General Architecture for Demand Migration in

the GIPSY Demand-Driven Execution Engine

Emil lordanov Vassev

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada
June 2005

©® Emil Vassev, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10296-9
Our file Notre référence
ISBN: 0-494-10296-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

General Architecture for Demand Migration in the GIPSY Demand-Driven Execution

Engine

Emil Vassev,

Concordia University, 2005

Intensional programming is a form of demand-driven dataflow computation based on
intensional logic. The last is a family of mathematical formal systems that allow
expressions whose value depends on hidden context or indices. There is a wide
range of software applications based on intensional logic from different computing
areas including parallel programming, dataflow computation, temporal reasoning,
scientific computation, real-time programming etc. The General Intensional
Programming System (GIPSY) is a member of this family. The GIPSY exposes a
demand-driven execution model with essence of distributiveness. The GIPSY
programs are evaluated on different machines hosting the GIPSY execution nodes.
The last generate and execute functional demands.

In this thesis, we discuss the solution to the problem of migrating demands among
the GIPSY execution nodes. We emphasize the concept of a generic framework for
migrating demands and apply this framework for creating a Demand Migration
System (DMS). We describe the design and implementation of the Demand Migration
System, and survey the test results. We also explore the distributed middleware
technologies JINI, CORBA, DCOM and .Net Remoting, those being the
implementation backbone for our DMS. Our thesis covers only the demand migration
aspects and does not deal with load balancing and efficiency aspects of the GIPSY,
as these are to be tackled by other subsystems of the GIPSY and future subsystems
of the DMS.

This thesis represents the blending of two viewpoints: that of the practitioner,
whose main goal is to build high-quality software, and that of the researcher, who

strives to make a discovery or invent new aspects of computing.

il

to my beloved wife Slava

and to my magnificent kids Danko and Emili

\Y

Acknowledgements

| am very grateful to the many people who helped with this thesis and provided

valuable support.

First, | would like to express my deep gratitude to my esteemed supervisor, Dr. Joey
Paquet for his invaluable guidance and thorough support during my graduate study. |
am indebted to Dr. Paquet not only for being my supervisor, but also my mentor and
open-minded friend. He has shown me that research is well beyond writing thesis

and publications, but also collaboration with people.

Special thanks to all the members of the GIPSY team for their support and comments

during the years of my graduate study.

In addition, | would like to thank the University of Concordia in Montreal and

especially the Faculty of Computer Science for opening a door.

Finally, this thesis would not be possible without the encouragement and never

ending support of my beloved wife Slava and my dearest parents.

And of course my kids Danko and Emili for being patient with their constantly busy
Daddy.

Table of Contents

Chapter 11 INTrodUCHIONooiiiiii e 1
ST DR 00 11 0= < PU T OO PP PPPPP PP PPOPI 1
1.2. ThESIS StatemMENT ...oooiinie e 2
1.3, CONIDULIONS ..ot re et 2
1.4. Structure of the Dissertationcocooo i 3

Chapter 2: Conceptual VIBWcoirririiie e 5
2.1, REQUINEIMENES. ...eeieieeeieeeiiiiie et e 5
2.2. Framework Conceptual Model ..o 7

2.2.1. Framework Architectural VIeWccooviiiinriie, 7
2.2.2. Demand Dispatcher Layer CONCEIMSoooccieiniiiiieiniiinainieens 9
2.2.3. Migration Layer CONCEIMSociiiiienrianre i 10
2.3. Applying the DMF ..o 11
2.3.1. DMS DD CONCEIMS ...uuuuuuiieinrenereriaiesrnrrnnrrresnsassaninsanssassrsen e s s e eassine 12
2.3.2. DMS TA CONCEIMS ..euuuieeriiiirnirae e s ses e s s s ssan s esnans e ens 14
2.3.3. Multiplatform Transport Protocol Concemns. ... 15
2.4. Distributed Middleware CONCEINSccoiieiriiiiriiiiir e 15
2.4.1. Common Foundation of Distributed Technologiescc..eeee 16
2.4.2. Important ASPECTSuuriiiiierice e 17
2.5, SUMIMAIY....eiiuieeetes et e et eatcea e aeeeasaae s en e esesees s e e s s e e e e e e e e raar e ena e e 18
Chapter 3: DESIGN «.ueeeeieiriee ettt ee st s 19
3.1. Software ArChiteCtUre...........oovviiiii e 19
3.1.1. Goals and Constraintscooveeeiiiiii 20
3.2, SCENANMO VIBW ..ueeieee ettt e 20
B3.2.1. The DMS N USE...ouuiiiiiiieee et e ee e 21
3.2.2. Scenario “Migrate Demand”...........ccooii i 23
3.2.3. Scenario “Get Demand”coouiiiiiiii s 24
3.2.4. Scenario “Dispatch Demand”............oic 26
3.2.5. Scenario “Cancel Demand” ... 27
3.2.6. Scenario “Pool Demand’.......c.ccoiriviiiiiiiiie e 28
3.2.7. Scenario “Get ResUlt”o 30
3.2.8. Scenario “Dispatch ReSUlt” ... 31

Vi

3.3, LOGICAI VIBW ... et 32

3.3.1. Design Rationale..........ccooiviieiiie i 33
3.3.2. JINTLIBIATY . .oeneece et 35
3.3.3. Demand DispatCher ... 40
3.3.4. JINI Transport AQeNnt.......c.ccce i 49

B.4. PrOCESS VIBW .coeiieieeeeeee ettt e e tin e e e e e e e e e ane s s s s e 61
3.4.1. Design Rationale...........ccooiriiiieiiiiii 61
3.4.2. General ProCess VIBWccceeieeiiieriiieiiiiniciiicii i e 63
3.4.3. JTA Process VIBW.......coovviiummmiieiiiiioii it ieeetcctet e e en s ene e 65
3.4.4. Reliability @and ACCUIACYc.ccoovvrrriiiiiiiieeitie et 66
3.4.5. Concurrency and CONSISIENCYuuuiiriaiiiiiiiririr e 67
3.4.6. SCalability........ccoeeririiie i e 67
3.4.7. Upgradeabilityccoooiiminiii e 68
3.4.8. Heterogeneity «.....ccooveveciiiieniiiee e 68

3.5. Deployment VIBWoccoreiieiii e e 69
3.5.1. REMOIE DD ..ot 69
3.5.2. LOCAI DD ...ttt 70

B.B. SUMIMAIY....eiiiteieuiieieeeuieeeeeeeeeeieeasssitnesaneeasaees e e ase s e e e e ara e e st st s s 71
Chapter 4: Implementation ... 73
4.1. Distributed Technologies ASPeCtS.......ccccooeiiiiiiiii 73
O O RN 11| PP PRPPPPRS 73
4.1.2. CORBA ...ttt s 78
O I T 5 1010 1V OO USRPRPPOI 83
4.1.4. INet ReMOtINGcvieeeee et 87

4.2. Current Implementation ..o 89
4.2, JINTLIDFAIY oottt 89
4.2.2. Demand DispatCherccoociriiiiiiiis i 91
4.2.3. JINI Transport Agent.......ccoiiiviimiiiiieie e 95

4.3. Possible Implementations ... 99
4.3.1. Dispatcher Proxy with Distributed Events ... 100
4.3.2. Peer-to-Peer Transport Agent.........oooririmiiiiiiennns 101

4.4, SUMMAIY.....uuueiiieiiieeeae e etieereeeerae e e e e e e e aa st bse e e s e s be e e et e s et tenaenenas s e s eaaneas 103
Chapter 5: Experimental ReSUIS ... 104

Vil

5.1. Testing ENVIrONMENt ..o 104

B2, JTA WOTKE ..ottt e e e s ee e m e ne e e ce s 105

5.3. Test Application “Remote Screenshot”, 105
5.3.1. Testing Heterogeneity........oocueviiiiriiiiinic e 106

5.3.2. Testing DMS Capacity of Big Demands Migrationc.c....... 107

5.4. Test Application “Remote Pi Calculation”............ccocooiinnn 109
5.4.1. Testing Effectiveness ..o, 110

5.5. Test Application “Hundreds Demands” ... 112
5.5.1. Testing Hot-plugging....ccoorereimmir 112

5.5.2. Stress TestiNgcoiueiiiiii i 114

5.5.3. Hyper Stress TeStNG ...ccuevevrreiiiiiiiiii it 117

5.5.4. Performance TesStiNg.......cccoriiiiiimmieie i 117

BB, SUMIMIAIY....ciiieeeeeeereeeeiiueeeesaasereerasrreaesbestessareeeasbereeesas s e e aaanncnnenseaessanneeas 119
Chapter 6: Related WOrK.........cocviiiiiiiiee i 120
6.1. Selected Scientific ProjectS.o vceireriiiiiiic i 120

6.2. Commercial Projects.......c.cceueiiiieiiiiieni et 121
Chapter 7: CONCIUSIONcciiiiiiiiiieie e 122
2 T (o)1= (U= TP PP 122

7.2. Design, Implementation and ReSURS ... 123
Chapter 8: FULUIE WOTKcocuiiiiiiiiiiiec e 125
T T V(o) 11 (=101 (U< PP 125
8.1.1. DispatCher SUPEIVISOr..........ciiiiiiiiri it 125

8.1.2. DD CACh@ cuveeeeeeeeeeeeeeeeeeee e 125

8.2. Design and Implementation ... 126
8.2.1. Transport Agent Based on CORBA, DCOM and .Net Remoting..... 126

8.2.2. Security Enhancementsoouuiiiiiiiii 127

o =) (= £ o1 PP TP PPPPPPPPPP 128
Appendix A: Results of Heterogeneity Testing...........coco 132
Appendix B: Calculating Pi to 5000 Significant Digits ..o 134
Appendix C: A Stress Test ReCOrd ..o 135

viii

List of Figures

Fig.2.1. GIPSY Demand Migration Framework ... 8
Fig.2.2. GIPSY Demand Migration System..........ccoioiie 11
Fig.2.3. GIPSY Demand Migration System as Middleware ... 12
Fig.2.4. LOCAI DD ...t 13
Fig.2.5. DIStDUIEA DDvooeeeeeeeiscese s eeeseeeeiess e sses st 13
Fig.2.6. Multiplatform Transport ProtoColccueeiniiiiiiiii 15
Fig.2.7. Distributed Technologies Foundation ... 16
Fig.3.1. DMS General Use Case Diagram ..o 21
Fig.3.2. Sequence Diagram Formula “A” Computation ... 22
Fig.3.3. Sequence Diagram “Migrate Demand”...........ccccooiiiiiiin 24
Fig.3.4. Sequence Diagram “Get Demand” ... 26
Fig.3.5. Sequence Diagram “Dispatch Demand”...........coooiiiiiniinn, 27
Fig.3.6. Sequence Diagram “Cancel Demand” ... 28
Fig.3.7. Sequence Diagram “Pool Demand” ... 29
Fig.3.8. Sequence Diagram “Get Result” ... 31
Fig.3.9. Sequence Diagram “Dispatch Result” ... 32
Fig.3.10. Overall Logical Architecture VIEW ... 33
Fig.3.11. JINI Library Class Diagramccoecrrriiininiin i 36
Fig.3.12. Demand Dispatcher Class Diagramcccooiiiiiiiiime 41
Fig.3.13. JINI Transport Agent Class Diagram.........cccoocoiiiiine 49
Fig.3.14. JTA — JTA Proxy COmMmMUNICALIONo.eovriiiiiinc e 51
Fig.3.15. General Process View Diagramccccoiiiiviiiinii e 63
Fig.3.16. JTA Process View Diagramccccooiieiiiiiiii s 66
Fig.3.17. DMS Deployment Diagram “Remote DD” ... 70
Fig.3.18. DMS Deployment Diagram “Local DD”cccooiiiiiiie 71
Fig.4.1. JINF ArchiteCture ..o 74
Fig.4.2. Coding Unicast DiISCOVEry ProCesscooceieiiiiiiimiiiiiiii e 75
Fig.4.3. Discovery-Lookup-Join ProtoColsc..ccoiiiiiiiiii e 75
Fig.4.4. Coding JOIN PrOCESSccuviviiiiiiie ittt 76

X

Fig.4.5. Coding LOOKUD PrOCESSccooiiiiiiiiniiieiiiiiie e 76

Fig.4.6. JavaSpace MOdel.........cccocoiiiiimiiii 78
Fig.4.7. Coding JavaSpace ACCESScoceeiiiiriirinrnie s 78
Fig.4.8. CORBA ArChIitECIUIeccvviiiuiiiiieieee e 79
Fig.4.9. Client-Object ReqUest ... 80
Fig.4.10. CORBA SEIVICES.......ciiieriieieiiiiiieeie ettt e 81
Fig.4.11. Remote and Local INVOCatioN..........cciiiiiriiii e 82
Fig.4.12. COM INteractioncoeccmreciimriiir et 83
Fig.4.13. DCOM ArChiteCturecccooiriiiiiii 84
Fig.4.14. COM Client ReqUESLcccoiuiimiimii e 85
Fig.4.15. COM Object Creation............ccciveeremimiimiiii e 86
Fig.4.16. .Net Remoting ArchiteCturecoooiiiiiiii e, 87
Fig.5.1. Results of “Testing DMS Capacity of Big Demands Migration”.................. 108
Fig.5.2. Testing Results of “Computing Pi”cccoooiiiii 111
Fig.5.3. Results of “Testing DMS Hot-plugging”.......ooovieiiniiin 114
Fig.5.4. Correlation: Overall Process Time — Number of Demandsc............ 115
Fig.5.5. Correlation: Average Pocess Time — Number of Demands..........c..c...c..... 116
Fig.5.6. Results of “Performance Testing” ..o 118

List of Tables

Table 5.1. Testing MacChineScccoiiiiiiiiiieii e 104
Table 5.2. Results of “Testing DMS Capacity of Big Demands Migration”.............. 107
Table 5.3. Testing Results of “Computing Pi”........coo 110
Table 5.4. Results of “Testing DMS Hot-plugging” ..o 113
Table 5.5. Results of “Stress Testing” ..o, 115
Table 5.6. Results of “Performance Testing” ..., 117

xi

List of Listings

Listing 4.1. Coding JINILibrary Class Methodscccooiiiii 89
Listing 4.2. Coding ServiceListener Class Methods ..., 90
Listing 4.3. Coding DemandState Classccceceiiriiiminniniin s 91
Listing 4.4. Coding DispatcherEntry Classccooieiniiiniiiiniies 92
Listing 4.5. Coding DispatcherProxy Class — write() Method ..., 93
Listing 4.6. Coding DispatcherProxy Class — read() Method.............cccccoiiinnn 93
Listing 4.7. Coding DispatcherProxy Class — getJavaSpace() Method 94
Listing 4.8. Coding DispatcherProxy Class — cancelDemand() Method.................... 94
Listing 4.9. Coding JINITransportAgent Class — Constructor............c.ccoccoeeiinnnenn, 96
Listing 4.10. Coding JINITransportAgent Class — registerWithLookup() Method 96
Listing 4.11. Coding JINITransportAgent Class — createProxy() Method................... 97

Listing 4.12. Coding JTABackend Class — IJTABackendProtocol Implementation ... 98
Listing 4.13. Coding JINITransportAgentProxy Class — Partial Implementation........ 99
Listing 4.14. Coding DemandListener Classcocovvviiniiniinniniciiinnies 101

Xii

Chapter 1: Introduction

Everything should be made as simple as possible, but not simpler.
Albert Einstein

This chapter introduces the background of the Demand Migration System that we
designed and developed as a part of the GIPSY project, highlights the contribution of

the thesis and outlines its structure.

1.1. Context

The General Intensional Programming System (GIPSY) is a muiti-language
programming environment and demand-driven execution environment [1]. The
GIPSY is aimed at the long-term investigation into the possibilities of intensional
programming, a declarative and functional family of programming languages [5, 35,
36, 37, 38]. The GIPSY is an ambitious project directed by Dr. Joey Paquet and Dr.
Peter Grogono in the Computer Science & Software Engineering Department at
Concordia University in Montreal.

This thesis will focus on the execution aspect of the GIPSY, more specifically on the
architecture used for the distributed migration and evaluation of the demands
generated by the system at run-time. From this perspective, the GIPSY evaluation
engine, or GEE (General Eduction Engine) is a Demand-Driven Execution System
that is based on Demand Generators (DGs) that determine the control process by
generating functional demands and workers that execute them [1]. The DGs and
workers are the GIPSY execution nodes, and these nodes are potentially remote
ones, in which case the demands are migrated via the network from the generators to
the workers and responses flowing in reverse order. It is important to note that all the
functional demands generated by the GIPSY are atomic and independent in the
sense that they do not share a common state.

In the course of this thesis, we investigated the demand-migration problem, and
formalized a GIPSY Demand Migration Framework (DMF). The DMF establishes a
scheme for connecting the GIPSY execution nodes together using a generic
architecture and enabling the use of different middleware technologies. Further, by

applying this framework we designed and developed a Demand Migration System.

1.2. Thesis Statement

The GIPSY brings to its clients the benefits of distributed computing, where the
generators and workers are located on different machines, and form together a
demand-driven system that relies on the calculation power of all the CPUs and
memory in the GIPSY network. There are several important issues related to the
demand-driven execution model, but in this thesis we put accent on its control flow,
which is driven by dependencies between demands, as well as special demands,
“functional demands” that are at the leaves of the demand tree [1, 11, 12]. The
problem statement of this thesis is how to connect the GIPSY generators with
workers, or how to migrate the demands from one execution node to the other in a
heterogeneous and distributed execution environment. This thesis work focuses on
building a generic Demand Migration System (DMS) that addresses these issues.
Our primary goal is a generic framework extensible enough to adopt arbitrary
distributed middleware technologies and flexible enough to overcome the obstacles
raised by their co-existence. In addition, we aim at a DMS following the principles of
high scalability, reliability and security, those being from great importance to the

computing communication systems.

1.3. Contributions

This thesis aims at the construction of an effective Demand Migration System (DMS)
for the GIPSY demand-driven execution engine. The thesis designs and implements
a demand migration model by applying distributed middieware technologies. This
model brings the GIPSY to a high level of distributiveness and interoperability of the
operational nodes. Contributions of the thesis range from the conceptual to design
and implementation points of view.

The thesis conceives the conceptual aspects of a generic Demand Migration
Framework (DMF) that determines the guidelines for the creation of a DMS. Such a
DMS must be able to work in a heterogeneous environment and able to migrate real
objects among the GIPSY operational nodes. The DMF exposes a layered structure,
where the different layers are designed and implemented as loosely coupled
components interacting through asynchronous messages. The DMS’ components are

volunteers, able to plug in and plug out the DMS at any time. Hence, the DMS

exposes an extensible architecture that is easily manageable, and adaptable to future
changes.

The thesis gives details about the design and implementation of the DMS, by
exploring four different design views of the DMS and analyzing the implementation
aspects [18]. The set of design views includes a scenario view, logical view, process
view and deployment view, where each view depicts different aspects of our design
solution. Three example problems are then programmed and their tests results are
surveyed in order to demonstrate that the system fulfils the requirements for
heterogeneity, parallelism, scalability, reliability and accuracy.

in this thesis, a new computing communication model is introduced. This model is
based on the distributed middleware paradigm and on the co-existence of
technologies implementing this paradigm. Such technologies are JINI, CORBA,
DCOM and .Net Remoting. The communication model is similar to the persistent
asynchronous message passing communication model [45], where messages are
delivered on demand. The biggest advantage of our model is the ability to transport
not only data but also real objects, i.e. the system transports data and behavior. The
system is built for the purpose of the GIPSY but is practically independent. The DMS
demonstrates high interoperability, and with this level of interoperability, we can
easily conceive an independent system.

The main disadvantage of our solution is the high latency, which is inherited from
the applied distributed middleware. The high latency of message transmission is the
major challenge in worldwide distributed computing. We minimize the latency by
implementing synchronous messaging or peer-to-peer communication mechanism,

but these will reduce the high scalability of our solution.

1.4. Structure of the Dissertation

This thesis is organized in three parts. Part | (Chapters 1 and 2) introduces the
reader to the problem domain and gives a conceptual view of our solution. Part Il
(Chapters 3 and 4) walks through the major aspects of the system design and

implementation. Part Il (Chapters 5 to 8) focuses on evaluation and conclusion.

Chapter 2. This chapter introduces the context of the problem domain, and builds a

conceptual view of our solution. Here, we explore the Demand Migration Framework

and the application of the framework resulting in a Demand Migration System. With
this chapter, we motivate the reader to go over the design and implementation

aspects of the solution described by the following chapters.

Chapter 3. In this chapter, we present our object oriented DMS design. The chapter
describes four different design views of our DMS. The first view, called scenatio view,
captures the use of the system in terms of various use-cases. The second view,
called logical view, is about the architectural and detailed design. The third view,
called process view, captures the run-time aspects of the DMS. Moreover, the fourth
view, called deployment view, describes the physical distribution of the DMS’

components.

Chapter 4. In this chapter, we present a comprehensive overview of the DMS
implementation. The chapter describes the most important implementation aspects of
our solution, and makes comments on some specific parts of the code. In addition,
here we present the distributed middleware technologies from an implementation

perspective.

Chapter 5. In this chapter, we present the experimental results obtained in the
course of this research. The chapter describes selected test examples that address
important issues like heterogeneity, parallelism, scalability, reliability and accuracy.

Chapter 6. This chapter presents related to our research work.

Chapter 7. This chapter concludes our thesis.

Chapter 8. This chapter presents our future work.

Chapter 2: Conceptual View

The hardest part of building a software system is deciding precisely what to build.

Fredrick Brooks

This chapter describes the conceptual view that we built as a direct consequence of
the requirements analysis undertaken in the course of this thesis. The conceptual
view of the Demand Migration Framework (DMF) identifies the high-level concepts of
the framework architecture. These concepts necessitate high-level components of
the scheme, established by the DMF, and the relationships among them. Therefore,
the conceptual view directs attention at an appropriate decomposition of the system
without delving into details. Moreover, it provides an architecture perspective of the
system aimed to non-technical audiences.

The chapter starts with the requirements analysis, and goes over the DMF generic
architecture and its application in the form of a Demand Migration System (DMS).
Finally, the chapter concludes with a short description of those distributed

middleware concerns that have influenced our DMF design solution.

2.1. Requirements

As a result of the demand-migration problem investigation, we elicited a set of
requirements that must be fulfilled by the demand-migration scheme established by
DMF. The following elements specify a set of vital requirements that the Demand
Migration System (DMS) must fulfill.

Platform interoperability. GIPSY programs are evaluated on multiple platforms.
Hence, the DMS serving the GIPSY nodes (run on separate machines) should be
able to deal with the process-machine boundaries and with the diversification of the
different platforms, i.e. DMS should be able to connect the GIPSY nodes run on
Linux\Unix, Solaris, Windows and Mac-OS platforms, using different middleware

technologies available on these different platforms.

At least once delivery semantics. The GIPSY nodes run independently from each

other. Hence, the DMS should be able to connect these artifacts at any time and

assures at least once-delivery semantics [45], i.e. no demand or result could be

delivered on a wrong address and must be delivered at least once.

Asynchronous communication. Since the GIPSY nodes are not synchronized —
they run independently and their lifetime is not synchronized, the DMS must perform
asynchronous communication where the nodes do not connect permanently and do

not synchronize their data exchange.

No demands discrimination. Since the demands generated by generators are
atomic with no dependency in the sense of data sharing and time, the DMS should
not discriminate them in terms of importance. These efficiency-related considerations

are to be tackled by other parts of the GIPSY and future subsystems of the DMS.

No workers discrimination. A worker must be able to serve any generator, i.e.
pending for execution demands should not wait more than the time needed for their
delivery to the first free worker. Hence, the DMS must present the workers as a
common set to all the generators with no discrimination in terms of importance or

capacity to respond to functional demands.

Secure communication. Since the GIPSY nodes are located on different
machines, we need to use security mechanisms to authenticate the identity of the

DMS objects. The DMS should integrate a security mechanism.

Fault-tolerant demand migration. When objects are distributed across process
boundaries, the objects can fail independently. Similarly, in a distributed system the
network can interrupt or the system can be partitioned into disconnected parts, and
components can run independently assuming the others have failed. In our Demand
Migration System (DMS), there must be concerns about the behavior of the overall
system if some of the components are available and others not. The demand-driven
execution model permits such kind of better fault-tolerance. The DMS should keep
track of the demands, so that the failure of any node does not result in loosing

demands, and that node failure would simply result in re-issuing of the demands.

Distributed technology independency. All the requirements stated above
necessitate a system that adheres to the characteristics of distributed computing and
-asynchronous communication with a certain security and permanent storage
mechanism. There exists a wide array of distributed execution platforms and
middleware technologies. Meeting all these requirements necessitates a very general
and flexible approach that is not bound to a specific technology, and that can enable
the use of different technologies. One of the main principles of the GIPSY is the
platform independency, i.e. the DMS must be flexible and structurally generic to work
with most of these distributed computation technologies and implementation

platforms.

Hot-plugging. The GIPSY model of computation is not only a distributed demand-
driven one, but also one in which all the nodes are “volunteers” that register to a
dispatcher node, and that are later assigned a role and grafted to the network. Any
node, including the DMS’ nodes, has to be designed to allow the “hot-plugging” of

new nodes, i.e. to add new nodes as the execution is taking place.

Upgradeability. The DMS should be designed in a manner that will allow the
GIPSY clients the power of using their own distributed computation technology, i.e.
the DMS should not be bound to any distributed execution technology and be generic
enough as to allow the use of other technologies not part of its original

implementation.

2.2. Framework Conceptual Model

Given the requirements analysis of the last section, the conclusion about the DMF
architecture is a generic scheme for migrating objects — demands and results, in a
heterogeneous and distributed environment that being specified by the GIPSY nodes.
Therefore, the DMF establishes the context for performing the migration activities, i.e.

it is about the process migration [10].

2.2.1. Framework Architectural View

For the architectural model of our DMF, we propose a layered structure, which helps

the functionality of the system to be implemented in several layers. Fig.2.1 represents

an abstract conceptual view of our DMF, which uses a layered architecture style. The
largest circle depicts the GIPSY, and the double-lined inner circle depicts the DMF.
The GIPSY is represented as a set of operational nodes - workers and DGs, those
being the communication end points, and the DMF acting as a communication
intermediate between them. The DMF consists of two principal functional layers
called Demand Dispatcher (DD) and Migration Layer (ML). The DD (depicted by a
bold-lined circle in the Fig.2.1) is an object storage mechanism able to dispatch the
objects to their recipients. The ML (depicted as a dark grayed layer on top of DD) is
the layer performing the object migration from the DD to the recipient GIPSY nodes —

workers or DGs.

Presentation

......................

oo
Demand
Space
(DS)
*, Migration
Y Layer

....................

Fig.2.1. GIPSY Demand Migration Framework

The DMF relies on these two functional layers to form an asynchronous
communication system similar to the persistent asynchronous message passing
systems [45], i.e. the messages are delivered on demand, but until that moment, they
are kept permanently stored within the system. The messages in the DMF are real
objects - demands and results, each result being associated with one demand.

The DD layer establishes the context of a demand-result centralized propagator
that consists of two layers - Demand Space (DS) and Presentation Layer (PL) (see
Fig.2.1). The DS layer defines the context of an internal object storage mechanism
able to store demands and results. The PL is an abstract layer on top of DS, which
brings the DS implementation to a generic level.

The Migration Layer makes the heterogeneous distributed communication possible.

It is the DMF contact-generic layer with the GIPSY nodes (see Fig.2.1).

Why Layering? As we have seen the DMF establishes a complex model for
communication. Therefore, dividing the functionalities into several sets, where the
inner functions are tightly coupled, but highly independent from the other layers, is
very appropriate. This technique helps to address the problem sets separately and

reach for higher upgradeability and flexibility through modularity.

2.2.2. Demand Dispatcher Layer Concerns

The Demand Dispatcher layer establishes a context for maintaining a pool of
demands to be processed. The DD is a centralized bootstrap mechanism acting
between the DGs and workers. Due to its contributors — Demand Space (DS) and
Presentation Layer (PL), the DD is able to keep track of and expose demands and

their computed results.

Demand Space Layer. The DD relies on the Demand Space to store all the
pending demands and their computed results. The Demand Space layer implies all
the characteristics of an Object Database, i.e. the DS provides a mechanism to store
the state of objects persistently, and an Object Query Language (OQL) to retrieve
these objects. The Object Database Management Group (ODMG) published this
standard in 1993 [15]. |

In our design the DS does not discriminate the demands and results. It maintains
them as similar entries - objects. All the entries stored in the Demand Space are

permanently saved until they are processed or canceled.

Presentation Layer (PL). The Presentation Layer unifies the functionality of DS to
a small set of generic functions, allowing storing, retrieving and canceling demands.
The PL exposes the Demand Space transparently, by hiding all the internal DS’
details from the public outside and exposing easy-to-use functions. Hence, the
Migration Layer simply reads and writes entries - demands and computed results, by

relying on the PL’s exposed functionality.

At Least Once Delivery Semantics Precautions. The PL takes some exira
precautions for uniquely identifying the demands and preventing from an eventual

loss of any demand. The PL generates and assigns a Global Unique Identifier (GUID)

to each demand. This GUID becomes a unique demand’s signature, thus ensuring at

least once delivery semantics.

Demands Diversity. The DD discriminates the demands stored in the Demand
Space by their processing state, i.e. the demands could be in process, pending or
computed. An in process demand is one on its way to be delivered to a worker and
computed. The DD keeps a copy of that demand until the return of the result of its
computation. In that way, the DD prevents eventual loss of a demand, i.e. an in
process demand could be dispatched again if its result is not received for a certain
period of time, thus providing fault-tolerance. The DD removes the copy of any in
process demand from the Demand Space after its resuit is received through a

computed demand that being generated by a worker.

2.2.3. Migration Layer Concerns

The Migration Layer (ML) establishes a context for migrating objects from one node
to another. The ML provides a transparent form of migration [4], i.e. the nodes and
the objects to be moved do not take special considerations. The ML refers to
communication between computers, i.e. it is based on the Open Systems
Interconnection (OSl) Reference Model [4, 6]. In addition, the ML provides an
architectural structure, forming a multiplatform transport protocol that is able to
connect machines with different operating systems. The ML focuses on the use of

special kind of messengers [2], called Transport Agents (TAs).

