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ABSTRACT

A Robust Production System Design Using Robust Engineering Methodology

Amandeep Singh Sandhu

Traditional production system design approaches have concentrated on feasibility,
meeting volume requirements, and minimizing cost. In the competitive environment of
today’s industries, effective and robust production systems are required. In order to be
responsive to changing external requirements and internal disturbances, productions
systems must be robust and design approaches must involve more than meeting volume
requirements and minimizing cost.

A robust production system can handie planned as well as unplanned changes. It
is well understood that the robustness can be achieved during the design process more
easily and with lower costs, than during the operation phase when most system
parameters ate already set. There is a need to improve strategies to develop production
systems which are designed from the standpoint of robustness and quality. The system
robustness should be made during the design phase and not during operation when most
system parameters cannot be changed with ease.

Also, there has been limited research in the area of robustness and quality for
production system design in the literature. The objective of this research is to demonstrate
a method for the design of robust production systems with the aid of computer simulation
and to optimize a production process through simulation to make the system robust to
noise factors. It has been emphasized in this research to use robust design techniques,

also known as Taguchi’s methods to achieve robust production systems.
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CHAPTER 1

INTRODUCTION

1.1 CONCEPT OF ROBUST ENGINEERING

Robust Engineering is an engineering optimization strategy, ideally used for the
development of new technologies and for improving the quality in the areas of product
and process design. Robust Engineering was developed by Dr. Genichi Taguchi to
provide companies with more efficiency in development leading to a more competitive
position (Phadke, 1989). Taguchi defines robustness as “the state where the technology,
product, or process performance is minimally sensitive to factors causing variability and
aging at the lowest unit manufacturing cost.” According to Taguchi, “we measure the
quality of a product or process, in terms of total loss to society due to functional variation
and harmful side effects.” For ideal quality, the loss would be zero. The greater the loss,
the lower is the quality (Wadsworth e al., 2002; Phadke, 1989).

The primary goal of this research is to demonstrate a method for the design of
robust systems using computer simulation experiments. The research starts by studying
the main concepts and strategies in the development of robust production systems. An

attempt is then made to assess the appropriateness of the use of Taguchi method along



with simulation. This research used simulation for the purpose of system design. The
research is not restricted to any specific system at the outset. The concepts developed are

demonstrated on example problems from selected application domain.

1.2 DESIGN FOR ROBUSTNESS AND QUALITY

In statistics, robustness is an important criterion for evaluating statistical
inference. According to Huber (1981), “robustness signifies insensitivity to small
deviations from the assumptions.” From an engineering product design viewpoint,
robustness refers to the relative insensitivity of the functional performance of a product,
when its operating conditions deviate from their specific values (Kacker et al., 1983).
These deviations from the nominal conditions usually occur with certain factors of
design, such as noise factors. A robust product is relatively insensitive to noise variations.
The focus of this research is on the design of robust production systems.

Quality may be understood differently by different people. It is also different for
different products, processes, or services under discussion. Even in strictly technical
terms, quality can be performance, durability, reliability, delivery, shape or size. Here we
intend to relate the concept of robustness with quality. We use the definition that quality
is conformance to requirements or specifications. This definition was used by Crosby
(1979). According to Juran, “Quality is fitness for use”, this is a more general definition
of Quality (Juran, 1988).

After the industrial revolution there have been tremendous improvements in the
quality of the products being manufactured. Quality has been improved in design as well

as in performance. The ideal quality is the target performance of the product each time



the product is used by the customer, under all the specified operating conditions
throughout its intended life (Wadsworth, 2002).

Quality can affect vital elements of a company such as productivity, cost, and
delivery schedules. It also has a great impact on the workplace environment. When a
product or a service has been designed to meet the expectations of the customer, the
associated process may not always produce every unit conforming to the design. The
defects in materials, parts, assemblies and the final products occur. In order to minimize
or remove these defects, the product or the production process may be redesigned as per
the requirements.

Quality control methods such as control charts, cause and effect diagrams, process
capability studies and Statistical Process Control (SPC) are known as on-line quality
control methods, since they concentrate on the manufacturing (on-line) stage in order to
reduce manufacturing imperfections in the product and to keep the process in control.
Among these, SPC is a powerful cost saving and quality enhancing approach to reducing
variability within the production phase. However, SPC cannot compensate for poor
quality in design. If there is large variability due to uncontrollable factors during
manufacture, prohibitively expensive process control schemes may be required to
improve the process capability, and they cannot guarantee a product robust to
deterioration and variability due to uncontrollable environmental factors. Additional
expense might be incurred due to service costs under warranty and, more importantly,
due to the loss of market share because of customer dissatisfaction.

However, if the quality concept is moved further upstream to the design process

and product development stage, these costly eventualities can be avoided. The need for



costly process control, mass inspection, and service costs is minimized if one optimizes

product and process design to ensure product robustness.

1.3 PRODUCT AND PROCESS DESIGN

Design involves making a system or product, when it does not come from an
existing product. Quality has been concerned with two types of design problems: Product
design and Process Design. Product design normally involves (Smith, 1998):

1. System Design

System design refers to activities needed to formulate an initial prototype design.
This involves decisions about choosing the independent and dependent variables of the
design, the ranges of values for the chosen parameters.

2. Parameter Design

Parameter design is concerned with the target values, or any other attributes
involved, whereas the allowance design sets the range of variations for the target values.
In other words, the parameter design refers to the investigation process carried to choose
the best settings of the product and process parameters to achieve the performance goals
of reaching the target performance while keeping sensitivity to noise minimal.

3. Allowance or Tolerance Design

Allowance or Tolerance design is used, if the variation in the product or process is

beyond tolerable limits. The systematic changes are made on a tolerance magnitude to

determine which of the factors contribute most to the variation in the end product.



Process design involves making a set of actions to convert inputs into desired
outputs. Process design problem exists when a new process is created or an existing
process is re-designed or revised substantially. Process design depends mainly on how
much the existing process is being changed or whether a completely new process is being
designed. In general, the former is process improvement and the latter is process
innovation. The quality of a process depends on its capability to meet the specification

limits, to produce the units that confirm to the specifications as required.

1.4 PRODUCTION SYSTEM DESIGN AND ROBUSTNESS

A robust production system is a stable system which can handle planned as well
as unplanned changes. To move systems without modifications between production sites
is quite common in today’s global market and production place. Such as Taguchi
methods and robust design methodology, product as well as process design. However a
majority of the examples shown in the literature concerns product design only, not
process design. This together with the awareness of that it is during the design of
production system that the production system capability to a large extent is determined,
motivates further research into how the design and evaluation process can support
production system robustness (Chen and Chen, 1996).

There has been limited research for maintaining robustness, and for continuous
improvement of quality through production system design in the literature. The
conventional knowledge in studying quality related problems is largely concentrated on

improving the quality of product design (Jackson, 2000).



In today’s market, customers demand the best products at the best price with
immediate availability. Manufacturing companies are increasingly competing against
each other for market share, and they need to maintain a low cost of quality, trim their
production lines, reduce waste and speed up manufacturing. This brings new possibilities
but also new challenges to researchers and practitioners.

Figure 1.1 displays various tools to design and manufacture products of higher
quality. The boxes on the left of the figure show the various requirements for high quality
product design and production. The boxes on the right show varioﬁs quality techniques
interacting with the product or production process decisions. Also, the shading of the
boxes represents the quality efforts, denoting the density of research in that area. The
research areas represented by the three darkly shaded boxes have had substantial research
attentions (Inman er al., 2003). It is apparent that more research work is required in the

area of robustness of production system design for better product quality.
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Figure 1.1: Quality Efforts Supporting the Process of Bringing a Product through

Production (Inman ef al., 2003).



1.5 OBJECTIVES AND CONTRIBUTION OF THIS RESEARCH

In this thesis, the efforts done in the past for robust and quality production system
design are studied. As there has been less work done on this topic, this thesis first reviews
the limited literature related to robustness and quality in production system design and
then suggests the use of robust engineering approach as a tool for production system
design. This research focuses on the interaction of production system design for system
performance improvement from the robustness point of view.

The main contributions of the research are as follows:
e Design a system that is robust to the uncontrollable factors, and reducing the
number of experimental trials.
e Develop a quality design approach focusing on factors for evaluating the
production system design.
e To optimize a production process through simulation and use Taguchi’s design

method to make the system robust to noise factors.

1.6 ORGANIZATION OF THE THESIS

Chapter 2 lists the previous studies in designing production systems for quality
and also significant advances made in the field of design of experiments (DoE) / robust
engineering for designing production systems. Various research studies in robust
production system design using simulation and other important issues will be discussed.

Chapter 3 discusses various approaches for production system design. It can be

understood that the main possibility to influence the system is during the design-stage.



Chapter 4 explains the Design of Experiments (DoE) approach, the robust design
methodology (Taguchi Method), and the techniques used in this research. The detailed
reasons for choosing the robust design methodology that satisfies the objectives of this
research will be discussed. Also, the methodology by using simulation for production
system design and optimizing the design through Robust Design method is discussed.

Chapter 5 presents the numerical examples and discusses features of the system
used for the approach to the solution and its analysis. The process under consideration
was simulated using ARENA® software and optimized using Taguchi Method through
Qualitek-4® software, by Nutek Inc. and the results are analyzed.

Chapter 6 presents summary and conclusions of this research, and future research

directions in this area.



CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, the literature is reviewed in two main groups: (1) studies in production
system design, and (2) studies using the design of experiments (DoE) / Robust
Engineering approach, and studies using simulation along with Taguchi methods. The
first five sections address the first group. The last two sections review the studies done in

the second group.

2.2 THE EVOLUTION OF PRODUCTION SYSTEMS

Industrial Revolution in England in the seventeenth and the eighteenth century
can be considered as the beginning of a new industrial and manufacturing era. The
industrial revolution led to mass production of relative simple products. The
interchangeability of parts was an important landmark in the history of production
systems, as it formed a pre-condition for flow-line assembly of products. The principle of
interchangeable part manufacturing can be described as the art of producing complete
machines or mechanisms that any part may be fitted into any of the given mechanisms

(Wild, 1972; Roe, 1916).
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By the mid 1800s the interchangeable parts concept had been used in making
different products such as guns, clocks, sewing machines and farm machinery. By the late
1920s, a general trend had emerged that waste was wrong and efficiency should be
increased; Taylor’s methods represented the best way to achieve this (Wild, 1972).
Taylor’s Scientific Management focused on the division of labor and management, job
design and setting standards in production. The next landmark was mass production,
consisted of innovations in product-process technology made by Henry Ford. Also, at the
time of Ford the ideas of Taylor were widely known and used in automobile
manufacturing, and Ford used many of Taylor’s ideas. Ford Motor Company's great
contribution to automotive manufacturing was the moving assembly line. This new
technique allowed individual workers to stay in one place and perform the same task
repeatedly on multiple vehicles that passed by them. This type of production lines made
the vehicles more affordable (Kanigel, 1997).

By the end of World War II, the American industry was doing well, as compared

to the industries in Europe and Japan, as shown in Table 2.1.

Table 2.1: The Superior Market Share of the USA (Bolwijin et al., 1986)

Share in World Production 1965

Industry USA - Europe Rest
Machining 70% 13% 17%
Cars 76% 13% 11%
Oil 73% 14% 13%
Electronics 68% 15% 17%
Chemistry 62% 21% 17%

11




By the end of 1980s the Japanese share of the world markets grew significantly as can be

seen in Table 2.2., particularly in electronics.

Table 2.2: Japanese Share of the World Markets (Bolwijin et al., 1986)

Product Percentage Share
35mm cameras 84
Video Recorders 84
Watches 82
Calculators 77
Microwave Ovens 71
Motorcycles 55
Color Televisions 53

Japan started from a different position than Europe as they lacked space, energy
and other natural resources. The emphasis on the reduction of waste became the basis of
Japan’s Toyota production system. This system is based on two pillars: 1.) Just in Time
(JIT) and 2.) Autonomation, the concept of jidoka (Ohno, 1988)

By the use of JIT management philosophy the set-up time are reduced which can
be done through better planning and process redesign. The reducing set-up time allows
economical production of smaller lots, which can be achieved by cooperation with the
suppliers, since it will require more frequent deliveries. Preventive maintenance is
followed strictly, by using machine and worker idle time to maintain equipment and
prevent breakdowns. The workers are trained to work on several machines, perform
maintenance tasks and quality inspections, facilitating into a flexible work force. JIT

requires supplier quality assurance and implement a zero defects quality program.

