A Graph Model for Object-Oriented
Programming Languages

Chui, Patrick

A Thesis
in
The Department
of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

August 2005

© Patrick Chui, 2005



Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10283-7
Our file  Notre référence
ISBN: 0-494-10283-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



iii

ABSTRACT

A Graph Model for Object-Oriented Programming Languages
Patrick Chui

Object-oriented programming lacks a simple theoretical foundation. This is manifested by
the abundance of formal models for this programming paradigm. In its simplest form, an
object can be viewed as an internal state plus a set of operations on objects. We use directed
labelled graph, called state graph, to model the run-time behaviour of objects, with nodes
as objects and edges as references to other objects. The graph model, based on conventional
operational semantics, is natural and simple. We are then able to formulate an axiomatic
semantics for reasoning about object-oriented programs. The axiomatic semantics is proved
to be sound and complete with respect to the operational semantics. Our work suggests

that graph is an good candidate for capturing the characteristic features of object-oriented

programming languages.
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Chapter 1

Background

1.1 Introduction

Object-oriented programming lacks a simple theoretical foundation. Any answer to the
question “what is the essence of object-oriented programming” reveals personal preference
rather than objective truth. This gives rise to a wealth of formal models for this programming
paradigm, which is reflected in the survey [Men94]. Since the popularization of object-
oriented programming by Small1Talk!, basic concepts of this paradigm have been interpreted
differently. The situation has been aggravated by the continuing appearance of new object-

oriented languages.

A simple theoretical foundation of object-oriented programming provides a basis for defini-
tion and discussion. We might then determine what are the essential features. For example,
should class be a primitive concepts? It could also be used to give a formal semantics to
obscure concepts with no generally accepted definition. A common framework would let us
compare strength and weakness of object-oriented programming languages so as to develop
new languages with more orthogonal design, and help us find more efficient compilation

techniques.

Because functional programming, founded on A-calculus, is so well understood, many existing
formalisms of object-oriented programming are extensions of A-calculus, often with emphasis
on type-correctness. The problem with functional approach is that it is hard to talk about

state. Even the o-calculus of Abadi and Cardelli [AC96] does not include state as a primitive

!Though, the notion of object as a programming construct first appeared in Simula.
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concept. Further, typing is a static property and is not able to describe run-time features of

object-oriented programming such as dynamic binding.

In its simplest form, an object is some internal state, which is a collection of objects, plus
a set of operations on objects. The internal state is defined by the content of the instance
variables of the object. Each operation, called a method, has a host object. A method name
may be associated with different operations. The actual method body (i.e. operation) to be

executed depends on the run-time identify of the host object. This is dynamic binding.

State is memory configuration. Conventional approach for modelling state is based on ad-
dress locations and values. This is adequate for procedural programming. The state of a
procedural program is simply a list of variables and their content. An object-oriented system,
however, consists of entities interacting with each other. The relationship between objects

is lost.

We model an object-oriented system as a directed labelled graph, called state graph. Edges
are labeled with the names of instance variables or local variables and have a direction. A
vertex represents an object and an edge is a reference or pointer to an object. Such a model
leads naturally to object identity, local state, and dynamic binding, side-effects, aliasing, the

use of self to denote the current object.

We concentrate on systems in which each object is an instance of a particular class. Meth-
ods are defined by classes or via inheritance. We formulate semantic description of object-
oriented programming languages by means of state graph. Semantics is a powerful tool
in studying programming languages. It gives meaning to programs and allows us to rea-
son about programs. Different semantics styles have different applications. Operational
semantics guides language designers and implementers. Axiomatic semantics helps us prove
programs meet specifications. Both semantic styles are therefore useful but they need to be

compatible.

This thesis describes a graph model for object-oriented programming. We give operational
semantics (Section 3.1) and axiomatic semantics (Section 5.1) of a sample language, and
prove that the two semantics are equivalent (Section 5.2.2). Then we discuss related work
(Chapter 6). Our work suggests that graph is a good candidate for modelling object-oriented

languages.
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1.2 Semantic Styles

Semantics is meaning. A computer can execute a program but does not necessarily know
what the program means. People understand programs intuitively: “I use this program to
pay my bills.” Formal semantics is able to rigorously specify the behaviour of programs. The
need for rigor arises because it resolves ambiguities and subtle complexities in apparently
clear defining documents, e.g. language manuals. More importantly, it forms the basis
for implementation, analysis and verification. Over the years, various approaches of giving
meaning to programs have been widely studied. The major ones are operational semantics,

denotational semantics and axiomatic semantics.

1.2.1 Operational Semantics

Operational semantics describes a programming language by defining a simple abstract ma-
chine for it. This machine is abstract because it uses the terms of the language as its machine
code rather than some instruction set of low level hardware. A term is executed against an
initial state? to give a next state. The meaning of the term is taken to be a sequence of
machine states. This approach has the advantage that its rules can be used to generate

interpreters for validating and testing the language definition.

Plotkin’s seminal technical report [Plo81] is generally regarded as the beginning of structural
operational semantics. The use of inductive systems to define programming constructs has
then become a standard style of semantics, as exemplified in the textbooks [NN92], [Win93],
[SK95] and [Pie02], to name but a few.

1.2.2 Denotational semantics

Denotational semantics takes a more abstract view of meaning. A program term is repre-
sented by some mathematical object, such as a number or a function. To define denotational
semantics for a language, one has to search for a collection of semantics domains and then

define an interpretation function mapping terms into elements of these domains.

Originally intended as a mechanism for the analysis of programming languages, denotational
semantics was developed in the mid 1960s by Christopher Strachey and his Programming

Research Group at Oxford University. Dana Scott supplied the mathematical foundations in

2State is also known as configuration.
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1969, which grew into domain theory. A review of the subject, with extensive bibliography,
can be found in [FJM*96].

1.2.3 Axiomatic semantics

Aziomatic semantics, also known as Hoare logic or programming logic, aims at reasoning
about programs. Instead of first describing behaviour of programs by giving some operational
or denotational semantics and then deriving laws from this definition, axiomatic methods
take the laws themselves as the definition of the language. The meaning of a program term
is the relation between an initial condition and final condition, which is what can be proved

about the term. This approach is better suited for verification of program properties.

The idea of verifying the correctness of a program by means of logic originated in the early
work of Floyd [Flo67] and Hoare [Hoa69]. An early concrete application of this axiomatic
technique to programming language specification was Pascal [Hoa74|. The main features of

Hoare logic are summarized in [Apt81], which emphasizes soundness and completeness.

1.3 Deductive Systems

In this section, we give an informal review of deductive or inference system?® that is funda-
mental to the study of semantics of programming languages. An inference system consists of
a collection of inference rules defining one or more judgements. A judgement is an assertion
stating that a property holds of certain object. The inference rules determine the conditions

under which a judgement may be inferred or derived. Rules are written in the form

A A &
J

where the judgements Ji, Js, - - -, J, are called premises, and judgement J is the conclusion.
The notation can be interpreted as follows. If Ji, Jo, -, J, can be inferred, then J can
also be inferred. Alternatively, in order to derive J, we have to first derive Jy, Jy, -+, J,.
Sometimes, rules may stand by themselves without any premise. Such rules are called azioms.

They are written as

J

or simply as J without the premise part, which is empty.

3Variants of the more technical term inductive definition.
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For example, for a string of characters r, the judgement r € R reads r is a regular expression.

Then the axioms
ceR a€R

where « is any character, together with the rules

reR reRr reR reR reR
(rlr) €R (rr) €R (r)*€eR

define a deductive system of regular expressions.

When we use the axioms and rules to derive a judgement J, we obtain a derivation tree.
The root of the derivation tree is J. The leaves are instances of axioms. The internal nodes
are conclusions of rules, with premises of the rules as immediate children. In this case,

judgement J is called derivable.

An important tool to reason about deductive systems is induction on derivation. To show

that a property P holds for all derivable judgements, it suffices to show that for each rule

JioJy oo Jy
J

if Pis true for all Jy,J5 --- J,, then P is also true for J. The assumption that P holds for
every premise of the rule is known as induction hypothesis. In the case of axioms, we need
to establish the conclusion without any assumption. This will be main proof technique used
in this thesis. For detailed discussion of induction in the context of programming language

semantics, see [Win93].



Chapter 2
A Graph Model Language

The call graph for a program P is a directed graph G = (V, F) such that

o V is the set of functions in the program,

e an edge (u,v) belongs to E C V x V iff function u calls function v.

If P is written in FORTRAN, which does not allow recursion, then G has no path that starts
and ends in the same node. On the other hand, if P is written in C or any language that
allows recursion, then GG may have cycles, including self-loops when a function calls itself.

For a procedural program, the call graph can be constructed directly from the program text.

The situation happens to be much more complicated in object-oriented programming. A
term o.m( ) or o—m( ) represents a function call, but the function called depends on the
identity of object o at run-time. Consequently, there is no static call graph for an object-

oriented program.

The concept of state graph, first described in [GG94], models the call graph dynamically.
It is based on the principle that, if an object o can evaluate a member function of another
object o', there must be a link from o to ¢’. This is quite different from procedural languages,

where any function can make a call to any other function.

2.1 Abstract Syntax of GM

We define a sample language GM. The language is small but includes all of the basic features
of object-oriented programming. In the following BNF, the symbol ¢ stands for the empty
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string. Non-terminal terms are capitalized, except for class names, which are the only

terminal terms in Roman uppercase.

Program A GM program is a list of class declarations.
G:=¢] KG

Class Declaration A class consists of a list of fields' and methods.
K = class C extends C' { FS MS }

Field Declaration List

FS == ¢ | C f;FS

Method List

MS == ¢ | MMS

Method Definition A method requires exactly one parameter.
M =7 m(Cz){G}

Method Body A method body consists of a list of variable declarations and a statement.

