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Abstract

Analysis and Design of Some Cryptographic Boolean Functions

Ziad Saber

Boolean functions are vital components of symmetric-key ciphers such as block
ciphers, stream ciphers and hash functions. When used in cipher systems, Boolean
functions should satisfy several cryptographic properties such as balance, high
noniinearity, resiliency and high algebraic degree.

Bent functions achieve the maximum possible nonlinearity and hence they provide
optimal resistance to several cryptographic attacks such as linear and differential
cryptanalysis.

We present some simple constructions for binary bent functions of length 2* using
a known bent function of length 2%,

Adams and Tavares introduced two classes of bent functions: bent-based bent
functions and linear-based bent functions. In this thesis we explore different bent-based
constructions. In particular, we show that all nonlinear resilient functions with maximum
order resiliency are either bent-based or linear-based. We provide an explicit count for
the number of such resilient functions that belong to both classes. We also provide a
simple proof that all symmetric functions that achieve the maximum possible nonlinearity
are bent-based. In particular, for n even, we have 4 bent-based bent functions. For n odd,
we also have 4 bent-based functions. We also prove that there is no bent-based

‘homogeneous functions with algebraic degree >2.
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Almost all cryptographic properties of Boolean functions can be determined
efficiently from its Walsh transform. In this thesis, we present some restrictions on the
partial sum of the Walsh transform of binary functions.

In several parts of the thesis, we extend the obtained results to functions defined over

GF(p).
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Chapter 1

Introduction to Cryptography

1.1 Introduction

The terms cryptology and cryptography have long been used by researchers
interchangeably. Only in the last half century has the modern definition of cryptology
become widely adopted. This modern definition classifies cryptology as a general term
that encompasses cryptography and cryptanalysis as its main component classes.

Historically, cryptography was all about encryption. The purpose of cryptanalysis was
to decipher encrypted messages. Development in either of these two fields reflects
development in the other. As methods of cryptography improve, the need for better
methods of cryptanalysis grows. Conversely, as cryptanalysts become more skillful in
breaking messages, cryptographers feel the need for better ways to encipher them.

The word for cryptography in Greek consists of two parts which mean “hidden” and
“writing”’; that 1s the art and science of secret writing. Cryptography is the practice of
enciphering a message so that it can be read by someone for whom it is intended, but not

by anyone for whom it is not intended. More precisely, cryptography is the process of



providing secure communications over insecure channels. This definition emphasizes the
fact that people often have to transmit secret messages by means of communications

systems like e-mails, telephone and telegraph lines to which many people have access.

1.2 A Brief History

Cryptography is one of the oldest fields of technical study we can find records of,
going back at least 4,000 years [1]. Some Egyptians used hieroglyphics to decorate the
tombs of deceased rulers and kings. These hieroglyphics told the story of the life of the
king and proclaimed the great acts of his life. They were purposefully cryptic, but not
apparently intended to hide the text. Rather, they seem to have been intended to make the

text seem more regal and important.

The ancient Chinese used the ideographic nature of their language to hide the meaning
of words. Messages were often transformed into ideographs for privacy, but no
substantial use in early Chinese military conquests is apparent. Genghis Khan, for

example, seems to never have used cryptography.

In India, secret writing was apparently more advanced, and the government used
secret codes to communicate with a network of spies spread throughout the country.
Early Indian ciphers consisted mostly of simple alphabetic substifutions often based on
phonetics. Some of these were spoken or used as sign language. This is somewhat similar
to "pig Latin" (igpay atinlay) where the first consonant is placed at the end of the word

and followed by the sound "ay".



Julius Caesar used a system of cryptography (i.e. the 'Caesar Cipher') which shifted
each letter 2 places further through the alphabet (e.g. Y shifts to 4, R shifts to 7, etc.). The
distance of the displacement is not important to the scheme, and in fact, neither is the
lexical ordering chosen. The general case of this sort of cipher is the "monoalphabetic
substitution cipher" wherein each letter is mapped into another letter in a one to one

fashion.

The Arabs were the first to make significant advances in cryptanalysis. An Arabic
author, Qalqashandi, wrote down a technique for solving ciphers which is still used
today. The technique is to write down all the ciphertext letters and count the frequency of
each symbol. Using the average frequency of each letter of the language, the plaintext can
be written out. This technique is powerful enough to cryptanalyze any monoalphabetic

substitution cipher if enough cyphertext is provided

In 1948, Shannon published "A Communications Theory of Secrecy Systems" [2] .
Shannon was one of the first modemn cryptographers to attribute advanced mathematical
techniques to the science of ciphers. Although the use of frequency analysis for solving
substitution ciphers began many years earlier, Shannon's analysis demonstrates several
important features of the statistical nature of language that makes the solution to nearly
all previous ciphers very straightforward. Perhaps the most important result of Shannon's
famous paper is the development of a measure of cryptographic strength called the
'unicity distance'. The unicity distance is a number that indicates the quantity of
ciphertext required in order to uniquely determine the plaintext of a message. It is a

function of the length of the key used to encipher the message and the statistical nature of



the plaintext language.

1.2  Cryptographic Goals
Of all the information security objectives, the following four form a framework upon
which the others will be derived: (1) privacy or confidentiality (2) data integrity (3)

authentication and (4) non-repudiation [3] .

1. Confidentiality is a service used to keep the content of information from all but those
authorized to have it. Secrecy is a term synonymous with confidentiality and privacy.
There are numerous approaches to providing confidentiality, ranging from physical

protection to mathematical algorithms which render data unintelligible.

2. Data integrity is a service which addresses the unauthorized alteration of data. To
assure data integrity, one should have the ability to detect data manipulation by

unauthorized parties. Data manipulation includes insertion, deletion, and substitution.

3. Authentication is a service related to identification. This function applies to both
entities and information itself. Two parties entering into communication should identify
each other. Information delivered over a channel should be authenticated as to origin,
date of origin, data content, time sent, etc. For these reasons this aspect of cryptography
is usually subdivided into two major classes: entity authentication and data origin
authentication. Data origin authentication implicitly provides data integrity (for if a

message is modified, the source has changed).

4. Non-repudiation is a service which prevents an entity from denying previous

4



commitments or actions. When disputes arise due to an entity denying that certain actions
were taken, a means to resolve the situation is necessary. For example, one entity may
authorize the purchase of property by another entity and later deny such authorization

was granted. A procedure involving a trusted third party is needed to resolve the dispute.

A fundamental goal of cryptography is to adequately address these four areas in both

theory and practice.

1.3 Basic Encryption/Decryption Systems

Let M denote a set called the message space. An element of M is called a plaintext
message or simply a plaintext.