12




The concept of jidoka is applied, which is also called as autonomation. It is
through autonomation is a mechanism to prevent mass-production of defective work in
machines and product lines. The mass-production of defects can be prevented and the
machine break-downs are automatically checked. Toyota recognizes that in an assembly
environment the highest quality control can be achieved by applying human judgment as

conditions vary.

2.3 PRODUCTION SYSTEM DEFINATIONS

A production system is the part of an organization encompassing the production
process, including manufacturing and assembly, maintenance process and regulatory
process planning, quality control and production planning; the people carrying out these
processes, the production resources used to make the processes feasible; and the
organizational arrangements used to divide and ordinate the processes distinguished
(Ruffini, 1993).

A production system is a facility which manufactures physical goods from raw
materials using machinery and labor. Each production system is the result of a unique and
context dependent development process. Its comprising design and evaluation activities
are most vital for the system performance. The design of a production system is
important as to how the systems can adapt to expected and unexpected production
situations. The evaluation is equally important which checks how good the system is and
also it helps to compare the alternative approaches (Bennett and Forrester, 1993).

There are two main approaches to the development of a suitable production
system. The first is planning and control of the existing production system, and the

second, is designing a new system. The planning and control of a production system are

13



concerned with operating the resources on daily basis, and the physical design provides
the fixed resources that are capable of satisfying the customers’ demands (Slack, et al.,
1998).

The production system inputs include financial capital, consumable materials and
supplies, skill and knowledge of the work force and services from outside contractors.
Most of the production system analyses suggest that there are three key tangible
resources, namely labor, physical facilities and materials. The outputs are generally goods
and services. In manufacturing companies, physical goods as well as advice and service
may be produced. For example, in the case of computer manufacturers customer service
may assume greater importance than primary physical products.

Various elements of a production system are illustrated in Figure 2.1, below. The
quality and maintenance sub-systems are important components which determine the
performance of the overall production system. It is the quality of the manufactured
product, and the robustness of the production system which is the end-result of the
overall production system, and maintenance supports it to run effectively. The quality
sub-system checks any non-conformance, and helps to take any effective action, if

required (Bennett, 1986; Wild, 1972).

14
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Figure 2.1: The Elements of a Production System (Bennett, 1986)

2.4 THE MANUFACTURING SYSTEM

The manufacturing system is the most important part of a production system. The

manufacturing system plays a key role in carrying

manufacturing company (Wild, 1972).

The structuring of the primary process in a

15

out the transformation processes in a

manufacturing system is important as

it forms the basis of the physical goods flow (Hill, 1995). A description of the process
choice concept is illustrated in Figure 2.2, and it clearly shows the comparisons between
them. By overlapping, it is implied that going from one type to another is not difficult.

For example, high volume and low variety would require a continuous process, and as the



volume decreases a little, and the variety goes high, the transition from continuous to

mass is required and so on.

volume
L Oow High

High

Project

- Jobbing -
. Batch

Variety

. Mass
Cantinuous
I

Low

Figure 2.2 Generic Type of Process in Manufacturing

A manufacturing system designed from the outset will lead to fewer problems,
and will minimize, although not eliminate, the need for changes at a stage when the
system is built. This is due to the fact that re-design of an existing system cannot be as
easy as and better than a system designed with the results in focus. On the other hand a
manufacturing system that is imperfectly designed concerning, for example, performance
quality, material flow and product flow, can bring about immense costs through high

tied-up capital, rejected products, low deliverability, low reliability, etc. Deficiencies and

16



faults in the work of preceding phases such as engineering or design manifest themselves

in the start-up of a manufacturing system.

2.5 PERFORMANCE MEASURES FOR PRODUCTION SYSTEMS

The performance of a company can be expressed in terms of profit, return on
investment and other financial terms. In the case of production, performance is often
about efficiency and effectiveness in actions. In addition, incorporating quality, reliable
delivery, short lead times, flexible capacity and efficient capital deployment, is the
primary source of competitiveness (Skinner, 1996).

The performance measures for the production system can be shown by the means
of a link with the number of different performance measures. Performance measures
provide a series of indicators, expressed in qualitative, quantitative or other tangible
terms that indicate whether current performance is reasonable and cost effective. The
various performance objectives discussed in the Table 2.3, are cost, quality, speed,
flexibility and dependability. The second column explains the performance objective. In
the third column the various performance measures are given, categorized according to

its performance objectives.

17



Table 2.3: Performance Objectives, Explanations and Performance Measures

(Duda, 2000; Safsten, 2002)

Performance Objectives

Explanation

Performance Measure

Cost The cost of material, Unit production cost
labor, and other resources | Cost relative to competitors
to produce a product Manufacturing cost
Total factor productivity
Direct labor
Inventory
Quality The manufacturing of Number of complaints
products with high Warranty returns
performance and Percentage scrap
conformance Rework cost
Incoming supplier quality
Mean time between failure
Speed Speed of Delivery Cycle time
Vendor delivery time
Response time
System throughput time
Flexibility The ability to react to Set-up time
changes in volume, Time needed to develop new products
changes in product mix, | Range of Products
modifications to design | Time to change schedules
etc Minimum order size
Number of options
Percentage of workforce cross trained
Dependability The reliability of Percentage on time delivery
delivery Average lateness

Proportion of products in stock
Mean deviation from promised arrival

2.6 ROBUST PRODUCTION SYSTEMS

Companies may measure product/process performance using metrics such as

warranty costs, scrap or rework costs, or the number of customer complaints. One of the

main problems is that the engineers who developed the product may not be able to

18




measure the loss that has occurred. The post-design and post production loss can only be
measured after the product is designed and manufactured. By involving the Taguchi’s
Robust Design, the engineers may be able to identify a function for a particular design to
enable a paradigm shift in the way products are being measured towards a higher quality
at lower costs (Wilkins, 2002).

Various control charts developed from statistical quality methodology can be used
to detect whether a process is in or out of control. If the process is out of control there
must be certain mechanism for taking necessary actions to rectify the situation. For this
purpose a feedback system has to be incorporated in which the output from the process is
being monitored using a control chart and significant changes are reported to control
function (Bennett, 1986). A better approach is to make the system robust at the initial
design.

Figure 2.3 displays three important production system design objectives:

productivity, flexibility and quality.

PRODUCTIVITY R FLEXIBILITY

N/

QUALITY

Figure 2.3: Objectives in Production System Design (Inman, ef al., 2003)
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The well designed production system of Toyota contributes significantly to its
high quality of products, as Toyota has made different production system design choices
to improve quality, despite of the additional investment and reduced production
throughput. Toyota made such production system design choices to achieve higher
product quality (Ohno, 1988).

As an example, Andon is the Japanese term for a signaling device that an
assembly line worker can trigger to call for assistance or stop the line. Most North
American auto manufacturers have no Andon, whereas at Toyota, “every worker is not
only empowered, but roundly encouraged, to slow or even stop the line if problems arise”
(Mayne et al., 2001, Inman, et al., 2003).

Toyota also manages quality by designing inspection into its production system.
It first introduced its Lexus model into a plant, and added five extra quality-control
inspections, and allowed 40 to 50 percent more labor-force in the plant. Toyota may bring
the car to a halt during the setting and bolting process. Bringing the vehicle to halt will
provide lower throughput than letting the vehicle continue moving, and the main purpose
of which is to ensure quality.

The system design procedures vary depending on the company’s specific
requirements. The most common design procedure was to develop a few alternatives and
then rather quickly choose one alternative which was developed further. Most companies
use layout and paper models to test them (Bellgran, 1998).

It is well known that product design plays a very important role for the product
quality, but production system design also has a significant impact. Taguchi method is

mostly applied to product development, and there have been efforts of using Taguchi
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method for robust production system design. A procedure for designing a job shop
manufacturing system using computer simulation is described in Chen and Chen (1995).
The job shop manufacturing system is designed for high-variety production and small
quantity, so the need for a robust system to reduce variation in system performance
caused by uncontrollable production factors is significant. Various production factors
such as number of machines at each workstation, average flow time, etc. are taken into
consideration for the robust design of the job shop.

A simulation model was proposed by Cabrera-Rios et al., (2001) for designing a
manufacturing cell aiming at profit maximization over a certain period of time. The
proposed model was run for selected control factors, noise factors and their experimental
regions. This simulation model was then used to generate required data for the analysis.
Regression analysis was performed to find 15 best results. Using Robust Design
approach, the best combination of the controllable factors that has the lowest variation
was determined for system robustness.

When production systems are not designed in an efficient way, this may cause
disadvantages, such as:

e The time for designing the production system is not utilized.

e The design costs are high.

e The outcome, i.e., the production system is negatively affected.
The outcome of the production system can be measured in terms of the performance
measures as discussed in Table 2.3, which makes it possible to know the conditions

which are a priority in a particular production system and indicating the performance.
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Delays from original timetables, high costs compared to investments and budgets, and
poor production system performance are typical problems when designing and
implementing new production systems (Duda, 2000).

A better designed production system will lead to fewer problems, and will tend to
minimize the need for changes. A poorly designed production system can be associated
with high capital, rejected products, low deliverability, low reliability, etc. Therefore,
how the system design is performed is important for the success of the production system
and long-term profitability and it offers a large potential for improvements (Wiendahl et

al., 1996).

2.7 STUDIES ON DESIGN OF EXPERIMENTS (DoE) APPROACH

Design of Experiments (DoE) is a statistical method used in designing for better
value (for example, lower cost and higher quality, etc). It was first introduced by R.A.
Fitcher in England in the early 1920s (Moen et al., 1999). Fitcher used DoE technique to
determine the optimum water, sunshine, fertilizer and soil conditions needed to produce
best crop. Trial conditions of the factors included in the experimental study were created
using a matrix. After Fisher introduced the technique for agricultural experiments much

more research and development were carried out in other areas (Moen ef al., 1999).

DoE is a well planned set of experiments, in which all parameters of interest are
varied over specified ranges to obtain systematic data. Usually the number of
experiments and resources required are large. In many cases, particularly those in which

some optimization is required, the method does not point to the best values of the
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parameters. Taguchi (1987) developed a method based on orthogonal array experiments
which gives much reduced variance for the experiment with optimum settings of control
parameters. The combination of DoE with optimization of control parameters to obtain
best results is achieved in the Taguchi Method. Also, the orthogonal arrays provide a set

of well balanced experiments used in robust engineering method.

Vining and Schaub (1991) proposed a methodology to estimate process mean and
variance in a DoE application. They used a one-step approach which assumes that the
process variance is constant over the region of interest. They also used a semi-Bayesian
approach which attempts to develop an experimental plan with prior information on the
nature of the variance. They then compared these two apprqaches in a simulation study.
Some of the key issues of using DoE for quality improvement were discussed in Blake et
al. (1994). The earliest application of DoE, in the area of assembly systems was
developed by Law (1988). He used a 2° full factorial design to study the effects of
system configuration, relative stage position, and buffer capacity allocation in automatic
transfer lines (Blake e al., 1994).

DoE approach was also applied to stereo lithography (SL) for process design of
turbine engine airfoils by Schaub and Montgomery (1992). The variables were studied
that allow holding tighter tolerances. They stated that the use of statistically designed
experiments resulted in increased process knowledge not only for the particular test
situation, but also for the overall operation of a SL process. A factorial experimental
design based on discrete event simulation was proposed by Leung and Sanders (1986).
They discussed the effects of different design factors on the performance of automatic

assembly systems with tunnel-gated stations.
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2.8 STUDIES ON ROBUST DESIGN METHOD AND ITS
APPLICATIONS

Robust design was first introduced by Taguchi (Phadke, 1989). Robust design
method has been used in many areas of engineering. In 1960s a small ceramic tile
company in Japan was facing a serious problem. Many of the ceramic floor tiles
produced were failing final inspection and had to be scrapped. The main reason was
misshaped tiles, not within specific dimensions. Analysis was done and the reason found
out was the kiln. Tiles fired at the centre of the kiln were fine, and those at the edges were
out of specified dimensions. At first the solution seemed to replace the kiln, which was
very expensive to do. Later, the solution was found, using the Robust Design method. By
changing the mixture of lime and clay, a tile formation that was robust to temperature
variations in the oven could be produced. This concept of changing some variables in a
process to make the process unaffected to variation in other variables has become known
as robust design. Taguchi and Phadke designed experiments that pointed to a way to
reduce variation in microprocessor window openings by a factor of 4. These changes in
the process design reduced defects by 67% and the processing time by 50%. Robust
design was also used in the design and manufacture of new microprocessors at AT&T
Bell Laboratories and Western Electric (Godfrey ef al., 1986; Phadke, 1989).

