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ABSTRACT

Design optimization and vibration control of adaptive structures

Aurelio Dominguez-Gonzélez, Ph. D.
Concordia University, 2005

In the present research work the optimization of structures and the vibration
suppression are studied. First, a methodology to find the simultaneous size, geometry
and topology design optimization of structures using Genetic Algorithms (GAs) is
proposed. The methodology considers that the large structures are constructed from the
duplication of some basic structures called bays. In order to have realistic optimal
designs, the cross-sectional areas are extracted from the standard profiles and the
optimization process is performed considered the AISC design standards.

The second part of the work is concerned with the suppression of the vibration in
structural systems. A methodology to find the characteristic parameters of the Bouc-
Wen model in the attempt to better characterize the hysteresis phenomenon of MR
dampers has been proposed. The methodology takes into consideration the effect of each
individual term of the Bouc-Wen model over the hysteretic loop to estimate the
appropriate values of the parameters. Considering the relationships of the characteristic
parameters, a new model based on the Bouc-Wen model is proposed in which the
current, the frequency and the amplitude excitation are incorporated as variables. Based
on the proposed hysteresis model, a Finite Element Model (FEM) for the MR damper is
developed and then integrated to the FEM of the entire structure. Subsequently, an

efficient vibration suppression strategy using MR damper was proposed to improve the
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vibration performance index of the structure. Finally, the same hysteresis model is

employed to investigate the application of MR dampers as translational actuator.
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CHAPTER 1
INTRODUCTION

Finding the best or optimum design is an important and challenging task which is
the ultimate goal of all structural or mechanical designers. Conventionally, the intuition,
experience and repeated trials and errors are ad-hoc optimization tools employed to reach
this goal. The existence of many fine buildings and aerospace achievements is the
e\;idence of these ad-hoc optimization solutions (ASCE 1997). However, in the latter half
of past century, considerable advances have taken place in computer methods for analysis
and design that can be of substantial aid to the designer in the creative process of
designing and finding the true optimum solution. Furthermore, the technological
advances in materials have developed new kind of actuators, which are installed and

controlled to improve the performance of the structures under changing environments.

1.1. Motivation and objectives

The proposed research involves fundamental investigations in optimization and
semi-adaptive vibration control of adaptive structures making use of the MR-dampers.
The traditional passive structures cannot modify their response mechanisms and are thus
unable to perform successfully when they are subjected to changing load conditions.
Such limitations have motivated considerable interest in developing a new class of
structures called adaptive structures, which can modify their shapes or mechanical
properties in a controlled manner to accommodate unpredictable environmental changes.

Fundamental research is conducted and computational and experimental models based on



the mathematical foundation are developed to optimize the designs and control the

response of semi-adaptive structures under environmental changes.

The dynamic response control of truss structures has drawn increasing attention
due to their possible application to lightweight space structures (Kida et al. 2000). When
a space structure becomes large and flexible, a large magnitude of dynamic response
occurs, and this negatively affects the precise attitude and shape characteristics of the
entire space structural system. The structural optimization is a challenging area. In order
to gain appreciation of the complexity of the structural optimization, a very simple

topology optimization problem is presented (Anthony et al. 2000).

Figure 1.1 shows a cantilever structure, which has a harmonic excitation of 1 N
over the element 1. The structure is a typical application of an antenna boom arm for use
on a satellite. The aim is to reduce the transmission of vibrations from the base to the
element 40, where the antenna would be mounted in practice; thus, the objective function
1s to minimize the vibration energy in the end element. In this structure, the design
variables are the coordinates of node located at the position (4,1) which can accept

variations +/- 0.25 m in both axis.
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Figure 1.1. 40-elements truss plane structure (Anthony et al 2000).



The Figure 1.2 shows the contour of the objective function against the adjustment
of joint (4,1) within the optimization limits. From this plot, it is possible to imagine the
complexity of the optimization in structures when all the nodes are included as design
variables. Furthermore, the problem is really challenging when semi-active control or
active control is added and the positions and number of actuators is taken into account as
design variables. In conclusion, the dynamic structural optimization is a high non-

unimodal discrete and multi-parametric problem.
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Figure 1.2. Contour plot of the objective function within feasible domain
(Anthony et al 2000).

The natural hazards through a combination of strength, deformability and energy
absorption must be considered to design structures, which may deform well beyond the
elastic limit; for example, in a severe earthquake. They may remain intact only due to
their inelastic deform ability, as this deformation results in increased flexibility and
energy dissipation. In some cases, this deformation also results in local structural
damage, as the structure itself must absorb much of the input energy. One contradictory

solution is frequently attained by allowing certain structural damage (Yang et al. 2001).



The implementation of some types of structural protective systems is one
alternative solution to prevent the damaging effects of these environmental forces. These
protective systems absorb or reflect a portion of the input energy that would otherwise be
transmitted to the structure itself. From the energy conservation law the total input energy

from the environmental forces is computed by (Uang and Bertero 1988)

E=E,+E,+E,+E, (1.1)

where E, is the absolute kinetic energy, E| is the recoverable elastic strain energy, E,

5
is the irrecoverable energy dissipated by the structural system through inelastic or other

inherent forms of damping and E, is the energy dissipated by structural protective

systems. The importance of protective systems can be deduced from the above equation
since for any energy input, the demand of energy dissipation through inelastic
deformation can be reduced by using protective systems. In consequence, many new and
innovative concepts for structural protection have been proposed. One of that is the
application of magnetorheological (MR) dampers which can function, in passive and

semi-active mode (Soong and Spencer 2001).

Semi-active control systems combine the best features of both passive and active
control systems, and they appear to offer the greatest likelihood for near-term acceptance
of control technology as a viable means of protecting structures (Yang 2001). The control
strategy of a semi-active control system is based on the feedback of structural motions.
Different control algorithms can be adopted directly from active control systems.

However, semi-active control systems are nonlinear due to the intrinsic nonlinearities of



the semi-active devices. The development of efficient control strategies is still an open

research topic.

One of the objectives of this research work is to propose new methodologies to
find the optimum design of discrete structures for different objective functions. Different
drawbacks have been identified for the optimized designs. For example, the final designs
may imply many different kinds of profilés or inexistent profile sections on the market.
Another problem with the optimization process is related to the number of variables and
the possibility to miss the global optimum. The difficulty to find the optimum design is
function of the number of design variables, the domain size of the variables, the nature of
the variables (continuity and differentiability) and the design constraints. All these factors
influence the success of the optimization process; thus, developing a proper methodology

is vital to obtain globally optimum designs.

The second objective is to reduce the vibration transmissibility. For this, two
approaches are investigated. The first one is to modify the shape of the structure to reduce
the transmissibility, which implies the solution of the geometry optimization problem in
order to reduce the vibration energy. The second, a more practical and effective approach
is to incorporate the MR dampers in the structural system. MR damper is a device that
can modify its properties in a few milliseconds due to variations of the current excitation.
The low power requirement, the safe manner mode in case of any failure and their fast
response make them a promising solution in the future. In order to incorporate the MR
damper in vibration suppression applications, an efficient model that simulates accurately

the hysteresis behaviour of MR dampers is required.



Another objective of this research is to embed the MR damper in the structural
system to suppress the vibration in passive and semiactive mode. To accomplish this, an
efficient and accurate finite element should be developed for both the passive bar element
and for the MR damper. Also a vibration suppression strategy will be proposed to
improve the performance of the structure. Furthermore, the optimum position of the MR
damper should be studied to improve its effectiveness. Finally the application of MR
dampers as translational actuator is investigated. The principle is to take the vibrational
energy from the structure using MR dampers and use that energy to produce actuation
actions. This may represents an innovative application of MR-dampers that would
eliminate big energy sources and actuators required to correct position errors. The
influence of the excitation characteristics as Well as the structural stiffness over this

lengthening will also be investigated.

1.2. State of art

The topics studied in this research work can be arranged in three themes. The first
is concerned with the optimum design of structures by minimizing the weight and
structural strength. The second topic deals with the modeling of the hysteresis behaviour
of the MR damper in order to be able to apply semi-active control. The last topic deals
with the implementation of MR damper in the structure; thus, the structure can work as

passive or semi-active system.

1.2.1. Structural optimization of discrete systems
Despite the fact that the structural optimization has achieved extraordinary development

in optimization theory and associated algorithms over the last four decades, it is far less
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popular in practice. This situation is, at least partly due to the difficulties and
complexities of existing structural optimization methods. The structural optimization
problem has generally been recognized as a constrained non-convex problem (Anthony et
al. 2000). Additionally, the discrete design variables that define the possible profiles to
construct the structures convert it to non-smooth problem. Therefore, it is necessary to
employ a robust optimization method capable of handling these types of problems while
providing global optimum solution. (GAs) have been used as the optimizer due to its
capability to catch solutions close to the global optimum and operating with discrete

variables. Also, GAs can easily be applied to multi-objective functions.

The application of the optimization techniques in the field of structural
engineering dates back to at least 1956 when frame structures were optimized by Heyman
(1956) using the linear programming technique. Since then, extensive research has been
conducted in the structural optimization field with limited industrial applications. One of
the first studies in the Genetic Algorithm (GA) and its application to the structural design
optimization was reported by Goldberg et Santami (1986). Keane (1995) studied the
optimization of the geometry of a lightweight two-dimensional structure to minimize the
vibration transmission. The positions of the joints were used as the optimization
variables. Genetic algorithms proved to be an efficient method for highly non-linear
problems. After, the optimized design was also verified in practical cases (Keane and
Bright 1996). Galante (1996) applied the same technique to optimize the real-world truss
structures. He proposed the ‘rebirth technique’ to escape from local optimums during the

optimization process and improve the results of the traditional genetic algorithm.



Anthony et al. (2000) minimized the energy at single frequency, in narrow band
and in broad band in structures and proposed a methodology to analyze the sensitivity or
robustness of each structure. For this, different random perturbations were generated and
the average energy level of each perturbation was determined. Then, the robustness was
defined as the spread or width of each statistical distribution, and it was concluded that
the optimum structure is not necessarily the most robust one. In the second paper
(Anthony and Elliot 2000) of a series of three, they applied active vibration control to
reduce the vibration, and they also performed sensitivity analysis. In the third paper
(Anthony 2001), they combined the topology design and active vibration control to
improve the results. Anthony employed GAs as the optimization technique in the above
publications. Prendes et al. (2005) modified the codification of the design variables and
the reproduction operation of GAs and applied it to the optimization of complex steel
structures. Baumann and Kost (2005) optimized the topology of truss structures by

eliminating the uneconomical links using stochastic methods.

The optimal geometry of adaptive truss structures with embedded actuators was
investigated by Morutso and Shao (1990). The finite element method has been combined
with the sequential programming technique to maximize the structural strength, by
changing the angles of the active members. They studied deterministic, probabilistic and
dynamical loads. A two-phase method based on the GAs is proposed by Rajeev and
Krishnamoorthy (1997) to perform size and topology optimization of truss structures. The
result of the optimization process is highly influenced by the penalty functions applied to
accommodate the constraints. Coello (2000) has carried out a comprehensive survey of

multicriteria optimization techniques. An adaptive penalty function is proposed by



Nanakorn and Meesomklim (2001). Yang and Soh (2002) applied G(;,netic Programming
to optimize truss structures using commercial profiles. The square of the normalized
values with respect to the maximum permissible was used as a penalty function.
Sandgren and Camerun (2002) used a hybrid method to solve the multicriteria

optimization and applied the standard deviation as a penalty function.

In the area of the optimal number of actuators and locations most of the
researchers have work only with active elements for vibration control and not many
works are in literature. Rao et al. (1991) used genetic algorithms to find the best position
of the actuators. The energy dissipated by the active controller was used as cost function.
Chen et al. (1994) found the best position by maximizing the cumulative energy
dissipated over a finite time interval. The control effort with/without spillover energy was
minimized by Lammering et al. (1994). They developed the stiffness matrix for one
active and two conventional truss elements, which includes the voltage as variable, and
suggested that the optimal position is where there is the largest electric poteﬁtial. Liu et
al. (1997) minimized both the system energy and control effort by solving the discrete-
continuous multi-objective programming. They alternatively used Sequential Linear
Programming for continuous variables and simulated annealing for the discrete problem.
Yan and Yan (2002 a, b) considered the eigenvalues of the “correlative matrix” as a hint
for selecting the required number of actuators; then, they applied genetic algorithms to
search for the optimal actuator locations. Zimmerman (1993) maximized the energy
degree of controllability and suggested that the optimal number and placement are the

most repeated solutions in the final sub-optimal structures.



Other researchers have also treated the problem of actuator placement design. Liu
et al. (1997) minimized both the system energy and control effort by solving the discrete-
continuous multi-objective programming. They alternatively used Sequential Linear
Programming technique. Heverly et al. (2001) proposed a hybrid approach that couples a
control law and an optimization routine for actuator placement using optimal active
control and simulated annealing methods. Herverly et al. (2002) continued the previous
research, and applied the methodology to a scaled tailboom model and implemented
practical experiments. Umesha et al. (2005) optimized truss structures by decomposing
the structure into sub-domains and suboptimization tasks. Each subdomain has

independent design variables and a small number of behaviour constraints.

1.2.2. Hysteresis models for MR dampers

Different models have been developed to describe the behaviour of MR damper.
These models are classified as the quasi-static and dynamic models. For the quasi-static
models, several works have been reported in the literature. Phillips (1969) employed the
Bingham model of MR fluids and developed a set of nondimensional variables and the
corresponding quintic equation to determine the pressure gradient of MR fluid through a
parallel duct. Gavin et al. (1996) used the same approach and developed an axisymmetric
model to precisely describe the quasi-static behaviour of the MR damper. They assumed
that the yield stress satisfied an inverse power law to account for the radial field
distribution. Kamath and Wereley (1996) developed an axisymmetric model and assumed
a constant yield stress in the annular gap. Wereley and Pang (1998) developed a similar

parallel-plate model with a different set of nondimensional variables.
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To consider MR fluid shear thinning/thickening effects, Lee and Wereley (2000)
and Wang and Gordaninejad (2000) employed the Hershel-Bulkley model to predict fluid
flow in a parallel duct with fixed boundaries. They also developed an axisymmetric

model for a circular pipe with constant yield stress.

Although the quasi-static models are capable of describing force-displacement
behaviour of the MR damper reasonably well, they are not sufficient to describe the
nonlinear force-velocity behaviour of the damper (Yang 2001). To overcome this,
different dynamic models have been developed. Stanway et al. (1985) proposed a simple
mechanical model, the Bingham model, in which a Coulomb friction element is placed in
parallel with a dashpot. A parametric viscoelastic-plastic model based on the Bingham
model was proposed by Gamota and Filisko (1991). Ehrgott and Masrri (1992), and
Gavin et al. (1996) presented a non-parametric approach employing orthogonal
Chebychev polynomials to predict the controllable fluid damper force using the damper
displacement and velocity information. Stelzer et al. (2003) employed the Bingham
model to simulate a dynamic MR isolator. An and Kwon (2003) combines the Bingham
model and the Hodgdon’s to predict the mechanical and magnetic behaviour of a

commercial MR brake.

The neural network (NN) models perform well given their ability to approximate
arbitrary functions. Ideally, a well-trained NN model can approximate an arbitrary
function with arbitrary accuracy. Chang and Roshke (1998) developed a neural network
model with one hidden layer to emulate the dynamic behaviour of MR dampers. Later,
Chang et al. (2002) proposed a NN model to emulate the inverse dynamics of the MR

damper. This model is used to calculate voltage signals to be input into the MR damper
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so that it can produce desirable optimal control forces. Another model using NN
combined with Bingham model was employed by Xu et al. (2003) to apply semi-active
control. However, such non-parametric damper models are quite complicated (Yang
2001) and have the disadvantage that their parameters do not have any physical meaning

(Smyth et al. 2002).

Another dynamic model was developed by Wereley et al. (1998). This non-linear
hysteretic biviscous model is an extension of the nonlinear biviscous model having an
improved representation of the pre-yield hysteresis. Yang et al. (2004) proposed a
phenomenological model/which considers the MR fluid adhesive phenomenon, as well as
inertial and shear thinning effects. To accomplish this, he modified the damping constant
in the Bouc-Wen model by a monotonous decreasing function with respect to absolute
velocity. Choi et al. (2001) have developed a polynomial model that includes the
excitation current as variable. The behaviour of the MR dampers was also modeled using
a modified LuGre dynamic friction by Canudas et al. (1995) and Jimenez and Alvarez
(2002). Recently, Wang et al. (2003) proposed a model based on the symmetric sigmoid
function, which considers relationships between the hysteresis phenomenon and the
frequency and stroke of the excitation as well as the current excitation. Another model,
based on the LuGre model, was proposed by Sakai et al. (2003). It predicts the damping
forces based on the inputs of velocity, internal state variable and input voltage, but also it

can create an inverse dynamic model to determine the input voltage.

The Bouc-Wen model was initially formulated by Bouc (1971) as an analytical
description of a smooth hysteretic model and later generalized Wen (1976). This model
has been extensively chosen for its ability to capture, in a continuous fashion, a range of

12
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shapes of hysteresis loops which resemble the properties of a wide class of real nonlinear
hysteresis systems (Vinogradov and Pivovarov 1986). Spencer et al. (1997) proposed a
phenomenological model for MR dampers based on the Bouc-Wen hysteresis model.
This parametric and dynamic model was utilized to describe a wide variety of hysteretic
behaviour (Dike et al. 1996a, b; Yang et al. 2001a, b; Yang et al. 2002). The Bouc-Wen
model] is able to capture the force roll-off in the low velocity region that is observed in
the experimental data. Trial and error or some optimization techniques such as Sequential
Quadratic Programming (SQP) have already been applied to determine these parameters
in such a manner that the error between experimental and simulation results are
minimized (Choi et al. 2001; Spencer et al. 1997; Yang 2001; Yao 2002). However, the
Bouc-Wen model has some inconveniences. First, the determination of its constant
parameters is a complex task that involves very time consuming computation which does
not always show good matching between the experimental data and the modeling results.
Second, the fact that each set of constant parameters is valid only for single vibration
conditions, make the Bouc-Wen model inappropriate for varying excitation

environments.

1.2.3. Passive and semi-active control systems

The passive control systems alleviate energy dissipation demand on the primary
structure by reflecting or absorbing part of the input energy, thereby reducing possible
structural damage (Housner et al. 1998). Nonetheless, one limitation is that these systems

cannot adapt themselves to change of either external loading conditions or usage patterns.
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In the basic passive system, the structure absorbs vibration energy by the inherent
capability of structural damping of the material. Thus, complex designs and oversized
structures are required to increase the energy absorption capacity of the structure and thus
obtain a safe design such that the vibration energy can be absorbed without suffering any
structural damage. Anthony et al. (20002, b, 2001) have shown that the transmissibility of
the vibration energy can be reduced by redesigning the shape of the structure, which
involves the solution of geometry, size and topology optimization problem. However, the
modification of the structures is in many cases restricted by practical aspects such as the

market profiles, manufacturing, cost, geometry constraints, etc.

Another type of passive control systems is the vibration isolation system. This
system introduces flexibility and energy absorption capabilities, thereby reducing the
transmitted energy to the structure. An isolation system should have enough rigidity to
support the service loads, adequate flexibility to lengthen the natural period and yield a
good isolation effect as well as good energy dissipation capability (Buckle and Mayes
1990). Examples of typical seismic isolation devices are the elastomeric bearing, lead
rubber bearings, high damping rubber bearing and sliding friction pendulum bearings
(Soon and Constantinou 1994). Many buildings around the world have been constructed
with this kind of technique; such as, Los Angeles city Hall, Salt Lake City Building,
Yachiyo-Dai House in Japan and west building of the ministry of Post and
Telecommunications and the Research Building of the Matumura Construction Company
which demonstrated excellent isolation performance during the Great Hanshin

earthquake.
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The passive supplemental damping devices are another kind of passive control
systems. These devices protect the structure from the vibration energy by increasing its
energy dissipation capacity. This protective systems function by absorbing a portion of
the input energy by the conversion of kinetic energy to heat or through the transfer of
energy amount of vibration modes, thereby reducing energy dissipation demands and
preventing damage to the primary structure. Some types of these protective systems
utilize devices that operate on principles of frictional dampers (Colajanni and Papia 1997,
Filiaatrault et al.2000; Levy et al. 2000), metallic yield dampers (Soong and Dargush
1997), viscoelastic dampers (Aprile et al. 1997), viscous fluid dampers (Taylor and
Constantinou 1996) and viscous damping walls (Miyazaki and Mitsusaka 1992). Other
types of energy dissipative systems incorporate dynamic vibration absorbers, such as
tuner mass dampers (TMDs) and tuned liquid dampers. A comprehensive review of the
literature on passive protective systems using supplemental damping has been conducted

by Soong and Dargush (1997) and Soong and Spencer (2002).

Passive supplemental damping devices have been investigated and developed
during the last three decades. The efforts to develop these concepts into real structures
have increased significantly, and many of these kinds of devices have been already
installed in important buildings in the world; for example, the former World Trade Center
in New York, the San Bemardino County Medical Center in California, the Sidney

Tower in Australia or the Nagasaki Airport Tower in Japan.

A semi-adaptive structure may be viewed as a structure or structural component
on which sensors and semi-active control devices are embedded such that their actions

are coordinated through a control system imbuing the structure with the capability of
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responding spontaneously to external stimuli exerted on the structure in proportion to
their magnitudes to compensate for the undesired effects or to enhance the desired effects
(Tzou and Anderson 1992). A semi-adaptive structure has the property that can be
adjusted in real time but cannot inject energy into the controlled system (Housner et al.
1997). This kind of structures is based on semi-active devices sometimes referred as
controllable passive dampers. These devices offer the adaptability of active control
devices without requiring large power sources, which represents a valuable characteristic
in seismic events when the main power source to the structure may fail. Also, semi-active
devices are not at the risk to destabilize the system because they cannot inject energy into
the system. Recent studies have indicated that sérni—active control systems can achieve
significantly better results than passive controls systems; in fact, they may even
outperform fully active control systems, demonstrating significant potential for
controlling structural responses to a wide variety of dynamic loading conditions (Dyke et
al. 1996a, b; Jansen and Dyke 2000; Johnson et al. 2001; Ramallo et al. 2001; Spencer et
al. 2000; Yi and Dyke 2000; Yoshioka et al. 2001). The semi-active devices are classified
in variable orifice dampers, variable friction dampers, adjustable tuned liquid damper and

controllable fluid dampers.

The variable orifice dampers change their damping by changing the hydraulic
fluid flow resistance using an electromechanical variable orifice as shown in Figure 1.3.
This kind of devices was first applied to control the motion of bridges experiencing
seismic motion by Feng and Shinozuka (1990). The isolation structural systems using
these semi-active devices exhibit superior isolation performance compared with passive

isolation systems. Symans et al. (1994) modified a passive ﬂuid damper to develop a
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semi-active fluid damper by adding an external bypass loop which contains a controllable
valve. This damper needs only a 3.5-watt power supply and can therefore operate on
batteries. This type of semi-active devices can significantly increase the energy

dissipation capability of structures with low damping (Symans and Constantinou 1997).

Control Valve, u

F=flu)x

Figure 1.3. Variable orifice damper.

Patten (1998, 1999) has designed a semi-active vibration damper which is
comprised of a hydraulic actuator controlled by a motor operated valve. The variable
orifice dampers have shown their efficacy since they have been installed mainly in

bridges and buildings and reduced the vibration up to 70%.
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Figure 1.4. Variable friction damper.

The variable friction dampers use the surface friction phenomenon to dissipate
the vibration energy. This kind of dampers, shown in Figure 1.4, consists of a preloaded
friction shaft rigidly connected to the structural bracing. They were studied by Akbay and

Aktan (1990, 1991, 1995) where the operation of the brace is controlled by the preload on
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the friction interface, which in turn is actively regulated through commands generated by

the controller during earthquakes or severe wind excitations.

Feng et al. (1993) employed a semi-active friction controllable fluid bearing in a
seismic isolation system. This system has the ability to adapt to changing excitations
since the pressure in the fluid can be varied to control the amount of friction at the
insulation surface. The semi-active friction damper was modeled as a modulated
horﬁogeneous friction (MHF) by Inaudi (1997). A control algorithm is proposed in which
the deformation of the damper is used as feedback signal for the controller. The MHF

system yields a rate-independent force-deformation cycle for any frequencies.

Control Valve
Figure 1.5. Adjustable tuned liquid damper.

The adjustable tuned liquid dampers shown in Figure 1.5 are a semi-active
control device that utilize the motion of a sloshing fluid or a column of fluid to reduce the
response of the structures. They are based on passive tuned sloshing dampers (T'SD) and
tuned liquid column dampers (TLCD). The TSD use the liquid in a sloshing tank to
reduce the resonance of the structural system. Haroum et al. (1994) introduced a hybrid
liquid column damper (HLCD). These dampers work by maintaining an optimal damping
condition using a variable orifice in the tuned liquid column damper (TLCD). Another

device based on TSD was proposed by Lou et al. (1994) where the length of the sloshing
18



tank could be altered to change the natural frequency of the liquid damper. Yalla et
Kareem (2001) drive a ball valve by an electro-pneumatic actuator to modify the cross-
section of a tuned liquid column damper (TLSD). Ying et al. (2005) employ a MR-TLCD

to reduce the vibration of tall buildings by applying semiactive control

The controllable fluid dampers are a class of semi-active devices, consisting of
controllable fluids in a fixed-orifice damper as shown in Figure 1.6. Unlike the previous
semi-active control devices, which employ electrically controlled valves or mechanisms,
controllable-fluid dampers contain no moving parts other than the damper piston. This

feature makes them inherently more reliable and maintainable.