Transport Agents Concerns. The Transport Agents are a design solution for the
ML model. They are independent components able to carry objects over the machine
boundaries. The TAs are mainly responsible for delivering the pending demands from
the DGs to the DD, in process demands from the DD to the workers, and the
computed demands from the workers back to the DD and from DD back to the DGs.

The Migration Layer context enforces the TAs to expose a common interface to the
DD, DGs and workers for demand migration. All the TAs form together the ML
transport protocol. Each TA works independently and concurrently with the others. An
agent could stop, shutdown or start without affecting the other GIPSY artifacts, thus

enabling hot-plugging.

10

2.3. Applying the DMF

Our DMF is generic. It does not impose technologies or platforms, but guidelines. By
applying the DMF, we designed a Demand Migration System (DMS), based on the
distributed technologies JINI, CORBA, DCOM and .NET Remoting [7, 13, 14, 16].
Fig.2.2 represents the layered architecture of our DMS derived from the DMF.

Presentation

Layer
DD
Demand
Space
(DS)
\‘\ Migration
Layer

Fig.2.2. GIPSY Demand Migration System

The Demand Dispatcher (DD) and Transport Agents (TA) are subsystems of the
DMS, inherited from the DMF. The DD consists of two contributors - Demand Space
(DS) and Dispatcher Proxy (DP). Whereas the DS comes directly from the DMF, the
DP is a design solution for the Presentation Layer (PL). The PL consists of multiple
DPs, each DP being associated with a TA, i.e. a DP is a DD’s entry point. The DD
has multiple DPs and one single Demand Space. The Migration Layer (ML) is
presented as a set of five Transport Agents, each one based on a distributed
technology, but the Dummy TA, which simply exposes the DP to the worker and DG.
In Fig.2.2 the GIPSY nodes are grouped into pairs, each consisting of a DG and
worker that communicate through the DMS. Each DG-worker pair relies on a
common TA or on different TAs.

Fig.2.3 represents another abstract conceptual view of our DMS. The largest circle
depicts the DMS, and the outstanding rectangles depict DGs and workers, these
being the two communication end points, and the DMS acting as a communication
intermediate between them. The DD (see the light gray color in Fig.2.3) includes the
DS and DPs. The DD has multiple DPs and one single DS. The TAs transport the

11

demands and results to DGs and workers that adhere to the TAs’ interface. In order

to communicate with the DD, a TA needs a DP.

NET

TA DG

Worker
interface Interface

DG TA

TA
@ Interface Worker

TA DG

TA
1
Worker Interface

Interface

" JINI

et S] o0
I TAs
Interface Interface (tocal) &

Fig.2.3. GIPSY Demand Migration System as Middleware

DG
(local)

In our current implementation, the DMS’ core is JINI-oriented (see section 4.). The
DMS components — DD and JINI TA, are based on JINI (see the doted line in
Fig.2.3). The JINI TA could incorporate the DP, since both are JINI-based (hence the
dashed line in the graph between the JINI TA and its corresponding DP).

2.3.1. DMS DD Concerns

The Demand Dispatcher (DD) inherits the DD layer from the DMF. Hence, the DD

acts like a middleware between the DGs and workers.

Demand Space (DS). For the demand-result storage mechanism — DS, the DD
relies on JavaSpace technology [7] — a JINI implementation that integrates the
concept of tuple space [7, 8, 9]. The DD relies on the JavaSpace persistency
mechanism to serialize the demands and results, and on the JavaSpace object query

mechanism to search for them.

Dispatcher Proxy (DP). The DP inherits the Presentation Layer (PL) from the
DMF, i.e. it works as a proxy for the DD. The DD relies on it to expose functionality to
its clients. The clients are mostly TAs and some DGs and workers - those related to

the local DD case (see Fig.2.4), and each one of them is associated with a unique

12

DP. The DGs, workers and Transport Agents use the DP functions as their own, in
their local address space, which hides the complexity of a possible remote

coliaboration with the DS.

Local and Remote DD. The distributiveness of DMS architecture exposes two
cases of Demand Dispatcher (respectively Demand Space) distribution — local and
remote. Local is the case when the Demand Dispatcher is placed locally to the
Demand Generator — they both run on the same machine, and there are no machine
boundaries to cross in order to connect these two artifacts (see Fig.2.4.), i.e. no TAs
are needed. Therefore, the DG should adhere to the dummy TA interface, which
simply exposes the Dispatcher Proxy without using any middieware technology (see

Fig.2.4). Further, in this document, when we call the DGs, workers or DD local, we

Worker L\v J l l Worker

refer to this case.

i

'''''''

Worker ‘__,

Worker

[
i

Tl

(local)

Fig.2.4. Local DD

Remote is the case when the Demand Dispatcher is placed remotely from the DG,
i.e. the DD and DG are located on different machines and Transport Agents are

needed in order to connect them, i.e. we need to cross the machine boundaries (see

Fig.2.5.).
' Worker J ‘ Worker

i Worker l l Worker

Fig.2.5. Distributed DD

13

Jagannathan and Dodd talk in [44] about Static Distributed Generator Architecture
(SDGA) and Dynamic Distributed Generator Architecture (DDGA), those being
models respectively for our Local DD and Distributed DD architecture.

The DG and DD communicate at least twice for each demand to be processed -
post a demand and get its result. In addition, a DG could listen constantly to the
Demand Space for the required results. Therefore, these two artifacts are tightly tied
and dependent on the communication speed. Hence, it is often more appropriate to
have these two artifacts grouped together, i.e. the DG and DD run on the same
machine. However, in some cases, we might have several DGs using the same DD,
or even several DDs, each storing a subset of the demands generated at run-time by
the GIPSY. In addition to the two cases investigated above, we could have a case of
a local worker and DD and one of a remote worker and DD (see Fig.2.3). These
cases are similar to the previous ones. Our DMS architecture is meant to allow any of
these variations to allow the dynamic investigation into different run-time

architectures.

2.3.2. DMS TA Concerns

In our DMS design the TAs are based on one distributed technology whose
architecture influences their implementation. The TAs differ in structure and
implementation. Some of them use IDL interfaces [13, 14, 16, 27], others - pure Java
interfaces, but they all expose the same interfaces to the DGs, workers and DD.
Despite of the distributed technology diversity, the DGs, DD and workers use the

Transport Agents transparently.

Transport Agent Interface. When a Transport Agent starts, it plugs into the
system by connecting with the DD and exposes its interface to the DGs and workers
(see Fig.2.3). Actually, the workers and DGs are the ones who listen for newly
plugged TAs and connect to them. The workers and DGs must adhere to the
Transport Agent’s interface in order to connect to such an agent. Fig.2.2 depicts the

DGs and workers on top of a compatible TA.

14

2.3.3. Multiplatform Transport Protocol Concerns

The requirement for distributiveness is vital for our DMS conception. The DMS initially
relies on the distributed technologies JINI, CORBA, DCOM and .NET Remoting (3,
13, 14, 16]. The DMS uses these technologies as a multiplatform transport protocol,
able to connect machines with different operating systems (see Fig.2.6). This
transport protocol is designed in the form of Transport Agents. Each one of those
agents implements the features of only one distributed technology. The transport
protocol is open-ended, i.e. we can easily extend it by adding new Transport Agents

based on other distributed technologies.

N
E
T
DCOM W DCOM
/ .NET Remoting 's) .NET Remoting
Demand |7 CORBA R CORBA
Dispatcher M JINI K JINI

T
Generator

Solaris

Fig.2.6. Multiplatform Transport Protocol
2.4. Distributed Middleware Concerns

The DMF implies the concepts of distributed systems. A distributed system is a
collection of processes/processors that do not share memory or a clock. A distributed
application is an application distributed across muitiple computers. Some applications
by their very nature are distributed because of one or more of the following reasons:

e The data used by the application are distributed.

e The computation is distributed.

o The users of the application are distributed.

15

2.4.1. Common Foundation of Distributed Technologies

In the course of this thesis, we investigated some of the most advanced distributed

technologies, and their implication as distribution middleware for our DMF. We
investigated the distributed technologies CORBA, DCOM, .NET Remoting and JINI

[3, 7, 13, 14, 16]. All of them, in their core, have a common foundation (see Fig.2.7),

based on the Open Systems Interconnection (OSl) Reference Model [4, 6]

As computing issue, all of them refer to communication between computers.
The combination of software and hardware that allows the computers to
communicate is known as a transport layer. By sharing a common transport
layer, the computers form a network. The network is the first necessity for all
distributed technologies.

To communicate in a network, the computers need to share the same wire
protocol. The wire protocol forms the bottom layer in all distributed
technologies.

Unlike client-server architectures, where the client identifies and
communicates directly with the server, the distributed computing architecture
introduces the concept of middleware. The middleware is the functional layer
between the client and server. By relying on stubs that run on the client- and
server-side, such a layer provides transparency facility to the players in the
distributed computing process. The client-side stub is also called server proxy.
From the DMS perspective, this proxy is called TA Proxy (see section 3.3.1).
The major participants are clients and servers. The servers presents their
services in the system and the clients use them. Therefore, there is a back

and forth communication between the participants in a distributed computing

process.
Request >
Respond
Client Top layer Server
-~ Clientstub." |~~~ - -Middle layer - . | ~Serverstub-

Fig.2.7. Distributed Technologies Foundation

16

2.4.2. Important Aspects

The following elements reveal some important for our research aspects of distributed

middleware.

Distributed Systems Transparency. According to the Colouris [17], a distributed
system is a collection of autonomous hosts that are connected through a computer
network. Each host executes components and operates a distribution middleware.
This middleware enables the components to coordinate their activities in such a way
that the user perceives the system as a single, integrated computing facility.

From the definition above, we can conclude one of the most important properties of
distributed systems — their transparency. In other words, the user of the distributed
system shall perceive the system as a single computing facility that internal

implementation is hidden by a so-called abstract layer.

Migrating Objects to Remote Locations. In the course of this distributed
technologies investigation we concentrated our efforts mainly on objects migration.
This was one of the principle questions in the course of the DMS design.

Object migration in distributed systems is moving or copying an object from its
current host to some other host [4]. If we match this definition to our problem, the
object migration is moving or copying demands from a DG to worker and vice versa.
The process of object migration is performed by the distribution middleware and is

closely related to object persistence.

Communication principles. Another important aspect of our distributed
technologies investigation is the communication principles in a distributed
environment. These principles helped us to understand the different degrees of
reliability with which the process of objects migration can be performed. In addition,
we clarified for ourselves the different trade-offs between the reliability and
performance, necessitated by the different communication principles.

In general, there are four communication principles followed in a distributed
environment [4]. The following elements specify those principles, by referring to the

client-server communication depicted in Fig.2.7.

17

e Synchronous communication means that the client is blocked while the server
executes the requested operation. The client regains the control only after the
server has completed the operation or the middleware has notified the client
about the occurrence of an error.

e Oneway communication means the client regains the control as soon as the
middleware has accepted the request. The client and server are then executed
concurrently and they are not synchronized.

e Deferred synchronous communication means that the client regains the
control as soon as the distribution middleware has accepted the request. The
client is not blocked due to the fact that an explicit request objectis used to get
the result. That object performs synchronous communication with the server.
The client invokes a function from request object to get the result.

e Asynchronous communication means that the client regains the control as
soon as the distributed middleware has accepted the request. The server
performs the operation and it explicitly calls a function of the client to transfer

the result. This technique is called callback.

2.5. Summary

In this chapter, we have specified the concepts underlying the generic architecture of
our Demand Migration Framework (DMF) and that of the Demand Migration System
(DMS), the last being an application of the framework.

The architectural model of our DMF consists of two major contributors called
Demand Dispatcher (DD) and Transport Agents (TAs). They both run independently,
but form together the overall behavior of the DMF. The DD acts like an event-driven
message storage mechanism that uses the TAs to deliver the messages to their
recipients. The DMF relies on these two contributors to form a communication system
— DMS, similar to the persistent asynchronous message passing systems, i.e. the
messages are delivered when they are asked (i.e. in a demand-driven manner), but
until that moment, they are kept permanently stored within the message system. The
messages in the DMF are demands and results, each result being associated with
one demand. The clients of the DMF are Demand Generators (DGs) and workers,

both being GIPSY execution nodes.

18

Chapter 3: Design

There are two ways of constructing a software design: one way is to make it so
simple that there are obviously no deficiencies, and the other way is to make it so
complicated that there are no obvious deficiencies.

C.A.R. Hoare

This chapter provides a comprehensive architectural overview of the Demand
Migration System (DMS) by relying on a number of different architectural views to
depict different aspects of the system. It is intended to capture and convey the
significant architectural decisions that have been made during the design process.

In our design we followed “4+1” View Model of software architecture [18]. This
chapter follows the Software Architectural Document template proposed by the “4+1”

View Model. The majority of the sections have been taken from that template.

3.1. Software Architecture

“Software architecture deals with abstraction, with decomposition and composition,
with style and esthetics” [18]. To describe the software architecture of the DMS we
used the “4+1” model, which is composed of multiple views. We did not use all the
five views proposed by the model.

In order to catch most of the functionality and the structural overview of the system,
to make the design understandable and easy to use, and finally to catch the non-
functional requirements like concurrency, security and availability, we implemented:

e The scenario view, which captures “the most critical functionality of the
system” [18] in form of scenarios.

e The logical view as a logical object model of our design. This view could be
characterized as a “normal” design view.

e The process view, “which captures the concurrency and synchronization
aspects of the design” [18].

e The deployment view, which describes various physical nodes that include

process view entities.

19

3.1.1. Goals and Constraints

Our primary architectural goal was to capture as much as possible of the functional
requirements and the most important of the non-functional ones. We form our
architecture by considering functional requirements, captured in the scenario, logical,
and process views, and nonfunctional requirements, captured in the process and
deployment view and supplementary specifications.

We did not consider any constraints imposed by the environment in which the
software must operate, by the need for compatibility with existing systems or by the
need to reuse existing assets. For our architectural goals we used the preexisting set
of architectural principles and policies of the “4+1” View Model and the solutions
proposed by multiple design patterns [18, 19, 20]. Our design objective was to design
a high-level architecture for the DMS that combines object-oriented programming
with distributed computing.

In order to provide an integrated communication system, the architecture has to
attain the requirements of concurrency, security, availability, and integrity. Our design
does not tackle the performance and efficiency as these are to be tackled by other

subsystems of the GIPSY and future subsystems of the DMS.

3.2. Scenario View

This architectural view is “+1” according to “4+1” design view model. This view puts
all the parts together. We used a small set of useful and important scenarios to
demonstrate how the system works. These scenarios are “in some sense an
abstraction of the most important functional requirements” [18]. The scenarios
described by this section are instances of more general use cases (see Fig.3.1).
Fig.3.1 represents a use case diagram that depicts the use of the DMS by the GIPSY
processing nodes DGs and workers, those being presented as actors [40]. The actor
“DG” performs “Cancel demand”, “Dispatch demand” and “Get result” use cases, and
is used by the DMS for performing the “Dispatch result” use case. The actor “worker”
performs “Get demand” and “Dispatch result” use cases. In addition, this actor is

used by the DMS for performing the “Dispatch demand” use case.

20

DMS
Cancel demand

1
1

1]

1

1

1

;

1

«extgnds» !
! ;

! :

1

:

1

Dispatch demand)~ _ ¢
So =~ includes» 1

«inclydes» ~<|chud95» ~ - - !
I S T~< :

| ~ ~ g >~ -]
Demand Generator (DG) ~ ~ '
«includes» i

Getdemand j= == ———== Migrate demand Pooldemand) |
‘

. td ¢

«includeg» 7 Pl :

Pd 7/ 4 1

” V4 P 7 1

i 4 7 H

. 7/ 7 :

<<|nClU(%» <<include§»’ :

/ ’ e '

’ s '

7/ 7 4 '

/7 P P :

| ’ Pid !

7/ 7 :

7’ 1

1

1

)

]

]

1

Dispatch resutt
Worker 1

Fig.3.1. DMS General Use Case Diagram

The following scenarios [19, 40] demonstrate the use of the DMS. They are
sequences of collaboration activities between the Demand Generator (DG), DMS and
worker. The DMS is represented by its components - Transport Agent (TA) and
Demand Dispatcher (DD), where the DD is represented by its internal contributors —
Dispatcher Proxy (DP) and Demand Space (DS).

3.2.1. The DMS in Use

Before going over the scenarios we illustrate the use of the DMS by giving a simple
example. Consider the following formula:

D=A+B+C

Here A, B and C are complicated formulas from calculus. A DG should compute D,
i.e. compute A, B and C first. The DG will generate demands for the computation of A
and B, and via the DMS will propagate them to two remote workers, i.e. the DMS will
dispatch demands. Each remote worker will execute its demand and generate the

corresponding result. Both results will be returned back to the DG via the DMS, i.e.

21

DMS will dispatch results. Meanwhile, the DG will compute the formula C. Finally, the

DG can summarize all the results and compute D.

The following is a scenario for computing the formula “A” by a remote worker. The

DD is assumed local for the DG (see section 2.3.1), i.e. no TA is needed for

accessing the DD. The sequence diagram [19, 40] in Fig.3.2 depicts this scenario.

DD

DG Dermand A" Dp DS jolid Copy of A" TA Worker
T T
1 1
| [}

T T
i |
Generate "A" i 1

T
|
1 . 1 Notify "Ready”
> ! Listen for Demands
1
Pass demand *A" :

i “
(5 Grant ID Post demand “A*

Pass den"nand's iD Pass copy of "A1

Listen for result

1
[}
t
]
]
]
[}
i
1
1
1
1

i R

T
' Demand “computed”

: [y Change demand's state to "in process” Pass copy of "A" Deliver A"

{ 4 Compute A"
! [Ij Store result

' +—+

: .'\ Change state to "computed”

i " I

t

t

'

|
Pass demanq “computed”

1
1
1
1
i
i
1
i
Pass demand "computed" 1
H :
1
!

Destroy "A*

] L e L
t 1 1 [} 1
i 1 1 1 t

Fig.3.2. Sequence Diagram Formula “A” Computation

Scenario steps:

A DG generates “A” and passes its computation demand to the DP.

The DP grants the demand “A” with a unique id (GUID).

The DP stores the demand in the DS and returns to the DG the demand’s id.
The DG starts listening to the DS for this demand to become computed.

A DP associated with a TA that is listening to the DS for pending demands,
gets a copy of that demand.

The DP changes the state of the demand “A” from pending to in process and
sends the copy of “A” to the TA.

The TA transports the copy of “A” to a ready worker.

The worker (now busy) executes the demand, stores the result in the demand,
and changes its state to computed. The worker reverts to the ready state.

The TA transports the computed demand back to the DD and stores the result

in the Demand Space through the Dispatcher Proxy.

22

o The DD through a Dispatcher Proxy passes the computed demand to the DG

and removes the original (in process) demand from the Demand Space.

3.2.2. Scenario “Migrate Demand”

This scenario is an instance of the “Migrate Demand” use case (see Fig.3.3). The

following table depicts the characteristics of this use case.

Name Migrate Demand
Actor None
Description This use case describes two DMS functions:

a) A migration of a demand from a TA to the TA Proxy (see
section 3.3.1 for an explanation about the TA Proxy).

b) A migration of a demand from a TA Proxy to the TA.

Related use This use case is included by the use cases “Dispatch demand”,

cases “Get demand”, “Dispatch result” and “Get result”.

Pre-condition | Two possible cases:

a) A DP associated with a TA holds a demand to be
dispatched.

b) A GIPSY node (worker or DG) holds a demand to be
dispatched.

Base scenario | Function a)

1. The DP passes the demand to its associated TA.

2. The TA transports that demand to the TA Proxy, which runs
in the GIPSY node’s address space.

3. The TA Proxy. passes the demand to the GIPSY node
(worker or DG).

Function b)

1. The GIPSY node passes the demand to the TA Proxy,
which runs in the GIPSY node’s address space.

2. The TA Proxy transports that demand to the TA.

3. The TA passes the demand to the associated DP.

Alternative None.

23

Failure The demand cannot be transported.

Failure Either the TA Proxy or TA is no longer available due to a
conditions network failure, due to a GIPSY node failure, or due to a TA
failure.

Post-condition | The demand is transported.

The following sequence diagram [19, 40] depicts the base scenario for function a)

of the use case.

DP TA Proxy IPSY N

|
|

D Pass demand

e B =

1
I
1
|
|
Transport demand
LJ Pass demand
i ﬂ
I
]
[}
]
1

Fig.3.3. Sequence Diagram “Migrate Demand”

The sequence diagram for the demand migration from the TA Proxy to the TA is
similar to the diagram in Fig.3.3, but the action is triggered by the GIPSY node.

3.2.3. Scenario “Get Demand”

This scenario is an instance of the “Get Demand” use case (see Fig.3.4). The

following table depicts the characteristics of this use case.

Name Get Demand

Actor Worker

Description The worker searches for and gets any pending demand from
the DS.

Related use This use case is included by the use case “Dispatch demand”,

cases and it includes the use case “Migrate demand”.

Pre-condition | A pending demand is stored in the DS.

24

Base scenario | 1. The worker completes its work, and makes its associated
TA listen to the DS for any pending demand.

2. The TA discovers a pending demand through its associated
DP.

3. The DP changes the status of that demand from pending to
in process.

4. The DP takes a copy of that demand and passes it to the
TA.

5. The TA migrates the demand copy to the worker (refers to

the use case “Migrate demand”).

Alternative 1.1. The DD is local to the worker, and the worker makes its
associated DP listen to the DS for any pending demand.
1.1.1. The DP discovers a pending demand.
1.1.2. The DP changes the flag of the demand from pending
to in process.
1.1.3. The DP takes a copy of that demand and passes it

to the worker.

Failure 1.1. The worker cannot find its associated TA.
Failure The TA is no longer available due to a network failure or due to
conditions a TA failure.

Post-condition | 1. The copy of the demand is delivered to the worker.
2. The state of the original demand (kept in the DS) is

changed to in process.

The following sequence diagram [19, 40] depicts the base scenario of the use case.

25

DD

Worker op DS

i
D Listen for pending demands

i

|

|
—T Listen for pending demands

Demand found

Change demand status

Take demand copy
Pass demand copy

Migrate demand

____;l_____.____
T B

T
I
I
I
|
f

-

Fig.3.4. Sequence Diagram “Get Demand”

3.2.4. Scenario “Dispatch Demand”

This scenario is an instance of the “Dispatch Demand” use case (see Fig.3.5). The

following table depicts the characteristics of this use case.

Name Dispatch Demand
Actor DG
Description The DG generates a demand, and dispatches it to the

worker through the DMS. The demand is granted with a
GUID at the beginning of the dispatch process.

Related use This use case could be extended by the “Cancel demand” use
cases case. It includes “Pool demand”, “Migrate demand” and “Get

demand” use cases.

Pre-condition | A newly generated demand.

Base scenario | 1. The DG passes the demand to its associated TA (refers to
the use case “Migrate demand”).

2. The TA passes the demand to its associated DP.

3. The DP generates a GUID, grants the demand with this
GUID, and the TA returns this GUID to the DG.

4. The DG starts listening to the DS for this demand to

become computed.

5. Meanwhile, the DP stores the demand in the DS (refers to

26

the use case “Pool Demand”).
6. A ready worker gets a copy of that demand through its
associated TA (refers to the use case “Get Demand”).
Alternative 1.1. The DD is local to the DG, and the DG passes the

demand to its associated DP.
1.1.1. The DP grants the demand with a GUID and returns
this id to the DG.
1.1.2. Continue with 4.

4.1. The DG cancels the demand (refers to the use case

“Cancel demand”.

Failure 1.1. The DG cannot pass the demand to its associated TA.
Failure The TA is no longer available due to a network failure or due to
conditions a TA failure.

Post-condition | The demand is delivered to the worker.

The following sequence diagram [19, 40] depicts the base scenario of the use case.

DD

T
' - -
™ Listen for pendign demands

Migrate demand

DG IAa bp Ds DP IA Waorker
T L] ¥ T
I] I |
I { ™ [
{ 1
Passdemand | 7

Listen

| Generate ID
§
! Return ID

|

i

i

Return ID Store demand !
Demand found !

Change status e 1

Listen for computed demand

Get demand copy| Pass demand copy |

Migrate demand :

J
-
-

Fig.3.5. Sequence Diagram “Dispatch Demand”

3.2.5. Scenario “Cancel Demand”

This scenario is an instance of the “Cancel Demand” use case (see Fig.3.6). The

following table depicts the characteristics of this use case.

27

Name Cancel Demand
Actor DG

Description The DG requests from the DMS to cancel a demand

dispatched for computation by providing the demand’s GUID.
Demands in any state — pending, in process or computed, can

be canceled.

Related use This use case extends the use case “Dispatch Demand”.

cases

Pre-condition | A demand has been dispatched for computation by the DG.

Base scenario | 1. The DG sends a “cancel demand”’ message to the TA with
the ID of the demand to be canceled.

2. The TA redirects that message to its associated DP.

3. The DP deletes the demand from the DS.

Alternative None.

Failure The cancel message cannot be delivered to the TA.
Failure The TA is no longer available due to a network failure, or due
conditions to a TA failure.

Post-condition | The demand is canceled (deleted from the DS).

The following sequence diagram {19, 40] depicts the base scenario of the use case.

DD

IA
I
|

Remove demand with specific ID

U Cancel demand with specific ID

DG
I
|
D Cancel demand with specific ID
|
|
]
]
I
1

————J---1B

@

Fig.3.6. Sequence Diagram “Cancel Demand”

3.2.6. Scenario “Pool Demand”

This scenario is an instance of the “Pool Demand” use case (see Fig.3.7). The

following table depicts the characteristics of this use case.

28

Name Pool Demand

Actor None.

Description The DD pools demands. The DP wraps demands and their
state in an entry format to be stored in the DS, and stores
those entries in the DS. Only pending and computed demands
can be pooled, since the in process demand is a demand

already stored in the DS, but with a changed state.

Related use This use case is included by the use cases “Dispatch Demand”

cases and “Dispatch Result”.

Pre-condition | The DP holds a demand to be stored in the DS.

Base scenario | 1. The DP creates an entry object.

2. The DP adds the demand to this object with the appropriate
state — pending or computed.

3. The DP stores the entry object in the TS.

Alternative None.

Failure The DP cannot store the entry object in the DS.

Failure The DS is no longer available due to a DS failure or due to
conditions insufficient storage space.

Post-condition | The demand is pooled (stored in the DS).

The following sequence diagram [19, 40] depicts the base scenario of the use case.

| DD

Entry

| B
- B

Create

Add demand

Add demand's state

Store entry object

D T

Fig.3.7. Sequence Diagram “Pool Demand”

29

3.2.7. Scenario “Get Result”

This scenario is an instance of the “Get Result” use case (see Fig.3.8). The following

table depicts the characteristics of this use case.

Name Get Result
Actor DG
Description The DG searches for and gets a computed demand from

the DS. The computed demand is discovered by its GUID.

Related use This use case is included by the use case “Dispatch result”.

cases

Pre-condition | A computed demand with a specific GUID is stored in the DS.

Base scenario | 1. The DG listens to the DS via its associated TA for a
computed demand with a specified GUID.

2. The TA discovers the computed demand through its
associated DP.

3. The DP takes that demand, and passes it to the TA.

4. The TA migrates the computed demand to the DG (refers
to the use case “Migrate Demand”).

Alternative 1.1. The DD is local to the DG, and the DG makes its

associated DP listen to the DS for a computed demand with a
specified GUID.

1.1.1. The DP discovers the computed demand.

1.1.2. The DP takes that demand, and passes it to the DG.

Failure 1.1. The DG cannot find its associated TA.
Failure The TA is no longer available due to a network failure or due to
conditions a TA failure.

Post-condition | 1. The computed demand is delivered to the DG.

2. The computed demand is removed from the DS.

The following sequence diagram [19, 40] depicts the base scenario of the use case.

30

Listen for computed demand with iD

DD

- B
- B

bp
T
|
1
A

Migrate computed demand

Listen for computed demand with 1D,

Demand found Take computed demand

Pass computed demand

___{;}_-_.___._

e S S |

(-
i
1
1
1
|
!

-

Fig.3.8. Sequence Diagram “Get Result”

3.2.8. Scenario “Dispatch Result”

This scenario is an instance of the “Dispatch Result” use case (see Fig.3.9). The

following table depicts the characteristics of this use case.

Name Dispatch Result

Actor Worker

Description The worker computes the received demand, generates a
computed demand with the computation result, and
dispatches the computed demand back to the DG via the
DMS. The computed demand has the same GUID as its
mentor (the received demand).

Related use This use case includes “Pool Demand”, “Migrate Demand” and

cases “Get Result” use cases.

Pre-condition

A worker has received a demand for computation.

Base scenario

1.
2.

The worker computes the received demand.

The worker generates a computed demand, holding the
computation result and the same GUID as the received
demand.

The worker passes the demand to its associated TA (refers
to the use case “Migrate Demand”).

The TA passes the demand to its associated DP.

31

5. The DP stores the demand in the DS (refers to the use
case “Pool Demand”).

6. The worker starts listening to the DS for any pending
demand.

7. A DG gets the stored computed demand through its

associated TA (refers to the use case “Get result”).

Alternative 3.1. The DD is local to the worker, and the worker passes
the demand to its associated DP.
3.1.1. Continue with 5.

Failure 1.1. The worker cannot pass the demand to its associated
TA.

Failure The TA is no longer available due to a network failure or due to

conditions a TA failure.

Post-condition | The computed demand is delivered to the DG.

The following sequence diagram [19, 40] depicts the base scenario of the use case.

DD
Worker Ia DP RS np IA DG
¥ T T ¥ T Y T
| | 1 | 1 | i
| Copmute demand | | ™ | Listen for computed demand with iD
I I I
I . o
Generate i : Listen
|_computed demand |) 1]
| | | |
Migrate demand ! | | I
b N Passdemand | gore demand 1 1
Listen for pending d 4 Demand found ! :
isten for pending deman
L_] Listen Take demand ~—~—;D H
Pass computed demand I
: W Migrate demand !
I
I
I
t
I

—
q

Fig.3.9. Sequence Diagram “Dispatch Result”
3.3. Logical View

In our design the “logical view is the object model of the design (when an object
oriented design method is used)” [18]. It primarily supports the functional
requirements - “what the system should provide in terms of services to its users” [18].