Let C denote a set called the ciphertext space. C consists of strings of symbols from
an alphabet of definition, which may differ from the alphabet of definition for M. An
element of C is called a ciphertext.

K denotes a set called the key space. An element of K is called a key. Each element
e € K uniquely determines a bijection from M to C, denoted by E,. E, is called an
encryption function or an encryption transformation. For each d € K, D, denotes a
bijection from C to M. Dy is called a decryption function or decryption transformation.

An encryption scheme consists of a set {E, :e e K}of encryption transformations
and a corresponding set {D, : d € K} of decryption transformations with the property that

for each {e € K} there is a unique key {d € K} such that D, = E]'. The keys, e and 4, in



the preceding definition are referred to as a key pair and sometimes denoted by (e, d).

Note that e and d need not be the same as in public key cryptography [3].

Basic blocks of an encryption/decryption system are shown in Figurel.l. The
plaintext is encrypted and transmitted over insecure channel. The cryptanalyst is an entity
in this two-party communication which is neither the sender nor receiver, and which tries
to defeat the information security service being provided between the sender and the
receiver. The cryptanalyst can listen to, delete, insert, or modify the transmitted

messages.

One can think of the key as a compact way to specify the encryption transformation
(from the set of all encryption transformations) to be used. For example, a transposition

cipher of block length ¢ has tf!l=¢x(z —1)x (¢ —2)....2x1 encryption functions to select

from. Each can be simply described by a permutation which is called the key. The size of
the key space is the number of encryption/decryption key pairs that are available in the
cipher system. It is a great temptation to relate the security of the encryption scheme to
the size of the key space. The following statement is important to remember. A
necessary, but usually not sufficient, condition for an encryption scheme to be secure is

that the key space be large enough to preclude exhaustive search.

1.4 Cryptographic Techniques

Cryptographic techniques are typically divided into two types: symmetric-key and

public-key (see Figure 1.2).



Ke Kd

Insecure channel

— 3 Enc(.) — Dec(.) |— s
Plaintext Ciphertext Plaintext
Cryptanalyst

1-Listen  2-Insert
3-Delete  4-Modify

Figure 1.1: A typical encryption/decryption system.

1.4.1 Symmetric-Key Encryption

A cryptographic system is said to be a symmetric-key system if the sender and
receiver of a message share a single, common key that is used to encrypt and decrypt the
message. The main drawback is that the two parties should somehow exchange the key in

a secure way.



Cryptographic

Techniques
Symmetric Public
Key Key
Stream Block
Ciphers Ciphers

Figure 1.2: General classification of Encryption systems.

1.4.2 Public-Key Encryption

A cryptographic system is said to be a public-key system if it uses two keys, a public
key and a private key. A public key is known to everyone and a private or secret key is
known only to the recipient of the message. An important element to the public key
system is that the public and private keys are related in such a way that only the public
key can be used to encrypt messages and only the corresponding private key can be used
to decrypt them. Moreover, it is very difficult to deduce the private key if you know the

public key.



Public key cryptography [3] was invented in 1976 by Whitfield Diffie and Martin
Hellman. It is also called asymmetric encryption because it uses two keys instead of one

key (symmetric encryption).

Each of the symmetric key and the public key are classified into two classes: stream

ciphers and block ciphers.

1.4.3 Stream Ciphers

A stream cipher produces a pseudo-random sequence of bits which are exclusive-
OR’ed with the plaintext to produce the ciphertext. Many stream ciphers make use of the
linear feedback shift register (LFSR). Figure 1.3 illustrates a linear feedback shift
register defined by the primitive polynomial

fix)=1+ x>+x8.

MNe 4
L/~ N

y

f——— Output

Figure 1.3: An example for a 6-bit linear feedback shift register.

Recall that a periodic LFSR is defined by a feedback polynomial of degree L, the length
of the LFSR. When the feedback polynomial is primitive and of degree L, the output

sequence of a maximum length LFSR is periodic with period 2° -7 and is called an m-



sequence. One particular example of LFSR-based stream ciphers is the nonlinear
combiner (see Figure 1.4) which combines the output of £ LFSR’s using a nonlinear
Boolean function to obtain the keystream. Thus, the combiner requires a nonlinear
Boolean function of & inputs. The keying material for this cipher is generally the initial
contents of the LFSR’s. In some cases the feedback polynomials are assumed to be public
knowledge, along with the combining function. A cryptographic weakness with some
LFSR-based stream ciphers is that the output sequence from the LFSR is correlated to the
output keystream sequence of the generator. Hence, the design of these non-linear
combining Boolean function is of great importance in stream cipher in order to stand
against different cryptanalytic attacks. In other words, if the nonlinear combining

function is not properly designed, then an attacker may be able reconstruct the keystream

sequence.
X1
LSFRI1 P Plaintext
Z Stream
X2 > C Ciphertext
LSFR1 Non
linear
; combiner
':
: xXn
LSFRn - Zn
Pn Cn
T

Figure 1.4: LFSR-based stream cipher.
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1.4.4 Block Ciphers

A block cipher is an encryption scheme which breaks up the plaintext messages to
be transmitted into strings called blocks of a fixed length L, then encrypts one block at a
time. When encrypting, a block cipher takes L-bit block of plaintext as input, and output
a corresponding L-bit block of ciphertext. The exact transformation is controlled by the
secret key. Decryption is similar; the decryption algorithm takes an L-bit block of
ciphertext together with the secret key, and yields the original L-bit block of plaintext.

Block ciphers can be contrasted with stream ciphers; a stream cipher operates on
individual digits one at a time. The distinction between the two types is not always clear-
cut; a block cipher, when used in certain modes of operation, acts effectively as a stream
cipher (for example, output feedback mode (OFB)).
In 1949 Shannon [2] presented the principles of confusion and diffusion. Because these
principles are so successful in capturing the essence of the desired attributes of a block
cipher, they have become the cornerstone of block cipher design. Confusion is described
as “the use of enciphering transformations that complicate the determination of how the
statistics of the ciphertext depend on the statistics of the plaintext” [4] or, more briefly, to
make the relation between the key and the ciphertext as complex as possible, thereby
hiding the statistical features of the plaintext. On the other hand, diffusion spreads the
influence of individual plaintext characters over as much of the ciphertext as possible,
thereby hiding the statistical features of the plaintext. Methods of achieving good
diffusion and confusion are the core of block cipher design. An effective implemenfation
of Shannon’s principle of mixing transformation based on the concepts of “confusion”

and “diffusion” is the Substitution Permutation Network (SPNs).