A variable declaration is a variable name preceded by a class name.
G :=Cz;G|S

Statement A statement is a local variable assignment, field assignment, method invocation,

return, conditional if statement, or sequence of statements.
Su=x=€ | Ef=E | T | return€ | if EthenSelseSfi | §;S

Expression An expression is a local variable access, field access, method invocation, object

creation, cast, the keyword null, or the keyword this.
E =2z | Ef|Z | newC | (C)E& | null | this

Method Invocation A method invocation is a statement, for its side effects, or an expres-

sion, for its returned value.
I == Em(E)
Type A type is a class name or the keyword Void.

T == C | Void

L Also known as field variables, or instance variables.
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Atoms These are user-defined identifiers.

xr = VARIABLE
f == FIELD

C = CLASS
m = METHOD

We restrict our study to single inheritance. Fields defined in the subclass hide those fields
that have the same name in the superclass. In method overriding, neither the parameter
type nor the return type is allowed to change. Moreover, parameter name must remain the
same in overriding. We assume a few syntactic regularities in order to make GM as simple

and neat as possible.

e The ertends clause is always required. This is achieved by means of a predefined class
Object?, which simply has no fields or methods. A class that inherits no user-defined
class must therefore be declared with extends Object.

o Field access within the defining class has to be qualified by keyword this. Any unqual-

ified identifier is understood to be a local variable.

e The keyword this is only allowed in a method body and is implicitly bound to the class
in which the method is defined.

¢ Method invocation is an expression if and only if the method has type 7 — C. In this
case, the last statement of the method body is a return. We shall see in Section 4 that

this is enforced by the type system.

¢ Only fields and variables can appear on the left hand side of an assignment statement.

They are the only valid L-values.

e Brackets, which are not part of the syntax, will be applied to clarify syntax whenever

necessary.

We assume that there is always a class Main,

class Main extends Object { Void main(Object z) { ------ }}

2As in Java.
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which has only a single method main and has no field. Execution of program starts by

creating a Main object and sending it the message main
(new Main).main(null)

This is equivalent to the main function in a Java or C++ program.

2.2 An Example GM Program

Figure 2.1 shows a GM class that may be used to build natural numbers. GM requires every
method to take one parameter, even if the method does not need any. The successor method
succ simply never refers to its parameter « in the method body, and the value null is passed

to succ on invocation. This slight semantic redundancy is traded off by syntactic simplicity.>

2.3 Terminology of Casting

Upcast and downcast are well-established jargon in object-oriented programming. Inheri-
tance introduces a class hierarchy, which may be thought as an inverted tree with parents
(superclasses) on top of children (subclasses). Casting an expression from a child class to a
parent class is called an upcast. Let class C extends D { --- }. If e : C, then (D) e is an
upcast. Visually we go up the tree. Casting in the other direction, i.e. from a parent class to
a child class, is called a downcast. If e : D, then (C) e is a downcast. In this case, we come
down the tree. In Java, upcast and downcast are known as widening reference conversion

and narrowing reference conversion, respectively. For details, see Chapter 5 of [GJS96].

2.4 Auxiliary Functions

The keyword extends introduces a subclassing relation <. Class C'is a subclass of D, written
as C' ' D, if and only if
class C extends D { --- }

3In fact, parameter-less methods can be encoded as a syntactic sugar.
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class NatNum extends Object

{

Nat pred;

NatNum succ(Object a)
{
NatNum x;
X = new NatNum;
x.pred = this;
return x

}

NatNum eq(NatNum n)
{
NatNum x;
if this.pred then
if n.pred then
x = this.pred.eq(n.pred);
else
X = n.pred;
fi
else
if n.pred then
x = this.pred;
else
x = this.succ(null);
fi;
fi;
return x

Figure 2.1: Natural Numbers in GM
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i.e. C derives or inherits from D. The relation < is defined to be the reflexive, transitive

closure of <.

Next, let
CLASS = the set of class names

METH = the set of method names
IDEN = the set of variable names or identifiers
TYPE = the set of types

The set of types T YPEis defined by the following grammar
T:u= Cl|Void |T —» 7T

where C is a meta-variable ranging over class names.

A class table is a tuple ¥ = (U, U oy, V) made up of three partial maps to be interpreted

as follows.

o Ur: METH xIDEN — TYPE
U £(C, f) returns the type of field f defined in class C or the nearest superclass of C.
In other words, re-declaring an inherited field to a type hides the field of the superclass.

o U, :CLASS X METH — TYPE
U A(C,m) returns the type of method m in class C. Specializing method type is not

allowed.

e UV :CLASS — CLASS
U (C) returns the type of superclass of C. This is well-defined since we consider only
single inheritance.

We need a function to access method body and the formal parameter

(zx: B, G), ifm=7 m(Czx){P}and me {m;,my,- -}

thod(C =
metno ( 7m) {method(cﬂ7 7n) ifm ¢ {m17 ma, -~ }

where class C extends C' { -+ mymy --- }
a function to extract the method body

body(C,m) £ G where (_,G) = method(C,m)
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and finally a function to extract the fields of a class and its superclasses

fields(C) £ {fi,--,fa} U fields(C')
where class C extends C' { C) f1---C, fn MS }

2.5 State Graph

A state graph is a directed labelled graph with two distinguished vertices, namely a source
vertex and a final vertex, plus a set of special edges, called the scoping environment. A
vertex is a class name indexed by an integer or the symbol 1 . Each edge is labelled by a

field name or variable name indexed by a number. Formally, let
VERTEX =CLASS xN U {1}

be the set of vertices and let
LABEL =IDEN x N UIDEN

be the set of labels. Then a state graph is a tuple (V, E, ¢, r, ) where

e VCVERTEX and L € V.

o F:V xLABEL — V is a partial function that defines the edges of the graph. Or
equivalently, £ can be viewed as a subset of V x LABEL x V. We sometimes use the
!

notation © — v to denote a directed edge.
e ¢ € V is the source vertex or the current vertex.
e r ¢ V is the final vertex or the result vertex.

o O C LABEL x N is a list of non-field labels (z,3).

Intuitively, a vertex (C,¢) represents an instance of class C. The index i is used to make

every instance distinct and is selected by the function
next(C,V) =min{k | (C,k) ¢ V}

The min of an empty set is taken to be zero. A label (z,7), or simply a field name f, is

a reference to an object. The index ¢ is to make each local variable name unique, which
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together with the run-time environment {2, will facilitate scoping. By a slight abuse of

notation, we use the same function name to select the next unused labelling index.
next(z, E) = min {k | Judv.(u, (z,k),v) ¢ E}

The source vertex represents the current object under consideration, or the keyword this.
The final vertex is the result of a computation. The special vertex L corresponds to null. It
lets us differentiate between un-initialized versus un-declared variables. Further, it serves as
logical comparison in conditional statements. It is also used in the initial state (¢, ¢, 1, L, @)

of an execution.

2.5.1 Operations on State Graph

We define three basic operations on state graphs. Let u,w € V and a € LABEL. A new
edge is added by the @ operator if it is not there.

Eu{(u,a,w)} if (u,a,w) ¢ E

E®(u,0,w) = {
E otherwise
An existing edge is modified by the ® operator.

(E\ {(v,0,0)}) U{(u,a,w)} if (u,a,v) € E for some v

Eo (ua,w) = {
E otherwise

Finally, an edge is removed by the & operator.

E\A{(u,a,v)} if (u,c,v) € E for some v

F otherwise

Eowa) = {

This will be used to de-allocate formal parameters and local variables.

2.5.2 Notational Convention

Unless otherwise stated, o will always denote the tuple (V, E, ¢, r, Q). A subscript or super-

script will apply to every component of the tuple, e.g.
O_/ — (‘/l7 E’, C’, 7“/, Q/)

Ok = (Vm Em Cir Tks Qn)
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An underscore '_" denotes an object of the proper kind which we do not care about. For
instance, the underscore in a vertex (C, _) represents some integer of which the value is not

important.
The symbol o[E’/E] stands for a new state graph created from o by substituting a new edge
function E’ for the original one, i.e.

olE'/E] = (V,E' ¢,1,0)

The substitution operation [ /| applies similarly to other components of the state graph.

Sometimes, we write
0['7 EI7 RS ] = (‘/7 El) c,T, Q)
U/['v 5 Ca, T3, ] = (V/7 El7 C2,73, Q/)
to emphasize the affected components. The symbol -, a dot, is merely a place-holder to

represent the original content.

Finally, in a well-behaved program, a variable z is accessed only if it is in scope. From
time to time, we simply write E(c, z) instead of E(c, (z,j)) for some (z,j,.) € Q. This is

especially the case in dealing with axiomatic semantics.



Chapter 3
Operational Semantics

Operational semantics define a programming language by means of deductive system, in
which the judgements are transitions of machine states. It has two main flavours that take
opposite view of describing program execution. Structural operational semantics strives to
capture the smallest possible changes in configuration, while natural semantics emphasizes
how the overall result of computation is obtained. For this reason, structural operational
semantics is sometimes called small-step semantics and natural semantics is called big-step
semantics. The term natural semantics was coined by a research group at INRIA [Kah87].
They demonstrated the framework by actually implementing many examples in type check-

ing, translation between programming languages and modelling execution.

We define GM by natural semantics and then make a brief detour into structural operational
semantics. Denotational semantics resembles closely natural semantics and they can be

viewed as notational variants of each other.! We do not pursue it here.

3.1 Natural Semantics

The natural semantics of GM is a deductive system that defines a transition relation of the

form
(t,o) - o

Here t is a method body, a statement or an expression; ¢ and ¢’ are state graphs. Intuitively,

the transition means that execution of t against initial ¢ will terminate and the resulting

LChapter 8 of [SK95]
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state is ¢’. It describes run-time behaviour of GM. Class declaration in is merely a static
entity used to build up the class table. Those syntactic elements for class declaration are

therefore ignored in the semantics.