We used UML [40] in terms of static structure elements — classes and packages to

32

build the Demand Migration System logical architecture view (see Fig.3.10). The
following diagram is an overview model that represents the major subsystems as
software packages [19, 40]. A package here is a collection of classes that are
logically grouped together. In addition, the diagram depicts the packages’ interface(s)
and the associations among the packages. The interfaces are depicted as packages’
entry point(s), i.e. the communication among the different packages is possible only

through those interfaces.

Demand .
Dispatcher JINI Library
1
!. ___________ 42 lJiniLibrary l
;I? . JINITA
} IDemandDispatcher 1JiniTA ?
|
' ———————————————— -
! : 1 1
_________________________ IDcomLib
: ':" pcomTa | 'DOmHPrAY g DooM
| I IDcomTA g?— ________ ibrary
| I I
| | e |
' L ' '
|
[, [N S — i
I I -1 corRBA TA ICorbaLibrary ?—— C_ORBA
| I ICorbaTA ?— -------- Library
{ |
§ 1 : """"""""""
i | " I I
1 1 1
I GIPSY Nodes INetTA g'g—— NETTA INetLibrary ©— \er Library
| | Worker | L DG |fbemmemm—an—m—— | eme———e———
|
| I
L e o o o e = e e e > 2 ——————— " ——— 4

Fig.3.10. Overall Logical Architecture View

3.3.1. Design Rationale

The Design Rationale (DR) for the overall system expresses elements of the
reasoning, which has been invested in the design of the whole system. “A DR
answers “Why...?” questions of different sorts, depending on the class of DR
represented” [19]. As an answer to the requirements of the DMS we propose nine
major modules — packages. Most of them are derived by the DMS conceptual

architectural view (see section 2.3). The GIPSY Nodes package is not a part of the

33

DMS architecture. It is presented in the logical view in order to achieve a complete
overall relationship view. Those modules group logically different system artifacts —
classes. The following is a short description of some principle questions that rised

during the design process and their logical answers implemented in our design.

Demand Dispatcher. The Demand Dispatcher package incorporates the
functionality of the DD layer (see section 2.2 and section 2.3). This package exposes
an interface called IDemandDispatcher with all the accessible generic package’s
functions. The package is used by the GIPSY Nodes package and by the TA
packages, each one being interested in the [DemandDispatcher interface (see
Fig.3.10). For performing its functionality, the Demand Dispatcher package relies on
the JINI Library package. The Demand Dispatcher package encapsulates the
Demand Space (DS) and the Presentation Layer (PL) together.

Why the DS and PL are encapsulated in one package? In our architecture, the
DS and PL are tightly related to each other. The PL presents the DS, i.e. the PL is
the entry point to the DS. Therefore, the DS is an inner component of the DD, i.e. the

DS cannot expose its own public interface accessible by the other packages.

TA packages. The TA packages depict the Transport Agents. There are four TA
packages — JINI TA, CORBA TA, DCOM TA and .NET TA, each one being related to
a corresponding distributed computing technology (7, 13, 14, 16]. The TA packages
expose their functionality through a TA interface. All the TA packages are interested
in the Demand Dispatcher package, and are used by the GIPSY Nodes package (see
Fig.3.10), since they are the communication layer between the DD and GIPSY nodes

(see section 2.3). In our design, every TA is designed in a single package.

Why a single package for every TA? The TAs are designed as stand-alone
components, independent from each other. In addition, each TA is based on a
distributed technology (see section 4.1) whose architecture influences the TA design
and implementation. Therefore, the TAs differ in design structure and

implementation.

34

TA stubs. The TAs work in a distributed environment. This requires a stub
generation (see section 2.4.1). Therefore, in our design we should take into

consideration the TA stubs, which we called TA Proxies.

Distributed technologies libraries. In our design, the distributed technologies are
encapsulated in single packages. These packages encapsulate only the distributed
technology functionality needed by the DMS and expose this functionality in a generic
manner through their interface (see Fig.3.10). We designed four packages — JINI
Library, DCOM Library, CORBA Library and .Net Library, each one being associated
with one of the distributed technologies. The TA packages are interested in the

packages listed above and use them through their interface.

The rest of the logical view’s subsections are made up of a package name. For the
three packages JINI Library, Demand Dispatcher and JINI TA there is a design
rationale and detailed design, including a UML class diagram [19, 40] and description
of classes that make up that package. Following the definition of any class is a list

and definition of the methods and data fields that make up that class.

3.3.2. JINI Library

The JINI Library package implements all the functionality necessary for using JINI as
a heterogeneous distributed computing middleware. The package generalizes JINI
and brings its functionality to a higher level of abstraction, those being ensured by the
package’s interface IJINILibrary. The JINI Library package is used by all the DMS’
components based on JINI. Such components are the JINI TA and an
implementation of the DS based on JavaSpace. The following UML class diagram

depicts the JINI Library package’s classes and their relationships.

35

«interface» «interface»
IMINILibrary Discoverylistener
+findRegistrar(in sHost : string) : ServiceRegistrar ™ < +discovered(in de : DiscoveryEvent)
+findRegistrar() : ServiceRegistrar >~ _ +discarded(in de : DiscoveryEvent)
+indDMSService(in template : ServiceTemplate) : Object ~ ;/ RN [}
{ Facade } !
Mo P
1 |
JINiLibrary !
-theRegistrar : ServiceRegistrar ServiceListener
-theListener : ServiceListener
+findRegistrar(in sHost : string) : ServiceRegistrar >

+discovered(in de : DiscoveryEvent)
1 1 +discarded(in de : DiscoveryEvent)
#lookup() : ServiceRegistrar

+findRegistrar() : ServiceRegistrar

-+indDMSService(in template : ServiceTemplate) : Object
-assignRegistrar(in oRegistrar | ServiceRegistrar)
-discardRegistrar()

N
«exception» «exception»

JINILibraryException —“D DMSException

out ERR_TAG : String

Fig-3.11. JINI Library Class Diagram

3.3.2.1. Design Rationale

The following is a list of questions that raised during the design process of the JINI

Library package and their reasonable answers implemented in our design.

The JINI Library is an abstraction of some JINI functionality. All the necessary
JINI functionality, needed by the DMS’ components, is exposed by a set of generic
functions through the IJINILibrary interface. In our design process, we applied the
Facade pattern [19, 20], which brings the package’s functionality to a higher level of
abstraction (see Fig.3.11). This solution was derived from the layered architectural
structure exposed by the DMS. l.e. the implementation of the technology related
functionality in a different package gets along pretty well with the high packages
independency. JINI is a complex environment (see section 4.1.1) where the different
services required different approach. Therefore, it is better to implement those
approaches in a transparent manner. An alternative solution was to implement the
needed JINI functions at the DMS class level. Since our DMS does not rely on all the
JINI functionality, but on a small set of JINI functions, this approach was investigated
as well. The problems raised by this approach were mainly related to the
contradiction with the generic architectural structure of the DMS and its
interoperability. The last one as a nonfunctional requirement is coming from the

ability of DMS to work with different distributed computing technologies.

36

Multicast and unicast discovery. There are two different ways of discovering JINI
services [3, 7, 34] — multicast and unicast discovery (see section 4.1.1.2). The DMS’
JINI related components are designed as JINI services. Hence, the service discovery
mechanisms are some of the important features we should implement in our JINI

Library. These features are directly exposed by the package’s interface.

Registrars. All the JINI services must be registered with a registrar [3, 7, 34].

Hence, our DMS JINI services must be registered with such a registrar as well.

Service listener. The service listener is a mechanism for discovering JINI services
in an asynchronous manner. Our investigation into the JINI distributed events, which
are the mechanism used for asynchronous communication in the JINI systems,
helped to design a service listener mechanism. This mechanism helps for /ate
discovering. We designed the service listener as an inner class for the implementer
of the IJINILibrary interface.

Why is the service listener an inner class? The use of an inner class is
appropriate here, because it is mainly responsible for handling events. Hence, an
instance of this class works in a background mode and calls methods from the main
class, when an event occurred. This is most appropriate for the asynchronous service
discovery, i.e. the main class does not block due to a possibly long discovery

process.

Why late discovery? Since the DMS nodes are “volunteers” (see section 2.1), .i.e.
they are designed to allow “hot-plugging”, the late discovery helps in discovering

services (DMS’ JINI related components) that plug into the DMS later.

3.3.2.2. Detailed Design

The following is a description of the JINI Library package’s classes and their

attributes and methods.

37

interface IJINILibrary

The IJINILibrary interface is the package’s entry interface. It exposes three generic
functions that make the JINI Library package easier to use. All the interface’s
methods throw a JINILibraryException exception. The following is a description of
these methods and their pseudo code.

Method findRegistrar() Pseudo code

The interface exposes two overloading pubiic ServiceRegistrar

,) findRegistrar (String sHost);
findRegistrar methods. These methods find e eliosl)

public ServiceRegistrar

a JINI service registrar that is needed for findRegistrar ()

locating the desired DMS service.
The first method accepts as a parameter
the host address and performs a unicast
discovery process [3, 7].
The second one has no parameters and
performs multicast discovery process [3, 7].
Method findDMSService() Pseudo code
This method uses the discovered by one of = pubiic object finduiniservice (
the previous methods registrar to locate the oo Dok
desired DMS service. A service template
passed as a parameter to the method

describes the desired service.

Class JINILibrary

The JINILibrary class is the main class for the package. It implements the IJINILibrary
interface, i.e. it implements all the necessary functions for finding a registrar and
locating the desired DMS service. The class JINILibrary implements an inner service
listener class (see the ServiceListener class below), which is used by the multicast
discovery mechanism implementation. The class JINILibrary implements the following
methods and attributes.

Data field theRegistrar Pseudo code

This private data field is designed to keep prvate SenviceRegistrar theRegistrar:

the last discovered registrar.

38

Data field theListener

This private data field holds a reference to
the service listener.

Method findRegistrar()

There are two overloading findRegistrar
methods implemented by the class. Those
the
methods of the WJINILibrary interface (see
the IJINILibrary interface).

methods implement findRegistrar

Method findDMSService()

This the method
findDMSService of the IJINILibrary interface
(see the IJINILibrary interface).

method implements

Method assignRegistrar()
This
registrar to the data filed theRegistrar. The

method assigns the discovered

method is called by the findRegistrar
methods and by the inner class
Servicelistener.

Method discardRegistrar()
This method assigns to the data filed

theRegistrar a null value.

Interface DiscoveryListener

Pseudo code

private ServiceListener thelistener;

Pseudo code

public ServiceRegistrar findRegistrar (
String sHost) {
Perform a unicast discovery to find the
registrar on the host=sHost.
Return the registrar. }
public ServiceRegistrar findRegistrar () {
Perform a multicats discovery to find any
registrar all around the network, by using
thetListener.
Return the registrar.}

Pseudo code

public Object findDMSService (' ServiceTemplate
template) {
if theRegistrar=null then
call findRegistrar,
Look forthe DMS :service in theRegistrar.by
matching the service template.}

Pseudp code

private void assignRegistrar (ServiceRegistrar
oRegistrar)

if(theRegistrar==null)
theRegistrar = oRegistrar
}

Pseudo code

private void discardRegistrar () {
theRegistrar = null}

The interface DiscoveryListener is a JINI interface implemented by the class

ServiceListener (see the Servicelistener class below). The interface defines two

methods — discovered and discarded.
Method discovered()

This method receives a discovery event
when one or more registrars are discovered.
This method is called by JINI when the

desired registrar is found.

39

Pseudo code

public void discovered(DiscoveryEvent ev);

Method discarded() Pseudo code
This method is called by JINI only when we public void discarded(DiscoveryEvent ev);
explicitly discard the registrar, i.e. when the

registrar goes down.

Class Servicel.istener

The Servicelistener class is an inner class for the class JINILibrary. It implements the
Discoverylistener interface. The class is capable to catch the discovery events
occurring when a registrar is discovered or discarded. The JINILibrary class relies on
this class for performing a multicast discovery process. The class Servicelistener
implements the following methods:

Method discovered() Pseudo code ’

This method implements the discovered pubiic void discovered(DiscoveryEvent ev) '{k

. , . if a registrar is discovered then ,
method of the DiscovoryListener interface cajthe assignAegistrar method of the

. . . JINILibrary class in order to: ass:gn the e
(see the DiscovoryListener interface). discovered registrar } L o

Method discarded() Pseudo code
This method implements the discarded pupiic v01dd/scarded(Dlscoveq/Eventev){ o

. . . if the registraris discarded.then ;
method of the DiscovoryListener interface cal the discardRegistrar method of the

. . . JINILibrary class
(see the DiscovoryListener interface).] x

Exceptions

In our design solution for the JINI Library package, we defined an exception called
JINILibraryException. 1t inherits the DMSException (see Fig.3.11) and encapsulates
all the possible JINI Library exceptions. The JINILibraryException exception can be
thrown by the methods of the JINILibrary class.

3.3.3. Demand Dispatcher

The Demand Dispatcher (DD) package implements the functionality of the demand
propagator (see section 2.2.1). It consists of two major functional layers — the
Demand Space (DS) and Presentation Layer (PL). Whereas the DS stores and

queries the demands the PL generalizes the functionality of the DS, by exposing it in

40

a transparent manner. The following UML class diagram depicts the DD package’s

classes and their relationships.

DemandState Hold DispatcherEntry
+PENDING : DemandState £ — = — = wo = ar oe = on o +oUniquelD : Uuid -~
+INPROCESS : DemandState +dState : DemandState T~
+COMPUTED : DemandState +oDemand : Serializable P N
+isPending () : boolean +DispatcherEntry() { Adapter)
+sinProcess() :boolean e +DispatcherEntry(in thelD : Uuid) S —_—
+isComputed() : boolean I Wrap +DispatcherEntry(in thelD : Uuid, in theObject : Serializable)
-DemandState() I +DispatcherEntry(in thelD, in theQObject, in theState)
h| P n
I~ e : 1
| 7 I P N
| \\\ /’ Wra| ! ! 4 = d N
1 ~ ,/ |——H Store in DemandSpace '\ acaae }
[} M AN e _! N~ ”
1 «interface» | :' A
1 Serializable | " /
| |] Zz
] 1 «interface»
<7 I interface
: // R\ | | IDemandDispatcher
1 / \\ : | +writeDemand) : Uuid
£ . 1 +writeResult() : Uuid
TS Demand Generate Resuit : +readDemand) : DispatcherEntry
{ singleton } sName:String | Y sName - String N +readﬁ;gsul't() dSenal/zabIe
N P /7 +Demand() Fosui(1 +cancelDemand()
~ ~7 - +Execute() : Result 1 ,ﬂ
\ 1
\\] .I
DemandSpace DispatcherProxy
- 1 0." |-DEFAULT_DEMANDSPACE: String
+objectDatabase <>-refDemandSpace : DemandSpace
+objectQuaerylLanguage Space Represent -Proxy 0
+u
+DemandSpace() I -getNewUniquelDy) : Uuid
1 T T T T T T T T T T T -getDemandSpace(in hostName, in spaceName) : DemandSpace
1 1 +writeDemand(in theObject : Serializable) : Uuid
R] R e 1 +writeResult(n thelD : Uuid, in theObject : Seriafizable) : Uuid
J \ T T|+readDemand) : DispatcherEntry
«exception» «exception» +readResult(in theiD : Uuid) : Serializable
DemandDispatcherException DSException | LreanceiDemand(in thelD : Uuid) .
\
\
\
|
«axception» «interface»
DMSException Runnable
out ERR_TAG : String +run)

Fig.3.12. Demand Dispatcher Class Diagram

3.3.3.1. Design Rationale

The following is a list of questions that raised during the design process of the DD

package and their reasonable answers implemented in our design.

Dispatcher Proxy (DP). The PL is the abstract layer on top of the DS used by the
TAs, i.e. it should play the role of a proxy for the DS with the TAs. The need of an
abstraction layer, which fulfills presentation functions, necessitates the use of the
Facade pattern [19, 20], which makes the subsystem easier to use. By applying this

pattern, we succeeded in designing a higher-level interface and its implementer class

41

called Dispatcher Proxy (DP) (see Fig.3.12). The PL is a set of DPs, each one being

associated with a TA. This reduces the concurrency to the level of the DS.

Demand Space (DS). The DMS must be able to store and retrieve demands.
Hence, it should implement a data storage mechanism able to store demands and a

demand query mechanism able to retrieve the stored demands.

Demands unification. The DD deals with three kinds of demands — pending, in
process and computed. The DS should not discriminate them, i.e. it should unify
them in terms of storage units. For this purpose, we applied the Adapter pattern [19,
20], which converts the interface of a class into another interface clients expect, i.e. it
wraps the demands and results in an entry format. Our solution to this pattern issue

is the DispatcherEntry class (see Fig.3.12).

Why is the unification appropriate here? The DD maintains the demands
equally without any internal distinction. Hence, the demands unification surely brings
simplification, which makes consistent the demand storing, retrieving and querying. In
addition, the use of an adapter is valuable, due to the fact it provides new
functionality the adapted class does not provide. For example, the demand state and
Global Unique Identifier (GUID) (see section 3.3.3.2 for the DispatcherEntry class).

Data persistency. The demands must be able to survive the lifetime of the
process, i.e. they should be persistent. Hence, they will survive failures and host
shutdowns [4]. In Java, object persistency is provided by the Serializable interface
[23]. Hence, our demands and their results should adhere to the Serializable
interface. Since the DispatcherEntry class is the DS storage entry, it should adhere to

this interface as well.

Why a singleton Demand Space? The Demand Space is a Singleton [19, 20]. The
use of the Singleton pattern assures global access to the DS from all the Dispatcher
Proxies (respectively from all the TAs). Such a solution should take in consideration
concurrent access, since multiple TAs should be able to access the DS
simultaneously (for more about concurrency see section 3.4.1). In terms of

performance it is not the best solution. An alternative solution is to design the DS

42

able to instantiate multiple instances, each instance being associated with a TA. But,
it is difficult to get it along with the necessity to access the DS from all the TAs. Also,
such design will lead to less memory efficiency — muitiple copies of the DS will

require a lot more memory than a single one.

3.3.3.2. Detailed Design

The following is a description of the Demand Dispatcher package’s classes and their

attributes and methods.

Interface IDemandDispatcher

The IDemandDispatcher interface is the package’s entry interface. It exposes the
package’s functionality, by relaying on the methods, described below. All the

methods exposed by the interface throw the DemandDispatcherException exception.

Method writeDemand()

This method writes a pending demand to the
Demand Space. In addition, it generates the
GUID for the demand and returns this GUID
as a resulit.

Method writeResult()

This method writes a result (computed
demand) to the Demand Space. It assigns
the demand’s GUID to its result.

Method readDemand()

This method reads a pending demand from
the Demand Space.

Method readResult()
This method
demand) from the Demand Space, having
certain GUID.

Method cancelDemand()

reads a result (computed

This method cancels any demand, despite
of its status, i.e. removes the demand from

the Demand Space.

43

Pseudo code

public Uuid writeDemand(
Serializable theObject)
throws DemandDispatcherException;

Pseudo code

public Uuid writeResult(
Uuid thelD; Serializable theObject)
throws:DemandDispatcherException;:

Pseudo code

public DispatcherEntry readDemand()
throws emandDispatcherException;

Pseudo code

public DispatcherEntry readResult(
Uuid thelD)
throws DemandDispatcherException;

Pseudo code

public void cancelDemand(Uuid thelD)
throws DemandDispatcherException;

Class DispatcherProxy

The DispatcherProxy class is the design solution for the Presentation Layer. It
implements the IDemandDispatcher interface, i.e. all the necessary functions for
reading, writing and canceling demands. In addition, this class implements the
Runnable Java interface [23] (allowing execution in a separate thread of control) and
functionality for connecting the DS and open and close DS sessions.

Method writeDemand() Pseudo code

This method implements the writeDemand public Uuid writeDemand(
. . Serializable theObject)
method of the IDemandDispatcher interface throws DemandbispatcherException {
. . Open a DS session.

(see the IDemandDispatcher interface). Generate the GUID.
Create a DispatcherEntry object.
Assign the demand and GUID to this object.
Store the DispatcherEntry object in the DS.
Close lfhe DS session and return'the GUID.}

Method writeResult() Pseudo code

This method implements the writeResult pubiic Uuid writeResult(
.) - Uuid thelD, Serializable theObject)
method of the IDemandDispatcher interface irows DemandDispatcherException {
. . Open a DS session.

(see the IDemandDispatcher interface). Create a DispatcherEntry object.
Assign the result:and GUID to this object.
Store the DispatcherEntry object in the DS.
Close the DS session and return'the GUID }

Method readDemand() Pseudo code

This method implements the readDemand puplic Dgspatéhergnt,,, readDemand()
) . throws emandDispatcherException {
method of the IDemandDispatcher interface open a DS session.
) . If there is an entry stored in the DS and if its
(see the IDemandDispatcher interface). state=pending then get a copy of this entry.
Close the DS session and return the copy.]

Method readResult() Pséudo cdde

This method implements the readResult public DispatcherEntry readResult(Uuid thelD)
. . throws DemandDispatcherException:{
method of the IDemandDispatcher interface open a DS session.
. . If there is-an entry stored in the DS and if its
(see the IDemandDispatcher interface). state=computed and if its GUID = theUD
...then get.a copy of this entry.
Close the DS session and retum the copy.}

Method cancelDemand() Pseudo code

This method implements the cancelDemand pupiic void cancelDemand(Uuid thelD)
.) throws DemandDispatcherException {
method of the /IDemandDispatcher interface open a DS session.
. . If there is demand stored in.the DS and if its
(see the IDemandDispatcher interface). GUID=thelD then delete demand.

44

Method getDemandSpace()
This method gets a reference to the
Demand Space object, located on the local
or remote machine (specified by its IP
address). The DS reference is used by all
the operations requiring interaction with the
DS. In addition, the method secures the DS
context, by taking some security connection
precautions for the remote connection.

Data field refDemandSpace

This data field holds a reference to the

connected Demand Space.

Constructor DemandDispatcher()

This method is the constructor of the class.
It calls the getDemandSpace method and
assigns the returned DS reference, if any, to
the refDemandSpace data field (variable). If
the returned DS reference is null, the
constructor raises an exception, i.e. the
constructor succeeds if and only if there is

an established connection to the DS.

Class DemandSpace

The class DemandSpace is our design solution for the Demand Space. This class is
Singleton [19, 20], i.e. it could instantiate only one instance. The class implements
two major functionalites - a demand storage mechanism and demand query
mechanism. Since we did not intend to design and implement an Object Database
with the appropriate Object Query Language [15], the class was designed to integrate
some already existing ones. Hence, in our design solution the DemandSpace class

holds two public data fields referencing to a demand storage mechanism and

Close the DS session.}

Pseudo code

private DemandSpace:getJavaSpace(
String hostName, String.spaceName)

If there is-.a DS run on the host = hostname and

ifthe DS name = spaceName then

get the reference to that DS.
Establish a security connection context.
Return-the DS reference.

}

Pseudo code

private. DemandSpace refDemandSpace;

Pseudo code

public DemandDispa tcher(
-String hostName, String-spaceName) .-
throws DemandDispatcherException

Call getJavaSpace with the parameters
hostname and spaceName and assign the
result to the refDemandSpace.
IfrefDemandSpace = nuil-then
throws DemandDispatcherException
; ,

demand query mechanism, those being part of the integrated Object Database.

45

Data field objectDatabase

This data field holds a reference to an
Object Database able to store demands
wrapped as Dispatcher Entries.

Data field objectQueryLanguage

This data field holds a reference to an
Object Query Language able to query the
Object Database for demands wrapped as
Dispatcher Entries.

Constructor DemandSpace()

This method is the constructor of the class.
It runs the Object Database and assigns its
reference to the objectDatabase. In addition,
it gets a reference to the database query
language and assigns it to the
objectQuerylanguage. 1If one of the two
references is null, the constructor raises an
exception, i.e. the constructor succeeds if
and only if there are established Object

Database and its Object Query Language.

Class DispatcherEntry

The class DispatcherEntry is the design solution for unifying the different kinds of
demands as one entry. The class is derived from the Adapter pattern [19, 20] (see
Fig.3.12). It provides a mechanism for wrapping the demands in an appropriate
format for storing them in the DS. The DispatcherEntry class implements the
Serializable interface, which makes the objects, instantiated from the class, persistent
and appropriate for storing in the DS. Due to the nature of DS as an Object Database

and the requirements for persistency, the class DispatcherEntry must fulfill the

following serialization requirements:

Pseudo code

public Object objectDatabase;

Pseudo code

public Object objectQuerylanguage;

Pseudo code

public DemandSpace ()
throws DemandDispatcherException

Runthe Object Database and assign its
reference to-the objectDatabase.
If objectDatabase = null then
throws DemandDispatcherException.
If exists objectDatabase.QueryLanguage then.
objectQuerylanguage=
objectDatabase.Querylanguage.
; ;

e It must have a default no argument constructor.

e All the instance variables — class fields, must be public.

e All the instance variables must be serializable, i.e. a DispatcherEntry object

cannot have primitive variables.

46

In our design, the DispatcherEntry class holds one and only one demand, this being
pending, in process or computed. It holds it as a serializable object, i.e. an object that
could be saved permanently. Therefore, we address two major concerns here:

s First, we assure that the demands and results will be permanently stored in
the Demand Space until they are required. Therefore, they will be not lost in
case of a distributed node failure or restart.

e Second, we unify both the demands and results as one entity.

Fig.3.12 depicts wrap associations between the DispatcherEntry class and Demand
and Result classes. The Demand class represents the pending and in process
demands, and the Result class represents the computed demands. Both classes
implement the Serializable interface. Except a wrapped demand, the class
DispatcherEntry also holds additional vital information like an entry’s GUID number
and a flag for distinguishing the demands by their states - pending, in process or
computed. The GUID number and flag are used by the TAs for locating the
appropriate demand and for determining its state (see the DemandState class).

The class DispatcherEntry implements the following methods and data fields:

Data field oUniquelD Pseudo code

This data field holds the Global Unique pubiic Uuid oUniquelD;
Identifier (GUID) number assigned to the ’
entry object (respectively to the demand

wrapped by this entry). This GUID is the key

used for uniquely identifying the demand.

Data field dState Pseudo code

This data field holds the demand state — pub,,-;,.oe,,;a,,ds,afé dState:

pending, in process or computed.

Data field oDemand Pseudo code
This data field holds the demand object. public seﬁa/izab/é oDemand;
Constructor DispatcherEntry() Pseudo code

This method is the constructor of the class. pupiic DispatcherEntry (-

. . o Uuid thelD; Serializable theDemand,
Its primary purpose is the initialization of the pemandstate newstate)
, . { oUniquelD = thelD.
class’ data fields. oDemand = theDemand..
dState = newState.

}

47

Class DemandState

The class DemandState is our design solution for enumerating the demand states.

This class defines the three states - pending, in process and computed, as public

instances of the same class. In addition, the class provides functionality for

determining the current state. The constructor of the class is designed as private,

thus preventing from creation of other states, i.e. we enforce the use of states being

already created and restrict the creation of new ones.

The class DemandState implements the following methods and data fields:

Data field sState

This data field keeps the current state.

Data field PENDING
This data field holds an instance of the

class representing the pending state.

Data field INPROCESS
This data field holds an instance of the

class representing the in process state.

Data field COMPUTED
This data field holds an instance of the

class representing the computed state.

Constructor DemandState()

This method is the constructor of the class.
It accepts a new state as a parameter and
assigns it to the sState private data field.
The constructor is designed as private.
Methods for determining the state

The class implements three boolean
methods for determining the current state -

isPending, isInProcess and isComputed.

48

Pseudo code

private String sState;

Pseudo code

private static final String .
STR. PENDING = "pending";

public static final DemandState PENDING
= new DemandState (STR.PENDING);

Pseudo code

private static final String -
STR:-INPROCESS = "inprocess”;

public.static final DemandState INPROCESS
= new DemandState (STR. INPROCESS);

Pseudo code

private static final String . ,
STR_GCOMPUTED = ‘computed;
public static final DemandState COMPUTED
= new DemandState (STR.COMPUTED);

Pseudo code .

private DemandState (String newState)

{

Assign newState to sState.;

}

Pseudo code

public boolean isPending();
public:boolean islnProcess();
public booléan-isComputed();

Exceptions

In our design solution for the Demand Dispatcher package, we defined two
exceptions — DemandDispatcherException and DSException. These exceptions
inherit the DMSException (see Fig.3.12). The DemandDispatcherExcaption can be
thrown by the methods of the DemandDispatcher class. The DSException can be

thrown by the methods of the DemandDispatcher and DemandSpace classes.

3.3.4. JINI Transport Agent

One of our TA design solutions is based on JINI [3, 7, 34]. The JINI Transport Agent

(JTA) has all the characteristics of a JINI service. In addition, it is able to serve the

DD, DGs and workers as a messenger [2].