ER/MR Duct

ER/MR
Fluid

Figure 1.6. Controllable fluid dampers.

Controllable fluid dampers generally utilize either electrorheological (ER) fluid or
magnetorheological (MR) fluids. These fluids are unique in their ability to reversibly
change from free-flowing, linear viscous fluids to semi-solids with controllable yield
strength in only a few milliseconds when exposed to an electric (ER fluids) or magnetic
(MR fluids) field. The controllable dampers have recently produced an increased interest
in automotive applications (Yao et al. 2002; Stelzer et al. 2003) or structural uses (Onoda
et al. 1998; Xu et al 2000; Nagarajaih et al. 2000; Qu et al. 2002; Xu et al. 2003; Yoshida
et al. 2003; Zhu et al. 2004; Zhu et al. 2004) A complete description of rheologic fluids,

controllable fluid dampers, modeling and applications can be found in (Gavin et al. 1996;
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Kamath and Wereley 1996; Makris et al. 1996; Spencer and Sain 1997; Spencer et al.

1997; Yang et al. 2002).

1.3. Present work

The present thesis constitutes a comprehensive study in the area of structural
analysis, optimization and control of adaptive structures. Development of new analysis
methods, optimization algorithms ad their integration into the design optimization and
vibration suppression of adaptive structures and validation of the results by experimental

study are among the most significant contributions of this thesis.

In the area of optimization, a new way to solve the problem that is frequently
presented during the reproduction operation of the Genetic Algorithms is proposed. This
new approach allows controlling the speed of the convergence and evades falling in

random search or reaching clones early and thus being trapped in local optimum.

Two new methodologies are proposed in the structural optimization field. The
first one solves the optimization problem of real life structures that are built by the
repetition of single bays. This new methodology reduces drastically the number of design
variables; thus, the search space is significantly smaller compared with the one in the
original problem. Furthermore, the computational time is reduced significantly and
accurate global solution is found. The second methodology deals with the optimum
response of adaptive structures under varying loads. Although this problem was already
solved with deterministic methods, the proposed methodology includes practical
constraints such as the stroke of the actuator. In addition discrete variables are included in

the formulation to determine the optimum position of the active elements.
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To simulate the hysteresis phenomenon of MR dampers, a new approach is
proposed to determine the characteristic parameters of the Bouc-Wen model. This new
methodology uses key information from the experimental data to calculate directly the
characteristic parameters, without running any optimization process, to match the
simulation and the experimental results with very good accuracy. The characteristic
parameters are systematically determined and it has been observed that they tend to
follow linear or exponential relations with respect to the excitation current. Furthermore,
it was observed that the hysteresis force for the MR damper follows a parabolic pattern
with respect to the amplitude and frequency of the excitation. All thése relations were
incorporated in a new nonlinear hysteresis model for the MR damper. This new model
predicts the hysteresis force at any given current, frequency and amplitude excitation

which represent a big advantage over the existing models.

Using the new proposed model for MR dampers, the finite element formulation of
the MR damper is incorporated into the finite element model of the discrete structure.
The developed finite element model was experimentally validated and then employed to
study the performance of the proposed vibration suppression strategies in structural
systems. Finally the possible application of MR dampers as longitudinal actuators is
investigated and the required conditions are stated. This proposed application is based on
the concept that it is possible to take the vibrational energy and apply it for actuation

actions.
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1.4. Overview of the dissertation

This research work is focused to develop a fundamental understanding of
optimization of structures and vibration mitigation using semi-active protecting systems.
The optimization, the modeling of the hysteresis phenomenon for controllable fluid
dampers and the application of this kind of protective devices to structures are the three

main topics studied through the thesis.

In the second chapter a brief explanation of FEM is presented and a background
about optimization methods for structural optimization is provided. Then, two different
approaches are proposed to solve the optimum structural problems. The first approach is
based on maximizing the structural strength of the adaptive structures under varying
loads in which the position, number and length of the actuator are considered as design
variables. In the second approach the optimum design of real life structures are studied.
Many practical structures are built from the duplication of some basic bays with standard
profiles. Thus, the topology, size and geometry optimization of these kind of structures

are accomplished.

The third chapter deals with modeling the hysteresis behaviour of MR dampers.
First a background description concerning controllable fluids and dampers is presented
and subsequently the main dynamic parametric models proposed to simulate the
hysteresis phenomenon are provided. Next, a new methodology to find the characteristic
parameters of the Bouc-Wen model is formulated. Finally, a new model, based on the
Bouc-Wen model, is proposed. This model considers the amplitude, frequency and

current excitation as input variables.
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The application of MR damper to reduce the vibration in the structure is studied in
Chapter 4. To accomplish that, the FEM model of the bar element and MR damper
element with node connections are developed considering the hysteresis model proposed
in the previous chapter. Later, the solution of the nonlinear system is briefly presented.
Finally the proposed models are validated by comparing the results with the experimental

data.

The Chapter 5 deals with the dynamic optimization of passive and semi-active
structures. First, the optimization problem to reduce the vibration using the position of
the nodes as design variables is performed. After, vibration reduction is achieved with the
MR damper embedded in the structure in passive manner and subsequently a strategy of
vibration reduction is proposed to improve the performance of the MR damper. Finally a
new concept of application of MR damper is introduced. It is shown that it is possible to
make use of the vibration energy of the structure and apply this energy in lengthening
control actions of a semiactive actuator. Here the influence of the excitation

characteristics and the structural stiffness on the lenghtening effect is studied

Finally in Chapter 6, the results and contributions of this research work are

summarized and thoughts and suggestions are presented for future work.
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CHAPTER 2
STRUCTURAL OPTIMIZATION

The area of structural design optimization has been developing actively during the
last three decades due to the natural desire of engineers to design structures that not only
satisfy their functional requirements but also perform their functions in an optimal
manner. In the present chapter, first the constrained structural optimization problem is
stated. Next, the finite element method is briefly explained. Then, the optimization
methods for constrained structural problems are discussed. In the end, the methodologies
for geometry optimization of adaptive structures and simultaneous topology, size and

geometry optimization of real-life structures are proposed.

2.1. Modeling the constrained structural optimization problem

The formulation of an optimum design problem comprises three steps (Arora
1989). First the independent design variables must be precisely identified and defined.
Then, the objective function (called the cost function for the minimization problem) must
be established. This is a scalar function that must depend explicitly or implicitly on the
design variables. Finally, all the constraints of the system need to be specified. Usually
constraint expressions involve both the dependent and independent design variables as

well as explicit bounds on the variables.

Structural design optimization can be realized in three broad categories (Hafka

and Grandhi 1986; Kirsh 1989) namely as size, topology and geometry optimization. The
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cross sectional optimization, also known as size optimization, assumes that the elements,
nodes, connectivity and locations are fixed while it searches for the optimum shape
(cross-sectional area) of the elements. Topology optimization addresses the issues that
size optimization ignores; it is concerned with the number and connectivity of the
members and joints. On the other side, the geometry optimization looks for the optimum
shape of the whole structure; thus, it considers the joints and length of the elements as the
design variables. In the present work, the size, topology and geometry optimization of the

single bays with which the real life truss structures are constructed has been addressed.

The optimization can be defined as the problem of finding a vector of decision or
design variables, which satisfies the constraints and optimizes a vector function whose
elements represent the objective functions (Osyezka 1985). These functions form a
mathematical description of performance criteria, which are usually in conflict with each
other. Hence, the term ‘optimize’ means finding such a solution, which would give the
values of the entire set of objective functions acceptable to the designer. Formally, the

optimization problem is stated as:

*

Find the vector x" =[x/ ,x,,.,x,] which will satisfy the m inequality

constraints:

g,(x)=20, i=12,.m, (2.1)

the p equality constraints:

h(x)=0, i=12,.p, (2.2)

and optimize the vector function:
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f @=L/, f5 () £ (T (2.3)
where x =[x, x,,..,x,] is the vector of design variables and the optimal solution is
denoted by the vector x . In the case of n = 1, the problem is called single-objective

optimization, otherwise it is known as multicriteria or multiobjective optimization.

2.2. Finite Element Method

To conduct any design optimization problem, it is important to develop efficient
analysis and optimization modules. The Finite Element Method (FEM) is a numerical
method frequently used to find accurate solution of complex engineering problems. This
method was first presented by Tumer et al. (1956). They presented the application of
simple finite elements for the analysis of aircraft structure. This is considered as one of
the key contributions of the FEM. In few years the method gained recognition due to its
potential. Today, the method is considered as one of the most powerful numerical
techniques to efficiently solve a wide variety of practical problems. One of the main
reasons of its spreading use in different fields of engineering is the fast improving in the

performance computing power at low cost.

The solution of a general structural problem using FEM consist of the following

steps (Rao 1999):

e Discretization of the structure
e Selection of a proper interpolation or displacement model
e Derivation of element stiffness, damping and mass matrices and load vectors

e Assemblage of element equations to obtain the overall equilibrium equations
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e Solution for the unknown nodal displacements

e Computation of element strains and stresses

In this section the stiffness and mass matrices will be stated for the truss element

in order to use the FEM as analyzer in the optimization process.

2.2.1. Stiffness and mass matrix for truss elements

Truss structures, also called rod or axial bar; consist of flexible truss members
under axial forces only and pin-connected at joints. Due to the lightweight and easy
assembling, these structures play an important role in the industrialized world and have
numerous applications such as bridges, towers, cranes, roof supports, building skeletons,
space deployable structures, etc. In this study, a discrete space structure with repetitive
bays has been fabricated for experimental study and has been modeled as a space truss
structure. Although, a bending moment may occur at the node connections of the
element, the truss element has been found to represent the global vibration behaviour of

the structure fairly accurate.

The degrees of freedom u;, u, for truss elements in one-dimensional coordinate

system are showed in Figure 2.1a.

AE
P o S 8P
node | node 2 ///// Ptogds
a) b)

Figure 2.1. a) One-dimensional truss element, b) Free body for truss element
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The governing equation to describe the motion of rod is derived by applying
Newton’s second law to the free body diagram shown in Figure 2.1b (Kwon and Bang

1996)

pAdx%gt— =(P+§Iidxj~P (2.4)
!

X

where E, A and p are the elastic modulus, cross-sectional area and density of the

material, respectively. These parameters can be constants or can be function of x for
non-homogeneous, non-isotropic and non-isomorphic materials. u is the axial
displacement along the rod direction, x and t correspond to the spatial and temporal

axes. According to Hooke’s law, we can write:

P g (2.5)
A

where strain, € is related to displacement as:

I (2.6)
ox

substituting the Egs. (2.6) and (2.5) into Eq. (2.4) yields

0°u 9 ou
Z | AEZ 2.7
PA o2 ax[ ax]

Applying the Galerkin’s method (Reddy 1993) to Eq. (2.7) we have:

L o’ 0 ou
AW———+ —| AE— dx=0 (2.8)
! (p Yo ax( ox JJW
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in which w; are the weighting functions u is the approximate axial displacement

function. The weak formulation of the previous equation can be obtained by integrating it

by parts as:

2~ ~ L
jL pAwig—quAEgv—vLQLi dx—{AEwa—u} =0 (2.9)
0 ot? ox oOx ox |,

It is noted that the first term inside the integral can be identified as stiffness term,

the second as the inertia term and the last term defines the essential and natural boundary

conditions. At the free end, the natural boundary conditions are F = AE aL/x =0 and a
the fixed end, the essential boundary condition is u =0.
Let the bar be divided into n units each of length [ and let each element has a

linear axial displacement field. Thus in a typical two DOF element with end nodes 1 and

2 as shown in Figure 2.1a, the approximate function # is:

l [ {lu,

i=[NJd}= [l —X BEH”I} (2.10)
in which N, = ! “V, and N, =% are the shape functions and {d }= [ul u2]T is the

nodal displacement vector.

In Galerkin method, the weighting functions w; are defined as shape functions

N;. Let us define [B]:%x[N]:[—% %] hence 8%x: [Blld]= [_% %H:;}

thus the axial force at arbitrary x is determined by
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F = AE — (2.11)
X

Now Eq. (2.9) after rearrangement becomes:

2{[ INTT AN Jadd ) 1 [} [B]TAE[B]dx{d<e>}}: S{nTF} 2.12)

e=1

rewritten in short form

e ]{J(e) I+ [k© ]{d(” 1= [p] (2.13)

where first and second left terms are known as mass consistent and stiffness matrices and

the right term is called the load vector. For truss element they become:

[1(<f>]:£[1 —1}

I -1 1
(2.14)
[]W(e) ]: PAL 2 1
6 |1 2
after proper assembling the Eq.(2.13) can be written as
e Hd }+ [k Had=[P] 215

where [M] and [K ]are (nxn) global system and mass matrices respectively and [P] is

the (n xl) vector of externally applied concentrated loads and defined as:

ml=3m@] Kl=3 k@), [P]=§i}[}><e>] (2.16)

e=l e=1

For static problem, the Eq. (2.15) becomes simply:

[k Kd }=[P] (2.17)
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2.2.2. Rotational matrix for truss elements and solution of the system

In the previous section the stiffness and the mass matrices were obtained for one-
dimensional finite element also called local coordinates. For assembling process in order
to obtain system stiffness and mass matrices, it is required to transfer first these matrices
from local to global coordinates. In this part, stiffness and mass matrices will be
computed for the global coordinates. The process to transfer the element from local
coordinates to global coordinates is called coordinate transformation as it can be
observed in the Figure 2.2. The coordinate transformation is necessary when the field
variable is a vector quantity like displacement and velocity. The coordinate

transformation relates the local and global by:

{dm }1 _ [R]{ﬂe) }g (2.18)

!
where the %(3)} z[ui,uj]T is the local displacement vector and

{1(8) }g = (ui,vi,w,-,uj,vj,wj )T is the global displacement vector and [R] is an orthogonal

matrix called rotational matrix or rotation.

The rotation matrix for 2-Dimensional case is a (2x2) matrix determined by the

direction cosines as

I )
[R]{~ ' ’7’} (2.19)
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[RT

Finite element
in global
coordinates

Finite element
in local coordinates

Figure 2.2. Coordinate transformation from the local coordinates to the global
coordinates.

where the direction cosines [; and m; are calculated using the global coordinates as

=, YT (2.20)
K LY !

where (x;,,) and (x Y j) are nodal coordinates measured at global coordinates. The
length of the finite element can be calculated by

=G, -x P+ 0, -3 F 2.21)

For the 3-Dimensional case, the rotation matrix has a (2X6) dimension and it is stated as

[R]=| ™0 " (2.22)

x; =X, Y) =i 2~
lij: jl m; = ]l ’nlj:jl (2.23)

and the length of the finite element is computed using the global coordinates as



l:\/(xj“xi)z+(yj‘yt)2+(zj‘zi)z (2.24)

A complete description of how to derive the rotational matrices are developed in
(Rao 1999; Kwon and Bang 1986). Since the rotational matrices is valid for any vector,

the global force vector can be computed by

Y -y v =

Now considering Egs. (2.18), (2.25) and (2.13) the equation in element level be

can written as:

e R + [k @R = R]lPe ] (2.26)

Multiplying both sides of Eq. (2.26) by [R]" and considering that {R]" = [R]™,

the above equation can be rewritten as:

M¥EY +[KFa¥ = RIPF @.27)

where

¥ =R M©]R], k¥ = [RT [M©]R] (2.28)

are the global mass and stiffness matrices for the element. Now that the stiffness,
displacement and force have been transformed to global coordinates, they can be
assembled to find system mass and stiffness matrices in order to obtain the system

governing equation given in Eq. (2.15).

It is noted that the system stiffness matrix in its present form is singular and thus
boundary conditions should be applied in order to be able to find the nodal displacement

and subsequently strain and stress in elements.
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2.3. Optimization methods for constrained structural problems

As mentioned before one of the main components in structural design is the
optimization part. The optimization methods are taking an important role in computer
methods for designing engineering systems. The optimization methods allow to the
designer evaluate more alternatives in order to have better and more cost-effective final
designs. There are different classifications for the optimization methods. Here, the
optimization algorithms are classified based on gradient and non-gradient methods.
Because typical structural optimization problems are nonlinear and constrained (Keane

1995), a lot of effort goes towards the algorithms for constrained problems.

2.3.1. Gradient methods

A one-step solution is in general impossible in the constrained structural
optimization problems. The simplest idea to overcome the problem is to take the best
solution from a couple of trial solutions. Another pragmatic strategy is to generate a
series of intermediate solutions, which converge to the final optimum. Naturally, while
traveling from an initial to the optimal solution at each iteration step, two important
questions arise: which direction shall be taken for the next step, and how far to go in this
direction. The many available algorithms differ in how they get answers to these
questions. The main deterministic algorithms are again subdivided with respect to the
type of variables (primal and/or dual variables) used in the formulation. Four main sub-

classes are as follows:
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2.3.1.1. Primal methods

These methods work directly in the n-dimensional space of the optimization
variables x. They make no use of Lagrange multipliers and the Kuhn-Tucker (KT)
necessary conditions (Pardalos and Rosen 1987). The simplest algorithms are primal,
direct search methods. Successful primal methods, which make use of gradient
information, are known as method of feasible directions or general reduced gradient

methods.

2.3.1.2.  Penalty and barrier function methods

The penalty and Barrier methods work also in the n-dimensional space of the
optimization variables (Vanderplats 1984; ASCE 1997). They, however, transform the
constrained problem into an unconstrained one. The approach is principally simple and
quite robust. An old methodology is known as SUMT (Sequential Unconstrained
Minimization Technique), which generates a series of unconstrained sub-problems to
finally get a solution near to but not exactly the optimum. That was one of the reasons
why the method did not gain popularity. The basic idea, however, came back just recently
as interior point method. The mathematical basis has been improved and SUMT has now
been put into the frame of so called continuation methods, which generates a series of
solutions with increasing penalty factor that allow a controlled approach to the optimum
until the solution is accepted or the problem condition collapses. In this context the

penalty factor can be understood as a continuation parameter.
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2.3.1.3.  Dual methods

The dual methods use primarily the dual m-dimensional space of Lagrange
multipliers A. The primal optimization variables x are determined by back substitution
(Venkaya 1971; Rozvany 1989). Dual methods split the original optimization problem
into two partial problems, which have to be solved sequentially. One is unconstrained and
formulated in terms of x, the other is formulated in terms of A and is only constrained
by simple bounds. In the case of equality constraints it is unbounded too. Because of the
simply structured sub-problems, methods for unconstrained problems can be applied

directly or with minor modifications to handle bounds on variables.

2.3.1.4. Lagrange methods

These methods work in the full (n+m)-dimensional space of primal and dual

variables x, A (Rozvany 1989; Venkaya 1971; Xu and Agrawal 2000). They directly
tackle the Kuhn-Tucker necessary conditions by solving a sequence of linearized sub-
problems. These sub-problems are characterized by a quadratic objective and linear
constraints. That’s why these kinds of methods are called SQP- or Sequential Quadratic
Programming methods. A simplified variant uses a linear approximation for the objective
also and is called SLP- or Sequential Linear Programming. SQP methods are considered
to be one of the most or even the most sophisticated methods from the mathematical
point of view. They have been successfully applied for many structural optimization tasks
and are available in almost every structural optimization package. However, they appear

to be not robust enough for very large problems. Research on the field is still in progress.

36



2.3.2. Non-gradient methods

Optimization structural problems are characterized by having many variables,
highly non-linear relationships between the variables and objective function, and an
objective function that has many peaks and troughs. In few words, these kinds of
problems are difficult to deal with. The search for methods that can cope with such
problems has led to the subject of evolutionary computation. Techniques in this field are
characterized by a stochastic approach to the search for improved solutions, guided by
some kind of evolutionary control strategy (Fleming and Purshouse 2002; Sarma and
Adeli 2000). One of the main characteristics of these methods is that they have the ability
or mechanism to escape from local optimums and catch solution close to the global
optimum (Yang and Soh 2002). The four main non-gradient methods currently used are

as follows:

2.3.2.1. Simulated Annealing (SA)

SA is an stochastic method.which is an analogy with physical annealing of a solid
(Chen et al. 1994; Liu et al. 1997; Rutenbar 1989). In physical systems, jumps to higher
energy actually do happen, but the current temperature T moderétes them. At higher
temperatures, the probability of large uphill moves in energy is large; at low temperatures
the probability is small. The Metropolis algorithm models this with a Boltzmann
distribution: the probability of an uphill move of size AE at temperature 7T is

P laccept]= e *F'T  In ractice, this probabilistic acceptance is achieved by generating a
r 4 p p p Y& g

uniform random number R in [0,1] and comparing it against the threshold P,. Only if
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R < P the is move accepted. Thus, very probable moves can be rejected, and very

improbable moves can be accepted at least occasionally.

2.3.2.2. Evolutionary Programming (EP)

EP involves three steps that are repeated until a threshold for iteration is exceeded
or an adequate solution is obtained (Fogel 1995; Soh and Yang 2000). First an initial
population of trial solutions is randomly chosen. Second, each solution is replicated into a
new population. Each of these offspring solutions are mutated according to a distribution
of mutation types, ranging from minor to extreme with a continuum of mutation types
between. The severity of mutation is judged on the basis of the functional change
imposed on the parents. Finally, each offspring solution is assessed by computing its
fitness. Typically, a stochastic tournament is held to determine n solutions to be retained

for the population of solutions, although this is occasionally performed deterministically.

2.3.2.3. Evolutionary Structural Optimization (ESO)

The ESO method is based on the simple concept that by slowly removing
inefficient material from a structure, the residual shape evolves in the direction of making
the structure better. Almost all types of constraint such as stiffness, frequency, buckling
load constraints can be imposed. The optimization process for ESO requires a rejection
criterion which establishes when the finite element result is accepted as part of the final

designs or when it is rejected (Xie and Steven 1997).
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2.3.24. Genetic algorithms (GAs)

Due to efficiency of GAs in capturing the global optimization solution, structural
optimization problem studied in this research mainly utilizes the GAs as optimizer. GAs
are one form of directed random search as it was stated by Holland (1975). The form of
direction is based on Darwin’s “survival of the fittest” theories. In GAs an initial
population is created randomly or heuristically. Each element of the initial population
represents a design and is called chromosome that are typically strings of binary bits.
Each bit is called genes. Genes occur at different locations or loci of the chromosomes,
and take on certain values which are called alleles. These sets of chromosomes evolve
over generations to get new and hopefully better designs. In biological science the term
genotype refers to the overall genetic makeup of an individual and is analogous to a
structure in structural design. Also, the external characteristics are refered with the

phenoype that is analogous to an actual parameter set such as design parameters.

Four differences separate GAs from more conventional optimization techniques
(Goldberg and Samtami 1986): 1-Direct manipulation of a coding, 2-Search from a
population, not a single point, 3-Search via sampling, a blind search, 4- Search using

stochastic operators, non deterministic rules.

The implementation of the GAs usually involves the following cycle: i) Evaluate
the fitness of all of the individuals in the population. ii) Create a new population by
performing operations such as reproduction, crossover and mutation on the individuals

whose fitness has just been measured, iii) Discard the old population and iterate using the
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new population. The operations of the second step, which represents the heart of GA, are

briefly described.

Reproduction is a process in which individual strings are copied according to their

objective values, f (biologist call this function the fitness function). Intuitively, one can
think of the function f as some measure of profit, utility, or fitness that we want to

maximize. Copying string according to their fitness values means that strings with a
higher value have a higher probability of contributing one or more offspring in the next
generation. This operator, of course, is an artificial version of natural selection, a
Darwinian survival of the fittest among string creatures. In natural populations, fitness is
determined by a creature’s ability to survive predators, pestilence, and the other obstacles
to adulthood and subsequent reproduction. In our unabashedly artificial setting, the

objective function is the final arbiter of the string-creature’s life or death.

Many reasonable algorithms exist to enable the individuals with the higher fitness
values have the higher chance to be selected into the mating pool. The most widely used
technique is the proportional fitness selection or roulette-wheel selection (Goldberg 1989)

that can be represented by the following equation

po-LL
270

(2.29)

where i represents the chromosome, P, the probability of being reproduced and f is the

objective function or fitness and n the size of the population. However, the drawback of
this technique is that when a very good element emerges in the population, this element

will be reproduced many times. This would lead to have clones significantly far from the
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global optimum. On the other side when the fitness of the population is too uniform and

the convergence is slow because the search may become a random walk.

To address these shortcomings, fitness scaling is often used. The simplest way to

scale fitness is linear scaling (Chan 1997)

f'=af +b (2.30)

here, the scaled fitness f” is scaled by using two coefficients a and b such that the

average scaled fitness f, , equals to the average of raw fitness f,,, and the best

individual f,, is scaled down to around 2f, .. However fitness scaling does not work

for all populations.

Another approach is to use a selection with good selection pressuré. Selection
pressure is the degree to which the better individuals are favoured. For instance,
Goldberg and Deb (1991) proposed a scheme that randomly chooses a set of individuals
from the population and picks the best for reproduction. However, the important genetic
information of a good chromosome can be ignored if it is in competition with better

elements.