The semantics imposes reduction order in the following sense. Premises in the rules are read
from left to right and from top to bottom. There is exactly one rule for each syntactic entity.

At any point during execution, either one or no rule applies.

Recall that a state graph is a tuple 0 = (V| E, ¢, 7, Q). We apply the notational convention
laid out in Section 2.5.2.

3.1.1 Expression: Keywords

Keyword this means the object under consideration.? So evaluating this marks the current

vertex as the result vertex.

[E-THIS]  { this, (V,E,¢,r,Q) ) ~ (V,E, ¢, ¢, Q)

Evaluating null sets L as the result vertex.

[E-NULL] {(null, (V,E,c,r, Q) ) ~ (V,E, ¢, 1,Q)

3.1.2 Expression: Variable Access

Evaluating a variable gives the object pointed to by the current object via an edge labelled by
the variable name. During program execution, there can be more than one edge originating
from the current vertex labelled by the same variable name. We have to pick the one that

is currently in scope, i.e. the one that is recorded in the run-time environment.

[E-vacCl  {(xz,0) ~ (V,E,c,E(c(x,1)),Q)
where (z,7) €

2The keyword self or current is used for this purpose in some other object-oriented languages.
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3.1.3 Expression: Field Access
Accessing a field requires the owner of the field, which is the result of evaluating £. No

scoping is involved since the field name is unique within the object.

(€, a) = d
(Ef,a) ~ (V,E,J,E[,f),Q)

[E-FACC]

3.1.4 Expression: Instantiation

Object creation introduces a new vertex into the state graph. All fields come into existence

and are initialized to null. The result vertex is, of course, the new object itself.

[E-NEW]  {(newC, o) ~ (VU{v},E ¢v,Q)
where v = (C,next(C,V))
E' = E@(Uafh—l-)@“‘@(vyfn:-l—)
S,y fn € fields(class(v))

3.1.5 Expression: Casting

Casting has no run-time effect on the state. The expression to be cast is first reduced to an
object. Then its type is checked against the target of the cast. If it is a parent class of the
target, i.e. an upcast, the cast is thrown away and execution goes on. Otherwise, no rule

applies and execution gets stuck.

(E€,0) » o class(r') x C

[E-CAST] (O €. o) = o

Notice that casting is the only place in the semantics where a run-time type check is per-
formed. Upcasts are always safe. In Java, they “never throw an exception at run time. They
consist simply in regarding a reference as having some other type in a manner that can be

proved correct at compile time.”3

3Refer to Chapter 5 of [GJS96]
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3.1.6 Method Invocation

Method invocation has the most complex rule in the semantics. It consists of finding the

message receiver, calculating the parameter and then calling the proper method.

(&, o) ~ oo (&, o0) ~ o (G, a) ~ oo
(Eom(&r), o)) ~ o
where (z:_,G) = method(class(rg), m)

[E-INVK]

(z.5) .
0,:(‘/17E1@T0 — T17T01r17{(x7])})
o’ = (‘/Q,del(E% TO)7007r27QI)

The message receiver is the result of evaluating the expression &, represented by ry. The
parameter value is 11, the result of evaluating the expression £;. The actual method body
G is determined dynamically by the run-time type of &, i.e. class(rg). The method is

executed against an initial state o', which can be interpreted as follows.

o The message receiver 1y is the current vertex.

e The formal parameter = and local variables come into existence. Parameter z is bound

to the value 7.4

o A new scope (¥ contains the formal parameter and local variables.

Notice that it does not matter whether ¢’ has ry or r; as the result vertex. When method

execution has finished, the final state ¢” can be understood as follows.

e Control is returned to cg. In fact, we shall see later (Section 3.3) that ¢, ¢, ¢y are the

sailmne.

o Given a vertex v, define
del(E,v) = ES (v, (z,1)) O -

where (v, (z,1),_ ) € E, to remove all variable-labelled edges from v. Then the expres-

sion del(FEq, 7o) says that the formal parameter and local variables are destroyed.

e The previous scope €}, is restored.

4This can be extended easily to methods accepting multiple parameters.
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It is not crucial to de-allocate these variables. Any method call during execution of m will
create a new scope. Once m has exited, the current scope will be removed. In both cases,

these variables are not accessible. See also Chapter 6 for further discussion on this issue.

3.1.7 Statement: Variable Assignment

Variable assignment redirects the edge originating from the current object and labelled by
the variable name, to the result object. This result object has been obtained by evaluating
the R-value expression.

{E,00) ~ o

(z=E,0a0) ~ (V,E‘@c(fi)r,c,r,ﬂ)
where (z,1) €

[E-VASSN]

3.1.8 Statement: Field Assignment

Field assignment works in a similar way.

(€,00) »d (&,0) w0

[E-FASSN]} 7
(Ef=E&,00) ~» (VEQT »—>r1,0,1,Q)

First we find the owner of the field v’ by evaluating the expression £. Unlike variable
assignment that makes use of the current vertex, we switch around the edge originating from

r’ to r, the result of evaluating the R-value.

3.1.9 Statement: Return

A return does nothing more than evaluating the expression to be returned. The returned
value is then accessible in the result vertex.

(&€,0) ~»d

(E-RETN] {return &, o ) ~ o
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3.1.10 Statement: Conditional

There being no Boolean primitive type, a conditional statement simply tests for null, which

signifies a false.

(€,0) ma 1"=1L (S,d) ~ o

E-FALSE
[ SE] {( if £ then S; else S; fi, o)) ~» o”

(€,0) »o r#EL (S,0) » o
{( if £ then S; else S; fi, o)) ~ o

(E-TRUE]

3.1.11 Statement: Sequencing

Statements are executed from left to right.

(Si,0) »d (S,d) ~ d
(S1;8,0) ~ o

{E-SEQ]

3.1.12 Method Body

Variable declaration introduces a new edge into the state graph, with the variable initialized

to null.

{G,d") ~ o
(Cz;6,0) —» o

where ¢" = (V,E®c (i]’) Lo, Qu{(z,5)})
j =next(z, E)

[E-MBODY]

3.2 An Example

Figure 3.1 shows a class C' with a single field n and two methods get and foo. Method
getretrieves the internal state of its owner object. The sole purpose of foo is to show how
the scoping environment in the state graph resolves names. We assume an already defined
class D from which C' is derived. For clarity, we use single letters for class names, field names

and variable names.

Now we execute the program step by step according to the natural semantics. In the following
series of figures, the current vertex is represented by a node with double border and the result

vertex is indicated by an arrow. The un-named node is the 1 vertex. A subscripted class
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class C extends D

{

D

D

n;

get(Object x)
{Dy; y = this.n; this.foo(new D); return y }

Void foo(D x)

{Dy; y=x}

class Main

{

main(Object p)

{

W<

y; D x;
= new C;

.n = new D;

= y.get(null)

Figure 3.1: A Demo Program
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name C; stands for a vertex (C, %) in the state graph. We simply write M for the Main node

since there is one and only one such vertex. We ignore fields of D.

1. (new Main).main(null)

The program starts by implicitly creating a main object and sends it the message main.
The initial state is ({L},{}, L, L, {}).

2. (new Main).main(null)

Operator new introduces a new Main node and marks it as the result vertex. This new

object will be used as the current vertex in executing the body of main.®

V={LM} E={}

c=1 r=M Q={}

3. (new Main)main(pull)

Evaluation of null marks L as the result vertex.®
w1

(7T

I /'/‘

V={L M} E={}
c=1 r=1 Q={}

4. (new Main).main(null)
————

Invocation of main first sets up the parameter p. The current vertex is the M node.

5The resulting state corresponds to oy in rule [E-INVK] for calling main.
6The resulting state corresponds to ¢y in rule [E-INVK] for calling main.
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(p,0> -

{

l

V={L M} E={(Mnpy,lL)}

TN

c=M r=.1 Q= {po}

5. Cy; Dz ;y=newC ;yn=newD ;z=y.get(null)
N————r

Declaring variables y and = introduces two edges labelled by y and z, respectively,

from the current vertex, the M node, to L.

(X0 2
{ \
OO s
(x.0}

V= {—LyM} E= {(M,po,_L), (M7y0,—l-)’ (Mal'(]aj—)}

C=M r=1 Q:{pﬂayﬂa-TO}

6. Cy;Dz;y=pevC ;yn=nevD;z=y.get(null)

Operator new introduces a node of class C and makes it the result vertex. The field n

of C comes into existence.

n
(p,0) o
! )
1
GO

(x,0)

V = {—L7 M} CO} E - {(M)p07-l—)7 (]\/[7 Z/O:—L)7 (A/[v I07—L)7 (C[),TL,_L)}
c=M r=C Q= {po, Yo, To}

7.Cy;Dz; y=newC ;yn=new D ;z=y.get(null)
S—_—

Assigning value to variable y switches the edge labelled y to the result vertex.
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(p.0) ™ _
’
|

(x.0)

V= {-—L7]\/[7 CO} E= {(M,p(), —L)7 (M1 yO)CO)7 (M’ Zo, _L)’ (C(),n, _L)}
c=M r=Cy, Q= {po Yo, To}

8. Cy;Dzxz;y=neuw(C; .n=mnevw D ; x = y.get(null
y y y y-get(null)

Evaluating y makes the destination of the edge labelled y the result vertex. In this

case the state graph does not change.

V = {J—> Ma CO} E= {(M7 Do, —[—)7 (]\/[7 Yo, CO)) (M7 Zg, —L)7 (007 n, —L)}

c=M T:CO Q'—“{PO:Z/OHEO}

9. Cy;Da;;y:newC;y_n:newD ;x:y.get(null)

Operator new introduces a node of class D and makes it the result vertex.

