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ABSTRACT

Elemental Periodic Solutions of the Circular Restricted 3-Body Problem

Volodymyr Romanov

In this thesis, the continuation and bifurcation software AUTO is used to investi-
gate elemental periodic orbits, certain secondary bifurcating orbit families, and ho-
moclinic orbits, associated with the libration points of the Circular Restricted 3-Body
Problem, for values of the mass ratio between 0 and 0.5. Periodic solution families
for representative values of the mass ratio, and corresponding bifurcation diagrams,
are studied in detail.

To understand the solution structure of the Circular Restricted 3-Body Problem
better, a new data visualization package, DR Orbits, has been developed. It reads
AUTO data files and creates solution diagrams. The package may be useful for space
mission design. This new graphics package has good rendering speed, flexibility, and

display quality. A user-friendly interface makes DR Orbits easy to use.
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Chapter 1

Introduction

This thesis presents results obtained for a famous classical problem of Celestial Me-
chanics: the Circular Restricted 3-Body Problem (CR3BP). The CR3BP can be
traced back to the time of Sir Isaac Newton. This problem has not been solved com-
pletely, despite the efforts of many famous mathematicians such as G.-L. Lagrange,
K. Jacobi, H. Poincaré, G. Birkhoff, etc., who have spent much time investigating it.
In more recent years, the problem has attracted special interest in connection with
satellite mission design. Certain periodic orbits of the CR3BP are very suitable for
this design.

We calculated numerically all the primary periodic orbit families associated with
the libration points, as well as some secondary periodic orbit families bifurcating from
the primary ones, for all possible values of the mass ratio u. To achieve this goal,
we used AUTO, an established tool for bifurcation analysis of ordinary differential

equations.

1.1 Organization of the thesis

This thesis is organized as follows:

Chapter 2. A brief description of the general N-Body Problem of Celestial Mechan-
ics, including the particular case of the 3-Body Problem, is presented at the
beginning of Chapter 2. We also present a short review of analytical and nu-

merical solutions (classical and modern) of the general problem and of some



particular cases. A review of the CR3BP in this chapter includes the analysis
of the system of differential equations, the stability of its libration points, its

primary periodic solutions, and its application to satellite mission design.

Chapter 3. This chapter contains a review of the numerical continuation method
used in AUTO for ODE bifurcation analysis. We describe briefly how this
method can be used to study the global solution behavior of dynamical systems,
including periodic solutions, their bifurcations, and homoclinic orbits. Use of
continuation to compute the families of periodic orbits that emanate from a

libration point in the CR3BP is also described.

Chapter 4. This chapter presents the results of our numerical investigation of the
CR3BP for the Earth-Moon system for ¢ = 0.01215. We give a detailed bifurca-
tion diagram of this system and brief descriptions and images of many types of
orbit families, namely, “elemental” periodic orbits associated with the five libra-
tion points, i.e., the families of periodic orbits that bifurcate from these libration

points, and certain secondary bifurcating families.

Chapter 5. This chapter presents the results of our numerical investigation of the
CR3BP for all values of the mass ratio pu. For this case, we also give an overview
of our results for “elemental” periodic orbits. We also consider homoclinic orbits
that are limits of families of elemental periodic orbits. Furthermore, using ex-
tended boundary value systems, we determine how certain branch points in the
CR3BP depend on the value of the mass ratio p. This allows us to give a rather
complete classification of all primary families and of some secondary bifurcating
families for all values of u in the interval (0 < p < 0.5). For completeness, our
description includes various families of periodic orbits and branch points whose

existence is well-known for certain specific values of the value of p.

Chapter 6. This chapter contains a description of the design and the development
of the new program, DR Orbits, for the visualization of periodic orbit families

of the CR3BP.

Chapter 7. This chapter contains concluding remarks and gives some directions for



future investigation.

Appendices. Appendix 1 contains the user manual for the DR Orbits program,
while Appendix 2 explains briefly how one can use AUTO for computing periodic

solutions of the CR3BP.



Chapter 2

Elements of Celestial Mechanics

and Space Dynamics

2.1 The N-Body Problem

The N-body Problem and its particular cases, the 3-Body Problem and the Circu-
lar Restricted 3-Body Problem, are described in detail in many books on Classical
Mechanics, Celestial Mechanics, and Space Dynamics: [92, 93, 112, 86, 43, 94, 5, 59,
102, 53, 22, 113, 110, 100], and in books, dedicated to these problems exclusively
[107, 80, 79, 14, 61, 79]. In this chapter we present a brief review of the N-body
problem; this is needed for a better understanding of the main results of this thesis.

Suppose we have a system of N bodies (material points or centro-symmetric spher-
ical rigid bodies having small radii) with masses my, mo, ..., my, interacting according
to the Newtonian law of gravity. If there is an inertial frame of reference O&n(, hav-
ing orthogonal axes O&, On, and O( with an arbitrarily located origin, such that
r; = (&, m, () is a radius vector of the i-th body with mass m; (i = 1,2, ..., N), then

the distance between the bodies m; and m; can be written as

rg = [m—r || = [(&—-&)° + (m-n) + (G-I (2.1)

The gravitational force exerted on the mass m; by another one, m;, is

mim]- r, — I'j
f, = G 51 ~—2, (2.2)
rij /rij




where G is the gravitational constant (G =~ 6.67259 - 10~ "'m3s~2kg ).

Using Newton’s second law, we can write a system of N differential equations for
the motion of the bodies m; (i = 1,2,..., N), moving in the gravitational field of the
other N — 1 bodies, namely,

d’r; N r, —T;
— =G mj———21 . 2.3
dt? Z J 7"% ( )
Jj=1
J#

Equation (2.3) is a system of 3N second order differential equations.
The goal of the “solution” of the system (2.3) is to determine the motion of each

of the N bodies; in other words, the dependence of the coordinates of each body on

time #:
r, = I'Z(t) s (24)
. . dr; .
when the coordinates r; and the velocities v; = o of all the bodies are known at a
starting time ¢ = {y:
r;(to) dri (2.5)
Ty = Ti\lo), Vio = —_ ) .
dt —to

i =1,2,..., N. Having a solution of Eq.(2.3), with starting conditions (2.5), we can
determine any characteristic of our N-body system (coordinates, velocities, accelera-
tions, energies, etc.) at any moment of time. Below we will describe general properties
of the system (2.3), and list some useful relations.

The system (2.3) can be rewritten using the gravitational potential function U of

the system of N masses [43, 59]:

1 M X m;m;
=1 1j
j=1
J#i
Since
N r, — I'j
VlU = —Gmiij 7«3A s (2.7)

j=1 %]

where gradient vector is defined as




and i, j, k are orthonormal vectors coinciding with the axes of the inertial frame of
reference O&, On, and OC, resp., we can rewrite the system (2.3) as

d?r;
. Z._VU 2.9
M (2.9)

where ¢+ = 1,2, ..., N. This is the Newtonian representation of the N-Body Problem.
These equations can also be rewritten in canonical or Hamiltonian form, if we define

generalized coordinate vectors and linear momenta as

dr;
=, , = m— 2.10
and the Hamiltonian
1Y p2
= _ LU 2.11
where the gravitational potential function U is written as:
G Z Z _mimy
lla; — q;] (2.12)
7=1
J#i
i=1,2,..., N. Then the Hamiltonian equations for the N-Body Problem are
dq; OH
dt  Op,’
(2.13)
dp; OH
dt  0q,

The Hamiltonian H, which is the total energy of the N-body system, is preserved:

dH N (0H dq;, OH dp, N (0HOH 0OH [ OH
e ;(5@ it ap, dt) 2 9q, 90, g,

+ 75— = 0.
dq;0p; Op,
(2.14)
The potential function U of Eq. (2.6) depends only on mutual distances between
the bodies, (i.e., on the differences between the coordinates of each pair of bodies);

it does not depend directly on their coordinates. This means [43, 59] that

N
V.U =0. (2.15)
=1

We can rewrite Eq.(2.15) using Eq.(2.9), as

N 2

d I;
Smi— =0, 2.16
i:17n dt? ( )



Equations (2.16) are easily integrated, and we have three integrals, one for each of

three projections on the axes:
N
dI‘i
m;—— = a, 217

where a; = (a1, a12, a13) is the vector of constants of the first integration. Integrating

once more, we obtain
N

> mr; = ait +ay , (2.18)

=1

where a; = (a1, @gg, ag3) is the vector of constants of the second integration. The

radius vector R = (2, H, Z) of the barycenter of the system of the N masses is

1N
R = M;miri , (2.19)
and we have
MR = ajt+a,. (2.20)
The velocity of the barycenter is also constant:
V = %I; = —Alz(afl + a2y + a2y)'? (2.21)

and the trajectory of the barycenter is the following straight line

M= — MH — MZ —
a1 _ a22 _ 23 ‘ (2'22)
a1 12 a13

Thus, we can conclude that the barycenter of the N masses, interacting via the
Newtonian gravitational law, moves in space with constant velocity (2.21) along a
straight line (2.22).

Any rotation of the axes of the inertial frame of reference does not change the
distances between the bodies of the N masses, so the potential function U does not
depend on rotation of the frame either. Let us take an inertial frame of reference
O&'n'¢’, with the same origin as O&n(, such that axes OC and O(’ coincide, but other
axes of O&'n'(" are rotated around the axes O( at a fixed angle ¢y. (The frame O&'n/¢’
is inertial so it is not rotating permanently: it is simply rotated over a constant angle.)
Thus, the transition from one frame of reference to another one can be written as

£ = &icospy —misiny ,
= &singg +n;cos g (2.23)
G = G-



Then we have

oU Y ouU dg oU dn; oU d(!

= = 2.24
a(pg i1 86{ ng() Z 8771 d(,O() Z BC’ d(,O ( )
However, from (2.23)
d&; A ;o dG
R — ¢ %o, 2.25
do dipo ¢ dpo (2:25)
we can rewrite (2.24) as
N (08U 8U>
== M=o ] =0 2.26
> (€57 o (2:20)

Considering rotation around the other two axes O¢ and On, and using (2.9), we can

generalize (2.26) as
£t
r,x—| =0, (2.27)
i=1 dt?

where x denotes the cross product. Equation (2.27) can be integrated once:

N dr;
2 - ) 2.2
; <I‘ i ) ag ( 8)

where a3 = (a1, 32, a33) is a vector of integration constants. Equation (2.28) repre-
sents the three integrals of conservation of the angular momentum of the system of
N masses.

Finally, if we multiply Eq.(2.3) by dr;/dt, we obtain

(
imi (%%) - i<(v U)Cfit

) , (2.29)
=1 i=1
or \
1d dr; dU
After integration of Eq.(2.30), we obtain
T =U+C, (2.31)

where
N dr; N
- >m ( ) _ Y (2.32)
i=1
is the kinetic energy of the system of N masses, and C is the energy constant (the

constant of integration). Equation (2.31) shows that the sum of the kinetic and the



potential energy of the system of N masses is a constant (the conservation of energy
law).

Therefore, we can conclude that for the 6N equations represented by Eq.(2.3), for
the general N-Body Problem, we have ten integrals (six integrals of motion of the
barycenter, three integrals of the conservation of the angular momentum, and one
integral for the conservation of energy). Thus, the full number of equations in Eq.
(2.3) can be reduced by ten, to a system of 6N —10 second order differential equations
[59, 43]. This reduction procedure is useful for analysis of the N-Body Problem for
small N, especially for the case N = 3. Unfortunately, general integration of Eq. (2.3)
has not been done for any N > 3; moreover, the mathematical difficulties of the N-
Body Problem grow rapidly when N is increased. At the same time, there are many
numerical and combined analytical-numerical methods which give an approximate
solution of Eq. (2.3), i.e., the coordinates and the velocities of the N bodies for any
time interval with acceptable accuracy for use in Astronomy and Space Dynamics

(59, 43].

2.2 The 3-Body Problem

For the two special cases N = 1 and N = 2, the N-Body Problem was solved com-
pletely about 300 years ago by Sir Isaac Newton, who based his research on the
previous work of Galileo Galilei, Johannes Kepler, and others. Modern versions of
Newton’s solution of 1-Body and 2-Body Problems can be found in at most any book
on General Physics or Classical Mechanics. However, the next step, the 3-Body Prob-
lem, has required titanic efforts of the greatest mathematicians of the post-Newtonian
Age, and so far it has not been solved completely. Below we will discuss briefly some
specific features of this problem.

If we have only three masses my, mo, and mj, with radius vectors ry = (&1, m, (),

ry = (&2, 12, C2), and r3 = (&3,m3, (3), resp., we can rewrite Eq.(2.3) explicitly as nine



second order differential equations of order 18:

d2r1 ry —ro ry —rj
— = —Gmy + G'mg

dt? o 7%3 ’
d’r, ry — Iy r, — I3
dt? 3, r3,
dQI'g rs—nrn rs —I9y
— = —Gmy + Gmgy

dt2 3 3 ’

T'is 733

where 7;;, for ¢,j = 1,2,3, is given in Eq.(2.1). The six integrals of motion of the

barycenter of the three masses are

mdr1+ dr2+ dr3
— 4+ My—— +m3— = a,
Yt 2 dt T :

(2.34)
myr, + Moy + msrs = a;t + ao,

and the three integrals of conservation of angular momentum are given by

dr dr dr
my (I‘l X d_tl> + Mo (1'2 X EE) + ms (I‘g X —d?3> = as. (235)

Note that the plane passing through the barycenter, perpendicularly to the vector a,
preserves its orientation in space. This plane is called the Laplace invariant plane.

The energy integral of the system of three masses is

1 1 1
5MVE + 5mavs + omgvy = U+ G, (2.36)
where
mym mim Mom
U:G( SRR AL LA S 23). (2.37)
T12 T13 T23

The ten integrals (2.34) - (2.36) allow to reduce the full order of the Eqgs.(2.33) by 10
and to solve the system of the eighth order. In practice, only the six first integrals are
used to reduce the order of the system by six. It is easy to switch to the barycentric
frame of reference O'¢'n'¢’, with the origin O’ at the barycenter of the three masses,

which is defined in the old frame O&n( by the equation
mary + mory + mary = 0, (2.38)
and we can exclude the coordinates of one mass from Eqs.(2.33):

1
rh = — m—l(mgr; + mary), (2.39)

10



and rewrite Eq.(2.33) in the barycentric frame as a system of six scalar differential

equations of second order

d?¢, (1 + mg)&) + mséy (&5 + &)

- _q 2 3 3 2
a2 Ri, T Gma =
d*n (my + ma)n, + man; (75 + 715)
— = -G 12 3 A3 T2
it Ry, O,
d*y (m1 + ma)Cy + ma(; (G5 +G)

= -G 3 53 152
ar R, O TR
(2.40)
d*&4 (m1 + m3)&y + maés (&5 + &)
s _ 3 3T &2

e Rl T Oma =
d*ns (1 + ma)nh + mon; (5 + m5)
23 G 3 3 2
e R, O TR
d*C3 _ (m1 4+ m3)Gy + maQy (G + ()
a2~ ¢ R}, +Gm = = R,

where the relative distances between the masses are defined by

R21

R23

_ K(m - ma)és +m3£§>2 . ((m + o) +ms?7§>2+

mq my

my + me Cz + m3(; }

my

( )
_ [( my + mg 53 + m2§2> ( my + mg)n; + m277§>2 N (2.41)
( )

my + mg C3 + may () }

= (& — &)+ (s —mp)” + (G — )2

Equations (2.40) have only four first integrals: three integrals of angular momentum

(2.35) and one integral of energy (2.36). These integrals can be rewritten in the

barycentric frame using Eq. (2.39). Other ways to decrease the order of Eq.(2.33)

of the 3-Body Problem are described in books on Celestial Mechanics, classical and

11



as well as recent: [92, 93, 112] and [86, 43, 94, 5]), Spacecraft Dynamics [99, 53, 22,
100, 110, 113, 59, 102], and in books dedicated specifically to the 3-Body Problem
[79]. Usually, methods for decreasing the order of Eq.(2.3) or Eq.(2.33) are useful for
theoretical investigations of the N-Body Problem or for constructing approximations
to it [86, 43].

A review of classical and modern results, questions, and hypotheses for the 3-
Body Problem is given in [79]. This book described the achievements of the last
century and discusses conjectures and possible future work on stability, singularities,
regularization, periodic motions, asymptotic behavior, etc., of the 3-Body system, as

described by Eq.(2.33).

2.3 Analytical and numerical solutions of the N-Body Prob-

lem

Unfortunately, even for the 3-Body Problem we do not know any other integrals than
the ten classical first integrals. At the end of the nineteenth century, Henri Poincaré
[92, 93] proved that a general solution of the 3-Body Problem cannot be expressed in
terms of simple transcendental functions of coordinates and velocities of the bodies,
and Eqs.(2.33) cannot be integrated completely. Thus we cannot obtain a general
solution of the Eqs.(2.33). However, as long ago as 1772, J.-L. Lagrange noted that
the 3-Body problem can be solved for some simple cases. The first case is the motion
of three bodies of arbitrary masses along a straight line; such motions are called
collinear. This problem was solved by L. Euler earlier in 1767, and it is called Euler’s
case of the 3-Body Problem. We can describe Euler’s solution as a motion of three
arbitrary masses along a Keplerian orbit, such that the three bodies lie on a straight
line at all times (Fig. 2.1, left). This configuration is invariant under permutation of
the bodies, so we can find three solutions for Euler’s case. In 1772, Lagrange solved
the second case, where the three bodies form an equilateral triangle and move with
respect to each other and with respect to the barycenter along Keplerian orbits (Fig.
2.1, right). The equilateral configuration is preserved during the motion. Also, for

this case we have two solutions obtained by permutation of any two bodies. Therefore,

12



only five partial analytical solutions of the 3-Body Problem are known so far. There
is also the case where one mass is much larger than other two masses: this problem
can be reduced to two independent 2-Body Problems, where each of the two has an

exact solution.

Figure 2.1: Euler (Left) and Lagrange (Right) solutions of the 3-Body Problem. Left: The bodies
move along an elliptical Keplerian orbit, such that all three lie on a straight line. Right: Three
bodies moving along ellipses form at each moment of time an equilateral triangle. The numbers 1,

2, and 3 and 17, 2°, and 3’ show the configurations of the three bodies at different moments of time.

Figure 2.2: The Chenciner-Montgomery orbit. T is 1/12 of the full period. (From [17}).

In 1912, K. Sundman found a solution of the N-Body Problem as an infinite con-

13



verging series. Unfortunately, the rate of convergence of these series is not sufficient,
even for modern supercomputers, to evaluate the series to appropriate accuracy. In
the 1990’s, W. Q. Dong tried to improve convergence of the series representing solu-
tions of the N-Body Problem, but her series still converge slowly [59, 43].

At the end of the 1990’s, new types of periodic solutions of the N-Body Problem
were found. In [19], A. Chenciner and R. Montgomery proved the existence of a
planar figure-8 periodic solution for the 3-Body Problem, where the bodies have
equal masses: m; = mg = my (Fig. 2.2). The proof in [19, 17] uses variational
arguments: after certain reductions the action integral is minimized over a restricted
set of symmetric arcs. Further, C. Simé ([104, 105, 106]) numerically computed this
remarkable solution with high accuracy and confirmed stability of this solution. Simé
also discovered many other single-curve planar periodic solutions for the N-Body
Problem, with N as high as 799 [18]. He called these solutions “choreographies” (Fig.
2.3). In [40], E. J. Doedel with co-authors generalized computations for the 3-Body
Problem for different masses: the mass of one body varied from 0 to 1, while the
other two bodies have masses 1. Such three-dimensional solutions, as dependent on

the mass of the third particle, are represented in Fig. 2.4.

2.4 The Circular Restricted 3-Body Problem

2.4.1 The system of differential equations in the rotating frame

In many practical problems of Celestial Mechanics, and especially in Satellite Dynam-
ics, the mass of one of three bodies is very small compared to the other two masses;
for example, the problem of the motion of a comet under the gravitational forces of
the Sun and Jupiter in the solar system, the problem of the motion of a satellite in
the Earth-Moon system, etc. In such cases, the small or infinitesimal mass has no
perceptible influence on the two large masses. If so, then we can neglect the terms
in (2.33) that have the infinitesimal mass as a factor. This gives an approximate
equation for the 3-Body Problem describing the motion of a zero-mass body under
the gravitational force of two bodies of arbitrary mass. This problem was referred to

by H. Poincaré as the Restricted 3-Body Problem [92, 93].
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Figure 2.3: Different Simé6 choreographies for N = 5. (From [18])

Differential equations for this problem can be obtained directly from Eq. (2.33),
if we take, for example, ms = 0. In this case, it is easy to show that the system
(2.33) splits into two independent systems. One describes the Keplerian motion of
two bodies of finite masses m; and ms, and the other defines the motion of the
infinitesimal body, having zero mass, formerly ms, in the gravitational field of two

finite masses. The bodies m; and my in the Restricted 3-Body Problem are called



Figure 2.4: Non-planar periodic solutions of the 3-Body problem. (From [40])

the primary bodies, or primaries.

