conclusions

In this chapter simulation results have been presented in the tabular form and have
been using different pole-zero diagrams and separated signals. In most of the cases we
have obtained desired results. There are also some exceptational cases in two sources
and two sensors case which were not desired. The correlation factors especially in three
sources and three sensors case have high percentages in most of the filter orders because
special precaution have been taken in this case. The performance of the system is almost
unaffected by the SNR variation. But the signal to noise ratio at the sensors have severe

effect on the stability as well as the performance of the whole system.
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Original signal Mixture of signals Recovered signal
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Figure 6.10: Separated signals for three sources and three sensors case when demixing

filters are FIR (Finite Impulse Response).
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Figure 6.11: Pole-zero locations of Aj5(z), A21(2), As1(2), A13(2), Asz(2), and A3z (z)

(clock wise).
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W12(2Z) after 100 iteration W21(Z) after 100 iteration W31(Z) after 100 iteration
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Figure 6.12: The learned coeflicients of ng(Z), V‘/lg(Z), WQl(Z), W23(Z), W31 (Z) and
WgQ(Z).

108



Chapter 7

Conclusions and future work

7.1 Thesis contribution

In this thesis, our goal was to determine how the quality of separated independent source
components is affected by the variations in the environmental characteristics as modeled
by convolving filter lengths and distribution of the mixing filters. It was determined that
corresponding to a specific type of filter distribution the quality of the separated signals
deteriorate with the increase in total filter length. We have also found some exceptional
cases which yield results that are undesirable. As the filter length of both FIR (Finite
Inpulse Response) and IIR (Infinite Inpulse Response)are increased it becomes more
difficult to separate the signals, implying that this method can not always separate the
mixed signals. This is one of the drawbacks of the information maximization approach.
The ideal solution for an N x N feedback network architecture and the corresponding
adaptive rules are derived for both of the FIR (Finite Impulse Response) and IR (Infi-
nite Impulse Response) demixing filter architectures. The results of FIR (Finite Impulse
Response) and [IR (Infinite Impulse Response) scenario of two sources and two sensors
case have been presented in the literature. We have also included the results of the
three sources and three sensors case. But we have considered only FIR (Finite Impulse
Response) case. The IIR (Infinite Impulse Response) case has not been shown here be-

cause of the insufficiency of time. The major contributions of this thesis are the newly
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derived ideal solution for V x N feedback network architecture and adaptation rules
for IIR (Infinite Impulse Response) demixing filter architecture. From simulation re-
sults chapter we have found that signal separation is more difficult with IIR (Infinite
Impulse Response) filter architecture because it increases the system complexity. Also
the number of demixing filter coefficients increase in this case. It will be more complex
if the number of sources and the number of sensors are higher than three. The ideal
solution derived in chapter four are very essential to verify if the mixing environmental
filters to generate synthetic data can make the system stable or not. Special measures
have been taken to prevent the system to become unstable. Two important measures
were to control the adaptaion rates and initial values of the demixing filters. In all of the
cases we have started with larger values of adaptation rates in first epoch and we have
decreased those to lower values in rest of the epochs. But in each epoch we have used
the constant value of adaptation rate. One of the major advantage of this information
maximization approach is that it is easy to implement and does not require to prewhiten
the data but it does not always guarantee the stable system. Measures must be taken to

make the system stable.

7.2 Future work

In our thesis we have considered only two cases:
1. Two sources and two sensors case and,
2. Three sources and three sensors case.

For three sources and three sensors case we have presented results only for FIR (Finite
Impulse Response) filter architectures. The results of IIR (Infinite Impulse Response)
filter architectures have not been simulated because of the lack of the time. We hope
to include this result in our future work. Also the maximum order of the filter we
have taken in our thesis was eleven (11). We also hope to increase the filter order and

extend the network to higher number of the sources and the sensors. The synthetically
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generated datas were only for narrow band of frequencies which we hope to increase
in future. We shall emphasize working on the moving targets in which case the added
delay will be considered. Because in most of the practical cases there is a time delay
between original source signal when it 1s generated and the time when it 1s received at
the sensors. Since the statistics of the data changes continuously as the targets move, we
can not use the steepest descent algorithm in this case. In chapter 3 we have discussed
that stochastic gradient algorithm is applicable to the case when the statistics of the data
changes continously. Computationally it 1s easier because we do not need to compute

the mean of the data.
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