11



1.4.4.1 Substitution-Permutation Networks

Feistel [5] and Feistel, Notz, and Smith [6] were the first to suggest that a
Substitution Permutation Network (SPN) architecture (see Figure 1.5) was a simple
effective implementation of Shannon’s principle of mixing transformation based on the
concepts of “confusion” and “diffusion”. Keying the network can be accomplished by
XORing the key bits with the data bits before each round of substitution and after the last
round, or by choosing a different set of s-boxes for each key. Boolean functions are the
main core for designing s-boxes and the characteristics of the s-boxes depend on the

properties of Boolean functions used [7].

1.5 Outline of the Thesis

Chapter two gives some of the mathematical background and the necessary
definitions required throughout the thesis.

Chapter three gives a review of some constructions for bent and resilient functions.

In chapter four we introduce new restrictions on the Walsh transform as well as a
new construction for bent functions.

In chapter five we classify nonlinear maximum order Boolean resilient functions
based on the bent-based and linear-based concept and provide some experimental resulfs
for the algebraic immunity of Boolean functions.

Finally in chapter six we give a summary of our results and directions for future work.

Some parts of the work presented in chapter 4 were published in [56].
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Chapter 2

Boolean Functions

2.1 Introduction

A Boolean function is a {0,1}-valued function defined on the set Z; of all binary

words of a given length n. Boolean functions are used in several different types of
cryptographic applications, including the design of block ciphers, stream ciphers, and
hash function [3].

The most basic representation of a Boolean function is by its binary truth table. The
binary truth table of a Boolean function of n variables is denoted f{x) where
J)e{0,1} andx={x,,x,,....,x,},x;, €{0,1},i=1,...,n. The truth table contains 2"

elements corresponding to all possible combinations of the # binary inputs.

Another representation of a Boolean function is over the set {1,-1} . The polarity

Y

truth table of a Boolean function is  denoted f(x) where

f(x) € {0,1} and f(x) = (-1)’® =1-2f(x). It is also important to note that XOR over

14



{0,1} is equivalent to real multiplication over {-1,1}. Thus if A(x)= f(x)® g(x) then

h(x)= f()-8().
Example: Let f{x,,x,)=x, ® x,x,, then it can be represented by the binary truth table

as [f(0,0) f(1,0) f(0,1) f(1,1)]1=[0 1 0 0] and by the polarity truth table as [1 -1 1 1].
Two fundamental propertiess of Boolean functions are Hamming weight and

Hamming distance, discussed as follows.

Hamming weight
The Hamming weight of a Boolean function is the number of ones in the binary truth

table. So the Hamming weight of a Boolean function we(f) is given by
1 . *
wi(f) = 2 f()=2(2" = 2 1)
xeZj xeZ3

Hamming distance
The Hamming distance between two Boolean functions d(f,g)is the number of

positions in which their truth tables differ. It can be calculated from either the binary truth

table or the polarity truth table as follows:

d(f,8)= 2 (f(x)®g(x)= %(2" - > (0)-£(x)).

xeZ3 xeZ3

A linear function, L, (x), selected by w € Z; is defined as
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Lx)=w-x=0,x,QPw0,x,®...0,x

nn’

An affine function is one of the form

A,(x)=0-x@c,
where ce Z,.
The Hamming distance to linear functions is an important cryptographic property.
Ciphers that employ nearly linear functions can be broken easily by a variety of methods
such as linear cryptanalysis [8]. Thus the minimum distance to the set of affine functions

is an important indicator of the cryptographic strength of Boolean functions.

2.2 Algebraic Normal Form

The Algebraic Normal Form (ANF) describes a Boolean function in terms of an
XOR sum of logical AND products of sub-sets of input variables. Any Boolean function

f{x) of n variables admits a unique (ANF) and can be written as:

i=n
X =a,D_ ax,D,.,,.,9%% ®..Qa, ,xx,..x,.

The ANF can be derived from the binary truth table in a binary matrix transformation,
the Algebraic Normal Form Transformation (ANFT). The ANFT matrix is its own
inverse, so the binary truth table may also be obtained from the ANF using the same
ANFT operation. The most important cryptographic property related to the ANF is the

algebraic normal form degree of a Boolean function, which is equal to the number of
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variables in the highest order product term with nonzero coefficient (ANFD). We refer to
functions of degree two as quadratic, and function of order three as cubic. Affine

functions are those Boolean functions of degree at most one.

Example: Let f(x)= [0000011110101011], then f{x) expressed in its algebraic normal
form is given by :

J(xX)=x, @ xx, ®x,;x, ®x,x; D x;x,%x, D x,x;,%, D x,x,%,,
and its algebraic normal form degree is 3.

Example: Let f(x)= [0000111111110000], then f{x) expressed in its algebraic normal

form is given by :

f(x)=x3®x4,

and its algebraic normal form degree is 1. Thus [ is a linear function.

2.3 Walsh-Hadamard Transform (WHT)

The Walsh-Hadamard Transform expresses a Boolean function in terms of its
correlation with all linear functions. Several important cryptographic properties are
expressed directly in terms of Walsh transform values.

The WHT of a Boolean function is calculated from the polarity truth table as:

F(a)) — Z(_l)f(x)m.x )

xeZj
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The Walsh transform is sometimes called the spectral distribution or the spectrum of
a Boolean function.
Example: Let f{x)=[0000011100101111], then the spectrum of the Boolean function f

is given by

F(0)=[004412-400440000-4-4].

2.4 Affine Equivalence Classes

An affine transform is a mapping from function f to g such that
g(x)=f(Ax®b)DcxDd, where 4 is an n x n invertible matrix, b, ¢ and d are n-bit
vector [9]. The affine transformation preserves the nonlinearity and the algebraic degree
[10]. Boolean functions that are related by affine transform can be grouped together to
form an equivalence class. An affine transformation provides a method of grouping "like"
Boolean functions into classes. Thus, we may refer to two Boolean functions as
equivalent if they are related by an affine transform. Boolean functions in the same class
have similar cryptographic properties. Equivalence classes under affine transformation
are of great importance because they provide a reduced practically useful view of the
Boolean space. Several cryptographic properties of Boolean functions remain unchanged
under an affine transformation. We need only one example from any given class to find
all the other Boolean functions in that class. Tables 2.1 and Table 2.2 show the

equivalent classes for n =3, 4 variables respectively [9].
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class | example | ANFD | NL | | WHT | distribution
1 Oxaa 1 0 {(0,7),(8,1)}

2 | oxab | 2 |1 {(2,7),(6,1)}

3 | oxac 3 2 {(0,4),(4.9)}

Table 2.1: Equivalent classes for n=3.

class | example | ANFD | NL | abs. WHT distribution
1 |0xaa55 1 0 {(0,15),(16,1)}
2 |O0xab55| 4 1 {(2,5),(14,1)}
3 |O0xbb55| 3 2 {(0,8),(4,7),(12,1)}
4 |Oxaba5| 4 3 {(2,12),(6,3),(10,1)}
5 |Oxaaff}] 2 4 {(0,12),(8,4)}
6 |Oxaba4}| 3 4 {(0,6),(4,8),(8,2)}
7 |Oxabl2| 4 5 {(2,10),(6,6)}
8 Joxacoo| 2 | 6 {(4,16)}

Table 2.2: Equivalent classes for n=4.