Suppose that the reference frame O&n( has the origin at the barycenter of the
primaries, and that the plane O&n, coincides with the plane of their Keplerian motion
(Fig. 2.5). Suppose that the infinitesimal body dm has coordinates (£, 7, (), and the
two primaries m; and my have coordinates (£1,7:,0) and (&2, 79, 0), resp. Note that

the primaries will remain in the plane Ofn at all time. Thus, we have a system of
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three differential equations:

i

rotation i

Figure 2.5: Reference frames and positions of the bodies for the CR3BP.

d’¢ §—& £—&

ap — TOme O

d*n 1= n =Tk

a—t‘g = —Gm1 7':1)’ —-sz r% , (242)
fg = —Gm —C——Gm kS

dit? L *r3

where the mutual distances are

no= (=& +(n—m)®+ 2,

(2.43)
re = [(€— &)+ (n—m)® + V2.
The coordinates of the primaries are defined by equations
(m1 +mg)§y = —marocosy,
my +m = —Marysiny ,
(mq 2)T 2T SI (2.44)
(my +ma)éL = myrgcosyp ,
(my +me) = myrgsing
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where 79 = 79(t) is the distance between the primaries, and ¢ = ¢(t) is the angle
between direction from m, to m, and the positive direction of the axis O&. The values
of ry and ¢ are well-known functions [43, 59] of the Keplerian motion of primaries.

For example, the Keplerian orbit of the mass m; is given by equation

_ P
o= l+ecosp’ (2.45)

where p is the parameter of the conic section [43] of the Keplerian orbit, and e is its
excentricity. Such an orbit can be a circle (e = 0), an ellipse (e < 0), a parabola
(e = 1), or a hyperbola (e > 1), depending on the value of the starting velocity of
the primary mo with respect to m;. Therefore, in Celestial Mechanics the next three

cases can be discerned ! :

1. The Hyperbolic Restricted 3-Body Problem, for which the orbit of ms is a hy-

perbola with focus at m;.

2. The Elliptical Restricted 3-Body Problem, where the mass my describes an ellipse

around m; with focus at m;.
3. The CR3BP, for which the mass my has a strictly circular orbit, centered at m;.

In this thesis, we limit ourselves to the classical CR3BP. Thus, we consider the case
where the primary ms describes a circle around m;, with a constant angular velocity
w, such that ¢ = wt .

For simplicity we choose the units of measurement such that: 1) the gravitational
constant G is equal to one; 2) the mass of the larger primary is m; = 1 — p and the
sum of the masses is equal to one: m; + ms = 1, so my = u; the distance between
primaries is equal to one: 7o = 1. The value p = (my +ms)/my so p is called the mass
ratio. Moreover, in these units of measurement the angular velocity of the primaries

is also equal to one:

2

= 1. (2.46)

)

To

1t is also possible to define a Parabolic Restricted 3-Body Problem and a Linear Restricted 3-Body Problem [43]



Then the system of differential equations (2.42) can be rewritten as

dt? 3 H r3

d*n n—m  n-1p

—_— = — (1 - — 2.4
s (1—p) il (2.47)
d*¢ ¢ ¢

Sl SRS T S N

dt? ( N)r{’ Mrg

Now we turn from the inertial reference frame O&n( to the rotating non-inertial ref-
erence frame Oxyz, having the origin at the barycenter O, so that the plane Oxy
coincides with the plane O&n, and the axis Oz coincides with the axis O(. Sup-

pose that the frame Oxyz rotates around the axis Oz with constant angular velocity

w = 1. The corresponding transformation from the O&n( frame to the Oxyz frame
is given by
& = xcost—ysint
n = zsint+ycost , (2.48)
¢ = =z

We can also assume that O&n¢ and Ozyz coincide at ¢ = 0.
By substituting the second derivatives of (2.48) in (2.47) we obtain

A2z dy d?y dz )
(E—Z%—x>cost—<3ﬁ+25— sint =

2 d? d
(g—x#QC—lg—aﬁ sint — <—y+2—f—y> cost = (2.49)

Ty L] 1 Ty
d?z 2z z
el T T
dt? ( M)r:{’ Mr%

Multiplying the first two equations (2.49) by cost and sin ¢, respectively, and then by
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—sint and cost, we obtain the system

d’z dy T — T T — T

€2 9% - - ,

dt? dr " (1=p) r3 # 3

d?y dy Y-t Y — Y

TV _ oM, - S - 2.50
di2 T U =t . (2.50)
d’z 2z z

A R A

dt? ( 'u)ri” ur%

In the rotating frame Ozyz, the coordinates of the primaries are (—y,0,0) and (1 —
i, 0,0) for m; = 1 — p and my = p, resp. Thus, we can rewrite the system (2.50) as

. . T+ -1+
F= e (1-p) gt - s

3 3 ’
. . Y y
j= -20+y-(-p3-p3, (2.51)
m T
Z VA
Z = ——=— U=,
R

where
no= [z +p)?+yt+ 22 (252)
re = [(@—1+p)?+y*+ 272,

and the dot means d/dt. This is a 6-th order system.

The system (2.51) describes the motion of the infinitesimal body only, because it
does not include the dependence of the coordinates of the primaries on time. How-
ever, even for this simple system of differential equations, we cannot obtain an exact
solution of the form r = r(#).

If the infinitesimal body moves in the plane Ozxy (i.e., z = 2 = 0), then the order
of the system can be reduced to 4 [86], and the plane Ozy is an invariant subspace
of planar orbits. There are also various symmetries that follow from (2.51). First, if
(z,y,z) is a solution of (2.51) so is (x,y, —z). Second, if (x,y,z) is a solution so is
(x,—y, z), provided time is reversed. Eq. (2.51) also has a symmetry with respect to
p: if (z,y, 2) is a solution for p = pg then (—x,y, z) is a solution for p = 1 — po, if

time is reversed.
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The system (2.51) has one integral derived by Jacobi in 1836. Indeed, for a poten-

tial function

U = 5t + =, (2.53)

the system (2.51) can be rewritten as

. . oUu
'I_2y - E;?
oU
4o - U _
g+ 2% oy (2.54)
LW
9z

By multiplying these equations by d/dz, d/dy, and d/dz, resp., and adding them, we

obtain an expression that can be integrated:
2+ 9?4+ 2% = 2U - C, (2.55)

where C is a constant of integration. The left-hand side of this equation is the squared

velocity v? of the zero-mass body, and we have

1 —
ool o (2.56)
1 L)

v = 24y 42

This formula is known as the Jacobi integral and the constant C' is called the Jacobi
constant.

Note that the system (2.51) describes the motion of an infinitesimal body for any
mass ratio p of the primaries, with 0 < p < 1/2. For example, for the Earth-Moon
system (which can be considered circular, in first approximation), p = 0.01215, for the
Sun-Earth system g = 3.0359-107%, and for the Sun-Jupiter case we have p = 0.00095.
Higher values of the mass ratio y exists for some other planetary systems and double

star systems.

2.4.2 Libration points

Analysis of many complex dynamical systems starts with obtaining their equilibrium
points, i.e., the points where the forces in the system balance each other. It is well-

known that for each value of pu, Eq. (2.51) has five equilibrium points, called the
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Lagrange points or libration points. We note, that these libration points exist only in
a rotating frame, i.e., for Eq. (2.51), but not in the inertial frame, Eq.(2.42), because
Eq. (2.42) contains an explicit time dependence on the coordinates of the primaries,
and there are no equilibria.

Thus, to find the libration points we must set the velocity and acceleration com-

ponents equal to zero. This leads to the following three equations:

T+ pu zT—1+p
.T—(l'—‘u) 3 - 3 :Oa
1 Ty

=0, (2.57)

% — ,u% = 0.
From the third equation we obtain immediately that z = 0; so, all libration points lie
in the orbit plane of the primaries Ozy. The second equation of Eq. (2.57) divides
the solution space into two parts: 1) y = 0 defines three collinear libration points,
i.e., lying on the straight line, and 2) y # 0 defines two other libration points. We
start with the case where y = 0. Then the first equation of Eq. (2.57) can be written,
using Eq.(2.52), as the fifth order nonlinear equation:

T+ p z—1+4+p _
E e (e (P e E (2:38)

This equation can be rewritten separately for each of three cases:

1. For z < 1 — p, Eq. (2.58) has the form

PR et S =0, (2.59)
(z+p)? (z—1+p)?

which defines the libration point L1, lying between the two primaries.

2. For z <1 — pu, Eq. (2.58) has the form

L= Iz
(+p)?  (z—-1+p)p?

which defines the libration point L2, lying to the right of the second primary.

=0, (2.60)

3. For x < —pu, Eq. (2.58) has the form

pb Py a =0, (2.61)
(z+p)?  (z—1+p)?
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which defines the libration point L3, lying to the left of the first primary.

Equations (2.59) - (2.61) can be solved numerically for any value of 1. The coordinates
of the libration points L1, L2, and L3 as a functions of the value of u, are shown in

Fig.(2.6).

1.5

i second 5

15 —
0.0 0.1 0.2 0.3 04 0.5
1

Figure 2.6: The x-coordinate of the collinear libration points L1, L2, and L3 as a function of p. The

locations of the primaries are also shown.

For the case y # 0, the first two equations of Eq. (2.57) can be transformed into

the equations
(z~1+pl+y*=1,

(2.62)
(@+u?+y* =1,
which have two exact solutions:
1 V3
_ 1 _ V9 2.63
x 2 :L[/ ? y 2 7 ( )
defining the libration point L4; and
1 V3
= - — - 2= 2.64
T=gop, ¥= 5, (2.64)
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defining the libration point L5. Note that the libration points L4 and L5 form two
equilateral triangles with the primaries, for any p value. The position of all libration
points in the Ozy plane for two different values of y is shown in Fig.2.7 . Figure 2.8
shows the coordinates of the libration points as a function of y, for 0 < p < 1. L1, L2,
and L3 lie on a single, planar S-shaped curve that connects the circles of equilibria
which exist at 4 = 0 and at 4 = 1. L1 and L2 coalesce as 4 — 0 and L1 and L3

coalesce as p — 1. L4 and L5 lie on straight lines that also connect the circles.

et Ls
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10 0.5 0.5 fo 15 15 1.0 0.5 O oo 0.5 10 15
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Figure 2.7: Relative position of the libration points L1, L2, L3, L4, and L5 (small red and blue
squares) for the Earth-Moon system (u = 0.01215) (left), and for the system with g = 0.25 in the
rotating reference frame Ozyz. Dashed equilateral triangles are formed by the primaries (blue and

yellow circles) and libration points L4 and L5. The big circle is the orbit of the second primary.

The CR3BP is a good approximation to several celestial pairs in the solar system
such as: 1) the Earth-Moon system, 2) the Sun-Earth system, 3) the Sun-Jupiter
system. In reality, these systems are not circular, but the deviation of their real
orbits from the circular ones is only about 10%.

It is interesting to note that until 1906, the existence of the libration points in
the CR3BP was accepted as a curious mathematical fact. However, in 1906 the first
asteroids were discovered. These asteroids were called Trojan asteroids and they
moved in orbits at the libration points L4 and L5 of the Sun-Jupiter system. At

the present time, many Trojan asteroids have been found for the Sun-Jupiter system
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Figure 2.8: The libration points as a function of y. The transparent plane at p = 0.4 shows the

position of the libration points as dark dots for that value of p.

[15] (962 near L4 named the Greeks, and 603 near L5 named the Trojans); others
have been found for the Sun-Mars (1 at L4, 5 at L5) and for the Sun-Neptune (1
at L4) systems. (See [85] for a discussion of stability of Trojan asteroids of Saturn,
Uranus and Neptune.) The existence of the libration points may be essential for
cosmology, because these points can serve as centers capturing and accumulating
small bodies. Thus, the libration points of double stars can become centers for new

stars or planetoids in the process of their formation.
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2.4.3 Stability of the libration points

The mathematical problem of stability of the libration points can be reformulated as
follows: If the infinitesimal body mass starts out near a libration point, will it remain
in the vicinity or will it wander off over time? A detailed analysis of this problem is
presented in many books on Celestial Mechanics and, especially, Spacecraft Dynamics
[80, 100, 81]. As a rule, such analysis is based on linearization of Eq. (2.51) and
subsequent checking whether or not any eigenvalues of the Jacobian of the linearized
system have positive real components [5, 4, 103, 75]. This is the problem of linear
stability of the libration points.

A general system of n differential equations

5{1 - fl(x17$27"'7$n) )
}‘(2 = f2(1'17-7727--->$n) ) (2 65)
Xn = fn(xlyx%'“axn) )

where f; : R* - R, and x; € R, i = 1,2, ..., n, can be rewritten in a vector form as
x = f(x), (2.66)

where f: R" — R™ and x € R", and R is a set of real numbers. Eq. (2.66) is called
autonomous because f(x) does not depend directly on the time ¢. An equilibrium
point (critical point, stationary point, rest point, or libration point for the Restricted
3-Body problem) is a point x’ € R™ such that f(x’) = 0. Let us shift the coordinate
system such that x’ = 0 for simplicity.

By definition, an equilibrium point x = 0 of Eq. (2.66) is stable (or Lyapunov
stable) if for any ¢ > 0 there exists § > 0 (which depends only on € and does not
depend on the time ¢) such that for any xo with ||xo|| < ¢ a solution X(t) of Eq.
(2.66) with starting condition X(0) = x, exists for t > 0 and satisfies to the inequality
[|X(#)]] < € for all £ > 0.

Finally, the rest point x = 0 of Eq. (2.66) is asymptotically stable if it is Lyapunov
stable (corresponding to the previous definition) and

lim X(t) = 0

t——+o00

(2.67)
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for any solution with starting condition X(0) lying in a sufficiently small vicinity of
x =0.
Analysis of the stability of an equilibrium point starts with the analysis of the
linearized Eq. (2.66):
x = J-x+g(x), (2.68)

where J is the Jacobian of Eq. (2.66):

on|  on| . on
01, 21=0 0xy P 8J7n Zn=0
on|  op| . on
or o0z Oz
of Lz, =0 2lzy= " lan=
S of _ ’ ", (2.69)
x|y _
JAN o,
8.1‘1 21=0 3332 T9=0 8$n Zn=0

and g(x) = f(x) — J - x; so g(0) = 0, and dg/0x|x=0 = 0. All nonlinear terms of Eq.
(2.66) are contained in g(x).

There is a basic theorem about the stability in the linear approximation. Let all
eigenvalues o of the Jacobian J lie in the left complex semi-plane: Re ¢ < 0. Then the
equilibrium point is stable. It is possible to prove that, if the real part of one or more
eigenvalues o is positive, then the equilibrium point is unstable. In the case of purely
imaginary ¢’s, stability of the equilibrium point depends on the nonlinear term g(x).
Indeed, from the theory of linear differential equations with constant coefficients, the
linearized equation x = J - x near an equilibrium point has solutions which contain
terms like exp(ot), where o is an eigenvalue of J. Then we can conclude that the
equilibrium point is stable in a linear approximation if and only if the Jacobian .J has
no eigenvalues with a positive real part.

We have to note here that this case (purely imaginary eigenvalues) is more interest-
ing: if the Jacobian at an equilibrium point has purely imaginary eigenvalues (more
precisely M pairs of conjugate purely imaginary eigenvalues), then in a vicinity of the

equilibrium point there exists families of periodic solutions (orbits), i.e., M solution
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families X,,(t), where m = 1,2, ..., M such that for each of them
X(t) = Xont +To) (2.70)

for any t. The value T,, is a period of the m®® solution. These periodic orbits can be

stable or unstable.

For our calculations with AUTOQO, we need to carry out stability analysis and com-
pute the eigenvalues of the Jacobian. We can rewrite Eq. (2.51) as a system of six
first order differential equations, like Eqs. (2.65) and (2.66)

T+ p z—14+p

= 2v+x—(1— — ,
’ N (o (T B R e
. Y Y
v = —2u+y—{1l-— — ,
y = “)((a;+u)2+y2+z2)3/2 “((x—1+u)2+y2+22)3/2
. Z z
w = — — ,
(@rw? 4y + 2072 (=14 g2+ 27
r = u,
y=v,
L 2 = w,
(2.71)

where u, v, and w are new independent variables defined by the last three equations.

Let
T+ [ r—1+p
filz,y,2) ( N)((:c+u)2+y2+22)3/2 M(($—1+M)2+y2+22)3/2 ’

Y Y
= (1 - -

¥4 ¥
fa(z,y,2) = "((x + 1)? 4 y? + 22)3/2 - /‘((I — 14 p)2 42+ 22)32

(2.72)
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The stationary equations for Eq. (2.71) are

\

The Jacobian of the Eq. (2.71) is

where f; =

fl(x7yaz)7 f2 =

0 1
0 0

0
0
1

204z — fi(z,y,2
—2u+y— folz,y,2

fa(z,y, 2

0
0

fo(x,y, 2), and f3 =

z) =0,
z) = 0,
9 =0,
u = 0,
v =0,
w = 0.
on oh
0 dz
of: O
0 0z
ofs 0
dy 0z
0 0
0 0
0 0
f3(.’L’,y,Z).

(2.73)

, (2.74)

Consider the collinear libration points L1, L2, L3. Keeping in mind that for all of

them y = 0 and z = 0, we obtain

oh

oz

af:

Oy

o _

dy

0fs

0z

T

S Sl N H 31—p)(z+p)? 3l —14p)?

(x4 p)2)3?  ((x =1+ p)?)3/2 ((z + p)2)5/2 (z— 1+ p)2)p2
oh
O ) &' — O 5

N Sl S p ofs oh _
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1—p B m % B Qf_Q .

T+ ,u)2)3/2 ((a" I ,u)2)3/2 ’ or By = .

29

(2.75)



Thus, the Jacobian for this case is

0 20 % 0 0
oz o/

200 0 = 0

oy of

3

Jigs = 000 0 0 9z | > (2.76)

1 00 0 0 0

0O 1 0 o0 0 0

0O 01 0 0 0

and its eigenvalues o; (i = 1,2, ...,6) can be found from the equation

det (J123 — OI) =

—o 2 0 Qﬁ 0 0
ox o)
2 —¢ 0 0 =2 9
dy (2.77)
0 0 - 0 0 fs
det o 5 | =0,
1 0 0 — 0 0
0 1 0 0 —o 0
O 0 1 0 0 —o

where I is an identity matrix. After calculating the determinant of Eq. (2.77) we

derive two nonlinear equations:

(2.78)
1 2<4_3f1 af2>+af1§f_2 _

or  dy ) dx dy

The first equation of Eq. (2.78) has two conjugate purely imaginary roots if 0f3/0z
is negative. For the libration point L1 we have

ofs _ _ 1-n n Iz
0z (x+p)3)  (z—14p)3)’

(2.79)

but for this point (z + p) > 0 and (z — 1 + p) < 0, therefore we find that for L1 the

value of df3/0z < 0 for all u values. Similarly, we can prove that 0f;/0z < 0 for
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the libration points L2 and L3. As for the second equation of Eq. (2.79), it has four

solutions

afy  0f, afy  0f\> 0f10f
—(4~—-—-—) :EJ(4—5;——6-5) *4793567/ . (2.80)

Calculated numerically, the right part of Eq. (2.80) is shown in Fig. (2.9) for all
collinear libration points. Thus, we can conclude for this case, that the Jacobian of
Eq. (2.76) for each collinear libration point has among its six eigenvalues one real
positive eigenvalue. This means that all collinear libration points are unstable (in the
linear approximation). Moreover, the collinear libration points are equilibrium points
saddle x center x center [103, 75]. This type of the equilibrium point gives for each
libration points two types of periodic orbits. For these points we have two pairs of

conjugate purely imaginary eigenvalues as well.

0L

Figure 2.9: The right part of Eq. (2.80) depending on the value of u for the collinear libration points
L1, L2, and L3. One can see that for each of them, for any p value, we have one negative and one

positive value of o2.