«interface»
WINiLibrary | 32

JINITransportAgent

-DISCOVERY_GROUP_NAMES [] : String
-sIPLocalAddress : String

#oltemProxy : Serviceltern

#oJiINILibrary : [JINILibrary
#oDemandDispatcher : IDemandDispatcher

<« Execute remotely

-connectDemandDispatcher()
-registerWithLookup()
-getlocallPAddress ()

Connect » 1 «interface»
________ IDemandDispatche
Agent b JiNITransportAgentProxy
~hgen Y CiientiPAddr - String
ot -taBackend : JTABackend
1 * |+getDemany) : Serializable

+getDemand(in idDemand : Uuid) : Serializable

"getResult() : Serializable

+getResult(in idResult : Uuid) : Serializable
+setDemand(in oDemand : Serializable) : Uuid
+cancelDemand(in idDemand : Uuid)

r
fﬁ; ir?;l)tPTOXY() :MINITransportAgent .~ «exception» : +setResult (in oResult : Serializable) : Uuid
-~ T .
+main(in args [] : string) 3} JTAException | [RJINITransportAgentProxyin bnd : IJT. ABaciendProtoooi)
+JINITransportAgent() I 1 “ A
y | 1 |) SR
,/ 1 ’—Agent : | ‘\ Vd ~
/ 1 { Bridge
> R I T S ,)
«interface» «exception» | ! \ =
Runnable DMSException : | Yy
out ERR_TAG : String | : «interface»
N | | serializabie
«exoeption» I
JTARemoteException I
FSUD o e e e e e e - 1
1 1
JTABacken ! /’ =
: { Facade I'
\
+etchDemand() : DispatcherEntry 0.1 Exeaute rerately] S
+fetchResutt() : DispatcherEntry | !
+carryDemand() : Uuid]
+carryResuft() : Uuid - VA 1
+deleteDemand(in id : Uuid) S~ «intertace»
AN WINITransportAgent
/ «interface» +getDemar) : Serializable
IWJTABackendProtocol +getDemand(in idDemand : Uuid) : Serializable

4

Activatable

«interface»
Remote

+fetchDemand() : DispatcherEntry

+fetchResuft() : DispatcherEntry
+carryDemand) : Uuid
+carryResult() : Uuid

+deleteDemand(in id : Uuid)

+getResult() : Serializable

+getResult(in idResult : Uuid) : Serializable
+setResult(in oResult : Serializable) : Uuid
+setDemand(in oDemand : Serializable) : Uuid
+cancelDemand(in idDemand : Uuid)

Fig.3.13. JINI Transport Agent Class Diagram

49

The JTA implements the main characteristics applicable to the DMS’ TAs. Hence, it
is a stand-alone component that exposes a common interface to the DD, DG and
workers for demand migration. The UML class diagram [19, 40] above depicts the

JINI Transport Agent package’s classes and their relationships.

3.3.4.1. Design Rationale

The following is a list of questions that raised during the design process of the JINI

Transport Agent package and their reasonable answers implemented in our design.

Why JINI? JINI is a distributed computing technology that forms an open
architecture for federating services in a distributed system (see section 4.1.1). JINI is
a pure Java technology and integrates easily with the GIPSY, which is entirely
implemented in Java. Hence, we decided to design our primary TA solution based on
JINI due to its Java nature, .i.e. we did not have to design additional Java stubs or

use IDL interfaces that are necessary for other distributed technologies.

The JINI package. The JTA should rely on the JINI package for all the JINI related
functions, i.e. we should not integrate the JINI functions in the JTA. This is important
because JINI evolves and changes. Hence, in our JTA design, in order to prevent a
JTA modification due to a JINI upgrade, we should heavily rely on the JINI Package.

The last will tackle with future changes in the JINI environment.

JINI Transport Agent is a JINI service. A JINI service is implementation of the
most important concept within the JINI architecture (see section 4.1.1.1). This
concept defines the JINI service as the provider of distributed computing. Therefore,
the JINI Transport Agent (JTA) has all the characteristics of a JINI service 3, 7]. JINI
services are defined via an interface, and the implementation of a proxy adhering to
that interface. Hence, our JTA should expose its functionality through an interface
and should rely on a proxy that fulfills presentation functions. This necessitates the
use of the Facade and Bridge pattern [19, 20] (see Fig.3.138). The proxy is
downloaded by the client — a DG or worker. Further, the proxy communicates with its
mentor — the JTA.

50

GIPSY lookup service. In order to be available, the JINI services register on
lookup services (see section 4.1.1). Hence, we should register our JTA in a lookups
service (LUS) as well. This LUS must be used only by the GIPSY’ JTAs, hence we
should run one GIPSY lookup service for all the JTAs within the GIPSY.

The JTA interface. The JTA as a regular TA should expose its TA functionality via
its interface. The JTA will work with those workers and DGs that adhere to the JTA

interface.

The role of RMI. As we said in the section above, JINI evolves and today it relies
on a number of mechanisms for distributed processing. One of these is Remote
Method Invocation (RMI), which is supported by all the JINI releases. Therefore, in
our design we should rely on RMI for having full JINI compatibility. RMI ensures that
two processes running on separate machines can exchange invocation requests and
results (see section 4.1.1.2). The use of RMI requires a design of a special back-end
class implementing the RMI interface called Remote. Hence, in our design we should

implement a back-end class (see the JTABackend class in Fig.3.13).

Downloadable service proxy. JINI requires a JINI service to implement an
arbitrary Serializable object called service proxy [3, 7]. Therefore, in our design we
should have a design solution for a JTA proxy, since our JTA is a JINI service. JINI
transports the JTA proxy from the JTA’s machine to the GIPSY node’s machine — a
machine running a DG or worker. The DGs and workers use that proxy locally and
transparently as they use the real JTA, i.e. they make method calls on the proxy. The
proxy just transmits calls across the network to the real JTA. The real JTA and its

proxy communicate internally in order to transport demands or results (see Fig.3.14).

DG/Worker

Proxy P%m Bp\s JTA Dem Res
St " o

Fig.3.14. JTA — JTA Proxy Communication

51

Since the DGs and workers use the JTA via its proxy, the JTA proxy must
implement the JTA interface, which exposes the JTA’s functionality. Hence, the JTA’s

proxy must be designed as a Serializable class implementing the JTA interface.

The JINI class Serviceltem. The JINI architecture necessitates the use of this
class as a container of the service proxy. An instance of this class is passed for
registration to the JINI LUS [3, 7, 34]. Hence, in our design we should implement this

class as a wrapper for the JTA proxy.

JTA security. The JINI Transport Agent is Java based. Therefore, its security
mechanism should be tightly related to the Java Virtual Machine security mechanism.
This mechanism consists of three key components such as Class Loader, Class File
Verifier and Security Manager [21, 22, 3, 7]. From the JINI programmer perspective
the most important is the Security Manager. The Security Manager is a run-time
manager that applies the restrictions based on security policy statements. It supports
a policy-driven security model based on special policy files that being associated with
the process to be run at startup. The Security Manager prevents operations by
throwing an exception. It simply returns if the operation is permitted, but throws an
exception if the operation is not permitted. JINI downloads from a remote location
only if the Security Manager has been set. Therefore, the JTA must sets up the
Security Manager during its construction or before the first execution of any JTA
method. In addition, the JTA should rely on a policy file for providing the security

policy to its Security Manager. Every JTA runs in conjunction with such a policy file.

3.2.4.2. Detailed Design

Before going over the detailed design, there are some relationships, depicted by the
UML class diagram (see Fig.3.13), that require a detailed explanation. The UML
diagram depicts two execute-remotely relationships, those demonstrating the remote
collaboration between the proxy and the main class. Those relationships are in
consequence of our decision to make the JTA fully JINI compatible. The first
relationship is between the classes JINITransportAgentProxy and
JINITransportAgent. It is an association (see the dashed line in Fig.3.13) that depicts
an indirect remote collaboration between the proxy and its mentor. The second

relationship is between the classes JINITransportAgentProxy and JTABackend. This

52

relationship depicts a remote collaboration based on RMI, which enforced the design
of the JTABackend class as an RMI back-end class. The last implements the Remote
interface, since the methods of this class will be remotely callable. The class
JTABackend is an inner class for the class JiniTransportAgent. It is used by the proxy
for calling its mentor (the JTA) remotely.

The following elements describe the JINI Transport Agent package’s classes and

their attributes and methods.

Interface IJINITransportAgent

The IJINITransportAgent interface is the package’s entry interface. This interface is
the highest JTA abstraction level. Most of the methods exposed by the interface are
focused on demand migration, i.e. get demands from and set demands in the
Demand Space (DS). The DGs and workers use the IJINITransportAgent interface
first to find the JTA within the JINI federation of services, and second to call the JTA
functions. The JTA hides the complex remote communication between the JTA and
its proxy, i.e. the DGs and workers simply use the exposed by the interface functions
as their own. The interface IJINITransportAgent exposes the package’s functionality,
by relaying on the methods, listed below.

Method getDemand() Pseudo code

This method gets a pending demand from pubiic Serializable getDemand():

the DS. There are two overloading

getDemand methods in the interface. p”l’/’(’j"f dfggaei’:gsgj;gemema"d(

Whereas the first one does not accept any

parameters, the second one accepts the

GUID number of the desired demand.

Hence, the first method gets any pending

demand and the second gets a well-

specified one. The method returns the found

demand in a Serializable format.

Method getResult() Pseudo code

This method gets a computed demand from pupjic Serializable getResult();

the DS. Similarly, to the previous case, there

are two overloading getResult methods in ”“,’J’[fgfﬁgzﬁ’fjﬁgj,g"’”:’““”0

53

the interface - first one accepting no
parameters and the second one accepting
the GUID number of the desired computed
demand as a parameter. Hence, the first
method gets any computed demand and the
second gets a well-specified one.

Method setDemand()

This method sets a pending demand in the
DS. The demand to be set is passed as a
Serializable parameter and the method
returns as result its GUID. The last is
generated by the Dispatcher Proxy (see
section 3.3.3).

Method setResult()

This method sets a computed demand in the
DS. The method accepts two parameters —
the demand to be set passed as a
Serializable parameter and its GUID. The
GUID is the one of the pending demand
used for generating the result.

Method cancelDemand()

This method deletes permanently any kind
of demand from the DS. The method
accepts one parameter — the demand’s
GUID, specifying the demand to be deleted.
Method setClientiPAddress()

This method sends the client’s IP address —
the one of a worker or DG, to the JTA. The
JTA uses internally this address for a

notification purpose.

54

Pseudo code

public Uuid setDemand(Serializable oDemand);

Pseudo code

public Uuid setResult(
Serializable oResult; Uuid idResult);

Pseudo code

Dpublic void cancelDemand(Uuid-idDemand);

Pseudo code

public void setClientIPAddress(
String sIPAddress);

Class JiniTransportAgent

The class JINITransportAgent is the main class in the package. It instantiates a
standalone object that is the real JTA. It contains the java main() function. This class
implements the functionality of a TA (see section 2.2.3) and the one of a JINI service.
As a JINI service, it will find the lookup service and publish its proxy. The class wraps
the proxy (see the JINITransportAgentProxy class), which is used to implement the
interface IJINITransportAgent describing the public JTA functionality. In addition, the
class JINITransportAgent establishes the connection with the DD. The class
implements the Runnable Java interface (see Fig.3.13). The purpose is to keep the
JTA running, even when it is in an idle mode. In the main() function we instantiate a
thread [23, 41] targeted to an instance of the class JINITransportAgent, i.e. we
ensure that the JTA will not simply stop when the main() method finishes. Therefore,
in our design the JTA implements the Runnable interface and causes a simple thread
to be started that sleeps forever, but keeps the JTA alive.

For all the JINI-oriented operations the class relies on the JINI Library (see section
3.3.2). The class JINITransportAgent implements the following methods and data
fields:

Data field oDemandDispatcher Pseudo code

This data field holds a reference 10 protected static iDemandDispatcher
implementation of the IDemandDispatcher oPemmandDispalohon

interface, i.e. it holds a reference to the DD

(see section 3.3.3). This reference is used

for accessing all the DD’s functions.

Data field oJINILibrary Pseudo code

This data field holds a reference to the protected static IJINILibrary oJINILibrary;
implementation of the IJINILibary interface,

i.e. it holds a reference to the JINI Library

(see section 3.3.2).

Data field oltemProxy Pseudo code

This data field holds an instance of the JINI ' protected Servicettem oitemProxy;
Serviceltem class [3, 7, 34]. This instance ‘

wraps the proxy. It is passed to the lookup

55

service during the registration process.
Method main()

This method implements the main() Java
function. The method creates a new
instance of the JINITransportAgent class
and starts a background thread to keep the
JTA alive.

Method run()

This method is the run() method inherited
from the Runnable interface. The method
simply starts the thread in an idle mode —
make it sleeping forever.

Method connectDemandDispatcher()

This method connects the JTA with the
Demand Dispatcher by assigning the DD
reference to the oDemandDispatcher data
field.

Method registerWithLookup()

This method registers the JTA on the GIPSY
lookup service (see section 3.3.4.1) by using
the oJINILibrary data field.

Method createProxy()

This method constructs the proxy object and
returns it as a result. For the creation of the
proxy, the method should create an instance
of the back-end class JTABackend and pass
it to the proxy’s constructor, so the proxy
can call back to it.

Constructor JiniTransportAgent()

This method is the constructor of the class.
It sets the security manager, connects with
the DD and registers the proxy on the
GIPSY lookup service (see section 4.2.3).

56

Pseudo code

public static void main(String args{]) {
1. Create a new instance of
JINITransportAgent.
2. Create a new thread targeted to the
JINITransportAgent instance.
3. Start the thread.

}

Pseudo code

public void.: run()

Make the thread sleeping forever.

}

Pseudo code

public void connectDemandDispaicher () ‘
1.-Find the DD.
2. Getareferenceifo it.
3. Assigns that reference to
oDemandDispacther data-field.

J
Pseudo code

protected synchronized void
registerWithLookup()-{

Use oJINILibrary to register the JTA on the

GIPSY LUS. '}

Pseudo code

protected IJINITransportAgent createProxy() {

1. Create an instance of JTABackend.

2. Pass the JTABackend instance o the
JiniTransportAgentProxy constructor, and
create a JTA proxy.

3. Return the created proxy as a resull.

}

Pseudo code

public JINITransportAgent ()

throws JTAException {

1. Set the security manager.

2. Call connectDemandDispatcher().
3. Call registerWithlL.ookup()

}

Interface IJTABackendProtocol

This intreface defines the remote communications protocol between the client-side
stub and the service-side object, i.e. it defines the protocol that the proxy object will
use to communicate with the back-end remote object. The interface extends the RMI
Remote interface [21, 23]. All the methods exposed by the interface can be called
remotely. Therefore, a proxy with a reference to the IJTABackendProtocol interface
can invoke all the methods exposed by the interface regardless of where the
IJTABackendProtocol implementation physically resides. All the interface’s methods
throw a JTARemoteException exception.
Method fetchDemand()

This method fetches a pending demand

Pseudo code
public DispatcherEntry fetchDemand(

Uuid idDemand, String.sSenderlP)

from the DS and carries the demand from hrows JTARemoteException:

the JTA to its proxy.
Method fetchResult()

This method fetches a computed demand

Pseudg code ‘

public :biSpatcherEntry'fe{’tchHes‘uIt(
. Uuid idResult, String sSenderlP)
from the DS and carries the demand from throws JTARemoteException;
the JTA to its proxy. ‘ ‘

Method carryDemand() Pseudo code

public Uuid carryDemand(
IWorkDemand oDemand, String sSenderiP)

This method carries a pending demand from

the JTA proxy to the JTA and stores it in the
DS.

Method carryResult()

This method carries a computed demand
from the JTA proxy to the JTA and stores it
in the DS.

Method deleteDemand()

This method deletes permanently a demand
from the DS. The demand to be deleted is
specified by its GUID.

Class JTABackend

throws J TAHemoteExcep(ion;

Pseudo code
publioy Uuid ‘barfyi?esult(:
IWorkResult oResult, Uuid idResult,

String sSenderlP)
throws JTARemoteException;

Pseudo code

public void deleteDemand (Uuidid) - .
throws JTARemoteException;

This class implements the IJTABackendProtocol interface. This is the class, which is

used by RMI to ensure a service-side execution, by generating stubs, which are

57

transported to the client — a DG or worker. An instance of this class is used by the
JTA proxy to perform remote executions on the JTA functions, i.e. the following
methods implemented by the class JTABackend run on the JTA side. This is possible
due to the fact that the JTABackend class inherits the RMTI’s class Activatable, which
makes the JTABackend’s methods callable from remote Java Virtual Machines [21,

22, 23]. The class JTABackend is designed as an inner class, i.e. it has full access to

all the attributes and methods of its outer class — JINITransportAgent.

Method fetchDemand()

This method implements the fetchDemand

method of the IJTABackendProtocol
interface (see the IJTABackendProtocol
interface).

Method fetchResult()

This method implements the fetchResult
the IJTABackendProtocol
interface (see the [IJTABackendProtocol

method of
interface).
Method carryDemand()

This method implements the carryDemand
the IJTABackendProtocol
interface (see the [JTABackendProtocol

method of

interface).

Method carryResult()

This method implements the carryResult

method of the IJTABackendProtocol
interface (see the IJTABackendProtocol
interface).

Method deleteDemand()

This method implements the deleteDemand

method of the IJTABackendProtocol
interface (see the [IJTABackendProtocol
interface).

58

Pseudo code

public DispatcherEntry fetchDemand(
Udid idDemand, String sSenderlP)
throws JTARemoteException -{
Use the oDemandDispatcher data field
from JINITransportAgent.class to execute
the DemandDiaptcher’s method
readDemand.

}

Pseudo code

public DispatcherEntry fetchResult(
Uuid idResult, String sSenderlF)
throws JTARemoteException:{
Use the oDemandDispatcher data field-
from JINITransportAgent class to execute
the DemandDiaptcher’s method
readResult (idResult).}

Pseudo code

public: Uuid carryDemand/(
IWorkDemand.oDemand, Stiing sSendetlP)
throws JTARemoteException {
Use the oDemandDispatcher data field
from JINITransportAgent class to execute
the DemandDiaptcher’s method
writeDemand (oDemand).}

Pseudo code

public Uuid carryResult(- IWorkResult oResult,
Uuid idResult; ‘String sSenderlP)

throws JTARemoteException {
Use.the oDemandDispalcher.data field
from JINITransportAgent class to execute
the DemandDiaptcher’s method
writeResult (idResult, oResult).}

Pseudo code

public-void deleteDemand (Uuid id)

throws JTARemoteException { ..
Use the oDemandDispatcher data field
from JINITransportAgent class to execute
the DemandDiaptcher's method .~
cancelDeman (id).}

Class JiniTransportAgentProxy

This class is our design solution for the JTA proxy. It implements two interfaces —
IJINITransportAgent and Serializable. The Serializable interface assures that an
instance of the class could be sent to each DG or worker attempting to connect to the
JTA. The class has a public no-argument constructor, due to its Serializable nature
[3, 7, 28]. The WINITransportAgent interface is the JTA interface known by the DGs
and workers. In our design, the class JINITransportAgentProxy is designed as a
static, no public and inner class for the JINITransportAgent class. The argument used
here is fine — the DGs and workers gain access to an instance of this proxy at run-
time via serialization and code downloading [3, 71, and the inner class has full access
to all the attributes and methods of its outer class — JINITransportAgent. The class
JINITransportAgentProxy is designed as a static to demonstrate that the class is
nested simply for structured convenience — not for any run-time associations between
the nested and outer class, which simply wraps and publishes it.

The class JINITransportAgentProxy implements the following methods and data
fields:
Data field sClientIPAddress Pseudo code
This data field holds the IP address of the private String sClientiPAddress;
machine running the client - a DG or
worker, where the proxy is moved.
Data field taBackend Pseudo code
This data field holds a reference 10 a private IUTABackendProtocol taBackend;
backend object implementing the
IJTABackendProtocol interface.
Constructor JINITransportAgentProxy() Pseudo code
There are two constructors implemented public JiNITransportAgentProxy()
by the class. The first one is by default }{
with no parameters and is used for the public JINITransportAgentProxy(

-) IJTABackendProtocol backend)
serialization of the proxy. The second one
. Assign the backend to taBackend.
accepts one parameter that is the backend

object created by the JTA.

59

Method getDemand()

This method implements the getDemand

methods of the [JINITransportAgent
interface (see the [IJINITransportAgent
interface).

Method getResult()

This method implements the getResult

methods of the [IJINITransportAgent
interface (see the [IJINITransportAgent
interface).

Method setDemand()

This method implements the setDemand
the IJINITransportAgent
the WJINITransportAgent

method of
interface (see
interface).

Method setResull()

This method implements the setResult

method of the [IJINITransportAgent
interface (see the [JINITransportAgent
interface).

Method cancelDemand()

This method implements the
cancelDemand method of the
IJINITransportAgent interface (see the
IJINITransportAgent interface).

Method setClientIPAddress()

This method implements the
setClientlPAddress method of the
IJINITransportAgent interface (see the

IJINITransportAgent interface).

60

Pseudo code

public Serializable getDemand() {
1. Call taBackend.fetchDemand(null,
sClientlPAddr).
2. Return the fetched demand if any.}

public Serializable getDemand(Uuid id) {
1. Call taBackend.fetchDemand(id,
sClientiPAddr).
2. Return the fetched demand if any.}

Pseudo code

public-Serializable getResull() {
1. Call-taBackend.fetchResult(null,
sClientiPAddr).
2. Return the fetched resultif any.}
public Serializable getResult(Uuid id).{

1. Call taBackend.fetchResult(id,; sClientIPAddr).

2. Return the fetched resultif any.}
Pseudo code

public Uuid setDemand
Serializable oDemand)

Cal/~taBac§kend.éarryDemand (oDemand, ‘

sClientIPAddr).
} 6

Pseudo cbde ‘

public Uuid setResult{ S
Serializable oResult, Uuid idResult)

Call taBackend.carryResult (oResult, .
idResult, sClientIPAddr). ‘ :

}

Pseudo code
public-void cancelDemand(Uuid idDemand) :

Call taBackend.cancelDemand (idDemand).

}

Pseudq code

public void setClientlPAddress(
String sIPAddress)

Assign:the sIPAddressto to sClientlPAddress.

} : F

Exceptions

In our design solution for the JINI Transport Agent package, we designed two
exceptions — JTAException and JTARemoteException. These exceptions inherit the
DMSException (see Fig.3.13). The JTAException can be thrown by the methods of
the JINITransportAgent class. The JTARemoteException can be thrown by the
methods of the JINITransportAgentProxy and JTABackend classes.

3.4. Process View

The process architectural view [18] consists of the processes and threads that form
the system’s concurrency and synchronization mechanisms, as well as their
interactions. In this architectural view, we address issues such as concurrency and
parallelism, DMS’ components dependency, scalability, consistency and fault-
tolerance (e.g. isolation of functions and fauits, reliability with accuracy). In our
process architectural view the independent flows of control such as threads and
processes are modeled as active objects. An active object is an instance of an active
class [40] (see Fig.3.15 and Fig.3.16). We propose a multi-process architecture,
where the processes are independent standalone executables. In addition, they are
“volunteers” that could register to and unregister from the DMS at any time.

In the course of the design process, we designed two process views. The first one
is more general and it corresponds to our general design concept. The second one
corresponds to our detail design and it is so-called JTA process view, due to the fact
we stuck with the detail design of the JINI Transport Agent (see section 3.3.4). The
process view diagrams depict two levels of abstractions (see Fig.3.15 and Fig.3.16):

e The first level, called “GIPSY execution nodes”, represents the DGs and
workers as processes relying on the DMS for dispatching and receiving
demands and results (computed demands).

e The second level, called “DMS middleware”, is the run-time state of our DMS

in terms of processes and threads.

3.4.1. Design Rationale

The following is a list of questions that raised during the design of the DMS process

view and their reasonable answers implemented in our design.

61

Processes. Processes are heavyweight system run-time entities [41]. In our DMS,
a process runs on the Java machine and requires time, memory, and CPU resources.
The processes in our DMS communicate by relying on mechanisms provided by the
host Java machine and distribution middleware [24]. This communication is called
interprocess communication. All the interprocess communications within the DMS
must be asynchronous and the processes should not use shared resources, except
those exposed by the Demand Space. Therefore, the interprocess communication
[41] will be possible in a high concurrent manner, since the processes do not have to

synchronize their state, and a process cannot corrupt the state of another.

Threads. The threads are spawned lightweight executing processes that operate
within the memory space of the running process [41]. Some of the DMS processes in
order to improve its ability to perform parallel tasks should spawn threads [24]. Those
threads should communicate asynchronously with the process spawning them (host
process) and possibly with other processes and threads. Therefore, the DMS

processes should spawn threads when they need to perform parallel processing.

DMS components run as processes. The DMS architecture necessitates hot-
plugging (see section 2.1 and section 2.3). Therefore, all the components that
implement hot-plugging should be “volunteers”. This is possible only with stand alone
independent components, i.e. components that control their lifetime. Therefore, all
the DMS components implementing hot-plugging must be designed as processes.
Hence, the processes run within the DMS should be all the TAs and DS. In addition,
all the distribution technologies should establish a middleware that run in a

background mode, i.e. it is a process as well.

The DP is a thread not a process — why? The Dispatcher Proxy (DP) makes the
use of DS transparent (see section 2.3). It hides the details of the interprocess
communication between the DS clients and DS itself, where the DS clients are TAs,
DGs and workers. Therefore, the DS clients should communicate with the DP locally
by using the DP functions as their own. In addition, the DS clients should be not
blocked by the execution of any DP function. Hence, the DP should run as a thread

spawned by a DS client.

62

DS parallelism and concurrency. Concurrent access is vital for our Demand
Dispatcher (DD). In our design we assure concurrent access to the DS, by granting
each DS client with a single DP. Each DP runs as a thread. The DP is alive untill the
TA is connected to the DMS. In addition, the DS must implement internal parallelism

allowing simultaneous serving of many clients.

3.4.2. General Process View

The processes and threads depicted by Fig.3.15 are the architectural components
that can be uniquely addressed as architectural design elements. Those processes
and threads communicate through a set of well-defined communication mechanisms:
synchronous and asynchronous message-based communication services, remote
procedure calls and event broadcasts. This process view does not make any
assumptions neither about the processes collocation in the same processing node,

neither about the threads collocation in the same process.

{] [

«Process» «Process»

«process» «process»

aipsy D\ [active} lactive}
execution
nodes
T . e e e e R ...4....
24
LE=? -
5838 s3g
= @ Q
v o TS (5] o O
ve 9 v e
S %
8 b
%
«thread» «thread»
bp DP
{activel {active}
£33
2889
CI¥3
DMS gT3q o
midleware E e Qg,‘ﬂégf
iad o
152) Sfe
i v ‘(Q\ Q;oborf
a
«process»
{active) S
- &7
Can, . 7
¥Sceing,, «thread» «process» EETD
v:\/? meﬁesufnd pp IA O'§ < Qg?é,}‘ Q>
NG tactive} {active} ¢
e, Z &
‘\R?HGD ,nSU” < CanceiDemand £ QQQ‘
&”"ED@,,, ang Result > yA
Connegy ™ < Result
Demand —
~ Demand
<-Start

Fig.3.15. General Process View Diagram

63

Process DS. This process is the runtime presentation of the Demand Space. The
DMS runs the DS as a Singleton [19, 20] (see section 3.3.3.1), i.e. one process

serves all the DS clients.

Thread DP. This thread is the runtime presentation of the DP. It is spawned by a
TA, DG or worker. There is one instance of this thread per any client connected to
the DS. The DP thread communicates with the DS in a synchronous manner by

procedure calls — remote or local.

Process TA. This process is the runtime presentation of the TA. The DMS runs
multiple TAs, each one related to a distribution middleware. The communication
between a middleware and TA is based on asynchronous messages, event
broadcasts and remote procedure calls. The TA process spawns a DP thread, which
is used to retrieve and set asynchronously demands and results. A TA spawns one

single DP thread.

Thread TA Proxy. This thread is the TA stub exposing the TAs functionality to the
DGs and workers in a transparent manner, i.e. it hides the remote collaboration with
the real TA (see section 3.3.1). The TA Proxy thread is spawned by the DGs and
workers in their address space. There is only one TA Proxy spawned by a DG or
worker, i.e. each TA Proxy is associated with a DG or worker. The TA Proxy
communicates with the real TA via the distribution middleware. All the

communications performed by this thread are asynchronous.

Process Distribution Middleware. This process is the runtime presentation of the
distributed technologies. Each distributed technology establishes middleware
between the remote machines, i.e. runs a middleware process. The DMS

components interact with those processes asynchronously.

Processes DG and Worker. These processes are the run time presentation of the

GIPSY execution nodes — DGs and workers.

64

3.4.3. JTA Process View

The JTA process view is the run time picture of our DMS detailed design. Fig.3.16
depicts processes and threads that can be uniquely addressed as detailed design

elements (see section 3.3).

Process DemandSpace. This process is the run-time instance of the
DemandSpace class (see section 3.3.3). It is similar to the DS process from the

general process view.

Thread DispatcherProxy. This thread is the run-time instance of the
JINITransportAgentProxy class (see section 3.3.3). It is similar to the DP thread from

the general process view.

Process JINI. This process is the runtime presentation of the JINI distributed
technology. It is similar to the distribution middleware process from the general

process view.

Thread JINITransportAgentProxy. This thread is the run-time instance of the
JINITransportAgentProxy class (see section 3.3.4). It is similar to the DP Proxy

thread from the general process view.

Process JINITransportAgent. This process is the run-time instance of the
JINITransportAgent class (see section 3.3.4). It spawns multiple JTABackend threads
and one single DispatcherProxy thread. The JINITrnasportAgent process controls
only the lifetime of those threads, which do the actual TA work. In addition, it

associates each JTABackend thread with a JINITransportAgentProxy thread.

Thread JTABackend. This thread is the run-time instance of the JTABackend
class (see section 3.3.4). The JINITransportAgent process spawns such a thread for
every JINITransportAgentProxy thread. The last communicates with its corresponding
JTABackend thread via the JINI distribution middleware (see Fig.3.16). In addition,

the JTABackend thread communicates with the DispatcherProxy thread for retrieving

65

and setting demands and results. All the communications performed by the thread of

JTABackend are asynchronous.

«process» «Process» «process» «Process»
LocalGenerator LocalWorker RemoteGenerator RemoteWorker
GIPSY {active} {active} tivi tivi
execution {active}
nodes o
.......--...g/r..../].?.Eﬁ&,... of o /]
£ B= weds =2
R §2E 06 3 538
03¢ £as 2g:h 585
NDor o & &P 3 =3 o @
ve © 9 ve v(°
g vV b 2 |
% %
«thread» «thread» «thread» «thread»
DispatcherProxy DispatcherProxy JINITransportAgentProxy | |JINITransportAgentProxy
Q
%,J\O Y 1
%0, 5,
© D % . T
< @% N 5 c
52 &) a8
IS > ’)O, o £
Qw & £§ S \ a S
OMS 3548 E ESNS b
midieware SFLo L8 &
ST §10 S <y
4 v (4 & &
v ¥y &S «process»
Y JINL
«process» {active}
DemandSpace
tiv
[and
thread Gam:\“)si(\‘t‘ -
«thread»
x JTABackend pesut o
RO {active} peman
KX Demat
K222
2% Q
X2$.599 &7
Q &VOO DD Iy 7
338%23 S
283 ¢ %> F IR
3357 © SEL S
%% FEE S S
(g ¥ A OQJ Q‘é\ Uy
Q
«thread» "4 «Process»
DispatcherProxy JINITransportAgent
{active} {active}
vStan

Fig.3.16. JTA Process View Diagram

3.4.4. Reliability and Accuracy

Migrating demands in a heterogeneous environment requires very high reliability and
accuracy. Our system will be reliable and accurate if it is able to deliver every
demand to its destination, i.e. no demand could be lost due to any kind of fault or
crash. We designed a DMS system consisting of loosely coupled components. Most
of these components run as stand-alone components, depicted as processes in
Fig.3.15 and Fig.3.16. The other DMS components are threads run by those
processes. The processes interact with each other via asynchronous messages (see

Fig.3.15 and Fig.3.16). The argument here is fine, since our goal was to achieve

66

minimum coupling. The correction of faults in such a system could be too expensive,
risky or inconvenient. Therefore, we designed our loosely coupled architecture with a
fault-tolerance error strategy. Our DMS minimizes the damages on any fault or crash
by simply redoing the interrupted migration. Any component caused a failure, could
be simply restarted, or its work could be directed to another component. For example
if a TA crashed, the DD could re-dispatch the demand through another TA. It is
possible because the DMS keeps the original demand permanently saved in the DS

until its associated result is not received (see section 2.2.2).