(p,0) _
{
‘

(x,0)

\

V = {—L’ A/[a CO; DO} E = {(A[’ Do, -L)7 (A/Iv Yo, CO)? (A41 Zo, —L)v (007”'7 —L)}
c=M r =Dy Q= {po, Yo, Ta}

10. Cy;Dz;y=newC; yn=mnev D ; r = y.get(null)
—

Assigning value to field n switches the edge labelled n to the result vertex.
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(p.0) o

( \

@ @ o ' I
~_ _ "7

V = {J—7 Al) CO: DO} E= {(A/[a Po, -J—)v (M7 Yo, CO)7 (A/Ia Zg, —L): (C’O)n7 DO)}
c=M T‘:D() Q:{po,yo,CEo}
11. Cy;Dz;y=newC;yn=new D;z= y .get(null)

Evaluating y makes its content the result vertex, which will be used as the current
vertex in executing the body of get.”

V - {J—’M7 CO)DO} E= {(Mvp()v J—)v (M) Yo, CO): (Ma Zo, -J-)7 (CO7n7D0)}

c=M r==Cy Q= {po, yo, To}

12.Cy;Dz;y=new(C ;yn=new D ; x=y.get(null)

Evaluating null marks L as the result vertex.®

n
(p.0) -
{ A}
@ @ o l ‘
~ o’

(x0)

V= {—L7A47 CO,DO} L= {(AL Po; J—)v (M’ Yo, CO): (Afa Zg, —L)7 (CO7n7 DO)}
c=M r=1 Q = {po, Yo, Zo}
13. Cy;Dz;y=newC ;yn=nev D ;r=y.get(null)
N— —

Invocation of get first sets up the parameter x. The current vertex is the C node.

“The resulting state corresponds to oy in rule [E-INVK] for calling get.
8The resulting state corresponds to ¢, in rule [E-INVK] for calling get.



3.2. AN EXAMPLE 26

V= {—1—7M7 007 DO} E= {(A/va(h J—)7 (M1 Yo, 00)7 (M7 To, —L)7 (Cﬂ7na D0)7 (C())"L‘la —L)}
Cc = C() r=1 Q= {Il}
14. Dy ; y =this.n ; this.foo(new D) ; return y
<~

Declaring y introduces an edge labelled y. Notice the edge is such indexed as to be

different form the previously declared y.

V: {—LvMaCO7DO}

E= {(M’p(h —L)7 (Ma Yo, CO)? (M> Zo, —L)1 (COa n, D0)1 (0071"1a J—)) (C()yy17 —L)}

c=Cy r=_1 Q= {z, 1}

15. D y ; y = thisg.n ; this.foo(new D) ; return y

Evaluating this marks the current vertex as the result.

V = {_L A[, Co, D()}

E = {(A47 Po, -J—)7 (A/Iv Yo, CO)) (‘A’[7 Zo, —L)a (001 n, D0)7 (007‘7:1; —L)7 (007 Y1, —l—)}

c=C, r=Cy Q= {z1,u}
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16. Dy ; y=_this.n ; this.foo(new D) ; return y
Accessing the field n gives the destination of the edge labelled by n, which is the D

node. It is marked as the result vertex.

V ={L,M,Cy, Dy}

E= {(M7 Do, -L)a (M7 Yo, C0)7 (Alv X, —L)v (COa n, DO)v (0073:17 L)y (007 Y1, —L)}

c=0Ch r = Dy Q= {z, 5}

17. Dy ; y = this.n ; this.foo(new D) ; return y
—

Assigning value to y switches the edge labelled y from L to the result vertex.

V={L1,M,Co, Do}

E= {(A/[:p()y —L>7 (Ma Yo, 00)7 (]\/[a T, —L)1 (007 n, DO)) (0073:17 —L)7 (Cﬂaylv DO)}

c=Cy r= Dy Q= {z1,y1}

18. Dy ; y =this.n ; thisg.foo(new D) ; return y

Evaluating this marks the current vertex as the result vertex.
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V= {—LaM7CO)D0}
E = {(A/[’p()?—l—)’ (M7 ZIO:CO)’ (Mv $07—1-)7(007n1D0)7 (007:1:17 —L)u (007y11-D0)}
c=Ch r=0Cy Q={z,y}

19. D y ; y = this.n ; this.foo(pnew D) ; return y

Another D node is created. It is marked as the result vertex. Notice how it is made

different from the existing D node by the index.

V = {J—7M7CO7D01D1}

E = {(M7 Do, —L)v (M1 Yo, CO)7 (M1 T, —L)v (007 n, DO)v (Cﬂa Ty, —L)7 (007?417 DO)}

C:CO T=D1 Qz{xl,yl}

20. Dy ; y = this.n ; this.foo(new D) ; return y

-~

Invocation of foo first prepares the parameter x. The method body will be executed

against a state in which the current vertex is the C' node.

V= {—Lvac(hDO:Dl}
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E= {(Alv Do, L)? (AL Yo, 00)7 (‘A[’ Zo, L)v (Cﬂa n, DO)7 (007 Xy, —I—)»
(CO7y17D0)7 (C07$27D1)}
C:C() T:Dl Q:{CL‘Q}

21 Dy ;y=z
N

Declaring y creates a edge labelled by y.

V = {—L7M7C’07D0aD1}

E= {(M7 Po, J—)7 (M7 Yo, CO)a (M7 Zo, —L)7 (007 n, DO)a (C()a xi, J—)7
(Co, y1, Do), (Co, T2, D1), (Co, y2, L)}

c=Cy r=D Q:{l"z,yz}

22.Dy;y:\x/

Accessing variable & marks the destination of the edge labelled x as the result vertex.

V = {_L, A/[, C[),DQ, Dl}

E= {(A/L Po, J—)a (M7 Yo, CO)a (M7 Zo, —L)7 (007 n, DO)» (CO, T, —l—)7
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(C()) U1, DO), (C()a Za, D1)7 (007 Y2, -L)}

c=0Ch r =D 92{5’32;1/2}

23. Dy; y=z
—
Assigning value to y switches the edge labelled y to the result vertex. Now there are
two such edges going out from the current vertex. The scoping environment decides

which one should be used.

V = {—LaM7007D07D1}
E = {(M7p07 —L)a (M7 Yo, CO)7 (M7 Zo, J—)) (007"‘7 DO): (C0>x17 J—)a
(C())ylvDO))(007"L‘27D1)7(C'07y2aD1)}

c=Cy r=2D, Q = {z2, 42}

24. D y; y =this.n; this.foo(new D) ; returny

-~

Method foo exits and the original vertex and scoping environment are restored.

V e {—L>M7CO7D07D1}

= {(A/L Do, L)) (A[7 Yo, CO)7 (M7 Zo, —L)a (007 n, DO)) (CO> Ty, —L)7 (007 Y1, DO)}

c=Co r =D Q:{l‘l,yl}
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25. Dy ; y = this.n ; this.foo(new D) ; return y
——
Returning y is the same as evaluating y. The destination of the edge labelled y is

marked as the result vertex.

V ={1,M,Cy, Dy, Dy}

E= {(M7 Do, -L)? (M7 Yo, 00)7 (M7 Zo, —L)7 (C07 n, D0)7 (CO»xh J—-)7 (C()ayla DO)}

c=Co r= Dy Q= {z1,u1}

26. Cy;Dz;y=newC ;yn=newD;z=yget(null)
—_—

Method get has finished. Again the original vertex and scoping environment are

\ n
®0) ™~ __
{ \
@ @ (y’O) : :
~__"7
(x,0)

V= {‘L7 M7 CO? DO’Dl} E = {(M7p0, —L)a (A47 yO’CO)v (M7 wO)-L)a (CO7n7 DO)}

restored.

c=Cy r= Dy = {Po,yo)xo}

27. Cy:;Dzx;y=newC;yn=new D; z=y.get(null)

~

Assigning value to x switches the edge labelled = from L to the result vertex.
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V == {—Lv Mv CO) DO) Dl} E= {(M7 Do, -L)v (M7 Yo, 00)7 (Ma Zg, D0)7 (007n7 DO)}

c=Cy r =Dy 0= {Po,yo7$0}

3.3 Invariants

A method call in GM is in effect execution of a sequence of statements. Within a method
call, the current object is always the method receiver. Local variables, once declared, are
accessible throughout (and are accessible only within) the method body. Hence, among the
five components in a state graph tuple, two of them remain unchanged during execution

within the same scope.

Lemma 1 Let t be a GM expression or statement. If {(t, o) ~> o', then c = ¢ and
Q=

Proof

Straightforward induction on the derivation of {(t, o)) ~» o’

g

3.4 Structural Operational Semantics

Now we investigate the small-step semantics of GM. To describe individual steps of execu-

tions, the transition relation must take two possible forms
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where t is a term, and o, ¢’ are state graphs. While (}) indicates a completed execution as
in the natural semantics, (1) says that the execution of t against ¢ has not yet finished and

the remaining computation is expressed by {(t', o' ).

For example, to access the field f via the expression (z.f’).f, the owner z.f" has to be
evaluated first. In general, to access the content of a field £.f, its owner £ may need to be

simplified a few times by a rule of the form (tf)

(€,0) « (&,
(&f,a) = (&.f,

and once £ is completely evaluated, we can get the value of f by the rule

)
o' )

(E.0) < o
<< g'f y U >) — (V/7 El7 Cl7 El(r/7 f)’ QI)

These two rules together capture the essence of step-by-step execution. Similarly, small-step

execution of sequence of statements can be formulated as

(Si,0) — (S1,9)
(S1;82,0) = (S8, 0)

«SI’U> —~ 0
(S1:8,0) = (S, )

The treatment of method invocation in GM, unfortunately, is not quite suitable for a small-

step description. We do have intermediate transitions of message owner and parameter,

(&,oh) — (&, )
(Eom(&r), o) — (&m(&), o)

(&,o0) = (&,0) = (&, 0")
{Eom(&r) , o)) — (Eom(&l), o))

but then we are stuck with execution of the method body

(&,o) =00 (&,00) = (G,0) = {(g,d")
(&om(&r), o) — (7,0")

While an expression evaluates to an expression and a statement reduces to a statement,

there is no obvious in-between entity before the end of invocation.