For the triangular libration points L4 and L5 we have only z = 0, and the Jacobian
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Eq. (2.73) for these points is

ofi 0N
0 2 0 — —/—
%o
—92 0 0 _ﬁ 22y
ox Oy
0 00 O 0 0l
Jis = G , (2.81)
1 00 O 0 0
0 1.0 O 0 0
0 01 O 0 0

and the equations for its eigenvalues o are

Ofs
2 _ 242 =
0z 0,
ofi  0f ofi  0f 0f20f1 | 0f10f
4 2 4 2= L= A R B S R S
ot ( ox 8y> U(@y 8:v> oz 8y+8a: oy 0.
(2.82)
Using Eq. (2.72), and Egs. (2.62)-(2.64) we find
ofi 3 Oh (3 ) V3
a. — 7 A + =B
ox 4 Oy 2 2
%:i@—u)é,—%:%, (2.83)
Bz 2 9 0 9y 4
Ofs
2. - b

where the sign “+” shows that we need to choose ”—" for L4 and "+” for L5. Thus,

we can rewrite Eq. (2.82) as

(2.84)
27
J4+02+Z,u(1—u) =0.

The first equation of Eq. (2.84) has two conjugate purely imaginary roots. The

second one has two pairs of conjugate pure imaginary roots only if
27 —2Tu+1>0, (2.85)
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orif 0 < p < pe =~ 0.03852089; otherwise this equation has four complex roots
consisting of real and imaginary parts. Thus, we can conclude that for 0 < p < py
the points L4 and L5 are stable in the linear approximation. In 1962, A. Leontovich,
using results of A. Kolmogorov and V. Arnold, showed [80] that the libration points
L4 and L5 are stable in general for planar motion in the Oxy-plane except possibly
for a discrete set of p values. Later, in 1967-1969, A. Deprit and B. Deprit [25] proved

that this set contains only two values:

15— /213 45 — /18
y = ——y ~ 0.01351160 , pu" = _Wﬁ ~ 0.0242938 . (2.86)

In the general (nonlinear) case of non-planar motion we definitely have instability
at 4 = ¢/ and p = p” and possibly for a few other p values [80]. For all other
such that 0 < p < po = 0.03852089 we have stability (in other words, if L4 and L5
are unstable then this instability is extremely weak). It was shown that for g = p,
the libration points L4 and L5 are stable. For p > po, we have instability, as for the

collinear libration points.

2.4.4 Periodic solutions of the Restricted 3-Body Problem

For the case where the Jacobian J has purely imaginary eigenvalues we cannot draw
any conclusion about the stability, and we must analyze the nonlinear equations.

As long ago as 1892, Poincaré emphasized the fundamental role of periodic orbits
(solutions) in the N-Body Problem: they are “the only opening through which we can
penetrate the stronghold” (citing from [100]). Moreover, periodic orbits organize the
“skeleton” [28] around which other orbits are formed. Thus, after 1892, much effort on
the (Circular) Restricted 3-Body Problem has been spent on finding periodic orbits
[107, 14, 61, 29, 69, 70, 87, 89, 88, 115, 116, 12]. We note that some families (or
groups) of periodic orbits were calculated numerically, whereas others were found
using complicated analytical methods.

As mentioned above, each of the libration points has in its vicinity a few families
of periodic solutions, because the Jacobian (2.74) at these points has a corresponding
number of pairs of conjugate purely imaginary eigenvalues. Thus, the collinear points

L1, L2, L3, for which J has two pairs of such eigenvalues, have in their vicinities two
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different families of periodic orbits. The triangular libration points 1.4 and L5 for
it < pt5 have three families each, while for g > py they have only one family each.

H. Poincaré conjectured that periodic orbits are dense in the set of all possible
solutions of the problem that are bounded in the 6N-dimensional phase space formed
by the components of the coordinates and the velocities of the N bodies. For the
6-dimensional phase space of the CR3BP where we have only three coordinates and
three velocities of the body with zero mass, it means that if X(¢) is a solution of the
equation

x = f(x), (2.87)

where f : R — R6 x € R° with starting conditions X(¢5) = X,, then exists a
periodic solution X(t) : x(t) = %X(t + T) of Eq. (2.87) with a period T, such that this
periodic orbit at all times is as close to X(t) as we want (though, the period T may
be infinite), i.e.:

1X(#) —x(1)]] <6 (2.88)

for any 0 < t < 400, where § > 0 may very small. This fundamental result for
the Restricted 3-Body Problem can be paraphrased as follows: For any point of
the phase space there always exists a point belonging to a periodic orbit when the
distance between the points is infinitely small. This theorem is very useful for building
numerical methods of finding periodic orbits [80].

Another method is analytical continuation: it is possible to solve the problem for
1t = 0 and then to perform analytical continuation of this solution for any p value in
the interval [0,0.5]. Such an approach is the source of most analytical constructions
of periodic orbits.

In the fundamental book by V. Szebehely, “Theory of Orbits. The Restricted
Problem of Three Bodies” [107], all achievements obtained by 1967, including analyt-
ical, numerical and combined approaches, are summarized and reviewed. There are
books by A. Bruno [14] and M. Hénon [61], both based on analytical continuation
from g = 0 to finite values of p. Taking into account recent work [29, 69, 70, 87, 89,
88, 115, 116, 12] and other work, we can see some bones of the “skeleton” of the full

set of periodic orbits; however, we cannot see a full and clear picture. In this thesis,
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we build such “skeleton”, using an original numerical approach [38, 39, 34, 35].

2.4.5 Libration point satellite mission design

The libration points of the Earth-Moon and the Sun-Earth systems, and some of
their properties, were already well-known at the beginning of the era of space flights.
In the 1960’s and 1970’s, it was proposed to use periodic orbits near the libration
point L2 of the Earth-Moon system [46, 50| for the Apollo project, for uninterrupted
communication between the dark side of the Moon and the Earth. Unfortunately,
this innovative concept was never implemented. Even before that, regions near the
libration points L1 and L2 of the Sun-Earth system were discussed as excellent lo-
cations for stationary spacecraft for scientific observations [46] and communication
relays [21, 20].

Periodic orbits near libration points are interesting for spacecraft mission design
as well: L1 for the investigation of solar wind before influence of the Earth’s mag-
netosphere; L2 for placement of a cosmic telescope, because there is no reflected
light from the Earth (from L2 we can see only the night side of the Earth), and the
Earth shades the Sun as well. In 1978, the NASA International Sun-Earth Explorer
3 (ISEE-3) became the first spacecraft to orbit the Sun-Earth L1 point, where it
traced a Halo orbit [47]. Such orbits were computed with the required accuracy in
[46, 50, 48, 49, 13, 97]. Since that time, the European Space Agency (ESA)/NASA
SOHO mission and the NASA ACE mission have used Halo orbits about the Sun-
Earth L1 point for solar observations [68, 47, 66, 98].

Most of the orbits near L1 and L2 are unstable for any p value, ¢.e., if the spacecraft
is shifted by a small perturbation, then this shift will increase, at first slowly and
then faster and faster. Nevertheless, a spacecraft can remain in the orbit for years by
performing small maneuvers every few months [44].

On the other hand, the effect of instability can be used for correcting of the trajec-
tory of a spacecraft: small fuel expenses can give radical changes of trajectory. There
exists infinitely many trajectories which converge to this orbit and infinitely many
trajectories which diverge from this orbit as well. M. Lo from NASA’s Jet Propulsion

Laboratory [72, 73] showed, that the form of such trajectories can be very different

35



while the energy of the spacecraft is almost the same. It is possible to calculate the
correction very precisely to obtain a new trajectory of choice. An example of such cal-
culations is shown in Fig. 2.10. Here, after a small (but precisely calculated) changing
of the orbit of the spacecraft near L2 (of the Sun-Earth system), the spacecraft is
moving on the orbit near the L1 without additional corrections. Such calculations
were done, and used for the Genesis mission [72, 73, 77].

Recent libration point mission design has exploited dynamical system theory [5,
103, 75] to compute stable, unstable and center manifolds for libration point orbits
[77, 55]. In 2001, the MAP spacecraft was placed in an orbit about the Sun-Earth
L2 point [51]. The Genesis mission, launched in 2001, called for the spacecraft to the
first orbit the Sun-Earth L1 point, then follow a heteroclinic connection to an orbit
around L2, before returning to the Earth [72, 73, 77]. The Genesis spacecraft was
designed to collect particles of the solar wind during its mission, and return them
to the Earth. The evolution of the Genesis spacecraft is shown on Fig. 2.11 (from
http://www.genesismission.org/mission/live_shots.html). A detailed description of
the Genesis mission can be find at http://www.genesismission.org.

In Table 1 taken from [49], several missions and future projects are collected. The
information about most of the missions from in Table 4.1 can be found at the web
site http://highorbits.jhuapl.edu.

We conclude this chapter by noting, that while new trajectories found in the 3-
Body Problem were called “choreographies”, new missions designed by M. Lo with

his colleagues can be called space ”acrobatics”.
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Table 2.1: Past and future libration-point spacecraft missions ([49]). Acronyms: SOHO - Solar he-
liosphere observatory; ACE - Advanced composition explorer; MAP - Microwave anisotropy probe;
NGST - Next generation space telescope; GAILA - Global astrometric interferometer for astro-

physics; TPR - terrestrial planet finder.

Sun-Earth | Date of orbit | Mission
Mission libration insertion purpose

points
ISEE-3 (NASA) L1, L2 1978, 1983 Solar wind, cosmic rays,plasma
SOHO (ESA/NASA) L1 1996 Solar observatory
ASE (NASA) L1 1997 Solar winds, relativistic particles
WIND (NASA) L1 1995 Solar wind monitor
MAP (NASA) L2 2001 Cosmic microwave background
Genesis (NASA) L1 2001 Solar-wind composition
Hershel (ESA) L2 2007 Far infrared telescope
Plank (ESA) L2 2007 Cosmic microwave background
Eddington (ESA) L2 2008 Stellar observations
NGST (NASA) L2 2010 Deep space observatory
Constellation-X (NASA) | L2 2011 X-ray astronomy
GATA (ESA) L2 2012 Galactic structure, astrometry
TPF (NASA) L2 2012 Detection of distant planets
Darwin (ESA) L2 2014 Detection of Earth-like planets
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Figure 2.10:

Transition of the spacecraft from an orbit near the libration point L2 of the Sun-Earth
system to an orbit near L1.
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Figure 2.11: Trajectory of the Genesis spacecraft and its position on August 20, 2004. (From the
Genesis mission web site)
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Chapter 3

Basic Numerical Methods

3.1 Continuation of solutions

Numerical continuation enables the computation of solution manifolds ( “solution fam-
ilies”). Most existing algorithms are for the computation of one-dimensional solution
manifolds (“solution branches”), e.g., [1, 11, 38, 39, 96, 103], and [75] (Chapter 10),
but continuation algorithms have also been developed for higher-dimensional mani-
folds [60].

To recall the basic notions of continuation, first consider the finite-dimensional
equation

F(X)=0, F:® 5 R (3.1)

where F' is assumed to be sufficiently smooth. This equation has one more variable
than it has equations. Given a solution X, one has, generically, a locally unique one-
dimensional family of solutions that passes through Xy. To compute a next solution,

say, X1, of this family, one can use Newton’s method to solve the extended system

a) F(X))=0,

. (3.2)
b) (X; - Xo)*Xo = As .

Here X, is the unit tangent to the solution path at X, the symbol * denotes
transpose, and As is a step size in the continuation procedure. The vector X, is, of
course, also a null vector of the Jacobian matrix Fx(Xj), and can be computed at

little cost [38]. This well-known method, known as the pseudo-arclength method [71],
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is the basis of vitually all robust continuation algorithms. The size of the pseudo-
arclength step size As is usually adapted along the solution family, depending, for
example, on the convergence of Newton’s method.

It can be shown that the above continuation method works near a regular solution
Xo, i.e., if the null space of Fx(Xy) is one-dimensional. In fact, in this case the

Jacobian of Eq. (3.2) evaluated at Xy, i.e., the n 4+ 1 by n + 1 matrix

Fx gXo) 7 (3.3)

Xg
is nonsingular. By the Implicit Function Theorem this guarantees the existence of a
locally unique solution family through X,. This family can be parametrized locally
by As. Moreover, for As sufficiently small, and for sufficiently accurate initial ap-
proximation, (e.g., Xfo) = X+ AsX,), Newton’s method for solving Eq. (3.2) can be
shown to converge. Branch points along the solution family correspond to singularity

of the Jacobian in Eq. (3.3); such points can be located accurately, and there are

standard branch switching algorithms [71].

3.2 Periodic solutions

Here we describe briefly how pseudo-arclength continuation can be used to compute

a family of periodic solutions of a dynamical system
Z'(t) = flz(t),N), f i R"xR - R, (3.4)

where A € R is a physical parameter. In this case the continuation step corresponding

to Eq. (3.2) takes the form of the following constrained periodic boundary value
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problem:

(3.5)
as) fol X (7)* xo(7) d7 = 0,

b) fol(ixl(T) - 1?0(7))*5'50(7) dr + (Ty — TO)T() + (A — )\o)j\o = As.

This equation must be solved for X; = (z1(-), T1, A1), given a solution Xo = (z¢(+), Tp, Ao)
and the path tangent X, = (:bo(-),Tg,}\o). Here T} € R is the unknown period.
Eq. (3.5a2) imposes unit periodicity, after rescaling of the independent variable t.
Eq. (3.5a3) is a phase condition, which fixes the phase of the new orbit x;(-) relative

to the given orbit zo(-). It may be replaced by the classical Poincaré phase condition
a3)  (x1(0) = x0(0))" x,(0) = 0.

However, the integral phase condition (3.5a3) has the desirable property of minimizing
phase drift relative to zo(-), which often allows much bigger continuation steps to be
taken. Eq. 3.5b is the functional form of the pseudo-arclength constraint (3.2b).
More details on this boundary value approach for computing periodic solutions can
be found in [39]; further references include [32, 67, 37].

In each continuation step, Eq. (3.5) is solved by numerical boundary value al-
gorithms. In particular, AUTO uses piecewise polynomial collocation with Gauss-
Legendre collocation points (“orthogonal collocation™) [24, 7, 8], similar to COLSYS
[6], and COLDAE [9], with adaptive mesh selection [101]. Combined with contin-
uation, this allows the numerical solution of “difficult” problems, as illustrated by
the near-homoclinic and near-collision orbits in this thesis. (For other challenging
applications see, for example, [33].) AUTO determines the characteristic multipliers
(or Floquet multipliers), that determine asymptotic stability and bifurcation prop-
erties, as a by-product of the decomposition of the Jacobian of the boundary value

collocation system [39, 45, 78].

41



3.3 Periodic solutions of the CR3BP

Equation (2.51) describes a conservative system, with one conserved quantity, namely
the Jacobi constant C defined in Eq. (2.56). In order to use boundary value algo-
rithms, we must introduce an unfolding term with corresponding unfolding parameter,
as discussed in detail in [40] and [83].

First rewrite Eq. (2.51) as a first order system, scale time, so that the period
T appears explicitly in the equations, and add periodic boundary conditions and
the integral phase constraint, as in Eq. (3.5). As discussed in [40] and theoretically
justified in [83], a suitable choice for the unfolding term is AVE, where A is the
unfolding parameter. However, this choice is not unique, and for the CR3BP it is
more convenient to introduce a simpler unfolding term, namely one that corresponds

to “damping”. The first order system is then given by

= Tu,,
I

y = Tv,,
2= Tv,,

(3.6)
vy = T2u+x— (1= p)(@+mri® = ple— 1+ p)rs®) + A,

v, = T[=2v, +y— (1= pyri® — pyry°] + Ay ,

@~

v, = T[—(1- ,u)zrl’3 — uzr;‘o’] + Av, .

It is important to stress that, while A is a scalar unknown that is solved for at each
continuation step, its value will be zero (up to numerical precision) upon convergence

[83].
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3.4 Loci of bifurcation points

As is evident from the numerical results reported in this thesis, much insight into
the global periodic solution structure can be gained from computing loci of singular
points, such as loci of Hopf bifurcations (Fig. 4.1), loci of bifurcation points (e.g.,

Fig. 5.1), and loci of homoclinic orbits (Fig. 5.38).

3.4.1 Loci of Hopf points

It is well known how to follow Hopf bifurcation points in generic problems; see, for
example [38], and references therein. This continuation only involves an algebraic sys-
tem, and requires two free problem parameters in addition to the period (or frequency)
associated with the bifurcation. AUTO uses a so-called “fully extended system” for
following Hopf bifurcations.

The technique applies without change for following the “Hopf bifurcations” in the
CR3BP, provided that the unfolding parameter A is included in the formulation; i.e.,
the free problem parameters are u, A, and the period T'. This standard capability of
AUTO was used to compute the curves in Fig. 4.1. In the CR3BP each pair of purely
imaginary eigenvalues at a libration point corresponds to a “Hopf bifurcation” in this
sense. Actually, this computation simply retraces the equilibria, while tracking one

of the periods at the same time.

3.4.2 Loci of homoclinic orbits

There are advanced algorithms for the continuation of homoclinic orbits that include
the detection of higher codimension singularities and their continuation. Many such
algorithms are included in the HomCont software which is part of AUTO. However,
by far the simplest method for following homoclinic orbits is to follow periodic orbits
that approximate it. In a generic system one simply fixes the period T" at a sufficiently
large value, while freeing another problem parameter. Thus such a continuation has
two free problem parameters, which is consistent with the codimension of a homoclinic
orbit. The approach applies without change to the continuation of homoclinic orbits

in the CR3BP, provided the unfolding parameter A is included in the formulation;
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i.e., the free problem parameters are p and A. In our calculations we have fixed
the value of the period at T = 500, although we have also used much higher values
of T, for example T = 105. There is no difficulty in using such high values, since
the adaptive high-order discretization used in AUTO allows the computation of such

periodic orbits.

3.4.3 Loci of branch points

It is well-known how to compute loci of folds, torus bifurcations, and period-doubling
bifurcation in generic dynamical systems. For a recent paper on the theory and the
efficient implementation of such algorithms, see [35]. These methods apply equally
well to conservative systems such as the CR3BP, given the inclusion of the unfolding
parameter A in the continuation scheme. (Note that there are no genuine folds in
the computation of families of periodic orbits in the CR3BP, as all such families are
“vertical”, i.e., the unfolding parameter X is always zero. However, one can consider
tracking folds with respect to the period T.) Here we present loci of bifurcation
orbits. The computation of the loci of period-doubling bifurcations in Fig. (5.7) is
accomplished by simply doubling the length of the interval of periodicity from 1" to
2T. The locus of period-doubling bifurcations can then be computed as a locus of
bifurcation points. Thus we need only consider the computation of bifurcation loci.
This continuation is not as standard as the continuation of the generic codimension 1
singularities, and for this reason we describe the algorithm in detail below.

First consider the case of Eq. (3.1), i.e., F(X) = 0, where F : R**1 — R
Generically, at a solution X, the Jacobian Fx(X) has full rank, ensuring a locally
unique solution family X (s), where s is, for example, the pseudo-arclength parameter
(“As” in Eq. (3.2)). The simplest non-generic situation is where Fx(X) has a rank
drop of one, i.e., rank Fx(X) = n — 1, which generically corresponds to a simple

bifurcation. In this case the transpose F%(X) has a one-dimensional null space. An
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extended system for following a locus of such bifurcations is then given by

F(X) =0,
Fi (X)W =0, (3.7)
WW—1=0.

Note that Eq. (3.7) comprises 2n + 2 equations, and that it contains 2n + 1 variables,
namely, X € R and W € R". Therefore an additional two variables are needed,
say, Ay and A3, i.e., F' = F(X, )\, A3). We note that one of the components of X
is often considered as a problem parameter, i.e., X = (x, A1), where z € R". The
tracking of a locus of bifurcations then includes three problem parameters, which is
consistent with the codimension of the bifurcation. It can be shown that the resulting

system
a) F(X,)\Q,)\g) = O,

b) F3 (X, A, 03) W = 0, (3.8)

) WW-1=0,

is regular at a generic bifurcation point, i.e., that its Jacobian

Fyx O F}\2 F)\3
(FxW)x  Fx (FxW)y, (FxW)y, |, (3.9)
0* 2W* 0 0

has full rank, namely 2n + 2.

The generic setting presented above requires two problem parameters to “find” a
bifurcation point, and three parameters to continue a locus of such bifurcations points.
In case of symmetries, one often encounters bifurcation points in one-parameter solu-
tion families. A locus of such bifurcations then only has two free parameters. However,
for numerical purposes one must regularize this continuation through the introduction

of an unfolding term with an associated unfolding parameter. The unfolding term
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must be chosen so that it “breaks” the bifurcation when the unfolding parameter
is non-zero, and such that a solution of the equation only exists (at least locally) if
the unfolding parameter is zero. There are many ways to do this; the most general
approach is to replace F(X) by F(X) + AW, where W is the adjoint null vector in
Eq. (3.7). Here ), is the unfolding parameter, which is one of the unknowns in each
continuation step, but which will be zero (to numerical precision) upon convergence
of the numerical solution procedure.