In this study a new approach is proposed, which considers the Table 2.1 to

determine the number of times that one chromosome is reproduced. For example, if the

size of the population n is 200 and the probability of reproduction P, is 0.2; then the

r

number of chromosmes to be copied (n, = nP,) is 40 elements of the best elements. Thus,

the 1st best element is copied six times, the 2nd and 3rd are copied 5 times, and so on

until it is completed 40. Therefore, the probability of reproduction can control the speed
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of convergence. In Figure 5.1 the effect of the probability of reproduction of 0.2, 0.5 and
0.8 can be appreciated. It is noted that for low probability of reproduction the
convergence is slower but may find a better solution. For the high probability, the
convergence is fast but the solution falls in a local optimum because the population

becomes fastly clones of the best elements.

After reproduction operation, simple crossover may proceed in two steps. First,
members of the newly reproduced strings in the mating pool are randomly mated.
Second, each pair of strings undergoes crossing over as follows: an integer position &
along the string is selected uniformly at random between 1 and the string length minus

one [1,n-1]. Two new strings are created by swapping all characters between positions

k+1 and n inclusively.

Table 2.1. Number of times to copy the chromosome

n, Times of copying

2 2

7 3,2,2

16 43,3222

30 5,44,3332222

50 6,5,5,4,4,4,3,3,3,3,2,2,2,2,2

77 17,6,6,5,5,54,4,4,4,3,3,3,3,3,2,2,2,2,2,2
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Mutation is a low probability random operation, which may slightly perturb the
design represented by the prodigy. The operator works on a bit-by-bit basis and is
governed by the probability of mutation. The mutation operation allows to each bit the to
change from O to 1 or vice verse. This operator also allows new zones to be explored in

the search space.

In optimization problem investigated in this study, the design variables are mainly
the position of the actuators, the topology, size and the geometry of the structure. Thus,
the cost function may not be continuous and subsequently non-differentiable function.
Additionally, it can be highly non-convex function. For the position of the actuators
problem, the actuation locations are passive design variables, and they are confined to
discrete positions; thus, the gradient-based optimization routines cannot be applied, since
the gradients are not meaningful. Considering this, the optimization method should be
chosen from the stochastic methods that have the capacity of solving discrete and

continuous problems and are able to find the global optimum.

As was mentioned before, GAs has been selected due to its capacity to handle
discrete design variables and also catch the global optimum point. Also, the penalty
functions can be easily incorporated in GAs which is not the case for deterministic
methods. Moreover, their performance in structural optimization applications has been
proven in different studies (Keane 1996). In deterministic approaches (Goldberg and
Santami 1986) the penalty methods have often been criticized due to steep ridges that
they impose on otherwise smooth problems. These ridges can cause difficulty among
search techniques, which depend upon a particular shape of local search surface.

However, this objection is not relevant to GAs method since they do not depend on

43



continuity or derivative existence for their operation. In this research, FEM as analyzer
engine has been combined with GAs as optimizer engine to find global optimum solution
in placement, size, topology and geometry optimization problem. Figure 2.3. describes

how GAs and FEM are merged together.

Popﬂialitm o
aeated at random:

Figure 2.3. Optimization process combining GAs and FEM.

2.4. Geometry optimization of adaptive structures

The traditional space structures cannot modify their response mechanisms when
subjected to varying load conditions, which may be different than those considered in the
design stage and thus may lead to failure or potential instability of subsystems or
components. Such performance limitations of traditional passive structures have

motivated considerable interest in developing a new class of structures (adaptive
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structures), which can modify their shapes in a controlled manner to accommodate

unpredictable environmental changes.

In a recent topology involving optimization of the adaptive structures (Morutsu
and Shao 1990) FEM has been combined with the sequential programming technique to
maximize the structural strength, by changing the angles of the active members.
However, the optimal placement of the active members to accommodate the

environmental changes has not been investigated.

Actuator placement on large space adaptive structures is a recent thrust and
challenging work in discrete optimization problem. Past practice was based on sequential
linear programming method. However, this method may result in a local optimum and
has shown some deficiencies and there is no mechanism to climb up the local optimum

(Golberg and Santami 1986).

In this research the finite element technique is combined with the modified GAs
to search for optimal locations, the minimum number and length of active members
simultaneously. The effect of the maximum stroke of the active elements on the optimum
location is also investigated. GAs have been employed as the optimizer due to its
robustness and flexibility to employ multi-parametric objective functions and discrete

design variables and also capable to catch the global optimum solution.
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2.4.1. Statement of the problem for the structural strength optimization in adaptive

truss structures

An adaptive truss structure, which can modify its configuration by lengthening or
shortening some of their members (active elements), is considered for geometry
optimization in this study and it is shown in Figure 2.4. The geometry optimization
problem for the adaptive truss structures under variable load may be defined

mathematically as:

For a given static external load P and angle w, find (g,l;) such that the

structural strength S, is maximum subject to

a;,eX, 1<qa;,<n (2.31)

l,LeR, L, <1, <L, (2.32)
where a; and [; are the positions and lengths of the n active elements respectively, L;
and L, are the lower and upper extension limits of each active element. The structural

strength may be defined by (Morutso and Shao 1990):

Sd :Max

_F (2.33)
F(Ly
“where F is the vector of element strength including allowable element forces, F is the

element force vector due to unit external static load which can be found from finite

element analysis of the adaptive structure during optimization procedure.
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2.4.2. Application of of the structural strength optimization in adaptive truss

structures

The twenty-four-bar adaptive truss structure shown in Figure 2.4 has been
optimized to obtain the maximum structural strength under static conditions. It has been
considered that the elements 2 to 17 can be chosen as the locations for the active
elements. Two different ranges (1.27 and 0.31 m) of the stroke for the active elements
have been investigated, and each range has been evaluated with 2, 3 and 4 active
elements. The material properties are the same as (Sedhagati et al. 2000, 2001a, b):
Young’s modulus E = 7X10" N/m?, Element strength F is 1000 N for all the members.

The geometrical parameters are: cross-sectional area a; = 10*m?and L=2m.

It has been proved (Morutsu and Shao 1990; Sedaghati 2001a) that the critical
points for the structural strength are when the angle of load is 0 or 180°. Considering this,
the optimum locations have been found using the multi-criterion objective function

described as:

S, =Max

T_E__ (2.34)
F(L,180

,\—F—"FMaX
F@ﬁJ

A chromosome of 60 bits for the case of stroke of 1.27m and 44 bits for stroke of

0.31m have been used. The probability of crossover P, is 0.6, the probability of mutation

P, 15 0.05 and the probability of reproduction P, is 0.4. The final optimum positions are

shown in Table 2.2. The Figure 2.5 shows the structural strength for 2, 3 and 4 active
elements as a function of the load angle. The Figure 2.6 to 2.11 show the optimum
configurations for each case. After the best locations are determined considering (2.34),
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the optimum configurations were found for each y by solving the geometry optimization

problem given in Section 2.33 and it does not have any constraints. In this part, the

chromosome has 28 or 20 bits and the above probabilities of crossover, reproduction and

mutation are the same as above.

Table 2.2. Optimum location for different stroke and active elements.

Stroke (m) | oo ents | potion
2 4,8
0.31 3 4,816
4 2,5,9,10
2 4,8
1.27 3 45,8
4 2,5,9,10
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Figure 2.4. The 24-bar plane adaptive truss structures.

— -&— - Fixed
1600 —4&—2 act, 0.31m
1400 + o RS } --4&--2act, 1.27m
{ v —a—3 act, 0.31m
1200 + s w0 --#--3act, 1.27m

Structural strength
o'y
o
o
i

—o—4 act, 0.31m
--4--4act, 1.27m

O 1 1 T + T T 1

0 30 60 90 120

Direction of the load (°)

150

Figure 2.5. Structural strength versus direction of the applied load for the fixed and
optimized adapted structure under static load.
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0.31 m.
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Figure 2.9. Optimal configurations with 3 active elements and maximum stroke of

031 m.
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Figure 2.10. Optimal configurations with 2 active elements and maximum stroke of

1.27 m.
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Figure 2.11. Optimal configurations with 2 active elements and maximum stroke of
0.31 m.



From the results, it can be realized that the location of the active elements in an
adaptive truss structure plays a critical role in the ability of the structure to adapt itself to
changes of the load. It has been shown that the location of actuators or active members
depends on the number of the active elements that they should be were in the lower part
of the structure. It is also noted that the structural strength is improved significantly using
simultaneous optimal placement of actuators and adaptively optimized geometries. The
best effect of the active elements is when they are placed in the same triangle in the
structure. Furthermore the structural strength is improved when the stroke of the active
elements is increased; in fact, large stroke is required to improve the structural strength

considerably.

2.5. Topology, size and geometry optimization of the real life structures

Truss structures are widely employed in the industrialized world. They appear in
bridges, towers, pylons, roof supports, building exoskeletons or high technology light
space structures. This part of the thesis investigates the simultaneous size, geometry and

topology optimization of real life large truss structures.

Many large truss structures are constructed from the duplication of some basic
structural modules called cells or bays. Here, it is stated that the final optimum design
may be reached by optimizing the characteristics of the basic bays instead of optimizing
the whole structure through individual elements. Both single and multi-objective
functions based on the mass of the structure and the maximum nodal displacement, are
considered as the cost functions. In order to have realistic optimal designs, the cross-

sectional areas are extracted from the standard profiles according to AISC codes and
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practical conditions are imposed to the bays. The design optimization problem is also
constrained by the maximum stress, maximum slenderness ratio and the maximum and
minimum cross-sectional area of the truss members. To accommodate all these
constraints, two different penalty functions are proposed. The first penalty function
considers the normalization of violated constraints with respect to the allowable stress or
slenderness ratio. The second penalty function is a constant function, which is used to

penalize the violations of the slenderness ratio.

An efficient and practical methodology based on the GAs capable of design
optimization of realistic truss structures is presented. Generally the design optimization of
truss structures generates the design parameters with little or no practical use. For
instance the optimum cross-sectional areas of the truss members may not be found on the
market, thus irnposing. high manufacturing cost. Even if the optimization process
considers only profiles from the market, the applicability of the final designs is limited
due to. the involvement of numerous types of profiles and the challenge associated with
the assembly of such a structure. Also, generally the optimum design implies many
changes of cross-sectional areas at the location of joints, which is not practically
recommended. In addition, when the simultaneous optimization of the size and topology
of the structure is considered, the optimum structure may include numerous types of
elements from different material and geometrical characteristics, which is not feasible

from the manufacturing point of view.

In this part, it is considered that the realistic large truss structures are fabricated
from the arrangement of the basic bays. Thus, the objective is the optimization of the

parameters of the bay. Based on this realistic consideration, the solution space is
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drastically reduced and the optimum result can be found efficiently and accurately.
Furthermore due to this arrangement, the final optimum design will require few different
standard elements, which can be easily found on the market. Thus a final optimum design

could be fabricated with low manufacturing cost.

2.5.1. Statement of the problem for topology, geometry and size optimization

problem

For this optimization problem both single and multicriteria objective functions are
investigated. For the latter, the objective is to minimize both the mass and the maximum
nodal displacement and for the former the goal is just minimization of the mass. Thus, the

components of the objective function (2.3) may be defined as:

fi(x)= pLx)A (2.35)
f2(x)= max(U (x)) (2.36)
subject to:

o(x)< 0 (x ), (2.37)
Ax )< 2 )y (2.38)
A ZA 2 A, =Lk (2.39)

where p=[p,,p,,....p; ] is the mass density vector; L(x)= (Ll (x)L2 (x)...L, (x)) is
the length vector; A =[A, A,,...A;] is the vector of cross sectional areas, A ; and
A, are the vector of lower and upper bound of cross-sectional areas and k is the

number of elements. Another constraint regarding the geometry characteristics of the

bays or the number of bays will also be specified for each particular problem. The vectors
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o(x) and A(x) contain the stress and the slenderness ratio of each element and their

respective allowable values are defined in the vectors o, and A, respectively.

U=U,U,,..U ;1 is the vector of nodal displacement. It is noted that using FEM nodal
displacement vector can be calculated from the equilibrium equation as:

U=K"'F (2.40)

where K and F are the system stiffness matrix and the nodal force vector, respectively.

To guard against buckling, the stability constraint is considered as part of the
design optimization problem. In this study in order to have a sense of real life design

practice, the AISC codes (AISC 1989) has been adopted for the relative design

specifications. Thus, the allowable tension stress is considered to be 0.60 ys the allowable
member slenderness ratio is specified to be 300 for tension members and 200 for
compression members; to guard against buckling the allowable compression stress af of

member i may be determined from the following equations according to AISC

formulation:
2
a;’=1§;f for  A>C (2.41)
A2
_2C2 y
ot =t for A <C (242)
3 8C 8C3

where A; = L;/r;is the slenderness ratio, C = 7 \/2E /o , ,and 0,, Liand 1,

are the yield stress, the length and the radius of gyration of the cross-section of the

member i, respectively.
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To convert the constrained problem to unconstrained problem, a penalty function
is introduced to the objective function. Penalty functions penalize infeasible solutions by
reducing their fitness values in proportion to the violation. In other words, the penalty

function is applied whenever the constraints are violated.

Different types of penalty functions have been proposed to handle the constraints.
In deterministic methods such as the sequential unconstrained minimization technique
(SUMT), the quadratic penalty function is frequently used in order to keep the continuity
of the gradients (Pardalos and Rosen 1987). Similar functions in combination with GAs
have been applied by Goldberg and Santami (1986) and Galante (1996). In these
functions the constraint violation is squared and penalized by a scalar. Simple constants
or normalized stresses are used by Deb and Gulati (2001) to penalize the cost function.
Sandgren and Cameron (2002) employed the difference and standard deviation between
the allowable and the nominal stress and displacement. Nanacorn and Meesomklin (2001)

used an adaptive penalty function, which is able to adjust itself during the evolution.

Here different types of penalty functions are considered. The first type of penalty
function considers the normalization of violated constraints with respect to the allowable
stress or slenderness ratio. The second type of penalty function is a constant function,
which is used to penalize the violations of the slenderness ratio. Considering this, the

penalty functions may be defined as:

otherwise

p, ()= {Cpl * (U(xi())— O a6 V0 e (1) for IU(xil > l"max (xi)l } (2.43)
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P, (xi ): {CPZ * (’l(xi )0— }‘ma_x (xi ))/’lmax (x[) fOT l(xi )> /lmax (xi) } (2.44)

otherwise
s (x'): ij‘ for j‘(xi)> /lmax (xi) (245)
’ 0 otherwise
where ¢, ¢,, and c,; are the penalty coefficients. The normalization of the violations

allows having large penalty values at the initial stage when the solution is far from the
optimum point and small values when the solution is close to the optimum point. The
penalty functions in Egs. (2.43) and (2.44) will be used to penalize the size of the
members and Eq. (2.45) will be applied to modify the number of bays. The coefficients

Cp1, Cpp @nd c,5 are used to control the magnitude of the penalty values. To select these

values different trials were performed. Big penalty coefficients can lead to slow

convergence far from the global optimum. Small penalty coefficients can produce

violations of the constraints. The value of the penalty coefficients ¢, c¢,, and ¢, are

selected as 6.5, 8 and 1, respectively. For instance, the penalty coefficient of 6.5 means
that the algorithm uses the next bigger cross sectional area for each 15% of violation. It is
noted that for case of discrete design variables, the penalty functions may require to be

rounded.

In this work the proposed methodology considers that the whole truss structures
are fabricated from the multiplication of some fundamental bays, which is mainly the
case in many real-life truss structures. Thus the design optimization of entire structures is
reduced to the design optimization of the bays. This will enable to perform size, topology
and geometric optimization of large real-life truss structures with relatively few design

variables and thus reduce the computational effort. From the optimization point of view,
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this practical arrangement will cause the space solution to be reduced drastically and also
cause the convergence to the optimum solution to be faster and more accurate. Since the
optimized bays are made of truss elements with profiles available on the market, the
fabrication cost would be significantly reduced. Moreover, the optimized bays can be
practically used to assemble the whole structures easily, thus reducing the assembling

cost drastically and avoiding joint connection problems.

2.5.2. Illustrative examples of optimization of real life structures

To demonstrate the accuracy and efficiency of the proposed methodology three
practical 2D and 3D truss structures have been optimized. The objective function is to
minimize the weight or minimize both the weight and maximum nodal displacement.
Besides the constraints in Egs. (2.37)-(2.39), structures are also guarded against the local

buckling described by Egs. (2.41) and (2.42). In the problems discussed in this section the

material is steel with modulus of elasticity E =201x10> MPa, yield stress o, =248.8

MPa, and density p = 7851 kg/m3.

In order to ensure that the final optimum design is practically realizable, the
possible cross sectional areas will be selected from the profiles available on the market.
Two different groups of selected steel profiles are presented in Table 2.3. The first group
comprises only pipes. The second group contains W, S, HP, and L profiles. In both
groups the sections are arranged in an ascending order. All the specific properties such as
the cross-sectional area, the radius of gyration, the density (mass per unit length) and the
moment of inertia of the cross sections could be obtained from the standards (AISC
1989).
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In the GAs process a single point crossover with a probability P, of 0.6 has been

used. Consequently, the reproduction operation is conducted as it was explained in the

Section 2.3.2.4. It requires to define a probability of reproduction, P,, which is assumed
to be 0.15. Moreover, the probability of mutation P, , and the initial population n are
assumed to be 0.005 and 150, respectively. The values of P,, P, are values similar to

those found in the literature (Goldbert et Santami 1986; Galante 1986; Prendes et al.

2005). Also different trials were performed to select the appropriate values of P, and n,
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Table 2.3. Selected standard steel profiles from the AISC manual (1989)1.

Group I Group I1
SP 1/2 L 1x1x1/8, L 1-1/2x1-1/2x1/4
EP 1/2 L 2x2x1/4, L 2-1/2x2-1/2x5/16
SP 3/4, L 3x2x1/2, L. 3x2-1/2x3/8
EP 3/4 L 3x3x1/2, L 3-1/2x3-1/2x3/8
SP1/2 L. 3-1/2x2-1/2x1/2, W 8x10
EP1 L 4x3x1/2, L 6x3-1/2x3/8
SP 11/4 L 5x3x1/2, L 5x3-1/2x1/2
SP11/2 L 4x4x5/8, L 5x5x1/2
EP 11/4 W 12x19, L 6x6x1/2
SP2 L 6x4x5/8,1 7x4x5/8
EP 11/2 L 9x4x9/16, W 14x26
EP2 W 10x30, W 16x31
SP 2172 W 14x34, HP 8x36
SP3 L 8x4x1, W 10x39
EP 21/2 S 12x40.8, HP 10x42
SP 31/2 L 8x6x1, W 18x46
EP3 W 12x50, L 8x8x1
SP4 W 14x53, S 18x54.7
EP 31/2 W 21x57, W 16x57
SP5 HP 13x60, W 24x62
EP 4 W 8x67, W 18x71
SP6 S 20x75, W 12x79
EP5 W 14x82, S 20x86
SP 8 W 16x89, W 21x93
EP6 W 10x100, W 24x103
SP 10 W 14x109, W 18x119
EP 8 W 27x129, W 21x132
SP 12 W 14x145, W 30x146
DEP 6 W 18x158, W 27x161
EP 10 W 33x169, W 24x176
EP 12 W 30x191, W 33x201
DEP 8 W 36x210, W 36x230

'SP, ES and DEP are standard, extra strong and double extra strong, respectively.



2.5.2.1.  Optimization of a 22-Bar Planar Truss Structure

The 22-bar planar truss structure is shown in Figure 2.12. The structure is fixed at
nodes 1 and 2 and the downward force of 49050 N has applied at the last node. This is a
benchmark example which is studied by Erbatur (2000) and selected here in order to

compare the results of the proposed methodology.
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£3 E3 £7 E1l Els £1s
o
< £2 o €2 £6 £10 14 £i8 £ee
D @
[ £4 ol £4 €3 £l £16 £20
£l §> £1 ES £S E13 £17 Eer M3
N1 N3 NI N3 NS N7 N9 Ni1
5000 kg
Lenath | 150 | 1so 1.50 150 | 150 | 150
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Figure 2.12. a) Basic bay of a statically determinate 22-bar truss; b) Complete structure.

The objective function is to minimize the mass of the structure under stress and
slenderness ratio constraints. The allowable compressive stress has been determined
using Egs. (2.41) and (2.42) according to the AISC standards. The possible cross-

sectional profiles are selected from the elements of Group Iin Table 2.3.

Three different cases have been investigated in this problem. Case I is a size
optimization in which the geometry and topology of the structure are assumed to be fixed
and the design variables are only the cross-sectional area of the members. A minimum
mass of 243.1 kg has been obtained for this case. The optimum results for cross-sectional
areas are shown in Table 2.4. It is noted that all constraints have been satisfied in the
optimum point. This problem has also been investigated using GAs by Erbatur et al.

(2000) and a mass of 248.8 kg has been reported. The true optimum mass is recorded as
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238.1 kg. It can be realized that the slightly better optimum solution has been obtained in
this study. It is also interesting to note that in this case only 6 optimum profiles are
matched with the true optimum profiles; while 17 optimum profiles recorded by Erbatur
et ai. (2000) are matched with true optimum result. However the optimum mass in this
study turns out to be lower than that obtained by Erbatur et al. (2000). This may be due to

the fact that structural optimization problems are highly non-unimodal.

In the Case II the number of bays and the height of the structure are also
introduced as the design parameters. Increased number of bays reduces the stresses and
the buckling effect, however they increase the weight of the structure. It is interesting to
note that the minimum mass of 236.7 kg has been obtained in this case, which is about
1.4 kg lower than the true optimum result for the original problem. Also the maximum
nodal displacement has been found to be 16% lower than that of case I. The optimum
height and the number of bays of the structure have been found to be 2.095 m and 3 m,
respectively. Knowing the total length of structure and the number of bays, the length of
the individual bay is automatically determined. It is noted that no constraint violation

exists at the optimum point.

The iteration history for the average of the population and optimum solution of
the evolutionary process in both Cases I and II are shown in Figure 2.13. Improvement of

the chromosomes through the process can be realized from this figure.
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Figure 2.13. Genetic history of the solution and the average for size optimization of 22-

bar plane truss for trial I and II.

In the trial III, a single bay has been optimized in order to find the optimum
solution of the whole structure. The objective is to minimize the mass of the total
structure through the optimization of the parameters of an individual bay. The total
structure will then be assembled through the multiplication of this single bay. The design
variables are the member’s cross-sectional areas, the height and the number of bays.
Knowing the length of the total structure, the length of each bay could be automatically
determined. These design variables are sufficient to define the size, topology and
geometry of the whole structure. The minimum mass of 293 kg has been obtained for this
case. The optimum height and length of the bay was found to be 1.69 m and 3 m,
respectively. The optimum cross-sectional profiles for elements 1, 2, 3 and 4 for the
individual bay shown in Figure 2.12a have been found to be SP-3-1/2, SP-1/2, SP-1/2,

EP-1-1/4, respectively, and none of the constraints have been violated.
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Table 2.4. Optimum results for 22-bar planar truss structure

Stress, ¢ S Liow A True
Member | Casel Case 1 Casel Optimum (Erbatur | Casel | Case Il
(Erbatur
x10° Pa %10° Pa 2000) 2000)
1 -1.1558 -1.2576 51.8027 SP3 % SP3% EP3 SP4
2 1.4827 1.4928 182.2689 EP 1 EP 1 SP11/4 SP2
3 -0.7372 -0.8977 100.0510 SP 3 SP3 SP2 SP2
4 1.2984 1.4928 50.9096 SP 2 SP2 SP3 EP2
5 -1.0804 -1.3037 44.0710 SP31/2 SP31/2 | SP31/2 EP3
6 1.4669 1.4928 182.2689 EP 1 EP11/2 SP1l/4 SP2
7 -0.7297 -0.8977 100.0510 SP21/2 SP21/2 SP2 SP2
8 1.3568 1.4928 62.3602 SP2 SP2 SP21/2| SP11/2
9 -1.0344 -1.2631 50.9096 SP3 SP3 SP3 SP2 1/2
10 1.4526 1.4928 182.2689 EP1 EP1 SP11/4 SP2
11 -0.7231 -0.8977 100.0510 EP2 SP21/2 SP2
12 1.1645 1.4928 77.0955 SP 2 SP2 EP2
13 -1.0138 -1.1894 62.3602 SP2172 SP21/2 | SP212
14 1.4405 1.4928 182.2689 EP 1 EPI1 1/4 SP11/4
15 -0.7176 -0.8977 100.0510 SP11/2 SP112 SP2
16 1.4334 1.4928 94.7915 SP2 SP2 SP 1172
17 -1.0704 -1.0995 75.0383 SP2 SP2 SP2
i8 1.4307 1.4928 182.2689 EP1 SP1 SP11/4
19 -0.7132 -0.8977 100.0510 EP 3/4 SP11/4 SP2
20 1.3188 1.4928 183.9723 SP?2 SP2 EP 3/4
21 -0.6482 -0.7828 112.7006 SP1 172 SP11/2 | EP11/4
22 1.4894 1.4928 241.8310 EP1 EP11/2 EP1
Mass 238.1 248.8 243.1 236.7
(kg)

It is noted that although the optimum mass for this case is slightly higher than

those in cased I and II, the less number of profiles required to assemble the structure and

thus enable an easy fabrication, makes this approach extremely cost effective and
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practical. The comparison between these three cases is summarized in Table 2.5. It is

clear that case III is computationally significantly more efficient than the other two cases.