Structural operational semantics has both advantages and disadvantages versus natural se-

mantics. In structural operational semantics looping corresponds to an infinite sequence of
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transitions and abnormal termination ends in a stuck state. However they are indistinguish-
able in natural semantics. Natural semantics models better non-deterministic constructs but

is not able to express interleaving of commands. For details, refer to [NN92].



Chapter 4

Type System

In object-oriented programming, the exact type of an expression cannot be determined until
run-time. Yet type checking is able to predict a type for each expression based on the text of
a program without running it. This type information is vital in reasoning about correctness

of GM programs, as we shall see in Section 5.1.

4.1 Type Checking GM

GM has two categories of types. A simple type is made up of class names and a special
type Void. A composite type consists of arrow types to describe methods. The type Void is

simply a technicality that accounts for statements and methods that return nothing.

The type system of GM is built by four relations Fp , F¢, Fa and . The first three
relations specify that a program, a class declaration and a method declaration are well-
formed, respectively. They depend on the class table described in Section 2.4. The last
relation handles expressions and statements. It requires the class table and the typing
environment as well. These relations are defined by a deductive system. Judgments in the

system are sometimes called typing judgements.

A typing environment or a typing context [' is an association of variables with types. It
can be thought of as a finite unordered list {z; : Ty, 22 : To,---} or a finite partial map
I :IDEN — TYPE. We use the set notation I' Uz : C to denote the operation that the

variable z of type C is added to environment I'.!

1¥or conciseness, the brackets in I' U {x : C'} are omitted.
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4.2 Typing Rules

The type system is syntaz-directed, in the sense that at most one rule is applicable at a time.
An advantage is that the rules can be read “from bottom to top” and transformed into a

type checking algorithm.

4.2.1 Method Body

A typing judgement of an expression or a statement has the form W 't e: C, where ¥ is
the class table and I' is a typing environment. Expressions cannot have the type Void, while

statements, except a return, have type Void.

The keyword null assumes any available class as its type.

[T-NULL] ¥, 'b null:C

The type for keyword this is extracted from the environment. As a matter of fact, it may

be regarded as a variable.

[T-THIS] ¥ I'@this: CF this: C

The type of a variable is extracted from the typing environment.

{T-VACC] YIluz:Chkz:C

Unlike variables, type of a field is read off from the class table, and is independent of the
environment.

UTHEC Ue(C f)=D

[T-FACC] VITFES.D

The type of a newly created object is the class from which the object is instantiated.

[T-NEW] UV I'knew(C:C
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A cast changes the type of an object. GM only allows upcasts, 1.e. casting an expression to

a superclass.

vIre&:C C<xD

T- T
[T-CAST] UTF(D)E:D

The type of a method invocation is the result type of the method. When it is Void, the
invocation acts as a statement. Otherwise, the invocation is an expression. The parameter

type can be of a subclass of the domain type of the method.

vIEHE:C UYu(C,m)=B—>T
U.T+E:D D<B
UL F Em(E): T

[T-INVK]

In assignment, the R-value object can be a subclass of the L-value object.

VY I'Fz:C v I'e&:D D=xC

T-VASSN
( ] U.I'Fz=£E&:Void

Field assignment is typed in the same way as variable assignment.

vrref:C v I'=&:D D=xC

T-FASSN
[ ] U I'EEf=E&:Void

An if-then-else statement is well-typed if the test expression and both the if-branch and else-
branch are well-typed. The final type of the statement is Void. Thus a return is prohibited

in either branch &; or Ss.

vrre:C ¥ I'H S :Void U I'FS;:Void

T-1F
[ ] U I't if £ then S§; else Sy fi: Void

The type of a sequence of two statements is the type of the last one. This enforces that a

return, if there is one, can appear only at very end of a sequence of statements.

UITFS :Void U,TF&:T
U ILFS ;S:T

(T-SEQ]

The type of a return is the same as that of the object to be returned.

UTHE:C

[T-RET] . I'treturn £: C
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Variable declaration introduces a new symbol into the environment and does not change the

type of the statement in the body.

v ITuz:CHG:T

T-DECL
: ] vI+-Cx;G:T

4.2.2 Class Declaration
A method is well-typed if the method body is well-typed and its type matches the returned
type of the method. This is denoted by judgement of the form ¥ F,, M.

v, 'Uthis: CUxz:D+G: T TYyu(Cm)=C—>T
Vb T m(Dz){G}

[T-METH]

A class is well-typed if its methods are well-typed. This is denoted by judgement of the form
¥ e L.

Uy M Wy MS

[T-CLASS-1] U T M MS

U e MS

T-CLASS-2
: ] U ¢ class C extends D { FS MS }

A program is well-typed if all the classes and the main statement are well-typed. This is

denoted by judgement of the form ¥ Fp P.

UheK UkpG

T-
[T-PROG] TR KG

4.3 Type Safety

The fundamental purpose of a type system is to prevent the occurrence of execution errors
during the running of a program. This property is known as type soundness or type safety.
It is a relation between the type system and the operational semantics. Robin Milner used
the slogan “Well-typed programs never go wrong” to describe type safety in the context of
ML [Mil78]:
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e Preservation
“Well typedness” of programs remains invariant under the transition rules, i.e. evalu-

ation rules or reduction rules of the language.

e Progress
A well typed program never gets “stuck”, i.e. never gets into an undefined state where

no further transitions are possible.

Such formulation seems to be more appropriate for the paradigm of functional languages.
The notion of type soundness varies between programming languages, and is in most cases

far from trivial.

In object-oriented programming, there are two obvious kinds of run-time error. First, a field
£.f is not recognized by its owner £. In terms of state graph, it means the vertex representing
& lacks an outgoing edge labelled by f. Second, a message £.m(_) is not understood by its
receiver £. Again, in the setting of state graph, the vertex representing £ is a class in which
m is not declared. Ideally, if £ is predicted by the type system to have type C, then &£ should
evaluate to an object of type C’ such that C' < C. And indeed in a well-typed GM program,

expressions are evaluated as expected. To see this, we need to extend typing to state graphs.

4.3.1 State Typing

We say that a state graph o is well-typed with respect to a typing environment I', denoted
by I' I o, if and only if for all (z,j) € ©,

e ¢:C €T for some C;
e the value w £ E(c, (z, 7)) is defined;
e w= 1 or class(w)  C.
It essentially means that any variable currently in scope always contains an object of its

proper kind. In this way the operational semantics of GM is related to its type system.

We have a similar notion for fields. Fields have infinite life span. While variables get their
type information from the typing environment, field types are stored in the class table,
independent of the typing environment. A state graph o is well-typed with respect to the
class table U, denoted by ¥ I o, if and only if for all v € V and for all fields f of class(v),
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e the value w £ E(v, f) is defined;

e w= 1 or class(w) < ¥£(C, f).

This is similar to store typing described in [BPP03] and [Pie02].

4.3.2 Type Soundness of GM

Well-typedness of state graph is preserved by well-typed GM programs. A expression is
therefore evaluated to an object of the expected type.

Theorem 1 Let P be a well-typed GM program. Assumethat{(t, o ) ~~ o' andT +t: T,
where t 1s a method body (G ), a statement (S) or an expression (€).

(i) If t=G such that ¥l o, then Vo'
(i) If t=3S8 such that ¥I-o and I'i-o, then ¥iFo and 'l 0o'.

(111) If t=E& suchthat Viko and T'lko, then ViFo' and TlFo’.

In all cases, if T = C for some class C, then ' = L or class(r’) < C.

Proof

By induction on the derivation of { ., ¢ )) ~» ¢'. We demonstrate a few cases while others

can be worked out similarly.
!

>Case (z,0) ~ ¢

Rule [T-VAR] ensures that x : C € I'. By [E-VACC],
{z,0) ~ o where ¢’ = o[, -,-, E(c, (z,1)), ]

Since neither the edge function £ nor the run-time environment €2 is changed, I' IF ¢ implies
['IF o' while ¥ IF o implies ¥ it o’. Clearly, we have v’ = L or class(r’) < C.

>Case (E.f,0) ~ o
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Let ' £.f : D. Rule [T-FIELD] ensures that I' - £ : C and V£(C, f) = D for some class
C. By [E-FACC],

(€, ) —» o
(Ef, o) » o

where o' = ag[-, -, -, Ey(ro, f), -]

With induction hypothesis applied to the premise, we have I' IF gy and ¥ I ¢. Since oy
and ¢’ differ only in the result vertex, I'IF ¢’ and W I ¢’. If g = L, then Ey(ry, f) fails and
E.f does not evaluate. So class(rg) < C. Hence 7' = L or class(r’) < D.

>Case (z=&E,0) ~ o

First, we do not care about the type of r’ since Fx = £ : Void. According to rule
[T-VAR-ASSGN], weget ' z: Cand '+ £ : D, where D < C. By [E-VASSN],

£ , O O ' (@)

Applying induction hypothesis to the premise, we have I' I- oo, ¥ I+ 09 and rg = L or
class(rg) < C. Now ¢’ differs from oy by the edge functions. The edge functions E’ is
identical to Ey except possibly on (co, (x,¢)). But E'(co,(x,i)) = ro. Hence I' I ¢’ and
U o'

>Case ((D)E,0) ~ o

Let '+ (D) £ : D. Rule [T-CAST] ensures that I' - £ : C for some class C such that C < D.

By [E-CASTI,
(E,0) »d

((D)YE, o) ~ o
Applying induction hypothesis to the premise, we get I' I ¢, ¥ I ¢/, and ' = L or

class(r’) < C. By transitivity of the subclassing relation, class(r') < D.