Now consider the case of bifurcation points for periodic solutions. In this case

X = (z(-),T,A), as in Eq. (3.5), and F(X) = 0 represents the equations

7' (t) =Tf(z(t), M),
2(0) = z(1), (3.10)

fa(r) &(r)dr =0,

where Z(-) denotes a reference solution. We need the adjoint F% of the linearized
operator Fx. First note that the linear operator Fx acts upon function space elements

(“vectors”) of the form (v(-), S, R) as follows:

r

V() — T fo(z(t), M) v(t) — S flz(t),\) —
RT f)q (x(t)’)‘l) 5

Fxy : (v(-),S, R 3.11
COSR=y (3.11)

i folv(T)* SZ'(T) dr .

Given this representation, an elementary derivation shows that the adjoint linearized
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operator equation corresponding to Eq. (3.8b) is now given by

w'(t) = =T [f7(z(t), \) w(t) — & fz), \M)],

(3.12)

where the adjoint variable W in Eq. (3.8) is now given by W = (v(-), k), with xk € R.

The normalization corresponding to Eq. (3.8¢) becomes
Jpw(r)* w(r)ydr +x2-1 =0. (3.13)

The complete extended system for computing a locus of bifurcation points for periodic
solutions now cousists of Equations (3.10)-(3.13), which together comprise 2n first
order ODEs, with 2n periodicity boundary conditions, and subject to an additional 4
integral constraints. The unknowns to be solved for in each continuation step are the
functions z(-) and w(-), and the five scalar variables T, k, and A = (A1, Ay, \3) € R,
In the generic case, A represents three problem parameters. The extended system
consisting of Eqgs. (3.10)-(3.13) then gives a one-dimensional solution family, which
can be computed using standard pseudo-arclength continuation. In the non-generic
case one must introduce an unfolding term that perturbs the bifurcation. In this case
one of the components of A, say, A; corresponds to the unfolding parameter.

The extended system (3.10)-(3.13) can also be used for tracking bifurcation points
in a conservative system, provided that A; corresponds to an appropriate unfolding
parameter. For completeness we give the extended system for the CR3BP in detail.
First note that Eq. (1.51), with unfolding parameter A\; (see Eq. (3.6)), can be written

in the form

(3.14)



subject to the periodicity equations
z(0)—z(1) = 0, v(0)—v(1) = 0, (3.15)

and the phase constraint

’

/0137(7')* () +o(r) v () dr = 0, (3.16)

where, as before, Z(-) denotes a reference solution. Denote the adjoint variables
corresponding to x(-) and v(-) as Z(-) and 9(-), respectively. The adjoint equations

are then given by

(1) :—T[ o g=(x (), v(t))" (1)
I (go(z(t), v(t)) + MI)*

(3.17)
» 10 |
gx(t),v(®) + Mv(t) )1
with adjoint periodicity equations
2(0)—z(1)=0, 2(0) —9(1) =0 . (3.18)
integral constraints
gl"v(T)*’D(T) dr =0,
(3.19)
0fl{v(T)*ﬂ?(T) +[g(z(7),v(7)) + Aw(r)]o(r) }dT =0,
and normalization
/[:z(f)*gz(f) +oa(r)a(n)dr + k2 =1. (3.20)

As in Egs. (3.10)-(3.13), the above extended system for computing bifurcation loci for
the CR3BP comprises 2n first order ODEs and 2n periodicity boundary conditions,
with n = 6, and 4 integral constraints. The unknowns to be solved for in each
continuation step are the functions z(-), v(-), the adjoint functions #(-), o(-), and
the five scalar variables p, T, &, and A = (A, \y) € R?%. Here p is the mass-ratio

parameter in the CR3BP, )\, is the unfolding parameter for conservative systems, and

48



\s is the additional unfolding parameter introduced to perturb bifurcation points. As
before, the unfolding parameters A\; and Ay are solved for in each continuation step,
but they remain zero, up to numerical precision.

It was already noted that the number of differential equations in these extended
systems is double the number in the original system. After discretization, and upon
application of Newton’s method, the resulting linear systems have a very special
matrix structure, that can be taken advantage of in the numerical linear algebra.

Alternatively, one can also derive minimally extended systems for following branch
points, where the number of differential equations remains the same, but where certain
auxiliary computations are required. Such minimally extended systems have been
considered in detail in [36], for the case of branch points along periodic solution

families. The treatment there includes the case where two unfolding parameters are

needed, as in Section 3.3 above for the CR3BP.
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Chapter 4

Periodic Solutions of the

Earth-Moon System

4.1 Periodic orbits that emanate from the libration points

If Eq. (2.51) is rewritten as a first order system in R®, then its Jacobian evaluated at
the libration points L1, L2, and L3, has two pairs of purely imaginary eigenvalues,
which give rise to well-known families of periodic orbits, namely the planar Lyapunov
orbits, L1, L2, and L3, and the Vertical orbits, V1, V2, and V3. (See Table 4.1 for a
glossary of abbreviations.) The Jacobian at the libration points L4 and L5 has at least
one pair of purely imaginary eigenvalues, for all u, which gives rise to the families V4
and V5 of Vertical orbits from L4 and L5, respectively. For u less than the critical
value p, =~ 0.0385, the Jacobian at the libration point L4 and L5 has an additional
two pairs of purely imaginary eigenvalues, that give rise to two families of planar
orbits, for both L4 and L5 [65]. (For a list of critical p-values see Table 5.1.) For
the libration point L4 these families are called the Long-Period family and the Short-
Period family, and similarly for the libration point 5. The Long-Period families that
emanate from 1.4 and L5 are called L4 and L5, respectively, while the Short-Period
families from L4 and L5 actually constitute a single connected family, which we shall
refer to as S3.

For the Earth-Moon case, the above-mentioned families of periodic orbits, along
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with various other families, are represented in the schematic bifurcation diagram in
Fig. 4.2, which will be explained in more detail in Sec. 4.2 below. Corresponding
periodic orbits are shown in Figs. 4.3-4.25. Bifurcation diagrams for other represen-
tative values of i, as shown in Figs. 5.13-5.25, will be described in Chapter. 5, with
periodic orbits from some additional families shown in Figs. 5.26-5.37.

Figure 4.1 shows the limiting value of the period T at the libration points, for each
emanating family of periodic orbits. This period satisfies T = 27 /w, where w is the
imaginary part of the corresponding purely imaginary eigenvalues of the Jacobian. In
accordance with the summary above, counting double curves, there are eight curves
for py < u < 1/2, and twelve curves for 0 < p < ps.

The critical value us9, already referred to above, corresponds to the fold on the curve
in the right-hand panel of Figure 4.1, where two pairs of purely imaginary eigenvalues
collide. This critical point is an example of a Hamiltonian Hopf bifurcation. The upper
portion of the curve that passes through the fold, corresponds to the bifurcating Long-
Period families L4 (or L5), while the lower portion corresponds to the bifurcating

Short-Period family S3.

Period

0.02 003 004 0.05

)

Figure 4.1: The period at the libration points for each emanating family of periodic orbits. The
two panels show different details of the diagram. The fold at us & 0.0385 in the panel on the right,
corresponds to a Hamiltonian Hopf bifurcation. Due to symmetry, several curves coincide in the

diagram; however, the curves for L1 and V1, although close to each other, do not coincide.
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Table 4.1: Abbreviations used for orbit families, branch points and their loci. (Some of these only

occur for certain values of u.)

Symbol Definition Example
L Libration Point, (i = 1,---,5; red cubes in Fig. 4.2) Fig. 4.2
A The Axial family from Li at Li2, (i = 1,2, 3) Fig. 4.2
Bi The Backflip family from Vi at Vi2, (i = 1,2,3) Fig. 4.2
Ci The planar “Circular” family, (i = 1,2) Fig. 4.2
D1 The D1-family Fig. 4.2
El The El-family from D1 at D12 Fig. 4.2
Hi The Halo family from Li at Lil, (: = 1,2,3) Fig. 4.2
Ki The K-families from L1 at L15-L18, (i = 1,---,4) Fig. 5.25
L: The planar Lyapunov family from Li, (i = 1,2, 3) Fig. 4.2
L: The Long-Period planar family from Li, (i = 4,5) Fig. 4.2
R2 The R2-family from L2 at 1.24 Fig. 4.2
Si The planar families from Li at 143, (i = 1, 2) Fig. 5.25
T1 The T1-family from L1 at 114 Fig. 5.18
T2 The T2-family from L2 at 125 Fig. 5.16
Vi The Vertical family from Lz, (¢ = 1,---,5) Fig. 4.2
Wi The W4 /Wh-family connecting V41 to V51 Fig. 4.2
Xi The X4/X5-family from V4/V5 at V42/V52 Fig. 5.25
Zij Branch point j along family Zi, where Z =L, V, --- | Fig. 4.2
Zij Locus of branch points Zij Fig. 5.1
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4.2 Periodic Solutions of the Earth-Moon System

In this section we give an overview of families of elemental periodic orbits for the
Earth-Moon system, as represented in the schematic bifurcation diagram in Fig. 4.2.
This bifurcation diagram is more complete than that given in [40], and it is accompa-
nied by diagrams that show examples of the actual orbits, namely, in Figs. 4.3-4.25.
In Sec. 5.1 we will explain how the bifurcation picture changes with p.

Each point on a curve in the bifurcation diagram in Fig. 4.2 represents a periodic
solution, with its associated period. The notation used to denote orbit families and
branch points is summarized in Table 4.1. Along the families of periodic solutions
there are various branch points. In this thesis we use the term branch point to
denote transcritical and pitch-fork bifurcations, thereby excluding period-doubling,
torus, and subharmonic bifurcations. At a branch point, distinct periodic solution
families intersect, with identical orbit and identical minimal period at the point of
intersection. Apart from some special cases, we do not present results on solution
families that bifurcate from period-doubling and subharmonic bifurcations. However,
the solution structure that we present can be viewed as a “skeleton”, from which
many other solutions may be reached [27].

The orbits shown in Figs. 4.3-4.25 are represented by colored curves. Orbits that
correspond to branch points in the bifurcation diagram (“branching orbits’) appear
annotated and colored differently; such orbits belong to two different families. The
pink cubes denote the libration points, and the gray disk represents the Moon’s orbit.
The standard rotating barycentric coordinate system for the CR3BP is used. We
note that the Earth and the Moon are not drawn on scale.

The diagram in Fig. 4.2 is qualitatively correct for the Earth-Moon system, for
which p = 0.01215, and for neighboring p-values, as explained in Sec. 5.1. Many
features of the bifurcation diagram in Fig. 4.2 are, in fact, qualitatively correct for
all p-values, (0 < p < 1/2); however, there are certain features that depend on p, as

specified in detail in Sec. 5.1.
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Figure 4.2: Bifurcation diagram for the Earth-Moon system (u = 0.01215), showing families of
periodic orbits that emanate from the libration points and from subsequent branch points. The red
cubes are libration points. Small white spheres denote branch points, and small dark-red spheres
denote collision orbits. The planar families C1, C2, and D1, are only partially represented. A

glossary of the notation used is given in Table 4.1
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4.2.1 The Planar Lyapunov families

As mentioned in Sec. 4.1, the families of planar Lyapunov orbits are represented by
the curves L1, L2, and L3 in Fig. 4.2, where the family L¢ emanates from the libration
point L, respectively, (i = 1,2,3). Actual orbits from the planar Lyapunov families
are shown in Figs. 4.3-4.5. The Lyapunov families L1, L2, L3 terminate in orbits
that collide with the primaries. Such collision orbits are denoted by small dark-red
spheres in Fig. 4.2.

Figure 4.2 shows two branch points along the planar Lyapunov family L1, and
three branch points along each of the Lyapunov families L2 and L3. The branch
points along the family L1 are denoted L11 and .12, and branch points along other

solution families are designated similarly.

4.2.2 The Long-Period and Short-Period planar Lyapunov families

For 0 < i < pg (see Table 5.1), and in particular for the Earth-Moon system, there
are two planar Lyapunov families that emanate from the libration point L4; these
families are referred to as the “Long-Period” family and the “Short-Period” family.

The Short-Period family S3 connects the libration point L4 to the libration point
L5, while half-way it connects to the L3 family at the branch point L33. Orbits along
one-half of the S3 family are shown in Fig. 4.6, namely, orbits between the libration
point L4 and the branch point L33.

The Long-Period family from L4 is denoted L4, and orbits along this family are
shown in Fig. 4.7. There are no branch points along the Long-Period family L4,
except for the end point S41, where L4 reconnects to the Short-Period family S3.
The precise nature of this connection depends on y; for the Earth-Moon system it
corresponds to a period-quadrupling bifurcation.

By the (z,9,2) — (z,—v,z) symmetry, the same happens to the libration point
L5: a Long-Period family (L5) and the Short-Period family (S3) emanate from L5,
and the Long-Period family reconnects to the Short-Period family at the branch
point S51. Corresponding Long-Period and Short-Period orbits can be obtained by

reflection across the z — z-plane of orbits in Fig. 4.6 and Fig. 4.7.
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4.2.3 The Vertical families

The families of Vertical orbits are represented by V1-V5 in Fig. 4.2, where the family
Vi emanates from the libration point Li, respectively, (1 = 1,...,5). Corresponding
orbits appear in Figs. 4.8-4.11. As shown in the bifurcation diagram (Fig. 4.2), the
Vertical families that emanate from L4 and L5 are smoothly connected, and they can
be considered as a single family, referred to as the V4/V5 family.

Along the Vertical family V1 there are three branch points, denoted V11, V12, and
C11. Along the Vertical family V2 there are also three branch points, namely, V21,
V22, and C22. Note, however, that there are four branch points along the Vertical
family V3, namely, V31, V32, C23, and the branch point denoted V45, where the
Vertical family V3 connects to the Vertical family V4/V5. Along the Vertical family
V4/V5 there are the branch points V41 and V51, and the above-mentioned branch
point V45, located at the midpoint.

The Vertical families V1, V2, and V3 connect to “circular” planar orbits at the
branch points C11, C22, and C23, respectively. These branch points correspond
to “reverse period-doubling” bifurcations. For the Vertical families V1 and V2 the
reverse period-doubling bifurcations C11 and C22 correspond to the third branch
point along the family away from the libration point, whereas for the Vertical family
V3 the reverse period-doubling bifurcation C23 corresponds to the fourth branch
point. The planar orbits corresponding to C22 and C23 encompass both primaries,
and both belong to the Circular family C2. The planar orbit corresponding to C11

encompasses the larger primary only, and belongs to the Circular family C1.

4.2.4 The Halo families

The Halo families Hi bifurcate from the Lyapunov families Li at the branch point
Lil, for i = 1,2,3. At this branch point the North-South symmetry is broken, and so,
for each i, there are actually two Halo families Hi, namely the so-called Northern and
Southern Halo families. In the solution diagrams in Figs. 4.12-4.14 only the Northern
Halo families are shown.

The Halo families H2 and H3 terminate in collision orbits. The Halo family H1
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that bifurcates from the Lyapunov family L1 at the branch point L11, connects to the
planar family C2 at the branch point C21. Along the Halo family H1 there is another
branch point, denoted H11, from which the W4 /W5 family bifurcates, which in turn
connects to the Vertical family V4 at the branch point V41, and to its symmetry
partner V5 at V1.

4.2.5 The Axial families

The Axial families A¢ that bifurcate from the Lyapunov families Lz at the branch
points Li2, connect at their other end to the Vertical families Vi at the branch points
Vil, respectively, (i = 1,2, 3). Representative Axial orbits can be seen in Figs. 4.15-
4.17. These orbits are invariant under the reflection (z,y,z) — (z,—y,—z) and
intersect the z-axis at two points, which explains the name of these families. Each of
the Axial families Ai consists, in fact, of two families, related by a reflection across
the £ — z-plane. Note that the limiting branching orbits Li2 and Vil are invariant

under this reflection.

4.2.6 The Backflip families

The branch points Vi2 along the Vertical families Vi give rise to the non-planar
Backflip families, Bi, (i = 1,2,3), whose orbits are shown in Figs. 4.18-4.20. The
Backflip family B1 undergoes rather complicated transitions, which are described in
detail in [31]. The orbits are named after the so-called “Backflip maneuver” described
in [108]. Both of the Backflip families B1 and B2 end in collision orbits, while the
Backflip family B3 connects to the planar family D1.

Each of the Backflip families Bi (i = 1,2, 3) consists of two families, related by a
reflection across the z — y-plane, and originating from a pitchfork bifurcation at the

branching orbits Vi2, which themselves are invariant under such reflection.

4.2.7 The W4/W5 family

Along the Vertical family V4 there is a pitchfork bifurcation at the branch point

V41, resulting in two families, both denoted W4, and related by a reflection across
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the x — y-plane. Symmetrically with respect to the x — z-plane the same happens at
the branch point V51 on the Vertical family V5, leading to two families, both denoted
W5. The Northern parts of W4 and W5 connect to each other and to the Northern
Halo family H1 at the branch point H11. Similarly the Southern parts of W4 and
W5 (not shown in Fig. 4.2) connect to each other and to the Southern Halo family
H1 at the Southern partner of H11. Figure 4.21 shows orbits along the Northern part
of W4, between the branch points V41 and H11, thereby covering one quarter of the
complete W4/W5 family. The remaining three parts of W4/W5 can be obtained by

applying the above-mentioned symmetry operations.

4.2.8 The Circular families

The reverse period-doubling orbit C11 at the end of the Vertical family V1, belongs
to a family of planar circular orbits, called C1. Orbits along the Circular family C1
encompass the Earth only, as shown in Fig. 4.22.

The reverse period-doubling orbits C22 and C23 at the end of the Vertical families
V2 and V3, respectively, both belong to a second family of planar ”circular” orbits,

namely, C2. Orbits along the Circular family C2 encompass both primaries, as shown

in Fig. 4.23.

4.2.9 The D1 family

Another family of planar orbits can be reached via the Backflip family B3. This
family, called D1, is only partially shown in the bifurcation diagram in Fig. 4.2. Some
of its orbits can be seen in Fig. 4.24. Along the family D1, there is another branch
point, namely D12, from which the E1 family bifurcates. Actually, the D1 family
bifurcates from the C1 family via a period-doubling bifurcation, as indicated by a
dashed arrow in Fig. 4.22, although this connection is not shown in the bifurcation

diagram.
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4.2.10 The E1 family

Two families originate from a pitchfork bifurcation at the branch point D12 along
D1. These two families, both denoted by E1, are related by a reflection across the
r — y-plane. Some representative orbits along one of the E1 families are shown in

Fig. 4.25.

4.2.11 The R2 family

At the branch point L24 there is a pitchfork bifurcation, resulting in two bifurcating
families, both denoted by R2, and related by a reflection across the x — y-plane. The

orbits along one of these families are shown in Fig. 4.26.
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Figure 4.4: The planar Lyapunov family L2 of the the Earth-Moon system.
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Figure 4.5: The planar Lyapunov family L3 of the Earth-Moon system.

Figure 4.6: The planar Short-Period family S3 of the Earth-Moon system.
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Figure 4.8: The Vertical family V1 of the Earth-Moon system.
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Figure 4.9: The Vertical family V2 of the Earth-Moon system.

Figure 4.10: The Vertical family V3 of the Earth-Moon system.
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Figure 4.12: The Northern Halo family H1 of the Earth-Moon system.
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Figure 4.13: The Northern Halo family H2 of the Earth-Moon system.
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Figure 4.14: The Northern Halo family H3 of the Earth-Moon system.
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Figure 4.15: The Axial family Al of the Earth-Moon system.

Figure 4.16: The Axial family A2 of the Earth-Moon system.
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Figure 4.17: The Axial family A3 of the Earth-Moon system.

Figure 4.18: The Northern part of the B1 family of the Earth-Moon system.
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Figure 4.20: The Northern part of the B3 family of the Farth-Moon system..
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Figure 4.22: The “Circular” family C1 of the Earth-Moon system.
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Figure 4.24: The family D1 of the Earth-Moon system.
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Figure 4.25: The Northern part of the E1 family of the Earth-Moon system.
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Figure 4.26: The family R2 of the Earth-Moon system.
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Chapter 5

Periodic solutions for general

values of u

5.1 Loci of Branch Points

In this chapter we describe how the bifurcation diagram for the Earth-Moon system, as
shown in Fig. 4.2, changes when the mass-ratio parameter p changes. Many features
of the bifurcation diagram remain qualitatively the same; however, there are also some
qualitative changes. Our main numerical tool in this investigation is a continuation
algorithm for branch points, as described in Chapter 3, which allows the computation
of a family (or locus) of branch points, for varying p, as shown in Figs. 5.1-5.12, where
the energy F and the period T of branching orbits are plotted versus the mass-ratio
parameter p. Note that, due to the symmetry about p = 1/2, it suffices to show
these curves for p in the interval [0,1/2]

Additional information on the persistence of periodic solution families, as pu is
varied, can be deduced from the persistence of the homoclinic orbits that terminate
some of these families, as will be discussed separately in Sec. 5.2.