Boolean functions of 5 variables were classified in [11] into 48 equivalent classes.

Boolean functions of 6 variables were first classified in 1991 by Maiorana [12]

where 150357 different classes were counted.

2.5 Cryptographic Criteria for Boolean Functions
1- Balancedness
For cryptographic Boolean functions, it is usually desired that there are equal

number of 0’s and 1’s in the binary truth table. When this is the case, the function is said

to be balanced.
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Example: Let f{x)=[00011110]. Since the number of 0’s in fis equal to the number of 1’s,

~ then f{x) is said to be balanced.

2- Nonlinearity (NL)
The nonlinearity (VL) of a Boolean function is defined as the minimum Hamming
distance between f and the set of affine functions [13]. Note that complementing a

Boolean function’s binary truth table will not change the nonlinearity, so the magnitude

of the correlation to all linear functions, of which there are 2", is to be considered. The
Hamming distance between a pair of functions can be determined by evaluating both

functions for all inputs and counting the disagreements. This process has complexity
O(2"). 1t follows that determining the nonlinearity in this naive fashion will require
O(2*") function evaluations, which is infeasible even for small n.

Example: Let n=2 , f(x)= x,x, and a, € Z,.Then any affine function can be expressed
as

A(x)=a,Pax ®a,x,.

By taking all the combinations of g 's, we can generate all the affine functions for

n=2 and they are represented in Table 2.3.
To find the nonlinearity of f we calculate the distance between f and all affine functions

that are presented in Table 2.3. The minimum Hamming distance is the NL of f.
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Affine functions
f AL TA A AL As | A | A7 | Ag
0 0(o0fofjo0}1 1 1 1
0 Oj1}j101}1 10110
0 010} 1 1 1 11010
1 011 1101101011
d(f,Ai) | 1 1 1 131333 1

Table 2.3: Distance between fand all affine functions.

dmin=1 = NL=1.

The nonlinearity of f can be obtained from the Walsh transform of fas follows:
NL = ! 2" F
=@ ~max ;. | F(@)).

Using the fast Walsh transform the complexity of calculating the nonlinearify is

reduced to O(n2"). Clearly in order to increase the nonlinearity, max __,

: F (o) should be

decreased. Note that a function is uncorrelated with linear function L, (x) when

F(w)=0. For cryptography, it would be desirable to find Boolean functions which have
all WHT values equal to zero, since such functions have no correlation to any affine
functions. However, it is known [14] that such functions do not exist. A well known

theorem, widely attributed to Parseval [15], states that the sum of the squares of the WHT

values is the same constant for every Boolean function,
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> F(w)=2".

n
weZ,

Thus a tradeoff exists in minimizing affine correlation. When a function is altered so that
its correlation to some affine function is reduced, the correlation to some other affine

function is increased.

Example: Let f=[0001]. Then the spectrum of the Boolean function is given by

[222-2] Thus max__ , F(w)=2 and hence the NL is equal to 1.

Example: Let f=[1111]. Then the spectrum of the Boolean function is given by

[4000 ]. Thus max . F(w)=4 and hence the NL is equal to 0.

3- Correlation Immunity (Cl/)

A Boolean function is said to be correlation immune of order m if the distribution

probability of its output is unaltered when any m of its input are fixed [16].

Example : Consider the linear function f(x)=x, @ x, ® x,

)

=
L

L]
=

w

[ U O N e =1 = =
—l=olol=|—~o|o
— OO OI—|O
— OO~ (OO
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This is a 2-resilient function. For example, the set of arguments [x, x,x,] giving f(x)
= 0 contain each possible value of x;, and x,,i# jexactly once. Sifnilarly, the set of
arguments [x,x,x,] giving fix) = 1 contain each possible value of x, and x;i# j
éxactly once. Hence, when x, and x; are fixed to any values, f{x) will equal to 1 with

probability 1/2 when x,, (k # i,k # j) is chosen by coin tossing.

4- Resiliency
A Boolean function is said to be resilient of order m [15] if it is correlation immune

of order m and it is also balanced.

5-Output Bit Independence Criterion (BIC)
A Boolean function is said to satisfy the output Bit Independence Criterion if
whenever one bit of the input is complemented, the correlation coefficient between every

two output bits changes is zero [17].

6-Completeness
A Boolean function is said to satisfy the completeness criterion if every output bit of

the function depends on all input arguments [18].

7-Strict Avalanche Criterion (SAC)
A Boolean function is said to satisfy SAC criteria if whenever a single input bit is

complemented, the output bit changes with a probability of one half [17].
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8-Higher Order SAC

A Boolean function is said to satisfy higher order SAC criteria of order k if any
function obtained from f, by keeping £ of its input bits constant, satisfies SAC [19].
Higher order SAC was defined in a different way by Adams and Tavars [20] as follows:
A Boolean function is said to satisfy higher order SAC of degree £ if f changes with a

probability of one half whenever i (1<i < k) bits of x are complemented.

9-Propagation Criterion (PC)
A Boolean function is said to satisfy Propagation Criterion of degree & (denoted PC-

k) if f changes with a probability of one half whenever i (1<i<k) bits of x are

complemented . Note that this is identical to Adams and Tavars higher order SAC and
was defined independently by Preneel [21].

A Boolean function is said to satisfy the extended Propagation Criterion of degree k
and order ¢ (PC-k order ¢) if any function obtained from f by keeping ¢ bits constant

satisfies PC-k [21].

10-Autocorrelation (AC)

The autocorrelation transformation of a Boolean function fis given by

Frs)=D f(0)f(x®5)

where se Z;.

The maximum absolute value in the autocorrelation spectra of fis given by

Coc =max,,, |7, (s) = max,,, Y. f(x)f(xD5).
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Note that low values of C4¢ are considered good. Maximal values are serious weakness,
called the linear structure [22]. Bent functions have the minimum autocorrelation, so they

optimize this property.