3.4.5. Concurrency and Consistency

Since our DMS is based on distributed technologies, it is inherently concurrent [17,
21]. All the TAs exist independently and operate concurrently (see Fig.3.15). The TAs
work simultaneously on the DS. In addition, all the TA Proxies work concurrently with
the common TA. Another concurrency issue is coming from the distribution
middleware processes, which are isolated from each other but work for migrating
demands in a concurrent mode. Finally, the DS works simultaneously on multiple
client requests. To achieve all these concurrency requirements we run all these
components as processes or threads. These processes or threads communicate
mainly in an asynchronous manner (see Fig.3.15 and Fig.3.16).

Every system has a consistency constraint that must be not violated. This constraint
is related to the system consistent state [4]. The DMS will be in its consistent state if
all the in process demands turn into computed ones, i.e. there is no in process
demands that are on their way to being delivered. A consistency problem may arise
when one of the components involved in the demand migration crashes or simply
shuts down during a demand migration. Those components are the DP, TA,
distribution middleware, PA proxy and worker (see Fig.3.15). In such a case, the
DMS may simply re-dispatch the demand via another TA. This is possible due to the

fact that the original demand is kept in the DS (see section 2.2.2).

3.4.6. Scalability

The DMS architecture will be scalable if it can accommodate any growth of future
work increase. The distributed nature of our architecture assures high scalability. Our

TAs are designed as processes (see Fig.3.15 and Fig.3.16) and we can easily

67

increase the workload by running new TAs. The only limitation is coming from the
hardware resources and network communication. Network communication is often
the key performance limitation (see section 5.3.2). All the network communication in
our system is asynchronous, which increases the network performance, since there
is no need of additional synchronous precautions. Although the networking
performance of the system depends upon the physical architecture of the system, a
big message should take longer to deliver than a short one. Another limitation is
coming from the ability of the DS to handle increasing workload (see section 5.5.2).
This problem could be easily solved if we run more DS spread among different

machines.

3.4.7. Upgradeability

Upgradeability means that the system can be easily extended and modified.
Upgradeability and distribution are related. Our DMS architecture assures high
upgradeability. All the major DMS components run as independent processes (see
Fig.3.15) communicating via well-defined interfaces (see section 3.3). Hence, we can
easily integrate new components into the DMS and these components must adhere
to the DMS interfaces. A possible upgrade could be adding new TAs to the system,
or designing a new DS. The new TAs and DS must rely on the DP for their
communication. In addition, we can easily extend the functionality of the already
existing DMS components with the only restriction on preserving the old interfaces.
All the DMS components, run as processes, implement hot-plugging. This increases
the DMS architecture upgradeability, due to the fact we can integrate new

components into the system without having to stop any DMS process.

3.4.8. Heterogeneity

Heterogeneity arises when a system should integrate heterogeneous components.
Our DMS is heterogeneous due to the fact it relies on different distributed
technologies for the implementation of TAs (see section 2.3). Fig.3.15 depicts that
heterogeneity by associating each TA with a distribution middieware. The TAs rely on
such distribution middleware for migrating demands.

Another heterogeneity issue comes from the distributed nature of our DMS. It is

related to the ability to run DMS components on different platforms.

68

3.5. Deployment View

According to our design, the DMS runs on a network of computers called processing
nodes. The “Deployment View” is a static deployment view of the run-time
configuration of the GIPSY and DMS processing nodes and the components that run
on those nodes. The following diagrams are UML deployment diagrams that depict
an implementation-level of the DMS, i.e. they show the structure of the run-time
system. The nodes in these diagrams are locations upon which components are
deployed. The set of components that are allocated to a node as a group form a
distribution unit. The diagrams in Fig.3.17 and Fig.3.18 depict the distribution units as
machines, since each distribution unit is a single machine (computer) running the
components of this unit. The components correspond to the processes and threads in
the process view (see section 3.4).

From the conceptual view, we concluded two cases of the Demand Dispatcher
(respectively Demand Space) distribution — local and remote (see section 2.3.1).
Whereas Fig.3.17 depicts the “Remote DD” case, Fig.3.18 depicts the “Local DD”

case.

3.5.1. Remote DD

There are three distribution units in the case “Remote DD” called respectively DG
machine, DD machine and worker machine (see Fig.3.17). The machines are
connected via a distribution protocol that is formed by one or more distributed
technologies (see section 2.3.3). In this deployment view one DD machine serves
many DG and worker machines.

The distribution unit of the DG machine runs a Demand Generator (DG), TA proxy
and distribution middleware process. The distribution middleware process nests the
TA proxy and makes the demand migration possible, i.e. the communication between

the TA proxy and its mentor — the TA, run on a remote machine.

69

Distribution protocol Distribution protocol

Worker

£

DG machine

TA Proxy

DD machine

Worker machine

Execute remotely

Execute remotely

Fig.3.17. DMS Deployment Diagram “Remote DD”

The distribution unit of the DD machine forms the DMS middleware (see section
3.4). This machine runs the DS and TAs. Each TA is nested by a distribution
middleware ensuring the remote communication between a TA and its proxy. In
addition, there are DPs, each one being associated with a TA. Hence, this distribution
unit, as a DD processing node of our DMS design, runs one DS component, many
TA components - each one oriented to a distributed technology (see section 2.3.2),
distributed middleware processes nesting a TA, and DP components connecting a
TA with the DS.

The distribution unit of the worker machine is similar to the distribution unit of the
DG machine. It runs a worker, TA proxy and distribution middleware process. The

distribution middleware process nests the TA proxy.

3.5.2. Local DD

There are two distribution units in the “Local DD” case called respectively DG
machine and worker machine (see Fig.3.18). The machines are connected via a
distribution protocol that is formed by one or more distributed technologies (see
section 2.3.3). In this deployment view, one DG machine works with many worker

machines.

70

The distribution unit of the DG machine runs a Demand Generator (DG), TA and
distribution middleware process. The distribution middleware process nests the TA.
In addition, there are two DP components associated with the DG and TA and used
for accessing the DS. The DG communicates with the DS via a DP. The TA is not
needed here, since the DS is local and we do not have to cross any machine

boundaries (see section 2.3.1).

DG machine — -
Worker machine

Execute remotely

Distribution protocol Worker

@

Fig.3.18. DMS Deployment Diagram “Local DD”

The distribution unit of the worker machine is the same like in the “Remote DD”
case, i.e. it runs a worker, TA proxy and distribution middleware process. The
distribution middleware process nests the TA proxy and makes the remote
connection with the real TA possible.

There is another “Local DD” case where the DS resides the worker machine, i.e.
the worker does not need a TA (respectively TA proxy) in order to access the DS.
The structure of this distribution unit is similar to the structure of the DG machine in

the “Local DD” case described above.

3.6. Summary

In this chapter, we have created a complete software design picture of our Demand

Migration System (DMS). Our primary goal was to describe all the aspects of the

71

DMS, which necessitated the use of the “4+1” view model of software architecture
[18]. In our DMS design model, we have used the following design views.

e A scenario view to illustrate how the DMS works, by presenting important
scenarios of the system use.

e A logic view to illustrate the object model of our design. The object model
consists of a high-level architectural view, where we have depicted the
system’s modules and their interfaces, and a low-level detailed design for
some important modules that complete the DMS — Demand Dispatcher, JINI
Transport Agent and JINI Library.

» A process view to illustrate the run-time view of our DMS in terms of processes
and threads. Here, we have answered questions about non-functional
requirements like reliability and accuracy, concurrency and consistency,
scalability, upgradeability and heterogeneity.

¢ A deployment view to illustrate the structure of the run-time DMS configuration.
With this view we have presented the physical distribution of our DMS among

different machines.

In our DMS design we stuck to the basic design principles — loose coupling and
high cohesion. We designed a system with loosely coupled components — the DMS
components are independent standalone components that allow hot-plugging. There
are no direct dependencies among the components. All the intercommunications are
asynchronous and the components do not share common states. In addition, our
design maximizes unit cohesion — the DMS’ components are functional units where
all the internal contributors work for performing the component functionality, which is

exposed by the component’s public interfaces.

72

Chapter 4: Implementation

The most common miracles of software engineering are the transitions from
analysis to design and design to code.
Richard Due

This chapter provides a comprehensive implementation overview of our Demand
Migration System. The implementation view corresponds to the detailed design
provided in our design logical view (see section 3.3). Therefore, in the
implementation view we provide an implementation-level description of the classes
designed in the Demand Dispatcher package, JINI Transport Agent package and JINI
Library package (see section 3.3). In addition, this chapter provides at the beginning
an overview of the distributed technologies JINI, CORBA, DCOM and .Net Remoting,
some of them being a base for our implementation solution. Finally, the chapter
concludes with a presentation of other possible implementations for some of the

DMS’ components.

4.1. Distributed Technologies Aspects

Generally, the work done in the course of this thesis was influenced by the distributed
technologies CORBA, DCOM, .NET Remoting and JINI [3, 4, 7, 13, 14, 16, 34, 42].
We investigated some aspects of these technologies with a great attention, especially
those that took place in our design and implementation, like JINI and DCOM (as a
next implementation solution). Before going over the DMS implementation, we

analyze some of the most important aspects of these technologies.

4.1.1. JINI

JINI stands for Java Intelligence Network Infrastructure that is being developed by
Sun Microsystems. JINI is an infrastructure for “federating services in a distributed
system” [3]. JINI provides an open architecture for handling resource components -
either hardware or software, within a network. The resource components are handled
as services and the JINI systems provide mechanisms for their construction, lookup,
communication, and use in a distributed system. JINI is a pure Java technology and

integrates easily with the GIPSY, which is entirely implemented in Java. Therefore,

73

we chose JINI as a base for our first TA implementation — the JTA (see section 3.3.4
for the design and section 4.2.3 for the implementation). Despite the fact that JINI is
independent of the network protocol, in our research and implementation we relied on
a network, which is based on TCP/IP [34]. Therefore, we identify each JINI service

uniquely in terms of a valid IP address and name.
4.1.1.1. Architecture

JINI manages and handles different available services by relying on a JINI Lookup
Service (LUS) [3, 7, 34]. This service contains information about all other registered
services in the JINI network. The clients may use the services by calling the LUS for
discovering the registered services. JINI relies on a trio of internal protocols called
discovery, join, and lookup, for performing the registration and use of the JINI-
enabled components as JINI services [3, 7, 34]. A pair of these protocols -
discovery/join, occurs when a service runs. Discovery occurs when a service looks
for a LUS to register. Join occurs when a service has located a LUS and wishes to
join it. Lookup occurs when a client or user needs to locate and invoke a service
described by its interface type (written in Java). This process is the core of the JINI

system. It can be referred to the Discovery-Join-Lookup protocols (see Fig.4.1).

JINI JINI
Service Service
Z

 JAVA

Device Client Soft App

Fig.4.1. JINI Architecture

4.1.1.2. Features

Services in a JINI system communicate to each other by using a service protocol,
which is a set of interfaces written in the Java programming language. The set of
such protocols is open ended. The base JINI system defines a small number of such
protocols, which define critical service interactions. Communication between services

and clients can be accomplished by using Java Remote Method Invocation (RMI) [3,

74

7, 21]. RMI is a Java extension to the traditional Remote Procedure Call (RPC)

mechanisms.

Discovery Process. The JINI discovery process is a process of finding lookup
services. Both JINI services and clients use the discovery protocol, which exposes
two discovery models - multicast discovery and unicast discovery [3, 7, 34]. Whereas,
in unicast discovery the target is specified (for example by its IP address), in multicast
discovery the service provider or service client broadcasts a message all around the
network. The message identifies the service. This message should be delivered to all
the lookup services within the net.

The JINI API exposes two utility classes that could be used for coding the discovery
process — LookupLocator and ServiceRegsitrar (see Fig.4.2). Whereas,
LookupLocatoris used to get a reference to the JINI LUS, ServiceRegistrar holds that
reference. LookuplLocator searches for a LUS on any remote machine specified by

an IP address. The method getRegistrar() returns the LUS reference if any.

LookupLocator lookup = new Lookuplocator (‘jini://192.168.8.11%);
ServiceRegistrar registrar = lookup.getRegistrar ();

Fig.4.2. Coding Unicast Discovery Process

Join Process. The JINI join process is a process of registering a JINI service to a
LUS. A special proxy service is sent from the service to the LUS (see Fig.4.3). This
proxy implements the functionality that must be exposed to the clients, i.e. a JINI

service implements part of its functionality in form of a proxy.

Ly
Client

JINE pxy |
Servig

Fig.4.3. Discovery-Lookup-Join Protocols

For coding the join process we could use the register() method of the
ServiceRegistrar class (see Fig.4.4). This method accepts as parameters an object

instantiated from the JINI utility class Serviceltem and the lease time. The last

75

determines how long the registration will be available. The class Serviceltem accepts
three parameters:

o id — universal unique identifier (UUID) for registered services (128-bit value).
Service IDs are intended to be generated only by the lookup services, not by
clients;

e service — the object implementing the actual JINI service;

e atirSets — service’s attributes.

Serviceltem serviceltem = new. Serviceltem (null, myServer, attr);
registrar.register (serviceltem, Lease.FOREVER);

Fig.4.4. Coding Join Process

Lookup Process. The JINI lookup process is a process of finding JINI services in
the discovered LUS. This process is performed by the clients, which locate the
needed JINI service by type. The type is a Java interface. If the service is found, the
client application downloads the proxy and uses it locally (see Fig.4.3). The client
invokes the service and interacts with it through the proxy service [34].

For coding the lookup process we could use the /ookup() method of the
ServiceRegistrar class (see Fig.4.5). This method accepts as a parameter an object
instantiated from the JINI utility class ServiceTemplate. This template describes the
JINI service, which is desired. The template acts like a query specification. The query
could be by a service’s id, by a service’s class/interface name or by some attributes.
The lookup() method returns either the proxy for the service, or null if no service

matching the template is found.

ServiceTemplate template = new ServiceTemplate (null, null, aeAttributes);
myServerinterface = (IJINITransportAgent) registrar.lookup(template);

Fig.4.5. Coding Lookup Process

Distributed Leasing. Access to many of the services in the JINI system
environment is lease based. A lease is a grant of guaranteed access over a time
period. Each lease is negotiated between the user of the service and the provider of

the service as part of the service protocol. Leases are either exclusive or non-

76

exclusive. Exclusive leases ensure that no one else may take a lease on the
resource during the period of the lease. Non-exclusive leases allow multiple users to

share a resource.

Distributed Transactions. A series of operations, either within a single service or
spread among multiple services, can be wrapped in a transaction. The JINI
transaction interfaces supply a service protocol needed to coordinate a two-phase

commit [3, 7.

Distributed Events. The JINI architecture supports distributed events. An object
may allow other objects to register interest in events in the object and receive a

notification of the occurrence of such an event.

4.1.1.3. Object Persistence

To achieve object persistence JINI relies on the Java serialization architecture. The
serialization architecture defines the interface Serializable, and instances of any Java
class that implements this interface can be written into a byte stream or be read from

a byte stream.

4.1.1.4. JavaSpace

In the course of this research, we found that one of the JINI applications —
JavaSpace, is appropriate as a base for our Demand Space implementation.
JavaSpace integrates the concept of tuple space [9]. The tuple space is the base for
Ensemble Computing that joins the Distributed and Parallel Computing together [7].
The Ensemble Computing is based on the idea of existence of many active
processes distributed over physically dispersed machines. Those machines
“communicate by releasing data (a tuple) into a common tuple space® [7].

JavaSpace extends that model by defining the data as real objects, i.e. we pass not
only data but also objects behavior (see Fig.4.6). The use of RMI and object
serialization makes passing of live objects possible. In addition, JavaSpaces

implements features like distributed events, leasing and lightweight transactions.

77

Process

read

write

JavaSpace

notify
write

Process Process

Fig.4.6. JavaSpace Model

JavaSpace Interface. Any JavaSpace instance is accessible via an APl Java
interface called JavaSpace. This interface exposes the methods read(), write(),
take(), notify(), readlfExists() and takelfExists(). These methods allow clients to
perform the basic operations on a JavaSpace instance [7]. The getSpace() method

helps in gaining access to an instance of JavaSpace (see Fig.4.7).

JavaSpace space = getSpace(),

Fig.4.7. Coding JavaSpace Access

4.1.2. CORBA

CORBA stands for Common Object Request Broker Architecture that is being
developed by the Object Management Group (OMG) [42]. CORBA is a standard
architecture for distributed object systems. CORBA specifies a system that provides
interoperability between objects in a heterogeneous, distributed environment and in a

way transparent to the programmer.

4.1.2.1. Architecture

CORBA defines architecture for distributed objects. The CORBA architecture is
based on services and the access to the CORBA services is via static and dynamic
interfaces. Those interfaces are implemented in the form of stubs and skeletons.

CORBA relies on the stubs to send requests from clients, and relies on the skeletons

78

to receive and forward requests to objects. The following figure illustrates the primary

components in the CORBA architecture.

Client Process Server Process

CORBA Client
Dynamic Inv. IDLSwb | [ORB
Interface B * Interface

R

. CORBAObject

Sta‘ticID‘L‘ . Dynamic
Skeleton - - Skeleton

3‘_i'e‘j:‘t*Ad'eip‘te,’;;; ,

: 0RB~ .

[Interface’

/k'fl‘{e‘lidsi‘tb,lfyi; : Oszéofe EESEEES

Fig.4.8. CORBA Architecture

CORBA Client and Object. The CORBA client is the program entity that invokes
operations on a CORBA object that is a CORBA programming entity. CORBA makes

the access to the services of a remote object transparent to the client.

Object Request Broker (ORB). The ORB is a CORBA distributed service that
performs the request-result operation between a CORBA object and CORBA client
[42]. The ORB locates the remote object on the network, communicates the request
to the object, waits for the results and when évailable communicates those results
back to the client. It acts like a transport channel between the client and remote
object. The ORB implements location transparency, the client and the CORBA object

use exactly the same request mechanism, regardless of where the object is located.

Dynamic Invocation Interface and Dynamic Skeleton. The Dynamic Invocation
Interface (DII) allows the client to specify requests to objects, which definition and
interface are unknown at the client's compile time (late banding) [13, 42]. In order to
use the DI, the client has to compose a request, including the object reference, the
operation and a list of parameters. These specifications - of objects and services they
provide, are retrieved from the Interface Repository (see Fig.4.8). The DIl works with
the Dynamic Skeleton on the server side. The Dynamic Skeleton allows an ORB to
deliver requests to an object implementation that does not have compile-time

knowledge of the type of the object it is implementing.

79

IDL Stub and IDL Skeleton. The IDL stub helps for the mapping of a non-object-
oriented language. The stubs make calis on the rest of the ORB using interfaces that
are private to, and presumably optimized for, the particular ORB Core. If more than
one ORB is available, there may be different stubs corresponding to the different
ORBs. The IDL stubs usually work with IDL skeletons (see Fig.4.8). The Static IDL
skeleton is generated by CORBA skeleton, which is used in CORBA static invocation.

Object Adapter. The Object Adapter (OA) performs the communication between
the object implementation and the ORB core. It handles services such as generation
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping references

corresponding to object implementations and registration of implementations [13, 42].

ORB Interface. The ORB Interface is an interface that goes directly to the ORB
(see Fig.4.8). It is the same for all the ORBs and does not depend on the object's
interface or object adapter. Because most of the functionality of the ORB is provided
through the object adapter, stubs, skeleton, or dynamic invocation, there are only a

few operations that are common across all objects.

Repositories. The Interface Repository is a database that provides a persistent
storage mechanism of object interface definitions. The Implementation Repository is

a service that allows the ORB to locate and activate implementations of objects.

4.1.2.2. Features

The services that an object provides are given by its interfaces. Interfaces are
defined in an Interface Definition Language (IDL) [13, 42]. Distributed objects are
identified by object references, which are presented by IDL interfaces. Fig.4.9 depicts

an object request, and the object reference is presented by an IDL interface.

_ CORBA Client] _ CORBA Object]

X; J
lDLI%erface
(. omRBCOe O

Fig.4.9. Client-Object Request

80

CORBA Services. CORBA exposes a set of distributed services to support the
integration and interoperation of distributed objects. As depicted by Fig.4.10, the
services, known as CORBA services (COS), are defined on top of the ORB. They are
standard CORBA objects with IDL interfaces.

A A
IDL Interface IDL Interface IDL Interface IDL Interface
F-‘»Namihg | |7 Events: * Relationships | ymunwu - Trader - Query
A, g 5 R *::«: \ ::»,w & :,"Jr T - \:*' o - 9, T
~ ORBCore :

Fig.4.10. CORBA Services

The following elements describe some of the services exposed by CORBA:

e Obiject life cycle - defines how CORBA objects are created, removed, moved,
and copied.

e Naming - defines how CORBA objects can have friendly symbolic names.

e Events - decouples the communication between distributed objects.

o Relationships - provides arbitrary typed n-ary relationships between CORBA
objects.

e Externalization - coordinates the transformation of CORBA objects to and from
external media.

o Transactions - coordinates atomic access to CORBA objects.

o Concurrency control - provides a locking service for CORBA objects in order to
ensure serializable access.

e Property - supports the association of name-value pairs with CORBA objects.

e Trader - supports the finding of CORBA objects based on properties
describing the service offered by the object.

¢ Query - supports queries on CORBA objects.

How do remote invocations work? In order to invoke a remote object instance, a
client first obtains its object reference by relying either on the naming service or
trader service. The client invokes the remote and local objects in the same way.

When the ORB examines the object reference and discovers that the target object is

81

remote, it routes the invocation out over the network to the remote object's ORB (see

Fig.4.11).

Stub

g — 7\ 110P. [~~
(~ORB1 = @ Protocol k . ORB2 (’

Fig.4.11. Remote and Local Invocation

For the remote invocation, the client's ORB and object's ORB must agree on a
common communication protocol. The ORB uses as a standard the Internet inter-
ORB Protocol (1IOP) [13, 42].

4.1.2.3. Object Persistence

CORBA provides a service called Persistent State Service (PSS) that enables object
persistence for CORBA objects. The PSS exposes two store mechanisms. The
objects are stored as storage types in so-called storage homes, and storage homes
are themselves stored in datastores [25, 4]. The datastores are entities for managing
data in persistent store mechanisms like databases and files. There are two ways to
define the datastore schema and the interface of the storage type:

« In the first way, the PSS relies on the Persistent State Definition Language
(PSDL), which is the standard IDL language for persistence objects. The
PSDL defines the storage homes and the storage types as storagehome and
storagetype constructs.

e The second way is to use the transparency mechanisms provided by the
CORBA compliant development language. This is known as Transparent

Persistence [25].
In addition to the PSS, CORBA exposes a service called CORBA Externalization

Service. That service standardizes interfaces that enable CORBA objects to write

their states into a sequential byte stream and to read their states from such a stream.

82

4.1.3. DCOM

DCOM is the distributed extension of COM, which states for Component Object
Model. COM is being developed by Microsoft as a general software architecture that
provides a framework for integrating software components. This framework allows
developers to build systems by assembling reusable components. By defining an
application-programming interface (API), COM allows the creation and integration of
components in custom applications or allows diverse components to interact {14, 27].

We are planning implementation of our second TA based on COM/DCOM. Hence,

in the course of this research we investigated deeply the COM aspects.

4.1.3.1. Architecture

COM defines how components and their clients interact. This interaction is defined
such that the client and the component can connect without the need of any
intermediary system component. The client calls methods in the component without
any additional overhead. The COM architecture exposes two principal aspects:

e COM uses globall unique identifiers called class identifiers (CLSIDs) - to
uniquely identify each COM object. CLSIDs are 128-bit integers that are
guaranteed to be “unique in the world across space and time® [26].

o COM objects interact with each other and with the system through a collection
of interfaces. A client application has access to the object's services only
through the object’s set of interfaces (see Fig.4.12). These interfaces adhere
to a binary structure, which provides the basis for interoperability between

software components written in arbitrary languages.

l - } O—1 com l
Client »O Object
O_..

Fig.4.12. COM Interaction

A COM interface is a strongly-typed contract between software components that
provides a small but useful set of semantically related operations. A COM object can
support any number of interfaces. Fig.4.12 depicts the interfaces as small circles
connected to the COM object.

83

The COM architecture requires every COM object to run inside of a process server,
called also COM component (see Fig.4.13). A single server can support multiple
COM objects. COM objects are either implemented within executables (EXEs) or
within Dynamic Linked Libraries (DLLs). COM objects implemented in EXEs are
called out-of-process servers, and these implemented in DLLs are called in-process
servers [14, 26].

Local Server
Process

4 : - N
In-process r_—1
In-process server LPC
{ Loecal.’ '
Object Proxy

. Remote Server
RPC i Process

o ~Rérﬁq‘te
l - Object Proxy

Fig.4.13. DCOM Architecture

The out-of-process servers are local when run on the client's machine, or remote
when run on a remote machine. DCOM is about remote COM components. Whereas,
the in-process COM objects run in the client's address space, the out-of-process
COM obijects are shielded in a separate process. A client that needs to communicate
with a component in another process cannot call the component directly, but has to
use some form of inter-process communication provided by the operating system.
Such a communication is called Local Procedure Call (LPC) for the local process
server and Remote Procedure Call (RPC) for the remote one (see Fig.4.13). COM
provides this communication in a completely transparent fashion: it intercepts calls
from the client and forwards them to the component in another process. For this
transparency COM relies on client-side proxies and server-side stubs that internaily
perform the complex inter-process communication. When the client and component
reside on different machines, DCOM simply replaces the local inter-process

communication with a network protocol.

84

4.1.3.2. Features

Regardless of the kind of the server in use (in-process, local, or remote), the COM
client always asks COM to instantiate objects in exactly the same manner. There are

three COM object invocation steps.

Client Request. The client request is the first COM object invocation step. The
COM client is an application that invokes the COM API in order to instantiate a new
COM object. It passes a CLSID to COM, and asks for an instantiated object in return
[14]. The client request includes two specific tasks:

e The COM client must verify that the COM Library version is new enough to
support the functionality expected by the application. In general, an application
can use an updated version of the library, but not an older one.

e The COM client must initialize the COM Library.

There are two ways for making a request. The simplest one is to call the COM
function CoCreatelnstance that creates an object by a given CLSID, and returns an
interface pointer of any requested type. Alternately, by calling CoGetClassObject, the
client can obtain an interface pointer to what is called the class factory object for a
CLSID (Fig.4.14). This class factory supports an interface called [/ClassFactory

through which the client asks the factory to manufacture an object of its class [27].

Client com
o API Functions
Application CoCreatelnstance

* CoGetClassObject

Fig.4.14. COM Client Request

Server Location. The server location is the second COM object invocation step. In
this step, COM locates the object implementation and initiates a server process for
the object. A special component called Service Control Manager (SCM) is
responsible for the location and execution of the COM server that implements the
COM object. The SCM ensures that when a client request is made, the appropriate
server is connected and ready to receive the request. The actions, undertaken by the
SCM, depend on the kind of the COM server:

85

e In-Process - The SCM returns the file path of the DLL containing the object
server implementation. The COM library then loads the DLL, and asks it for its
class factory interface pointer.

e Local - The SCM finds and starts the local EXE, which registers a class factory
interface pointer.

e Remote - The local SCM contacts the SCM running on the appropriate remote
computer, and forwards the request to the remote SCM. The remote SCM
obtains a class factory interface pointer in one of the two ways described
above (in-process or local). The remote SCM then maintains a connection to

that class factory, and returns a RPC connection to the local SCM [27].

Object Creation. The third invocation step, called object creation, creates the
object by a given CLSID. It involves three internal steps (see Fig.4.15):
e Obtains the class factory for the CLSID.
e Asks the class factory to instantiate an object of the class, and returns an
interface pointer to the COM client.
¢ Initializes the COM object.

(1)CoGetClassObject COM SERVER

- ———_—_\A
COM Client @ Class Factory (2) Create

the object
(2) Returns the new
interf. pointer to the

client /
L_//i 4 - IDL Interface
‘

(3) Initializes the object

Fig.4.15. COM Object Creation

4.1.3.3. Object Persistence

COM performs object persistence via an interface calied IPersist {4, 27]. In addition,
COM extends the IPersist interface into the IPersistStream interface. That interface
supports serialization of objects into a byte stream that can be stored in a file. The
last should be instantiated from a class implementing the interface

|Persistentinterface.

86

4.1.4. .Net Remoting

Microsoft .NET Remoting was introduced by Microsoft with the advent of .NET and
.NET Framework [16, 28]. .NET is a new distributed technology that allows programs
and software components to interact across application domains, processes, and
machine boundaries. Remoting allows you to pass objects or values across servers

in different domains using several different protocols.

4.1.4.1. Architecture

.NET Remoting uses a flexible and extensible architecture. Remoting uses the .NET
concept of the Application Domain (AppDomain) to determine its activity [16, 28]. An
AppDomain is an abstract construct for ensuring isolation of data and code, but not
having to rely on operating system specific concepts such as processes or threads.
.NET Remoting relies on a set of internal contributors for performing the remote
communication between the client and server (see Fig.4.16). The client and the
server communicate in a transparent manner. The client calls a remote method,
which call is received by a proxy. The proxy looks just like the real server as it has the
same public methods. The proxy just converts the method call to a message so that it
can be sent across the network. Next, the message is passed to a formatter. The
formatter is used for encoding and decoding the message before and after it is
transported by a transport channel (see Fig.4.16). Finally, the message is delivered
to the server via a dispatcher. The server invokes the method and once the execution

is completed, the process is reversed and the results are returned back to the client.