The loci of branch points, as well as the loci of homoclinic orbits discussed in
Sec. 5.2, contain critical points. These are special points (higher order singularities)
that correspond to structural changes in the bifurcation diagram, and consequently

in phase space.
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As an example, consider the curve L13 in Fig. 5.1, which represents the locus of
branch points L13 along the Lyapunov family L1. As can be seen in Fig. 5.1, the
curve L13 contains a fold, namely, at the critical value yu = ps, where u; ~ 0.066.
The corresponding structural changes in the bifurcation diagram can be observed by
comparing the bifurcation diagrams for p-values near the critical value ps, as shown
in Fig. 5.17 and Fig. 5.18. One observes the appearance of two new branch points,
namely, 13 and L14, in Fig. 5.18, in accordance with the fold on the locus L13 in
Fig. 5.1.

In order to highlight the change between the bifurcation diagram in Fig. 5.17
and the bifurcation diagram in Fig. 5.18, we use a bright-red color for the families
bifurcating from the new bifurcation points L13 and L14. (These families are called
S1 and T1, respectively.) Changes between other consecutive bifurcation diagrams
are highlighted in a similar fashion.

Table 5.1 contains a list of critical u-values, also indicating the u-diagram in which
the critical point appears, and indicating bifurcation diagrams for nearby p-values,
in which the qualitative changes corresponding to a critical point can be observed.

Below we describe the implications that can be deduced from features of the com-
puted loci of branch points. To some extent our discussion follows the order in which

the u-diagrams appear, i.e., from Fig. 5.1 to Fig. 5.12.

5.1.1 Branch points along the Lyapunov family L1

The number of branch points along the Lyapunov family L1 depends on the value
of the mass-ratio parameter u, as can be seen in Fig. 5.1, which displays loci of
branch points along this family, computed using the extended boundary value system
described in Chapter 3.

In Fig. 5.1, note that the locus L11, which corresponds to bifurcations to Halo
orbits, extend over the entire interval. Similarly, the bifurcations to the families
of Axial orbits, represented by the locus L12, exist for all . Thus, the numerical
evidence indicates that the Halo bifurcations and the bifurcations to the Axial orbits
are always present along the Lyapunov family L1.

However, the locus L13 contains a fold located at the critical value p5, as can be
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seen in Fig. 5.1. We conclude that the branch point L13 ceases to exist for u less than
1t5. On the other hand, the fold also implies the existence of another bifurcation from
L1, namely at the branch point L14, whose locus L14 is the continuation of the locus
L13 past the fold in Fig. 5.1. As p decreases past the critical value us, the branch
points LL13 and L14 approach and annihilate each other.

Fig. 5.1 also shows that, whereas the locus of branch points L13 exists for all
i greater than or equal to ps, the locus L14 terminates at a value pg, where the
branching orbit 114 collides with one of the primaries.

Additional loci, labeled L15-L18 appear near ;1 = 1/2 in Fig. 5.1. These curves
originate from folds at the critical points py3 and g4, and imply an additional four
branch points, namely, L.15, .16, 117, and L18, which can be seen in the bifurcation
diagram for g = 0.45 in Fig. 5.25. We refer to the four bifurcating families as the

K-families. Representative orbits along the K-families can be seen in Figs. 5.32-5.36.

5.1.2 Branch points along the Lyapunov family L2

First observe that the loci L21 and L22 extend over the entire y-interval in Fig. 5.2.
Thus, as was the case for the family L1, the Halo bifurcations and the Axial bifurca-
tions are always present along the Lyapunov family L2.

Also similar to the case of the family L1 is that the locus L23 contains a fold,
namely, at the critical value pg, where ps =~ 0.049, as seen in Fig. 5.2. It follows that
the branch point 1.23 does not exist for u less than ps.

The fold implies another bifurcation from L2, namely L25, whose locus L25 in
Fig. 5.2 is the continuation of the locus L23 past the fold. The locus L25 ends at the
critical value 4, where the branching orbit L25 becomes a collision orbit.

Another locus of branch points appears in Fig. 5.2, namely, L24, bounded at both
ends by collision orbits at the critical values p; and py;. Thus, for example, for p
less than p; the branch point L24 is not present along L2, as in Fig. 5.13. Also note
that, in accordance with Fig. 5.2, the branch points L23 and L25 are also absent in
Fig. 5.13.

As can also be observed in Fig. 5.2, all three branch points, 123, L.24, and L25,

are present in a narrow interval of u-values, namely, between the critical values pg
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and yu4, as illustrated in the bifurcation diagram for the value p = 0.055, which lies

inside this interval, in Fig. 5.16.

5.1.3 Branch points along the Lyapunov family L3

Similar to the case of the family L1 and the family L2, the Halo bifurcations and the
Axial bifurcations are always present along the Lyapunov family L3, as can be seen
in Fig. 5.3, where their loci, L31 and L32, extend over the entire u-interval.

In Fig. 5.3, we also observe that the branch point L33, from which the planar

family S3 bifurcates, also exists for all values of p.
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Table 5.1: Critical u-values, and nearby p-values with their bifurcation diagrams

Critical value Definition Locus Nearby | Nearby
p-value | Diagram
0.0005 | Fig. 5.13

p1 =~ 0.001 collision on L24 Fig. 5.2
0.020 | Fig. 5.14

wo ~ 0.038 Hamiltonian Hopf | Fig. 5.38
0.045 | Fig. 5.15

ps = 0.049 fold on L23 Fig. 5.2
0.055 | Fig. 5.16

pa = 0.057 collision on L25 Fig. 5.2
0.063 | Fig. 5.17

ps = 0.066 | fold on L13 Fig. 5.1
0.073 | Fig. 5.18

pe = 0.080 | fold on S2c0 Fig. 5.38
0.090 | Fig. 5.19

p7 = 0.104 | fold on D11 Fig. 5.12
0.120 | Fig. 5.20

ug =~ 0.142 collision on L14 Fig. 5.1
0.145 | Fig. 5.21

po & 0.147 | fold on Sloo Fig. 5.38
0.190 | Fig. 5.22

1o & 0.230 | collision on Sloco Fig. 5.38
0.280 | Fig. 5.23

p11 = 0.332 collision on L24 Fig. 5.2
0.360 | Fig. 5.24

12 = 0.399 | singular point Fig. 5.6

i1z & 0.427 | fold on L15 Fig. 5.1

14 ~ 0.433 | fold on L17 Fig. 5.1
0.450 | Fig. 5.25
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5.1.4 Branch points along the Vertical family V1

Along the Vertical family V1 there are three branch points, that exist for all values
of .

The first branch point encountered along V1is V11. At V11 the Axial family A1,
which bifurcates from the Lyapunov family L1 at the branch point L12, meets the
Vertical family V1. The locus V11 can be seen in Fig. 5.4.

The second branch point along V1 is V12, which corresponds to the bifurcation
to the so-called “Backflip orbits”. Its locus, V12, also appears in Fig. 5.4

At the the third branch point along V1, namely C11, the Vertical family V1
connects to the planar family C1 of “circular” orbits via a “reverse period-doubling
bifurcation”. The planar orbit C11 encompasses the larger primary only. The locus
C11 of this reverse period-doubling bifurcation is shown in Fig. 5.7. Evidently, C11

also exists for all p.

5.1.5 Branch points along the Vertical family V2

There are also three branch points along the Vertical family V2, for all values of p,
namely the branch point V21, where the Axial family A2 from branch point L22
meets V2; the branch point V22, where the Backflip family B2 bifurcates; and the
reverse period-doubling bifurcation C22, where V2 connects to the Circular family
C2. Orbits along C2, and in particular the branching orbit C22, encompass both
primaries. The loci V21 and V22 are shown in Fig. 5.5, while the locus C22 appears
in Fig. 5.7.

In Fig. 5.7, note that the locus C22 meets the locus C23 at p = 1/2. The

significance of this will be discussed in more detail in Sec. 5.3.

5.1.6 Branch points along the Vertical family V3

The family V3 emanates from the libration point L3. There are four branch points
along V3, of which the first branch point, denoted V31, gives rise to the Axial family
A3. The fourth branch point, denoted C23, is a reverse period-doubling bifurcation

that connects V3 to the Circular family C2, whose orbits are planar, and encompass
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both primaries.

Depending on the value of p, it is either the second or the third branch point
along the Vertical family V3 that gives rise to the Backflip orbits. This branch point
is denoted V32, regardless of its relative position along V3. Specifically, for p less
than the critical value p, where uo = 0.399, the Backflip bifurcation occurs after
the branch point that we refer to as “V45”, whereas for p greater than pui,, the
Backflip bifurcation occurs before branch point V45. The latter case can be seen in
the bifurcation diagram for pu = 0.45, in Fig. 5.25. At the branch point V45, the
Vertical family V3 meets the Vertical families V4/V5 that connect to the libration
points V4 and V5.

All four branch points along V3 are present for all values of 1, as can be seen in
Fig. 5.6, which displays the loci V31, V32, and V45, and in Fig. 5.7, which shows
the loci of reverse period-doubling bifurcations, including C23, as well as V45.

Of particular interest is the intersection of the loci V45 and V32 at the critical
value ji12, where p1o & 0.399, as seen in Fig. 5.6 and Fig. 5.8. These intersections
are not artifacts of the representation: the two loci actually intersect, giving rise to
a higher codimension singular point, at which the bifurcation orbits V45 and V32
coincide. Numerically, the singularity at p15 also corresponds to a singular point of
the extended system used to track these loci (see Chapter 3).

Not surprisingly, the singularity at po gives rise to additional complexity in the
global solution structure. In fact, additional loci of branch points emanate from the
singularity, namely, V42/V52 and X45, as shown in Fig. 5.8. As can be seen in
Fig. 5.8, the new branch points exist for p greater than p;,.

5.1.7 Branch points along the Vertical family V4/V5

The families V4 and V5, that originate at the libration points L4 and L5, respectively,
connect to each other, and to the Vertical family V3, at the branch point V45; see,
for example, Fig. 5.13. Along V4/V5 there are at least three branch points, but the
precise number depends on the value of p.

For p less than p19, where 1o &2 0.399, there are three branch points along V4/V5,

away from the libration points, namely, V41, V51, and the above-mentioned branch
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point V45; see, for example, Fig. 5.13. These three branch points exist for all values
of i1, as seen in Fig. 5.9, which shows the locus V41 (the locus V51 coincides with the
locus V41 in the figure), and in Fig. 5.6-5.8, which show the locus V45. The family
that bifurcates from V4 at V41 is called W4. It connects to the symmetry partner
of V41, namely, V51, on V5.

For p greater than py4, there is another branch point along the Vertical family V4,
namely V42, and its symmetry partner V52 along V5. The locus V42, which coincides
with the locus V52, corresponds to one of the additional curves that emanate from
the singularity at p;0 in Fig. 5.8.

The family that bifurcates from V42 is called X4. It connects to its symmetry
partner, X5 from V52, namely, at the branch point X45. The locus X45 corresponds
to another additional curve that emanates from the singularity at 5 in Fig. 5.8.

Representative orbits along X4 can be seen in Fig. 5.37, for the case y = 0.45.

5.1.8 Branch points along the Halo family H1

For each value of y there are three families of Halo orbits, namely the families that
bifurcate from the first branch point on the Lyapunov families L1, L2, and L3. These
branch points are denoted L11, .21, and L31, respectively, and the corresponding
bifurcating Halo families are denoted H1, H2, and H3. For each p the families H2
and H3 end in collision orbits.

The family H1 connects to a family of “circular” orbits C2, whose orbits encompass
both primaries. This bifurcation, which is not a reverse period-doubling, is denoted
C21; see, for example, Fig. 5.13. The locus C21 is shown in Fig. 5.11. Evidently the
branch point C21 is present for all values of pu.

Between the starting point L11 and the end point C21, the Halo family H1 pos-
sesses another branch point, denoted H11, where H1 connects to the family W4/W5.
The locus H11, shown in Fig. 5.10, indicates that the branch point H11 exists for all

L
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5.1.9 Branch points along the Backflip family B3

The Backflip families B1, B2, and B3 bifurcate from the Vertical families V1, V2,
and V3 at the branch points V12, V22, and V32, respectively. These families exist
for all values of u, as can be seen in Figs. 5.4-5.6, which contain the loci V12, V22,
and V32. The families B1 and B2 end in collision orbits, as is indicated in each of the
bifurcation diagrams in Figs. 5.13-5.25. Orbits along B1 and B2 for the case of the
Earth-Moon system can be seen in Fig. 4.18 and Fig. 4.19, respectively. A detailed
description of the complicated, but smooth, transitions along the family B1 for the
case of the Earth-Moon system is given in [31].

For small values of p, the Backflip family B3 connects to a planar family, called
D1, at the branch point D11. This branch point can be seen, for example, in Fig. 5.13,
along with a second branch point along D1, namely, D12, from which a family called
E1 bifurcates.

The locus D11, shown in Fig. 5.12, contains a fold at the critical value p;, where
pr ~ 0.104. As p increases past the critical value 7, the branch points D11 and D12
approach and annihilate each other.

We infer that the Backflip family B3 connects to the planar family D1, when
i is less than pz. An example is the Earth-Moon system in Fig. 4.2, for which
representative B3 orbits are shown in Fig. 4.20, and representative orbits along the
separate family E1 in Fig. 4.25.

However, when p is greater than py then the families B3 and E1 have merged into
one family (which is still called B3). This case can be observed in the bifurcation
diagrams in Figs. 5.20-5.25, in each of which p is greater than p;. Representative
orbits along B3 for this case are shown in Fig. 5.31, for p = 0.45.

5.1.10 Discussion

For 12 less than the critical value po, where pg = 1/2—,/23/108 ~ 0.0385 (see Table 5.1
and Fig. 4.1), each triangular point is a center X center x center of Eq. (2.51). There
are two frequencies for the planar motion, w, and w;, where w? = (1 + v/D)/2 and

w? = (1 —+/D)/2, with D = 1 — 27u(1 — u). There is also one frequency w, = 1 for
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the vertical motion. The corresponding periods T' (where T = 27/w) are shown in
Fig. 4.1.

The Lyapunov Center Theorem shows that for each p less than uy there exists a
family of planar periodic orbits, associated with w,, called the Short-Period orbits
[81]. These Short-Period orbits can be viewed as perturbed elliptic Keplerian orbits.
As p— 0, ws = 1 and w; — 0. As p increases from 0, w; decreases and w; increases
until at g = po, w, = V2 = w,.

For each integer k > 1 there is a mass fraction p = p®(k) where w,/w;, = k,
so that a resonance occurs. Here pf(1) = py and p®(k) — 0 as k — oo. For
p & {1372, the Lyapunov Center Theorem shows that each triangular point has
a second planar family Lz, © = 4,5 of periodic orbits, associated with w;, called the
Long-Period family. For u = uf(k), the Lyapunov Center Theorem does not apply
for the long-period orbits and a more detailed analysis is required [62, 64].

Deprit and Henrard have mapped out an intricate web of interconnections between
the Short- and Long-Period families [27, 62, 64]. In particular they describe the
bifurcation where a Long-Period orbit coincides with a Short-Period orbit traced
out p times, for some integer p determined by the ratio of the short- to long-period
frequencies at L4. For example, for the Sun-Jupiter CR3BP, where p = 0.00953875,
ws/wy &~ 12.14 and p = 13.

As pt — g, the Short- and Long-Period orbits coalesce into a single family, where
the period approaches 27v/2. For each p > ps, each triangular libration point is an
unstable spiral point X spiral point x center. However, one can continue from pu = puo

for p > po to obtain a family of orbits with period 2mV/2 [27].
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mu=5.0E-04

Figure 5.13: Bifurcation diagram for g = 5.0-107%.

mu=2.0E-02

Figure 5.14: Bifurcation diagram for p = 0.02. Compared to the preceding diagram (Fig. 5.13),

there is the new family R2 (shown in bright red color).
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mu=4.5E-02

Figure 5.15: Bifurcation diagram for p = 0.043.

mu=5.5E-02

Figure 5.16: Bifurcation diagram for p = 0.055.
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V51, 7 S3

mu=6.3E-02

Figure 5.17: Bifurcation diagram for y = 0.063.

mu=7.3E-02

Figure 5.18: Bifurcation diagram for p = 0.073.
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Figure 5.20: Bifurcation diagram for p = 6.12.
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$2 mu=1.45E-01

Figure 5.22: Bifurcation diagram for u4 = 0.19.
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mu=2.8E-01

mu=3.6E-01

Figure 5.24: Bifurcation diagram for x4 = 0.36.
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mu=4.5E-01

Figure 5.25: Bifurcation diagram for p = 0.45. Compared to the preceding diagram (Fig. 5.24),
there is the new family X4/X5, the branch point V32 is now to the right of the branch point V45,

and there are the new K-families that bifurcate from L1.
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Figure 5.26: The orbit family S2 for p = 0.055.

Figure 5.27: The orbit family S1 for p = 0.12.
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Figure 5.28: The orbit family S1 for x = 0.28.

Figure 5.29: The orbit family S2 for 4 = 0.19.
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Figure 5.30: The orbit family 83 for p = 0.19.

Figure 5.31: The orbit family B3 for p = 0.45.
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Figure 5.32: The orbit family K1 for p = 0.45.

~1.5

Figure 5.33: The first part of the orbit family K2 for p = 0.45 (this family is divided into two parts

only for clear representation of its orbits).
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Figure 5.35: The orbit family K3 for u = 0.45.
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0.45.

Figure 5.36: The orbit family K4 for u

0.45.

Figure 5.37: The orbit family X4 for u
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5.2 Loci of Homoclinic Orbits

In the preceding section we have shown how certain branch points along families
of periodic solutions depend on the mass-ratio parameter p. In particular, much
information on periodic solution families, as p is varied, can be deduced from the
computed loci of branch points. The same holds for loci of the homoclinic orbits,
which is the subject of the current section.

A homoclinic (or doubly asymptotic) orbit is a trajectory that asymptotically
approaches the same equilibrium point (or periodic orbit) both as ¢ — +oo and
t — —o00. A heteroclinic orbit is a trajectory that asymptotically approaches one
equilibrium point (or periodic orbit) as ¢ — +o00 and another equilbrium (or periodic
orbit) as ¢ — —oo. In this section we only consider orbits that are homoclinic to an
equilibrium.

For an equilibrium point or periodic orbit to have a homoclinic orbit, its stable and
unstable manifolds must intersect. Under certain conditions, an orbit homoclinic to
an equilibrium is the limit of a sequence of periodic orbits; (See [58], Theorem 6.1.1,
and [109].)

The study of homoclinic orbits, and their bifurcations, constitutes a significant
area of research. The existence of certain types of homoclinic orbits is known to have
important consequences for the global behavior of a dynamical system. It is possible,
for example, that the existence of a particular type of homoclinic orbit implies the
existence of infinitely many other homoclinic orbits “nearby” in phase space. Indeed,
the subject of homoclinic orbits and homoclinic bifurcations is of great complexity.
In this respect, the CR3BP is no exception: it gives rise to many homoclinic orbits
and homoclinic bifurcations. For example, [26] list homoclinic orbits for L1, L2 and
L3 for numerous values of p. [63] shows that for the Sun-Jupiter CR3BP, where
i = 0.00953875, an orbit homoclinic to L3 does not exists, although the stable and
unstable manifolds come close to intersecting. This disproves a conjecture by Brown.
However, [63] does demonstrate that there are orbits homoclinic to some periodic
orbits about L3 in that system.

In the thesis we restrict our attention to orbits that are homoclinic to L4 or L5, and
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that terminate families of periodic solutions already encountered in previous sections.
Specifically, we consider the homoclinic orbits that, for certain ranges of u-values,
terminate the planar families S1, S2, and S3. These homoclinic orbits are denoted
Sloo, S200, and S3o0c, respectively. We compute loci of homoclinic orbits for these
families, using a basic, but simple numerical algorithm, that is briefly recalled in
Chapter 3.