Taguchi method was applied to aircraft engine development by Ryoichi (2003).
He found that the Taguchi method is the only design method where variations can be
studied by a single metric known as Signal-to-Noise (S/N) ratio. It is a scale of stability
with respect to noise. Also, it was pointed out that variations are a cause of failure and

noise is a cause of variations.
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At AT&T, experiments were carried out to optimize the process of forming

contact windows in 3.5 #z m complementary metal-oxide semiconductor (CMOS) circuits

as described in Kacker et al. (1983). As a large scale integrated circuit chip has many
such windows, it is important to produce windows with target dimensions. Using Robust
Design, it shows the variance of the window size being reduced four-times with a
substantial reduction in processing time.

Taguchi method leads the designer into determining optimum parameters, having
fully investigated the variability, or more specifically, the sensitivity of the system
specification to the casual factors of variability. Then it leads to the specification of
optimum parameters for the constituent parts of the system (Bendell er al. 1989; Taguchi
et al., 2000).

In the present time, robust design methodology has received widespread use in
USA, Canada, and many European countries. There are many industries which employ
Robust Design, ranging from service industries to high tech industries (Appendix VI).
When there is sufficient information on the fundamental mechanisms governing the
process and the interactions between the input, Taguchi method would perform at its best,
and optimize the underlying process as shown in Cesarone (2001). Table 2.4 shows the
application of Taguchi method in plastics, automotive, process, metal fabrication, food

and electronics and semiconductor industries (Rowlands et al., 2000).
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Table 2.4: Benefits by Application of Taguchi Method (Rowlands et al., 2000)

Process/ Product | Nature of Problem | Experiment Size Benefits
Injection molding | High Scrap rate due 8 trials Annual savings
process to excessive process were estimated to be
variability over £40,000
Diesel injector High rework rate 16 trials Annual savings
were estimated to be
over £10,000
Welding process Low weld strength 16 trials Annual savings
were estimated to be
over £16,000
Chemical process Low process yield 8 trials Process yield was
improved by over
10 per cent
Biscuit Excessive 16 trials Biscuit length
variability in biscuit variability was
length reduced by over 25
percent
Wire-bonding Low wire pull 16 trials Annual savings
process strength were over £30,000

The use of Taguchi method for the above processes resulted not only in savings of

large amount of money, but also improved quality. Further information and discussion on

Taguchi method and robust design can be found in (Bendell et al., 1989 & 1990; Roy,

2000, Phadke, 1989; Montgomery, 1991; Taguchi ez al., 2000).

2.9 SUMMARY

In this chapter various performance measures for designing production systems

have been discussed for improved product and process quality. It has been emphasized

that there is a need for robust production systems. The basic difference between DoE and
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Robust Design methodology is described, and the latter is suitable for designing a

production system taking effective factors into consideration.
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CHAPTER 3

APPROACHES TO PRODUCTION SYSTEM DESIGN

3.1 INTRODUCTION

This chapter presents different theoretical and practical approaches to design in
general and in particular for production systems.

It has been established that production systems must be consistent with the
business strategy, which can be accomplished by defining a manufacturing strategy.
System design can be defined as the conception and planning of the overall set of
elements and events constituting a system, together with the rules for their relationships

in time and space (CIRP — International Institution for Production Research, 1990).

3.2 THE DESIGN PROCESS

The design process is a form of problem-solving, where the means to achieve a
goal are sought intentionally. When problem solving is specifically concerned with
design, the basic cycle can be employed, see Fig. 3.1. The activities described in the
different phases are not necessarily carried out in the given order. A design process
ideally is a decision on appropriate design in accordance with stated objectives. Decisions

during design are often made more or less intuitively. The design process would stagnate
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without the intuitive decisions. A difference from the problem solving cycle is that the
implementation is not considered in the basic design cycle. Also, the issue of selecting
the best system is divided into evaluation and decision, where evaluation is concerned
with determining the value of a provisional design and deciding whether the design is

good enough (Roozenburg and Eekels, 1995).

Problem

|

Analysis

‘

Criteria

l

Synthesizs

l

Provisional Design

}

Simulation

l

Expected Properties

}

Evaluation

l

Value of the design

@

!

Approved Design

*

L 4

Figure 3.1 The Basic Design Cycle (Roozberg and Eekels, 1995)
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If the design is as per the requirements, it is approved or else again the analysis
and synthesis should be done. The criterion for which the analysis is done is evaluated
and further evaluated again as shown through a loop. The activities which are described
in the boxes are carried out in a detailed manner and consume more time as compared to
the ones which are not.

The production system is the result of implementing the ideas that are created and
specified in the system design process. The design process could also be further divided
into preparatory design and design specification. In the preparatory design phase, the
preconditions are analyzed and the requirements are specified to create a conceptual
production system. In the design specification phase, the detailed design with the actual
creation is done and the evaluation of the proposal is made. A production system design
task model developed for assembly system design contains three parts as shown in Figure

3.2 (Bellgran, 1998).

DESIGN PROCESS PLANNING ASSEMBLY SYSTEM DESIGN PROCESS

Design Process Design Process

M ent Structure Preparatory Design | | Design Specification

ASSEMBLY SYSTEM DESIGN CONTEXT

Figure 3.2: A Model showing the Design Process Planning, the System Design

Process for Analysis of Assembly System Design (Bellgran, 1998)
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For the production system design process, the goal is to design the best possible
production system. During the system design process, the selection of the options is made
on the conceptual and detailed levels. The conceptual level is to select the production
principle, automation degree, principle of material flow, type of work organization, etc.
The detailed level can be classified as selecting the suppliers, equipment, job design, etc.
The determination of physical features during the system design process controls the

qualities of the production system (Safsten, 2002).

3.3 MODIFIED VERSUS EXISTING DESIGN

A change in the production system design can imply that something within the
existing system has been altered to meet the new requirements. System improvement is a
transformation or a change that brings system closer to normal operating conditions.
System design is a creative process (Van Gigch, 1991).

The design process can result in highly or less modified production systems. The
extent of the changes varies from being incremental, to major changes, which might lead
to a new system design. Depending on the extent of the change, different terminology for

the altered production system may be used (Almgren, 1999) as given in Table 3.1.
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Table 3.1: Existing, Modified and New Production System Characteristics

(Almgren, 1999)

PRODUCTION SYSTEM CHARACTERISTICS

Existing No Changes made
Modified A system that has undergone some technical redesign
A minor change in comparison with a new system
New Maijor technical redesign (new machinery and equipment, new

layouts and flows

The organizational dimensions are related to the changes in the
technical system

A new industrial facility without previous experience of
manufacturing

According to the result of a process, a distinction between original design and
improvement of the existing design can be made. There is a difference between the way
in which goals are determined in the original design and the improvement of the existing
design. When the issue is a new system, goals are determined in a solution-neutral

environment unbiased by preconceived solutions, whereas when the issue is improvement

of an existing design, goals reflect the existing design (Suh, 1990).

Either designing a new production system or an existing one, the goal should be
to create a robust system able to cope with changing conditions. Therefore, acting in

anticipation of future problems is necessary to eliminate or to prevent possible

disturbances during different product lifecycle phases.
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3.4 SYSTEM DESIGN MODELS

A general design framework for design and development of production systems
was suggested by Wu (1994) as shown in Fig 3.3. The framework is based on the general
problem solving cycle. According to Wu (1994), there are two main approaches to design
a system. The first approach starts with a set of objectives and creates a model that fits
the objectives without considering the previous systems. The second approach is to
consider the existing system, and trying to modify in order to fulfill the future
requirements. When the concept-generating approach is applied, the design process will

follow the phases prescribed in the general design process given in Figure 3.3.
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Figure 3.3: Structure of the Design Approach: The Concept-Generating Approach

(Wu, 1994; Bellgran and Safsten, 2004)

When the design process is mainly driven by external considerations, such as an

existing design, the process is concept-driven (Engstrom, 1998), as shown in Figure 3.4.
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Figure 3.4: The Concept-Driven Approach (Bellgran and Safsten, 2004)

When the concept-driven approach is applied, a preferred production system
concept was given from the beginning of the design process and the conceptual design
phase was excluded, as shown in Figure 3.4. Also, the described consequences for the
design process from the concept-generating and the concept-driven approaches
presupposed that production system design would be carried out at the manufacturing

company (Bellgran et al., 2002; Bellgran and Safsten, 2004).
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Figure 3.5: The Supplier-Driven Approach (Bellgran and Safsten, 2004)

The supplier-driven approach is more often followed by the manufacturing
companies, as shown in Figure 3.5. From the perspective of the system, the supplier-
driven design process can be either of concept-generating or concept-driven. The system
suppliers often use standard solutions which are modified according to the specific

situations. If needed, the concept-driven approach can be applied.
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3.4.1 EVALUATING THE DESIGN APPROACHES

The purpose of evaluation is to assess whether a system conforms to some
specified goals. The evaluation is the result of an activity that is investigated in order to
improve an ongoing activity.

Evaluation is the process of investigating and judging a production system in
accordance to certain criteria or the result of that process. The evaluation process
normally involves (Scriven, 1991):

o Identification of relevant standards of the evaluation criteria

¢ Investigation of the performance of the evaluation object

e Integration or synthesis of the results to achieve an overall evaluation

When the concept-generating approach is applied, various extensive evaluation
efforts are made during the design process. The production system can be evaluated
during the design process as various informal evaluations preceded the different decisions
made during the process. The concept-driven approach can be compared to improvement,
while the concept-generating approach can be compared to design, when the design aims
at producing new solutions. The difference between improvement and design has
implications for the evaluation. In improvement, the solution needs to be evaluated
against the standard or the normal operating conditions. In design, the goal might be
unclear, and therefore the focus might be on comparing different solutions during design
process (Chen, 1996).

When the supplier-driven approach is applied, the system design process is more or

less a black box from the perspective of the manufacturing company. The difficulty here
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lies in finding the appropriate relations between the objective and the result. The supplier-
driven approach for the design typically results in several production system solutions, in
comparison with the concept-generating approach and the concept-driven approach,

which normally results in one solution.

3.5 SUMMARY

This chapter discusses various approaches that can be used for designing
production systems. The focus of this thesis is to design robust production systems.

Understanding related to basic design concepts is important.
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CHAPTER 4

METHODOLOGY FOR PRODUCTION SYSTEM DESIGN

USING ROBUST ENGINEERING AND SIMULATION

4.1 INTRODUCTION

A designed experiment is a test or series of tests in which purposeful changes are
made to the input variables of a process so that we may observe and identify the reasons
for the changes. An experimental design dictates the number of runs, the levels at which
the factors must be set on each run, and the sequence in which these runs are performed.
In summary, the experimental design dictates how to run an experiment (Moen et al.,
1999, Phadke, 1986).

The use of design of experiments (DoE) approach allows one to study the factors
in different levels, their interactions, and to identify the important effects. The DoE
methodology suits best for determining a set of variables to design a manufacturing
system. Taguchi’s method and robust design methodology use a different experimental
pattern when compared to basic DoE approach, while the underlying concept is same.
The Taguchi method makes use of orthogonal arrays to set up multiple experiments and

signal-to-noise (S/N) ratio for analysis of result (Roy, 2001). It assures a design that is
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robust to the influence of uncontrollable or noise factors described in the next sections in
detail. In this research, we have used Taguchi’s method for the analysis combined with
the implementation steps of as robust engineering design methodology. The robust design
enables the system response to be robust to uncontrollable factors. It is a unique method
to determine the most suitable combination of the controllable factors so as to minimize

the effects of uncontrollable factors for the designed system.

4.2 DESIGN OF EXPERIMENT METHODOLOGY

An experiment consists of a series of tests on a system by changing the levels of
factors and background variables and observations of the effects on one or more response
variables. The basic reason to carry out an experiment is to provide a basis for action on
the system. DoE approach enables one to study the factors and their interactions and to
recognize how they affect the results. It is a set of experiments in which various
purposeful changes are made to the input variables of a process or a system so that one
may observe and identify the reasons for changes in the output of the response
(Montgomery, 1991). Therefore, the DoE approach gives substantial information on the

system in addition to suggesting solutions to the problem.

4.3 BASIC PHASES FOR APPLYING DESIGN OF EXPERIMENTS

It is important to follow the steps in applying Design of Experiments approach.

Figure 4.1 shows different phases of DoE applications.
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Predicted Results

Figure 4.1: DoE Application Phases.