Table 2.5. Comparison between different optimization cases for 22-bar planar truss

structure.
Case ] Case II Case HI
Objective function (Kg) 243.1 236.7 293.0
Time (sec) 345 451 91
Analyzed structures 13554 16937 3564
Space solution 1298e33 6.646¢e35 5.368¢8
Bits of chromosome 110 119 29
Number of bays 5 3 3
Number of elements 22 10 10
Iterations 100 100 29
Dispmax(m) 0.0409 0.0343 0.0297
Height (m) 2.0 2.065 1.69

2.5.2.2. Optimization of a Single Lacing Space Truss Structure

In this section, the proposed methodology has been applied to optimize a single-
lacing truss structure as shown in Figure 2.14. These kinds of structures are usually used
to construct various types of cranes, as shown in Figure 2.15. Practically, the whole
structure shown in Figure 2.14b can easily be fabricated by using a basic bay shown in
Figure 2.14a. The basic bay has 9 elements. Taking advantage of the symmetry in the
structure, it has been assumed that the elements 2 and 3, 4 and 5 and 7and 8 are simuilar.

Thus, six design variables can define the size (cross-sectional area) of the profiles used

66



for these elements. Geometry and topology of the structure can also be defined by using
the width, the height and the number of bays as design variables. As illustrated in Figure
2.14b, the structure is fixed from one side and the forces of 3924 N in X-direction, 7848
N in Y-direction and -78480 N in Z-direction are applied at the end nodes on the other
side of structure. The lateral X and Y forces could represent for the inertia forces of the
load and wind loads. The constraints are the allowable stress and slenderness ratio which

are determined using Egs. (2.41) and (2.42) according with AISC standards.

a) b)
Figure 2.14. (a) Description of the basic bay of a Single Lacing Space Truss Structure;

(b) Cantilever truss structure with five bays
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Figure 2.15. A tower crane constructed with the single lacing space truss structures

The direction of the diagonal member El is conditioned to change alternatively
from one bay to the adjacent bay. Two different cases have been investigated. In Case I,
the objective is to minimize the mass of the whole structure through optimization of an
individual bay. However in case I, the objective is to simultaneously minimize the mass
and maximum nodal displacement. The weighing factor of 20000 has been considered for
the displacement component in order to provide the same preference for both
displacement and mass. The possible profiles are extracted from the group II of

Table 2.3.

A minimum mass of 1677 kg and 2724 kg have been obtained for Cases I and II,
respectively. The maximum nodal displacement fore case I and II are 56 mm and 49 mm,
respectively. The final optimum design for both Cases recommends 5 bays. The final
design for the cross-sectional areas (type of profiles), the height of structure and the

number of bays for both cases are given in Table 2.6.
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Table 2.6. Results for different cases of optimization of a Single-Lacing Space Truss

Structure.
Case ] Case I1
Objective Mass Mass + Disp.
Mass(Kg) 1677 2724
Max. disp (m) 0.056 0.049
Stress violations E3 of 14.9% E2 of 51%
) violations 0 0
Time (sec) 1015 1052
Analyzed Struc. 31417 31670
Profiles:
El L 3x2-1/2-3/8 L 3x2-1/2x3/8
E2,E3 W 10x30 W 10x30
E4, E5 L 2-1/2x2-1/2x5/16 L 3x2-1/2x3/8
Eé6 L 1-1/2x1-1/2x1/4 L 1-1/2x1-1/2x1/4
E7,ES8 L 3x3x1/2 L 3-1/2x3-1/2x3/8
E9 L 2-1/2x2-1/2x5/16 W 14x26
Final design 5 bays, width=1.1984 m | 5 bays, width=1.706 m
hight=2.668 m hight=2.888 m

2.5.23. A Double-Layer Grid Space Truss Structure

A double-layer grid structure has been shown in Figure 2.16. This type of
structure is commonly used as roof supports as illustrated in Figure 2.17. The basic unit
shown in Figure 2.16a has been used to construct by duplication the whole structure

shown in Figure 2.16b. The structure supports a load of 50 kg/m®.
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The structure is assumed to have a length of 9 meters in both X and Y directions
with equal number of bays on both sides. The objective is to minimize the mass of the
whole structure through the optimization of the parameters of the individual bay. The
design variables are the cross-sectional areas of the members in a basic bay as shown in
Figure 2.16a, which are selected from Group I in Table 2.3. The height of the structure
and the number of bays in X or Y directions are evaluated after the optimization is
completed. The optimum results have been provided in the Table 2.7. A minimum mass
of 1767 Kg has been obtained. The optimum structure consists of 6 bays in each X and Y

directions with total of 409 elements and 98 nodes (287 D.O.F).

a) b)

Figure 2.16. (a) A single bay considered to construct the double-layer grid 3-D truss

structure; (b) Schematic representation of the structure with 4x6 bays.

It is note that the final design is a practical structure with only 10 types of

elements, which are available on the market. This will naturally cause drastic reduction in
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assembly and fabrication cost of the whole structure. It should be noted that stress
constraints have been violated in some members in final design. Although this violation
is not significant, it can be easily remedied, using stronger elements for those members.
This is possible since the violations and the number of elements violating the stress

constraint 1s small.

Figure 2.17. Typical application of the structure in roof supports.2

Structural problems are usually solved as direct problems. The designer who is
facing a problem as any of the above presented in this paper is tempted to produce a
configurational structure and work towards accurate evaluating the cross section of each
member of the structure. Such an approach significantly limits the capability of
producing a topography optimized design. The proposed method based on GAs
optimization techniques enables the designer to find the optimal solution from a large

map of possible designs.

2 Courtesy of Luis Palomé, Constructor
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Most practical large structures have been constructed from the duplication of a
basic unit or bay in order to significantly reduce the fabrication and assembling cost. It
has been shown that the design parameters of the basic bay could be used to perform the
size, geometry and topology optimization of these kinds of structures. This will not only
reduce the computational time drastically, but will also generate a realistic and practical
optimum structure. In practical design problems usually the size of the members are
selected from the standard profiles. This issue has also been incorporated in the proposed

approach with introducing two groups of standard profiles.

In order to identify the global optimum the GAs algorithms has been employed as
an optimizer. The finite element analysis has also been used to generate the analysis part
of the design optimization problem. GAs has proved to be a reliable optimizer for
discrete and multi-parametric problems and it has the capability to apply different
constrains and penalty functions without any concern regarding the continuity and

differentially of the objective function.

Although the GAs has proved to be an excellent tool to find the optimum designs,
the experience of the designer play an important role to define some parameters of the
optimization process. The design knowledge is essential to define the upper and lower
limits for cross-sectional areas of the elements, the number, the length, the height, the

width of the bays or even the selection of the set of possible profiles.
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Table 2.7. Result for the optimum design of the Double-Layer Grid Truss.

associated bay)

Variables 12: height, number of bays and ten for profiles
W)
3 Chromosome 59
£ (Bits)
o
";‘% Load 50 kg/m’
N
E Penalty functions The same as the trial II
=
C Penalty cp1=6.5, cp2=8, cps=1
coefficients
Mass (Kg) 1767
Profiles : E1=SP 3/4, E2=SP 3/4, E3=SP 3/4 E4=EP 1,
E5=SP %, E6=SP 3%, E7=SP 2, E8=SP 1-1/4,
E9=SP 1-1/4,
E10=SP 1-1/4
:: Stress violations Element 7 bay (1,1) = 11%
E (element and Element 2 bay (2,1) = 2%

Element 2 bay (2,1) =1.7%
Element 6 bay (6,1) = 4.6%

A violations

0

Max. disp. (m)

0.0469

Bay

6 per side and height of 1.079 m
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CHAPTER 3
MODELING THE HYSTERIS BEHAVIOUR OF

THE MR DAMPERS

Recently, magnetorheological (MR) dampers have emerged as a potential
technology to implement semi-active control in structures and vehicle applications in
order to efficiently suppress vibrations. Perfect understanding about dynamic
characteristics of such dampers is necessary when implementing MR struts in application.
One of the important factors to successfully attain desirable control performance is to
have a damping force model that can accurately capture the inherent hysteresis behaviour
of MR dampers. In this chapter, a brief description about rheological fluids and MR
dampers is provided; then, the most important models are shortly explained. Thus, a
methodology to determine the characteristic parameters of the Bouc-Wen model is
proposed. Based on the results of the proposed methodology, a new model, which
depends on the amplitude, frequency and current excitation, is developed. Both, the
methodology and the new model are validated with the experimental data obtained from a

commercial MR damper.

3.1. Rheological fluids

Controllable fluids are materials that modify their rheological behaviour due to an
applied electric or magnetic field. Typically, this change is manifested when the fluids
are sheared by the development of a yield stress that is nonlinear to the magnitude of the

applied field (Carlson 2001; Carlson et al. 1996a, b). These materials are commonly
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referred to as electrorheological (ER) or magnetorheological (MR) fluids. Their ability to
provide simple, quiet, rapid-response interfaces between electronic controls and
mechanical systems made them attractive materials for new technological applications.
These controllable fluids have the potential to radically change the way

electromechanical devices are designed.

ER fluids are materials made of a dielectric base fluid with suspended dielectric
particles of size 0.1-100 um. When the ER fluid is exposed to an external electric field,
the particles are polarized since the dielectric constant of suspension particles differs
from the dielectric constant of the base fluid. These polarized particles interact and form
chain-like or even lattice-like organized structures. Thus, the rheological properties of the
suspension change effectively, e.g. the effective viscosity increases dramatically. In
conclusion, the viscosity of the electrorheological liquid can be controlled with the

electric field strength.

The potential of controllable ER fluids has been recognized since the 1940s when
the first ER fluid patent (Winslow 1947) was registered and a paper describing the ER
effect written by Willis Winslow (1949) was published. Since then, publications
describing the properties, behaviour and application of ER fluids have abounded. ER
fluids have been the topic for numerous theses and for many years the imminent,
widespread application of ER fluids has been heralded. However, the successful
commercialization of ER fluids is not achieved (Carlson et al. 1996) in spite of glowing

predictions and the expenditure of sizable sums of R&D money.
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The response time of electrorheological fluids is fast in order of 1-10 ms, which in
principle enables the use of these liquids in such applications as electrically controlled
clutches, valves and active damping devices. Perhaps the most striking appliéation
utilizing electrorheological fluids is an artificial muscle made of polymer suspension

particles in a polymer gel.

ER fluids routinely exhibit dynamic yield strengths in the range of 2 to 5 kPa for
electric fields on the order of 3 to 5 kV/mm and off-state viscosity in the range of 0.20 to
0.30 Pa-s at 25°C (Carlson and Spencer 1996). The maximum strength of a given ER
fluid is generally limited by the electric field breakdown strength of the fluid. Operational
temperature ranges for ER fluids depend on the type of polarization mechanism used to
activate the fluid. Low conductivity, DC, ER fluids polarized by an ionic conduction

mechanism are typically operational over the range of 10°C to 90°C. Such fluids have
room temperature conductivity such that they require on the order of 5 mA/ cm? at an
electric field of 3 kV/mm. Non-ionic ER fluids are generally usable over a broader
temperature range, typically -25°C to + 125°C. While they may exhibit a negligible DC
conductivity, such non-ionic fluids are often used with high-frequency AC fields in order
to minimize electrophoretic effects. In this case one must be able to provide sufficient
non-dissipative, displacement current, perhaps as much as 1-2 mA/ cm?® at 3 kV/mm

(RMS), because of the relatively large device capacitance (Carlson et al. 1996; Weiss et

al. 1993).

MR fluids, which were developed in the late 1940’s by Jacob Rabinow (1948),

consist of ferromagnetic particles (in the order of 20-50 microns in diameter) that are
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suspended in a carrier fluid. The ferromagnetic particles are often carbonyl particles.
Other particles, such as iron-cobalt or iron-nickel alloys, have been used to achieve
higher yield stresses from the fluid (Ashour et al. 1996). Fluids containing these alloys
are impractical for most applications due to the high cost of the cobalt or nickel alloys. A
wide range of carrier fluids such as silicone oil, kerosene, and synthetic oil can be used
for MR fluids. The carrier fluid must be chosen carefully to accommodate the high
temperatures to which the fluid can be subjected. The carrier fluid must be compatible
with the specific application without suffering irreversible and unwanted property
changes. The MR fluid must also contain additives to prevent the sedimentation of, and

promote the dispersion of, the ferromagnetic particles.

MR fluids exhibit very fast switching (of the order of milliseconds) (Carlson and
Spencer 1996) in their rheological properties (elasticity, plasticity, or viscosity) with the
application of a magnetic field; thus making them excellent contenders for semi-active
devices. MR fluid behaviour is controlled by subjecting the fluid to a magnetic field. The
MR effects are often greatest when the applied magnetic field is normal to the flow of the
MR fluid. In the absence of a magnetic field, the MR fluid flows freely while in the

presence of a magnetic field, the fluid behaves as a semisolid.

Operational temperatures for MR fluids easily span -40°C to +150°C. MR fluids
are generally limited by the properties of the carrier fluid used in the formulation rather
than the details of the polarization mechanism. Usually, the dynamic yield strengths
exhibited by MR fluids is around 50- 100 kPa for applied magnetic fields of 150-250
kA/m (-2-3 kOe) and off-state viscosity of 0.20 to 0.30 Pa-s at 25°C (Carlson and

Spencer 1996; Weiss et al. 1993). The ultimate strength of MR fluids is limited by
717



magnetic saturation. The Table 3.1 gives a comparison of the properties between the ER

and MR fluids

Table 3.1.. Comparison of the properties of typical MR and ER fluids (Carlson and

Spencer 1996).

Viscosity (;7 » )

Property MR Fluids ER Fluids
Max. Yield Stress Ti(ﬁeld) 50 - 100 kPa 2-5kPa
Max. Field ~ 250 kA/m ~ 4kV/mm
(limited by saturation) (limited by breakdown)
0.1-1.0Pa-s 0.1-1.0Pa-s

Operable Temp. Range

-40 to +150 °C
(limited by carrier fluid)

+10 to +90 °C
(ionic, DC)
-25to +125 °C

(non-ionic, AC)

Stability Unaffected by most Cannot tolerate
impurities impurities
Response Time milliseconds milliseconds
Density 3-4 g/lem’ 1-2g/em’

A
2
T y(field)

100 107! s/Pa ,

107 t0 10 s/Pa

Max. Energy Density

0.1 Joule/cm®

0.001 Joule/cm®

Power Supply
(typical)

2-25V@1-2A02-
50 watts)

2-5kV @1-10mA
(2-50 watts)

where the Ti(ﬁe,d) is the yield stress caused by the applied field and 7, is the field

independent plastic viscosity. There are many drawbacks to ER fluids, including

relatively small rheological changes and extreme property changes with temperature.
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Although power requirements are approximately the same, MR fluids require only small
voltages and currents, while ER fluids require very large voltages and very small
currents. For these reasons, MR fluids have recently become a widely studied ’smart’

fluid.

MR fluid is composed of oil, usually mineral or silicone based, and varying
percentages of ferrous particles that have been coated with an anti-coagulant material.
When inactivated, MR fluids display Newtonian-like behaviour (Lord Materials Division
1999). When exposed to a magnetic field, the ferrous particles that are dispersed
throughout the fluid form magnetic dipoles. These magnetic dipoles align themselves

along lines of magnetic flux, as shown in Figure 3.1.

Figure 3.1 MR fluid ferrous particle arrangement in un-energized and energized modes.

The use of MR fluid can be in three different modes, all of which can be applied
to MR damper design depending on the damper’s intended use. These modes of operation

are referred to as the squeeze mode, valve mode, and shear mode.

The squeeze mode is shown in Figure 3.2. A device that uses a squeeze mode has
a thin film (on the order of 0.02 inch) of MR fluid that is sandwiched between pole

surfaces.
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displacement force

H

Figure 3.2. MR fluid used in squeeze mode (Yang 2001).
The shear mode is depicted in Figure 3.3. A MR fluid device is said to operate in shear
mode when a thin layer (=0.005 to 0.015 inch) of MR fluid is sandwiched between two
paramagnetic moving surfaces. The shear mode is primarily useful for dampers that are

not required to provide large forces or for compact clutches and brakes.

speed

force

H

Figure 3.3. MR fluid used in shear mode (Jolly et al. 1999).

The valve mode is the most widely used mode of the operation. An MR device is
said to operate in valve mode when the MR fluid is used to impede the flow of MR fluid

from one reservoir to another, as is shown in Figure 3.4.

When the MR fluid is under a magnetic field, it also experiences changes in
thermal, electrical, and acoustic properties besides the rheological changes. The MR
effect is found to be very suitable in the construction of a hydraulic damper. The MR
fluid essentially allows one to control the damping force of the damper by replacing

mechanical valves commonly used in adjustable dampers. This offers the potential for a
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superior damper with little concern about reliability since if the MR damper ceases to be

controllable; it simply functions in a passive way.

pressure

Figure 3.4. MR fluid used in valve mode (Jolly et al. 1999).

3.2. MR dampers

MR dampers are semi-active devices that use MR fluids to construct a versatile
damping device. Because the strength of the magnetic field controls the yield stress of the
fluid, devices utilizing MR fluid are expected to be applicable for a wide range of
situations. A typical MR damper is shown in Figure 3.5. As it can be seen in a MR
damper the fluid is transferred from above the piston to below (and vice versa) through
the MR valve. The MR valve is a fixed-size orifice with the ability to apply a magnetic
field, using an electromagnet, to the orifice volume. This magnetic field results in a
change in viscosity of the MR fluid, causing a pressure differential for the flow of fluid in
the orifice volume. The pressure differential is directly proportional to the force required
to move the damper rod. As such, the damping characteristic of the MR damper is a
function of the electrical current flowing into the electromagnet. This relationship allows

the damping characteristic of the MR damper to be easily controlled in real time.
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1. Bearing & Seal
2. MR Flud

3. Piston

4. Accumulator

5. Wires to
Electromagnetic

6. Coil

7. Diaphragm

Figure 3.5. Functional configuration of an MR damper.

The accumulator is a pressurized volume of gas that is physically separated from
the MR fluid by a floating piston or diaphragm. The accumulator serves two purposes.
The first is to provide a volume for the MR fluid to occupy when the shaft is inserted into
the damper cylinder. The second is to provide a pressure offset so that the pressure in the
low-pressure side of the MR valve does not induce cavitation in the MR fluid by reducing
the pressure below the vapour pressure of the MR fluid. Externally the compact design is
very similar in size and shape to existing passive vehicle dampers. The only external
parts are the two electrical leads for the electromagnet, which are connected to the current

source.

There are three main types of MR dampers which are the mono tube, the twin
tube, and the double-ended MR damper (El-Auoar 2002). Among these, the mono tube is
the most common since it can be easily installed in any orientation and it has a compact
size. A mono tube MR damper, shown} in Figure 3.5, has only one reservoir for the MR

fluid and an accumulator mechanism to accommodate the change in volume that results



from piston rod movement. The accumulator piston or diaphragm provides a barrier
between the MR fluid and a compressed gas (usually nitrogen) that is used to

accommodate the volume changes that occur when the piston rod enters the housing.

The twin tube MR damper has two fluid reservoirs, one inside of the other. Its
configuration is shown in Figure 3.6, in which can be appreciated that the damper has an
inner and outer housing, which are separated from each other by a foot valve. The inner
housing guides the piston rod assembly, in exactly the same manner as in a mono tubes
damper. The volume enclosed by the inner housing is referred to as the inner reservoir
and the outer reservoir is the space between the inner and outerhousing. The inner
reservoir is filled with MR fluid so that no air pockets exist. To accommodate changes in
volume due to piston rod movement, an outer reservoir that is partially filled with MR
fluid is used. Therefore, the outer tube in a twin tube damper serves the same purpose as

the pneumatic accumulator mechanism in mono tube dampers.

Piston Rod Foot Valve Assembly

Inner Housing Outer Housing

Figure 3.6. Twin tube MR damper (El-Auoar 2002).

The double-ended MR damper, shown in Figure 3.7, has piston rod of equal
diameter protrudes from both ends of the damper housing. The double-ended damper
does not have accumulator mechanism in view of the fact that there is no change in

volume as the piston rod moves relative to the damper body.
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MR Fluid Reservoir Coil

Rear Pisten Rod Front. Piston Rod

i

Piston Approximate Flux Path

Figure 3.7. Double-ended MR damper (El-Auoar 2002)

In this work, the commercial MR damper RD-1005-3 (Lord Materials Division
2003) manufactured by Lord Corporation is employed to validate the proposed model and
later it is embedded in the adaptive structure to reduce the vibration. This MR damper,
which configuration is shown in the Figure 3.5, is a compact magnetorheological fluid
damper unsurpassed in its combination of controllability, responsiveness, and energy
density. As magnetic field is applied to the MR fluid inside the monotube housing, the
damping characteristics of the fluid increase with practically infinite precision under 25-
millisecond response time. This device is a monotube shock containing nitrogen gas at a
high pressure of 300 psi in its accumulator. The Table 3.2 gives a summary of its typical

characteristics.
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Materials Division 2003)

Description Values
Compressed length 6.1 Inches (155 mm)
Extended length 8.2 Inches (208 mm)

Body diameter

1.63 Inches (41.4 mm)

Shaft diameter

0.390 Inches (10 mm)

Weight

1.8 pounds (800 g)

For installation on pin

0.47 Inches (12 mm)

Electrical characteristics:
Input current
Input voltage

Resistance

2 amps maximum
12V DC
5 ohms at ambient temperature

7 ohms at 160° F (70° C)

Damper forces (peak to peak):
2 in/sec at 1 amp
8 in/sec at 0 amp

>500 pounds (2224 N)
<150 pounds (667 N)

Mechanics characteristics:
Minimum tensile strength
Maximum operating temperature

Storage temperature limits

1000 pounds (4448 N)
160° F (70° C)
212°F to -40° F (100° C to -40° C)

Durability

2 million cycles @ +0.5 inches
(£13 mm), 2 Hz with input current

varying between 0 and 0.8 amps

Response time

(amplifier & power supply
dependent)

< 25 msec —time to reach 90%

of max level during a O to 1 amp

step input @ 2 in/sec (51 mm/sec)

Table 3.2. Characteristics of the MR damper RD-1005-3 from Lord Corporation (Lord

85



3.3. Hysteresis phenomenon and models

Hysteresis relates to looping graphs which associate two scalar time-dependent
quantities other than in terms of a single valued function: Hysteresis is of interest in many
different areas: ferromagnetics, superconductivity, spin glasses, semiconductors,
economics and physiology, to mention a few. Hysteresis is characteristic of MR dampers
because these devices rely on modifications of force-velocity relationships invariably
associated with hysteretic behaviour. Loops are created when an input is varied back and
forth between two consecutive boundaries. This is not the essence of hysteresis however;
it is a particular case of “branching,” which occurs at the reversals of an input and where

memory has influence over the actual response.

There is no agreement on a general definition of hysteresis. Since the present
work is motivated by systems engineering, a black box representation of the system is
adopted along with the following definition (Visintin 1991): “At any time ¢, the output of
a system depends not only on the input y(#), but also on its previous trajectory
(memory). The input—output relationship is invariant with respect to changes in the time
scale (rate independence). When a system has memory and is rate independent, it is said
to have hysteresis.” From this definition it can be concluded that the response of the
structural systems with embedded MR dampers is affected by the hysteresis phenomenon.
Furthermore, for control purposes the controlled damping force depends on the hysteresis

force.

Different models have been developed to simulate the hysteresis behaviour of

controllable fluid devices, which are classified in quasi-static and dynamic models. Yang
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(2001) has shown that the quasi-static models are not sufficient to describe the nonlinear
damper force-velocity behaviour. Another classification divides the models in two
categories: parametric and nonparametric (Smyth et al. 2002). Parametric identification is
the most desirable, because if successful, the parameters in a model for the restoring force
will have some physical meaning. The nonparametric model may be able to model
response behaviour accurately and with considerable flexibility; however, their
parameters usually have little or no physical meaning. In this section some of the more

important parametric dynamic models are presented.

3.3.1. Bingham model

The Bingham model was proposed by Stanway et al. (1985, 1987). It is based on
the stress-strain behaviour of the Bingham viscoplastic model which is often used to
describe the behaviour of controllable fluids. The Bingham model consists of a Coulomb
friction element placed in parallel with a viscous damper, as it is shown in Figure 3.8. In
this model, for nonzero piston velocities x , the force generated by the device i1s given

by:

F = f, sgn(;'c)+cox+f0 (3.1)
where ¢, is the damping coefficient and f, is the frictional force, which is related to the

fluid yield stress. An offset in the force f|, is included to account for the nonzero mean

observed in the measured force due to the accumulator.

For this model, the force-displacement is reasonably well modeled; however, this

model does not exhibit the nonlinear force-velocity response behaviour observed in the
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data for the case when the acceleration and velocity have opposite signs (or alternatively,
when the velocity and the displacement have the same sign) and the magnitude of the

velocities are small (Spencer et al. 1997).

Co

F-Jp

WS

fe

Figure 3.8. Bingham model for controllable fluid dampers (Spencer et al. 1997).

3.3.2. Viscoelastic-plastic model

The viscoelastic-plastic model was proposed by Gamota and Filisko (1991),
which is shown in Figure 3.9, is a model based in the Bingham model and combined in
series with a standard model of a linear solid (Shames and Cozzarelli 1992). Its

governing equations are defined as:

F= kl(x2 _x1)+cl(x2 "x1)+fo
= cox, + f, sgnx, )+ f, . |F> £ (3.2)
= kz(xa —x2)+ Jo

F:kl(xz—xl)+clx2+f0}, 1F‘Sfc (3.3)

=k2(x3 —x2)+f0

where ¢, is the damping coefficient associated with the Bingham model and k;, &k, and

¢, are associated with the linear solid material. It is noted that when ]F |S f, the

Bingham part of the model is static.
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Figure 3.9. Viscoelastic-plastic model (Gamota and Filisko 1991).
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3.3.3. Nonlinear hysteretic biviscous model

This model, which is shown in Figure 3.10, was proposed by Wereley et al.
(1998). It is an extension of the nonlinear biviscous model having an improved

representation of the pre-yield hysteresis.