Client AppDomain Server AppDomain

. Dispatéher» —»

. Formatter -

Fig.4.16. .Net Remoting Architecture

&7

The formatters are able to perform binary and XML encoding. Whereas, the binary
encoding is appropriate when performance is critical, the XML [29] encoding is
appropriate when interoperability with other remoting frameworks is essential.

A transport channel provides the underlying transport mechanism for the

communication between the client and server.

4.1.4.2. Features

.Net Remoting migrates the objects between so called remotable objects. Remotable
are objects distributed across different platforms. In general, there are two types of

remotable objects - Marshall-By-Value and Marshall-By-Reference objects.

Marshall-By-Value. Marshall-By-Value (MBV) objects are copied and passed over
the server application domain to the client application domain. The MBV objects are
initially located on the server. However, when the client invokes a method of the MBV
object, the MBV object is serialized (by the Remoting Framework), migrated over the
network (using the transport channel) and restored on the client as an exact copy of

the server-side object. The Method is then invoked directly on the Client.

Marshall-By-Reference. Marshall-By-Reference (MBR) objects are accessed on
the client side by using a proxy. MBR objects are remote objects they always reside
on the server and all the methods invoked on these objects are executed at the
server side. The client communicates with the MBR objects on the server using the

local proxy object that holds a reference to the MBR object.

Leased Based Lifetime. For the MBR objects, having object references that are
transported outside the application, a lease is created. The lease controls the lifetime

of the object. The lease time could be set to infinity.

4.1.4.3. Object Persistence

.Net Remoting makes the objects persistent by declaring their class serializable, or
by implementing the ISerializable interface. All objects that have to cross the
application domain boundary have to implement the /Serializable interface. When the
object is passed as a parameter, the framework serializes the object and transports it

to the destination AppDomain, where the object will be reconstructed.

38

4.2. Current Implementation

In this section, we provide some sample code with a brief description for some of the
important DMS’ components. For the implementation of our DMS, we adopted the
Java programming language, this being the implementation language for the other
GIPSY’ parts. Our current implementation is based on JINI, and we relied on the
Java and JINI API for coding our DMS.

4.2.1. JINI Library

The following elements describe the implementation of the JINI Library package (see
section 3.3.2).

Class JINILibrary. The class JiNiLibrary is the main class for the JINI Library
package (see section 3.3.2.1). This class implements the IJINILibrary interface.
Listing 4.1 depicts the implementation of the findRegistrar() and findDMSService()

methods.

public ServiceRegistrar fdeeglstrar (Stnng slPAddress)
throws LUSEXxception {
LookupLocatorlookup null

#/**** Prepare for Unicast D/scovery get the LUS
lookup =.new LookupLocator (‘fini:/" + sIPAddress)
if (lookup ==:null) throw.new LUSExceptton(slPAddress)'
theRegistrar = lookup.getRegistrar(); .
return theRegistrar;

}

public ServiceRegistrar ﬂhdFlegistrar (String discGroupNames) {
/**** Search for the GIPSY LUS
disco = new. LookupD/scovery(d/soGroupNames)

A/ Run discovery, multlcast protocol via the listener -
disco.addDiscoveryListener(new ServiceListener ());
while (theRegistrar == null);
return theRegistrar;

}

public Object findDMSService (ServiceTemplate templa:te) { :
Object oDMSService = null;
if (theRegistrar==null) theRegIstrar = findRegistrar(};

try {
oDMSService = theReglstrar.Iookup(temp/ate);

catch (RemoteException e) - {
throw-new JINILibraryException ("Remote error: "+ 6. getMessage());

return oDMS Service;
Listing 4.1. Coding JINILibrary Class Methods

89

Whereas, the first findRegistrar() method performs unicast discovery, the second
performs muiticast discovery (see section 4.1.1.2). The second method relies on the
ServiceListener class for performing asynchronous event-driven LUS discovery. The
method findDMSService() searches in the LUS, held by the class data filed
theRegistrar, for a registered DMS service that matches with the template. This
method is used by the DGs and workers in order to connect with a JTA (see section
3.3.4.1).

Class ServiceListener. This class is designed to perform discovery protocol (see
section 3.3.2.2 and section 4.1.1.1). The class ServiceListener is implemented as an
inner class for the class JINILibrary. The class simply implements the JINI
DiscoveryListener interface, which has two methods — discovered() and discarded().

The following implementation was inspired by W. Edwards [3].

public void discovered(DiscoveryEvent ev) {
ServiceRegistrar]] newregs = ev.getRegistrars();
for (int i=0 ; i<newregs:length ; i++) {
if (fregistrations.containsKey(newregs(i]))
assignRegistrar(newregsli});
J

}

public void discarded(DiscoveryEvent ev) . {
SewviceRegistrar(] deadregs = ev.getRegistrars();
for (int i=0 ; i<deadregs.length ; i++). {
registrations.remove(deadregs[i]);

}
}

Listing 4.2. Coding ServiceListener Class Methods

The discovered() method calls the method assignRegistrar() of the JINILibrary class
when a new LUS is found. In addition, it maintains a hash table that registers all the
LUS we have found. Whenever the discovery protocol informs for new LUSs, we
fetch them out of the DiscoveryEvent and call the assingRegistrar() method. This
implementation assures that the JINILibrary class will be asynchronously notified
whenever a LUS is found, i.e. the notification is done outside the main flow of control,

which is not blocked waiting the end of the discovery process.

90

4.2.2. Demand Dispatcher

In the course of this implementation, one of the principle questions was about the
implementation of the Demand Space (DS). Since we decided to integrate an already
existing Object Oriented Database (OOD), the questions were about the right choice
and integration. Our thorough investigation into JINI helped in our choice of
JavaSpace as a base for our Demand Space implementation (see section 4.1.1.4).
JavaSpace is not an OOD, although it does have OOD characteristics. JavaSpace
does not define a query language. Instead, objects are retrieved with templates. In
addition, JavaSpace provides a simple APl and defines a lightweight persistence
engine [7]. The advantage lies in the simple integration and programming model.
Hence, the choice of JavaSpace simplified the implementation of the Demand
Dispatcher (DD). The following elements describe the implementation of the Demand

Dispatcher package (see section 3.3.3).

Class DemandState. The class DemandState represents an enumeration type
used to distinguish the demands by their state. It defines the three states — pending,
in process and computed and implements functions for determining the state of a

demand. Listing 4.3 depicts the full implementation of the class.

public class DemandState implements Serializable {
private static final String STR_PENDING = "pending";
private static final String STR-INPROCESS = ‘inprocess”;
_private static final String STR_COMPUTED = "computed";
private String sState="";
public static final DeméandState PENDING = new DemandState(STR_PENDING);
public static final DemandState INPROCESS = new DemandState(STR_INPROCESS),
public static final DemandState COMPUTED = new DemandState(STR. COMPUTED);

public-boolean isPending() {
if (sState.‘cpmpareTo(STR_PENDING) == Q) return true;
else return false;

public boolean isinProcess() {
if (sState.compareTo(STR_INPROCESS) == 0) return true;
else return-false;

}

public boolean isComputed() {
if (sState.compare To(STR_COMPUTED) == 0) return true;
else return false;

_private. DemandState.(String newState) {
; sState = newState.toLowerCase();
}

Listing 4.3. Coding DemandState Class

91

Class DispatcherEntry. The class DispatcherEntry unifies the demands and
results (computed demands) as one unit (see section 3.3.3.2). The class instantiates
entries those are able to be stored in the Demand Space. Since our DS
implementation is based on JavaSpace, the class DispatcherEntry extends the
AbstractEntry JavaSpace’s class. This class extends the Serializable interface and
makes the entries storable in JavaSpace [7].

Listing 4.4 depicts the full implementation of the class.
public class DispatcherEntry extends AbstractEntry {
public Uuid oUniquelD;
public DemandState dState;
public Serializable oObject;

public DispatcherEntry () {
this(null);
}

public DispatcherEntry (Uuid-thelD) {
this(thelD, null);

}

public DispatcherEntry (Uuid thelD, Serializable theObject) {
//**™* The demand's state is pending par default-.
this(thelD, theObject, DemandState. PENDING),

}

public.DispatcherEntry (Udid thelD, Serializable theObject, DemandState riewState) i
oUniquelD =thelD; : :
00bject = theObject;
dState = newState;

}

Listing 4.4. Coding DispatcherEntry Class

The class implements only constructors, including the mandatory default no-
argument constructor (see section 3.3.3.2). In addition, the class defines three data

fields holding the demand, demand’s GUID and demand’s state.

Class DispatcherProxy. The class DispatcherProxy is the main class for the
Demand Dispatcher package (see section 3.3.3.2). This class implements the
IDemandDispatcher interface, which is the public interface of the package (see
Fig.3.12). The methods exposed by this interface form an abstraction layer on top of
JavaSpace. Therefore, the class DispatcherProxy implements the functions

necessary for operating on JavaSpace.

92

Listing 4.5 depicts the implementation of the write() method, which is used by the
IDemandDispatcher's methods writeDemand() and writeResutl(). This method wraps
a demand, passed as a parameter, in a DispatcherEntry object. In addition, it checks

the demand’s status, and if is computed generates a GUID for the demand.

private synchronized static Uuid write(Uuid thelD, Serializable theObject, DemandState theState)
throws DemandDispatcherException {

try {
Lease thel ease;
Uuid-oUniquelD;
DispatcherEntry theEntry;

if (theState.isComputed()) .oUniquelD = thelD;
else oUniquelD = getNewUniquelD();

theEntry.= new DispatcherEntry (oUniquelD, theObject, theState);
thel ease = oJavaSpace.write(theEntry, null, Lease. FOREVER);

return theEntry.olniquelD;
-catch(Exception ex) {

throw new DemanadDispatcherException (ex.getMessage());

}

Listing 4.5. Coding DispatcherProxy Class — write() Method

Listing 4.6 depicts the implementation of the read() method, which is used by the
IDemandDispatchers methods readDemand() and readResutl(). The method
searches JavaSpace for an entry that matches the template provided as a
DispatcherEntry variable theEntry. The template matches any entry that has an ID
equals to thelD and a state equals to theState. The read() method uses the
JavaSpace’s read() method to perform the search request. This request will block the

current thread until a matching entry is found.

private synchronized static Di spatcherEntry read(Uuid thelD, DemandState theState)
throws DemandDispatcherException {
try { S
DispatcherEntry theEntry;

theEhtry =new DispatcherEntry (thelD, null, theState),
theEntry = (DispatcherEntry) oJavaSpace.read(theEntry, null, Lease.FOREVER),

return theEntry;
catch(Exception ex) {

throw:new DemandDispatcherException: (ex.getMessage());

}

Listing 4.6. Coding DispatcherProxy Class — read() Method

93

JavaSpace is a JINI service. Therefore, the process to access JavaSpace is like
accessing any other JINI service. Listing 4.7 depicts the implementation of the
getJavaSpace() method, which is used by the class to access JavaSpace. The
method refers to the JINILibrary's findRegistrar() method to perform the unicast
discovery protocol.

private synchronized static JavaSpace getJa vaSpace(String hostName, String spaceName) {
fry {
LookupLocator lookup = null;
ServiceRegistrar registrar = null;
Entry entries[] = {new Name(spaceName)};
JavaSpace theSpace = null;

Class]] types = new Class[] { JavaSpace.class };
ServiceTemplate template = new Service Template(null, types, entries);

/2 Set the security:manager
if (System.getSecurityManager() == null)
System.setSecurityManager(new RAMISecurityManager());

registrar = JINILibrary findRegistrar(hostName);
theSpace = (JavaSpace)registrar.Iookup(template);

return theSpace;
catch (Exception ex) {

printOutError(ex.getMessage());
return-null;

Listing 4.7. Coding DispatcherProxy Class — getJavaSpace() Method

Listing 4.8 depicts the implementation of the cancelDemand() method, which
cancels any demand holding a specified ID. The method uses the JavaSpace’s take()

method, which removes the matching entry from the space.

public synchronized void cancelDemand(Uuid thelD)
throws DemandDispatcherException {
try {
DispatcherEntry theEntry;
theEntry = new DispatcherEntry (thelD; null, null);
theEntry = (DispatcherEntry) oJavaSpace.take(theEntry, null, Lease.FOREVER)

catch{Exceptionex) {
throw new DemandDispatcherException (ex.getMessage());

}

Listing 4.8. Coding DispatcherProxy Class — cancelDemand() Method

94

Threading. In our implementation, the DispatcherProxy instances run in a separate
thread of control (see Fig.3.16), due to the fact that most of the JavaSpace
operations involve remote calls, which may take a relatively long amount of time to
return. For example, the read() and write() methods could block the execution for an
infinite amount of time, since the DP- DS communication is synchronous (see section
3.4.2).

4.2.3. JINI Transport Agent

In the course of this implementation we were guided not only by our JINI Transport
Agent (JTA) design model (see section 3.3.4), but also by two technologies that
influenced tremendously our work. These technologies are JINI and RMI. Whereas,
JINI is the implementation base for our solution, RMI is convenient way to implement
remote communication between two Java objects (respectively two JINI services)
(see section 4.1.1.2). The JTA implementation as a JINI service was inspired by W.
Edwards [3].

Class JINITransportAgent. The class JINITransportAgent is the main class for the
JTA package (see section 3.3.4). The class implements the Runnable Java interface
and causes a simple thread to be started. This thread simply sleeps, but keeps the
JTA alive as long as the thread is. The main() method creates a JINITransportAgent
instance and starts the background thread to keep the application alive. In addition,
the class implements functions allowing connecting the JTA with the DD, creating the
JTA proxy and registering the JTA on the LUS (see section 3.3.4.1). The class
JINITransportAgent is implemented as a wrapper class that defines one nested
interface and two classes. The first of these is the I[JTABackendProtocol interface,
which is used by the JTA proxy to communicate with the remote back-end object (see
section 3.3.4.2). This interface extends the Remote RMI interface, i.e. it allows
communication between objects in different Java Virtual Machines (JVMs). Since the
interface is only used by the proxy and by the back-end remote object, it is an
implementation detail of the JTA and it should be hidden from clients. The other two
classes nested by the JINITransportAgent class are the JTABackend class and

JINITransportAgentProxy class.

95

Listing 4.9 depicts the implementation of the class’ constructor. The constructor
sequentially creates the JTA proxy, sets the security manager, connects the JTA with
the DD and registers the JTA on the found LUS. The security manager ensures that
any class that is loaded remotely does not perform illegal operations. In addition, the
constructor initializes some data fields. The data field sCodebase holds the code
location that will be provided to the clients in order to locate and download the proxy.
The data field lookupltem holds the item to be registered on the discovered LUS (see

the registerWithLookup() method below).

protected final String {] DISCOVER Y_GROUP_NAMES = {"gipsy"'};
protected static String sCodebase =-"*;
protected Serviceltem = lookupltem;
public:JINITransportAgent ()
throws I0Exception, ClassNotFoundException, JTAException {
ty {
ServiceRegistrar oRegistrar;
siPLocalAddress = GetlLocallPAddress();
sCodebase = "htip//" + sIPLocalAddress + ":8085/%;
lookupltem =:new Serviceltem (null, createProxy(), null);

/4% Set a security manager
if (System.getSecurityManager() == null)
System:setSecurityManager(new BMISecurityManager());

J/**** Connect with the Demand Dispatcher
connectDemandDispatcher();

/#*** Run multicast discovery. protocol and register with the'found LUS
: oRegistrar = JINILibrary.findRegistrarf(DISCOVERY_GROUP_NAMES); -
registerWithL.ookup (oRegistrar);

catch (Exceptione) : {
throw new JTAException (e.getMessage());
} .

}

Listing 4.9. Coding JINITransportAgent Class — Constructor

Listing 4.10 depicts the implementation of the registerWithLookup() method, which
registers the JTA on the discovered LUS.

protected synchronized void registerWithLookup(ServiceRegistrar registrar)
throws JTAEXxception {
ServiceRegistration registration = null;
try { registration = registrar.register{lookupltem, LEASE_TIME),}
catch (RemoteException e){
throw new JTAException (e.getMessage()); }
if (item.servicelD == null)
~ lookuplitem.servicelD = registration.getServicelD(),
" registrations.put{registrar, registration);
startAfterRegistration();
} F

Listing 4.10. Coding JINITransportAgent Class — registerWithLookup() Method

96

Listing 4.11 depicts the implementation of the createProxy() method, which creates
the JTA proxy. This method does the following:
e First, the method creates a back-end object and makes sure it is known to
the RMI activation system.
e Second, the method creates a proxy with a reference to the back-end object.
This allows the proxy to call back to it.

e Third, the method returns the proxy to the caller.

In addition, the method sets a security policy that the activation group running the

back-end service will use. The security policy is provided in a policy file.

protected static final String SECURITY_POLICY.: FILE = “activation.policy";

protected IJINITransportAgent createProxy() {

try {
Properties props = new Properties();
props.put(‘java.secunty.policy”, SECURITY_POLICY_FILE);
ActivationGroupDesc group = new ActivationGroupDesc(props, null);

ActivationGrouplD gid = ActiVationGroup.getSystem().registerGroup(group);
prntOut('2.Has been registering the group and get the ID");

ActivationGroup.createGroup(gid, group, 0);
String location = sCodebase;
MarshalledObject data = null;
ActivationDesc desec = new ActivationDesc("gipsy." +
"JINITransportAgent$JTABackend", location, data);
JTABackendProtocol backend = (JTABackendProtocol) Activatable.register(desc);
return new JINITransportAgentProxy(backend);
catch (RemoteException e) {
printOutError(‘Error creating backend object: " + e.getMessage());
return null;
catch (ActivationExceptione){
printOutError(*Problem with activation: " + e.getMessage());

e.printStackTrace();
return null;

}
}

Listing 4.11. Coding JINITransportAgent Class — createProxy() Method

Class JTABackend. The JTABackend class instantiates back-end objects. This
class implements the [JTABackendProtocol interface and extends the RMI's class
Activatable. The last makes the class’ methods callable from remote JVMs. The

implementation of the IJTABackendProtocol interface determines how the proxy will

97

communicate with the back-end. The following listing depicts the implementation of

this interface.

public JTABackend (ActivationID id; MarshalledObject data)
throws RemoteException {
super(id, 0);

public synchronized IWorkDemand fetchDemand(Uuid idDemand, String sSenderlP)
throws RemoteException, DemandDispatcherException {
DispatcherEntry oEntry = null;
IWorkDemand oDemand;
OEntry = oDemandDispatcher.readDemand();
oDemand = (IWorkDemand)oEntry.oObject;
return oDemand:

}

public synchronized IWorkResult fetchResult(Uuid idResult, String sSenderlP)
throws RemoteException, DemandDispatcherException {
DispatcherEntry oEntry = null;
IWorkResult oResult;
oEntry = (DispatcherEntry)(oDemandDispatcher.readResult(idResuit));
oResult = (IWorkResult)joEntry.oObject;
return oResult;

}

public synchronized Uuid carryDemand(IWorkDemand eDemand, String sSenderlP)
throws RemoteException, DemandDispatcherException {
Uuid oUniquelD;
oUniquelD = oDemandDispatcher.writeDemand(oDemand);
return oUniquelD;

}

public synchronized Uuid carryResuit(IWorkResult oResult, Uuid idResult, String sSenderlP)
throws RemoteException, DemandDispatcherException {
oDemandDispatcher.writeResult(idResult, oResult);
return idResult;

Listing 4.12. Coding JTABackend Class — IJTABackendProtocol Implementation

The TA proxy calls remotely the methods listed above. These methods use
internally the oDemandDispatcher data filed. This data field belongs to the class
JINITransportAgent, and holds a reference to an instance of the DispatcherProxy
class (see section 4.2.2). Therefore, the TA proxy calls the methods of the
DispatcherProxy via the JTABackend instance. The JTABackend class is nested in
the JINITransportAgent class, and it might access all of its data fields and methods.
Hence, the methods, exposed by the [JTABackendProtocol interface and
implemented by the JTABackend class, perform their server-side execution by using

the JINITransportAgent's attributes and methods.

Class JINITransportAgentProxy. This class plays the role of the JTA proxy. It

implements the Serializable interface, which is a requirement coming from the JTA

98

JINI nature [3, 7]. The Serializable interface assures that the proxy can be saved to a
byte stream and sent to the LUS, and then sent to the GIPSY execution node,
requiring TA assistance. In addition, this class implements the IJINITransportAgent
interface, which is the public interface used by the DGs and workers to communicate
with the JTA.

The JINITransportAgentProxy implements a data filed taBackend that keeps a
reference to the back-end object. This reference is received as a parameter by the
class’ constructor. The proxy uses this reference to communicate with the back-end.

The following listing depicts two of the methods implemented by this class.

private JTABackendProtocol taBackend;
publlc Serializable getDemand(Uu:d ldDemand) {
try {

IWorkDemand oDemand;
oDemand = taBackend.fetchDemand(idDemand, sClientlPAddr);

-return oDemand;.
catch (Exceptlon e)f

printQutError(e. getMessage())
retumn null ‘

}

public Serializable getResult{Uuid idResult) { :

try{
IWorkResult oResult :
oResult = taBackend fetchResult(/dResult sClientiPAddr);

return . oResult;

catch (Exception e) {
printOutError(e. getMessage(V;
return null;

Listing 4.13. Coding JINITransportAgentProxy Class — Partial Implementation

The methods depicted above use the taBackend data field to execute the server-

side JTABackend implementation.

4.3. Possible Implementations

In this section, we provide some guidelines for possible implementation of some of
the DMS’ components. In addition, some sample code is provided with a brief

description.

99

4.3.1. Dispatcher Proxy with Distributed Events

In our current DMS implementation, the Dispatcher Proxies (DPs) perform constant
reading in order to get the desired demands. Since the DispatcherProxy class
instances run in a separate thread of control (see Fig.3.16), this does not overload
the DP implementer — a TA, DG or worker. This solution is quite efficient due to the
fact that the DP is not designed to perform a parallel work (see section 3.4.2). In the
course of this thesis, we investigated different possible forms of parallelism for our
DP. As a result of this investigation, we found a solution to the problem, based on
distributed events.

In our current DMS implementation, the Demand Space (DS) is based on
JavaSpace, which is a JINI implementation (see section 4.1.1.4). We could possibly
implement the JavaSpace event-driven model that uses the distributed event model
of JINI. This model delivers remote events to remote listeners. Hence, our DS will act
as a source of events, where each entry written to the DS raises an event, notifying
the DS clients for the newly received entry. JavaSpace provides a mechanism that
allows the clients to register for events, raised by entries that match a specific
template [7]. Those clients should implement the RemoteEventListener API interface,
i.e. the DPs should implement that interface. The interface exposes a method called
notify(), which is invoked by JavaSpace in order to send a remote event.

Therefore, in our possible implementation the DS will compare each entry written to
the space with a template associated with a registration. This helps the DS to
determine whether a RemoteEventListener, implemented by a DP, should be notified
of the existence of a new entry that matches the template.

We propose an inner class called DemandListener that will implement the
RemoteEventListener interface. This class will be nested in the class
DemandDispatcher. The last will register the former for remote events. This
technique allows the DemandListener class to call internally the appropriate
DemadDispatcher’ methods when a demand is found. In general, there is no reason
that the class that registers for events cannot be the same class that receives them.
However, creating a separate inner class for the event listener results in a clearer
design.

Listing 4.14 depicts a possible implementation of the DemandListener class. The

class’ constructor uses the APl class UnicastRemoteObject to export the

100

DemandListener class instance to the RMI runtime [3, 21]. When JavaSpace raises
an event to signal the arrival of a matching entry, the space using the RMI runtime

will invoke the notify() method of the DemandListener.

public DispatcherProxy {
private class DemandListener implements RemoteEventListener {

private Uuid thelD;
private DemandState theState;

public DemandListener (DemandState theState, Uuid thelD) {

this.theState = theState;
this.thelD = thelD;

UnicastRemoteObject.exportObject(this);
}

public void notify(RemoteEvent event) {
if (theState.isPending())
readDemand();

else
readResult(thelD);

Listing 4.14. Coding DemandListener Class

The class accepts two parameters - demand state and unique id. Those parameters
are saved in local data fields, and used later by the notify() method. This method calls
the readDemand() or readResult() DispatcherProxy’s methods, depending on
whether the listener listens for demands or results. When the readDemand() and
readResult() methods are called by the notify() method, they will be not blocked for
reading, because there is an entry in the DS matching the template and the read
operation will be performed immediately. A possible implementation of the

DemandListener will result in modifications on the DispatcherProxy class.

4.3.2. Peer-to-Peer Transport Agent

In the course of the JINI investigation, we investigated another Java technology
called JXTA [30]. JXTA is a framework that implements the peer-to-peer (P2P)
communication model. In this model, the communication nodes have the same

capabilities and each one can initiate a communication session. Some peer-to-peer

101

communications are implemented by giving each communication node both server
and client capabilities [30].

Our possible P2P TA implementation will benefit from higher scalability,
performance and simplicity. P2P has been demonstrated to support as many
simultaneous users as the largest centralized systems [30]. Whereas, our current
JTA implementation performs well with demands of size up to 18 MB (see section
5.3.2), a possible P2P TA will be able to handle efficiently demands with larger size.

Before going over some possible P2P TA implementation aspects, we describe the
main JXTA concepts. The understanding of those concepts is critical for

understanding the P2P TA implementation.

Peer. A peer is a P2P communication point, i.e. it is a virtual representation of a
communication node. JXTA associates peers with special network services that they

provide. Usually one peer resides on a single machine.

Endpoint. JXTA uses the endpoints to address the peers. It is the basic addressing
method used by the JXTA applications to communicate with each other. An endpoint
implements a specific protocol of communication. A peer can have many endpoints.
Hence, a peer can implement different communication protocols, each being

associated with an endpoint.

Pipe. JXTA uses the pipes as a virtual connection between peers. A pipe is an
abstract layer on top of the communication protocols connecting two peers.
Sometimes the communication between two peers is not direct. Those peers are
connected via a gateway peers. The pipe makes the connection transparent, i.e. from

the peer’s perspective it is always straight.

The JXTA programming model has similarities with this exposed by JINI [30].
Hence, the possible P2P TA implementation will be similar to the JTA implementation
with respect to the JXTA architecture. For a complete P2P TA implementation

picture, we need more detailed analysis on JXTA, which is part of our future work.

102

4.4. Summary

in this chapter, we have presented the implementation of our design solution as

software. Whereas, our DMS design is generic and platform independent (except the

JINI Transport Agent design), our implementation is highly influenced by the
distributed middleware technologies JINI, CORBA, DCOM and .Net Remoting. We

have described some of the important aspects of these technologies in order to

introduce the reader to the DMS implementation. The following elements describe the

most important aspects of this implementation.

For our implementation, we adopted the Java programming language. This is
the same language used for implementing the other components of the
GIPSY.

In the course of this thesis, we implemented only the JINI Transport Agent
(JTA). The transport agents based on CORBA, DCOM and .Net Remoting are
part of our future work.

For the implementation of our Demand Space (DS), we relied on JavaSpace.
The JTA is built on top of JINI and RMI.

We investigated some possible implementations like event-driven Dispatcher
Proxy and Peer-to-peer Transport Agent, these being possible extensions of

our current implementation.

103

Chapter 5: Experimental Results

If you want and expect a program to work, you will be more likely to see a working
program—you will miss failures.
Cem Kaner et al.

This chapter contains selected test examples that address important issues like
heterogeneity, parallelism, scalability, reliability and very high accuracy of our DMS.
Wherever possible the experimental results obtained in the course of this testing are
presented in a comparative format. The chapter starts with the testing environment,

and goes over the test applications and obtained results.

5.1. Testing Environment

We performed all the tests on eight machines with an operating system varying from
Linux to Windows. JIN! ver. 2.0.1 and Java[TM] 2 Platform, Enterprise Edition 1.4
SDK were installed on all machines.

The following table represents the characteristics of the testing machines:

CcPU Speed RAM Operating System
PC Pentium Il 333 MHz 128 MB | Windows 2000 Server.
PC Pentium Il | 650 MHz | 256 MB |LINUX Red Hat 8.0
PC Pentum IV | 3.01 GHz | 512 MB |Windows XP Home Edition
PC Pentium IV | 280GHz | 1GB Windows XP Professional Edition

PC Pentium IV | 280GHz | 1GB Windows XP Professional Edition
PC Pentium IV | 2.80GHz | 1GB Windows XP Professional Edition
PC Pentum IV | 2.80 GHz | 1 GB Windows XP Professional Edition
PC Pentum IV | 280GHz | 1GB Windows XP Professional Edition

Table 5.1. Testing Machines

We chose machines from three generations, which demonstrates the low resource

needs required by the DMS.

104

5.2. JTA Worker

For our testing we created a prototype of the JTA worker called WorkerJTA. This
application runs as a standalone application and relies on the JTA for accessing the
DD. The WorkerJTA behaves like any worker. It gets pending demands from the DD,
computes them, and returns back to the DD their computed result. In all the tests, we
use the same worker, deployed on all the test machines. Right after its start, the
worker connects with the JTA and starts listening for pending demands.

Listing 5.1 depicts a code segment implementing demand processing.

DispatcherEntry oEntry;

IWorkDemand oDemand;

IWorkResult oResult;

((WINITransportAgent) oJ TA).setClientlPAddress(siPLocalAddress);

while (true).{
OEntry-= (DispatcherEntry)(((MINITransportAgent) oJTA).getDemand(});
oDemand = (IWorkDemand)(oEntry.oObject); ,
printOut("Demand received:name: "+ oDemand.sName +, id: "+ oEntry.oUniquelD);
oResult = oDemand.Execute(); ;
printOut(*Demand computed');

((IJINITransportAgent) oJTA).setResult(oResult, oEntry.oUniquelD);
printOut("Result dispatched");

Listing 5.1. Coding “Processing a Demand”

The oJTA variable is an object holding a reference to the JTA. The WorkerJTA uses
that reference to execute the getDemand() method in order to get a pending demand,
and the setResult() method in order to send a computed demand. Each demand has

an Execute() method that computes the demand and generates its result.