I. Planning: This is also called Brainstorming phase. According to Roy (2001),
“Taguchi regards brainstorming to cross organizational barriers. By including
representatives of all the departments, from design through marketing, the quality
demanded by the customer can be considered and those production factors which
may contribute towards quality can be identified and incorporated into the design
of experiments”. Decisions on the project objectives, its measurement method,

and the factors that may influence the results, are made by the participating
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II.

1.

IV.

members. In this brainstorming session, information pertinent to the design and
execution of the experiment is gathered together.

Designing: At this phase, the factors and their levels are identified, and an
experiment is designed, which specifies the number of experiments and the
pattern in which the experiment will be carried out.

Conducting Experiments: After the experiments are designed, they are
conducted by following the design combination for the statistical validity. The
symbol used for conducting the experiments in Fig. 4.1, indicates a sequence of
commands that will continue to repeat until stopped manually.

Analyzing: The results collected by conducting the experiments are analyzed in
this phase. Analysis of Variance (ANOVA) may be used to determine statistical
significance of the factors and, of their interactions, for direct responses and for
Signal to Noise ratios (Taguchi, et al., 2000).

Confirming: To determine whether the improvement is really achievable or to
determine how close the estimate matches actual performance, the new product /
process as per new specifications is tested. The objective of DoE approach is to
improve the system by selecting the appropriate level of factors. If a system can
be improved by the increase in the system response, then the conclusion phase
will propose choosing the high levels for the factors that have important effects

(Roy, 2001).
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4.4 FACTORS AND VARIABLES

Factors are used to describe the input variables within the system. They may be
system parameters or operation conditions. Levels are the different settings over the
operating range for each factor.

Taguchi divides factors into control factors and noise factors. Control factors can
be varied as desired, whereas noise factors cannot. Although both control and noise
factors affect the process, optimum levels can be specified only for control factors as
noise factors cannot be adjusted. Control factors are often referred to as inner array
factors and noise factors are called outer array factors. The levels for the control factors
should be specified after they have been identified (Phadke, 1989; Roy 2001). The output
of a process is influenced by the input and also by different number of variables
associated with the process. The variables which can be changed are called the control
variables. In a typical manufacturing process the control variables are temperature,
electrical charge, flow rate, type of process, etc. The noise variables are known to have an
influence on the output but are either unidentifiable, difficult to control due to technical
difficulties, or are not economically controlled. Machine operator skill, operating
environment, time of the day, etc. are some examples of the noise variables. The noise
variables are the main cause for quality loss.

The main aim of the robust engineering methodology is to determine the optimum
combinations for the control variables so that the effect of the noise variables is nullified.

Robustness is the insensitivity of the system to the noise variables.
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4.5 THE 2" FACTORIAL

For applying the DoE approach there are three main strategies: full factorial
design, fractional factorial design, and orthogonal design. The full factorial design
consists of all possible combinations of the factors and levels. When the interaction
effects are considered potentially important and economically feasible, the full factorial
design is recommended. In such experiments the design is expressed by a” where,

a: number of levels of each factor

b: number of factors

In this section we are emphasizing on 2" because they are easy to use for studying
and have been found to meet the majority of the experimental needs for the improvement
of the processes. Table 4.1 is a sample listing of the combinations of factors in a design
matrix. It has 4 factors with 2 levels each. “+” indicates the factor is set at the first level
and “-” indicates it is set at the second level. The experiments provide information on the

four main factors and all their interactions.
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Table 4.1: 2* Design Matrix

Factors

Test 1 2 3 4
1 - - - -
2 + - - -
3 - + - -
4 + + . -
5 - - + -
6 + - + -
7 - + + -
8 + + + -
9 - - - +
10 + - - +
11 - + - +
12 + + - +
13 - - + +
14 + - + +
15 - + + +
16 + + + +

The fractional factorial design is used to reduce the size of an experimental design
for experimenters to study most of the factors and their interactions. Some of the
information on the effects of the main factors and their interactions may be lost due to

confounding.
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The nomenclature definition of the fractional factorial design is: a” where,
a: number of levels of each factor
b: number of factors
c: the fraction level (it indicates the number of experiments which will not be

conducted compared to the full factorial design)

Table 4.2: Design Matrix for 2* Full Factorial Pattern

Test |1 |2 |3 4 12 |13 |14 (23 |24 |34 [123[124 134|234 | 1234
1 - - - - + |+ | + + | + | + - - - - +
2 + - - - - - - + + + + + + - -
3 - |+ - - - + - - + |+ |+ - + -
4 + | + - - + - - - + - - + + +
5 - - + - + - + - + - + - + + -
6 + | - + - - + - - + - - + - + +
7 -+ ]+ - - - + - - - + |+ - +
8 + L+ |+ - + + - + - - + - - - -
9 - - - + | + + - + - - - + + -

10 + | - + - - + + - - + - - + +
11 -]+ - + - + - - + - + - + - +
12 + | + - + | + - + - + - - + - - -
13 - - + |+ | + - - - - + |+ |+ - - +
14 + | - + | + - + + - - + - - + - -
15 -+ |+ ]+ - - + | + | + - - - + -
16 + |+ |+ |+ + + + | + + + +

If the experimenter would like to reduce the size of the 2* paitern in Table 4.2 to

eight tests, it is important to choose the eight tests so that as much information as possible
about the effects is preserved. The 2* pattern indicates a full factorial pattern using four

factors in 16 runs, 2*" indicates a % fraction of a 2* pattern, using four factors in eight
runs. The columns corresponding to the various interactions are obtained by multiplying

the signs for the factors contained in the interactions. Hence, it is desirable that the eight
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tests be chosen so that each of the columns in the design matrix has four minuses and
four pluses. This selection would provide a balance to the design. Also, the least
important estimate is obtained from a full 2* design is the four-factor interaction. This
estimate would usually be readily given up to reduce the size of the experiment. The eight
tests are chosen by selecting only rows in the design matrix in which the sign of the
column headed 1234 is plus (or, alternatively, minus). This results in the design matrix in
Table 4.3. It is seen that columns 14 and 23 are identical, which means that the estimates
of the two effects will be identical. The estimate provided by either column is actually an
estimate of the sum of the 14 and 23 interactions. These two interactions are said to be
confounded with each other. If any one of the factors has a negligible effect on the
response, then the other three can be analyzed as a full 2* factorial design. Such type of
analysis is performed under the assumption that the factor having a negligible average
effect does not interact with any of the other factors. From this design matrix, it is seen
that the desired balance has been obtained. A justification for using this type of pattern is
that any three of the four factors form a full factorial design. If any one of these factors
has a negligible effect on the response, then the other three can be analyzed as a 2
factorial design. Also, this analysis is performed under the assumption that the factor

having a negligible average effect also does not interact with any of the other factors.
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Table 4.3: Design matrix for a ¥ Fraction of 2 Pattern

Test | 1 2 3 4 12 (13 |14 |23 |24 |34 |123 124|134 | 234 | 1234
1 - - - - + + + + + + - - - - +
4 + + - - + - - - - + - - + + +
6 + - + - - + - - + - - + - + +
7 - + | + - - - + + - - - + + - +

10 | + - - + - - + + - - + - - + +
11 - + - + - + - - + - + - + - +
13 - - + | + + - - - - + + + - - +
i6 | + | + |+ ]+ | + + + + + + + + + + +

4.6 ORTHOGONAL ARRAYS

The third design strategy is using the orthogonal arrays, used in Taguchi’s method
as show in the tables in Appendix I. They are fractional factorial designs based on using
symmetrical subsets of all the combinations of factor levels in the corresponding full
factorials. The orthogonal arrays allow the factors to have the pair wise balancing
property so that every level of a factor occurs with every level of all other factors for the
same number of times. Orthogonal arrays are fractional factorial designs which minimize
the number of trials but keep the pair wise balancing property. For example, L
orthogonal array is used to design an experiment with 15 factors all at two levels, which
requires only 16 experiments, instead of the 32,768 combinations. Therefore, experiments
designed using orthogonal arrays reduce the number of experiments to a much more
practical and affordable size. Table 4.4, illustrates the common experimental situations
and the corresponding experimental configurations.

Orthogonal arrays emphasize the investigation of the main factors with a small

design, while ignoring most of the interactions (Bendell et al., 1990).
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Table 4.4: Various Experimental Situations and Corresponding Experiment Size

Experimental Situation Maximum Possible Combinations Using

P ‘ Combinations Orthogonal Arrays
3 two-level factors 8 4

7 two-level factors 128 8

11 two-level factors 2,048 12

15 two-level factors 32,768 16

4 three-level factors 81 9

7 three-level factors 2,187 18

a: number of experimental runs

b: number of levels of each factor

¢: number of columns in the array

The nomenclature definition of orthogonal arrays is L , (b°) where,

The most commonly used orthogonal arrays for experimental design are illustrated in

Table 4.5.

Table 4.5: Orthogonal Arrays Most Commonly Used for Experiment Design

ARRAY INTENDED USE
Ls(2%) 3 two-level factors
Ls(27) 7 two-level factors
L") 11 two-level factors Two-level arrays
Lis(2") 15 two-level factors
Ly 27 31 two-level factors
Lo (2) 4 three-level factors
Lig(2',37) 1 two-level and 7 three-level factors Thres-level arrays
L7 3%) 13 three-level factors
Lis (4°) modified 5 four level factors Four-level arrays
L3, (21, 4°) modified 1 two-level and 9 four-level factors
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The arrays can have factors with many levels, although two and three levels are
most common. An L, (2'") array is illustrated in Table 4.6. It can handle up to 11 factors
at 2 levels each, under 12 experimental conditions.

Table 4.6: L, (2"') Orthogonal Array

Expt. Experimental Combination Column

No. 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1 1
2 | 1 |1 |1 |1 1 ]2 2 2]z]|2]:2
3 1 1 2 2 2 1 1 1 2 2 2
4 1 2 1 2 2 1 2 2 1 1 2
5 1 2 2 1 2 2 1 2 1 2 1
6 1 2 2 2 1 2 2 1 2 1 1
7 2 1 2 2 | 1 2 2 1 2 1
8 2 1 2 1 2 2 2 1 1 1 2
9 2 1 1 2 2 2 1 2 2 1 1
10 2 2 2 1 1 1 1 2 2 1 2
11 2 2 1 1 2 1 2 1 2 2 1
12 2 2 1 1 2 1 2 1 2 2 1

L, L, Ly and Ly, arrays are among a group of specifically designed arrays

that enable the designers to focus on the main effects. Such an approach helps to increase

the efficiency and reproducibility of small scale experimentation. Among them, L is the
most widely used array for DoE applications (Phadke, 1989). The L, array is used to

design experiments with 1 two level factor and 4, 5, 6, or 7 three level factors.
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The process of selecting the proper array consists of first calculating the degree of
freedom (DOF) of each factor and their interactions. Interactions are also treated as
factors for calculating DOF. The total DOF required for the design is equal the sum of all
the DOF of the individual factors and interactions. Therefore, the available DOF within
an array can be calculated by adding the DOF for all the columns of the array. A list of
various standard arrays can be seen in Appendix 1. The proper array can be selected by
comparing the DOF required by the design with the available DOF of each standard

array.

4.7 ANALYSIS TOOLS

Analytical methods designed for making the design robust, improving the quality
and statistical methods should be used for data analysis. Some of them are introduced
below.

The quality characteristic specifies whether the performance attribute quantified by
the evaluation criteria needs to be maximized, minimized or optimized.
The three quality characteristics are:
1) Bigger is better
2) Smaller is better

3) Nominal is best

For the bigger is better type of measurement, the large magnitude of evaluation
will be preferred over smaller ones. Theoretically, there is no upper limit. In practice,
some upper limit in required for numerical correctness. In the case of smaller is better

type of measurement the smaller magnitude is preferred. The theoretical target is zero.
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The practical value of the lowest achievable value can be set to some appropriate number.
In the third category of measurement, nominal is best a fixed value is always desired. The

fixed level of achievement desired is called the target or nominal value.

4.7.1 QUALITY LOSS FUNCTION
The quality loss function, proposed by Taguchi, is given in Equation (4.1).

L(y) = k(y—m)’ (4.1)

In this equation,
L(y) is the quality loss
k is the constant called quality loss coefficient
y is the quality characteristic of a product or a process

m is the target value for y

The general form of such function is plotted in Fig. 4.2. The loss due to
performance variation is proportional to the square of the deviation of the performance
characteristic from its nominal value. This standard representation of the loss function
demonstrates several key attributes of loss. For example, the target value and the bottom
of the parabolic function intersect, implying that as parts are produced at the nominal

value, little or no loss occurs. Also, the curve flattens as it approaches the target value.
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Figure 4.2: Quality Loss Function

Aty = m, the loss is zero as shown in Fig. 4.2. If m £ A are the functional limits

and the loss at y+ A is A, the value of the quality loss coefficient can be calculated by
k=A,/ A, 4.2)

Equation (4.1) does not imply that every customer who receives a product with y

as the value of the quality characteristic will incur a precise quality loss equal to L(y).