> Case (Em(E), o) ~ o

Suppose I' F E.m(E’) : T. Rule [T-INVK] implies that I' = & : C and I' - &' : D for some
classes C' and D, where ¥ (C,m)= B — T and D < B. By [E-INVK],

(€, 0) a0 (&,00) ~»or (G,0) ~ o
(E€m(&), a) ~ o
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where
(x:_-,G) = method(class(rg),m)
(z.5)

U, = (‘/17E1€BTO — 7“1,7'0,T1,{(I7j)})
OJI = (‘/27del(E27T0)7007T2a(21)

Applying induction hypothesis to the first premise gives I' I- gg, ¥ I g and 79 = L or
class(rg) < C. Since I' IF 0 and ¥ IF gp, we can apply induction hypothesis to the second
premise to get I' IF o1, ¥ Ik oy and r = L or class(r;) g D.

Since all m is well-typed, we can let IV = G : T for some I['. Again by induction hypothesis
applied to G, we have ¥ IF g5 and if T # Void, then r, = 1 or class(ry) < T.

From the construction of E”, ¥ I+ o implies ¥ IF ¢”. And because G has no access to the
variables in Q1, E"(co, (y,7)) = F1(co, (y,7)) for all (y,7) € ;. Hence I' I ¢”.

O

Run-time errors can still occur in GM. For example, the invocation z.m(_) fails if the variable
z does not contain any meaningful object, i.e. x is evaluated to L. Type checking merely
ensures that evaluation of an expression yields an instance of its predicted type. However,
1 is a value belonging to all types. The type system therefore will have no guarantee that
z is L as long as xz.m(_) type checks. Other techniques, e.g. flow analysis, would be needed
to detect occurrences of bottom, although such analysis does not seem to be obvious in the

presence of dynamic binding.



Chapter 5
Axiomatic Semantics

The axiomatic semantics takes a somewhat unusual view of meaning of a program as the true
properties that can be proved about it. The approach is to specify properties of programs as
assertions. An assertion is a triple of the form {P} t {Q}, where t is a term in the abstract
syntax, and P, @ are themselves assertions of some kind. Intuitively, { P} t {Q} means that
if P is true, then after execution of ¢ provided that it terminates, @ is true. In this respect,
P is called the pre-condition and @) the post-condition. The triple is also known as partial

correctness assertion, an assertion that tells us nothing if ¢ keeps on executing.

There are two approaches, intensional versus extensional, to specify the assertions P and () in
the triples. We may introduce an explicit langnage, known as the assertion language. Then P
and @ will be formulae of that language. Ideally the assertion language has to be powerful,
or expressive, enough to formulate all the assertions of interest. This is the intensional
approach. Alternatively, the extensional approach takes a semantic view of assertions. An

assertion is simply a predicate over states, i.e. a function of type
Set of state graphs — Boolean

This is kind of short-cut to avoid the expressiveness problem of the assertion language.

Predicates can be combined to form new predicates. For example,
PAQEMX . PoAQo

Operations P V @Q, - P, etc are defined similarly.

Partial correctness of object-oriented programs is more complex than that of procedural pro-

grams. A major difficulty is that object-oriented languages use dynamically bound method
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invocations, in contrast to procedural languages that use statically bound calls. For example,
the invocation z.m() where variable z is of class T with subclasses T* and T". If z references
an object of type T" at method invocation time, the implementation of m associated with
T" is executed. On the other hand if z is an object of class T, then different code is to be

executed.

5.1 Proof Rules

First we exclude recursive methods. Similar to the operational semantics and the type
system, the axiomatic semantics of GM is also described as a deductive system, in which
judgements are triples. The first few rules are for general logic reasoning. The rest of the

rules are closely geared at the operational semantics.

5.1.1 Consequence

If the result proved is stronger than required, it is then possible to weaken the post-condition.

{Pre{Q} Q@=Q
{P}t{Q}

On the other hand the given pre-condition may be stronger than necessary to complete the

[A-POST]

proof.

{(PYt{Q} P=P
{P}e{Q}

These two rules are compactly represented by a single one.

{(Pre{Q} P=P Q&=
{P}t{Q}

[A-PRE]

[A-CONSEQ]

5.1.2 Sequencing

As usual, composition is proved by a common post-condition and pre-condition ¢ in the two

premises. The link @ is then forgot in the conclusion.

{Prs{Qy {Q}S'{R}

[A-SEQ] PS5 (R
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5.1.3 Conditional

An if statement consists of two alternatives. The entire statement is correct if we can prove
each alternative given the appropriate value of the test expression £. The value of £ is stored

as the result vertex.

{P}E€{Q}
{Ao . r# L AQo} S{R}
{hM.r=1LA Qo} S8 {R}

A-COND
[A-COND] {P} if &£ then S else &' fi {R}

5.1.4 Return

A return statement is correct as long as the expression £ to be returned has been correctly
evaluated.

{P} € {Q}
{P} return &£ {Q}

{A-RETN]

5.1.5 Variable Access

In order to derive the post-condition P, we have to ensure the pre-condition on states with

the result vertex equal to the content of x.

[A-vAcC] {Xo . P o[E(c,z)/r]} = {P}

5.1.6 Current Object

Expression this can be regarded as a special variable. The content of the special variable

is always the current vertex.

[A-THIS]  {Ao . P o[c/r]} this {P}
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5.1.7 Expression null

This can be regarded as a special case of accessing a variable. The content of null is always

the vertex L.

[A-NULL] {No . Po[Ll/r]} null {P}

5.1.8 Variable Assignment

A premise is required to ensure the correctness of evaluating £&. The conclusion is then
proved if @ in the premise holds for states with = equal to the value of expression £, which

is stored as the result vertex r.

(PYE o . QolE®c ™ r/E] A (2,],) € Q)
{P}z=¢E{Q}

[A-VASSN]

5.1.9 Field Access

Field access is similar to variable access, except that the owner £ of the field has to be

correctly evaluated in the first place.

{P} € {Ao . Qa[E( f)/r]}

[A-FASS] (PYEF {0}

5.1.10 Field Assignment

Again, a premise is required to prove the correctness of computing the field owner £. In the
second premise, this field owner, i.e. the result vertex r, is passed from the pre-condition to

the post-condition by means of universal quantification

{rre{Q}
Vi . (Ao . Qo A =1} & (Mo . RolE®wd o r/E]}
{P}YE.f=¢&{R}

[A-FASSN]
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5.1.11 Casting

Evaluating a type cast causes a run-time error if the dynamic type of the object referred
to is not a subclass of the target class C. So the post-condition @ in the premise need be

shown only if the expression evaluates to null or to an object of a subclass of C.

{P}E {Xo.(r=1 V class(r) x C) A Qo}

{A-CAST] (P} (C) € (O}

5.1.12 Instantiation

If we can ensure P with the introduction of a new vertex of type C, then P should hold after

creation of an object from class C.

[A-NEW] {Ao . PolVU{v}, E' - v,-]} new C {P}
where v = (C,next(C,V))
El‘éEG}(Uafle)@"'@(U:fn)-L)
fi,-- -, fo € fields(class(v))

5.1.13 Method invocation

Method invocation is the most complex among the proof rules. The type of the message
recetver will not be known until run-time. To ensure correctness of method call, it is therefore
necessary to prove all method implementations compatible with the predicted type of the

message receiver.

{P}E{Q}

Vi . {Ao . Qo AW =c} & {R}
VCVivs . {R'} body(C,m) {S'} AC D
{P} Em(E) {S}
where R’ = Ao . R6 A class(c) = C

(z.7)

[A-INVK]

No=6[E@i >
S'= Mo .S o[,del(E,w),¢,
D = static type of £
(z:_,_) = method(D,m)

fv 1[), N {(J?,j)}]
")
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In essence, the third premise exhausts all possible implementations of method m in subclasses
C of the statically inferred class D of the receiving object e. This is dynamic binding. The
purpose of the universally quantified vertex w is to pass back control to the original object

before the call, as described in the operational semantics.

5.1.14 Variable Declaration

A variable declaration is correct provided that the method body executes correctly against

the state augmented with the variable.

(=.5)
_ {Ao . P[,E®c— L, QU (z,7)]} G {Q}
[(A-DECL] {P}CI,Q{Q}

5.2 Soundness and Completeness

We say that a partial correctness assertion { P} t {Q} is provable if and only if it is the root
of a derivation tree. In other words, an assertion is provable if and only if it is derivable

within the axiomatic semantics. We write this as
H{r}t{Q}

The partial correctness assertion {P} t {Q} is said to be walid if and only if for all state
graphs o, if { t, 0 )) ~» o' and Po is true, then Qo' is also true. We denote this property
by

={P}t{Q}

At the minimum, the axiomatic semantics need to be correct, in the sense that if a partial
correctness result can be proved using the axiomatic semantics, then it does indeed hold
according to the operational semantics. The axiomatic semantics is said to be sound with
respect to the operational semantics if and only if provability implies validity, i.e. for every

partial correctness assertion {P} t {Q}
H{Pt{Q} = E{P}t{Q}

Intuitively, this means that everything that can be proved is correct.
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Moreover, for the semantics to be useful, at least theoretically, it has to provide all the truth.
The axiomatic semantics is said to be complete with respect to the operational semantics if

and only if validity implies provability, i.e. for every partial correctness assertion {P} t {Q}

F{P}t{Q} = H{P}t{Q}

This says that everything that is correct can be proved. We shall show that the axiomatic
semantics of GM is sound and complete with respect to its operational semantics. Hence the

axiomatic semantics is able to prove everything that is true, and no more.

Completeness sounds a bit appalling. Since GM has the power of arithmetic, completeness
of its semantics would imply completeness of arithmetic. But the Austrian mathematician
Kurt Goedel already showed that arithmetic is incomplete. OQur completeness is with respect
to the operational semantics. If we tried to encode Goedel’s statement (which is true but
not provable) in GM, the program simply would not terminate. “Partial correctness” comes

to the rescue!