Figure 3.10. Nonlinear hysteretic biviscous model (Wereley and Pang 1998.)

The equations of the nonlinear hysteretic biviscous model can be described as:

[Cpot= 1, X<k >0
C,(t-%) -%<i<x, ¥>0
;- Cok+ f, iy <x >0 (3.4)
CpoX+ f, x <x x<0
C,(t+%) —x,<i<k %<0
Cook—f, X< %, %<0

where the decelerating and accelerating yield velocity x, and x, are given by
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-C,x +C,.x
X, :_]_cy____u and i, __fl___P_O_ (3.5)
c _-C c.. -C

pr po pr po
3.3.4. Bouc-Wen model

The Bouc-Wen model was initially formulated by Bouc (1971) as an analytical
description of a smooth hysteretic model and later generalized by Wen (1976). The Bouc-
Wen model shown in Figure 3.11 is one of the models that is numerically tractable and
has been extensively used to characterize the hysteresis phenomenon in MR dampers,
since it possesses the force-displacement and force-velocity behaviour, which resembles
that of the real life MR dampers. The total damping force in the Bouc-Wen model can be

represented by:

F(x(t),#1), 0St<t;t)=coi+kyx+oz (3.6)
where z i3 an evolutionary shape variable described by the first order differential equation

as follows:

2= —dilld "z = pil" + A 3.7)

Bouc- Wenk

V
j!

7

V777777727

Figure 3.11. Bouc-Wen model.
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where w is a generic variable the parameters ¢, k,, @, £, v, n and A are called shape

or characteristics parameters of the Bouc-Wen model which are functions of current
excitation, amplitude and frequency of vibration and can control the linearity in the

unloading and the smoothness of the transition from the pre-yield to the post-yield region.

3.3.5. Phenomenological model

The phenomenological model shown in Figure 3.12, is based on the Bouc-Wen
hysteresis model and is proposed by Spencer et al. (1997). A dashpot with damping
coefficient of ¢, is added in series to produce the roll-off behaviour observed in the
experimental data at low velocities and a spring k; is put in parallel to simulate the

nominal damper force due to the accumulator.

¥ X

] I
A Boue-Wen
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Figure 3.12. Phenomenological model (Spencer et al. 2000.)

The total force can be written as

f=cy+k(x—xy) (3.8)

where z and y are governed by the following equations:

) v e 3.9
¢ =—fi=31dd " = Bli- 3" + AG—-7) (39
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y= 1 oz +coi+ko(x—y)}
CO +-C1

(3.10)

in which ¢, and k, are the viscous damping and stiffness parameters at large velocities,

respectively and x, is the initial displacement of the spring &, .

3.3.6. Phenomenological model considering the shear thinning and inertial effects

This model is also based on the Bouc-Wen model and the damper response
analysis and it was proposed by Yang (2001). In the model, the stiction and inertia effect
is simulated by adding a mass m and the MR fluid shear thinning effect is considered by

defining a mono-decreasing function c(x) to describe the damping coefficient as it is

illustrated in Figure 3.13.

S antW AN

ARLECALLLESEEEINELIALLANEALRAR AL TR AN
E£§M

Figure 3.13. Phenomenological model considering MR {fluid stiction phenomenon, as

well as inertial and shear thinning effects.

In this model, the damping force is determined by:

f = fo =0z +kx+c(i p + mi (3.11)

where the evolutionary variable is governed by
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2= el ™ - i+ @12

and the post-yield damping coefficient function is defined by

c(x)= ale—(‘”!xw (3.13)

here, k is the accumulator stiffness and the MR fluid compressibility, f,, represents the

friction force due to seals and measurement bias and a,, a, and p are constants.

3.3.7. LuGre model

The LuGre model, proposed by Canudas et al. (1995), describes reasonably well
all the dynamic effects of friction, such as the pre-sliding displacement, the frictional lag,
the Stribeck effect, which occur in the so-called “low-velocity” and the “pre-sliding
regions. The LuGre model considers the dynamic effects of friction as arising out of the
defection of bristles which model the asperities between two contacting surfaces. The

friction force 1s given by

f=ayz+ai+a,x (3.14)

where z denotes the average deflection of the bristles, which is not measurable, and it is

determined by
z=x—ox, )4z (3.15)
the constants a,, a, and a, are friction parameters that represent the stiffness of bristles,

damping coefficient and viscous coefficient. The nonlinear friction characteristic function

afx, ) is a finite positive function that can be chosen to describe different friction

effects. The parameterization of o(x, %) to characterize the Stribeck effect is given by
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fO + (fs - fc k_(X/xx)z

where f. is the Coulomb friction level, f; is the level of the stiction force and x,is the

alx, %)= (3.16)

constant Stribeck velocity.

One drawback of the parametric models presented in this section is that for all of
them the parameters are found by trial and error or by running any optimization
procedure to minimize the difference between the simulation and the experimental data.
Since the limits for the parameters are unknown, the search space is significantly large
and the error is not unimodal function. This leads to the optimization procedure to be
trapped in a local optimum. Another problem with the models is that the final solution is
valid only for single excitation conditions; thus, as the excitation condition changes the

characteristic parameters should be re-evaluated.

In the next section, the aforementioned problems are alleviated by proposing an
efficient methodology to directly find the characteristic parameters and by developing a
new model which depends on the current, the amplitude and the excitation frequency. It
is stated that many of the errors shown in the published paper comes mainly from the not-
properly selected parameters. It will be shown that using the proposed methodology and
Bouc-Wen model, it is possible to simulate the hysteresis phenomenon inherited in

accurately for MR dampers accurately and efficiently.
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3.4. Proposed methodology to identify the constant parameters of the Bouc-Wen

model

The Bouc-Wen model presented in the Section 3.3.4 is a suitable dynamic model,
which has been used extensively by different researchers to simulate the hysteresis
phenomenon realized in a MR damper. However one of the main problems in this model
is the evaluation of its seven characteristic parameters. Trial and error or some
optimization techniques such as Sequential Quadratic Programming (SQP) have already
been applied to determine these parameters in such a manner that the error between
experimental and simulation results be minimized (Choi et al. 2001; Spencer et al. 1997;
Yang 2001; Yao et al. 2002). Combination of such sets of parameters could be
significantly large and usually no unique and exact solution exists. In other words since
the search space solution is a large domain, the final solution cannot reasonably match
with the real hysteresis phenomenon. Thus, some considerable differences have been
reported between the generated simulations and the experimental data (Choi et al. 2001;
Spencer et al. 1997; Yang 2001; Yao et al. 2002). In consequence, the Bouc-Wen model
has been criticized due to its inherent difficulties in predicting the essential parameters

(Wang et al. 2003).

In this section a reliable methodology to find the appropriate characteristic
parameters of the Bouc-Wen model is proposed in order to accurately and efficiently
characterize a MR damper. Generally two main aspects should be considered in order to
generate a hysteresis loop realized in the MR damper using the Bouc-Wen model. The
first is the accuracy of the model to predict the response and the second is the

computational time required to estimate the model’s characteristics parameters. Both
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aspects are improved using the proposed methodology, which has been validated through
the data obtained from the laboratory tests performed on the MR-damper RD-1005-3
from Lord Corporation (Lord Materials Division 2003). The results obtained from the
proposed methodology also show that the estimated parameters have linear or

exponential relationship respect the current excitation of the damper.

The total damping force in the Bouc-Wen model is given by the Eq. (3.6). In this
equation, the first term describes the force associated with viscous dissipation, the second
term represents the linear force portioﬁ due to the compressed gas in the accumulator and
the last term is the evolutionary force due to the hysteresis portion of the total restoring
force. A typical hysteresis curve and its Bouc-Wen components are illustrated in Figure

3.14.
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Figure 3.14. Typical hysteresis curve and its Bouc-Wen components.
Depending on the sign of z and x, Eq. (3.7) can be represented in the following forms:

ié:A—(y%—B)z" for z20;, w20
dw
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dz

—=A-(y-B)" for z=0; w<0 (3.17)
dw
dZ n+1 n .
d_:A+(—1) (y+B)z for z<0; w<0
w

diz—=A+(—1)”+l(—y+B)z” for z<0; w=0
w

Optimization or trial and error techniques are the most commoﬁ methods used to
estimate the characteristic parameters of the Bouc-Wen model that characterize the
hysteric behaviour of the MR damper. However due to infinite solution space, these
techniques demands high computational cost to generate the required parameters which
still cannot characterize the hysteresis behaviour of the MR damper accurately. In this
work, the required parameters have been determined by considering the individual effect
of each term of Eq. (3.6) over the hysteresis curve. It is demonstrated that it is possible to
extract some information from the experimental data in order to obtain directly the values
of the characteristics parameters without using any method to match the experimental

data with simulation results.

The effect of parameter n over the shape of the hysteresis loop has been described
by Spencer (1995). He concludes that as n increases, the radius of curvature decreases in
the vicinity of the transitions points P1 and P3 known as the transition velocity points as
shown in Figure 3.14. Considering n = 2 (Choi et al. 2001; Spencer et al.1997; Yao et al.
2002) and solving differential equations presented in Eq. (3.17), the following analytical

solutions can be obtained:

z= JA_B_'[HH(\/E(W'FC)) for B<0 (3.18)

B
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z= \/—? tanh(«/—A_E(w-t—c)) for B>0 (3.19)

where B represents the parameter that multiply the evolutionary variable, z, in Eq. (3.17)
(for instance B is equal to —(y + /) and — (3 — p) for the first and second equation in

Eq. (3.17), respectively and so on) and c is the integration constant which can be

determined from the experimental data.

In order to generate the hysteresis part due to the evolutionary variable shown in
Figure 3.14 (force-velocity behaviour) which is normally realized in real life MR damper,

one should replace the w by x in Egs. (3.18) and (3.19):

7= ‘/? an(VAB(i+¢))  for B<O (3.20)
z= J? tanh(\/Zg()'c+ c)) for B>0 (3.21)

In this work an efficient and accurate methodology has been proposed to find the

required six parameters (c,, k,, a,f, vy, and A) of the Bouc-Wen model in order to

closely fit the response of the Bouc-Wen model to the experimentally measured response
of the MR damper. The methodology is based on the effect of each above parameters on

the hysteresis loop.

According to Figure 3.14, one can realize that the typical hysteresis phenomenon
experienced in MR dampers composed of three building block curves representing
viscous, spring and hysteresis behaviour of the Bouc-Wen Model. The straight-line is the

viscous effect, the dashed line is the spring effect due to the pressurized gas and the
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continuous line is the hysteresis effect caused by evolutionary variable represented by the

first, second and third terms in Eq. (3.6), respectively.

Let us first evaluate the characteristics parameter c. It is clear from Figure 3.14

that the viscous part of the Bouc-Wen model can be extracted from the typical hysteresis
loop where its centerline reaches to maximum velocity. In other words the viscous
damping factor is the slope of the centerline of the hysteresis loop in the maximum
velocity point. For practical experimental data, the slope of the centerline in maximum

velocity point may be well approximated by the following equation:

Fo,+F,—F,—F

12

3.22
2*(xk _jci) ( :

co =
where x, and x, represent velocities at two different points i and & in the vicinity of the
maximum velocity, F represents the forced obtained from the experiment and the
indices u and [ refers to the upper and lower part of the hysteresis loop. It is noted that

in order to reduce errors due to small variations in the experimental data, the average

values of force at different points close to i and k has been used.

As mentioned before, the second term in Eq. (3.6) represents the spring effect due
to the pressurized gas. Typical hysteresis loops for different spring constants; k,, have
been shown in Figure 3.15. A close examination of Figure 3.15 reveals that the spring
constant i zero where the force in upper and lower curves of the hysteresis loop
coincides in the region I. Moreover as the spring constant increases, the openness of the

hysteresis loop becomes more pronounced in that region. It is clear from Figure 3.14 and
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Figure 3.15 that an elliptical relationship exists between the force due to the spring part

and the velocity for harmonic excitation. Thus, the constant k, may be expressed by:

ko — xmax(Eu B El )

. 2.2 2. 2
2\/xmax x°-x"x,

(3.23)

where x_, = a@x, is the maximum velocity and x is the amplitude of the excitation

displacement.

The effect of parameter B on the typical hysteresis curve has been shown in Figure 3.16.
It is noted that as the parameter 3 increases, the radius of curvature (smoothness of the

curve) decreases in the vicinity of the points P1 and P3.

Figure 3.15. Effect of the constant &, on the hysteresis loop of the Bouc-Wen model for

k,=0,5, 10, 15, 20.
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Figure 3.16 The effect of the constant P over the hysteresis shape.

Considering this, the hysteresis phenomenon in MR dampers can be better
approximated by assuming B =0. Considering this Eq. (3.20) and(3.21) may be re-

formulated as:

zz‘/i_tanh<\/———(x+cl)) for (z<0, x<0) or (zZO, x<0) (3.24)

= \/_i_ytanh(m(x+c2)) for (zZO, xZO) or (z<0, xZO) (3.25)
where again ¢, and ¢, are the integration constants. It is noted that Egs. (3.24) and (3.25)
can be used to define the lower and upper hysteric loop due to the evolutionary variable ,
respectively. Different combinations of the constant parameters A and y can define the

amplitude of the curve and the velocity at the point where the evolutionary variable 1s
zero. In other words, these two variables can describe the shape of the evolutionary
variable z. From the experimental data the hysteresis loop for the evolutionary force

versus velocity can be established using Eq. (3.6). Then, the points (on,jc=0) and
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(F, = 0,%_,) which are the evolutionary forces at zero velocity and the velocity at the

zero evolutionary force can be extracted for each of the upper and lower part of the
hysteresis loops. It is noted that the evolutionary force can be described by:

F,=o0z (3.26)
where z is the evolutionary variable. Assuming A =1 and substituting evolutionary
variable z from Eq. (3.24) into Eq. (3.26), the integration constant can be determined

using the coordinate point (on ,X = O):

¢, = L 2 tanh L (3.27)
\/? Fzmax

where

Fo=% (3.28)

Z max \/?

is the evolutionary force at maximum velocity or simply maximum evolutionary force.

It is noted that F,__ can be calculated from experimental data using the following

Zzmax

equation:

Fopue = Fraxe = Co%, (3.29)

where F, , is the maximum total hysteresis force.

Considering Egs. (3.24), (3.26) and (3.27) and using the coordinate point

(FZ =0,x, ) the parameter ¥ may be determined by solving the following equation:

0= Fzmaxtanh{ Y| X0+ \/—atanh[ Fz D] (3.30)
Zmax

102



Knowing the parameter y , now the parameter & can be easily calculated using

Eq. (3.28). Finally, the integration constants are substituted in Eqs (3.24 and 3.25) to

obtain the evolutionary variable, and subsequently evolutionary force.

To summarize, the characteristic parameters have been estimated using Egs.

(3.22, 3.23, 3.28 and 3.30) based on the experimental results.

3.5. Validation of the proposed methodology

The above proposed methodology is applied to simulate the hysteresis behaviour
of the MR damper RD-1005-3 manufactured by Lord Corporation. Multiple experiments
for different excitation conditions are performed in laboratory. The data is acquired and
further these data is employed to obtain key information and determine directly the

characteristic parameters using the proposed methodology.

3.5.1. Description of the experiment

MR fluid is kind of smart material, which can be made by mixing fine particles
into liquid with léw viscosity. Upon the presence of high magnetic field, these fine
particles will be formed into chain-like fibrous structures. When the magnetic field
strength reaches a certain value, the MR fluid becomes solidified and creates high yield
stress; conversely, the MR fluid can be liquefied once more by removal of the magnetic
field. The change of process is very quick, less than a few milliseconds, and can be easily
controlled. Due to these characteristics, the MR fluid has been highly used in recent

controlled semi-active dampers.
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The MR damper is generally defined as being a controlled semi-active damper
which its damping force can be changed continuously using minimal power requirement,
unlike a fully active control actuator (can add energy to the system or remove from the
system) which requires a large power supply. The semi-actively controlled MR fluid
dampers offer rapid variation in damping properties in a reliable fail-safe manner, since
they continue to provide adequate damping, of a passive manner, in the event of a control
hardware malfunction (Carlson and Sproston 2000). The schematic representation of the

cylindrical type of MR damper has been shown in Figure 3.5.

The characterization test was specifically conducted on a MR damper model RD-
1005-3 manufactured by Lord Corporation, which is shown in Figure 3.5. This is a
compact magnetorheological fluid damper unsurpassed in its combination of
controllability, responsiveness, and energy density, which can be applicable to an
adaptive space truss structures or a middle-sized passenger vehicle. In this MR damper
the viscous and shear properties of the MR fluid are controlled by the applied magnetic
field, which is a function of the excitation current. A DC current of maximum 2 A is used
as command signal as well as the input for the coils. The electric resistance of the coil
varies from 5 ) at ambient temperature to 7 Q at 70° C and for an input voltage of 12 V

DC.

The characterization of the MR damper consists of different laboratory tests to
acquire the force-velocity and force-displacement curves for different current excitations.
To perform testing, the MR damper is mounted on an electrohydraulib vibration exciter
from one side and on a fixed inertial frame through a force transducer from other side.

The instantaneous velocity and displacements were measured by the installation of an
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LVT and LVDT sensors respectively. The force, velocity and displacement data, acquired
through a data acquisition board, are used to provide on-line displays of hysteretic force-
velocity characteristics. The current excitation is provided by a dual regulated DC power
supply. In order to assure that the test is accomplished within the range of 30+10°C, a

thermocouple was also installed on the damper body.

The hysteresis phenomenon in the MR damper was evaluated under harmonic
excitations in the frequency range of 0.1 to 15 Hz. The limit of 15 Hz was selected to
operate the MR damper in safe conditions; moreover, this range covers the fundamental
natural frequency, which is the most important one. Many experiments have been
performed for different combination of current excitations (0.00, 0.25, 0.50, 0.75, 1.00,
1.25 and 1.50 A) and strokes (2.5, 6.35, 12.7 and 19.05 mm). The amplitudes for
displacement excitations at higher frequencies were limited to lower values to ensure that

the damper was operating within safe velocity limits.

3.5.2. Comparison of the simulation and experimental results

The methodology explained in Section 3.4 is applied to find the characteristic
parameters of the Bouc-Wen model for different current excitations, frequencies and
amplitudes and to simulate the hysteresis behaviour of the MR-damper RD-1005-3 from
Lord Corporation. The sample estimated parameters for the frequency of 5 and10 Hz and
amplitudes of 19.05 and 6.35 mm respectively are tabulated in Table 3.3. Naturally, each
set of parameters can characterize the hysteresis behaviour of the tested MR damper

under specific excitation conditions. The experimental data is the same obtained by Wang

et al. (2003).
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Table 3.3. Final results for the Bouc-Wen model parameters under frequency excitation 5

and 10 Hz and amplitudes of 19.05 and 6.35 mm respectively.

A a(Nm) | y@m? | ¢ Ns/m) | k, (kg/s®) | F,,(N)
Amplitude (mm)

((31‘;;;’)“ 6.35 |19.05] 6.35 |19.05] 6.35 [19.05] 6.35 |19.05] 6.35 |19.05| 6.35 [19.05
0.00 1. 1 82 1196 | 280 | 1400 | 257 | 1023 | 1085 |3758.4| 1.3 7.1
0.25 1 1 1514 | 3853 ) 277 | 1335 358 912 1681 13769.0| 66.8 | 49.4
0.50 1 1 3091 | 7368 276 1300 | 497 1226 | 3119 {4733.5] 162 126
0.75 1 1 4259 1109261 273 | 1250 | 559 | 1377 | 3510 |6101.2| 229 205
1.00 1 1 4635 | 11514} 272 | 1200 | 617 1444 | 4262 [6532.71 256 214
1.25 1 1 5147 [ 11210 269 | 1165 614 | 1684 | 4387 | 7771 269 238
1.50 1 1 5382 | 133021 267 | 1100 | 647 | 1831 | 5477 {7747.9| 287 237
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Figure 3.17. Comparison between the experimental data and the Bouc-Wen model with
proposed estimated parameters for current excitations of 0.00, 0.25, 0.50, 0.75, 1.00, 1.25
and 1.50 A
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Figure 3.17. (Continued.)
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Figure 3.17. (Continued.)

Having determined the required six characteristic parameters of the Bouc-Wen
model, the Egs. (3.6, 3.24 and 3.25) are employed to simulate the hysteresis phenomenon
of the MR damper. The simulation results (force versus velocity and force versus
displacement) and their comparison with experimental data for the frequency range of
0.5, 5.0, 10.0 and 15.0 Hz and amplitudes of 6.35, 12.70 and 19.05 mm are illustrated in
Figures 3.17 a-h. The examination of these figures reveals that excellent agreement exists
between the results obtained by using the proposed methodology to find the characteristic

parameters of the Bouc-Wen model and the experimental data.
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The above mentioned approach can be applied to find the characteristic
parameters of the Bouc-Wen model for different current excitations, frequencies and
amplitudes and to simulate the hysteresis behaviour of the MR-damper. Naturally, each
set of parameters can characterize the hysteresis behaviour of the tested MR damper

under specific excitation conditions.

The sample variation of the estimated parameters versus the current excitation for
the frequency of 5.0 Hz and amplitude of 6.35 mm has been shown in Figure 3.18. It can
be realized that the estimated characteristics parameters c,, ¢, and F,, tend to follow a
linear pattern for low excitation currents and an exponential pattern for higher value of
currents. These parameters reach to a saturation point for high excitation currents. This
coincides with the saturation experienced by MR dampers for high currents. It can also be

realized that the parameters y and k, trend to vary linearly with respect to the current

excitation. This behaviour has also been observed for other frequencies and amplitudes.

Figure 3.19 demonstrates a sample relationship between the maximum hysteresis
force and the amplitude of excitation for a given frequency of 5 Hz and different current
excitation. Figure 3.20 shows the behaviour of the hysteresis force as a function of the

excitation frequency for given amplitude of 6.35 mm and different current excitation.
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Figure 3.18. The characteristic parameters ¢,, k,, ¢, and y and the evolutionary force at

zero velocity, F , versus the current excitation for the frequency of 5 Hz and amplitude

of 6.35 mm
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Figure 3.19. Hysteresis force as function of the amplitude excitation for frequency of 5
Hz and different current excitations.

111



. e "'

4 5 B
_FREQUENCY (Hz)

Figure 3.20.“I;I‘yst;=;re'svié “f‘or)ce aéainst the frequency .ex“citati”o\‘r\l“ fof ampﬁtﬁde of 6.35 mm
and different current excitations.
It is noted that the magnitude of the hysteresis force increases sharply for small
values of the frequency and then it grows gradually for higher values of frequency.
Similar trend can be observed for the variation of the hysteresis force with respect to the

amplitude.

3.6. New current, frequency and amplitude dependent Bouc-Wen model

The semi-actively controlled MR fluid dampers offer rapid variation in damping
properties in a reliable fail-safe manner using very low power requirements. Their
characteristics made them ideal for semi-active control in structures and vehicle
applications in order to efficiently suppress vibration. To take advantage of their
exceptional characteristics, a high fidelity model is required for vibration suppression
strategies. Perfect understanding about the dynamic characteristics of such dampers is
necessary when implementing MR struts in applications. Different models have been
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proposed to simulate the hysteresis phenomenon of MR dampers. The Bouc-Wen model
has been extensively used to simulate the hysteresis behaviour of MR dampers. However,
considerable differences still exist between the simulation and experimental results.
Moreover the characteristic parameters in the traditional Bouc-Wen model are not
dependent on the frequency, amplitude and current excitations; therefore, the estimated
parameters can characterize the behaviour of the tested MR damper under specific
excitation conditions and must be again revaluated if different combination of excitétion
parameters is desired. This can be extremely cumbersome and computationally
expensive. In this section a new hysteresis model based on the Bouc-Wen model is

developed to better characterize the hysteresis phenomenon of the MR damper.

In the simple Bouc-Wen model the current, frequency and magnitude of
excitation are not considered as variables; therefore, the characteristic parameters must be
estimated for each different set of current, frequency and magnitude, which can be
extremely cumbersome and computationally expensive. In this study a new model based
on the Bouc-Wen model has been proposed to incorporate the current, frequency and
amplitude excitation as variables in order to accurately and efficiently characterize the

hysteresis behaviours of the MR damper.

As it was shown in Figure 3.18, parametersc,,k,, o and are all function of

current excitation. Thus Eq. (3.6) has been reformatted to consider the current
dependency of theses variables. Moreover, close examination of Figure 3.19 and 3.20
reveal that the hysteresis force increases rapidly for small frequencies and amplitudes and

then increases gradually as the frequency or amplitude become larger. Parabolic functions
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with exponents lower than one may describe such kind of behaviour. Considering this,
the Bouc-Wen model in Eq. (3.6) has also been modified to incorporate the variation of

the Hysteresis force versus amplitude and frequency of excitation.