Instead, it implies that the average quality loss incurred by those customers is L(y).

4.7.2 QUALITY CHARACTERISTIC

Data generated from the experimental trials can be analyzed in two different ways,
namely, standard analysis and signal to noise ratio analysis. Either of these analyses
produces an operating characteristic curve plotting the levels of each factor versus the
criterion for evaluation. The standard analysis is used when there is just one column of
results and it is relatively simple which uses the average values in the data set from each

trial. The standard analysis should be performed if there is only one observation per trial.
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The signal to noise ratio analysis can be used if the number of observations is large.
Another situation where standard analysis is recommended is when the spread within the
sample, containing multiple observations, is small. In the case of a sample with multiple
observations, the average of all thé observations for a trial should be computed.

The Signal to Noise ratio (S/N ratio) is a variability index and it measures relative
quality characteristics, to be used for comparative purposes. The S/N ratio analysis
should be performed when there are multiple observations per trial. There are two classes
of S/N ratio, static and dynamic. The static S/N ratio applies in cases where the quality
characteristic target has a fixed value. The dynamic S/N ratio is an extension of the static
S/N ratio. The dynamic S/N ratio applies where output function vary with input function.

Equation (4.3) is used to calculate the static S/N ratio (Bendell et al., 1989; Roy, 1990).

S/N = -10 log,, (MSD) 4.3)

Where, MSD is the mean squared deviation from the target value, of the quality
characteristic. The MSD is calculated for each quality characteristic (Roy, 1990).

For smaller is better,
MSD =yt +y2 +y2 + ..+)°)/n (4.4)
For nominal is best,
MSD = [(y,-y0) + (v, -o)> + (3 -0)° + A=y’ /1 (4.5)
For bigger is better,
MSD = (I + IN2 + 12 + 7)) /n (4.6)
where, y;, V5, ... ¥, , are the different observations for each trial and y, is the desired

nominal value
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n is the number of observations for each trial

4.7.3 INTERACTIONS OF FACTORS

Most factors have certain interactions with other factors. A factor behaves
differently in the presence of other factors and its trend changes when the levels of other
factors change. It is important to consider the interactions in planning an experiment.

The interactions between more than two factors are possible, but it is often
neglected in an experiment design (Roy 1990; Moen et al., 1999).

The DOF value of an interaction can be calculated simply by multiplying the factors
DOFs:

DOFs of interaction A x B = (DOF of A)x (DOF of B) 4.7

Factor interaction can be obtained by using one column of the orthogonal array (OA), as
shown in Table 4.7, where A, B, C and D are factors; A x B, A x C and A x D are the
interactions between the factors. The best way to relate to interaction is to view it as an
factor effect. In Table 4.7, the interaction A x B gives information which relates to the
interdependence of factors A and B. It also gives an idea to the experimenter to check the
influence of the factor interaction on the results. It can be seen that the levels are taken

such that it is a combination of the two factors to be considered in the experimental trail.
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Table 4.7, L., (27 ) layout, factors and their interactions

Expt. 1 2 3 4 5 6 7
No. A B AxB C AxC D AxD
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

4.7.4 ANALYSIS OF VARIANCE (ANOVA)

Analysis of variance (ANOVA) is a statistical technique to calculate the
contributions of individual factors towards the variability of the evaluation criterion. In
the context of Taguchi Method, ANOVA is also needed for estimating the error variance

for the factor effects and variance of the prediction error (Phadke 1989, Roy 2001).

In this research, we have used Qualitek-4® software for such analysis. The

software is able to perform the analysis for L, to L, arrays. Up to 63 factors can be

selected with 2, 3 and 4 levels for each factor. It also provides options of standard or
signal to noise data analysis with choices of bigger, smaller or nominal categories for
quality characteristics. The standard analysis identifies which factors affect the average
response, whereas the signal to noise analysis consolidates several data points into one

value to reflect the level of variation.
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4.8 ROBUST ENGINEERING OVERVIEW

Robust engineering is an application of DoE approach to reduce the variability of the
system against uncontrollable factors. Robust engineering methodology is an
optimization tool widely used for the development of new technologies in the area of

product and process design.

The main features of robust engineering can be summarized as (Taguchi et al., 2000;

Roy 2001):

e [t is the application of Taguchi methods for product/process development
activities to optimize the performance.

e It identifies noise factors that are controllable in the laboratory but may not be
controllable in a real production system.

e It combines the noise factors using an orthogonal array to produce extreme noise
conditions (see Appendix II).

e [t identifies the “ideal functions” for a specific technology or product/process
design.

e It emphasizes on selectively choosing the best nominal values of design to
optimize performance reliability at the lowest cost and to produce least variation

in the results.

4.8.1 IMPLEMENTATION OF ROBUST DESIGN

For successfully implementing robust design, proper implementation
methodology has to be followed. The various steps for the implementation of the robust

design can be described as below (Taguchi et al. 2000; Chowdhury, 2003):
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1.) Management Commitment

With a supportive and encouraging top management, the rest of organization will

follow the guidelines for the implementation strategy.

2.) The Corporate Leader and the Corporate Team

The organization should be certain that they have chosen the right individual for
the job. Defining the overall goals and the vision for the project will be the responsibility
of a strategic planning team and the corporate leader should maintain active involvement

with the strategic planning implementation process.

3.) Effective Communication

Robust Engineering methodology requires that the proper flow of information is
clear, concise and timely. Each should be able to enhance the others’ work by using a

communication system that is not only accurate but also timely.

4.) Education and Training

It is essential that each employee has an understanding of how his or her part in
the process can contribute. Everyone needs to commit to the needs and the position of the

organization.

5.) The Integration Strategy

The Robust Engineering methodology enhances other quality programs. Various

quality programs such as quality function deployment (QFD), failure modes and effects
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analysis (FMEA), test planning and reliability analysis are much more effective, less time
intensive, and give higher performance when used simultaneously with Robust

Engineering methodology.
6.) Bottom Line Performance

While measuring the results in the production system design, it is desired to
achieve new improved method as compared to the old ones. It is desired for the system in
focus to produce high quality products according to the customer demand. The system

has to combine with robustness and profitable production costs.

4.9 ANALYZING A PRODUCTION SYSTEM

There various ways to study a production system, such as experimenting with the
actual system or with the model of the system. Mostly, the experiments are done using
the models for production systems, using simulation. For some cases even experiments
with real system could also be feasible (Law and Kelton, 1991).

The production system is analyzed in accordance to the problem depending on the
type of case. The various system design approaches are discussed in Chapter 3. As we
can see that in the case of a production system the actual experimentation can be done
with the actual system or experiment by making a model of the system. The financial
resources would be much higher, if the experimentation is done with the actual system.
The model of the system is further categorized into a physical model or a mathematical
model. In this research, we have simulated the system using simulation software.

Experimentation with real world systems would either be impossible or not cost effective.
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Table 4.8, describes simulation benefits instead of other analysis. The main reason
for the use of simulation is its ability to deal with complicated systems and reduced cost,
which makes it a powerful and versatile tool. In our research, a real time production
system problem has been studied by using simulation which had another advantage of

repeating various experimental combinations in less time.

Table 4.8 Comparative benefits of simulation

Benefits over real life
experimentation

Benefits over mathematical
modeling

Managerial benefits
includes

Cost, repeatability, control
over the time base, legality
and safety

Dynamic and transient
effects, non-standard
distributions, interaction of
random events

Fosters creative attitudes,
promotes total solutions,
makes people think,
communicating good ideas

4.9.1 SIMULATION

A simulation is to create and conduct experiments with a model that mimics
reality. Simulation can be defined as the imitation of the operation of the real-world
process or system over time. Simulation involves the generation of an artificial history of
the system and the observation of that artificial history is to draw inferences concerning
the operating characteristics of the real system (Banks er al., 1996). Simulation by
definition, allows for experimenting with a model of the system to better understand
processes, with a goal of improving performance. Simulation modeling incorporates
various inputs to a system and provides a means to evaluate, redesign, and measure or
quantify customer satisfaction, resource utilization, process streamlining, and time spent

(Kelton et al., 1998).
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Process performance analysis approach was developed to collect performance data
related to each activity in the process and then to use this data to calculate and improve
the performance of the total process, and the quality. Typical information to collect
related to each activity is:

e Cycle time

e Processing time

e Wait time

o Yield

¢ Quantity processed per time period
There are various factors that cause variations in the process, for which process variation
analysis is done. Variation may occur simultaneously in each activity in random. The
various factors causing variations are workload buildup, utilization of machines,

equipment downtime, etc.

4.9.2 PROCESS SIMULATION

In this research, discrete-event simulation was used for robust system design. A
simulation model for a hypothetical but typical manufacturing system was constructed.
Experiments were conducted following the robust design approach aiming at improved

product and system quality.

Discrete event simulation involves the modeling of a system as it progresses
through time. It is a system in which the state variables change only at a discrete set of
points in time. These models produce output that is only an estimate of the true behavior

of the model. It is widely used for simulating manufacturing systems. Discrete event
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simulation is one way of building up models to observe the time based behavior of a
system. During the experimental phase the models are executed in order to generate
results. The results can then be used to provide insight into a system and a basis to make

decisions.

4.10 SIMULATING THE PRODUCTION SYSTEM

Simulation models can be used to determine optimal system parameters when the
models are run following certain optimization methods such as response surface methods,
gradient search method, heuristic search methods, etc. These methods may provide
certain strategies searching for a robust design system. Taguchi method also supports
modeling and experimentation and provides guidance to improving the effectiveness of
the optimization procedure.

The flow of parts, conditions about processes, layout facilities, etc. which are not
desired to control or have been designed can be viewed as the characteristics of the
system, and are modeled. The operational parameters and their variables are the system
inputs. The performances are the system outputs. The typical goal of simulation study is

to predict results from operational parameters.
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Figure 4.5: Combined Simulation and Optimization Process

To optimize the performance the robust design method is used which enables to
experiment systematically, and also with which the data can be analyzed in the presence
of noise. Figure 4.5, shows how simulation can be used for robust system design. The

simulation model of the real production system, under study, is built and initialized to the

exact current state of the production process.
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Figure 4.6: The Steps in the Activities of Simulation Using Robust Design
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As seen in Fig. 4.6, the steps for simulation comprise three stages: system
modeling, experimental design and analysis. The first four steps are used for problem
definition. The steps five to seven are the robust design which is used for planning and
conducting the experiments. Then, the simulation model is executed with verification and
validation. After running the simulation, in the tenth step experimental results are
analyzed and the optimum settings of the parameters are determined. Finally, a
confirmation experiment is carried out to validate the results. The first loop originates
from the decision box (step 9), Awhich makes sure that the model is translated perfectly.
The second loop originated from the decision box (step 12) which confirms whether the
design is approved of not. In case the design is not approved, then the process is repeated
from step 2, which again identifies the objectives and the alternative parameters for the
ones taken into consideration till we get an approved design, and the experiment is
complete.

The algorithm described above is generic approach and also the activities of

simulation may follow a different pattern other than the steps shown.

4.11 USING TAGUCHI METHOD FOR SIMULATION BASED
SYSTEM DESIGN

The method of using simulation with Taguchi’s method for robust system design consists
of the following steps (Wisner et al., 1991; Azadivar 1992; Mayer and Benjamin, 1992):
1. Identify factors and specify targets: Identify the relevant performance measure,

design factors and noise factors, for the system under study. The set of
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independent variables of the model is divided into two disjoint subsets; the design
(control) factors and the noise factors. The system under study should be modeled
using appropriate simulation software, which should be verified and validated.
The detailed description of the design and noise factors is given in section 4.4. At
this stage, the target value for the performance measure is set and the ranges of
permissible values of the design and noise variables are specified.

Formulation of the experiment: The matrix of the experimental design is made up
of two components. The design matrix is a matrix of design (control) factors.
Various level combinations are stored in the design matrix. The other matrix is
known as the noise matrix, and it is a combination of the noise factors. The choice
of how many levels to use for each factor is determined from prior knowledge of
the anticipated behavior of the performance characteristic. If a design matrix has
m rows and there are n rows in the noise matrix. For each of the experimental
conditions specified by a row i of the design matrix, the experiment is replicated n
times to yield measurements for the performance characteristic. This procedure is
repeated for each of the m rows of the design matrix, making a total of mx n
experimental conditions.