5.2.1 Proof of Soundness

Theorem 2 The axiomatic semantics of GM is sound with respect to its operational seman-

tics, i.e. for all partial correctness assertion {P} t {Q}

Pt e{Q} = RE{P}t{Q}

Proof

The proof is by induction on the derivation tree used to derive - {P} t {Q}.
> Case tu==x

We show that the axiom [A-VACC] is valid. Suppose

(z,0) —~d

and
P ofu/r] =t
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where u = E(c, (2, 7)) for some integer j such that (z,7) € Q. Then we have to prove that
P’ = tt. This follows directly from [E-VACC] since

o' = (V,E,c, E(c,(z,7)),Q) = olu/r]
>Case ti=x=¢&
We show that, in rule [A-VASSN], validity of premise implies validity of conclusion. Suppose
{x=E,00) ~ o

and
Po =1t

We need to prove that Qo' = tt. By induction hypothesis
(P} € (Ao . QolE®c Y r/E))
By [E-VASSN], there is o such that {( £, 0¢ )) ~ o and
, (2.) @)
o=V, E®c re,r,Q)=0c[Edc — r/E]

The claim follows by applying the post-condition to o.
> Case tu=£&.f

We show that, in [A~-FASS], validity of premise implies validity of conclusion. Suppose

(Ef,o0) ~ o

and
PO’O =tt

We need to deduce that Qo' = tt. By [E-FACC], there is a ¢ such that
(&,0) » o

and
o' = (V7 E.c,E(c, f),Q) = O'[E(C,f)/T]
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The induction hypothesis implies that
EA{P} £ { o . QalE(c, f)/r]}

The claim follows by applying the post-condition to ¢o’.
>Case tu=&=¢&"f

We show that, in [A-FASSN], validity of premises implies validity of conclusion. Suppose
<< g.f:g/, Jo » ~r O

and
Poy =t

We need to deduce that Roy = tt. By [E-FASSN], there are o; and o such that
(&,00) ~ o

(&,0) — o

and
f
01 =(V,E@r’Hr,c,r,ﬂ):a[E@r'ﬁr/E]

By induction hypothesis, we have

F{P}E{Q}
Vi . = {Ao.QoAD =1} E {Ao.Ro[E®D o r/E]}

The first validity implies that Qo' = tt. Specializing @ to 7’ in the second validity, we get
E{\.QoAr=r}&{M.RolE®Tr >£>7"/E']}

The pre-condition holds for o = ¢’, so that the post-condition is true when applied to o.

Hence,
Roy =RU[EEBT’>£>T/E]=U:

> Case tu=(C)¢&

[A-CAST]

{P} € {Ao . class(r) x C A Qo}
{P}(C) £{Q}
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We show that, in [A-CAST], validity of premises implies validity of conclusion. Suppose
(@Ye,a) ~ o

and
Po =tt

We need to deduce that Qo' = tt. By [E-CAST],
(E,0) ~ o
where class(r’) < C. By induction hypothesis,

class(r') x C A Qo' = Qo'

> Case t::=new C

We show that axiom [A-NEW] is valid. Suppose
{newC, o)) ~ o
and
PolVU{vLE, v, ]=tt

where
v = (C,next(C,V))

E=E®@fi,l)® @ fnl)
fi,-++, fn € fields(class(v))

Then we need to prove that Po’ = tt. In fact, o' = o[V U {v}, E', -, v,-] and so this follows
readily from axiom [E-NEW].

> Case t = E.m(E)

We show that, in [A-INVK], validity of premises implies validity of conclusion. Suppose

(Em(E), o) ~ o
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and
PU():tt

We need to deduce that So” = tt. By [E-INVK], there are oy, o, and o, such that
(E,0) ~ oo, (& ,00) ~ o1, (G,0) ~ o

and
C = class(ry) and (z:C",G)=method(C,m)

(z.5) .
o = (‘/laEl@TO "i 7‘1,7‘0,7‘1,{(17,],0[)})
(z.4)

= Ul[El bry — TI/EL][TO/Cl]{{(m’j: Cl)}/Ql]
" (‘/Q,del(E27T0),CQ,T2,Ql)
= 0o2[del(E2, ro)/allco/c2] [l /]

By induction hypothesis, we have

)
fl

={P} €{Q}
F1{Q} &' {R}
VCViV6 . = {R'} method(C,m) {S'}

The first two premises lead to Ro; = tt. In the last premise, specializing

e W to 1y, the receiving object of message m
e Cto C, the class of the receiving object

e § to gy, the pre-state for executing the message

we have
R = Ao .3doy. Rog A oy =0k A class(c) =C

A 0 = oWlEx &0 o 1) Eellro/ell{ (., C) } /%]

and
S"'= Ao . S o[del(E,ro)/E][r1/c)[1/9]

Now such a g; does exist, e.g. o1, so that R'¢’ = tt. By validity,
So" = S'o; =t

as claimed.

a
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5.2.2 Proof of completeness

To prove completeness, direct application of induction does not work. We consider a special

predicate sp(P,t) for a program term ¢ and an assertion P, defined as
sp(Pt)o’ = tt
if and only if there is a state graph o,
{t, o) ~ o A Po

The assertion sp(P,t) is called the strongest postcondition for P and t.

Lemma 2 Lett be a program term and P a predicate.

() E{P} t {sp(P, 1)}
(ii) If &= {P} t{Q}, then sp(P,t)=Q

Proof

Property (i) is no more than a re-formulation of the definition of strongest post-condition.

Property (ii) is also obvious because for all ¢/,

sp(Pt)o’ = Jo.{(t, o) ~ dANPo = Qo

]

Theorem 3 The axiomatic semantics of GM is complete with respect to its operational se-

mantics, i.e. for every partial correctness assertion {P} t {Q},

E{P} t{Q} = F{P}t{Q}

Proof

It suffices to show that, for all program term ¢ and assertion P,

E{P}t{Q} — t{P}t{sp(P1)} (#)
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because by lemma 2,
sp(Pt) = @

so that [A-CONSEQ] together with (}) give
F{P}t{Q} = F{P}t{sp(Pt)} = F{P}t{Q}

Now we prove (#) by structural induction on ¢.
> Case t=z

Applying rule [A-VACC] to Q £ Ao . sp(P,x) o[E(c,z)/r], we have
F{Q} = {sp(P,x)}

Now for all o,
Qo < sp(P,x) o[E(c,z)/7]
< o' . (z, 0 ) ~ o|E(c,z)/r] A Pd’
< {(z,0) ~ olE(c,z)/r] AN Po
< A Po
< Po

where [E-VACC] ensures 0 = o’. Hence + {P} = {sp(P,z)} by [A-CONSEQ].
>Case tu=z=¢&

The induction hypothesis applied to e and P gives
F{P} & {sp(P,£)}
If we can show that sp(P,€) = R, where
RE2 )Xo .sp(Pz=E&)o[E®c Nl r/E) A (z,7,.) € Q
then F {P} z = & {sp(P,z = &)} will follow from rule [A-CONSEQ]. For all o,

sp(P,&)a do.{(E,0 ) ~ oAnPd

o' . (€, 0) ~ o Ao =0[E(c,z)/r] A Po
{z,0) ~ aE(c,z)/r] A Po

do" . (E,0) ~ o ANd =0a[Fc,z)/r] A Po
Ro

I



5.2. SOUNDNESS AND COMPLETENESS 56

b Case tu=&.f=¢&

The induction hypothesis applied to e and P gives
H{P} € {sp(P, &)}
Let 1 be a vertex. Applying induction hypothesis to ¢’ and
Qu =)o .sp(PE\c AN =T

we have

F{Qu} & {sp(Qu, &)}

It suffices to show that sp(Qy,E’) = Ry, where
Ry & Xo . sp(P,E.f =& o[Edw J r/E)

For then - {P} £.f =& {sp(P,&E.f = &)} will follow from [A-CONSEQ] and [A-FASSN]. By
definition of strongest postcondition, and [E-FASSN]

sp(Qe, )0 = Fo' . (&', ) ~ o AQuo

do' (&, ) ~ aAsp(PE)Y ANw=r

dopdo’ . (&, ")) ~» o AN{(E,00) ~ 0 APog AN =1
dooda’ . (E.f=E&", ap ) ~ a[E@w»Lr/E] A Pog A w=r'
sp(P,E.f = &) o[E @b o 1/E]

Ryo

FEE b

> Case tu=(C) €&

The induction hypothesis applied to £ and P gives
H{P} € {sp(F,E)}
It suffices to show that sp(P, ) = @, where
QEMXs.T=1 V class(r) < C A sp(P,(C) &)o

Then + {P} (C) € {sp(P,(C) &)} will follow from [A-CONSEQ] and [A-CAST]. Consider a
state graph o. If r = L, then Qo = tt and therefore sp(P,£)o = Qo. Now assume that
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r # 1 and class(r) < C.!

sp(P,€)o do' . {(E,0" ) ~ oA Pd

—
=> Fo' . ((C)E, ") ~ oA Po
<~ sp(P,(C) &)

= Qo

> Case t:=new C

Applying rule [A-NEW] to

Q & Ao . sp(Pnew C) o[VU {v}, E, v,

where
v = (C,next(C,V))
E' = E®@W fi,L)®---® (v, fu, L)
fi, -+, fa € fields(class(v))
we have

F{Q} new C {sp(P,new C)}

Now for all o,

Po < {(newC, o) ~ o[VU{v},E', - v,-] APo
<= Jo' . (newC, o) ~ oVU{v},E, v, ] A Pd
<= sp(Pnevw C) o[V U {v}, E' - v,
— Qo
It follows from [A-CONSEQ] that b {P} new C {sp(P,new C)}.