The above mentioned parameters are of great importance in designing cryptographic
Boolean functions. For example the Boolean function to be used in stream cipher systems
should satisfy several properties (e.g., balancedness, high nonlinearity, high algebraic
degree, high algebraic immunity and high order of correlation immunity). These
parameters are important for resisting different kinds of attacks. There is a certain trade-
off involved among these parameters. From this, several interesting questions may arise.
For example, can the maximum nonlinearity be achieved for a fixed order of correlation
immunity and algebraic degree. A series of papers have discussed these problems but the
best trade—off among all these parameters is still an open question in designing Boolean

functions.
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Chapter 3

Bent and Resilient Functions

3.1 Introduction

Bent functions, is an important class of cryptographic Boolean functions. It was

defined and first analyzed by Rothaus [23]. He showed that binary bent functions exist
only when the dimension »n of the vector space Z; is even. Several properties of bent

functions were noted by Rothaus including a characterization in terms of Hadamard
matrices. Two large classes of bent functions were also presented in his paper. Further
properties and constructions and equivalence bounds for bent functions can be found in

[24], [25], [26], [27]. Kumer, Scholtz and Welsh [28] defined and studied bent functions

from Z] to Z,. Bent functions have been the subject of great interest in several areas

including cryptography. In fact, the Canadian government block cipher standard (CAST
[29]) is designed using these functions.

Another important class of Boolean functions for cryptography is that of resilient
functions. These functions play a central role in stream cipher design. In the standard

model of these ciphers the output of several independent Linear Feedback Register
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(LFSR) sequences are combined using a nonlinear Boolean function to produce the
keystream. This keystream is bitwise XORed with the message bitstream to produce the
cipher. In 1984 Siegenthaler [16] pointed out that if the combining function is not chosen
properly, then the whole system is susceptible to a divide-and-conquer attack. He
introduced the concept of m-th order correlation immunity for combining functions as a
measure of their resistance against such correlation attacks. He also showed that for an n-
variable function, of degree ANFD and order of correlation immunity m, the following
holds:
m+ ANFD <n.
Further if the function is balanced then
m+ ANFD <n-1.

Later on, Guo-Zehn and Massey [30] introduced an equivalent definition of
resilient functions using the Walsh transform of the Boolean function by the following
equation:

Fw)=0 0wt(w)<m.

Example: Let f=[00111100]

(e
—
N
W
w

@ 6|7
wt(f) 2
F(w) |0]0{0]|0{0]0[{-8]0

<
—
—
N
—
(8]
LI

Table 3.1: Walsh Transform distribution.
From Table 3.1, we can see that F(w) of Hamming weight 1 is zero and F(0) is also

zero, then the function is resilient with resiliency degree 1.
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3.2 Some Properties of Bent Function

1) A Boolean function f is called bent if all the Walsh transform coefficients have the
same absolute value, i.e., | F(@) | is constant for allw. By using Parseval’s theorem, fis

n

a bent function if and only if | F(w)|=22 forall @ and since | F(@w) | is an integer then
n should be even.
2) Bent functions achieve the maximum possible nonlinearity. The nonlinearity of any

bent function is given by

NL= (2" =27 ),

This means that the Hamming distance of f to every affine function is maximum and

equalto (2" + 25—1).

3) Bent functions are never balanced. However, for very large n, they become statistically

indistinguishable from balanced functions.

4) The order (algebraic degree) of bent functions is at least 2 and not more than —'21, ie.,

2sANFDs12’-.

Bent functions of higher algebraic degree are preferred from cryptographic point view

5) f is bent if all its derivatives

D f(x)=1(0)® f(x+5)
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are balanced, where s 1s any non zero vector in Z; [23].

5) All the bent functions have zero autocorrelation for all non-zero s in Z7, i.e.,

’:f(s)=0’

where 7,(s) = Zf(x)f(x@ s).

3.3 Classification of Bent Functions

Rothaus [23] has classified the 6 variables bent functions with algebraic degree 3
into three classes. For degree 2, we have one class, so the total number of classes is 4.
The number of bent functions in 6 variables is discussed in [24], [31] , [32]. Adams and
Tavars [24] defined two general classes (i) bent-based bent sequences (BBBS’s) and (ii)
linear-based bent sequences (LBBS’s). For 4 variables, they found that the number of
BBBS’s is 512 and the number of LBBS’s is 384. For 6 variables, they estimated
48201728 as the number of bent function in which 37879808 are BBBS’s and 10321920
are LBBS’s. In [31], the number 49774592 was estimated as the lower bound for 6
variables bent functions and in [32] Wang introduced an upper bound. In [33] the exact
number of all 6-variable bent functions was determined to be equal to 128 x 42386176.

A heuristic algorithm is presented in [34] that efficiently generates Boolean bent
functions, which have desirable -cryptographic properties including maximum
nonlinearity. This algorithm used the algebraic normal forms to generate new bent
functions. The algorithm determines new classes of bent functions for up to 14 inputs.
The values in Table 3.2 are the number of distinct classes N¢ found so far and they are

considered as lower bounds for the number of distinct classes for each n [34].
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ANFD {23141 2|3 (415231451623 ({45]|6]7

Table 3.2: Lower bound on the number of bent function classes [34].

3.4 A Brief Summary of Bent Function Constructions

3.4.1 Rothaus Construction

Rothaus [23] identified two large general classes of bent functions. These
constructions were the first non-trivial construction of  bent functions introduced in
literature since the functions produced can have degrees near n/2. It is still one of the

most interesting known constructions nowadays. These two classes are given as follows:

a) Let x,y eV, and P(x) be an arbitrary polynomial on ¥, , then the polynomial f{x,y)
on V,, given by

Sy =x®x,y, ®.... ®x,y, ®P(x),

is a bent function.
b) Let A(x), B(x) and C(x) be bent polynomials on V,, such that A(x)® B(x)® C(x) are

also bent. Also, let y,z € Z; . Then the polynomial

S (x,3,2) = A(x)B(x) ® B(x)C(x) ® A(x)C(x) D[A(x) ® B(x)]y B[A(x) ® C(x))z D yz

is bent function on V,,+5.
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3.4.2 Maiorana-McFarland Construction

For n even, Maiorana-McFarland [35], [36] class is the set of all bent functions on

Z] ={(x,y),x,y € Z}'*} of the form

f(x,y)=xn(y)® g(y),

where 7 is any permutation on Z}’? and g is any Boolean function on Z]'* .

Other types of constructions are presented by Yarlagadda and Hershey [26] and

Dillon [35] called the effective partial-spread construction.