Conducting the experiments and analyzing the data: A total of m x n experiments
are conducted and the results are compiled. The performance statistics of interest,
the signal-to-noise ratios (S/N), are computed for each of the m rows of the design
matrix.

Parameter setting: ANOVA is performed using the signal-to-noise ratio as the

response. At this stage, factors which have a significant effect on S/N are
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identified. These factors are now adjusted and set at the optimum levels. The
levels of those factors are now treated as fixed, and hence will not be considered
for further adjustments to improve performance.

Tuning the performance to target: The set of design factors which significantly
influence the model performance are identified by performing ANOVA with the
model performance as the response. Among the factors which have a negligible
effect on S/N, those which have a significant effect on the model performance
measure are identified. 'fhe model performance is tuned, to bring the value of its
performance measure closer to target by properly setting the adjustment factors.

. Performing conformation experiments: For the confirmation that the chosen
settings of the model indeed yield the desired behavior, confirmation experiments
are run at the new parameter settings. If the model performs as predicted, the
chosen design is considered as adequate, and the analysis is complete. If not, then
a new cycle is again initiated and gives an indication that some of the assumptions

made during the analysis are not valid.

In this research, we followed these steps in the sequence they are explained, and some

of them are followed more closely.

4.12 SUMMARY

This chapter discusses DoE and Robust Engineering in more detail. Various terms

and formulae are explained. Implementation issues of the Robust Design have been

discussed. The use of simulation along with Taguchi’s method provides a solution for

improved performance characteristics in a production system. The concerned problem

under study in a production system can be simulated before an actual model is formed,
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which would enable and ensure that the investment made on the modification or
construction would be justified. Whether the process would actually be robust, is carried

out by performing a confirmation experiment using stmulation.
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CHAPTERS

NUMERICAL EXAMPLE AND ANALYSIS

5.1 INTRODUCTION

This chapter presents an example to illustrate the methodology described in Chapter 4
and its solution method. An experiment was designed to study the effect of several
factors of a simulated manufacturing job shop. The approach used in studying this
problem is a concept-driven approach, which results from concept-generating approach
discussed in Chapter 3. We have chosen to follow the approach described in Section 4.10,
because there was a need for a decision-making tool along with the activities of
simulation. The reason for the selection of robust design method was to obtain optimum
performance along with its ability to design a better and robust system.

The problem represents a standard design problem. It is one of the contentions of this
research that robust performance is more critical in the design of the production systems

of the future.

5.2 PROBLEM STATEMENT

The quality and supply schedule of the input castings is highly unreliable, and

consequently the enterprise cannot adhere to its customers delivery requirements. Various
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efforts to improve the reliability of supply have not been successful. At this stage it is
decided to simulate the process, studying the system and find out ways of improving the
system design so that the production commitments are most consistently met. The
specific objective of the experiment is to minimize the average system time. The
manager’s primary goal is to seek a design of the job shop which would reduce the

average system time and stabilize the system in the presence of the noise factors.

5.3 A MANUFACTURING JOB SHOP

In order to present how a production system can be designed using the robust
engineering method, a simulation model of a manufacturing job shop is constructed using
ARENA®. We considered a metal cutting job shop, processing different types of gear
housings. Figure 5.1 shows the main elements of the job shop along with the possible
process flow routes. The job shop has two groups of milling machines (M1, M2), a set of
boring machines (B1, B2), two groups of drilling machines (D1, D2), and three
inspection stations (I1, 12, 13). The three inspection workstations are placed by the
processing machines. Each processed part is inspected before it is sent to the next set of
machines. After inspection, the parts found defective can be rectified by re-work, while
some are scrapped. The operation times (in minutes) of the part are given in Table 5.1.

The average inspection time is 14 minutes.
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Fig. 5.1: A Manufacturing Job Shop
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5.4 PLANNING THE EXPERIMENT

The job shop is capable of producing various types of jobs, which have different
process flow routes and operation times. Assume that the timely supply of the Job Type
1, is most critical. The elements of the job shop which can be possibly adjusted are the
number of type 1 and 2 milling machines, the number of boring machines, number of
type 1 drilling machines, and the inspection time, in terms of better inspection machines.
There is a maximum limit to which the number of machines can be afforded by the
factory management. The scheduling rule used to simulate the system is FIFO (first-in-

first-out).

Table 5.1 Process Flow Details of the Job Shop

Job Type 1
Operation (mean, o)
Milling 1 (M1) (14, 1)
Milling 2 (M2) (29, 2.5)
Boring (B1) (22, 2)
Driiling 1 (D1) (17, 1.5)
Drilling 2 (D2) (12, 1)

5.4.1 CONTROL AND NOISE FACTORS

It is decided to design an experiment to study the effects of increasing the number
of machines, and a limit is set for the purpose. The factors in Table 5.2 are those variables

that can be changed by the manager, at some cost.
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Table 5.2 Controllable Factors and Levels

CONTROLLABLE FACTORS LEVELS

F1 = Number of Type 1 Milling Machines | (1)1 machine (initial configuration)

(2) 2 machines

F2 = Number of Type 2 Milling Machines | (1) 3 machines (initial configuration)
(2) 4 machines
(3) 5 machines
(4) 6 machines

F3 = Number of Type 1 Drilling Machines | (1) 1 machines (initial configuration)
(2) 2 machine
(3) 3 machines

F4 = Number of Boring Machines (1) 2 machines (initial configuration)

(2) 3 machines

(3) 4 machines

F5 = Inspection Time (Average) (1) 14 minutes (initial configuration)
(2) 11 minutes

(3) 7 minutes

The factors in Table 5.3 are the noise factors. The rework rate is influenced by the input
quality of the job which meets the tolerances limits or the ones which meet the target. It is
assumed, as the raw material’s specifications deviate from the target, the quality becomes

progressively worse.
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Table 5.3 Noise Factors and Levels

NOISE FACTORS LEVELS

Inter- Arrival time of Input castings | (1) 11 minutes
(2) 23 minutes

Rework rate after inspection (1) 5 percent
(2) 15 percent

5.5 PERFORMING THE EXPERIMENT

The model was developed using ARENA® Simulation which is a flexible and
powerful software tool from Rockwell Software Corp. (see Appendix I, IV). The
simulation model was developed and used to determine the average system time. The
goal was to analyze the model with the initial configuration, and the various trials using
the robust engineering methodology through Qualitek-4* software.

This study was treated as a terminating simulation since we are interested in
measuring the performance for a limited time: 2880 minutes of operation, considering
two days of continuous job shop processes. Ten replications of the simulation were done
for each of the experimental trial conditions. Thus a total of 640 simulation runs are
performed for the initial stage of the analysis. Currently, the average system time (for the
initial configuration) is 734.594 minutes, but highly variable, taking noise factors into
consideration. All the values are calculated up to three decimal places, for uniformity and

consistency.
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We have selected a L, Orthogonal array (inner array) which is in its modified

form. There are 3 factors which have 3 levels, and 1 factor with 2 levels and 1 factor with

4 levels. The L, modified orthogonal array has 5 four-level columns. The design of the

modified array was selected by using Qualitek-4® software, and for the noise factors, an

outer array, L, was selected, since there are 2 factors with 2 levels each. The various trial

conditions are described in Table 5.4, along with the trial average and S/N ratio. Each

trial was experimented with four combinations of noise conditions.

Table 5.4: Description of Trial Conditions and S/N Ratio

Factors and Levels

Random Mean
c Trial F1 F2 F3 Fa E5 Order of Average DS :‘ v‘::tri(:;:r SIN ratio
onditions Running (MSD)
the Trial

1 1 1 1 1 1 11 743.232 | 570295.650 | -57.561

2 1 2 1 2 2 9 786.727 | 645802.900 | -58.101
3 2 3 1 3 3 4 872.600 | 766655.182 | -58.846
4 2 4 1 1 1 5 730.677 | 556288.413 | -57.453
5 1 3 2 1 1 13 643.120 | 430130.340 | -56.336
6 1 4 2 2 3 12 816.525 | 675927.332 | -58.299
7 2 1 2 3 2 7 929.852 | 872331.600 | -59.407
8 2 2 2 1 1 14 784.002 | 639145.934 | -58.056
9 2 4 3 1 2 6 738.872 | 558856.100 | -57.473
10 2 3 3 2 1 16 693.050 | 498081.000 | -56.973
11 1 2 3 3 1 8 808.922 | 677953.628 | -58.312
12 1 1 3 1 3 10 758.827 | 589114.990 | -57.702
13 2 2 1 1 3 15 781.275 | 638263.575 | -58.050
14 2 1 1 2 1 3 798.197 | 641357.264 | -58.071
15 1 4 1 3 1 1 727.400 | 553477.550 { -57.431
16 1 3 1 1 2 2 700.642 | 512271.300 | -57.095
Average (S/N Ratio) | -57.823
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5.6 DATA ANALYSIS

Fig 5.2 shows the graph of each trial, and the shaded portion of the graph shows the
range of variation for the results within the same trial condition. The variation is highest

in the trial no. 4, 13 and 16 and the least in trial no. 3 and 14.

BOD 1000

Fig 5.2 Experimental Trial Results
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The graphs in Fig 5.2, give indication about the set of factors and levels which cause

less variation for a particular set of factors and levels in the different trials.

5.6.1 S/N RATIO CALCULATION

Example of S/N ratio calculation for trial # 7:
Calculating the average system time from the four experiments for each trial,
Average system time, (998.321 + 952.832 + 987.630 + 780.630) / 4 = 929.850 minutes
The MSD, using equation 4.3, we have,
MSD, [(998.321)” + (952.832)* + (987.630) + (780.630)*] / 4 = 872331.600
From equation 4.2, calculating S/N ratio,

S/N ratio = -10 log , (872331.600)

S/N ratio = -59.407

5.6.2 MAIN EFFECTS BASED ON THE QUALITY

CHARACTERISTIC

The main effects represent the trend of influence of a factor assigned to the
column for which the column may be reserved. The numbers in the table represents

average effects of the factors, shown in Table 5.5.
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Table 5.5 Main Effects (Average Effects of Factors)

Factors Level 1 Level 2 Level 3 Level 4
F1 -57.605 -58.041
F2 -58.185 -58.130 -57.313 -57.480
F3 -58.025 -57.926 -57.655
Fa -57.706 -57.351 -58.399
F5 -58.224 -58.019 -57.524

As we can see the average effects of various factors, in the Fig. 5.3-5.7, it shows
the S/N ratio of the respective factor at its different level. In the case of factor F2, the S/N
ratio is maximum when it is at level 1, and minimum at level 3, so in our optimum results

we choose level 3, for the purpose of our robust design for the manufacturing job shop.
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Fig.5.3: Average Effects of Factor F1
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Fig.5.4: Average Effects of Factor F2
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Fig. 5.5: Average Effects of Factor F3
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Fig.5.7: Average Effects of Factor FS
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5.6.3 ANALYSIS OF VARIANCE - ANOVA

The main objective of ANOVA is to know how much variation each factor causes
relative to the total variation observed in the result. By using ANOVA we can determine
those factors, which have strong effects on the responses of the experiment, clearly
shown in Table 5.5 and Figure 5.8. In Table 5.5, f is the number of degrees of freedom, S
is the factor sum of squares, V is the sum of squares per DOF and is the variance, F is the
ratio of factor variance and the variance of the error term, S' is the net variation and it is

also known as pure sum of squares, and P is the percent influence of each factor.

Table 5.6: Analysis of Variance

ANOVA TABLE
Factor f S Vv F s' P
F1 110765 | 0.765 5.365 0.623 7.574
F2 3 (2048 | 0682 4.783 1.620 19.695
F3 2 | 0653 | 0.326 2.295 0.369 4.487
F4 2 | 285 | 1.428 10.005 2.570 32.252
F5 2 | 1.509 | 0.754 5.288 1.224 14.879
Other / Error 5 10712 | 0.142 21.113
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Significant Factors

Fig 5.8: Percent influence of all factors including the error term

The error term or error factor in Table 5.5 is calculated by the software Qualitek-4®,
which analyses the experiment and the chances of error. In reality this term is more than
just experimental error. It is a representation of the collective influence of all factors not
included in the study. The error term combines the effects of three sources:

1. Factors excluded from the experiment

2. Uncontrollable Factors (noise factors)

3. Experimental error

The total percent influence in the ANOVA table is set to 100%. The percent influence
of the error term is calculated by the sum of all factor influences subtracted from the

total.
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It is calculated as the relative percent influence,
Pe:IOOW(PFI+PF2+PF3+PF4+PF5) (51)
Where, P, is the percent error term and Pg; Pr, Prs, Pry and Pgs are the percent influence

of each factor.