Based on the above rationale the modified Bouc-Wen model incorporating the

current, frequency and amplitude excitation as variables may be reformulated as below:

F(x(7), x(7), [ ,0,x,0 <t <t;8) = (d,0" }(d,x* e, (I)x + k(D) x + a(l)z] (3.31)

3" max

where ® 1is the frequency of the excitation, d,,...,d are constants and z is the

evolutionary variable defined by the following differential equation:

2(1):y(l)x||z}("")z—ﬁ(1)x|z|" +A(])x (3.32)

where as mentioned in Section 3.4, A(/) and p(I) assumed to be one and zero,

respectively.

As it was concluded in Section 3.5.2 a linear relationship exists between the

current excitation and the parameters y and « . Also, a close examination of the results
revealed that the characteristic parametersc,, k, and F,, vary linearly for low current

excitation and exponentially for high current excitations. Considering this observation,

the following relationships are proposed:

c(D=c+c, (- ) forI>1

o (3.33)
CQ(I)=C4+ 4 ]] forISIC

k(D) =k +k,I (3.34)
D) =0, +a,(1-e™)  forl>1, (333)
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of)=a +3 =

I forI <1,

wI)=y,—l1 (3.36)

F,(I)=F,+F,1-e"™="")y  forl>]

F _F (3.37)

F10(1)=F204+———z°41_ oL forI>1,

c

where 16 constant parameters c,, ¢,, ¢, ¢,, k;, k,, o, 0, 0y, a, V, V5, Fo, Fo,

F,, and F,, relates the characteristic shape parameters to current excitation and should
be specified in a way to better characterize the behaviour of MR dampers. I, is the

critical current in which the characteristics parameter change their linear behaviour in low
velocity to exponential behaviour in high velocity. For this particular MR damper the
critical current was found to be nearly 0.25 A.

Now using these current dependent parameters the evolutionary variable in Egs. (3.18)

and (3.19) may be updated to the following form:

h[_u__ N, ﬂ} o {<z<0’ x<0)or (335

of 1) (z20, x<0)

1 1
)=———tanh{ (I )| i
Z(1) 7 tan { W ){H— y(])a
atanh{_ Fo (D7D m o {(zZO, x20) or (3.39)

a(l) (z<0, x20)

z(1)=——1———tanh{,/y(l{5c+

1
N0 Vr(h

3.6.1. Comparison of the simulation and experimental results of the new model

As explained in Section 3.6, the constant parameters have been estimated so that
the simulated hysteresis loop can be well matched with its counterpart experimental
results. The experimental data is the same obtained by Wang et al. (2003). For the MR

damper RD-1005-3 from Lord Corporation, the 20 parameters introduced in Section 3.4
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are estimated as: ¢ =358Ns/m, ¢, =280Ns/m, c¢;=24A", ¢, =230Ns/m,
k, =1085N/m, k, =2928 N/A-m, a,=1514N/m, @, =4200N/m, a;=22A",
a, =82N/m y,=280m>, y,=8.66m?A", d, =508m, d,=0.333, d,=0251s/rad,

d, =0351 F, =67N, F,, =250N, F,;;=1.9A" and F,y, =1.32N.

It is interesting to note that the above constant parameters are valid for any
desired set of current, frequency and amplitude of excitation. In other words the model
can predict the hysteresis behaviour of MR damper under any excitation conditions
without any re-evaluation of the characteristic parameters for those conditions. This is not
the case for the traditional Bouc-Wen model in which the characteristics parameters have
to be identify for each set of current, amplitude and frequency of excitation used in

experimental test.

Figure 3.21 illustrates a sample of hysteresis force versus time generated by the
simulation using proposed model and experiment for the frequency of 10 Hz, amplitude
of 6.35 mm and three current excitations of 0.25, 0.75 and 1.25 A. As it can be seen the

proposed model can accurately predict the hysteresis force at all times.
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Figure 3.21. Hysteresis force versus time generated by the experimental data and the

proposed model for different current excitations.

The simulation results for hysteresis force versus velocity and hysteresis force
versus displacement conducted using the proposed model and their comparison with the
experimental data for different combination of current, frequency and amplitude
excitation are also illustrated in the Figure 3.22 show the results for the frequency of 5
and 10 Hz at different level of current excitation. The amplitude in both frequencies is
considered to be 6.35 mm. Moreover, the simulation and experimental results for
different level of frequencies at specified current and amplitude of excitations and for
different level of amplitudes at specified current and frequency of excitations are shown

in Figures 3.23 and 3.24, respectively.
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Figure 3.22. Comparison between the experimental data and the proposed model for the

current excitations of 0.00, 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 A
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Figure 3.23. Comparison between the experimental data and the proposed model for the

frequency excitations of 0.25, 2.5, 5.0, 7.5 and 10.0 Hz from inside to outside loop.
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Figure 3.24. Comparison between the experimental data and the proposed model for the

amplitude excitations of 2.54, 6.35, 12.7 and 19.05 mm from inside to outside loop.
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The examination of the above figures reveals that very good agreement has been
established between the simulation and experimental results for any combinations of
current, frequency and amplitude excitations thus confirming that the proposed model is

able to predict the hysteresis force in MR dampers accurately and efficiently.

3.6.2. Error analysis of the new model

In addition to the graphical evidence of the effectiveness of the proposed model, a
quantitative analysis of the errors for different excitation conditions has been
accomplished. The normalized errors between the predicted and experimental force in

time, displacement and velocity domain can be effectively expressed as:

T
| (Fop — F)*dt
0

E = |z (3.40)

0

T
[(Fyp - F) L
£ 0 (3.41)
VT - b
o eXp exp dt
T .
[(Foyp —F) el
E = |0 d (3.42)
| di
_([(Fexp “’exp) Edt

where F,, represents the measured or experimental force , F is the predicted or
simulated force which is calculated by Eq. (3.31), L., is the mean value of the

experimental force during the period T . A sample of normalized errors for the frequency

amplitude of 10 Hz, amplitude of 6.35 mm and different current excitations are provided
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in Table 3.4. The error results are also compared with the minimum error reported by

Spencer et al. (1997).

Table 3.4. Normalize errors in time, displacement and velocity domain for 10 Hz and

amplitude of 6.35 mm.

Current (Amps) (Spencer et

al.1997)
0.0 0.25 0.50 0.75 1.00 1.25 1.50

E, 0.1511 | 0.1275 | 0.1023 | 0.0962 | 0.0965 | 0.1095 | 0.0850 0.167

E 0.1002 | 0.0656 | 0.0555 | 0.0513 | 0.0532 | 0.0641 | 0.0535 0.0585

E. 0.2246 | 0.1782 | 0.1390 | 0.1306 | 0.1312 | 0.1465 | 0.1126 0.135

It can be realized that an acceptable error exists between the simulated and

measured hysteresis forces experienced in the MR damper.

It is noted that in the proposed model, the characteristic parameters are function of
the current, frequency and amplitude excitation. Thus the hysteresis force of the MR
damper can be easily evaluated for any desired combination of the frequency, amplitude
and current excitations without any revaluation of these characteristics parameters. This
is not the case for the simple or traditional Bouc-Wen model in which the characteristic
parameters are valid only for a specific excitation. The ability of the proposed model to
predict the hysteresis force for any excitation condition can make it ideal for the semi-

active contro] applications.

The application of Magneto Rheological (MR) dampers in semi-active control has
received significant attention in the recent years due to the rapid variation in their

damping properties in a reliable fail-safe manner and low power requirements. One of the
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important factors to successfully attain desirable control performance is to have a
damping force model, which can accurately capture the inherent hysteresis behaviour of
MR dampers. It was shown that the characteristics parameters of the Bouc-Wen model
obtained by the application of the proposed methodology follow specific patterns in
which some characteristics parameters vary linearly with respect to the current excitation
in whole region and others tend to follow a linear pattern for low excitation currents and
to follow an exponential pattern for higher value of currents. It was also demonstrated
that the magnitude of the hysteresis force increases rapidly for small values of the
frequency and then grows gradually for higher values of frequency. Similar trend was
also observed for the variation of the hysteresis force with respect to amplitude. Based on
these observations, a neW model based on Bouc-Wen model has been proposed in which

the current, frequency and amplitude of excitation have been incorporated as variables.

It was demonstrated that an excellent agreement exist between the simulated
results generated by the proposed model and the experimental results. Error analysis
demonstrates that acceptable errors exist between the predicted and measured force
confirming that proposed model is reliable and capable to predict the hysteresis force

accurately and efficiently at any excitation conditions.

One of the main advantages of the proposed model is that it can be used for
situations where the excitation conditions are changing. Therefore, it is possible to
practically apply the proposed model in semi-active control applications such as
automotive suspension systems and adaptive structures. Moreover since terms of
stiffness, damping and evolutionary forces are separated in the total hysteresis damping

force, one can easily formulate the damping force in matrix format which is suitable for
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thc? finite element analysis. It is noted that two aspects should be considered in the
application of the proposed model to simulate the transient response of the structure with
embedded MR dampers. First, the input frequency to the hysteresis model is considered
as the fundamental natural frequency of the structure. Second, the amplitude of the
excitation should be approximated by a relation that uses the instant displacement,
velocity and acceleration for transient problems, as explained in Section 4.7. This

approximation can introduce some errors in the calculation of the hysteresis force.
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CHAPTER 4
MATHEMATICAL MODELING OF

SEMIACTIVE STRUCTURES

In this chapter the finite element model of the MR damper, proposed in the
Chapter 3, is developed. Subsequently the nonlinear dynamic finite element model of a
space truss structure embedded with the MR damper is created and its local and global
nonlinear matrix formulation is obtained. In the global matrix formulation it is considered
a proportional damping to simulate the structural damping. The insertion of the MR
damper in the structure converts the system into nonlinear system. To solve the nonlinear
problem the powerful unconditionally stable Newmark time integration technique is
reformulated and combined with the Newton Raphson method to get the dynamic
response of the system. Finally the experimental study has been carried out to validate the

mathematical model.

4.1. Finite element model of the passive bar element

The test space truss structure is an assemblage of bar through bolt coupling and
connection nodes as shown in Figure 4.1. Thus, the objective of this section is to propose
a FEM model that accurately describes the behaviour of the bar elements that include the
attached nodes and bolt couplings. For this purpose, a truss element containing three
members as shown in the Figure 4.2 is developed. The element is shown in its local

coordinates with end nodes N1 and N2. The middle member of the element, E2,
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represents the tube whose physical characteristics are known. The adjacent members E1

and E2 are proposed to simulate the node and the bolt connection.

0.046

20
J
9 |

AN _ e _ = o
\’J\./é = — R i = \J\./\.-
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Bolt joint Tube Node (&)
1
Length Unitst .

Figure 4.1. Typical assembly of a bar element.
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] L b

Figure 4.2. Finite element of a passive bar element.

The stiffness for each section is determined by:

Eil; (4.1)

4.2)

th

here, D, and d, represent the exterior and interior diameter of the i© member. Thus, the

equivalent stiffness and mass of the proposed bar can be calculated by:
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kiky + ks + ky ks
klk2k3

ke_q1 = My, =my+my +my (4.3)

Considering this, the stiffness and lumped mass matrices for the complete bar

element in local coordinates may be described by:

k, —k -0
[Ké?]{_ . k:} baio]= 3 - (44
2

As explained in Chapter 2, the local elemental stiffness and mass matrices can be
transformed to the global coordinates using the rotational or transformation matrix using

the following relations:

[KF =[RT [k J[R]: M]* = [R]" M2 ] &) (4.5)

Once the transformation has been performed, the matrices can be assembled
properly to obtain the system stiffness and mass matrices. The global damping matrix

will be developed in the next section following the Wilson’s Theory.

4.2. Finite element model of the bar element with MR damper

In this section the finite element model for the element that contains the MR
damper is proposed. First, the matrix formulation is obtained just for the MR damper and
then it is included in the model of the whole element. Assuming that the mass of the MR
damper can be equally lumped at its both ends, the finite element model for MR damper
is obtained by applying the Second Newton’s Law to the masses shown in Figure 4.3 as

follow:
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Figure 4.3. Lumped mass representation of an MR damper bar element.

where my, 1s the mass of the MR damper which is considered as lumped mass. k; is the

time dependent stiffness due mainly to the effect of gas accumulator in the MR

damper, ¢, is the time dependent viscous damping coefficient, az is the evolutionary
force and F,, is initial force required to install the MR damper in its initial position. The

equations to determine the stiffness, damping and evolutionary force were obtained in

Section 3.6.

Writing Egs. (4.6) in matrix form, we can obtain:

Myr
A BT Bl S b o
0 Myr xj Y Co xj - kO kO | xj 4.7)

or
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[y it 1+ [C Kot J+ (K e b= (TP 3+ [THF, } (4.8)

where {x}, {x} and {x} are the vector of nodal displacement, velocity and acceleration
for the MR damper respectively. [M MR] is the lumped mass matrix, [C 0] is the damping
matrix, [K, ] is the stiffness matrix, {F _ I is the hysteresis force vector and {F,} is the

vector of initial force.

Similarly, the mass and stiffness of the MR damper can be transformed to global

coordinates for assembling purposes. It is noted that the damping coefficient ¢, is

significantly larger than the typical structural damping of the bars; thus, the structural

damping may be ignored. The global damping matrix [CO] of the bar element with MR

damper can also be obtained by transforming the local damping matrix using the

rotational matrix as:

[c,1¢ = [Tl | [R); +9)
which can be properly assembled in similar way to the stiffness and mass matrices to
obtain the system damping matrix of the MR damper bar element. It is convenient to
remark that the global damping matrix [CO ¥ is a matrix with time dependent

coefficients.

Further, the FEM for the bar element that contains the MR damper is proposed.
The bar element consists of five individual members as it is shown in Figure 4.4. The end

elements, E1 and ES5, are simulating the node and bolt connections and the elements E2
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and E4 are the bar members employed to couple the middle element representing the MR

damper to the end connection members.

AT Y — / == N2
l ll . lg l3 l4 } lS [
{ I i T 1

Figure 4.4. Finite element model for the MR damper bar element.

Considering this, the equivalent stiffness and mass may be written as:

i Kakokaks +Kikokoks + kikokyks + kikskoks + kikokoky
“a kykykok ks (4.10)

m,, =m +m, +myp +m, +ms

q

where k, = k5 is stiffness of the MR damper

Finally the stiffness and mass matrices for passive members with MR damper are
obtained by substituting the Egs. (4.10) into the Egs. (4.4) and (4.5). It is to remark that
the stiffness matrix for the MR damper bar element has time dependent coefficients due

to nonlinearly of the controllable damper.

4.3. Derivation of the damping matrix

The synthesis of damping in structural systems and machines is extremely
important if a model is to be used in predicting transient responses, transmissibility,
decay time or other characteristics in design and analysis that are dominated by energy

dissipation. In this section the damping matrix is derived to be included in the FEM
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formulation. Although the damping effects in structural problems are clear, the
characterization of the damping is still under development. However some approaches
have been proposed with good accuracy. Pilkey (1998) provides a complete description

of the different approaches to determine the damping matrx.

In this work a proportional damping methodology is adopted (Hasselman 1972,

Wilson 1976). In proportional damping, the damping matrix [C] is assumed to be
proportional to the mass matrix [M ] or to the stiffness matrix [K ] or combination of

both according to the Rayleigh’s proportional damping. These kinds of proportional

damping can be stated mathematically as:

[cl=alm], [c]=plK]or [C]=alm]+ f[K] (“11)
where o and f are constant parameters.
To accomplish this, it is first required to obtain the eigenvalues and eigenvectors

of the undamped free vibration system to establish the modal matrix. The equation of

motion for undamped free vibration can written as:

[M 3+ [F lx )= 10} (4.12)
Assuming harmonic solution, the solution of the Eq. (4.12) can be described as:
{ct={plsinw( ~1,) (4.13)

where {p} is a amplitude vector, ¢ is the time variable, ¢, is a time constant, and @ is

the frequency of vibration of the system. Substituting the Eq. (4.13) into (4.12), the

generalized eigenproblem is stated as:
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(K Hp}=0’[M o} (4.14)

in which {(p} and @ are the eigenvector and eigenvalue respectively. A system with n

degrees of freedom has n solutions for eigenproblem which can be represented in matrix

form as:

[k [®]=[M}e He]* (4.15)

where [45] is called modal matrix containing n column eigenvectors and [9]2 is a

diagonal matrix with the eigenvalues CU,'Z on its diagonal as follow:

o 0 - 0
QEATS S T R @16
0 0 - o

with 0 <w, <w, <...<wo,. The eigenvectors are called M-normalized when

[o] [M]l@]=1] (4.17)

Noew Egs. (4.14) and (4.17) yields:

o] [K]@]=[af (4.18)

Unlike the mass and stiffness matrices, in general, the damping matrix cannot be
constructed from element damping matrices, and its purpose is to approximate the overall

energy dissipation during the system response.
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Let us assume that the governing differential equations of motion in finite element

form can be written as:

[m Jie b+ € Mo b+ [K M = {F } (4.19)

To decouple the Eq. (4.19), the following linear transformation can be used:

[x)- 21} (.20

where {p} is referred to as modal coordinates.

Now substituting Eq. (4.20) into(4.19) and multiply both sides from left by [d)]T

and using the properties of M-normalized eigenvector described in Egs. (4.17) and (4.18)

yields:

[IKp}+ @] [ClloKp}+[eF {p}=[e] i} (4.21)

It is observed that the matrices of the first and third left terms of in the Eq. (4.21)

are diagonal matrices because of orthogonality relation between the eigenvectors and

mass [M] and stiffness [K] matrices. However the second term [¢]T [Cll®@] does not

usually reduce to a diagonal matrix. Now using proportional damping concepts

formulated in Eq. (4.11), one is able to diagonalize the second term.

While considering Eq. (4.21) it is common practice to assume the second term has

«

the form:

[o] [c]le]=2[e]i] (4.22)

where the modal damping ratio matrix l¢]is represented by:
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k1= O % 0 (4.23)

This has been successfully employed and recommended (Wilson 2002; Heverly II

et al. 2001; Bath and Wilson 1976) to simulate the damping effects of structural systems.

In most vibrational problems, it is immaterial whether the modal damping 2¢,w; in Eq.

(4.22) is based upon C] being proportional to [M ] or [K ] or a combination of both as in
Rayleigh’s proportional damping. Thus, from a practical point of view, the damping
factor ¢ ; and the undamped natural frequency «; can be interpreted as being the
properties that are inherent in the system. Furthermore, typical values and characteristics

of the damping ratio ¢, for various types of structures are available from experimental

studies. Knowing this the damping matrix [C] in Eq. (4.22) can be determined with

respect to modal damping factors and undamped natural frequencies as:

[c]=2[e] " [2]i]le] (4.24)

4.4. Solution of governing differential equations of motion

As it has been described above, one the system mass, stiffness and damping
matrices are identified; the governing equations of motion can be established as provided
in Eq. (4.19). If system has n degrees of freedom (Dofs), then the n coupled governing
equations of motion should be solved simultaneously to obtain the response of the system
which can be computationally extensive if the number of Dofs is large. In practical finite

element analysis, the most effective time domain methods are the direct time integration
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technique and the mode superposition method (Bath and Wilson 1976). The solution of
the system can be obtained efficiently in frequency domain when the system is exposed
to single-harmonic excitations as the response has the same frequency. When the system
is linear it is possible to apply the mode superposition method using modal
transformation matrix to convert the original system into a set of linearly uncoupled
equations which can be solved individually. Among the direct integration methods the
most popular and powerful in structural dynamic analysis is the Newmark’s method.
With selection of suitable controlling parameters, the Newmark’s method is
unconditionally stable for any desired time steps. Furthermore, this method can easily be
extended to solve the nonlinear problems which is the case when the MR damper is
embedded in the structure. This requires an iterative process at each time step in order to
balance the system equations. In this section the frequency domain, the mode summation
method and the Newmark’s techniques, will be briefly explained. The Newmark’s

method will then be reformulated efficiently in order to solve the nonlinear systems.

4.4.1. Frequency domain response due to single harmonic excitation

This method is based on the method of undetermined coefficients which assume
that the response of the systems due to a harmonic excitation follows the same frequency
of the excitation. The differential equations governing the motion of Dofs system with

structural damping subject to a single-frequency harmonic excitation can be written as:

[M 1§ 3+ [C [z 3+ [K Kx b= Im{F Je™ (4.25)

where {F }is a n-dimensional vector of force amplitude which could be complex if the

phase of each generalized force is not the same as:
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F, = fie® (4.26)

The solution of Eq. (4.25) is assumed to be harmonic in the form of:

{e()}= Im{{v }e®) 4.27)
where {U }is a n-dimensional vector of displacement amplitude. Substitution of Eq. (4.27)

into Eq. (4.25) leads to:

o’ M]+iolc]+ K fUl=1{F} (4.28)

Finally the solution of Eq. (4.28) is obtained by

)= (o mlriolc]+ K] {F) (4.29)
4.4.2. Mode superposition method

This method as described in Section 4.3 decouples the finite element equations of
motion by using a modal transformation matrix which consists of the free vibration mode
shapes of the finite element system. This method is computationally more efficiently than
the direct integration methods; however, it is not applicable for nonlinear problems
because the superposition principle employed to obtain the solution of the set governing

of differential equations is not valid 1n this case (Kelly 2000).

As explained in Section 4.3, the finite element system equations are decoupled

using the eigenvector modal matrix [45] This matrix represents a transformation matrix
that change the original coordinates {x} called generalized coordinates to a new

reference called principal or modal coordinates {p} Using the linear transformation
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relation given in Eq. (4.20) and orthonormal properties of eigenvectors, the governing

coupled equation of motion can be decoupled as:

i Jp 3+ I Jp 1+ [ )= 7 } (4.30)
where
i1]=loT Mlw). [6)=loTclw). [k]-lTKle): {Fl=leT{F} ©3D

where [ZVI] léJ and [IZ ] are the modal mass, damping and stiffness matrices and {Fv } is

modal force vector. The relation between generalized and normal coordinates is rewritten

as

[x0)l=[2]lp()] (4.32)

Since the system of equations given in Eq. (4.30) is uncoupled, each equation has

the following form:

pie)+2w,&p;e)+wip, )= f;), Jj=Ll...n (4.33)

with

;@)= {(0,' FAF @} (4.34)

the initial conditions in the principal coordinates are determined using the Eq. (4.32) and

the M-normalized property represented by Eq. (4.17) as follow:

p,0)={, ' MHx )} and ,0)={o, ¥ M1 O)} (435)
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The solution of Eq. (4.33) can be calculated using an integration scheme or by

evaluating the Duhamel integral as:
1 “E o (t-1) . ey .

pj(t):;—J'(;fj (z)e it T)smwj(t—r)d'we s (ocj sinw ;1 +6, cosmjt) (4.36)
J

where the damped natural frequency is determined by:

@, =w;1-&7 (4.37)

for the case of free vibrations the solution may be simplified as:

p; ()= A, sinlw 1 -0,) (4.38)

where A i and 6 ; are constants which are determined from the initial conditions. Once

the solution in modal coordinates has been obtained, the relation (4.32) can be used to

obtain the result in generalized coordinates.

4.4.3. Newmark’s method

In direct time integration methods, the equations of motion are integrated using a
numerical step-by-step procedure. The term “direct” meaning that prior to the numerical
integration, no transformation of the equations into a different form is carried out. New
time integration methods and their properties have been investigated for different
researchers. In practical application, the computational cost, accuracy, stability, damping
of high and low frequencies, and type of inertia matrices are the main features in the

selection of suitable time integration methods.
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Among direct time integration techniques, the Newmark’s method (Newmark
1959) is very popular. It is a single step integration implicit method that attempts to
satisfy the differential equation of motion at time ¢+ At after the solution at time ¢ is
found. In order to illustrate the application of this family of numerical integration
methods, let us consider the solution of the linear dynamic equilibrium Eqgs. (4.19)

written in the following form:

[M]{j’:}HAt + [C]{x}HAt + [K ]{x }t+At = {F }t+At (4.39)

where the mass matrix [M ], the damping matrix [C ] and the stiffness [K ] are defined at
time ¢. Thus, the Eq. (4.39) is only satisfied if the matrices do not change during the
interval At. Using the truncated Taylor’s series, the displacement and velocity vectors
can be approximated in the form:

), ~leh ki)« A0}« o) 0

e} ={et +aefel ryactic] (4.41)

t+At

Considering that the acceleration is linear; then, it may be represented by:

) = (¥} . - 1) (4.42)

B At

The standard form of Newmark equations are obtained by substituting the Eq.

(4.42) into Eqs. (4.40) and (4.41) as:

{eha =) warleh o[ 5B a i) - o B o

edoa =105 +(-p)Ar{E] + 5 Arlx], (4.44)
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These Equations together with Eq. (4.39) are used iteratively, for each time step,
for each displacement DOF of the structural system. Wilson (1962) formulated the
Newmark’s method in matrix notation, added stiffness and mass proportional damping,
and eliminated the need for iteration by introducing the direct solution of equations at

each time step. For this, the Egs. (4.43) and (4.44) are rewritten as:

{jé}zmt =b ({x}mu - {x}t )+ b, {x}z +by {x}; - (4.45)
{x}tmt :b4 ({x}t+At _{x}t)+ bS {x}t +b6{x.}t (4'46)

where the constants b; are defined by:

1 1 1
b=— b = b=t (4.47)
1 ,BAIZ 2 Bt s =P 7

b, = yAth,, bs =1+ yAth,, bs = At(l+ybs — )

Now substituting {x},, , and {¥},,, from Egs. (4.45) and (4.46) into Eq. (4.39)

yield the following suitable form:

@M ]rb[C]+ KDY, = F Los + M0 ] +0, {8 +0545T,)
+[C](b4{x}t +bs i}, +b6{f}t)

or it is simply rewritten as:

(4.48)

k] e). =) (4.49)

where

k] =5, [M]+b,[Cl+ K] (4.50)

is called the effective stiffness matrix or pseudo stiffness matrix and the effective load

vector can be defined by:
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1= b+ o)+, {eh oo ) 10l wos el wnfe)) (45D
Note that for a linear structural problem with constant properties, the pseudo

stiffness matrix [k ] and the constants b; are calculated only once. It is noted that

Newmark’s method is unconditionally stable if:

2272 (4.52)

|~

1 1 4 .
when = " and y = E the method is called the constant-average acceleration method

(Weaver and Johnston 1987).