5.3. Test Application “Remote Screenshot”

With this application, we generate demands that in their computation process take a
screenshot of the host machine’s desktop. The application consists of a DG for
generating screenshot demands and demand implementation. The screenshot is
moved to the DG as a result of the demand execution, then the DG saves the
screenshot as a PNG file. The application uses Java’s image I/O package introduced
with version 1.4 to write the image file and Java’s java.awt.Robot class to capture the

desktop’s screenshot.

105

Listing 5.2 depicts a code segment implementing the “Take a screenshot”

procedure.

Toolkit theToolkit = Toolkit.getDefaultToolkit();

Dimension screenSize = theToolkit.getScreenSize();

Rectangle screenRect = new Rectangle(screenSize);
7/**** create screen shot

Robot theRobot = .new Robot();

thelmage = theRobot.createScreenCapture(screenRect);

theScreenShot = new Serializablelmage(thelmage);

Listing 5.2. Coding “Take a Screenshot”

The code above determines the resolution of the screen in pixels and copies that
information to a Rectangle object [23]. Then a Robot object is created and a screen
shot is made using the Rectangle object. Note that we convert the image to a
Serializablelmage, i.e. we make the image Serializable, which is necessary in order
to be transported via RMI. We created the Serializablelmage class as a helper class

for having the screenshot serialized.

5.3.1. Testing Heterogeneity

In this test, we run our workers on three different platforms — Windows XP, Windows
2000 and Linux Red Hat 8. The Windows XP machine hosts the DD and JTA. In
addition, on this machine we run the DG generating screenshot demands.
The following elements depict the test case scenario:
On machine one:
» Run the Demand Space — JavaSpace.
e RunaJTA.
e Run a local DG (does not need a JTA to connect with the DD), generating
screenshot demands.
» The DG generates three screenshot demands and sends them to the DD.
e Run a worker that connects with the JTA, gets a demand from the DD,
computes the demand (takes a screenshot of the machine’s desktop), and
sends the result back to the DD via the JTA.

e The DG reads all the three results and dumps them into files.

106

On machine two:
o Run a worker that connects with the JTA on machine one, gets a demand from
the DD, computes the demand (takes a screenshot of the machine’s desktop),
and sends the result back to the DD via the JTA.

On machine three:
e Run a worker that connects with the JTA on machine one, gets a demand from
the DD, computes the demand (takes a screenshot of the machine’s desktop),
and sends the result back to the DD via the JTA.

The tests succeed in taking screenshots from different OS platforms like Linux,
Windows 2000 and Windows XP. This demonstrates the heterogeneous nature of our

DMS. The testing results can be seen in Appendix A.

5.3.2. Testing DMS Capacity of Big Demands Migration

In this test, we run one worker on a Windows 2000 machine and one DG on a
Windows XP machine. The last hosts also the DD and JTA. The DG generates
screenshot demands. These demands, at the time of their execution, clone the
screenshot multiple times in order to increase the size of the result that must be
delivered back to the DG. The DG estimates the process time in milliseconds and the
size of the delivered result in Kb, and stores the data in a file. We performed seven
test cases with an increasing size of the delivered result. The testing results are
presented in a tabular as well as in a graphical manner.

The following table represents the testing results.

Test case Besult . T ime
size Kb (milliseconds)

Case 1 3087 26778
Case 2 6174 41319
Case 3 9261 60056
Case 4 12348 80576
Case 5 15435 101156
Case 6 18522 . 126312
Case 7 21609 error

Table 5.2. Results of “Testing DMS Capacity of Big Demands Migration”

107

Fig. 5.1 represents the testing results in a graphical manner. The numbers on X-
axis represent the values of the message (result) size obtained during the different
test cases. The Y-axis represents the time in milliseconds spent on processing a

snapshot demand.

140000 -
126312
120000 -
o 100000 -
o
=
g
o 80000 -
€
£ 60000
Q
E
-
40000 -
20000 -
O T T T B T T 1
3087 6174 9261 12348 15435 18522
Message size in Kb

Fig.5.1. Results of “Testing DMS Capacity of Big Demands Migration”

Result analysis. In this test, we used the DMS to migrate huge computed
demands (results) with a size varying up to 21609 Kb (approximately 20Mb). The
migration was successful for all the demands sized up to 18522 Kb (approximately
18Mb), and unsuccessful for the demand with a size of 21609 Kb. In the last case,
the migration was interrupted by an exception java.lang.OutOfMemoryError, which is
thrown when the JVM cannot allocate an object due to out of memory. Therefore, the
capacity of our DMS of migrating big demands is very high. The DMS is capable of
migrating objects with a size up to 18 Mb, without any additional memory allocation,
which is practically unlimited.

The curve shown in Fig. 5.1 depicts the time-size correlation in the migration of big
demands. This curve goes as a straight line, which necessitates a conclusion that the
migration time of big demands is proportional to the size, which reveals a cotrelation

with the network speed.

108

5.4. Test Application “Remote Pi Calculation”

One of the most important questions in our research was about the effectiveness of
our solution, which question being derived from the more empirical question about
the effectiveness of the distributed systems at all. In the computational world,
effectiveness is often associated with performance. Therefore, we had to prove the
higher performance of the GIPSY, when the computational tasks are distributed for
computation among multiple execution nodes, than when the computational tasks are
computed on one single execution node. Computing lightweight tasks is not a good
example for measuring this performance, since the time for their migration is an order
of magnitude higher than the time for their execution. Hence, we needed a task
model that is time-consuming and worthy to be migrated. In the course of this thesis,
we found the computation of Pi number an effective task model for proving the

effectiveness of our solution.

What is Pi? “Pi is a numerical constant that represents the ratio of a circle's
circumference to its diameter on a flat plane surface. The value is the same
regardless of the size of the circle” [39]. For most calculations, the value of Pi can be
taken as 3.14159. Pi can be computed to an infinite number of decimal places, which
makes it one of the few concepts in mathematics whose mention evokes a response
of recognition and interest in those not concerned professionally with the subject. It
has been a part of human culture and the educated imagination for more than twenty

five hundred years.

Computing Pi up to 5000 decimal places. There are many formulas for Pi
computation. With the test application called “Remote Pi Calculation”, we compute Pi
to 5000 decimal places by applying the formula proposed by John Machin (1706)
[43], who manipulated identities based on a series for the inverse tangent function
(ATN) to arrive at:

Pi = 16*ATN(1/5) — 4*ATN(1/239)
, and combining this identity with the series definition for ATN:
ATN(x) = x - x*3/3 + x"5/5 - x*7/7....

109

The application called “Remote Pi Calculation” generates computational demands
that compute Pi to 5000 decimal places (see Appendix B). The application consists of
a DG for generating “Pi calculation” demands and demand implementation. The DG
is able to calculate the demands locally or remotely. When the last takes place, the
DMS is used to deliver those demands to JTA workers, which compute those
demands remotely, and to deliver the computational result back to the DG. The DG
generates different number of demands to be computed, and calculate the overall

computation time.

5.4.1. Testing Effectiveness

In this test, we run five workers on five different Windows XP machines and one DG
on another Windows XP machine. The last hosts also the DD and JTA. All the
machines had equal computational resources (see Table 5.1). We performed five test
cases, where each test case includes local and remote computation of Pi. The
number of computations increases by one in each test case. Therefore, in the first
test case, we computed Pi one time (locally and remotely), in the second test case
we computed Pi two times (locally and remotely), and so on. In all the test cases, we
ensured the highest possible parallel computation of the remote demands. In each
test case, different JTA workers run on different machines did the remote
computations in parallel, and the DG did the local computations on another machine
sequentially.

The following table represents the testing results.

Number of Pi calculations Local Remote
One time 28762 52476
Two times 82138 52365
Three times 136116 53654
Four times 205806 54123
Five times 261446 55712

Table 5.3. Testing Results of “Computing Pi”

Fig. 5.2 represents the testing results in a graphical manner. The X-axis represents
the number of Pi computations, each computation being associated with a “Pi

calculation” demand. The Y-axis represents the time in milliseconds spent on

110

processing all the “Pi calculation” demands. Fig. 5.2 depicts two curves — one for the

local Pi computations and one for the remote Pi computations.

300000 -

/O 261446
250000

200000 205806
—o—Local

150000
//1361 16 —3— Remote
100000

/o@ 38
50000 W 55712
28762

0 : : . . .
One time Two times Three times Four times Five times

Time in milliseconds

Number of Pi calculations

Fig.5.2. Testing Results of “Computing Pi”

Result analysis. In this testing, we simulated the ideal environment, where the
execution nodes do nothing but the computation of demands and for each remote
demand, there is a single machine. In addition, all the machines have the same
computational resources. Hence, the testing results represent a pure performance
(effectiveness) estimation of our solution.

The curve depicting the local Pi computations (see Fig.5.2) goes as a straight line
crossing the zero point at an angle of 45 degrees. This line demonstrates a strong
correlation between the computation time and number of Pi calculations, i.e. the
computation time increases proportionally to the number of computations. This is a
corollary to the sequential computation of the local demands by the DG.

The curve depicting the remote Pi computations (see Fig. 5.2) goes also as a
straight line, but parallel to the X-axis. Hence, the computation time for all the remote
demands is a constant and does not depend on the number of demands (i.e. number
of Pi computations). This is a corollary to the parallel computation of the remote

demands by the JTA workers, each being run on a different machine.

11

In Fig.5.2, we observe that the remote computations of Pi are much more effective
than the local ones. In the first test case, the remote computation takes more time
than the local one, which is due to the time needed by the DMS for migrating the
demand to an execution node, and its corresponding result back to the DG. In all the
consecutive test cases, the local computations take much more time than the remote
ones. Since in the testing the number of machines is always sufficient for having all
the remote demands executed in parallel, the efficiency depends mainly on the
network performance.

The testing results reveal that the DMS used as a distributed middleware ensures
very high effectiveness in case we have heavy time-consuming demands, and this
effectiveness depends mainly on the number of machines hosting the JTA workers

and the network performance.

5.5. Test Application “Hundreds Demands”

With this application, we generate up to 10000 lightweight demands (1Kb size) that
simply generate a name consisting of a unique number and string. The application
consists of a DG for generating demands and demand implementation. The DG
calculates the overall process time for all the demands, and stores all the results of
the computed demands in a file (see Appendix C). With this application we aimed at

stress testing, which had to show how the DMS deals with a big amount of demands.

5.5.1. Testing Hot-plugging

In this test, we run all the DMS’ components on one Linux machine. With the test, we
aimed at the hot-plugging capability of our DMS. The following elements depict the
test case scenario:

¢ Run the Demand Space — JavaSpace.

e Runa JTA.

¢ Run a JTA worker.

¢ Run a DG “Hundred Demands” generating 10000 demands.

o The JTA worker connects with the JTA, and starts getting and executing

demands and generating resulits.

¢ Run another JTA worker.

112

e The second JTA worker connects with the JTA, and starts getting and
executing demands and generating results.

« Stop the first worker, the second worker continues to work as usual.

¢ Run second JTA.

¢ Run another worker that connects with the second JTA.

e The third worker starts getting and executing demands and generating results.

e Stop the first JTA.

e The second worker stops automatically, after detecting the absence of the first
JTA.

¢ The third worker continues to work.

e Meanwhile, the DG generates demands and receives results without being

affected by the hot-plugging and shut down of the DMS’ components.

In this test, we defined five DMS fictive states, determined by the active DMS’
components. The DMS transits from a state to a state when some inactive DMS’
components plug-in or some active DMS’ components plug-out the system.

The following table represents the testing results in a tabular manner.

DMS Active DMS' component yes/no
states DG JTA1 Worker1 Worker2 JTA2 @ Worker3
State 1 yes yes yes no no no
State 2 yes yes yes yes no no
State 3 yes yes no yes no no
State 4 yes yes no yes yes yes
State 5 yes no no no yes yes

Table 5.4. Results of “Testing DMS Hot-plugging”

Fig. 5.1 represents the testing results in a graphical manner. The X-axis represents
the active DMS’ components, each being associated with a different pattern. The Y-

axis represents the different states of the DMS.

113

State 5

State 4 E

State 3

States

State 2

State 1

Active Components

mDG @mJTA1 gWorker1 BWorker2 pOJTA2 OWorker3

Fig.5.3. Results of “Testing DMS Hot-plugging”

In this test, it is assumed that the workers and DG are components of the DMS,

since both run independently and plug-in and plug-out the DMS.

Result analysis. The testing results demonstrate a well-integrated hot-plugging

system, allowing different components to go in and out without affecting the work of

others.

5.5.2. Stress Testing

In this test, the DG generates up to 1000 lightweight demands (1Kb size). Here, we
run three JTA workers, each one run on a separate Windows XP machine. In
addition, we run a JTA and DD on another Linux machine. With this test, we aimed at
software qualities like thoroughness, scalability, reliability and accuracy.

We specified ten test cases, each one with an increasing number of demands,
starting from 100. In each test case, we calculated the process time for all the
demands and the average process time per demand. The testing results are
presented in a tabular as well as in a graphical manner.

The following table represents the testing results:

114

Test case Number of Process Time A\{el_‘age time

demands (milliseconds) (milliseconds)
Case 1 100 2233 22.33
Case 2 200 4056 20.28
Case 3 300 6519 21.73
Case 4 400 7821 19.55
Case 5 500 13730 27.46
Case 6 600 29302 48.84
Case 7 700 35221 50.32
Case 8 800 42190 52.74
Case 9 900 54829 60.92
Case 10 1000 82609 82.61

Table 5.5. Results of “Stress Testing”

Fig. 5.4 represents the correlation between the overall process time and the
number of demands. The X-axis represents the test cases, each being represented
by the number of processed demands. The Y-axis represents the overall process

time in milliseconds.

90000 -

80000 -

70000 -

60000 -

50000 -

40000 -

Overall process time in milliseconds

100 200 300 400 500 600 700 800 900 1000

Number of demands

Fig.5.4. Correlation: Overall Process Time — Number of Demands

Fig. 5.5 is similar to Fig 5.4 but represents the correlation between the average

process time per demand and the number of demands.

115

90.00 -

80.00

70.00

60.00 -

50.00 -

40.00 -

30.00 ~

20.00 -

Average process time in milliseconds

10.00 -

0. OO T T T T T T T T T 1
100 200 300 400 500 600 700 800 900 1000

Number of demands

Fig.5.5. Correlation: Average Pocess Time — Number of Demands

Result analysis. The testing results demonstrate a system behavior proving high
thoroughness, scalability, reliability and accuracy. From Fig. 5.5 we can see that up
to 400 demands the average processing time for a single demand is around 20
milliseconds. Starting from 500 demands, the average processing time increases in a
steady fashion to become 82 milliseconds for 1000 demands. This most likely is due
to one of the following JavaSpace issues:

e The serialization overhead.
e The overhead of the network call.
o The scalability in terms of responsiveness / number of entries in the space

e The scalability in terms of responsiveness / number of concurrent users.

Another possible interpretation of these results is the resources of the DD machine,
but it is less likely, since the machine is fast and with a sufficient resource amount. It
is good to note that no demand was dispatched twice or lost, and no result was
delivered to a wrong place. This demonstrates the high reliability and accuracy of our
DMS. This test points to the conclusion that our DMS is highly scalable, but with the
increase of workload, the average process time increases rapidly. Therefore, we

observe an inverse dependency between the amount of workload and performance.

116

5.5.3. Hyper Stress Testing

In this test, we run two DG generates each generating 5000 lightweight demands (1
Kb size). Here also, we run eight JTA workers in pairs, each pair run on a separate
Windows XP machine. In addition, we run four JTA, each being associated with two
workers, and the DD on another Windows XP machine. With this test, we aimed at

software qualities like thoroughness, scalability, reliability and accuracy.

Result analysis. All the demands were correctly dispatched, executed, and their
result returned back to the DG. This demonstrates the very high accuracy and
scalability of our DMS. The DMS migrated all the 10 000 demands forth and back in
1081446 milliseconds, which is 108.14 milliseconds average process time per

demand. These times include the demand(s) execution time as well.

5.5.4. Performance Testing

In this test, we run one DG generating 300 lightweight demands (1Kb size) in each
test case and different combinations of JTAs and JTA workers. The JTAs run on the
same machine as the DG and DD, which is a Windows XP machine (see Table 5.1).
The workers run as local (on the DD machine) or remote (on a Windows 2000 or
Linux machine). In this test, we performed ten test cases, where the test cases
differentiate in the combination of active JTAs and workers. With this test, we aimed
at performance. Our goal was to prove that there is an inverse correlation between
the overall process time and the number of JTAs and workers participating in the

demand-computation process. The following table represents the test cases.

Test Number of | Number Number of Number of Number of
case Demands | of JTAs |local workers | workers on Plll | workers on PIl
Case 1 300 1 1
Case 2 300 1 1
Case3 300 1 1 1
Case 4 300 1 1 1 1
Case 5 300 1 2 1 1
Case 6 300 2 2 1 2
Case 7 300 2 2 2 2
Case 8 300 3 3 2 2
Case 9 300 3 3 3 2
Case 10 300 3 3 3 3

Table 5.6. Results of “Performance Testing”

117

Fig. 5.6 represents the testing results as a correlation between the process time
and the number of JTAs and workers. The X-axis represents the test cases, each
being associated with a specific set of JTAs and workers. The Y-axis represents the

overall process time in milliseconds.

12000 4

/X1 0855
10000 / \
8000
4650 M
S.6089 A2 6159

000 5688

5168

4000

Time in milliseconds

2000

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case9 Case 10

Fig.5.6. Results of “Performance Testing”

Result analysis. Fig.5.6 reveals two specific test cases — case #2 and #8:
e In case #2, the overall process time is much longer than the time in the other
test cases.
e In case #8, we observe a slight increase of the process time, comparing to the

decreasing time steady tendency in the other neighbour test cases.

The difference between case #1 and case #2 is that in case #2 the worker is remote
one, but in case #1 the worker is local one. Therefore, the process time in case #2 is
a sum of the process time estimated in case #1 and the network time. The network
time is the time for moving the demands forward and backward through the network
connecting the execution nodes.

Comparing case #1 and case #2, the performance is negative. However, in case
#3, when the number of workers is two, we observe an increase of the performance -
the process time goes down to the level estimated in case #1. This is in consequence
of the parallel computation of demands, performed by the two workers. This makes

up for lost network time.

118

Starting from case #3, we observe a steady tendency of decreasing the demand
process time. Hence, we could conclude that the performance has a steady raise by
increasing the number of workers and JTAs. An exception is case #8, which
demonstrates an increase of the time due to the additional run of two processes — the
JTA and worker, on the DD machine. These processes take CPU time and slow

down the overall DD machine performance.

5.6. Summary

The experimental results confirm the high quality of our solution. By performing
different tests, we have demonstrated that the implementation strictly follows the
design and our DMS successfully fulfils the requirements stated in section 2.1. All the
results are presented in a tabular and graphical format with given analysis.

The heterogeneity experiments demonstrate that our DMS is able to connect
execution nodes run on different platforms.

The capacity experiments demonstrate that the current DMS implementation is able
to transport demands with a size up to 18 Mb. For demands with a larger size, we
need additional JVM memory extension.

The hot-plugging experiments demonstrate the high flexibility of our solution in
terms of low coupling. All the DMS’ components are “volunteers” that simply plug in
and out the DMS at any time, without affecting the reliability of the system and the
work of others.

The stress experiments demonstrate that the DMS is able to process thousands of
demands with very high accuracy and reliability. Those experiments demonstrate
also that our DMS is very scalable. The DMS is capable to accept an increasing
workload, but with decreasing performance. The average processing time per
demand increases rapidly with the increase of workload.

The effectiveness experiments demonstrate that the DMS, as a distributed
middleware incorporated in the GIPSY ensures high effectiveness in case of heavy
time-consuming demands. This effectiveness is in proportion to the time needed for
the demand computation.

Finally, the performance experiments demonstrate direct proportionality between

the number of active JTAs and workers and performance.

119

Chapter 6: Related Work

In theory, there is no difference between theory and practice.
But, in practice, there Is.

Jan L.A. van de Snepscheut

In this chapter, we review related to our research work. The following elements
describe some research projects pursuing similar to demand (object) migration

themes.

6.1. Selected Scientific Projects

GLU. GLU [46] is a high-level system for parallel programming. GLU is a multi-
language programming environment that relies on C and FORTRAN for the
specification of its computational functions. In addition, Lucid [47] is used implicitly for
expressing the parallelism of computational functions. GLU implements the eduction
model of computation [47]. The basic eductive implementation architecture of GLU is
called Centralized Generator Architecture (CGA). The CGA consists of a single
generator and several workers, which architecture is very similar to the GIPSY
architecture. The generator is able to propagate demands that must be executed by
the workers. Like the GIPSY and DMS, the CGA incorporate hot plugging in terms of

dynamic addition and deletion of workers.

DOME. DOME [48, 49] is an object based parallel programming environment for
heterogeneous distributed networks. DOME exposes a library of distributed objects
for parallel programming, where the programs are automatically distributed over a
heterogeneous network. The DOME relies on PVM [50] for its process control and
communication. Hence, the parallel computation is possible across the nodes of the
current PVM machine. In order to achieve a parallel execution, DOME distributes the

code and data among the PVM nodes.

Erlang. Erlang [51] is a concurrent functional language also used for distributed
applications. Although its distribution mechanism is based on traditional concepts, its
model does not need an interface description language (IDL). Distributed Erlang is

used in implementing large software projects within the Ericsson group.

120

Mozart. Peter Van Roy et al. talk in [52] about a reliable object migration protocol that
is part of the implementation of the Mozart [53] programming system. Mozart is an
advanced development platform for intelligent, distributed applications. Mozart is
base on the Oz language [54]. Oz is a concurrent object-oriented language with
dataflow synchronization. The object migration protocol described in [52] is a
centralized object migration mechanism that is able to “predict the network behavior”
[52] with a fault tolerance policy. In this protocol, each object has a “home site”, to
which all migration requests are directed. The protocol defines “freely mobile” objects
that have locally executable methods, i.e. each method executes in the thread that
invokes it. The protocol works with so-called distribution graphs [52]. A distribution
graph consists of active entities called nodes. The nodes have an internal state that
can send and receive messages. All graph transformations are atomic and initiated
by the nodes. The protocol uses a global unique name scheme to identify uniquely

the nodes.

6.2. Commercial Projects

Reptile. Reptile [55] is a content exchange mechanism, based on peer-to-peer [30]
and Web technologies. Reptile enables users to manage information in a distributed
uniform environment. Reptile provides a distributed and secure mechanism for

finding, accessing, and selectively sharing information.

VistaRepository. VistaRepository [56] provides distributed or centralized storage
and scalable, flexible, secure, and unified access to resources (objects of different
kinds), by exposing a peer-to-peer architecture (based on JXTA [30] technology).
VistaRepository supports different storage types like file systems and RDBMS, by
relying on framework that allows hot plugging of services. VistaRepository software is

a Java program that works with a set of operational nodes.

Inferno. Inferno [57] is an operating system designed to be used in network
environments. It provides interface to resources, scattered across the network, which
allows the creation of distributed applications. Whereas in Inferno the interface to

resources is specified at design time, the location of the code is assigned at run-time.

121

Chapter 7: Conclusion

A problem well stated is a problem half-solved.

Charles Kettering

In this chapter, we review our solution and draw conclusions.

7.1. Architecture

In the course of this thesis, we explored a process for engineering a software solution
to the problem of demand migration in the GIPSY. In this thesis, we presented our
generic approach to this problem and proposed a solution in the form of Demand
Migration Framework (DMF).

Our DMF is a generic scheme for migrating objects in the form of functional
demands, in a heterogeneous and distributed environment. The DMF has a layered
architecture establishing a context for designing component-driven Demand
Migration Systems (DMS) with loose coupling. The DMF layers fall into two major
groups — Demand Dispatcher (DD) and Migration Layer (ML) (see Fig.2.1). The DMF
relies on them to form architecture applicable to asynchronous communication
systems, where the demands are delivered in a demand-driven manner, i.e. when
they are asked. The DD incorporates a persistent storage mechanism called Demand
Space (DS), for all the demands. The DS incorporates an Object Query Language
(OQL) for querying the stored objects. A Presentation Layer (PL) brings the DS
functionality to a more generic level. The ML establishes a high fault-tolerant and
secure context for migrating objects from one node to another. It is designed in the
form of messengers called Transport Agents (TA).

The DMF necessitates a design of standalone components that do not synchronize
their data sharing, i.e. the DMF enables hot-plugging and asynchronous
communication. By granting each demand with a GUID, the DMF assures at /east
once-delivery semantics.

The proposed DMF exposes a generic architecture with very high interoperability,
which reveals a new communication model able to transport not only data but also

real objects.

122

7.2. Design, Implementation and Resuits

in the course of this thesis, we applied the DMF to design, and succeeded to
implement a DMS based on the distributed computing technologies JINI, CORBA,
DCOM and .Net Remoting (see Fig.2.2). The DMS is a component driven system
with loosely coupling — the components are highly independent. The DMS’
components could stop, shutdown or start without affecting any other GIPSY’
artifacts, which fulfills the requirement for hot-plugging.

The DMS inherits the DMF layered structure with the two major groups of
components - DD and TAs. They both work together to form the DMS as a demands
propagator. The DD exposes for dispatching all the demands. The TAs contact the
DD in order to deliver demands from Demand Generators (DGs), get and deliver
those demands to workers, and deliver results, being associated with those
demands, back to the DD and DGs (see Fig.2.3). In our design solution, the DD
incorporates two components — Dispatcher Proxy (DP) and DS. Both are inherited
from the DMF, and the DP is the design solution for the PL.

The DD distinguishes the demands by their state — in process, pending and
computed. The TAs and workers work with a copy of an in process demand. The DD
keeps the original demand in the DS as long as its result (computed demand) is not
received. This fault-tolerance policy, assures that any demand will be re-dispatched,
if an errorenous event occurs.

The TAs form a multiplatform transport protocol. They are based on different
distributed technologies like JINI, DCOM, CORBA and .Net Remoting. A TA works
independently for its own, with no concerns in the work of other TAs. The TAs are
able to cope with the DD, DGs and workers and deliver demands and results to their
recipients.

In the course of this thesis, we implemented a TA based on JINI. JINI is a Java
based distributed technology and fits naturally to GIPSY, since the last is Java based
as well. In our implementation, the DMS relies heavily on JINI, which is the core for
two major DMS’ contributors — the DS and JTA. The JTA is a JINI service, and any
worker or DG that intends to use the JTA must adhere to its interface. For the
implementation of the DS, we relied on JavaSpace. The last is a JINl implementation

having all the characteristics of an object-oriented database.

123

With a DMS implying different distributed technologies we achieved platform
interoperability, since our solution is able to connect GIPSY nodes spread among
different platforms. In addition, the use of multiple distributed technologies, with the
ability of adding new ones, turns our DMS into an easy-upgradeable system.

Since the DMS relies on the DS for keeping all the pending demands and results, it
does not depend on the recipients — DGs and workers. They will receive their resuits
and demands when they apply for them, which is an implication of asynchronous
messaging. In addition, the DMS does not discriminate the workers and demands by
importance. Hence, the DMS facilitates the workload distribution - any worker or DG
will be served in a similar manner, when it is possible.

The DMS is well secured system. It adheres to the traditional Java security
mechanism and distributed technology implemented security.

In the course of this thesis, we performed experimental testing, and demonstrated
that our solution fulfils the requirements stated at the beginning of this thesis. The
expetimental results demonstrated the heterogeneity, hot-plugging, high scalability,
high accuracy and reliability of our DMS. The experimental results reveal some
problems, mostly related to performance and efficiency. Here we should note that our
solution deals only with demand migration aspects and does not deal with load
balancing and efficiency aspects. The last are to be tackled by other subsystems of
the GIPSY and future subsystems of the DMS.

The DMS plays an important role in the GIPSY, but also it has a promising future as
an independent communication system, able to transport data and behavior in

heterogeneous environments.

124

Chapter 8: Future Work

Abstraction is one of the fundamental ways that we as humans cope with
complexity.
Grady Booch

This section describes future work that will be performed as a direct consequence of

the research undertaken in the course of this thesis.

8.1. Architecture

The proposed DMF/DMS architecture does not include any performance
enhancements. With our future work on this architecture, we are aiming at

performance and load balancing issues.

8.1.1. Dispatcher Supervisor

Our DMF does not incorporate any monitoring tools. We have an idea of
implementing an Observation Layer (OL), which will have some functions for
monitoring and control over the DD. Such a layer will tackle with load balancing and
efficiency aspects of the demand dispatching. A possible OL component could be a
garbage collector for all the old demands and results, which have been not

dispatched for a certain amount of time.

8.1.2. DD Cache

In the computational world, the presence of a cache system enhances the overall
performance. We have an idea of implementing a Demand Dispatcher Cache (DDC)
layer that will be responsible for a great deal of the system performance
improvement. The DDC will be an internal DD’s subsystem that will stay on top of the
DS, and that will act as a buffer for recently-used computed demands. This will
improve the performance, since any subsequent demand having stored result in the
DDC will be not processed for dispatching. Instead, the DD will simply return its

computed result, stored in the DDC.

125

8.2. Design and Implementation

All the architectural enhancements will be designed and implemented. Meanwhile,
we continue with the completion of our current architecture, which includes the

following aspects of design and implementation.

8.2.1. Transport Agent Based on CORBA, DCOM and .Net Remoting

Concerning the TAs, we are going to design and implement TAs based on DCOM,
.Net Remoting and CORBA. This work requires integration of these technologies with

Java. The following elements describe some possible solution to the problem:

VisiBroker for Java. For the CORBA integration, we are planning to use a popular
commercial ORB. In addition, we are going to use the IDL to define interfaces of our
CORBA TA. A possible ORB is Borland VisiBroker for Java [31]. This ORB has been

licensed by several different companies, including Oracle, Netscape, and Novell.

JACOB project. For the DCOM integration, we could use some kind of bridge
between the COM objects and Java. A possible solution is the JACOB project [32].
This open-source project connects JAVA and COM and allows calling of COM

automation components from Java.