Results are shown in Fig. 5.38, where the maximum of the y-component of homo-
clinic orbits is plotted versus p. The left panel includes the locus S1oo of homoclinic
orbits that terminate S1. The right panel in Fig. 5.38 includes the loci of homoclinic
orbits S200 and S3oc0, that terminate S2 and S3, respectively, even though there is
only one curve in the diagram, as explained in Sec. 5.2.3 below.

We note that AUTO incorporates algorithms, collectively known as HOMCONT
[16], for the detection and subsequent continuation of several types of homoclinic
bifurcations. In principle, these algorithms are directly applicable to the CR3BP,
given the use of an unfolding parameter, as already done in an essential way in the
thesis. Such a study, while of great interest, is, however, beyond the scope of our

current work.

5.2.1 Homoclinic orbits that terminate the family S1

The planar family S1 bifurcates from the branch point L.13 along the planar Lyapunov
family L1. As already discussed in Sec. 5.1.1, the branch point L13 exists for all p
greater than the critical value p5, where pi5 ~ 0.066, as seen in Fig. 5.1, which contains
the locus L13.

There are, in fact, two parts to the family S1, due to the reflection symmetry across
the z — z-plane, as schematically shown in the bifurcation diagrams, e.g., in Fig. 5.18.
Both parts of the family S1 initially terminate in collision orbits, as indicated by
red spheres in Figs. 5.18-5.21. However, when p is greater than the critical value
g, where pg = 0.147, then each of the two parts of the family S1 terminates in a
homoclinic orbit. One of these orbits is homoclinic to the libration point L4, while the
other is homoclinic to L. These homoclinic orbits are both denoted Sloo, and their

locus Sloo is shown in the left panel of Fig. 5.38. Evidently the homoclinic orbits
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S1oo exist for all 4 between the critical value g and g = 1/2. In Figs. 5.22-5.25 the
homoclinic endings of S1 are explicitly indicated: the family is shown to connect to
L4 (and to L5), but arrows along the family are used to indicate that the approach

is in a homoclinic sense.

5.2.2 Homoclinic orbits that terminate the family S2

The planar family S2 bifurcates from the branch point L23 along the planar Lyapunov
family L2. As already discussed in Sec. 5.1.2, the branch point L23 exists for all 4
greater than the critical value us, where ps &~ 0.049, as seen in Fig. 5.2, which contains
the locus L23.

As is the case for the family S1, both symmetric parts of the family S2 initially
terminate in collision orbits, as indicated by red spheres in Figs. 5.16-5.18. However,
when p is greater than the critical value ug, where pg =~ 0.080, then each of the two
symmetric parts of the family S2 terminates in a homoclinic orbit, one homoclinic to
L4, and the other to L5. These homoclinic orbits are both denoted S200, and their
locus S200 is shown in the right panel of Fig. 5.38. Evidently the homoclinic orbits
S200 exist for all u between the critical value pg and g = 1/2. In Figs. 5.19-5.25 the

homoclinic endings are indicated by arrows along the family S2.

5.2.3 Homoclinic orbits that terminate the family S3

The planar family S3 bifurcates from the branch point L33 along the planar Lyapunov
family L3; for an example see Fig. 5.13. As already discussed in Sec. 5.1.3, the branch
point L33 exists for all values of y, as can be seen in Fig. 5.3, which contains the locus
L33.

The two symmetric parts of the family S3 initially connect to the libration points
L4 and L5, by virtue of the Lyapunov Center Theorem, as indicated in Fig. 5.13
and in Fig. 5.14. Indeed, in these figures the family S3 corresponds to the so-called
Short-Period family already discussed in Sec. 4.1.

However, when p is greater than the critical value ps then each of the two symmet-

ric parts of the family S3 terminates in a homoclinic orbit, one homoclinic to L4, and
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the other to L5. These homoclinic orbits are both denoted S300. Note that the crit-
ical value pg, where s =~ 0.0385, is the same as the critical value of the Hamiltonian
Hopf point mentioned in Sec. 4.1.

The locus S300 of the homoclinic orbits S3cc corresponds to only part of the
curve shown in the right panel of Fig. 5.38. In fact, one observes the co-existence
of up to three homoclinic orbits for a certain range of p-values, namely, between
the critical value yg and p = 1/2 (and beyond). The diagram has been drawn for
the p-interval [0, 1], rather than for [0,1/2], in order to show that the loci of these
co-existing homoclinic orbits correspond to a single curve.

We infer that the homoclinic orbit S300 that terminates S3 no longer exists when
i is less than the critical value uy. Examination of the computed homoclinic orbits
along the locus S300 shows that these homoclinic orbits shrink to a point, namely,

the libration point L4 (or L5), as u decreases towards the critical value p,.
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Figure 5.38: Loci of homoclinic orbits that terminate the families S1, 82, and 83. The vertical axis
is the maximum of the y-component along the orbit. The points of self-intersection of the curves

are artifacts of the representation.
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5.3 The Case uy = 1/2

The particular case ;1 = 1/2 possesses symmetries that are not present for other values
of p. In this case, the primaries are located symmetrically across the y — z-plane at
(£1/2,0,0), the L1 libration point is located at the origin, the triangular libration
points are on the y-axis, and the equations of motion (2.51) are invariant under the
transformation r — —x,t — —t.

In the planar CR3BP, the case p = 1/2 is called the Copenhagen problem. See
[107] for an extensive discussion of periodic orbits in the Copenhagen problem. [23]
and [91, 90] described a number of orbits homoclinic to L4 for this problem.

In the general case of the Elliptic Restricted 3-Body Problem, the model of particle
motion strictly along the z-axis is called the Sitnikov problem [79, 76]. . The general
Sitnikov problem was the inspiration for some fundamental analysis of chaotic system
[82, 30]. In the CR3BP, this model is called the Macmillan problem. In contrast to
the general Sitnikov problem, the Macmillan problem has solutions in closed form
with elliptic integrals. The bifurcations from the Vertical family for the case yp = 1/2
were also studied by [10].

There are some important structural changes in the bifurcation diagram for y =
1/2, compared to the diagrams for p less than 1/2, as presented in Fig. 4.2 and
Figs. 5.13-5.25. One of these changes concerns the branch points C22, C23, and V45,
which can be seen, for example, in Fig. 5.25. For the case where p = 1/2, these
branch points coincide, as explained in Sec. 5.3.1 below.

Another important change in the bifurcation diagram for p = 1/2 is that the
family of Vertical orbits V1 no longer connects directly to the planar Circular family
C1, as explained in Sec. 5.3.2. Related to this change, the Vertical family V1 then
contains additional branch points that lead to a plethora of families not previously
encountered in this thesis. Many of these new families also exist when p is less than
1/2, but there they cannot be reached via the routes considered earlier in this thesis
(for fixed ;). A more complete study of these new families, including their persistence
for y less than 1/2, would be an interesting topic, which is, however, beyond the scope

of this thesis.
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5.3.1 The branch points C22, C23, and V45

The bifurcation diagrams in Figs. 5.13-5.25 are only schematic; the actual location of
branch points along the various solution families depends on the value of p. In this
context, the branch point V45 “slides down” the curve V3 towards the point C23,
as /t increases towards the value 1/2. When p = 1/2, the two orbits represented by
C23 and V45 are identical, and hence both are planar. Moreover, as p approaches
the value 1/2, the branch point C22 also approaches C23 (and hence V45). Indeed,
Fig. 5.7 shows that the loci C22, C23, and V45, coincide at p = 1/2. This meeting
point corresponds to a single, planar branching orbit. This orbit is a member of
the planar family C2, and the families V2, V3, V4 (and V5), bifurcate from it via
a period-doubling bifurcation. The branching orbit has two multipliers equal to 1,
two multipliers equal to —1, and another complex pair on the unit circle. (When
approached along V2, V3, V4, or V5, the branch point can be called a “reverse”

period-doubling bifurcation, as was done earlier.)

5.3.2 The Vertical family V1

Another significant feature that distinguishes the bifurcation diagram for p = 1/2
from the diagrams for p less than 1/2, concerns the nature of the Vertical family V1
that bifurcates from the libration point L1. When g = 1/2, orbits from the family
V1 are perfectly vertical, i.e., each orbit has the property that x = y = 0, while its
z-component oscillates periodically. The amplitude of this oscillation increases, as
one moves along the family V1 away from the libration point L1. Consequently, it is
impossible for the family V1 to connect at its other end to a planar family, as is the
case when g is less than 1/2, where V1 connects to the planar family C1 at the reverse
period-doubling bifurcation point C11. (See, for example, Fig. 5.25). Furthermore,
when p = 1/2 there is a sequence of branch points along the family V1. The families
that bifurcate at these branch points connect at their other end to planar orbits.

A representation of V1 for the case = 1/2 is given in the left panel of Fig. 5.39.
The portion of V1 shown there contains five branch points, whose bifurcating families

are also shown. The sequence of branch points along V1 continues beyond the diagram
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limits.

The family that bifurcates from the first branch point V11 along V1 is in fact, the
Axial family A1, which connects to the planar Lyapunov family L1 at the branch
point L12.

Now consider the second branch point along V1, for the case yu = 1/2, in the left
panel of Fig. 5.39. This branch point is the key to understanding why the Vertical
family V1 no longer connects directly to the planar family C1, as it does for u
less than 1/2; for example, in Fig. 5.25. Comparing the left panel in Fig. 5.39, for
p = 1/2, to the right panel, for 1 = 0.499, one notices that the second branch point
perturbs when p becomes unequal to 1/2. When p = 1/2, one must switch branches
at the second branch point, in order to reach the planar orbit C11 at the end of the
bifurcating family, while for u = 0.499 there is a smooth path along V1 to C11. Recall
that the orbit C11 belongs to the planar family C1, and that C11 corresponds to a
reverse period-doubling bifurcation, whose orbit encompasses one of the primaries.

Note that the second bifurcating family from V1, as shown in the left panel of
Fig. 5.39, consists of two symmetric parts. As described above, the left part connects
to the planar family C1 at the reverse period-doubling bifurcation C11. The orbit C11
encompasses one of the primaries. The part on the right connects to the symmetry
partner of the orbit C11, i.e., the reflection of C11 with respect to x = 0. The orbit
of the symmetry partner of C11 encompasses the other primary.

Comparing the left and right panel in Fig. 5.39, we also see that of the five branch
points along V1 that appear in the left panel, only the second and the third perturb,
while the other three branch points persist. However, more perturbed bifurcations

occur outside the scope of the Fig. 5.39.
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Figure 5.39: Left: The family V1 for the case p = 1/2, showing its first five branch points, with the

corresponding bifurcating families. All bifurcating families connect at their other end to families of

planar orbits. Right: A bifurcation diagram for p = 0.499, that shows how the bifurcations along
V1 in the left panel are perturbed.
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Chapter 6

The Data Visualization and

Animation Software DR Orbits

6.1 Introduction

Graphical representation of complicated scientific data can be essential for their better
understanding. Thus, visualization of scientific data is an important area of computer
science. There is scientific software, like Mathcad, Matlab, Maple, Mathematica, etc.,
containing special parts for data visualization using 2D and 3D graphics; and special
programs, like Origin, for scientific data visualization only. However, for specific
complicated problems, such as the CR3BP, we have to develop special graphic tools
because of the specificity and complexity of the data. A good graphical representation
of CR3BP data permits us to see details of an arrangement of orbits of the family
in three-dimensional space, two-dimensional projections, time dependencies, etc. As
one of the best tools for ODE bifurcation analysis, AUTO, has a built-in graphics
tool, but it is not suitable for the CR3BP. Recently, a new tool, r3blaut04 [117], was
created for AUTO; however, it is a more universal tool than a tool for the CR3BP.

Thus, we have developed a new tool especially for the CR3BP.

6.2 Objectives

The new tool, called DR Orbits, focuses on the following objectives:
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1. Usability. The graphical user interface of DR Orbits provide an easy-to-learn,

easy-to-use, user-friendly environment.

2. Generality. DR Orbits can be used for different graphical representation of
CR3BP data: three-dimensional graphics in real space and in the space of ve-
locities; two-dimensional projections of all possible three-dimensional pictures;
representation of time dependencies of coordinates and velocities; representation

of the primaries and the libration points.

3. Animation. Animation of the solutions of the CR3BP is very useful for spacecraft
mission design: from any orbit in the rotating frame of reference we can proceed

to a real orbit of a spacecraft in the inertial frame of reference.

6.3 Development, environment and architecture

The AUTO2000 source code is written in C, and it is mainly used under Unix/Linux
[42]. However, DR Orbits was designed as a multiplatform tool for Unix/Linux and
MS Windows operating systems. Thus, OpenGL and GLUT [57, 56, 114, 3, 2, 54]
were selected to create three-dimensional interactive graphics, and C was chosen as a
programming language for better compatibility with AUTO. Additionally, for better
GUI, the GLUI [95] library and the language C++ were used.

6.4 User requirement specification

6.4.1 User requirements

e Installation of the program.

0OS MS Windows: A user installs the program and all necessary data files and
libraries from CD ROM using the Windows Setup Wizard. The orbit data base
is copied and unpacked from a self-extracted file, using simple actions in the MS
Windows operating system.

OS Unix/Linux: There is a version of DR Orbits for these systems without

GUL This version is used with AUTO for immediate graphical representation of
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AUTO solutions of the CR3BP. A user needs to install all the necessary libraries
for OpenGL support separately.

Below we describe only the Windows version of DR Orbits, which
has been developed more completely than the Linux version.

e Starting the program.
A user starts the program using the abilities of the Windows(/Unix/Linux) op-
erating system(s).
A user should be able to read data from the data base.

e Selecting the data to be drawn.
After the program is started, it draws the L1 orbit family for p = 0.0005.
A user may select any u value from a list and any orbit family for this u value
for graphical representation.

e Selecting the type of diagram.
A user can choose different types of diagrams and dependencies (3D and 2D) for
the representation.

e Selecting options and settings.
The GUI provides different options (general features of the diagram representa-
tion) and settings (colors and lines) for the diagram.

e Manipulations.

A user can translate, rotate, and scale the diagram for better viewing.

e Representing tube graphics.

A user can draw a 3D-diagram using tube graphics for better viewing.

e designing satellite mission.

A user can choose one orbit from a represented family for animated representa-

tion of the satellite mission in the inertial frame of reference.

e Stopping the program.

A user can stop the program at any time.
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6.4.2 Non-functional requirements

Hardware

CPU: Pentium III 800 or higher;

Memory: 256 Megabytes or higher;

HDD: 2 Megabytes hard drive space available for the software installation.
Software

Operating system: MS Windows XP;

Applications: No other applications are needed.

6.5 System design and implementation

6.5.1 System architecture

Figure 6.1 depicts the system components: GUL the basic user interface, data ma-
nipulation component, data base, and graphical object.
The GUI component is responsible for querying the data base, where all data are

stored using arrays. All data in the data object are parsed from the data base files.

6.5.2 User interface design and implementation

Basic user interface design

The basic user interface (BUI) for DR Orbits was designed using the GLUT library.
GLUT functions support interaction with the OpenGL program using the keyboard,
mouse and pop-up menu. Because the GLUT library is platform-independent (there
are variants of GLUT for MS Windows and UNIX/Linux), the BUI of DR Orbits is
also platform-independent. This BUI provides all control functions necessary for the
program. The BUT is described in detail in Appendix 1, Sections A.6.2 - A.6.3, A.6.17
-~ A.6.19. However, the BUI does not satisfy modern requirements for user interface
design, and that is why the GUI, which satisfies the above-mentioned requirements
better, was added to the BUIL

Graphic user interface design
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Figure 6.1: System components

The GUI was designed to satisfy all user requirements for graphics representation,
control, and manipulation. All GUI objects are grouped in a separate window. For

the user’s convenience, GUI objects are placed in small groups in separate panels.

The functions of each GUI object can be described as follows:

e The mu value listbox allows a user to select from the existing list the value of
the mass ratio p of the CR3BP. This selection defines all orbit families which
exists and can be drawn for this p value. By default, the first family (A1) from

the list of orbit families is shown.

e The Family listbox allows choosing the orbit family from the list corresponding

to the chosen p value.

e The Graph Type listbox allows a user to choose a 3D- or 2D-type of diagram and
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different types of dependencies to be drawn, namely:

Z mu valuelEanh—Moon _-_|
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Figure 6.2: GUI component design

3D diagram of the orbit family, coordinates of the libration points, primaries,

and the orbit plane of the second primary ;

3D diagram representing velocities for the orbit family in the space of velocities;
a group of 2D diagrams representing 2D projections of the 3D diagrams;

a group of 2D diagrams representing time dependencies of the coordinates or the

velocities of the orbits.

e The OPTIONS rollout (see below) allows a user to chose general options for

diagrams, such as background color, axis colors and axis label font, and to switch
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on/off the drawing of the primaries and the libration points. This control item

allows viewing of the stability of each orbit of an orbit family as well.

e The ORBIT COLOR rollout permits a user to choose a color scheme for all orbits

of the family and an individual color for each bifurcation orbit.

e The DRAW ORBITS rollout permits a user to draw all orbits or each second,
third, or fourth orbit of the family using different line thickness (from 1 to 5

pixels).

e The SHOW ORBITS rollout allows a user to draw one orbit or any group of

consecutive orbits.

e The Space rotating/scaling panel and the XY TRANSLATION rollout permit a

user to do spatial transformations with the diagram.

e The Tube Orbits On/Off button allows to draw orbits using tube (pipe line)
graphics.

e The Satellite mission panel permits a user to see the satellite mission for the
chosen orbits in the inertial frame of reference. The mission is shown in a separate

window.

e The EXIT button stops the program.

Graphic user interface implementation

For the implementation of the GUI, many control objects from the GLUT library
have been used. To improve the interface of the OpenGL program, the GLUI li-
brary [95] was created based on GLUT library. The GLUI library uses call-back
functions [95], which provide corresponding actions for each control elements. The
GLUI library contains many standard GUI control objects, which can be used easily
for the GUI design: buttdns, listboxes, checkboxes, radio buttons, panels, spinners,
ete. This library also contains specific control objects such as rollouts, and rotation
and translation control elements.

A rollout is a collapsible panel used to group together related control objects. A

collapsed rollout looks like a button with the a plus sign on it, while an expanded
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rollout looks as a panel showing all its control objects [95]. A rollout can be ex-
panded/collapsed at any time by mouse click.

The translation control Translation XY allows a user to manipulate X and Y coor-
dinates in 3D diagrams by clicking on on-screen arrows.

Collapsed elements of the GUI of DR Orbits are described below:

e The OPTIONS rollout contains 10 radio buttons which permit to switch on/off

corresponding options.

e The ORBIT COLOR rollout contains the listbox Color and the secondary Bif.
Orbits Colot rollout which contains the BifOrb spinner and the BifCol list.

e The DRAW ORBITS spinner contains two spinners: Step and Line.

e The SHOW ORBITS spinner contains two spinners, One orbit and Orbit range,
and the All orbits button.

e The XY TRANSLATION spinner contains the Translation XY translation control
element of the GLUI library.

6.6 Data manipulation component design

The AUTO solutions are stored in a specific internal file format [42]. The data ma-
nipulation component of DR Orbits extracts from the AUTO files only the data which
are necessary for graphical representation of one orbit family, i.e., coordinates and
velocities for each point of the orbit, the period of each orbit, the type of orbits
(bifurcation orbit or not), and the stability index (number of Floquet multipliers on
the unit circle). This component also prepares data for graphical representation: it
calculates the number of orbits of the family, the number of bifurcation orbits; it nor-
malizes the data, calculates the coordinates of the libration points and primaries, etc.
Additionally, the data manipulation component provides cubic spline interpolation
for the spacecraft mission. As a result, the data manipulation component creates the
data object in the operating memory that contains all data needed for the graphic

representation of the orbit family.
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Figure 6.3: DR Orbits data flow diagram.

6.7 Running and testing

The test cases for DR Orbits are geared to examine the functionality of all the software
components. In order to maximize stability of the program, we have elaborated test
cases which follow the normal operation of DR Orbits. Some test cases were created

to check exceptions. (We omit giving a detailed description of the test cases.)

6.7.1 Data manipulation component testing

To test this component, we draw all possible three-dimensional diagrams of all the
orbit families for all y values that are represented in the data base of DR Orbits.
Since the data object contains all necessary data for diagram drawing, this test case
is exhaustive for the testing of this component.

The test cases for exception testing include corrupted data base files. For the most
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corrupted files DR Orbits may crash.

6.7.2 BUI testing

The BUI test cases were created to check the function keys and other keys and key
combinations; mouse buttons and mouse motion; and the pop-up menu provided by
GLUT library. These test cases were executed randomly for some orbit families and

for some p values.