3.5 A Brief Summary of Resilient Function Constructions

3.5.1 Siegenthaler’s Construction

Let fi(x) and £ (x) be an m-th order correlation immune functions of » binary
variables such that P(f(x) =1) = P(f,(x) =0) = p, then the binary-valued function fof

n+1 binary random variables defined by the GF(2)expression

Jx5 x50 X,0) =X, (X, X,50,X,) D (x,,, @D, (x,,X,50X,),

is also m-th order correlation immune [16].

3.5.2 Tarannikov’s Construction

In [37], Tarannikov introduced the following construction for resilient functions. If we

let f be any Boolean function on Z;, then the Boolean function g on Z;*' is defined by
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8(X1 X5 X)) = Xy f (K15 X000 X, 1, X, B x,,)

The Walsh transform of g is F (®;,...,®,,,) and is given by

’
xeZy

and

F (®,...,0,,)=0.

fo =w,,®1, then

n+l

F (&, 0,,) = 2F (®,,...,®,).

4

Thus NL,=2NL, and if [ s m-resilient  then g is m-resilient. If
F(®,....o, ;1) 1s null for every vector (@,,...,®,,) of weight at most m, then g is

(m+1)-resilient .

Other types of constructions are presented in [38] where the authors introduced a
construction of resilient functions based on the idea of a construction of bent function due
to Maiorana-McFarland construction [35], [36]. This construction does not permit to
design functions with optimum degrees and nonlinearity (see [39], [40]) except for small
values of n. Modifications and generalization of this construction have been proposed in

[41] and [42).

3.6 Nonlinearity of Resilient Functions

The maximum possible nonlinearity of m-resilient Boolean functions was discussed

in many papers. It is well-known that the nonlinearity of a Boolean function doesn’t
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exceed 2" + 25_1 [23]. Let NL(n) denote the maximum possible nonlinearity of an »-

variable function. Also denote the nonlinearity of an n-variable, m-resilient function
by NL(n,m). Then for even n bent functions achieve the maximum nonlinearity

n_ “ (n-1)
("' =22 l). For odd n, and n <7, NL(n) = 2" -2 * . For some small values of m

and n the exact values of maximal nonlinearity are known. For higher values of n, Palash
and Sarkar [43] found a non trivial upper bound on the nonlinearity of resilient functions.

Their work is presented by the following theorem:

Lemmal: If n>3 and m<n-3 then the Walsh values of m-th order resilient function

on n variables satisfy [F( @ )|=0 mod 2™ [43].
Using lemma 1, it is possible to obtain an upper bound on the nonlinearity of an n-

variable, m-resilient function represented by the following theorem.

Theorem 1 [43].

1)If nis evenand m+1 >-’2’-—1 , then NL(n,m)< 2" -2,

2)Ifnis even and m+1< % ~1,then NL(nm)<2"" —27 —2m,
3)If nis odd and 2™ > 2" — NL(n), then NL(n,m)<2"" —2".
4) If nis odd and 2™ > 2" — NL(n), then NL(n,m) is the highest multiple of 2"

which is < NL(n).
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Before we proceed, we would like to introduce few notations for future convenience.
By an (n, m, ANFD, NL) function we mean an rn-variable , m-resilient Boolean function
with algebraic normal form degree ANFD and nonlinearity NL. By [n, m, ANFD, NL] we
denote an unbalanced function with the same notation as above. Any component is
replaced by ‘-° if we do not specify it, e.g., (n, m,-, NL) if we do not wish to specify the
algebraic degree.

Table 3.3 represents the upper bound on NL(n,m) given by theorem 1.

m| 0 1 2 3 4 5 6 7 8
n

5 12 12 8 0

6 26 24 24 16 0

7 56 56 56 | 48 32 0

8 | 1189 ] 116Y | 112 [ 1129 ] 96 64 0

9 | 244 | 244 | 240 | 240© | 2249 | 192 | 128 0

10 | 4947 | 492® | 488® | 480 | 4807 | 448 | 384 | 256 0

Table 3.3: The upper bound on nonlinearity given by theorem 1.

DAn algorithm to construct (7, 2, 2, 56) and (10, 4, 5, 480) functions has been presented
in [10].

@ This function is not achieved yet: (8,0, 7, 118).

®) Computer search has yielded to (8, 1, 6, 116) [16].

® Computer search has yielded to (8, 3, 4, 112) and (9,4,4,224) [43].

©) The existence of (9, 0, -, 244), (9, 0, -, 242), (9, 1, -, 244) functions linkedto the
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question of whether nonlinearity of more than 240 is exist or not [44].

© Computer search has yielded to [9, 3, 5, 240] [45].

() An algorithm to construct (10, 0, -, 492) functions has been presented in [41].
®)Computer search has yielded to (10, 1, 8, 488) [46]. Using the weight divisibility
results of resilient function involving the algebraic degree, it can be shown that the
functions (10, 1, -, 492), (10, 2, -, 488) if all exist are in the form of (10, 1, 8, 492), (10, 2,

7, 488) [47], [48].
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Chapter 4

Restrictions on Partial Sum of
WHT and Some Bent Functions

Constructions

4.1 Introduction

In this chapter, we present some restrictions on the partial sum of the Walsh
transform of binary functions and we extend some of the obtained results to functions
defined over GF(p). We also present some simple constructions for binary bent functions
of length 2** using a known bent function of length 22 Although some of the bent
functions obtained using our techniques may belong to some already known classes of
bent functions, our construction techniques are simple and can be performed using hand
computations starting with the set of 8 bent functions for n = 2 (This set consists of all 8

binary vectors of length 4 and Hamming weight 1or 3).
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4.2 Restrictions on the Partial Sum of the Walsh Transform

Theorem 1. Let F(w) denote the Walsh transform of a Boolean function f. Then for any

non zeroae Z; and b € Z, we have

Y F(w)e{0,£2"}.

wia.w=b

Proof.

SF@= Y 20D

wla.o=b ola.o=b xeZ}
= Y )Y
wla.w=b xeZ3

Let! (w)=w.x, we Z] |w.a=>b comresponds to a linear function with n-/ inputs. This
function is balanced for all choices of x except for x = 0 where we have /(@) =0 and x =

a where we have [ (w) = (-1)®. Hence we have

2", x=0,
ZF("’) =3(-D°2"", x=aq,
ola.o=b 0, Otherwise.

Thus
ZF(a)) =2""((-1)"? + (=)’ (1))

wla.w=b
The theorem follows by noting that ((~1)"@ +(=1)’(-1)"“") € {0,42"}. A special case
of the above theorem is for a =(100.....00) which implies that the summation of either the

first half or the second half of the Walsh transform should be zero.

It is also clear (from the definition of the inverse Walsh transform) that
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Y F(w) e {£2"}.

weZ]

Thus it means that if the summation of the first half is zero then the summation of the

second halfis +£2" and vice versa.