In nonlinear problems where [M ], [C] or [K ] are time variant, the system
becomes nonlinear and a state of dynamic equilibrium given in Eq. (4.39) will generally
not be achieved at time ¢+ At. For this type of problems, the Newmark’s method is
modified to accommodate an iterative process in each step or in some of the steps. For
nonlinear systems it is convenient to write the equations of motion in the incremental

form. The incremental displacement, velocity and acceleration vectors at time ¢ + At and

iteration (i + 1)”‘ required to achieve equilibrium may be written as:

{6 X }iH = {x }lt:rrlAt - {x }i+At (4.53)
{8x}i+1 = {x }iii&t - {x };+At (4.54)
Py ={efly -5 (4.55)

Substituting Eqs. (4.45) and (4.46) into Eqgs. (4.55) and (4.54) respectively, the
incremental acceleration and velocity vector can be reduced to the following form:
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Bt =pfor” (4.56)

B¥ =b, e} (4.57)

The system equations in incremental form of motion for the (i + 1)"’ interval may

be written as:

(MK xF" +[Cla B2 + K], B2} = BF ) (4.58)

Now considering Egs. (4.56) and (4.57), Eq. (4.58) can be simplified to the

following form:

[R]" =" = fF Y (4.59)

where the updated stiffness matrix is determined by

k] =[k),. +6M]+p,[C], (4.60)

It is noted that the mass matrix remains constant ciuring t + At since the mode] for
the MR damper proposed in the Section 3.6.1 modifies only the damping and the stiffness
matrices. The right term in the above Eq. (4.59) is the unbalance force vector which is the
difference between the forces at time ¢+ At before and after the matrices C and K are

updated. It can be expressed as:

{SF}i = {F }I+Al - [M]{f}§+At - [C]i+At {x}i+At - [K]iﬁ—At {x}i+At (4'61)

The Figure 4.5 illustrates the proposed Newmark procedure formulated for
nonlinear system. The above incremental form is embedded into the Newmark algorithm

in order to ensure that the equilibrium equations are held at each time interval.
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Figure 4.5. Newmark’s method with iterative process for nonlinear systems
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For nonlinear dynamic structural; analysis, it is found that the constant average-
acceleration method is stable and yields enough accuracy. Although this method works
accurately, it is not as efficient as the mode superposition method for linear system

problems (Wilson 2002; Bathe and Wilson 1976).

4.5. Description of the experiment

In this section the proposed model for the MR damper and its corresponding finite
element model is validated with a 3-D structure is exposed to different excitations. The
structure is a aluminium truss space assembled from the commercial available hardware
Meroform M12 manufactured by MERO. Figure 4.1 and Figure 4.6 show the details of
the frame nodes and elements that are used to build the structure. The nodal joint design
allows the structure to be assembled into numerous configurations in any of threé
orthogonal directions, thereby providing structures with variety of configurations. The
elements are aluminium tubes with screwed solid steel end connectors, which when
tightened into the node also clamp the tube by means of an internal compression fitting.
Thus, any element member can be replaced without disassembling the whole structure.

This feature allows installing the MR damper easily in any required location.
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Figure 4.6. Details of a typical space truss spherical node.

Figure 4.7 shows the complete geometric configuration of the test article with the
associated node numbers. It consists of a four-bay space truss structure. Each assembled
bay is a 0.707 cube shaped structure. A correct assemblage is important because of the
fact that the joint connections exhibit some level of flexibility. It is evident that the
flexibility is severely affected by the tightening torque. Accordingly, to have a consistent
assembling procedure in order to reduce the joint modeling errors, the space structure has

been assembled at an optimum tightening torque of 22.6 N m (Zaher 2002).

The structure is mounted on a hydraulic shaker through a cross-type fixture as
shown in Figure 4.8. A mass of 1.44 kg has been attached to the free nodes 3, 4, 7, 8, 9-
12 and a mass of 2.88 to the free nodes of 13-20. The nodes 1, 2, 5 and 6 are fixed to the

shaker.
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Figure 4.8. Set-up of the experimental test.
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In Figure 4.9 shows the schematic description of the experimental setup. The
structure is mounted on four points on a hydraulic shaker. The step, harmonic and
random vibration signals are introduced to the shaker through signal generator. Two
accelerometers are properly instrumented to measure the input and output accelerations.
The first accelerometer (input) is mounted on the plate that supports the structure and the
second (output) is located on the structure at node 19. The signals from accelerometers
are properly amplified and then fed into the Signal Analyzer unit to obtain the

transmissibility spectrum in the frequency domain.

The MR damper has been embedded into the structure between the nodes 8 and
12. The relative velocity between two ends of MR damper is obtained by the Linear
Velocity Transducer (LVT) sensor which is installed in parallel with the MR damper. The
signal from LVT is then filtered and introduced to the PC where a control strategy using
the Simulink Toolbox of MATLAB has been developed. The output signal from the
control is fed into a Power Amplifier Circuit to provide the controlled current excitation

(current maximum value of 1.5 A) to the MR damper.

The connectivity for each element of the structure is provided in the Table 4.1

which is used to construct the FEM matrices of the structure.

The nominal physical properties of the structural components including lumped

masses are listed in Table 4.2.
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Table 4.1. Connectivity of the structure

Element Element
Node 1 Node 2 Node 1 Node 2
Number ‘Number
1 1 5 29 11 15
2 2 6 30 12 16
3 3 7 31 9 11
4 4 8 32 10 12
5 1 3 33 9 10
6 2 4 34 11 12
7 1 2 35 9 12
8 3 4 36 13 11
9 1 4 37 14 12
10 5 3 38 10 13
11 6 4 39 12 15
12 2 5 40 13 17
13 4 7 41 14 18
14 5 9 42 15 19
15 6 10 43 16 20
16 7 11 44 13 15
17 8 12 45 14 16
18 5 7 46 13 14
19 6 8 47 15 16
20 5 6 48 13 16
21 7 8 49 13 19
22 5 8 50 14 20
23 5 11 51 13 18
24 6 12 52 15 20
25 5 10 53 17 19
26 7 12 54 18 20
27 9 13 55 17 18
28 10 14 56 19 20
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Figure 4.9. Schematic set-up of the test.

Table 4.2. Physical properties of the frame components

Dimension C ross- Weight
Component (mm) sectional Area (Kg)
(mm2) g
Lumped mass - - 1.44
Aluminum node ® 46 - 80
X Yand Z-bar | o050, 30,1 5 1343 350
element
Diagonal
1000x22x1.0 65.97 275
member

149



4.6. Validation of the proposed finite element bar model of the passive bar

In this section the response of the structure obtained using the finite element
analysis of the proposed model is compared with that obtained in experimental test. For
this purpose, the 3-D structure with 56 elements and four bays is mounted on the
hydraulic shaker and it is excited with different signals inputs. Different experiments
were performed to validate the finite element model proposed in the Section 4.3. In the
first experiment the structure was excited under random vibration and the input and
output responses were measured using accelerometers installed in the plate that supports
the structure and at the node 19 respectively. Both accelerometers were properly installed
in order to measure the Z-direction acceleration. The element 17 is removed and later

replaced by the MR damper for subsequent experiments.

Table 4.3. Propeties of the finite element bar elements

E1,E3
Property (connections) E2 (bars)
Young's modulus | 7.9 (Aluminium) | 67¢9 (Aluminium)
(N/m?)
Density (Kg/m3) 2700 2700
: 0.030 X,Y,Z
Exterior Diameter (m) 0.011 directions) 0.022
(diagonals)
0.0015 (XY, Z
Thickness (m) 0.00035 directions) 0.001
(diagonals)
0.579 X,Y,Z
Length (m) 0.064 directions) 0.872
(diagonals)

As previously mentioned in the finite element model of the bar elements the bolt

connections and the half of the node are represented by the equivalent bars E1 and E3.
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Their equivalent physical properties as well as the properties of the E2 are provided in the

Table 4.3.

The transmissibility, defined as the ratio of output and input magnitude
accelerations, in Z-axis obtained from the experimental test and finite element model for
the structure without MR damper is presented in the Figure 4.10. The fundamental
damped natural frequency is found to be 9.10 Hz. As it can be realized there is an

excellent agreement between the simulation and the experimental results.

Figure 4.10. Comparison of the transmissibility in Z-axis between the input excitation

and the output at 29-node obtained from experiment.

The proportional damping approach explained previously was applied to
determine the damping matrix. It was considered a damping ratio of 0.16% for all the
modes of vibration to match the transmissibility amplitude of the model with the
experimental data. When proportional damping is applied, it is found that the higher

frequencies are damped more than those modes with lower frequencies. The natural
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frequencies of the structural systems are usually greatly separated and the effect of the
higher modes in the response of the system is found to be negligible (Kelly 2000; Wilson
2002). The Newmark’s method was applied to obtain the transient response with time

increment of 0.004 s. The control parameters are selected as =025 and y =0.5 in

order to have unconditional stability. The Figure 4.11 shows the comparison of the Z-
acceleration response at node 19 between the test and the simulation. In this experiment
the structure is excited with a step function with amplitude of 0.00254 m and then

released until it reaches the equilibrium point.

time (sec)

Figure 4.11. Comparison of the Z-acceleration for the structure at node 19 under step

excitation.

The second experiment consists of exciting the structure under a harmonic
excitation with frequency of 2.5 Hz and amplitude excitation of 0.004 m. Figure 4.12

presents the comparison between the experimental data and the model response at node
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19. It is noted that the Newmark’s method was employed to obtain the harmonic response
Figure 4.12. Z-acceleration response under harmonic excitation at the node 29.

with a time increment of 0.0025 s.

- time (sec)

Figure 4.13. Comparison of the relative velocity between the nodes 8 and 12.
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For the same experiment, the relative velocity between the nodes 8 and 12, the
position where the MR damper will be installed, was measured. Figure 4.13 shows this

relative velocity obtained for the simulation and experimental results.

As it can be observed the FEM with three elements proposed to simulate each bar
element of the structure reproduce accurately the response under different excitations. It
has been noted that the proportional damping can precisely reproduce the response for the

lower frequencies which are the more important for structural systems.

4.7. Validation of the proposed finite element model for the MR damper bar

element

Now the finite element of the MR damper bar proposed in Section 4.2 is
validated. The model response is compared with the data extracted from the laboratory
tests. As previously discussed the proposed model for the MR damper bar contains five
elements. The physical properties for the connecting elements E1 and ES are the same as
those for E1 and E3 provided in Table 4.3. The E2 and E4 are solid bars of Aluminium
with diameter of 0.012 m and length of 0.187 and 0.200 m respectively. The MR damper
was installed in the middle position as E3; thus, an initial compressed force is considered
in the model. The model proposed in the Section 3.6 is used to simulate the hysteresis
force experienced in the MR damper. Thus, the values that characterize the MR damper
response are similar to those obtained in that section. This requires information regarding

the maximum displacement x_,, and excitation frequency ® information as inputs. For

max
transient problems the excitation frequency was considered to be the first natural

frequency. It is noted that the response is mainly dominated by the first fundamental

154



mode as it can be observed from Figures 4.10 and 4.11. For the case of harmonic
excitation, the frequency employed for the MR model is the same as that of the input

excitation.

The instant maximum velocity is approximated using information obtained from

instant displacement, x, velocity, X and acceleration, X, as (Wang et al. 2003):

i =KD+ (4.62)

Using Eq. (4.62) the maximum displacement can be obtained as:

/W (4.63)

Since the inclusion of the MR damper into the space structure converts the linear
system into nonlinear, the solution of the model is obtained using the Newmark’s method
reformulated for nonlinear problems as explained in Section 4.4. The time increment
applied to acquire the transient response is 0.0025 s and 0.0095 s for harmonic excitation.
This time integration method was complemented with an inner iterative process to solve
the non-linearity of the problem due to the nonlinear MR model and maintain the

equilibrium between the forces at any time step.

Figures 4.14 -16 show the comparison between the model response and the
experimental data due to a step excitation of 0.0254 m for excitation currents of 0.0, 0.75
and 1.50 Amps. As it can be observed the vibration is damped out fast when the current
excitation becomes larger. Examination of the results reveals that the fundamental natural
frequency of the structures increases insignificantly from 9.10 Hz when the MR damper
is not installed to 9.13 Hz when MR damper is installed with not current excitation. The

fundamental natural frequency of the structure with embedded MR damper increases
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lager current excitation. The first natural frequencies are found to be 10.06 and 10.38 Hz

for 0.75 and 1.5 Amps respectively and excellent agreement with those obtained from

experimental test.
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Figure 4.14. Comparison of the relative acceleration at node 19 with current excitation

of 0.0 Amps.
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Figure 4.15. Comparison of the relative acceleration at node 19 with current excitation

of 0.75 Amps.
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Figure 4.16. Comparison of the relative acceleration at node 19 with current excitation

of 1.50 Amps.
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The next experiment consists of exciting the structure under harmonic excitation
with frequency of 2.5 Hz and amplitude of 0.004 m. The current excitation for the MR
damper is 1.5 Amps. The comparison between the experimental data and the proposed
model is shown in Figure 4.17. The experimental data was obtained from the

accelerometer installed at node 19.

Figure 4.17. Comparison of the acceleration at node 19 under harmonic excitation of 2.5

Hz with excitation current of 1.50 Amps.

The relative velocity measured by the LVT installed at both ends of the MR
damper is also extracted and compared with the theoretical results as shown in

Figure 4.18.
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Figure 4.18. Comparison of the relative velocity at both ends of the MR damper under

harmonic excitation of 2.5 Hz and excitation current of 1.50 Amps.

As it can be observed, a good agreement exists between the experimental data and
the proposed models of the structure and the MR damper. It can also be realized from the
figures that the amplitude and the fundamental natural frequency of the response has been
well predicted by the model. Thus finite element model proposed for the element bar and
the MR damper bar can be applied with confidence to predict the response of the

structure for variable excitation conditions.
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CHAPTER 5
THE PERFORMANCE EVALUATION OF THE

PASSIVE AND SEMIACTIVE DAMPING IN
VIBRATION SUPPRESSION OF DISCRETE
STRUCTURES

The vibration suppression in structural systems can be accomplished by passive,
active and semiactive ways. The passive manner mainly includes the installation of
heavy, viscoelastic damping devices to mitigate the damaging effects of the vibration. -
Although these devices have proved effectiveness for specific conditions, they have the
drawback that they cannot adapt themselves to changing environments. Another much
cheaper passive manner is through optimum design of the structure so that it has intrinsic

passive vibration characteristics.

Active systems can adapt themselves to different loading conditions and to
suppress different vibrational modes of the structure; however, the high cost, the large
external sources, the instability due to the injected energy and the preference by
traditional technology have limited its applications. On the other hand, the semiactive
system is a safe and trust manner system to suppress the structural vibration as it can
adapt itself to changing environments while not requiring large external sources. In this
chapter the passive and semi active suppression of vibrations are explored. The passive
suppression has been achieved efficiently trough the redesigning of the structure so that it

can intrinsically damp out the vibration. The optimum design of the structure to minimize
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the vibrational energy is achieved using Genetic Algorithms (GAs). Moreover, the
implementation of a Magnetorheological (MR) damper to reduce the vibration is
performed in passive and semiactive manner. Furthermore, the optimum placement of the
MR damper is investigated. Finally, semiactive strategy is implemented to improve the

performance of the structure and to achieve a lengthening effect on the MR damper.

5.1. Passive reduction of vibrations in structures via optimum shape

Traditional techniques to reduce vibration are to increase the mass and/or
damping; however, the former is normally in violation with design goals, and the latter is
the most regularly applied passive technique. Another recent developed way is to apply
active control to produce countervibrations in order to reduce vibration (Anthony et al.
2000b). Alternatively the vibration transmission can be reduced by dynamically isolating
the structure where it is practically applicable. The problem of minimization of vibrations
of structures subjected to periodic loading is also of great importance since many sources
of vibrations are periodic forces due to rotating components (Jog 2002). In this part the
different shapes of the structures are explored to reduce the transmitted vibration in the

structures due to an external excitation.

The minimization of the vibration can be made locally or on the whole structure.
Here the objective function is to minimize the total vibration. In order to have more
robust final optimum designs, the optimization is performed over a range of frequencies
that includes the lower natural frequencies which are the most important components in

the total structural response. Therefore, the objective function is to minimize the total
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vibration represented by the performance index f over a range of frequencies which can

be mathematically expressed as:

Minimize

flx,m) = j;‘;f ¥ W e tdo (5.1)
subject to:

a; <x; <b, ' (5.2)

where [W] is a prescribed weighting matrix associated with nodal displacement {x } and
a; b, are lower and upper limits for the search space which are taken from nodal

coordinates of the original structure. The purpose of weighting function is to emphasize

certain portions of the structure.

The optimization process is applied to the structure shown in Figure 4.7 which is
the original structure. The structure is fixed at nodes N1, N2 and N6 and excited
harmonically at N5 in Z-direction with amplitude of 0.005 m. A range of frequencies
between 0 to 40 Hz is evaluated to determine the objective function. It is assumed that the
design nodes are N7, N8§,..., N16. Two cases are studied. In the first case it is assumed
that the limits for search space are +/- 0.16 m from the original coordinates. In the second
case the limits are expanded to +/- 0.32m. The effect of the probability of reproduction
employed in the evolutionary process is also investigated. It was assumed the identity

matrix as the weighting matrix.
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Optimum solutions have been obtained using GAs. The parameters used in GAs
process and optimum results for both cases 1 and 2 are provided Table 5.1. The
effectiveness of GAs can be realized as the number of analyzed structures is much lower
vthat the design space in both cases. For example, for Case 1 the number of analyzed
structures using GAs is 3750 compared to 1.427e45 possible solutions. Total vibration for
both cases is very small compared with the original structure. The performance vibration
function for the original to structure is 1.4429 m*-Hz compared to 0.2925 m*-Hz and

0.0306 m>-Hz for the Case 1 and Case 2, respectively.

Table 5.1. Parameters and results of the GAs process

Parameter Case 1 Case 2
Space solution 1.427e45 1.532e54
Probability of crossover and | 0.8 and0.005 0.8 and0.005
mutation respectively respectively
Probability of reproduction 0.2 0.2,0.52and 0.8
Initial population 50 50
Bits. of the chromosome 150 180
Analysed structures 3750 3750
CPU time (s) 1281 1316
Solution (m”-Hz) 0.2925 0.0306

The history evolution of the best chromosome is shown in Table 5.1. For the
reproduction operation of GAs, the methodology proposed in the Section 2.3.2.4. has
been applied. The result shows how the probability of reproduction can control the rate of
convergence. The proper selection of the probability of reproduction allows to avoid the

situations where the chromosomes becomes clones very fast due to of the existence of a
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very good element or the opposite case where the convergence 1s very slow when the

population becomes homogeneous.

Figure 5.1. Optimum solution history for different probability of reproduction P,=0.2,
0.5 and 0.8 in Case 2.

The original and final coordinates of design nodes for Case 1 and 2 are tabulated
in Table 5.2. The corresponding final optimum configuration of the structure for Cases 1

and 2 are shown in Figure 5.2 and Figure 5.3 respectively.
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Table 5.2. Coordinates of the design nodes for the original and the optimum

structures (m)

Nod x | v | z [N X | Y | z
Original | 0.707 0 0.707 Original | 1.414 | 0.707 | 0.707
7 Casel | 0.827 | -0.150 | 0.557 | 12 | Casel | 1.554 | 0.807 | 0.587
Case2 | 1.027 | -0.090 | 0.407 Case2 | 1.664 | 1.007 | 0.487
Original | 0.707 | 0.707 | 0.707 Original | 2.121 0 0
8 Casel | 0.557 | 0577 | 0.867 | 13 | Casel | 2.011 | 0.060 | -0.060
Case2 | 0.407 | 0.737 | 0.407 Case2 | 2.181 | 0.270 | 0.210
Original | 1.414 0 0 Original | 2.121 | 0.707 0
9 Casel | 1514 | -0.14 | -0.15 | 14 | Casel | 1.971 | 0.607 0
Case2 | 1.384 | 0.050 | -0.110 Case2 | 2.241 | 0457 | 0.290
Original § 1.414 | 0.707 0 Original | 2.121 0 0.707
10 | Casel | 1.404 | 0.687 | 0.110 | 15 | Casel | 2.201 | 0.140 | 0.557
Case2 | 1.164 | 0.967 | -0.010 Case2 2.14‘1 -0.300 | 0.597
Original | 1.414 0 0.707 Original | 2.121 | 0.707 | 0.707
11 | Casel | 1.264 | 0.090 | 0.867 | 16 | Casel | 2.011 | 0.667 | 0.557
Case2 | 1.664 | 0.070 | 0.917 Case2 | 2321 | 0.807 | 0.977
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The variation of the performance vibration function versus frequency is shown in
Figure 5.4. As it can be realized, the performance function has reduced drastically for
optimized structures (Cases 1 and 2) in comparison to the original structure. Performance
of optimized structures with respect to original structure may be better visualized in
Figure 5.5 where the transmissibility has been shown for original and optimized

structures.

The transmissibility is defined as the ratio of the norm of nodal acceleration of

node 19 to the norm of the nodal input acceleration of node 5, which can be represented

by:

_ M (5.3
lesH

Transmissibility =

Ob_[ectlvefunuan(n?Hz)

(] — o

Y

.. 15 - 20

Figure 5.4. Performance function versus frequency range.
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Figure 5.5. Transmissibility of the vibration for the original and optimized structures.

It is observed that optimally shaped structures reduce drastically the vibration
transmission in structural system. It is noted that the final optimum structures may not be
practically realizable due to other design restrictions. Considering Figure 5.5, it.should be
noted that at zero frequency, the transmissibility for the original and optimized structures
are not 1 as one may be expected. The reason is that the structure is fixed at nodes N1,
N2, N6 and vibrated harmonically at node N5. At zero frequency, a displacement applied
at node N5 will cause a different displacement at node N19 and it can be realized that the
ratio of the norm of these two displacements is not equal to unity. To conclude, the
traditional periodic design is particularly bad design with respect to the transmission of
vibrational energy. The peri'odicity of the structure, whilst being on favourable aesthetic
grounds, allows similar frequency components, that would propagate relatively

unimpeded through one bay section, through all the bay sections. This study shows that
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with geometry optimization of the structure, it is possible to have optimized structure

with intrinsic passive vibration filtration characteristics.

5.2. Passive reduction of vibrations in structures via MR dampers

The controllable fluids dampers can work in semiactive or passive manner by
controlling or keeping constant the current excitation. In this part the passive application

of MR dampers to reduce the vibration is investigated.

To measure the effectiveness of the MR damper to suppress the vibration, a
performance index is defined. The following displacement part of performance index
frequently used in control for the Linear Quadratic Regulator has been employed (Qu et

al.; 2002):

Fn = [ F B e 64

This performance index, which will be referenced as total vibration, can be

applied to measure the global vibration of the whole structure if all the components of the
displacement vector, {x}, are considered or to measure the local vibration if only the

components of the interested nodal displacement are considered. Here, both global and

local vibration and compared.

Simulations for three different positions of the MR damper are accomplished. The
selected positions are lower horizontal, upper horizontal and diagonal elements numbered
as 14, 17 and 24 respectively. For each position, the response of the system for each

current excitation of 0.0, 0.75 and 1.5 A and under step and harmonic load applied on the
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nodes 1, 2, 5 and 6 has been studied. All simulations were obtained using Newmark’s
method with time increment of 0.0004 s for transient case and 0.00125 s for harmonic

case.

Figures 5.6-5.8 show the Z-displacement response of node 19 under step input
when the MR damper located at positions of elements 14, 17 and 24. Table 5.3 presents
the local and global performance index values calculated for interval time of 2 s for each

position of the MR damper.

Figure 5.6. Z-displacement response of node 19 with MR damper located at element 14

under step input.
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Figure 5.7. Z-displacement response of node 19 with MR damper located at element 17

under step input.
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Figure 5.8. Z-displacement response of node 19 with MR damper located at element 24

under step input.
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Table 5.3. Global and local vibration and for the node 19 under step excitation

Current Position 14 Position 17 Position 24
(A)
Global Node 19 Global Node 19 Global Node 19
0.0 5.179¢-3 | 14.812e-4 | 5.211e-3 | 24.285¢-4 | 5.192e-3 | 15.751le-4
0.75 5.170e-3 | 5.032e-4 | 5.181e-3 | 9.5333e4 | 5.173e-3 | 5.878e-4
1.50 5.167e-3 | 4.563e-4 | 5.178e-3 | 7.729e-4 | 5.172e-3 | 5477e-4

As it can be observed, the position of the MR damper plays a very important role

in vibration suppression of the structure. The results suggest that among the three

positions analysed, the position 14 is the ideal for the installation of the MR damper as it

causes the lowest performance index. Moreover, it can be realized that current excitation

of 1.5 A has the lowest local and global vibration values.