6.7.3 GUI testing

The GUI test cases were created to check all the abilities of the GUI objects (rollouts,
buttons, list, radio buttons, spinners, etc.) and some of its combinations. These test
cases were executed randomly for some orbit families and for some p values.

Some coordination problems between the BUI and the GUI were found : operations
of space transformations (moving, rotation, scaling) are fixed differently for BUI and
GUI, so for this case, mixing the two interfaces can give problems, which will be fixed

in the next version of DR Orbits.

6.7.4 Mission design (animation) testing

These test cases were performed for almost all types of orbit families for the Earth-
Moon system, and for all orbits families for other ;1 values different from the Earth-
Moon case. We chose the first, the last, and the middle orbit of each family to check

the mission. Some missions were tested for more than two periods.

6.8 Results

6.8.1 Creating diagrams of orbit families

First, an orbit family can be drawn in three-dimensional space as trajectories of the
infinitesimal body of the CR3BP. These trajectories can be drawn as curves (lines)
or tubes (pipe lines). Use of lines is the simplest and the fastest way to show the

solution, but pipelines present a more realistic three-dimensional picture. However,
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the tube diagram requires more computational and graphical resources of a computer
and more CPU time (from one to four minutes). Examples of three-dimensional
diagrams for some orbit families are shown in Figs. 6.4-6.5.

Second, the velocities of the infinitesimal body can be drawn in the three-dimensional
velocity space. All attributes of the previous diagrams can be used for this case as
well. Examples of three-dimensional velocity diagrams for some orbit families are
shown in Fig. 6.6.

Third, any two-dimensional projection on a coordinate plane can be drawn for any
three-dimensional diagram. Examples of such projections are shown in Figs. 6.7-6.8.

Fourth, the time dependence of any coordinate or velocity can be drawn. For this
case, the period of each orbit is normalized to 1. Examples of such diagrams are

shown in Fig. 6.9.
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Figure 6.4: Examples of three-dimensional line diagrams of the planar orbit orbit family L3 for the

Earth-Moon system (left) and the diagram of the same orbit family using tubes (right).

Figure 6.5: Examples of three-dimensional diagrams using tubes: the orbit family V2 for the Earth-

Moon system (left), and the orbit family A3 for u = 0.28 (right).

Figure 6.6: The vertical orbit family V1 for p = 0.28 (left), and the diagram of the same family in

the three-dimensional velocity space (right).
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Figure 6.7: The vertical orbit family V3 for p = 0.28 (left), and the two-dimensional projection of

the same family on the XY —plane (right).

Figure 6.8: Projections of the three-dimensional diagram of Fig. 6.7: the projection on the

X Z—coordinate plane (left), and the projection on the UW —coordinate plane of the velocity space

(right)

Figure 6.9: Examples of time dependencies: coordinate X (t) (left), and velocity W(t) (right) of
the vertical orbit family V3 for p = 0.28
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Figure 6.10: A vertical orbit of the orbit family V1 for the Earth-Moon system (in the rotating
frame of reference) (left), and the trajectory of a satellite (red UFO) for time t < T, moving along
this orbit in the inertial frame of reference (right). (T is a period of the orbit in the rotating frame

of reference.)
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Figure 6.11: The trajectory of a satellite for time ¢ > 27, moving along the orbit from Fig. 6.10 in
the inertial frame of reference (left), and the same trajectory for the time ¢ >> T(right).

6.8.2 Creating an animated satellite mission

Any orbit of an orbit family can be chosen for satellite mission design in the inertial
frame of reference with the origin at the barycenter of the primaries. This mission 1s
shown as an animation. Frames of such animations are shown in Figs. 6.10-6.12.

6.8.3 Stability of the orbit family

DR Orbits can show the stability properties of each orbit in an orbit family. As

mentioned above, the stability index is the number of Floquet multipliers on the unit
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Figure 6.12: The planar trajectory of a satellite moving along an orbit of the orbit family C2 in the

inertial frame of reference.

circle: if this number is six, the orbit is (linearly) stable, if the number is less than six,
the orbit is unstable. If the option STABILITY ON is selected then the color of each
orbit shows its stability property (Table 6.1). Examples of two diagrams showing the
stability properties of orbits are presented in Fig 6.13.

Table 6.1: Number of Floquet multipliers and orbit colors for the stability diagram.

Number of Floquet | Color of an
multipliers orbit

on the unit circle

6 red

5 magenta

4 cyan
<3 blue

6.8.4 Orbit representation

We can use different color schemes for the representation of an orbit family. A different
color can be chosen for each bifurcation orbit. We can represent not only the whole
family, but also any number of consecutive orbits or any individual orbit in the picture.
For orbits drawn with lines we can choose the line thickness (from 1 to 5 pixels). To

see details of the diagram we can change the background color, the color of axes, the
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Figure 6.13: Example of two diagrams showing stability of orbits: The orbit family C2 for p = 0.36
(left), and the orbit famity B2 for the Earth-Moon system (right).

size of the font of the axes labels, and the images of the primaries and the libration

points as well.

6.8.5 Space transformations

The diagram can be rotated over any angle around vertical and horizontal axes, and
can be enlarged up to 50 times or shrunk up to 10 times compared to its normal size.
(Moreover, the BUI has wider limits for these manipulations.) The diagram can be

translated in the window plane, so that its center can be in the corner of the window.

123



Chapter 7

Conclusions and Future

Development

7.1 Conclusions

We have investigated the structure of periodic orbit families of the Circular Restricted
3-Body Problem for all values of the mass ratio (0 < p < 0.5). We started from the
orbit families which emanate from the libration points, and via their bifurcation orbits
we investigated the secondary families, as well as some tertiary families. ”Critical”
p values define the appearance or disappearance of families. The structure of these

solution families has been represented in bifurcation diagrams.

7.2 TFuture development

The investigation of the CR3BP can be continued and generalized into several direc-
tions:
1. Investigation of stable and unstable manifolds of dynamical systems:
Unstable fixed points ("steady states” or ”stationary solutions”) have an "un-
stable manifold” (and, typically, a ”stable manifold”) associated with them. These
invariant” manifolds are important for studying the dynamics of a system. For ex-
ample, the Genesis mission was designed to follow such a manifold, which allows the

spacecraft to travel from one place to another at "zero” fuel cost [77]. Numerical con-
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tinuation methods based on boundary value continuation techniques [74] have been
used to study the global structure of invariant manifolds of dynamical systems. The
results of such research for the circular restricted three-body problem may be useful
for future space mission design.

2. Relativistic effects in the restricted three-body problem:

Relativistic effects in a post-Newtonian approximation of the CR3BP are essential
for some chaotic orbits [111]. These effects can be used as a possible test of general
relativity [111]. Numerical continuation methods permit to build the full solution
structure of the relativistic periodic orbits associated with the libration points. Some
of these orbits may be more suitable then others for a novel test of general relativity
[84], because of accumulation of small relativistic effects during cumulative periods
of motion.

3. Elemental periodic orbits associated with the libration points of a
rotating gravitating ellipsoid:

It is known that there are five libration (stationary) points for the rotating gravitat-
ing ellipsoid. At the present time, stability of these libration points was investigated
partially for the case of an ellipsoid which is asymptotically close to a sphere. Us-
ing numerical continuation methods, it is possible not only to investigate stability
of the libration points, but also the elemental periodic orbits (i.e. orbits associated
with the libration points), and some secondary bifurcating orbits for any form of the
rotating gravitational ellipsoid [41]. Results of such research could be useful for the
investigation of the three-dimensional motion of stars, stellar aggregations and black
holes in elliptical galaxies, the process of dark matter accumulation, star formation in

elliptical galaxies and around them, and for the evolution of galaxies in general [52].
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Appendix A

DR Orbits User’s Manual

A.1 Product name

The name of this program is DR Orbits, a graphical tool for the visualization of the
orbit families of the Circular Restricted 3-Body Problem calculated with AUTO.

A.2 Document overview

This document covers the installation and usage of DR Orbits. It also provides some
information for troubleshooting. This User’s Manual includes the following infor-
mation:

1. Hardware and software requirements for running DR Orbits.
2. Brief description of the data used by DR Orbits.
3. Installation guide.

4. Description of the user interface with examples of using DR Orbits.

A.3 Hardware and software requirements

1. Computer Pentium IIT 500 GHz or higher;

2. 128 KB of operating memory (256 KB are preferable);
3. 2 GB of free hard disk space;

4. Windows XP Pro operating system.

The present version of DR Orbits was not compiled and tested for Windows 98,
Windows 2000, or Windows Me, but it should work under these operating systems
without essential limitations.

A Uniz/Linuz version of DR Orbits will be developed in the near future.
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A.4 Data used by DR Orbits

The program shows periodic orbits of the Circular Restricted 3-Body Problem calcu-
lated with AUTO.

REFERENCES:

1. E. Doedel, R. C. Paffenroth, H. B. Keller, D. J. Dichmann, J. Galan-Vioque, A.
Vanderbauwhede, Calculation of periodic solutions of conservative system with
application to the 3-body problem, Int.Journ.of Bifurcation and Chaos, 13 (2003)
1353-1381.

2. E. J. Doedel, V. A. Romanov, D. J. Dichmann, R. C. Paffenroth, H. B. Keller, J.
Galan-Vioque, A. Vanderbauwhede, Elemental Periodic Orbits Associated with
the Libration Points in the Circular Restricted 3-Body Problem(in preparation).

DR Orbits shows all elemental periodic orbits associated with the libration points

in the Circular Restricted 3-Body Problem for the critical values of the mass ratio p
[2] listed in Table A.3).

Table A.1: The representative values of the mass ratio u

7 7
0.0005 0.120
0.01215 (Earth-Moon) | 0.145
0.045 0.190
0.055 0.280
0.063 0.360
0.073 0.450
0.090

For these p values DR Orbits can show the orbit families (if they exist for the
selected ) listed in Table A.2. The choice of above-mentioned values, and a detailed
descriptions of all orbit families can be found in the papers [1, 2] and references
therein.

A.5 Installation guide

(. If you have a previous version of DR Orbits on your computer, it is strongly
recommended to delete it using Start — Control Panel — Add or Remove Program —
Dr Orbits. If you install the new version of DR Orbits in the same directory then you
need not to delete the shortcut from the desktop and the subdirectory MU.

1. Insert the CD with DR Orbits into CD-ROM driver and open it in "My
Computer” window. The CD contains this manual in the file Manual.pdf. Read it
carefully before installation.

2. For installation, start the program Setup.exe from the CD. You will see the
Setup Wizard window (Fig.A.1).
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Table A.2: Elemental periodic orbit families

The planar Lyapunov families: L1, L2, L3
The Vertical families: V1, V2, V3, V4_.V5
The Short-period Lyapunov families: 84, S5
The Long-period Lyapunov Families: L4, L5
The Axial families: Al, A2, A3

The Backflip families: B1, B2, B3

The planar ”Circular” families: C1, C2

The planar D-family: D1

The E-family: E1

The T-family: T1, T2

The S-family: S1, S2

The Halo families: H1, H2, H3

The K-families: K1, K2, K3, K4

The R-family: R2

The Long-periodic planar families: S11, S21, 831
The W-family: W4 W5

The X-family: X

Click the button Next to go to the next window, where you can change the
installation folder (Fig.A.2). Make necessary changes and/or click the button Next
here and the installation program will start the installation. The program will copy
all files on your computer in approximately one minute. When the installation is
finished, press the Close button to quit the installation program.

@oROmits ik

Welcome to the DR Orbits Setup Wizard

The installer will guide you through the steps required to install DR DOrbits on your computer.

WARNING: This computer program is protected by copyright law and international treaties.
Unauthorized duplication or distribution of this program, or any portion of it, may result in severe civil
of criminal penatties, and will be prosecuted to the maximum extent possible under the law.

i Cancel 3

Figure A.1: Setup Wizard: Step 1
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T

@R Ot

Select Instaliation Folder

The installer will install DR Cibits to the following folder.

To install in this folder, dlick "Nest". To install to a different folder, enter it below or click "Browse".

Folder:
f:@rﬁgrém Files\Pulsar\DR Oibitsh ' l Browse... i
| DiskCost. |
Install DR Orbits for yourself, of for anyone who uses this computer.
" Everyone
1 Just me
l Cancel l l < Back } | Nest >

Figure A.2: Setup Wizard: Step 2

3. Create a shortcut on the desktop to the program Orbits_**.exe which will be
in the directory where you have installed the program. (Two *’s in the name of the
file are digits which show the version of the program you are using.)

4. Start the program.

REMOVING of DR Orbits. To remove the program from your computer, delete
manually the folder MU from the directory where you installed the program. To delete
the program use Start - Control Panel - Add or Remove Programs. Find the program
DR Orbits and remove it. Also delete the shortcut from your desktop.

A.6 Quick start

A.6.1 Starting and stopping DR Orbits

Double-click on the program shortcut to start DR Orbits.
One can exit DR Orbits by closing the main window of the program or by clicking
the EXIT button of the user interface window (see below).

A.6.2 Description of the DR Orbits windows

After starting DR Orbits, you will see two windows jointly in the main program window
(Fig. A.3).

The white-background window on the left (we refer to it below as the diagram
window) contains a three-dimensional diagram of the orbits with the two primaries
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(blue and yellow spheres representing the Earth and the Moon), the coordinate axes of
the rotating barycentric coordinate frame, a semi-transparent disk showing the orbit
plane of the second primary orbit, and small colored cubes showing the libration
points.

The gray window on the right (we refer to it below as the GUI window) contains
a graphic user interface with lists, spinners, rollouts, checkboxes, and buttons.

Despite the fact that these two windows are jointed in one window of the MS
Windows operating system, you have to choose one of them as the current window.

A.6.3 Using the keyboard and the mouse for operating control

There are some additional options which allow to see an orbit family. Use the arrow
keys or left mouse button drag-and-drop in the left window for rotation of the
diagram and Insert/Delete keys for scaling. Before doing this, make sure that the
diagram window is the current window. To switch the current window click on it
anywhere using the left mouse button. Use the PgUp key to show the orbits one
by one. This option is useful for the choice of an orbit for the satellite mission (see
below). Use the Home key to see a range of consecutive orbits: choose the first orbit
using PgUp, and after that add any number of consecutive orbits by pressing the
Home key . The End key restores the full diagram. By default, all orbits are drawn
in a red-blue color gradient scheme: the first orbit is pure red, the last one is pure
blue. If there is only one orbit in the diagram, it is always blue. Bifurcation orbits
are green by default.

A.6.4 Graphical user interface

All features of the GUI (lists, spinners, rollouts, checkboxes, and buttons) (Fig. A.4,
left) can be used for control of the diagram, and for changing the options and settings.

A.6.5 Choosing a p value

Use the mu value pop-up list for the choosing the desired p value for which you wish
to see an orbit family (Fig. A.4, middle).

A.6.6 Choosing the orbit family

For each p value there are several orbit families. Only one of these can be chosen for
graphical representation. Use the Family pop-up list to choose the orbit family that
you want to see (Fig. A.4, right).

By default, when the program is started, the Lyapunov orbit family L1 for the
smallest p value pp = 5.0 - 10™* is shown. After changing the u value, the program
will draw the Axial orbit family A1 for the new p value.

NOTE. After changing the p value or the orbit family, some options and settings
of the program are restored to their default values.
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Figure A.3: The main window of the DR Orbits program.
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Figure A.4: The main user interface. 1. Left. The general view. Middle. The list mu value for
choosing of p value. Right. List Family for selecting the orbit family for the chosen p value.
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A.6.7 Choosing the type of a diagram

Use the Graph type list for choosing the diagram type to be shown in the diagram
window (Fig. A.8, left). The choices are

1.

XYZ (by default) draws the three-dimensional diagram of the orbit family in 3D
coordinate space.

. UVW draws the three-dimensional velocity diagram for the corresponding orbit

family in three-dimensional velocity space.

XY / XZ / YZ draws a two-dimensional projection of the coordinates of the
orbit family.

. X(t) / Y(t) / Z(t) draws the time-dependence of the corresponding coordinate

for one normalized period for the orbit family.

UV / UW / VW draws a two-dimensional projection of the velocities of the orbit
family.

U(t) / V(t) / W(t) draws the time-dependence of the velocity for one normalized
period for the orbit family.

A.6.8 Options

The program options are chosen with the OPTIONS rollout. As an interface object,
a rollout can be defined as a rolling/unrolling panel, which contains other interface
objects (lists, spinners, checkboxes, buttons, etc.). If you click on a rolled rollout, it
is unrolled and you can see and use its objects. A click on the unrolled rollout rolls
it back. (The visible interface objects placed under the rollout are moved down when
rollout is unrolled.) The OPTIONS rollout contains the following checkboxes (Fig.
A.8, middle-left):

1.

Black Background - if this option is checked, the background of the diagram is
black. (The black or white color of the axes changes automatically if the Axes
Color OFF option is checked.)

Stability ON - if this option is checked, the color of each orbit in the diagram
is chosen according to the stability of the orbit: the "most unstable” orbits are
blue, stable orbits are red, with four degrees of instability.

Large font - switch the size of the diagram labels.
Axes Labels OFF - if this option is checked, the axes labels are invisible.

Axes Color OFF - if this option is checked, the axes color is black for a white
background and white for a black background.

Moon Orbit OFF, Lagrange P's OFF, Moon OFF, and Earth OFF - these options
control the plotting of the Moon orbit (gray disk), the libration points, and the
primaries (the Earth and the Moon) in the diagram.
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Figure A.5: An V1 orbit family (scaled and rotated) of the Earth-Moon system in three-dimensional
coordinate space (top), and the A3 orbit family in three-dimensional velocities space (bottom).
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Figure A.6: The projection of the E1 orbit family of the Earth-Moon system on the XY -plane (top),
and the time dependence of the X-coordinate of this family (bottom).
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Figure A.7: The projection of the A1 orbit family for # = 0.28 on the VW -plane of three-dimensional
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Red rectangle: The OPTIONS expanded rollout (expandable/collapsible panel) with checkboxes
switching graphical options.

Middle-right.

Red rectangle: The ORBIT COLOR expanded nested rollout containing the Color list for choosing
the color of orbits on the diagram, and another Bif. Orbit Color expanded rollout which contains
two items: the BifOrb spinner for choosing the number of bifurcation orbits; and the BifCol list for
choosing the color of the chosen bifurcation orbit.

Blue rectangle: The DRAW ORBITS rollout contains two spinners: Step for the choice of the drawing
orbits, and Line for the choice of the thickness of the lines of the diagram.

Green rectangle: The SHOW ORBITS rollout contains two spinners and one button: the One Orbit
spinner for choosing one orbit which only must be plotted, the Orbit range spinner chooses the range
of the orbit to plot, the All orbits button plots all orbits of the chosen family.

Right.

The Space Rotation/Scaling panel containing spinners: Vertical for rotation around vertical axis,
Horizontal for rotation around horizontal axis, and Scaling for scaling of the diagram.

Blue rectangle:The XY TRANSLATION rollout contains translation control arrows.

Green rectangle: The Satellite Mission panel contains the Orbits list for for choosing the orbit for the
satellite mission and two buttons: Start Mission and End Mission.

NOTE: Color rectangles are used only in this figure to emphasize the parts of the user interface in
this picture.
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A.6.9 Choosing the orbit color

By default, the orbit family is plotted using different colors: the first orbit of the
family is pure red, the last one is pure blue, and the intermediate orbits are plotted
using a smooth transition from red to blue. Bifurcation orbits are green by default.
The ORBIT COLOR rollout (Fig. A.8, middle-right) contains the Color list, with
which you can choose other colors for the orbit family.

The ORBIT COLOR rollout also contains another rollout, namely, Bif. Orbit Color
which contains the BifOrb spinner, and the BifCol list. You can choose some bifur-
cation orbits numerated from 1 to 7,4, using the BifOrb spinner and then you can
choose the color of this orbit from the BifCol list. Thus, each bifurcation orbit can
be drawn in a different color. If an orbit family has no bifurcation orbit, the value of

the BifOrb spinner is 0.

A.6.10 Step size and thickness of lines

By default, all the orbits of the family are plotted using the line with minimal thick-
ness: one pixel. The DRAW ORBITS rollout (Fig. A.8, middle-right) contains the
spinners: Step and Line. You can use the first of them to draw every second, third,
or fourth orbit only. The spinner Line can change the thickness of the line from one

to five pixels.