Ja.NET. For the .Net Remoting integration, we could rely on Ja.NET, which is a
“bridge between the world of Java and the world of Microsoft. NET” [33]. Ja.Net
generates Java proxies that expose or consume components using the .Net

Remoting protocol.

The applications mentioned above fall in the group of third-party software. This
decreases the interoperability and independence of our solution. Fortunately, Java
allows calling non-Java code, usually referred to as native code. Therefore, we could
create our own integration library that will call the functions of the CORBA TA, DCOM
TA and .NET Remoting TA, all being implemented in C++.

In addition to the TA implementations described above, we are planning to

implement the Java Message Service (JMS) as a possible alternative for the JTA.

126

Another alternative for the JTA will be the P2P TA. This TA will be similar to the
current JTA implementation, but implementing P2P communication protocol (see
section 4.3.2).

8.2.2. Security Enhancements
Colouris in [17] talks in general about the security of distributed systems and covers

in details encryption and key distribution, which we are planning to implement in our

future DMS security model.

127

References

[1]

(2]

(9]

(10]

[11]

J. Paquet, P.G. Kropf, “The GIPSY Architecture”, LNCS, Vol. 1830, p. 144—
153, 2000.

M. Fukuda, L.F. Bic et al. “Messages versus messengers in distributed
programming”, ICDCS, p. 347, 1997.

W. K. Edwards, “Core JINI”, Upper Saddle River, NJ, Prentice Hall PTR, 1999.

W. Emmerich, “Engineering Distributed Objects”, Baffins Lane, Chichester,
Wiley, 2000.

J. Paquet, "Intensional Scientific Programming”, PhD Thesis, Laval University,
Quebec, Canada, 1999.

J. Day, “The (un)revised OSI reference model”’, ACM SIGCOMM Computer
Communication Review, vol. 25, p. 39-55, Oct 1995.

R. Flenner, “Jini and JavaSpaces Application Development”, Indianapolis,
Sams Publishing, 2001.

N. Carriero and D. Gelernter, “How to write parallel programs: A guide to the
Perplexed, ACM Computing Surveys, vol. 21, no. 3, p. 323 — 357, Sept. 1989.

C. Amza, A.L. Cox et al., “TradeMarks: Shared Memory Computing on
networks of Workstations”, Computer, vol. 29, no. 2, p. 18-28, Feb 1996.

“Process migration”, ACM Computing Surveys, vol. 32, no. 3, p. 241-299,
Sept. 2000.

K. Pingali and G. Arvind, "Efficient Demand-driven Evaluation. Part 1," ACM
Transactions on Programming Languages and Systems, vol. 7, no. 2, p. 311-
333, 1985.

K. Pingali and G. Arvind, "Efficient demand-driven evaluation”, part 2, ACM
Trans. Programming Language Syst., vol. 8, p. 109-139, Jan. 1986

R. Orfali and D. Harkey, “Client/Server Programming with Java and CORBA”,
Wiley, 1998.

R. Grimes and R. Grimes, “Professional DCOM Programming”, Wrox Press
Ltd., Birmingham, UK, 1997.

128

[15]

[16]

[17]

[18]

[19]

(20]

(21]

(22]

[23]

(24]

[25]

(26]

[27]

(28]

[29]

R. G. G. Cattell and D. K. Barry, “The Object Database Standard: ODMG 3.0,
Morgan Kaufmann, 2000.

I. Rammer and M. Szpuszta, “Advanced .Net Remoting”, Apress Publishers,

ver. 2, 2004.

G. F. Coulouris and J. Dollimore, “Distributed systems: concepts and design”,
Boston, MA, Addison-Wesley, 1994.

Philippe Kruchten, “Architectural Blueprints—The “4+1” View Model of

Software Architecture”, Rational Software Corp., 1995.

Craig Larman, “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process”, Prentice Hall PTR,
2001.

E. Gamma et al, “Design Patterns: Elements of Reusable Object-Oriented

Software”, Addison-Wesley Professional, 1994.
Jim Farley, “Java Distributed Computing”, O'Reilly, 1998.

M. Pistoia et al, “Enterprise Java (TM) Security: Building Secure J2EE(TM)
Applications”, Addison-Wesley Professional, 2004.

“Java (TM) 2 SDK, Standard Edition Documentation”, ver. 1.4.2, Sun

Microsystems inc., 2003.

M. Hicks et al, “Transparent communication for distributed objects in Java”, In
proceedings of the ACM 1999 conference on Java Grande, p.160-170, San

Francisco, California, June 1999.
“Persistent State Service Specification”, ver. 2, OMG, 2002.

N. W. Cluts, “A “COM artist” shares the secret of creating ActiveX controls”,
MSDN Library, Microsoft Corp., 1997.

S. F. Wilson, “MCSD Training Kit for Exam 70-100: Analyzing Requirements

and Defining Solution Architectures”, Microsoft Press, 1999.

J. Richter, “Applied Microsoft .Net Framework Programming”, Microsoft Press,
2002.

Mark Aliman, “An evaluation of XML-RPC”, ACM SIGMETRICS Performance
Evaluation Review, vol. 30, no. 4, p. 2 - 11, March 2003.

129

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

D. Brookshier et al, “JXTA: Java P2P programming”, Indianapolis, Sams
Publishing, 2002.

“Borland Enterprise Server 6.5 VisiBroker Edition technical overview”, Borland
Corp., 2004.

Dan Adler, “The JACOB Project: A Java-COM Bridge”, ver. 1.8, 2004.

“Application Interoperability: Microsoft .Net and J2ee (Patterns & Practices
Series)”, Microsoft Press, 2004.

“Jini Architectural Overview”, Sun Microsystems, Inc, California, 1999.

J. Paquet and J. Plaice, “Dimensions and functions as values”, In proceedings
of the Eleventh International Symposium on Lucid and Intensional

Programming, Sun Microsystems, Palo Alto, California, May 1998

J. Paquet and J. Plaice, “The semantics of dimensions as values”, In

Intensional Programming Il, World Scientific, 1999

B. Lu, P. Grogono and J. Paquet, “Distributed execution of intensional
multidimensional programming languages”, In Parallel and Distributed
Computing and Systems - PDCS 2003, Marina Del Rey, California, 2003

J. Plaice and J. Paquet. “Introduction to intensional programming”, /n

Intensional Programming I, p. 1-14, World Scientific, Singapore, 1996

“Pi”, Whatis?com, IT encyclopedia and learning center,

http://whatis.techtarget.com/

J. Rumbaugh et al, “The Unified Modeling Language: Reference manual’,
Addison-Wesley, 2000

Garry Nutt, “Operating Systems — A modern perspective”, ver. 2, Addison-
Wesley, 2002

“CORBA Basics”, Object Management Group Inc., 2005

“Machin’s Formula”, MathWorld at Wolfarm Research, 2005,

http://mathworld.wolfram.com/MachinsFormula.htmi

R. Jagannathan and C. Dodd, “GLU Implementation Architectures for
Heterogeneous Systems”, Ninth International Symposium on Languages for

Intensional Programming (ISLIP'96), Tempe, Arizona, May 1996

130

[47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

N. Lynch, “Distributed Algorithms”, Morgan Kaufmann Publishers inc., 1996

R. Jagannathan and C. Dodd, “GLU Implementation Architectures for
Heterogeneous Systems”, Ninth International Symposium on Languages for

Intensional Programming (ISLIP), Tempe, Arizona, May 1996.

E. A. Ashcroft, “Dataflow and eduction: Data-driven and demand-driven
distributed computation.”, In J. W. deBakker, W.P. deRoever, and G.
Rozenberg, editors, Current Trends in Concurrency, number 224 in Lecture

Notes on Computer Science, pages 1 -- 50. Springer-Verlag, 1986

A. Beguelin et al., “Dome: Distributed object migration environment”, Technical
Report CMU-CS-94-153, Carnegie-Mellon University, May 1994

J. N. C. Arabe et al., “Dome: Parallel programming in a heterogeneous muilti-
user environment.”, Technical Report CMU-CS-95-137, School of Computer
Science, Carnegie Mellon University, Pittsburgh, April 1995.

A. Geist et al., “PVM: Parallel Virtual Machine A Users' Guide and Tutorial for
Networked Parallel Computing.”, MIT Press, 1994

C. Wikstrom, “Distributed programming in Erlang.”, In PASCO94 - First

International Symposium on Parallel Symbolic Computation, Linz, Sept. 1994

Van Roy et al., “A lightweight reliable object migration protocol”, Lecture Notes

in Computer Science, vol. 1686. Springer Verlag, 1999
Mozart project, http://www.mozart-oz.org

Seif Haridi and Nils Franzen, “Tutorial of Oz”, Technical report, Draft, In Mozart

documentation, available at http://www.mozart-oz.org, 1999
Reptile project, http://reptile.openprivacy.org

VistaPortal Software inc., VistaRepository project,

www.vistaportal.com/products/vistarepository.htm

Lucent Technologies Inc., Inferno project, http://www.vitanuova.com/inferno

131

Appendix A: Results of Heterogeneity Testing

CFle B View Bermid Goo Belp
DerandDLigpatohardpaat. juvd sTart jra. bat Harker JTA.¥1ezb00, ovt
DeaindS tate, jave BLACT BN BorkBesult. Java
Dispatcherfntey. java stari merkerjta.bat
Cemeratorbunay. java start workes.oh
[rost@Clary dimage}# sk starr_warker.sh
+ Fava ~op SRless FindE 0 00/ Lik/ Jini-core. Jar 1 es dini2 0 002 %S Jini-ext
Jarssfiles s fni2 o peds ik s sun-utd Lo jar S lesdclient ~Rgava. secueity. palicy -
cesmptin_dama desspalicyspolicy gipsy MorkenITA
b Eater the 1P addeess of 4 JIND Leokip sereine: glaryodell
Searck for GIPRY Lockup service on [P addresg: Glory dell
WarkerIT4 1P: 19X 15K, 10
iPerforn Unicast Biscovery om 1P: Slery dell
The Lovkup Service has besn foand:
Tookap T AREF4219-T7 61 -4326-8d65-a0d227 762307
Lookup URL: jioir//6lory pelly
A JINITransportdgent Service has been Tound.

&4
*;

R SRR B L EH R TEAE SR PR AFD AT RESARCG A A VEARR

Warkerdra is workisyg ...
Dremarii¥spate. D P T PPN
Ja

$ AINTTranspertAgeniFoosy message: FIA getlerand i runnnisg ...

© shed_canid_cliant. Wk Demand,Javs Wok ey java

. W bREd..

1
epwice bead

NLFeuny ¥ -
Ehpm s S0 0 LEE ae 0 F T

SuabTose Orpsey
Pty

A screenshot taken from the Windows 2000 machine with IP: 192.168.8.7

132

o
A' Lo
i TE sibveinn ol o LWL danbey

p e tar oLt Srnard K st ek L

gt et tisage vend HIBILIN A Hiv i B Lukin
T G ELU LU S SISPIRTEY BT

LETETAC L Th Y b Y3 Yl BRI ATE HRE R N T e 1o

AT e co oxs Cayst R g
(L Gt e
Htiranars Fag Kot RS E 304
A% 4o BRGR I\R.IH Bk
At Py netayes SR gnt e e i

= - bgaely bt samil pary derRl wened KAU ¥ - R R S 1 AT &
L e e e e 1 T N S
e w1

prthroieel apicag Gosea ey B ongser L
Gevther s izy <1 i

UL E]

e
Tens FRFLE AL o Taage s i Nary wrpliinacing fle
pacasgpriboend e itazsnt 1.6)Mvn wiEak ks tbs 9ol

o re s :r)»vrn<r| Hprane Prsenonre £ ey i H A

b e wﬁj ok

i

r’})
a4 sl Grd GHPRY En T Mres

+

P9 T porirpead Bannl warsage s LI eans perrbient fox

‘ b
IS FRUEL PIONGOAY RAPINBVIMI I A S S e s

ML Y rns partingant me soaant ADE §xta lExised Lo raantiriss
1y gt Bend o sexkn? JUE Sminhibenecd Lu masiitg

oy SR
P

R 5 Ve i

RO .

A screenshot taken from the Windows XP machine with IP: 192.168.8.6

133

Appendix B: Calculating Pi to 5000 Significant Digits

Start time: 1112720108735

192.168.8.5 , Pi calculation:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644
288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245
870066063155881748815209209628292540917 153643678925903600113305305488204665213841469519415116094330572
703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491208336733
624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271
452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121
200219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469
083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554
687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858
632788659361533818279682303019520353018529689957736225994138912497217752834791315155748572424541506959
508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035637076601047
10181942955596198946767837449448255379774726847 1040475346462080466842590694912933136770289891521047521
620569660240580381501935112533824300355876402474964732639141992726042699227967823547816360093417216412
199245863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806
654991108818347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147
79350141441973568548161361157352552133475741849468438523323907394 1433345477624 168625189835694855620992
192221842725502542568876717904946016534668049886272327917860857843838279679766814541009538837863609506
800642251252051173929848960841284886269456042419652850222106611863067442786220391949450471237137869609
563643719172874677646575739624138908658326459958133904780275900994657640789512694683983525957098258226
205224894077267194782684826014769909026401363944374553050682034962524517493996514314298091906592509372
21696461515709858387410597885959772975498930161753928468 1382686838689427741559918559252459539594310499
725246808459872736446958486538367362226260991246080512438843904512441365497627807977156914359977001296
160894416948685558484063534220722258284886481584560285060168427394522674676788952521385225499546667278
23986456596 1163548862305774564980355936345681743241125150760694794510965960940252288797108931456691368
672287489405601015033086179286809208747609178249385890097 1490967598526 13655497818931297848216829989487
296588048575640142704775551323796414515237462343645428584447952658678210511413547357395231134271661021
359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687
519435064302184531910484810053706146806749192781911979399520614196634287544406437451237181921799983910
159195618146751426912397489409071864942319615679452080951465502252316038819301420937621378559566389377
870830390697920773467221825625996615014215030680384477345492026054146659252014974428507325186660021324
340881907 1048633 173464965145390579626856 100550810665879699816357473638405257 14591028970641401109712062
804390397595156771577004203378699360072305587631763594218731251471205329281918261861258673215791984148
488291644706095752706957220917567116722910981690915280173506712748583222871835209353965725121083579151
369882091444210067510334671103141267111369908658516398315019701651511685171437657618351556508849099898
59982387345528331635507647918535893226 185489632 1329330898570642046752590709154814165498594616371802709
819943099244889575712828905923233260972997 120844335732654893823911932597463667305836041428138830320382
490375898524374417029132765618093773444030707469211201913020330380197621101100449293215160842444859637
669838952286847831235526582131449576857262433441893039686426243410773226978028073189154411010446823252
716201052652272111660396665573092547110557853763466820653109896526918620564769312570586356620185581007
293606598764861179104533488503461 136576867532494416680396265797877185560845529654 126654085306143444318
586769751456614068007002378776591344017127494704205622305389945613140711270004078547332699390814546646
458807972708266830684328587856983052358089330657574067954571637752542021149557615814002501262285941302
164715509792592309907965473761255176567513575178296664547791745011299614890304639947132962107340437518
957359614589019389713111790429782856475032031986915140287080859904801094121472213179476477726224142548
545403321571853061422881375850430633217518297986622371721591607716692547487389866549494501146540628433
663937900397692656721463853067360965712091807638327166416274888800786925602902284721040317211860820419
000422966171196377921337575114959501566049631862947265473642523081770367515906735023507283540567040386
743513622224771589150495309844489333096340878076932599397805419341447377441842631298608099888687413260
4444

End time: 1112720161211

Duration: 52476

134

Appendix C: A Stress Test Record

Start time: 1112732098496

192.168.8.6 , Result_1
192.168.8.7 , Result_2
192.168.8.10 , Result_3
192.168.8.6 , Result_4
192.168.8.6 , Result_5
192.168.8.6 , Result_6
192.168.8.6 , Result_7
192.168.8.6 , Result_8
192.168.8.6 , Result_9
192.168.8.6 , Result_10
192.168.8.6 , Result_11
192.168.8.6 , Result_12
192.168.8.6 , Result_13
192.168.8.6 , Result_14
192.168.8.6 , Result_15
192.168.8.6 , Result_16
192.168.8.6 , Result_17
192.168.8.6 , Result_18
192.168.8.6 , Result_19
192.168.8.7 , Result_20
192.168.8.6 , Resuit_21
192.168.8.6 , Result_22
192.168.8.7 , Result_23
192.168.8.6 , Result_24
192.168.8.7 , Result_25
192.168.8.6 , Result_26
192.168.8.7 , Result_27
192.168.8.10 , Result_28
192.168.8.6 , Result_29
192.168.8.7 , Result_30
192.168.8.10 , Resuit_31
192.168.8.7 , Result_32
192.168.8.10 , Result_33
192.168.8.7 , Result_34
192.168.8.6 , Result_35
192.168.8.7 , Result_36
192.168.8.6 , Result_37
192.168.8.10, Result_38
192.168.8.7 , Result_39
192.168.8.10, Result_40
192.168.8.6 , Result_41
192.168.8.10, Result_42
192.168.8.7 , Result_43
192.168.8.10 , Result_44
192.168.8.7 , Result_45
192.168.8.10 , Result_46
192.168.8.6 , Result_47
192.168.8.7 , Result_48
192.168.8.10 , Result_49
192.168.8.7 , Result_50
192.168.8.6 , Result_51
192.168.8.6 , Result_52
192.168.8.7 , Result_53
192.168.8.6 , Result_54
192.168.8.10, Result_55
192.168.8.6 , Result_56

135

192.168.8.10 , Result_57
192.168.8.7 , Result_58
192.168.8.6 , Result_59
192.168.8.10 , Result_60
192.168.8.6 , Result_61
192.168.8.7 , Result_62
192.168.8.6 , Result_63
192.168.8.10, Result_64
192.168.8.6 , Result_65
192.168.8.7 , Result_66
192.168.8.10, Result_67
192.168.8.6 , Result_68
192.168.8.6 , Resuit_69
192.168.8.7 , Result_70
192.168.8.6 , Result_71
192.168.8.6 , Result_72
192.168.8.6 , Result_73
192.168.8.6 , Result_74
192.168.8.7 , Result_75
192.168.8.10 , Result_76
192.168.8.6 , Result_77
192.168.8.10 , Result_78
192.168.8.7 , Result_79
192.168.8.6 , Result_80
192.168.8.10, Result_81
192.168.8.6 , Result_82
192.168.8.7 , Result_83
192.168.8.6 , Result_84
192.168.8.6 , Result_85
192.168.8.6 , Result_86
192.168.8.7 , Result_87
192.168.8.10, Result_88
192.168.8.6 , Result_89
192.168.8.10 , Result_90
192.168.8.7 , Result_91
192.168.8.6 , Result_92
192.168.8.6 , Result_93
192.168.8.10 , Result_94
192.168.8.6 , Result_95
192.168.8.10 , Result_96
192.168.8.7 , Result_97
192.168.8.6 , Result_98
192.168.8.10, Result_99
192.168.8.6 , Result_100

End time: 1112732100729

Duration: 2233

136

Index

A

accuracy....... 2,3,4,61,66,72,104, 114, 116,
117, 119, 124

application domain............cccoovvviicneciiieeene 87

architecture.. 1,3,5,7,8, 11, 13, 14, 16, 19,
20, 33, 34, 50, 52, 61, 62, 67, 68, 72, 73, 77,
78, 83, 84, 87, 102, 122, 125, 126

asynchronous..... .. 2,6,7,8,37, 62, 63, 64, 66,
67, 68, 72, 90, 122

asynchronous communication 6, 18
asynchronous messaging..........cccccvve e 124
B

back-end........c...cc..t 51, 53, 56, 57, 95, 97, 99
DrIAGE ..ot 126
C

G ettt e 126
class diagram.......c.coeceeeivecrecicens 35, 41, 50, 52
class factory ... 85, 86
client-side stub ... 16, 57
CLSID e 85, 86
CONESION...oeeieiiieeeeeeecee e 72
COM. i, 83, 84, 85, 86, 126
communication end points.........ccccceeeeeeeee. 8, 11
communication intermediate..................... 8, 11
communication layer..........cocccriivireciiiine 34
communication model...................... 3,101,122

computed demand10, 22, 23, 30, 31, 43,
53, 54, 57, 105, 1283

CONCIUSION e 3,7,116
CoONSIStENCY .o 61,67,72
consistent state.......ccccoooiiiiii e 67
contextooveeiicienieieen 3,7,8,9, 10, 45, 122

w
P o
w
o
\1
w
\l
o
\'
©

.CORBA3, 11, 15, 16,
80, 81, 82, 103, 123, 126

CORBA SBIVICES .o 78, 81
COUPliNG...ceevrciiee e 67,119, 123
D

DCOM............3, 11, 15, 16, 34, 35, 73, 83, 84,
103, 123, 126

demand migrationc.cccoooiiiiii 67
DemandDispatcherException class......... 43, 49
demand-driven execution 1,2,6
demand-driven system ..., 2
DemandListener classcccocccceeveeeciiionnnee 100
demand-migration...............c.ccocin, 1,5
DemandSpace class............ccccoeee. 45, 49, 65
DemandState class....cccoovvveeiiivvennnnnn. 47,48, 91
deployment view ... 3,4,19

137

design.......2, 3,4,5,9, 11, 14,17, 19, 20, 32,
33, 34, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47,
48, 49, 50, 51, 52, 55, 59, 61, 63, 65, 69, 70,
71,72, 73,95, 100, 103, 119, 122, 123, 126

DiscoveryListener interface............... 39, 40, 90
dispatcher...........coii 7,87
DispatcherEntry class 42,46, 47,92, 93

DispatcherProxy class......... 44, 65, 92, 95, 98,
100, 101

distributed computing......2, 3, 7, 16, 20, 34, 35,
36, 50, 123
distributed event..........ccco e 100

distributed middleware2, 3, 4, 5, 17, 70,
103, 112, 119

distributed technologies11, 15, 16, 17, 35,
50, 64, 67, 68, 69, 70, 73, 123, 124

distribution unit ... 69, 70, 71
distributivenesscieiieeiiieniieenene 2,13, 15
DMSException classccocvccenenenen. 40, 49, 61
DSException Classccccooveeiiiiiiineiiciinenieeens 49
E

effectivenesscc.cce... 109, 111,112, 119
efficiencycocccceernnee 6, 20, 43, 112, 124, 125
ensemble computing............ v, 77
event listener ... 100
execution node.........ccoeeeeeeieen 2,99, 109, 112
F

fault-tolerancecccoeeeeveiiieenienene. 6, 10, 61, 67
flexibility. ..o 9,119
formatter......oee e 87
functional requirements.............. 19, 20, 32,72
G

generic architecture...................... 1,5, 18,122

GUID9, 26, 27, 28, 30, 31, 42, 43, 47, 53,
54, 57,92, 93, 122

H
heterogeneity 3,4,68,72, 104,119,124
heterogeneous environment 2, 66

hot-plugging 7, 37, 72, 112, 113, 114, 119, 122,
123, 124

|

IClassFactory interfacecccccoocivveniannnes 85
iDemandDispatcher interface 34, 43, 44, 55, 92
IDL interfacescoovveeeveieene 14, 50, 80, 81
IJINILibrary interface....... 35, 36, 37, 38, 39, 89

|JTABackendProtocotl interface.. 57, 59, 95, 97,
98

implementation..... .. 2,3,4,7,8,12, 14,17, 34,
35, 50, 55, 57, 68, 69, 73, 74, 77, 79, 80, 83,
85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99,
100, 101, 102, 103, 105, 110, 112, 119, 123,
126, 127

in process demand ... 10, 29, 123
inner class......... 37, 39, 40, 53, 58, 59, 90, 100
IN-PrOCESS SEIVEIS ..t 84
intensional programmingcocceeeieee 1,130
interoperability....... .2, 3,5,36,78, 83, 88, 122,
124, 126

interprocess communicationcc..ceeen. 62
IPersist interfacec.ccvvveeveeeeccn e 86
|Persistentinterface interface..........ccccoeeeeee. 86
|PersistStream interfaceccoocccccen 86
ISerializable interface ... 88
J

Java...... 14, 42, 44, 50, 52, 55, 56, 62, 73, 74,

76, 77, 78, 89, 95, 101, 103, 104, 105, 123,
124, 126

JavaSpace ... 12, 35, 77, 78, 91, 92, 93, 94, 95,
100, 101, 103, 106, 112, 116, 123

JINL.....3, 11, 12, 15, 16, 34, 35, 38, 37, 38, 39,
40, 49, 50, 51, 52, 53, 55, 61, 65, 72, 73, 74,
75, 76, 77, 89, 90, 91, 94, 95, 99, 100, 101,
102, 103, 104, 123

JINI service .. 49, 50, 51, 55, 74, 75, 76, 94, 95,
123

JINiLibrary class 38, 40, 89, 90, 94

JiNILibraryException classcc..ceoee. 38, 40

JINITransportAgent class 52, 55, 56, 58, 59,
61, 65, 95, 98

JINITransportAgentProxy class 52, 59, 65
JTABackend class ... 51, 52, 56, 58, 61, 65, 95,
97, 98, 99

JTAException class ... 61
JTARemoteException class..........cccc.e.... 57, 61
L

layered Structure ..., 2,7,123
JEASE oo ee e ee e e e 75, 76, 88
JEASING . vervecemeerer et 77
Linuxcocoeveen 5,104, 106, 107, 112, 114, 117
Local Procedure Callcccoeviiiiinniniinnnn. 84
fogical VIeW. ... 3,4,19
[OOKUP SEIVICe ...ocvviriiee e 51, 55, 56
Lookuplocator class ... 75
j00se COUPHNG .oeccviiiiiii e 72,122
M

MAC-OS e s 5
Marshall-By-Reference See MBR
Marshall-By-Valuecccoceioninnnnns See MBV
MBRER oottt e 88
IMBY oottt 88
Message ServiCe ..o 126
MESSENYET c.eeiieieeimieaiieee et 49
middleware......... 1,5,7,12,13, 16,17, 18, 35,

61, 62, 64, 65, 67, 68, 69, 70, 71

138

migration 1,2,5,6,7,8,10, 17, 23, 24, 50,
53,67, 69, 108, 109, 122, 124
multicast discovery.........coeeeeens 38, 40, 75, 90

- multiplatform transport protocol 10, 15,123

N

Net Remoting 3,73, 87, 88,103, 123, 126

network..... 1,2, 6,7, 16, 17, 24, 25, 27, 28, 30,
32, 51, 68, 69, 73, 74, 75, 79, 82, 84, 87, 88,
102, 108, 112, 116, 118

nonfunctional requirements..........cccecocv e 20
o

Object Databasecccooveereneicinnn 9, 45, 46
Object Oriented Databasecccceeeeee. N
Object Query Language............... 9, 45, 46, 122
object-oriented programmingcco.c.ceeveoan 20
once-delivery semantics...........c.eeeeee 6, 10, 122
oneway CommuNICatioN.ceereecnniiiinnnes 18
ORB...cotrere it 79, 80, 81, 82, 126
OULEN ClaSS ... ceeee et 58, 59
OUL-Of-ProCess SEIVETS ..o 84
P

PP See peer-to-peer
paraliel Computingc.oovvevrrncercnieniinnens 77
parallelismccoooeeeenen 3, 4,61, 63, 100, 104
pattern ... 36, 41, 42, 46, 50, 113
PEEI-t0-PEBI ..o 3, 101
peer-to-peer commuNICationcccceeeeene 3
pending demand24, 25, 31, 43, 53, 54, 57,

105

performance17, 20, 42, 68, 88, 102, 109,
111, 112, 116, 117, 118, 119, 124,125

Persistent State Service.....cccccovrveriiiiiiiinnes 82
o] oYU PPN 102
POHCY fle oo 52,97
PrOCESS VIEW ...couoiiniaiieniiniiininescesienecenns 3,4,19
processing time ..o 116, 119
R

reliability2, 3, 4, 17, 61, 66, 72, 104, 114,
116, 117,119, 124

remotable ObJeCtS ... 88
remote communication................ 53,70, 87,95
remote computation ..o 110, 112
Remote interface........ccccccvveevieniceciniinnnns 53,57
Remote Procedure Call........covieeennennes 75, 84
RemoteEveniListener interface........c.......... 100
request ... 18, 79, 80, 85, 86, 93
RMI....51, 53, 57, 74, 77, 95, 97, 101, 103, 106
RUNNADIE .ot e e 55
Runnable interfaceccc.......... 44,55, 56, 95
S

scalability...... 2,3, 4,61,67,72,102, 104, 114,

116, 117, 124
SCENATO VIBW ..eeereiiiiieeeiee e s 3,4,19

security....... 6, 7,19, 20, 45, 52, 56, 80, 96, 97,
124,127

SECUTtY MAanagerccoocevrverrinnineeen 52, 96

SECUTTIY POICY «oveii 52, 97

sequence diagram ... 22, 24, 25, 27, 28, 29, 30,
32
Serializable42, 46, 47, 51, 52, 53, 54, 59,

77,106

Serializable interface 42, 46, 47,59, 92, 98
serializationcccceeeeis 46, 59, 77,86, 116
Service Control Manager........cccccooveniinenene 85
Serviceltem class.....cocovveeeiiivenneeenn. 52,55,75
ServiceListenerclass.........cccoee. 38, 39, 40, 90
ServiceRegsitrar class ... 75
service-side object ... 57
singleton pattern ... 42,45, 64
SKEIBION ...t 80
stand-alone component ... 50
SyNchronous.cceeeeeueee 3, 18, 63, 64, 68, 95
synchronous communicationccc...e. 18
T

TA PrOXY.eceeeineinreriiresais e 69, 70,71, 98

139

transparencycoooeevveneens 16, 17,79, 82, 84

transparent persistence...........cinin 82
TUPIE SPACE «.cvvrrrrienri e 12,77
U

UML .o 32, 35, 41, 50, 52, 69
unicast discovery. ..., 37, 38, 75, 90, 94
UX o oo seene e e e e s e e e e e eseecneamsenaasasaanaeseaaensas 5
upgradeability ... 7,68

use case.20, 23, 24, 25, 26, 27, 28, 29, 30, 31,

UUID e e 76
w

Windows.......... 5, 104, 106, 107, 110, 114, 117
workload........cccceviiiieiienn 68, 116, 119, 124
WEAPPET «.vvievirereiee e e sanans 52,95
X

D, | PP PTP PRI 88