Example: Let f: Z, — Z, be given by f [11111-1-1-1]. Figure 4.1 and Figure 4.2 show

the partial sum of the WHT for =100 and a =001 respectively.

f=[11111-1-1-1]

A

Walsh transform
2222 1(|-6222
/ N\

8=23=2" 0

Figure 4.1: Partial sum constrains for a=(100).
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=[11111-1-1-1]

A

Walsh transform

22226-2-2-2
[ S22 \

8=2’=2" | 0

Figure 4.2: Partial sum constrains for a=(001).

Theorem 2. Letw' € Z; be the vector obtained from @ by fixing k of its coordinates.

Then we have

> F(w)e{0,S},

where S={+2"42"",. . 42"},

Proof.

D F@)=2 Y (O

o xeZj

= DO D

. n
xeZj @
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Note that

Z (_1)a)'.x = 2n—k5(x — x'),

xeZy

where x  is obtained from x by setting all the non-fixed (n - k) coordinates of @ to zero.

For example, ifn=4; k=2 and ® = (0@ w,1) then x" € {x,00x,},x,,x, € Z, . Thus

S F@)=2" (-1 = 27* (£1£1......£1),
R X —_—

2k

which completes the proof.

A special case of above the theorem is obtained if we set
@ = (W, By, 0,,......,0,_,,b), be {0,1}. Which again implies that the summation of either
the first half or the second half of the Walsh transform is zero.
If we set @ = (@, w,, @, ,......,0,_3,5,,8,), b,,b, € {0,1}, then this implies that the
summation of each quarter of the Walsh transform e {0,+2",+2"'} .
Example: Let f: Z; —>Z, begivenbyf = [11111-1-1-111-11-1-1-11] and let A=2,

then o' = (w,,w,,b,,b,),b,,b, € {0,1} . Figure 4.3 shows the WHT sum for each quarter.
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A11111-1-1-111-11-1-1-11]

A 4

Walsh transform

2226 [10-22-2][262-2] [2-2-6-2
// // \\ \\
g=2"="" §=2’=o""! §=2’="" -8=-2’=2"!

Figure 4.3: Partial sum constrains by fixing by and b;.

Note that the summation of each quartere {0,+2",+2"7'} .

4.2.1 Restrictions on the Partial Sum of the Walsh Transform Over

GF(p)

It is interesting to note that the above theorems concerning some partial sums of the

Walsh transform can be extended to functions over GF(p), p > 2. In this case, the Walsh

transform of the functionf: Z,; — Z,, is defined by

where @ - x denotes the dot product between @ and x, i.e.

jzﬁ(f(x)®w.x)

F(w)= Ze P

n
xeZ,
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n

0-x=3 ox.

i=1

In this case, we show that for any non zero ae€ Z and b€ Z,, we have

Y F(w)e p"' x{S},

wja-w=b

2o @ -
where S={e * +e ” +e °

.

The above result follows by noting that

#{wla-w=b}=p""

and for a#0 we have

( n-1 - O
p ’ X = )
2
]2”0.) x jfb n-l
— e x=a
Sy P e
wla-w=b —jz—”b i
e 7 p"', x=-a modp,
0, otherwise.
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The main reason that the above formula cannot apply to binary functions (p = 2) is that p
= 2 is the only even prime (a = -a mod 2).

Similarly, Theorem 2 can be extended to the GF(p), p > 2 case by noting that

2,
J—(@"x) nmtk
e’ =pTe=x),

xeZp

where x’ 1s obtained from x by setting all non-fixed (n — k) coordinates of @ to zero.

Thus

2z, 2, 2z

2m , ,
J—f (" 0 J—h e N

SF@=pye = phe

where i eZp.

4.3 New Constructions of Bent Functions

4.3.1 Construction 1

Lemma 1. Let g(x) = fldx @ b) for any invertible matrix A. Then NL(g) = NL(f).

Theorem 1. Let /= [fi|f2|f3lfa): Z, — Z,be a bent function where f; , 1 = 1,2,3,4 are

binary sequences each of dimension 2 "2, Note that f;’s are not necessarily bent. If we let

13, 2, 3, 4) = {i; , 15, 13, 14} denote any permutation of the set {1,2,3,4}, then we can
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show that the function

g=[fulfi: lfis [fie]

1s bent.

Proof: The proof follows by noting that the function g above can be expressed as g(x) =

fAx @ b) where A is an invertible matrix given by

1000 0
0100 0

A= and b= .
0 0 a,aq b,
0 0a,a, b

—

Note that 4 is invertible implies that

[ | }
2 3

Table 4.1 shows the mapping between ay, a; , a,, a3 ,bo, by andI1(/, 2, 3,4) = {1, iy, 13,
ia}.
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Example: Starting with the bent function /= [1110], and applying the theorem above, we
obtain the following set S = {[1101]; [1011]; [0111]} of bent functions. It is clear that the

functions in {f; S} and its complement represent all the bent functions for n = 2.

(i, 02 03 04 | (ap, a1 , az, a3 ,bo, b))
0,2,1,3) (0,1,1,0,0,0)
(0,3,1,2) (1,1,1,0,0,0)
(0,1,2,3) (1,0,01,0,0)
(0,1,3,2) (1,1,0,1,0,0)
(0,3,2,1) (1,0,1,1,0,0)
(0,2,3,1) (0,1,1,1,0,0)
(1,3,0,2) (0,1,1,0,1,0)
(1,2,0,3) (1,1,1,0,1,0)
(1,0,3,2) (1,0,0,1,1,0)
(1,0,2.3) (1,1,01,1,0)
(1,2,3,0) (1,0,1,1,1,0)
(1,3,2,0) (0,1,1,1,1,0)
(2,0,3,1) (0,1,1,0,0,1)
(2,1,3,0) (1,1,1,0,0,1)
(2,3,0,1) (1,0,0,1,0,1)
(2,3,1,0) (1,1,0,1,0,1)
(2,1,0,3) (1,0,1,1,0,1)
(2,0,1,3) (0,1,1,1,0,1)
(3,1,2,0) (0,1,1,0,1,1)
(3,0,2,1) (1,1,1,0,1,1)
(3,2,1,0) (1,0,0,1,1,1)
(3,2,0,1) (1,1,0,1,1,1)
(3,0,1,2) (1,0,1,1,1,1)
(3,1,0,2) (0,1,1,1,1,1)

Table 4.1: Linear transformations and the corresponding permutations in theorem 1.