5.7 OPTIMUM CONDITIONS AND PERFORMANCE

The optimum condition gives the description of the optimum levels and the
expected performance. The significant factors are included in the description, as given in
Table 5.6. The numbers on the right hand side in the table indicate the contribution that a
factor or interaction makes to the improvement of the expected performance. The
expected performance at optimum represents what the population mean of results is

obtained from tests.

Table 5.7 Optimum Conditions

Factor Level Contribution
F1 1 0.218
F2 3 0.510
F3 3 0.207
F4 2 0.357
F5 3 0.298

Total contribution from all factors = 1.590
Current Grand Average of Performance = -57.823
Expected Result at Optimum Condition = -56.233
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5.8 PERFORMING CONFIRMATION EXPERIMENTS

The last step of applying robust engineering method is to perform the confirmation
experiment using the optimum conditions. The transformation of the predicted signal-to-
noise ratio gives an average system time of 648.112 min. We have to perform additional
experiments with the factors set at their optimum levels in order to confirm that the new
design actually performs better, as predicted. The level for each of the significant factors,
are given in Table 5.5, and 10 more replications of the simulation were conducted. The
average system time obtained with the final design is 649.890 min. At the initial
configuration of the design, as shown in Table 5.2, the average system time obtained by
simulation is 734.594 min. Therefore, a reduction of 11.53 % is achieved in the time in
system of the model as an outcome of the analysis.

The main goal of this study was to generate a system which is robust in the presence
of noise factors. As the signal-to-noise ratio was used as a metric to guide the search for
better designs in our numerical example, the resulting design is likely to be robust which

is also validated by the confirmation run.

5.9 SUMMARY

A set of experiments were designed to study the effect of several factors in a
manufacturing job shop. The specific objective of the experiment was to reduce the

average system time, and to keep the variation from noise factors to a minimum.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

The robustness of production system is important for a manufacturing company’s
capability to produce consistent high-quality products on customer demand with costs
that creates profitability. It is well understood that the robustness can be achieved during
the design process more easily and to lower costs, than during operation phase when most
system parameters are already set. There is a need to develop optional strategies for
production system design for robustness and quality. By explicitly considering robustness
as an objective in the problem formulation, it helps the designer to build a system which
not only performs well, but are also robust. This research is an attempt to apply robust
engineering approach for production system design for better system efficiency and
product quality. The product quality can be ensured in the long term, by the efficiency of
better performing production system.

The application of Robust Engineering Methodology is a straightforward process
that verifies control factors for the variation in a given process through experimental
design. The information obtained in the experiments provides the basis for reducing the

impact of noise factors on system performance. The proposed method uses orthogonal
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arrays to reduce the use of resources for the experiment. This research also integrates
computer simulation and robust design methodology for the purpose of production
system design. The numerical example presented in this thesis demonstrates the potential
for applying the method in robust production system design in real-world application.

By the use of simulation, the cost of extensive experiment can be offset which
enables the industry practitioners to analyze without the need to consider the high
expenditure. A good simulation study depends to a large extent, on the knowledge and
views of the analyst in the doméin of study and skills in the efficient use of a simulation

tools.

6.2 LIMITATIONS

The proposed method is not the best optimization method, although it targets the
noise, making the production system robust. Robust design methodology might not be
optimum in the cases where profit maximization is a priority. It involves improved
designs only in the regions where the responses are measured.

The use of Signal to Noise Ratios without studying the nature of the underlying
model would not give a comprehensive detail. Also, there would be cases where the
system would not give control and noise factors for study.

The method considers the problem with only a single performance measure.
However, considering the robustness in the system can be extended to design situations
where there are two or more performance metrics. This aspect is important, since most of

the design problems would consider more than one performance metrics.

86



6.3 FUTURE RESEARCH

Various methods, models and other types of supportive tools are means to create
and maintain knowledge between and within people being involved in the process of
designing robust production systems. Currently, there are no standard yardsticks for the
design analysts to access the practice of production system design using robustness as a
factor in the computer simulation. The creation of sustainable knowledge should be
considered a relevant factor when improving conditions for robust production. The
knowledge and experience by those individuals designing and evaluating production
systems are central for a possibility top create robust production systems. Thus, this is an
area with potential for more research. One of the proposed extensions to this research
would be to add more features to handle noise, and give more numerical examples, which

may lead to building more robust systems.

87



' REFERENCES

. Almgren, H. (1999), Pilot Production and Manufacturing Start-up in the
Automotive Industry — Principles for improved performance, Doctoral Thesis,
Department of Operations Management and Work Organization, Chalmers
University of Technology, Sweden.

. Azadivar, F. (1992), “A tutorial on simulation optimization”, Proceedings of the
1992 IEEE Winter Simulation Conference, Virginia, USA, pp198-204.

. Banks, J., Carson, J.S., and Nelson B.L., (1996), Discrete-Event System
Simulation, 2™ ed. Prentice Hall, NJ.

. Bellgran, M., Gullander, P., (2003), “Disturbance Handling in Complex
Manufacturing Systems During Early Life-Cycle Phases”, Proceeding of the 8"
IFAC Symposium on Automated Systems based on human Skill and knowledge,
Goteborg, Sweden.

. Bellgran, M., Gullander, P., Harlin, U., (2002), “Towards Improvement of
Production Efficiency and Effectiveness from a Life-cycle Perspective”. Proc. of
33" Int. Symposium on Robotic, Stockholm, Sweden.

. Bellgran, M., (1998), Systematic Design of Assembly Systems- Preconditions and
Design Process Planning, Linkoping Studies in Science and Technology,

Dissertation No. 515, Linkoping, Sweden.

88



10.

11.

12.

13.

14.

15.

16.

Bellgran, M., Safsten, K., (2004), “Production System Design and Evaluation for
Increased System Robustness”, Second World Conference on POM and 1 5t
Annual POM Conference, Cancun, Mexico.

Bennett, David, (1986), Production Systems Design, Butterworth & Co
(Publishers) Ltd, UK.

Bennett, D.J., Forrester, P.L., (1993), Market-Focused Production systems:
Design and Implementation, Prentice Hall International, Ltd. UK.

Belegundu, A.D., Zhang, S., (1992), “Robustness of Design through Minimum
Sensitivity”, Journal of Mechanical Design, Vol. 114, pp 213-217.

Bendell, A., Disney, J., Pridmore, W.A, (1989), Taguchi Methods: Applications in
World Industry, IFS Publications, UK.

Bendell, T., Wilson, G., and Millar, R., (1990), Taguchi Methodology within
Total Quality, IFS Itd., Bedford, UK.

Blake, S., Launsby, R.G., Weese, D.L., (1994), “Experimental Design Meets the
Realties of the 1990s”, Journal of Quality Technology, Vol. 27, No.10, pp 99-101.
Bolwijin, P.T., J., Boorsma, T. Kumpe, (1986), “Flexible manufacturing;
Integrating technological and social innovation”, Elsevier Science Publishers,
B.V., Amsterdam, pp 27-32.

Cabrera-Rios, M., Mount-Campbell, C. A., and Irani S. A., (2001), “An approach
to the design of a manufacturing cell under economic considerations”,
International Journal of Production Economics, vol. 78, pp 223-237.

Cesarone, John, (2001), “The Power of Taguchi”, Journal: IIE Solutions,

November 2001, pp 35-40.

89



17.

18.

19.

20.

21.

22.

23.

24.

25.

Chen, H.T., (1996), “A comprehensive typology for program evaluation”,
Evaluation Practice, Vol.17, No.2, pp121-130.

Chen, L.H., and Chen, YH, (1995), “A computer-simulation-oriented design
procedure for a robust and feasible job-shop manufacturing system”, Journal of
Manufacturing Systems, vol. 14(1), pp 1-10.

Chen. L.H., Chen, Y.H., (1996), “A design procedure for a robust job shop
manufacturing system under a constraint using computer simulation
experiments”, Computer& in Engineering, Vol. 30, No. 1, pp.1-12.

CIRP, (1990), “Nomenclature and definitions for manufacturing systems”, Annals
of the CIRP - International Institution for production Engineering Research, Vol.
39 (2), Technical Report, pp 735-742.

Crosby, P.B., (1979), Quality is Free, McGraw-Hill, New York.

Duda, JW., (2000), A Decomposition-Based Approach to Linking Strategy,
Performance measurement, and manufacturing System Design, Doctoral Thesis,
Massachusetts Institute of Technology, Boston.

Engstrom, T., Jonsson, D. Medbo, L., (1998), “The Volvo Uddevalla plant and
interpretations of industrial design processes”, Integrated Manufacturing Systems,
Vol. 9, No. 5, pp 279-295.

Godfrey, A.B., Phadke, M.S., and Shoemaker, A.C., (1986), “The Development
and Application of Robust Design Methods — Taguchi’s Impact in the United
States”, The Journal of the Japanese Society for Quality, vol. 16, No.2, pp 33-41.

Heilala, 1., (1999), Use of simulation in manufacturing and logistics systems

planning, AS 116.140, VTT Manufacturing Technology, Finland.

90



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Hill, T., (1995), Manufacturing Strategy, text and cases, MacMillan, Basingstoke.
Huber, P.J., (1981), Robust Statistics, John Wiley, New York.

Inman, Robert R., Blumenfeld, Dennis E., Huang, Ningjian and Li, Jingshan
(2003), “Designing production systems for quality: research opportunities from
and automotive industry perspective”, International Journal for Production
Research, vol. 41, No.9, pp1953-1971.

Jackson, M., (2000), An Analysis of Flexible and Reconfigurable Production
Systems, Linkoping Studies in Science and Technology, Dissertation No. 64,
Sweden.

Juran, JM., Ed., (1988), Quality Control Handbook, Fourth Edition, Mc-Graw
Hill, New York.

Kacker, R.N., Phadke, M.S., Speeney, D.V., Grieco, M.J., (1983), “Off-line
quality control in integrated circuit fabrication using experimental design”, Bell
System Technical Journal, Vol. 62, No.5.

Kanigel, R., (1997), The one best way; Frederick Winslow Taylor and the enigma
of efficiency, Viking, New York.

Kelton, D.W., Sadowski, R.P., Sadowski, D.A., (1998), Simulation with Arena,
WCB Mc-Graw Hill.

Law, S., (1988), “A Statistical Analysis of System Parameters in Automatic
Transfer Lines”, International Journal of Production Research, vol. 12, pp 131-
154.

Law, A., Kelton, W.D., (1991), Simulation Modeling and Analysis, 2" edition,

Mc-Graw Hill, New York.

91



36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Leung, W.K., Sanders, J., (1986), “Simulation Analysis of the performance of
Tunnel-Gated Stations for Free-Transfer Assembly Systems”, Journal of
Manufacturing Systems, vol. 5, no. 3. pp 83-97.

Mayer, R.J., Benjamin, P.C., (1992), “Using the Taguchi paradigm for
manufacturing system design”, Computers and Industrial Engineering,
Vol. 22(2), pp 195-209.

Mayne, E., Murphy, T., Winter, D., (2001), “Quality Crunch”, WARD'’s
AutoWorld, July, pp 32-37.

Moen R.D., Nolan T.W., Provost L.P., (1999), Quality Improvement through
Planned Experimentation, Second Edition, McGraw-Hill.

Montgomery, D.C., (1991), Design and Analysis of Experiments, John Wiley &
Sons, USA, 3" edition.

Neely, A., Mills, J., Platts, K., (1995), “Performance measurement system design:
A literature review and research agenda”, International Journal of Operations
and Production Management, vol. 15, No.4, pp 80-116.

Ohno, T., (1988), Toyota Production System: beyond large scale production,
Productivity Press, Portland.

Phadke, M.S, (1989), Quality Engineering Using Robust Design, AT&T Bell
Laboratories, Prentice hall, Englewood Cliffs, New Jersey.

Roe, J.W., (1916), English and American Tool Builders, New Haven.
Roozenburg, N.F.M., Eekels, J., (1995), Product Design: Fundamentals and

Methods, John Wiley & Sons Ltd., Chichester, England.

92



46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Rowlands, H., Anthony, J., and Knowles, G., (2000), “An application of
experimental design for process optimization”, Emerald Journals, The TOM, Vol.
12 No.2, pp 78-83.