A.6.11 Choosing an orbit or group of orbits for graphical representation

By default, the whole orbit family is presented in the diagram. The SHOW ORBITS
rollout (Fig. A.8, middle-right) contains two One orbit and Orbit range spinners, and
one All orbits button. You can use the One orbit spinner to go through all the orbits:
only the orbit which number is in the spinner will be shown in the diagram. The
Orbit range spinner adds to a diagram a few orbits from the orbit chosen in the One
orbit spinner, so you can see any group of consecutive orbits in the diagram. The All

orbits button restores the default picture.
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Figure A.9: Different settings for the picture of A3 orbit family for p = 0.28.

A.6.12 Rotation and scaling

The panel Space Rotation/Scaling (Fig. A.8, right) contains three spinners: Vertical for
vertical rotation of the diagram, Horizontal for horizontal rotation, and Scaling for the
scaling of the picture. Step of rotation is 5°, step of scaling is 10% for increasing and
5% for decreasing of the default picture size. All this operations could be performed

using mouse and keyboard as well (See A.6.3).

A.6.13 Translation of the diagram

The XY TRANSLATION spinner (Fig. A.8, right) contains special control interface
for moving of the diagram in the plane of the window. You can drag-and-drop inside

of the small square with the double-arrowed cross and the diagram will be moved in

the window plane (XY-plane).
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Figure A.10: Tube graphics of the V2 orbit family for p = 0.45 (top), and an example of three-

dimensional tube graphics saved with Paint as PNG file (bottom).
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Figure A.11: an example of a satellite mission in the inertial frame of reference(top), and the pop-up

menu (bottom).
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A.6.14 Tube graphics

If you press the Tube Orbits On/Off button (Fig. A.8, right), the program redraws
the diagram using three-dimensional tubes instead of lines. This operation requires
significant processor resources and can take in one or two minutes for some compli-
cated orbits . Thus, this final representation is best done after choosing the orbits
and options. When the operation is performed, it is better to avoid any interaction
with the computer, because any redrawing of the screen starts the tube operation
from the beginning.

This option does not work for two-dimensional pictures.

Sometimes the program can crash during this operation. In this case, one needs
to release the computer resources (close programs and processes) and start DR Orbits

again.

A.6.15 Satellite missions

You can see the orbital motion of the satellite in the inertial frame of references (Fig.
A.8, right). The orbit can be chosen from the list Orbits (the value from this list
should coincide with the value of the spinner One orbit). This orbit will immediately
be plotted in the diagram. If you press the Start Mission button, the new window will
open. In this window you will see the rotating Earth, Moon, and libration points,
and a moving satellite that describes the orbit in the inertial frame of reference. The
mission is continued as long as the computer resources permit. The mission can be

stopped at any moment using the End Mission button.

A.6.16 Saving pictures as graphics files

Unfortunately, DR Orbits has no abilities to save a drawn picture as a graphic file.
Use Alt-Print Screen to put the whole window into the copy-paste Windows buffer
(or any screen grabber) and any graphic editor like Paint to process the picture and

save it in a graphic format of your choice.

150



A.6.17 Additional features

The graphical user interface is doubled by the F2 - F11 functional keys.

F2 - switches background color white(by default)/black.

F3 - switches on/off(by default) stability option.

F4 - switches axes of the coordinate system and has three states: - axes at origin
(by default); - axes in the corner of the picture; - no axes. For two-dimensional
pictures this options has also three states.

F5 - switches step for the drawing of the orbit family:

F6 - switches thickness of the orbits, with 5 gradations.

F7 - switches the colors of coordinate axes: color or black for white background;
color or white for black background.

F8 - switches the color scheme of an orbit family except for bifurcation orbits:
gradient color scheme from red to blue (by default); nine other schemes.

F9 - goes through bifurcation orbits consecutively, and is used to choose one of
them for changing its color.

F10 - changes the color of the chosen bifurcation orbit in accordance with 10
defined colors.

F11 - switches the lines/three-dimensional tubes graphics.

A.6.18 Pop-up menu

Click on the picture window using the left mouse button for appearance of pop-up
menu (Fig. A.11 and Table A.3).

Most of the menu items are doubled by keys or key combinations and their actions
were described above. Some additional menu items have no corresponding keys or
key combinations and permit to switch on/of drawing of primaries (the Moon and
the Earth), the semi-transparent disk (the Moon orbit) or libration points (Lagrange

points).
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Table A.3: The pop-up menu of DR Orbits

Menu Submenu Key or key
item items combinations
3D graphs
XYZ do
uvw ds
XY Xy
XZ XZ
YZ yz
X(t) xt
Y(t) yt
Z(t) zt
uv uv
Uw uw
VW vWw
U(t) ut
V(t) vt
W(t) wt
3D Settings
Background White/Black F2
Stability Off/On F3
Frame 1/2/3 F4
Orbit Step 1/2/4.. F5
Line Width (pixels) Feé
Frame Axes Color/Monochrome F7
Orbits color scheme 1..10 F8
Choice of Bifurcation Orbit F9
Color of Bifurcation Orbit F10
Tube Orbits Fi1
Moon orbit On/Off
Lagrange points On/Off
Moon On/Off
Earth On/Off
2D Settings
Stability Off/On F3
Frame 1/2/3 F4
Orbit Step 1/2/4.. F5
Line Width (pixels) Fé
Moon orbit On/Off
Lagrange points On/Off
Moon On/Off
Earth On/Off
Help F1
About F12
Quit
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A.6.19 Brief help

If you press F1 functional key, you can see in the separate black DOS window the

short help of DR Orbits as below:

sk sk ok ok 3K ok ok 3% ok 3 ok ok ok 3k ok ok 3k 3k ok ok ok ok ok ok ok ok 3k ok ok sk ok 3k ok sk ok ok ok 3k ok 3k ok ok ok sk ok ok ok ok 3k ok ok ok ok ok ok ok ok Kook ok ok ok ok

* DR Orbits program HELP *

sk 3k ok 5K ok ok ok 3k ok ok ok sk sk sk 3k ok ok ok ok ok oK oK ok ok ok sk ok ok ok ok 3 ok ok ok Sk 3k 3k 3K oK oK ok 3K ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk kok ok ok ok
* MAIN WINDOW:

* Arrow keys or left mouse button drag&drop - rotation.

* Insert/Delete - scaling -/+.

*x PgUp - goes trough each single orbit/choose orbit.

* Home - shows the range of orbits.

* End - shows all the orbits of the family.

* Right mouse button - main pop-up MENU.

e e
* FUNCTIONAL KEYS:

* F1 - shows program help.

* F2 - switches background color (black/white) for 3D picture.
* F3 - shows stability of different orbits using colors.

* F4 - switches frames.

* F5 - changes steps to show orbits.

* F6 - changes line width for orbits.

* F7 - changes color of axes.

* F8 - changes color scheme of orbits.

* F9 - chooses bifurcation orbit.

* F10 - changes color of chosen bifurcation orbit.

* F11 - draws orbits as 3D tubes.

* F12 - shows info about the program.

* SOME OF THESE OPTIONS ARE DOUBLED IN THE MENU ITEMS

* 3D Options and 2D Options.

KEYS COMBINATIONS: SWITCH PICTURE/PROJECTION
Press two keys one after another:

do - 3D orbits in XYZ space.

ds - 3D velocities in phase UVW space.

xy - 2D orbits projection on XY plane.

xz - 2D orbits projection on XZ plane.

yz - 2D orbits projection on YZ plane.

uv - 2D velocities projection on UV plane.
uw - 2D velocities projection on UW plane.
vw - 2D velocities projection on VW plane.
xt - shows X(t).

yt - shows Y(t).

zt - shows Z(t).

ut - shows U(t).

¥*

HOF K K X ¥ K X K X X X X ¥
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* vt - shows V(t).
* wt - shows W(t).

* ¥

* K K K K K K X X ¥

*
*
*

ALL THESE ABILITIES ARE DOUBLED IN THE MENU ITEMS

Use lists from the panel to choose mu value, orbits family
and single orbits to see mission in the system

when the Moon(2nd primary) is rotating around the Earth/(1st).
(Orbit can be chosen using PgUp key as well)

Click Start mission to see the mission and End mission

to stop mission. Use arrow keys for rotating the picture in
mission window.

Attention! You need to be careful about which window is

the current window. To avoid unpredictable behavior of the
program switch the windows by mouse click.

sk ok ok sk ok 3k 3k 3k ok ok ok ok ok ok ok ok 3k ok 3k ok 3k ok 3K 3k 3 ok 3k ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok o ok ok ok ok ok ok okokok koK kok

DR Orbits program HELP *
ok Kok Kok ok ok ok o o ok ok ok ok ok o KK KoK ok ok ok ok ok ok Sk ok sk ok ok ko o o koK ok kKoK KKK KoKk ok ok ok

154



Appendix B

How to use AUTO 2000 for solving
the CR3BP

B.1 Description of the AUTO 2000 files
r3b.c, c.r3b and s.start

The CR3BP AUTO demo files can be found in the directory auto/2000/demos/r3b/.
There are three subdirectories under it. Demo files for the Earth-Moon system are
in the subdirectory em. Demo files for the Sun-Earth system are in the subdirectory
se. Demo files for the Sun-Jupiter system are in the sub-directory sj. Fach other
subdirectory contains similar files.

The file r3b.c defines the differential equations of the CR3BP and defines AUTO
parameters. Here is a listing of r3b.c:

[/ ¥============ —======z=====================-==zs====================% /
/¥========s=====================================s=====s============
/*==== The restricted 3-body problem: periodic solutions==========x/
/¥================s====s======s==Sss======s=s==sssS=sS=SSss=sss======/
/*================================================================*/
#include "auto_f2c.h"

/¥===========s================s===s=s==s===ssss=ss==s=soossssss=ssss/

int func (integer ndim, const double *u, const integer *icp,
const double *par, integer ijac, double *f, double *dfdu,
double *dfdp)

{
double x, y, z, xp, yp, zp, dE, dM, dE3, dM3, p, mu, mc;
int 1i;
x = ul0]; y = ul1]l; z = ul2];
xp = ul3]; yp = ul4]; zp = ul[5];
mu = par[1];
p = parl[2];
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dE = sqrt((x+mu)*(x+mu) + y*y + z*z);

dM = sqrt( (x-1+mu)*(x-1+mu) + y*y + z*z );
mc = 1 - mu;

dE3 = 1/(dE*dE*dE) ;

dM3 = 1/(dM*dMxdM) ;

£{0] = xp;

f[1] = yp;

fl2] = zp;

f[3] = 2*yp + x - mc*dE3x(x+mu) - muxdM3*(x-1+mu);

f[4] = -2*xp + y - mcxdE3*y - mu*xdM3x*y;

f[5] = - mc*dE3*z - mu*dM3x*z;

f[3] += p*xp;

f[4] += p*yp;

f[5] += p*zp;

return O;
S
—======—==================s=ss===sssssssssssssoosssscooooy

int pvls (integer ndim, const double *u, double *par) {
extern double getp();
double x, y, z, xp, yp, 2zp, dil, d2, mu, U, E, det;

mu = par[1];

x = getp("BVO", 1, u);
y = getp("BVO", 2, u);
z = getp("BVO", 3, u);
xp = getp("BVO", 4, u);
yp = getp("BV0", 5, w;
zp = getp("BV0", 6, u);

d1 = sqrt((x+mu)* (x+mu) + y*y + z*z);
d2 = sqrt( (x-1+mu)*(x-1+mu) + y*y + z*z );

U = (x*x + y*y)/2 + (1-mu)/dl + mu/d2;
E = (xp*xp + yp*yp + zp*zp)/2 - U - mux(1-mu)/2;
par[3] = E;

det = getp("BIF", 1, u);
par[4] = loglO(10+abs(det)) * atan(det);
par[5] = getp("STA", 1, w);
par[21] = getp("INT", 1, uw);
par[22] = getp("INT", 2, u);
par[23] = getp("NRM", 3, u);
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return O;

}
/4=m===s=s===sssssssss=====s==s====s=====oo====s=s=sss==s======k/
/*===========================================================*/
int stpnt() {} int bend O {} int icnd O {} int fopt () {}
/¥=========================S=======s==sssss=s=s=ss=ss=ss=sss=s==k
/4=================ss==ms=======ss========================s==k/

Function func() defines the equations, and function pvls() defines calculated para-

meters of the problem (Table. B.1). Other functions are not used in calculations.

Table B.1: Parameters defined in the file r3b.c

Parameter | Description

par([1] the p value (mass ratio)

par[2] the unfolding parameter A
par[3] the energy (Jacoby constant) E
par[10] the period T'

par|21] [ x(t) dt

par[22] | fo y(t) dt

par[23] fol 22(t) dt

The file c.r3b contains which are needed for the calculations. The structure of this
file and a role of each constant are described in details in the AUTO 2000 Guide
(E.J. Doedel, R.C. Paffenroth, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov,
B.E. Oldeman, B. Sandstede, X. Wang AUTO 2000: Continuation and bifurcation
software for ordinary differential equations (with HomCont), 2000, available from
http://www.aem.caltech.edu/~redrod/auto2000/distribution/). Here, we only de-
scribe a few parameters, namely those that play an important role in calculations for
the CR3BP.

The parameter IRS (first line) is the label of the starting point for the calculations.
Its values containing in the starting file are presented in Table B.2. The value of this
label can be changed by the command cc(”IRS", Label), where Label is an integer

number - the label of bifurcation point (see below).
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The parameter NTST (third line) is the number of mesh intervals. To obtain
more accurate results for some orbit families, especially near abnormal terminations,
one may need to increase this parameter up to 100 - 500. The calculation time will

increase accordingly.

6 2 11 0 NDIM,IPS,IRS,ILP
7210 212234 5NICP, (ICP(I),I=1,NICP)
50 4 33-11500 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT
300 -1e9 1e9 -3 3 NMX,RLO,RL1,A0,Al
10 -5 2 1553 0 NPR,MXBF,IID,ITMX,ITNW,NWTN, JAC
1e-8 1e-8 le-4 EPSL,EPSU,EPSS
le-2 1e-5 2e-2 1 DS,DSMIN,DSMAX, IADS
1 NTHL, ((I,THL(I)),I=1,NTHL)
10 00
0 NTHU, ((I,THU(I)),I=1,NTHU)
3 NUZR, ((I,UZR(I)),I=1,NUZR)

The parameter ISW is equal to -1, if we want to go switch to a new orbit family
from a bifurcation orbit: it is the case of ”branch switching”. If ISW = 1, we can
continue to go along the same orbit family (no "branch switching”).

The parameter NMX defines the maximum number of the steps, i.e., maximum
number of orbits we want to compute (the calculation may finish earlier in case of
abnormal termination). For the small continuation step size (paramecter DS) the value
of NMX may need to be increased.

The parameter NPR defines the step size for orbit calculations. 1f NMX is large,
the value of NPR could be in the rang 25 - 50.

Parameters DS, DSMIN, DSMAX define the value of pseudo-arclength step size. For
some orbit families, especially abnormally terminated, the values DS and DSMAX may
need to be decrecased in 5 - 10 times.

The AUTO 2000 starting file can be generated automatically by the program stgen
(E. Doedel, V. Romanov). This program calculates for any selected input p value

(0 < i < 0.5) coordinates of all libration points, all eigenvalues, and starting periods
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Table B.2: Labels of starting points used in the AUTO file c.r3b.. Labels 41, 43, and 51, 53 does
not exist for p > 0.0385208&9.

Label | Libration point | Orbit family
11 L1 L1
12 L1 Vi
21 L2 12
22 L2 V2
31 L3 L3
32 L3 V3
41 L4 L4
42 L4 V4
43 L4 S3
51 L5 L5
52 L5 V5
53 L5 S3

for each existing family of orbits arising from each libration point for this p value. The
program can be started as: stgen mu ext, where mu is any real number representing

1 value and ext is the extension of the starting file: it will be named as s.ext.

B.2 Some AUT0O2000 commands

Here we describe briefly a sequence of actions and corresponding AUTO 2000 com-
mands used for the Circular Restricted 3-Body Problem. How to install and start
AUTO 2000 is described in above-mentioned AUTO 2000 guide.

It is better to copy the files r3b.c, c.r3b and s.start into a special separate
directory. The program Orbit_4.exe can be also copied in this directory. If we want
to start with the orbit family L1 we need to be sure that the parameter IRS of the
file c.r3b is equal to 11.

Start the calculations with the sequential AUTO 2000 commands:

load("r3b", c="r3b")
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load(s="start")

run()

On the Linux System Monitor, a brief summary of the calculations will be printed:

BR PT TY LAB PAR(2) L2-NORM U(3) PERIOD PAR(21)

-11 3 54  1.43046E-14  0.00000E+00 2.692090E+00 8.369559E-01 ...
-11 10 BP 55 -1.37474E-15 0.00000E+00 2.743033E+00 8.406718E-01 ...
-11 20 56 1.36952E-12  0.00000E+00 3.301425E+00 8.704122E-01 ...
-11 25 BP 57 1.75486E-11  0.00000E+00 3.950086E+00 8.890280E-01 ...
-11 30 58 -1.26545E-10 0.00000E+00 4.877751E+00 8.992548E-01 ...
-11 40 59  9.44442E-12 0.00000E+00 6.354205E+00 8.810780E-01 ...
-11 50 60 -1.64688E-09  0.00000E+00 7.091095E+00 8.331280E-01 ...
-11 60 61 -3.39537E-09 0.00000E+00 7.385340E+00 7.682688E-01 ...
-11 70 62 -2.35269E-08 0.00000E+00 7.450533E+00 6.919871E-01 ...
-11 80 63 -5.37635E-08 0.00000E+00 7.394414E+00 6.084152E-01 ...
-11 90 64 -1.39024E-07 0.00000E+00 7.272618E+00 5.220438E-01 ...
-11 100 65 -2.48596E-07 0.00000E+00 7.118165E+00 4.379401E-01 ...
-11 110 66 -6.52471E-07 0.00000E+00 6.953890E+00 3.610491E-01 ...
-11 120 67 -2.21016E-06 0.00000E+00 6.863585E+00 3.224062E-01 ...
-11 130 68 -2.45289E-06 0.00000E+00 6.844038E+00 3.143288E-01 ...
-11 140 69 -2.48997E-06 0.00000E+00 6.824740E+00 3.064488E-01 ...
-11 148 MX 70 -1.13452E-06 0.00000E+00 6.811366E+00 3.010420E-01 ...

Total Time 6.532E+00

r3b ... done

The complete results of the calculation are saved in three temporary files: fort.7,

fort.8, fort.9. The command

save("L1")

saves them permanently in the files: b.L1, d.L1, and s.L1. To see the picture we
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can use the Red Hat command to start Orbit_4.exe:

./Orbit_4 s.L1

(Fig. B.1). As can be seen, this orbit family has two bifurcation orbits marked

BP (branch point). The bifurcation orbits have the numbers 55 and 57.

Figure B.1: Linux variant of DR Orbits: Program Orbits_4 used for plotting of the results of calcu-

lation. This program was compiled under Linux Red Hat 9.0. L

If we want to calculate the orbit family that bifurcates from the BP with label
57 we need to load the saved file s.L1 as the starting file with the AUTO 2000 command

load(s="11")

and change the starting point 11 by the number of bifurcation orbit 57 using AUTO
2000 command
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Figure B.2: Lighted variant of DR Orbits: Program Orbits 4 used for plotting of the results of

calculation. II.

cc("IRS" 57)

After that we can start the calculation of the new orbit family by the run() com-
mand. If we save our new orbit family using save(”Al”) we can see this family with
the command ./Orbit_4 s.Al (Fig. B.2). After that we can calculate the orbit family
that bifurcates from the BP 55 of the family L1 and from the BP’s of the new families,
and so on.

We can also continue our calculation of L1 trying to obtain a few orbits after
previous MX 70 point. For this continuation we need to change the file c.r3b as

follows:
e ISW = 1;
e NTST = 150;
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e DS = 5E-3, DSMAX 1E-2

and repeat the commands

load(" r3b”, c="r3b)

load(s="start")

run()

The additional orbits (saved in temporary files fort.*) can be appended to the previ-

ously saved files b.L1, d.L1, and s.L1 using command

app("L1")

Now we need to relabel the orbits so they will be numbered connectively:

rlb("L1")

To see the new labels use the command

Ib("L1")

The above-described commands are sufficient for practical calculations of the most
of the orbit families described in Chapter 4. The average time for an orbit family
is about half a minute or even less, undoubtably a merit of the numerical method
described in Chapter 3. For a graphical representation of the solutions one can also
use the new AUTO 2000 graphic tool Plaut04. (See: Chenghai Zhang Computation
and Visualization of Periodic Orbits in the Circular Restricted Three-Body Problem,
M. Comp. Sci. Thesis, Concordia University, 2004.)
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