> Case t is method invocation £.m(E€’)

The induction hypothesis applied to £ and P gives

FA{P} € {sp(P,E)}

Take a class C' < D, a vertex w and a state graph &. Let

QE X . sp(PE)o AN =c

LOtherwise the cast gets stuck.
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Applying induction hypothesis to @ and €', we have
H{Q} € {sp(Q, &)}
Let
R2 )Xo .sp(Q,E)6 Aclass(c)=C Ao =6[E®w e 7o, -, {(z,7, B)}]
Again, by induction hypothesis applied to R and body(é, m), we get
 {R} body(C, m) {sp(R,body(C,m))}
Then it suffices to show that sp(R,body(C,m)) = S, where

S £ X\o . sp(P,Em(E)) o[, delv(w, E,Q),¢,-,9)

Consider an arbitrary state .

e sp(R,body(C,m))oy = 3o’ . {( body(C,m), o’ ) ~» a2 A &,

e Ro' =sp(Q,£)6 A class(d)=C Ao =], E®w — 7w, {(z,5,C)}]

—_————
e sp(Q,&')6 & 3og. (&, a0) ~ A sp(P,E)ag N =cy
N—_——

e sp(P,E)oy & Jo.{(E,0) ~ o9 A Po

The operational semantics of method invocation [E-INV] ensures
( Eom(&r), o)) ~ 0oa[,delv(rg, By, s),co, -, ]

which, together with Po, implies that sp(S,E.m(E"))o.

O

5.3 Recursive Methods

Consider the method eq in the example GM program in Figure 2.1.

NatNum eq(NatNum n) {... x = this.pred.eq(n.pred); ...}
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Application of the proof rule

YCVavs . {R'} body(C,m) {S'} AC <D
{P} Em(E) {S}

[A-INVK]

will result in an endless application of the rule itself because eq appears in both the premise
and the conclusion. This problem can be solved by a trick similar to mathematical induction.
To establish a proposition by induction, we first prove a base case and then we prove that
the proposition is true for n assuming that it is true for n — 1. For recursion, we prove
that the current method call is correct if we assume that the result from any previous call
is correct. The base case corresponds to the situation in which the method is called, but it

does not call itself again.

Now the assertions (judgments) of the proof system are of the form
A v {P}t{Q}

where the antecedent A is a set of assertions. It can be interpreted as follows. Assuming
that every assertion in A is true, if P is true, then @Q is true when execution of ¢ terminates.

This way we can rewrite the axiomatic semantics to accommodate recursive methods.



Chapter 6

Related Work

6.1 Graph Models

Our graph model is a direct extension of the work of Grogono and Gargul [GG94]. They
describe object-oriented programming by graphs, of which vertices represent objects, and
edges represent links between the objects. They show how to model simple values, records,
and recursive data structures such as lists, trees, and graphs. A record with n fields is
represented by a vertex with n out-edges. Their state graph is a tuple (V, E, ¢, a,r) with
an argument vertex a and does not handle local variables. We add local variables to their
model, which enables us to remove the argument vertex, and use the extended model to

construct semantics for object-oriented programming languages.

Graphs arise naturally in systems with pointer structures. The approach closest to GM is
the OO0-machine of Schmidt and Zimmermann [SZ94]. OO-machine is an abstract machine
that uses graphs to represent the states of a state space and graph transformations to model
creation of objects and their evolution. Each vertex is an object. Edges are references to
other objects, and labels reference fields. The graph transformations, which constitutes the
instruction set of the OO-machine, resemble the operational semantics of GM. For example,
object creation introduces a new vertex and assignment corresponds to switching a edge from
one vertex to another. Cost metrics are then defined in terms of weights for vertices and
weights for edges. The authors develop a framework for analyzing space and time complexity
of object-oriented programs, and demonstrate the formal model by a subset of the language
Sather [Omo94]. We use the same tool for different purposes. The goal of Schmidt and

Zimmermann is software metrics. We aim at semantics.
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In their trace model [HH99], Hoare and He describe heap storage by a directed labelled
graph. Nodes are objects and edges are fields referencing other objects. Object instantiation
is represented by node creation. Updating a value of the heap is equivalent to swinging a
directed edge from one node to another. Their goal is to reason about inaccessible memory
instead of semantics of object-oriented languages. Along the same line is Jackson’s object
models [Jac03]. The heap of an object-oriented program is represented by a graph. Nodes
are objects and edges are field references. Hoare and He use graphs to reason about memory

management, not semantics.

GROOVE (GRaphs for Object-Oriented VErification) is a project centered around graphs
and graph transformations in a much wider context. Again it uses directed edge-labelled
graphs to models state snapshots of systems that involve dynamic allocation and de-allocation
of storage space and dynamic method invocation. The ultimate goal is, as the project title
suggests, system verification. A first-order graph logic, called Local Shape Logic (LSL) is
developed to perform model checking on states [Ren04]. A major issue addressed by this
modelling technique is the state space explosion. There is an upper bound for the number
of state graphs up to isomorphism. We gain insight from GROOVE, as well as from Hoare
and He, to tackle the state complexity problem. See Chapter 6.

6.2 Axiomatic Semantics of Object-oriented Languages

Our axiomatic semantics is inspired from the work of Nipkow and Oheimb [vO00, vOO1,
ON02]. Using the extensional approach, they put forward a Hoare logic for a subset of
Java, including dynamic binding of recursive methods and conventional sequential constructs.
They formalize the entire system and show it to be sound and (relatively) complete in the
theorem prover Isabelle/HOL[Isa]. We adopt their technique of universal quantification to
formulate proof rules of GM that require passing values between pre-condition and post-
condition, and between premise and conclusion. We apply the same technique to handle
dynamic binding of method calls. Our treatment of side-effect is simpler since the evaluation

result is built into the state graph.

Poetzsch-Heffter and Miiller [PHM98, PHM99| present a similar Hoare logic via the exten-
sional approach. They also study a sequential subset of Java and prove that the logic is
sound. They develop the concept of wvirtual methods. Briefly, a virtual method is a speci-
fication that reflects the properties of all implementations that might be executed, i.e. the

implementations in the class under consideration and those in all its subclasses. They use
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a separate subtype rule to handle dynamic binding. Nipkow and Oheimb also use virtual
methods in their logic, using universal quantification instead of a subtype rule. We built
our proof rules by comparing virtues and shortcomings of thier work. In particular, we are
still investigating to what extent could virtual methods would simplify the rule [T-INVK] in

Section 5.2.2 for method invocation.

Axiomatic semantics of object-oriented languages using intensional approach include the
work of Pierik and de Boer [PdB03]. Their logic is proved to be sound and complete. We did
consider an axiomatic semantics for GM using intensional approach but finally abandoned it.
Our view is that an assertion language for expressing assertions would only add unnecessary

clutter, obscuring the original language features.

6.3 Type Soundness

Our formulation and proof of type soundness is more or less standard. The history of
type soundness proof can be traced as far back as the subject reduction theorem for typed
A-calculus. [WF94] has a review of various approaches to soundness proof of functional
languages. In [IPWO1], Igarashi, Pierce and Wadler prove that a functional fragment of
Java is type safe.! Their type soundness is stated in terms of preservation and progress, as

described in Section 4.3.

Bierman, Parkinson and Pitts [BPP03] formalize an imperative subset of Java which includes
many interesting language features such as block structure. They extend the type system to
configurations? used in the operational semantics and show that a terminal configuration is
of a subtype of the original configuration. We borrow their idea of configuration typing to

define state graph typing (Section 4.3.1).

LA slightly different proof is presented in Chapter 19 of [Pie02].
?Bierman et. al. use the term configuration in their work. Configuration is in fact the same as state, as
we have already pointed out.



Chapter 7

Conclusion and Future Work

Graph is natural representation of systems with pointer structures, in particular object-
oriented programming. Graph is a well-established mathematical object. Its rich theory
may be carried over to the study of programming languages. Our graph model is able to
describe formally local state, object identity, dynamic binding (by associating methods with

vertices), side-effects, aliasing and the use of self or this for the current object.

Semantics can be formulated in a straightforward way by means of state graph. Our semantic
approach uses a state that is more complicated than a simple environment, but which does
not need to be extended for additional data structures. It is self-contained. All the run-time
information is recorded in a single entity. We believe that the axiomatic semantics of GM is

also complete with recursive methods (Section 5.3).

GM is a model for pure object-oriented programming languages, e.g. Java, as opposed to
hybrid languages such as C++. A hybrid language allows free function call, i.e. f(z) without
a host object. It would be straightforward to extend GM to include free functions. Basically
we just need one great big object b with all of the free functions inside it, so that f(z) is
merely an abbreviation for b. f(x). Technically, we can use the main object (see Section 2.1)

for this great big object.

A more interesting application is garbage collection or memory management. A local variable
is no longer accessible when it goes out of scope, i.e. when the method call returns. It
can then be deleted from the memory. This is de-allocation of variables in Rule [E-INVK]
(Section 3.1) and is equivalent to removal of edges from the state graph. As a result, the state
graph is broken down into connected components during program execution. The idea is to

view state graph as the machine memory and recycle the components. There are well-known
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algorithms for finding these components. Notice that, since the current vertex is replaced
and then restored in method call, disconnected components may be united again into a single
piece. We would need to keep a list of accessible vertices and delete those components that

do not contain these vertices.

GM models sequential object-oriented programming languages. An obvious future undertak-
ing is the semantics for concurrency and aspect-oriented programming. The need of a formal

model in this area is expressed clearly in the following quotation:

“The development of concurrent object-based programming languages has suf-
fered from the lack of any generally accepted formal foundations for defining
their semantics. Furthermore, the delicate relationship between object-oriented
features supporting reuse and operational features concerning interaction and

state change is poorly understood in a concurrent setting.” ([Nie92])

We believe this will be a fruitful direction of the graph model.
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