Figure 5.9-5.11 show the Z-displacement of node 19 under harmonic excitation

with frequency of 7.5 Hz and amplitude of 0.0127 m for three levels of current excitation

and the three selected positions of the MR damper. The global and local vibration for

each MR damper position under harmonic excitation are also tabulated in Table 5.4.
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Figure 5.9. Z-displacement response of node 19 with MR damper at position 14 under

harmonic excitation.
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Figure 5.10. Z-displacement response of node 19 with MR damper at position 17 under

harmonic excitation.
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Figure 5.11. Z-displacement response of node 19 with MR damper at position 24 under

harmonic excitation.

Table 5.4. Global and local vibration for the node 19 under harmonic excitation.

C“(‘Z)e“t Position 14 Position 17 Position 24
Global Node 19 Global Node 19 Global Node 19
0.00 2.114e3 | 20.661e3 | 6.263e3 | 36.371e3 | 4.212¢.3 | 26.481e-3
0.75 17993 | 18.234e3 | 4.875¢3 | 31.671e-3 | 3.806e-3 | 24.977¢-3
1.50 172333 | 17.599¢-3 | 4.517e3 | 30.346e3 | 3.739e-3 | 24.730e-3

Close examination of the results reveals that the position 14 with an excitation

current of 1.5 is the best condition for the analysed cases under harmonic excitation

which is similar to that of previous case for step excitation. It is concluded that the

effectiveness of the MR damper heavily depends on its location. Thus, it is very
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important to find the optimum location of the MR dampers in design optimization of

semiadaptive structures for vibration suppression.

5.3. Semiactive reduction of vibrations in structures through MR dampers -

performance evaluation

Semiactive devices can control the state of systems such that their inherent
damping characteristics are enhanced. Using semiactive approach, vibration is suppressed
by passive energy dissipation mechanisms. Therefore, systems are always stable even
with improper selection of control logic due to, for example, lack of exact information

about the dynamic characteristics of the structure (Onoda et al.; 1997).

In this section a strategy has been proposed to evaluate the reduction of the
vibration in discrete structures through MR dampers. The proposed strategy employ the
absolute velocity at the end of the MR damper in local coordinates and the hysteresis
force experienced by the MR damper. It assigns maximum current when the both velocity
and hysteresis force have the same sign and zero when the sign of both is different. This

proposed strategy can be stated as:

{1 when X;F, >0 5.5)

max
l when )'chZ <0

min

Different simulations are carried out to validate the proposed strategy. First, the
structure is excited with harmonic excitation. The amplitude and frequency of the
excitation are selected to be 0.0127 m and 7.5 Hz, respectively. The position of element

15 is chosen for installation of the MR damper. The simulations were performed using
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the Newmark’s method with time increment of 0.0015 s. The absolute Z-displacement
response of node 19 has been obtained for three different cases namely response by the
proposed vibration suppression strategy, response for 0.0 A and response for 1.5 A
constant current. The responses for harmonic excitation are compared in Figure 5.12. The
relative displacement of the MR damper is plotted for three cases in Figure 5.13. The

variation of MR damper stiffness k;, and damping ¢, with and without strategy of

suppression is demonstrated in Figures 5.14 and 5.15 respectively. As it can be realized

using the proposed strategy, the vibration has drastically reduced.

The hysteresis loops with and without proposed strategy of suppression for the
case of harmonic excitation are shown in Figure 5.16. It can be appreciated how the
strategy modifies the hysteresis loop by giving maximum current excitation when
velocity at the end of the MR damper has the same sign of the hysteresis force and

assuming minimum current otherwise.

The transient response of the structure using the proposed strategy under step
input is also investigated. The structure is excited with the step input of 0.0254 m. The
absolute Z-response of node 19 for the three cases is shown in Figure 5.17. The relative
displacement of the MR damper is also shown in Figure 5.18. The variation of the MR
damper stiffness k, and damping ¢, are also shown in Figures 5.19 and 5.20,
respectively and the hysteresis loops for transient response for all three cases are shown

in Figure 5.21
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Figure 5.12. Absolute Z-displacement of node 19 under harmonic excitation with and

without proposed strategy of suppression.
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Figure 5.13

strategy of suppression.
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nme (s)
Figure 5.14. MR damper stiffness under harmonic excitation with and without proposed

strategy of suppression.

Figure 5.15. MR damper damping under harmonic excitation with and without proposed

strategy of suppression.
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Figure 5.16. Hysteresis force of the MR damper with harmonic excitation with and

without proposed strategy of suppression.

179



 Displacement (m)

Figure 5.17. Absolute Z-displacement of node 19 under step excitation with and

without proposed strategy of suppression.
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Figure 5.18. Relative displacement of MR damper under step excitation with and

without proposed strategy .
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Figure 5.19. MR damper stiffness under step excitation for with and without strategy of

proposed suppression.
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Figure 5.20. Damping coefficient under step excitation with and without strategy of

proposed suppression.
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Figure 5.21. Hysteresis force of the MR damper under step excitation with and without

proposed strategy of suppression.
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The performance index for with and without proposed strategy of suppression
cases under harmonic and transient excitations are presented in Table 5.5. The global and
local vibration (node 19) was obtained during a period of 3 s for the harmonic excitation

and 2 s for the transient response.

Table 5.5. Total vibration of the whole structure and node 19.

I=00A I=150A I=0.0-1.50A

Global Node 19 Global Node 19 Global Node 19

Harmonic | 0.0156 0.0013 0.0201 0.0020 0.0125 0.0011

Transient | 0.0052 0.0028 0.0051 0.00055 0.0051 0.00047

The results show that the proposed strategy of suppression can improve the
performance of the structure. 20% reduction of global vibration is observed between the
case of 0.0 A and the case with strategy of suppression under harmonic excitation. This
reduction is 15% for local vibration at node 19. For the vibration transient response, a
significant vibration reduction has been achieved for the case with the proposed strategy.
15% vibration reduction has been obtained using the proposed strategy in comparison to
case of 1.5 A and this vibration reduction is increased to 80% if it is compared with case

of 0.0 A.

5.4. Optimum position of MR dampers to reduce the vibrations

In this part, the optimum position of the MR damper is investigated. As it was
stated in the Section 5.2, the optimum location of the controllable fluid damper affects
considerably the index performance of the vibration reduction. The assumed index

performance measures the local vibrations and is defined by the Eq. (5.4). The feasible
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design space solution considers only 51 possible locations for the MR damper since the
five positions for the elements are attached to plate of shaker are discarded. From the
previous simulations it was noted that the best results occurs for the maximum current in
transient cases, thus, maximum current of 1.5 A is considered for all the cases. Since the
feasible design space solution is small it was decided to evaluate all the possible positions
instead of using an optimization algorithm. Table 5.6 presents only the best ten positions

of the MR damper.

Table 5.6. Local vibration of the node 19 for differen locations of the
MR damper for transient response

Position | Local vibration Position | Local vibration
(m’s) (m’s)
1 14 0.4562¢-3 5 22 0.7348 e-3
2 15 0.5303 e-3 7 21 0.7351 e-3
3 24 0.5477 e-3 8 19 0.7359 e-3
4 16 0.6754 e-3 9 9 0.7365 e-3
5 25 0.7324 e-3 10 13 0.7379 e-3

Examination of Table 5.6 shows that the position 14 is the optimum position as

performance index vibration is the lowest for this case.

5.5. Application of MR dampers as translational actuator using semiactive strategy

As it has been shown, the hysteresis force of the MR damper is modified by
modifying the excitation current of the MR damper. In this section possible application of
MR dampers as a translational actuators or lengthening effect is explored. It is intended

to show that the MR damper can use the vibration energy to modify its length for
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actuation purposes. The MR damper, with an appropriate current excitation strategy, can
not only act as dissipative energy element but also as active element which can modify its
length. In order to better understand the structural problem, a simplified model is
presented in Figure 4.2. In this scheme, it is assumed that the MR damper is in
equilibrium position; therefore, the initial force considered in the MR damper model is

ZET0.

::4 ko
/¢,

(t At
) 70

Figure 5.22. Schematic representation of the MR damper with input excitation x;

The strategy proposed to achieve the desired effect is based on the relative
velocity between both ends of the MR damper. For the lengthening effect, the strategy
assigns maximum current excitation when the relative velocity is negative and zero

current when the relative velocity is positive. This strategy can be stated as:

I when (%, -%)<0 5.6)
I when (£, -%)20 |

min

when the MR damper is allowed to lengthen and can be state as:

Inwe when (¢, -%)20

max J

{Imin when (Xj —Xi)<0 (57)

when the MR damper is allowed to shorten.
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The simulation has been performed for different excitation conditions to observe
their effect on the final results. For all the cases, the proposed mathematical model of the
MR damper discussed in the Section 3.6. has been used and the solution in time domain
was obtained using the modified Newmark method for nonlinear systems presented in the
Section 4.4.3. The time increment of 0.002 s was selected and the mass m is 200 kg. The

minimum and maximum excitation current is zero and 1.5 A respectively.

Figure 5.23 shows the lengthening effect of the MR damper under harmonic
excitations with frequency of 2.5 Hz and amplitude of 0.00635, 0.0127, 0.01905 and
0.0254 m. It is noted that the relative displacement grows until it reaches the steady state
point about which the MR damper oscillates. The equilibrium length and output
amplitude of the MR damper for harmonic excitation with different amplitudes are

provided in Table 5.7.

Figure 5.24 shows the hysteresis force for an excitation with amplitude of 0.00635
m and frequency of 2.5 Hz. It is noted that the hysteresis curve is shifted up when the
proposed strategy is applied to the MR damper. Similar effect is observed for larger
amplitudes excitations. The maximum and minimum values of the hysteresis force in

steady state for the four amplitude excitations are provided in Table 5.7.
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Figure 5.23. Relative displacement of the MR damper under amplitude excitations of

0.00635, 0.0127, 0.01905 and 0.0254 m and frequency of 2.5 Hz.

The variation of the MR damper damping due to the proposed strategy is
presented in Figure 5.25 for amplitude excitation of 0.00635 m and frequency of 2.5 Hz.
The results shows that the magnitude of the damping coefficient switches from 207 to
76.5 Ns/m periodically and the same phenomenon happens to the MR damper stiffness as
shown in Figure 5.26. The maximum and minimum values for the MR damper stiffness

and damping for different amplitude excitation is presented in Table 5.7.
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Figure 5.24. Hysteresis curve of the MR damper under amplitude excitation of 0.0127 m

and frequency of 2.5 Hz.
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Figure 5.25. Damping in time domain of the MR damper under amplitude excitations of

0.00635 m.
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Figure 5.26. Stiffness in time domain of the MR damper under amplitude excitation of

0.00635 m.

Now the lengthening effect of the MR damper under different frequency
excitations is explored. The frequency excitations of 1.0, 2.5, 5.0 and 7.5 Hz are
considered. The amplitude excitation for all the cases is fixed at 0.00127 m. Figure 5.27
shows the output response for the harmonic excitation with frequencies of 1.0 and 5.0 Hz
and amplitude of 0.0254. Table 5.8 provide the damping, stiffness, hysteresis force,
equilibrium length and output amplitude of MR damper for harmonic excitation with
amplitude of 0.0127 m and different frequencies. It is observed that for higher
frequencies the equilibrium length becomes larger. This is due to the fact that the

hysteresis force depends on the frequency excitation as it was shown in the Section 3.6.
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Table 5.7. Values for the translational effect of the MR damper under different amplitude

excitation and frequency of 2.5 Hz

Amplitude excitation (m)

0.00635 0.0127 0.01905 0.0254
¢ max 398 502 576 635
(Ns/m) | min 147 186 213 234
k, | _max 3976 5023 5760 6350
(N/m) | min 1073 1355 1555 1715
F, | max 353 360 380 405
(N) | min -115 285 422 -553
Equilibrium 0.0403 0.0433 0.0470 0.0505
length (m)
ﬁ‘é?é’ftt?i‘; 0.0019 0.0032 0.0046 0.0059

- Relative Displaceme;:n. M)

L e

.
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———__
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Figure 5.27. Relative displacement of the MR damper under frequency excitations of

1.0 and 5.0 Hz and amplitude of 0.0254 m.
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Table 5.8. Values for the translational effect of the MR damper under different frequency

excitations and amplitude of 0.0127 m.

Frequency excitation (Hz)

1.0 2.5 5.0 7.5
¢, |_max 478 635 795 912
(Ns/m) | min 180 234 293 336
k, | max 4800 6350 7945 9113
(N/m) | min 1300 1715 2140 2456
F, max 295 405 505 600
N) | min -320 553 970 -1440
Equilibrium 0.0442 0.0505 0.0587 0.0758
length (m)
ﬁ‘g’&itt?ie) 0.0207 0.0059 0.0025 0.0016

When the MR damper is installed in the structural system, the effect of the

structural stiffness and damping should be considered. Figure 5.28 shows a simplified

model with structural stiffness & and damping ¢ added to the MR damper model shown

in Figure 5.22. In this part, some simulations are performed to evaluate the effect of the

structural stiffness on the lengthening effect of the MR damper. To accomplish this, four

different values of stiffness 0, 1000, 10000 and 100000 N/m were considered. The

structural damping ¢ is neglected since it is small compared with the damping of the MR

damper
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Figure 5.28. Schematic representation of a MR damper with an additional structural

stiffness and damping.

Figure 5.29 shows the lengthening effect for zero and 1000 N/m structural
stiffness under harmonic excitation with frequency of 2.5 Hz and amplitude of 0.0254m.
The complete results are tabulated in Table 5.9. It is observed that the lengthening effect
is seriously affected by the structural stiffness. In fact equilibrium length decreases from

0.0505 to 0.0026 m for zero and 100000 N/m structural stiffness, respectively.

Further the proposed strategy is applied to modify the length of the MR damper
located at position 17 of the structure presented in the Section 4.5. The structure is

harmonically base-excited at different frequencies and amplitude of 0.0508 m.
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Figure 5.29. Translational effect of the MR damper for different structural stiffness & .

Table 5.9. Values for the translational effect of the MR damper for different structural
stiffness uncer excitation frequency of 2.5 Hz and amplitude of 0.0254 m

Structural stiffness (N/m)

0 1000 10000 100000
¢ max 635 639 684 588
(Ns/m) | min 234 236 253 217
k, | _max 6350 6385 6835 5880
(N/m) | min 1715 1725 1845 1590
F, max 405 390 374 310
(N) min -553 -580 729 -525
Equilibrium 0.0505 0.0405 0.0165 0.0026
length (m)
Amplitude 0.0059 0.0067 0.0139 0.0469
output (m)

193




Figure 5.30 shows the input excitation and the response calculated in the Z-
direction of the node 19 for an excitation of 5 Hz. The relative displacement experienced
by the MR damper is presented in Figure 5.31. The Effect of the proposed strategy over
the hysteresis loop can be appreciated and compared with the not control hysteresis loop
in Figure 5.32. The variation of the damping and stiffness of the MR damper in time
domain due to the proposed strategy can be seen in Figures 5.33 and 5.34 respectively.
Table 5.10 summarizes all the results of the simulations for the three different cases of
excitation with frequency of 5 Hz with and without the proposed strategy and excitation
with frequency of 7.5 Hz with the proposed strategy. Examination of the results reveals

that that the lengthening effect is very small in the real structure

As it can be observed the equilibrium length of MR damper increases from 0.0 to
0.0005 m for 5 Hz frequency excitation with constant current of 1.5 A and the proposed
strategy, respectively, which is negligible with respect to equilibrium length of the MR
damper when the structural stiffness is not considered. Also as the frequency increases
from 5 Hz to 7.5 no significant increment in steady state point of the MR damper 1s

observed.
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Figure 5.30. Z-displacement response of node 19 for an excitation of SHz with the

proposed strategy.
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Figure 5.31. Relative displacement of the MR damper for input excitation with

frequency of 5 Hz with the proposed strategy.
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Figure 5.33. Damping of the MR damper for the proposed strategy case and excitation
of 5.0 Hz..
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Figure 5.34. Stiffness of the MR damper for proposed strategy case and

excitation of 5.0 Hz.

The lengthening effect caused by a proper strategy was proved in this section. It
was shown that the magnitude of the equilibrium length depends on the frequency and
magnitude of the excitation. Unfortunately, a significant practical limitation is the
structural stiffness. It was shown that the lengthening effect is pronounced well for
systems with small structural stiffness; however, when the MR damper is implemented in
a real structure, the lengthening effect is small due to the stiffness of the structure.
Furthermore, it is noted that structure requires large excitation in order to achieve the

lengthening effect.
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Table 5.10. Values for the translational effect of the MR damper for different

structural stiffness and amplitude of 0.0508 m

Excitation
5 Hz (without 7.5 Hz (without
> Hz (constant) proposed stratefy ) | proposed stratefy )
Co max 484 494 933
(Ns/m) | min 484 183 344
k, max 4844 4935 9330
(N/m) | min 4844 1336 2513
F, max 355 250 660
(N) | min -355 -367 -1745
Equilibrium
length of the 0 0.00053 0.0011
MR damper(m)
Z- equilibrium -0.0041 -0.0055 -0.0059
output (m)
Z-amplitude 0.0721 0.0735 0.151
output (m)
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

The present thesis constitutes an in-depth fundamental and experimental
investigation in structural design optimization and vibrations suppression of adaptive
structures. New mathematical modelling and optimization algorithms have been
developed and integrated into a structural analysis and optimization tool to study the
static and dynamic response of the system. From the design optimization prospective, an
efficient and practical methodology to find the simultaneous size, geometry and topology
optimization has been developed. For vibration suppression point of view, application of
magnetorheologic (MR) damper to suppress vibration in space discrete structures and
also a new concept of MR damper have been introduced. Meanwhile a new strategy has
been developed for an efficient vibration suppression. The proposed mathematical

models are finally validated with experimental study.

The nature of studied structural optimization problems is highly nonlinear and
non-convex and many local optimum points exist. Gradient based techniques such as
modern Sequential Programming Techniques have some deficiencies to handle these
types of problems. Furthermore, the existence of discrete variables makes then
inappropriate techniques for specific problems. The main disadvantage of the gradient

based techniques is that they may get trapped in local optimum, without having a
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mechanism to climb out of the local optimum. Considering this, these methods may fail
to discover a more global optimum solution. To alleviate this problem and also due to
discrete nature of the optimization problem, Genetic Algorithms (GAs) combined with
finite element method has been used to analyse and optimize the structural systems.
Reproduction operation is one of the most critical steps in the optimization process of
GAs. The roulette-wheel selection is usually applied to give higher chance to individuals
with higher fitness values. However, the drawbacks of this technique is that a very good
element may lead to have clones early far from the optimum point or a uniform
population may make the convergence slow. One contribution of this work was to
propose a new approach which can solve the previous drawbacks. In the proposed
approach a probability of reproduction, which can control the rate of convergence, has
been developed. The proposed modified GAs has been employed in the solution of

practical structural design optimization problems.

GAs was applied to find the optimum solution for constraint structural problems
with discrete and continuous variables. First, the optimum position and actuator action for
adaptive structures under varying load has been studied. The advantage of GAs with
respect to the published works based on the gradient based methods is that the maximum
actuator action can be specified and the position of the actuator can be included as design
variable. Second, a new methodology is proposed to find the optimum design of real life
structures. This methodology considers that the whole structure is built with the repetition
of single bays. This will cause the number of design variables to be reduced drastically;
thus, reducing the computational time and the search space solution significantly.

Furthermore, the final design respects the AISI standards and uses few commercial
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profiles which makes it more cost effective. The final optimum solution was found using
proposed improved GAs with multicriteria objective function. Appropriated penalty
function has been introduced to convert the constrained problem into the unconstrained

problem. The final results were validated with those available in the literature.

“In this study, application of semiactive control using MR dampers to suppress the
vibration of space discrete structure has been studied. A methodology to find the
characteristic parameters of the Bouc-Wen model in an attempt to better characterize the
hysteresis phenomenon of MR dampers has been proposed. It was shown that the
relations to determine directly the characteristic parameters of the Bouc-Wen model can
be derived from the key information of the experimental data. The proposed methodology
avoids applying any optimization method to match the model with experimental curves
and thus eliminate the possible errors from the optimization procedure. The proposed
methodology has been validated against experimental results and excellent agreement has

been found.

From the derived characteristic parameters and their variation with current
excitation, it was shown that these parameters vary linearly or exponentially with respect
to current excitation. Furthermore, it was observed that the hysteresis force for the MR
damper is also sensible to the amplitude and the frequency of the excitation and it was
found that parabolic curves could describe that phenomenon. All these relations were
incorporated in a new nonlinear model for the MR damper which includes the current,
amplitude and frequency excitation as input variables. An error analysis was performed
to validate the proposed model against the experimental data and very good agreement

was found making the proposed model reliable for the semiactive control application.
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Subsequently, the MR damper was incorporated to the structure in order to
suppress the vibrations. To accomplish this, a finite element model for the passive bar
element was proposed. The element consists of a truss element with three members to
simulate the node bolt connection of the test structure. Next, the finite element model of
the MR damper has been developed and its correspondent local and global matrix
formulations have been derived. To solve the finite element formulation with embedded
MR damper, the unconditional stable time integration Newmark method was modified by
adding an inner iterative process to overcome the nonlinearity and to assure the
equilibrium forces in each time step. To find the proportional damping ratio and to
validate the proposed finite element model for the passive and MR damper bars, a space
discrete structure with four bays was fabricated and tested on a hydraulic shaker. The
good agreement between the experimental and simulation results validates the proposed

finite element for the bar and MR damper bar.

The developed finite element model was then employed to study the performance
of the vibration suppression strategy in structural systems. First, the passive vibration
reduction through optimum shape was investigated. It was shown that it is possible to
redesign the load bearing structure so that it has intrinsic passive vibration suppression
characteristics. In order to ensure robust final designs, the global vibration over a range of
frequencies was considered. GAs were applied to find the final optimum design to reduce
the global vibration. It was concluded that the structures with repetitive bays are structure
with high vibration transmission characteristics. Also, it was shown that the structures
with small perturbations in their nodal configurations can significantly reduce the

transmissibility. However, it may not always represent a practical solution.
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The passive application of MR damper to reduce the vibration in structures was
also studied. The response of the structure with different constant current excitations and
MR damper positions was simulated. It was concluded that the effectiveness of the MR
damper is highly influenced by not only the current excitation but also it its location. Also
it was observed that the local vibration in comparison to the global vibration is a better
performance index to characterize the effectiveness of the MR damper. The optimum
location of the MR damper in order to maximize its effectiveness in the vibration

reduction was also studied.

Finally, two semiactive vibration suppression strategies were proposed. First, a
strategy was developed to improve the performance of the MR damper to reduce the
vibration. This strategy considers the signs of the absolute velocity of one end of the MR
damper in local coordinates and the hysteresis force. If the hysteresis force is in phase
with the velocity, maximum current is applied otherwise minimum current is assumed.
This semiactive vibration suppression strategy was applied and compared with the cases
were the MR damper is working in passive way. It was observed that the proposed
strategy reduces the local and global vibration. Second, a proposed semiactive vibration
suppression strategy has been used to generate an translational effect on the MR damper.
The concept involves the removal of the vibration energy from the structure to produce a
translational action. For this objective, the vibration suppression strategy assumes
maximum current when the relative velocity of the MR damper is positive and zero
current excitation when the relative velocity is negative and viceverse to achieve the
opposite effect. The influence of the frequency and amplitude excitation as well as the

structural stiffness over the lengthening effect was also studied. It was proved that the
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proposed strategy can produce the actuation effect. However, it was shown that the
structural stiffness has significant influence on the actuation effect of the MR damper

makes its application limited.

6.2. Recommendations for future work

The research work presented in this dissertation is intended to contribute in the
developing of design optimization methodologies and suppress vibration strategies in
structural systems. It is expected that this study accelerate the implementation of design
optimization in practical designs. Also, it is expected that the present dissertation
motivates the study and the practical implementation of MR dampers to reduce the
vibration in large scale structures and mitigate damages and dangerous situations. Some
recommendations are stated for further research in the topics of optimum design and

implementation of MR damper:

In this study a new methodology to optimize the structures from the repetition of
individual bays was proposed. Although the final designs are practical, the possible
commercial application has yet some limitations. For instance, tapered structures or
sometimes the inevitable shape changes due to physical restrictions may be required. It is
recommended to complement the proposed methodology with all practical cases and

develop a robust design optimization algorithm to handle large scale problems.

It is known that the time response of MR dampers is large compared with other
active actuators such as piezoelectric actuators. This is a challenging area for material
researchers and designers. From material point of view, it is recommended to improve the

rheological properties of rheologic fluids as well as thickening phenomenon of the MR
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fluids which is a strong limitation of an extended application in areas such as automobile
suspensions. From design perspective, it is recommended to develop new designs to
reduce the response time of the controllable devices since the effectiveness of semiactive

control highly depends on the time response of the MR damper

The proposed model has proved to describe accurately the hysteresis behaviour of
the MR damper and was applied to predict successfully the structural response when it is
embed in a structure. It would be interesting to incorporate the semiactive control
application of the proposed model in car suspensions models in order to improve their

ride performance.

The proposed semiactive strategy has proved to reduce the vibration; however, the
robustness of such control requires further study. Furthermore, the existing nonlinear
feedback control should be implemented with the proposed MR damper model and their
effectiveness be evaluated on the semiactive vibration control of structural systems in

order to fully utilize the capabilities of these unique devices.
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