Roy, Ranjit, (1990), A Primer on the Taguchi Method, Van Reinhold, New York,
NY.

Roy, R.K., (2001), Design of Experiments using the Taguchi approach, John
Wiley & Sons, Inc.

Ruffini, F.AJ., (1993), Prqduction System Design, from practice to theory,
University of Twente, Enschede, Netherlands.

Ryoichi, F., October, (2003), “Application of Taguchi’s Methods to Aero-Engine
Engineering Development”, IHI Engineering Review, Vol. 36, No. 3, pp 168-172.

Safsten, Kristina, (2002), Evaluation of Assembly Systems- An Exploratory Study
of Evaluation Situations, Doctoral Thesis, Institute of Technology, Linkoping
University, Sweden.

Schaub, D.A., Montgomery D.C., (1992), Using Experimental Design to Optimize
the Stereo Lithography Process, Quality Engineering.

Scriven, M., (1991), Evaluation Thesarurus, 4t edition, Sage Publication,
Newbury Park.

Skinner, W., (1996), “Manufacturing — missing link in corporate strategy”,
Harvard Business Review, May-June, pp 136-145.

Slack, N., Chambers, S., Harland, C., Harrison, A., Johnson, R., (1998),
Operations Management, ond edition, Pitman Publishing, I.ondon, UK.

Smith, G.F., (1998), Quality Problem Solving, ASQ Quality Press, Wisconsin.

93



57.

58.

59.

60.

61.

62.

63.

64.

65.

Suh, N.P., (1990), The Principles of Design, Oxford University Press, Inc., New
York.

Taguchi, G., Chowdhury, S., Taguchi, S., (2000), Robust Engineering, Mc-Graw
Hill.

Taguchi, G., (1987), System of Experimental Designs, Volumes 1 and 2. White
Plains, New York, Krauss International.

Tsai, C.S., Mort N., (1996), “Simulation and optimization in manufacturing
systems using Taguchi Methods”, UKACC International Conference on Control,
Conference Publication No. 427.

Tsai, C.S., (2002), “Evaluation and optimization of integrated manufacturing
system operations using Taguchi’s experiment design in computer simulation”,
Computer and Industrial Engineering, No. 43, pp 591-604.

Van Gigch, J.P., (1991), System Design Modeling and Metamodeling, Plenum
Press, New York.

Vining, G.G. and D. Schaub, (1991), “Experimental designs for estimating both
Mean and Variance Functions”, Journal of Quality Technology, vol. 28, no.2,
April, pp 135-147.

Wadsworth, H.M, Stephens, K.S., Godfrey A.B., (2002), Modern Methods for
Quality Control and Improvement, John Wiley and Sons, Inc.

Wild, R., (1972), Mass-production Management, the Design and Operation of

Flow-line Systems, John Wiley & Sons, London.

94



66. Wisner, J.D., Fawcett, S.E., (1991), “Linking firm strategy to operating decisions
through performance measurement”, Production and Inventory Management
Journal, Vol. 32, No.3, pp 5-11.

67. Wiendahl, H. P., Thies, J. M., Zeugtrager, K., (1996), “Construction and start-up
of Complex Assembly Systems”, Annals of CIRP, January, Vol. 45.

68. Wilkins Jr., James. O, (2002), “Putting Taguchi methods to work to solve design
flaws”, Journal of Quality Technology, May 2002, pp 55-59.

69. Wu, B., (1994), Manufacturing Systems Design and Analysis — Context and

Techniques, Chapman & Hall, London.

95



APPENDIX I

TABLE Al: Standard L 27 Array

Experimental Columns
No. 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 2 2
3 1 2 2 i i
4 1 2 2 2 2
5 2 1 2 1 2
6 2 1 2 2 1
7 2 2 1 1 2
8 2 2 1 2 1
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TABLE A3: Standard L ,3* Array

Experimental Columns
No. 1 ‘ 2 3
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2
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Table A3: Standard L ,,3" Orthogonal Array

Column

13

12

11

10

Expt.No.

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

26

27
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APPENDIX II

Table A4: Experiment Design with Noise Factors Using an Quter Array [50}]

Outer Array (Ly)

Z 1 2 2 1

Y 1 2 1 2

X 1 1 2 2

Control factors Results

Trial | A B C D E F G 1 2 3 4

1 1 1 1 1 1 1 1 R11 | R12 | RI13

2 1 1 1 2 2 2 2 R21

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1 R44

5 2 1 2 1 2 1 2 R51

6 2 | 2 2 1 2 1 ... | R62

7 2 2 1 1 2 2 1 .. ... | R73

8 2 2 1 2 1 1 2 R81 o ... | R84
Inner Array (Ls)
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The size of the outer array, which dictates the number of samples, required to complete
an experiment, is independent of the inner array and depends strictly on the number of
noise factors and their levels. It is also independent of the size of inner array and the
control factors included in the study. The purpose of an outer array in the experiment is to
combine the noise factors and run multiple samples in the same trial condition exposed to

the conditions.

A snapshot of Qualitek-4":

Robust Design Experiment using Inner and Outer array
g Experiment Configuration
Expt. Fils: BKEX-111 Q4 Qualitek-4 rassm

Flewiew Motse Factors

Outer Array

e R R N R N
[ i B S A YR

oo oo O @D oD
O OO oo oD
RS B e e B DD e

1
1
2
2
3
3
4
4

ElpreLit
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APPENDIX 111

Various simulators found on the Web.

Automod / Autosched http://www.autosim.com

Promodel http://www.promodel.com

MODSIM III http://www.modsim.com

Rockwell http://www.arenasimulation.com
Factor/AIM http://www pritsker.com

Witness http://www.lanner.com

Taylor 11 http://www.taylorii.com

Micro Saint http://www.madboulder.com

Taylor ED http://www taylor-ed.com

Quest http://www.deneb.com, http://www.tdm.fi
Simple ++ http://www.aesop.de, http://technomatix.com
Extend http://www.imaginethatinc.com

MAPICS http://www.symix.com

Dassualt http://www.3ds.com

Visual§ http://www.visual8.com

CACI http://www.caci products.com

CMS http://www.powernetonline.com/~cms
Deneb Robotics http://www.deneb.com

Factory Flow

http://www.eai.com

Geer Mountain http://www.gensym.com
Ithink Analyst http://wwwhps-inc.com
Extend http://wwwimaginethatinc.com
SimEngine http://wwwsimengine.com
Adept Work cell http://www.adept.com

Ben Graham http://www.worksimp.com
CFM http://www.teamflow.com
Epix http://www.epixinc.com
ProcessModel http://www.processmodel.com
Scitor http://www.scitor.com

Silma http://www.silma.com
Skymark http://www.skymark.com
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APPENDIX IV

A snapshot of simulation using Rockwell software ARENA®

1 5@ 10 30 10 i0},
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APPENDIX V

Taguchi Methods Trademark

The following information is reprdduced from the United States and Trademark Office

(http://www.uspto.gov). The Trademark Electronic Search System (TESS) was last

updated on Fri Mar 11 04:29:08 EST 2005.

Word Mark

Goods and

Services

Mark Drawing

Code

Serial Number
Filing Date
Current Filing
Basis

Original Filing
Basis

Published for

TAGUCHI METHODS

IC 041. US 107. G & S: EDUCATIONAL SERVICES; NAMELY,
CONDUCTING TRAINING CLASSES AND SEMINARS TO
IMPROVE PRODUCTIVITY AND ENGINEERING IN THE
MANUFACTURING INDUSTRY. FIRST USE: 19821101. FIRST

USE IN COMMERCE: 19821101

(1) TYPED DRAWING

73758696

October 20, 1988

1A

1A

May 29, 1990
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Opposition
Registration
Number

Registration

Date

Owner

Attorney of

Record
Prior
Registrations

Disclaimer

Type of Mark
Register
Affidavit Text
Renewal

Live/Dead

Indicator

1610798

August 21, 1990

(REGISTRANT) AMERICAN SUPPLIER INSTITUTE, INC.
CORPORATION MICHIGAN 38701 SEVEN MILE ROAD, SUITE

355 LIVONIA MICHIGAN 48152

ANDREW J. HALIW III

1435003

NO CLAIM IS MADE TO THE EXCLUSIVE RIGHT TO USE

"METHODS" APART FROM THE MARK AS SHOWN
SERVICE MARK

PRINCIPAL-2(F)-IN PART

SECT 15. SECT 8 (6-YR). SECTION 8(10-YR) 20010925.

1ST RENEWAL 20010925

LIVE
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APPENDIX VI

Name of some Robust Design Methodology Implementing Companies or Organizations:

Abbott Laboratories; Agilent Technologies, CA; Allied Signal; Aluminum Federation of
South Africa, [sando; Amoco Ploymers, Inc. Tulsa, OK; Arvind Replacement Products,
Pulaski, TN; ASAT Ltd., New Territories, Hong Kong; ASMO North Carolina; AT&T;
Ashland Chemicals; Aspen Technologies; Auto Alliance International; A. T. Cross,
Atlantic Steel Co.; Avon Autémotive - Cadillac Plastics; Black & Decker; Boeing,
Seattle, WA; Borg Warner Automotive; Boston Scientific, Wayne, NJ; Brechteen Co.;
Briggs & Stratton, Milwakee, WI; BTU International, Billerica, MA; Burton Rubber
Processing Co.; Budd Co. Plastics Division, Troy, MI; Cadillac Rubber & Plastic;
Carbonic Tech Center; Carborundum Universal, Chennai, India; Cardiac Control System;
Caterpillar, Joliet, IL; CeraMed, Lakewood, CO; Certainteed Corp. Jackson, MI; Chrysler
Corporation, CommScope Inc.; Contech-Auburn, IN; Copeland Corp.; Cordis
Corporation; Cryovac; CutlerHammer/Eaton, Watertown, WI; U.S Army, Dept. of
Defence, PA; DaimlerChrysler, Auburn Hills, MI; DJ Orthopedics, Vista, CA; Donnelly
Corp.; Dolphinc, Inc. Phoenix, AZ; Eagle Ottawa Leather Company; Ford Motor
Company, Dearborn, MI; Ford Motor Company, Batavia, OH; Eastmen Kodak; Ford
Motor Company, Sharonville, OH; Ford Motor Company, Lima, OH; Ford Motor
Company, Livonia, MI; Ford Motor Company, Sterling Heights, MI; Ford Motor
Company, Chihuahua, Mexico; Ford Motor Company, FTDC, Dearborn, MI; G. M.
Powertrain, Toledo, OH; G. M. Powertrain, Ypsilanti, OH; Gates Rubber CO.; Giddings
& Lewis; GKN Industries; Glit/Gemtex, Etobicoke, Ont. Canada; Goshen Rubber Co,

Goshen, IN; Grimes Aerospace, Ocala, FL; Honda Motor Co.; HT Troplast AG,
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Troisdorf, Germany; Huchinson Technology; Hughes Aircraft of Canada; Johnson
Controls, Plymouth, Ml ; Kautex Corp.Ont. Canada; Kay Automotive Graphics; Kyocera;
Leer Corp., Div of Ford; Livantech Corp, Largo, FL; Locheed Martin, Owege, NY;
Nortel Networks, Wilmington, MA; Offermatica, San Francisco, CA; Olin Corp.; Ovonic
Battery Co.; Orthovita, Malvern, PA.; Pall Europe Corporate Services, Portsmouth, UK;
Parker Amchem; Pacific Coast Technologies, Wenatachee, WA; Perry Chemicals;
Peterson Springs; Precision Coatings, MI; PT. South Pacific Viscose; Qualcomm, Inc.
Sandiego, CA; Rapistan Damége Corp.; Reckit & Coleman; Reynolds Metal Co.;
Robotron Corp.; Siemens Automotive; Siemens Energy and Automation; Smith &
Nephew Richards; Snap on Tools; Sony Display Device, Kanagawa, Japan; Sponsera,
NJ; Square 'D' Company; St. Clair Die Casting, LLC. MO.; Stackpole Corp.; Steelcase,
Grand Rapids, MI; Stryker Howmedica Osteonics, Allendale, NJ; Summit Polymers;
Vermont American; Visteon, Dearborn, MI; Visteon, Connersville, Indiana; Volvo GM
Heavy Truck; Walbro Corp.; Waterford Stanley, Ireland; Wegu Canada; Wellman
Friction, Solon, OH; Westinghouse Electric Corporation; Winfield Industries; Wishbro
Company, apple Valley, MN; Wisconsin Centrifugal, Waukesha, MN; Wolverine

Plastics Tech.; Yazaki EDS Engineering Inc.;
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