Example: Let I1= (2, 1, 3, 4). Given the bent function f= [fi|f|f3|fs] where
f1=[1111100111001010],

2 =[1001110001010000],
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/3 =[0001101100010100],

f4=10010010011010100],

f is bent

f1 f2 f3 fq

PERMUTATION

h 4 A 4

f2 f1 f3 f4

g is bent

Figure 4.4: Permutation of f; /2 ,f; and fa.

then the function g = [f|fi|f3|f2] is a bent function with ANFD = 3 (see Figure 4.4).

The above theorem can be used to construct bent functions with » + 2 input variables

starting with a single input bent function as follows: Let g, =[f,, | fz) | foy | freey)s

then (see equation (29) in [7]) the function,

Melg® 1],

is bent.
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4.3.2 Construction 2
Theorem 2. Let fi, f2: Z; = Z, be bent functions. Let f3(x) = fi(x @ ¢) and fi(x) = folx

@ c), where ce Z; . Then the function

g= [fl@ b1|fz@ bzlfz@ b3lﬁ@ b4]

is bent where one of the b;’s is equal to [11 .... 11] and the other three are equal to [00 ....

00].

Proof

Note that linear function L, with »n input variables can be represented as [L,.1|(L,.; © b)];
be {1,0}.

Also note that d(fix @ c¢), L) is equal to either d (f{x), L) or 2"- d (f(x), L).

d (gLn)=d ([fila], Ln.1) + d ([(fslfal. L1 ® b))
Without loss of generality, if |

n-2 n-2

A, L L) =2 =27 N+@P-27 )=2"o22,

then

2 n-2

AH L La @B =@ =27 Y+ @427 )=2,
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and hence we have

d@gLy=(2""-27)
which means that g is bent.

Example: For f1=[0010110101110111}, £,=[0001001001000111] and c=[1010], we

have f3=[1110000110111011] and f;=[1110110101000111], see Table 4.2.

N | fi=f(x®c) LX) fi=f,(x@0)
0

et | O e |t | Ot | O [ [ O | O
=== —=lol~=|—|ololo|a|=|—{—~
—e | = O OO OO |O|O— OOl
OIO|O|= = ||| O |Oo|— OO

Table 4.2: Transformation of f; and f; to f; and f; respectively.

Then g(x)=[/i [falfz |4®1], gx) € Z;
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g(x)=[ 0010110101110111 0001001001000111 1110000110111011 1110110101000111]

is also bent.

The spectral domain dual of this theorem s also satisfied. Let

F(®) and F,(®) be the Walsh spectrum of the two bent functions f, and f, € Z;

and let F(0)=F(0o ® c) and F,(0)=F,(0o ©c)where ceZ;. Now, let

G(@)=2%" x(F () ®b, | Fy(@)®b, | Fy(0) @b, | F(@) @b,

is the spectrum of a bent function. In this case, g is bent but it is not necessarily that
each quarter is bent.

Note that one of the b;’s in the given construction is equal to [11 .... 11] and the other

three are equal to [00 .... 00].

Example: Let f;=[1100 0000 0110 1010] and o= [0010 1000 1110 0100] then
F(w)=[4-4-44-44-4444-4-4-4-4-4-4],
Fyw)=[4-4-44-4-4444-44-44444),

F(@)=F (0 ®c)=[44444-44-4-4-4444-4-44],

F(@)=Fy(0 ®c)=[-4-4-4-444-4-4-44-444-4-44].

Let b5=[1111], then we have
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G(w) = 8x[F(») | F,(w) | F;(0) ®1| F, ()] and

gX)=[f 11, filf.] is bent,but f,,f,, f;,f, are not necessarily bent.
Applying the inverse WHT we get
g(x) =[0010000001100100 1101000001101011 1100100011101010
1100011100011010].

It can be easily verified that

£, =[0010000001100100], £, =[1101000001101011],

£, =[1100100011101010] and f, = [1100011100011010] are not bent.
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Chapter 5

On Some Bent-Based

Constructions

5.1 Introduction

Adams and Tavares [24] introduced the classes of bent-based (BB) bent functions
and linear-based (LB) bent functions. They conjectured that all bent functions can be
classified into one of these classes. Although this conjecture was disproved by Carlet et
al. [49], bent-based functions still present a very interesting class of cryptographic
functions because several fundamental cryptanalytic techniques can be performed by
fixing some of the coordinates of the input to the cipher system.

In this chapter, we show that several classes of cryptographic Boolean functions are
in fact bent-based functions.

In particular, we show that:

1. All nonlinear resilient functions with maximum resiliency degree, i.e. (n,n—3,2,2"%)
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functions, are either bent-based or linear-based. We provide an explicit count for the
functions in both classes.
2. All symmetric bent functions that achieve the maximum possible nonlinearity are bent-
based. For n even, we have 4 bent-based bent functions. For n odd, we also have 4 bent-
based functions.
3. There are no bent-based homogeneous functions with degree>2. We also provide a
count for linear-based homogeneous functions.
Preliminaries

A sequence x of order 2 where k is a positive integer, is bent-based if it is a
concatenation of 2* bent subsequences of order 4.

Recall that the bent sequences of order 4 are given by

gl=[111-1], -gl=-[111-1],
g2=[11-11], -g2=-[11-11],
g3=[1-111], -g3=-[1-111],
gd=[-1111}, -g4=-[-1111].

This set corresponds to the 8 binary vectors of length 4 and nonlinearity 1. In other
words, they correspond to binary bent functions with n=2. The Walsh transforms for

these bent-based functions are given in Table 5.1.

Bent-Based Walsh Transform
Sequences
+gl +(222-2)
+g2 +2-222)
+g3 +22-22)
+g4 +(2-2-2-2)

Table 5.1: Walsh transform for n=2 bent-based functions.
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Note that a sequence x of order 2% where k is a positive integer, is linear-based if it is
a concatenation of 2* linear subsequences of order 4. Recall that the linear sequences of
order 4 are given by
gl=[1111], -gl=-[1111],
g2=[-111-1}, -g2=-[-111-1],

g3=[-11-11], -g3=-[-11-11],
gd=[11-1-1], -gd=-[11-1-1].

The Walsh transforms for these linear sequences functions are given in Table 5.2.

Linear Walsh Transform
Function
gl +4000)
+g2 +(000-4)
+g3 +(0-400)
+g4 +(0040)

Table 5.2: Walsh transforms for n=2 linear-based functions.

Most of the results in this chapter follow by noting the following observations:

1) For n=2, all binary bent functions over GF(2) are quadratic. Thus it follows that, for
any n>1, all bent-based functions should have the term x;x; in their algebraic normal
form representation.

2) For n=1, all bent functions over GF(p), p>2, are quadratic. Thus it follows that, for
any n>1, all bent-based functions over GF(p), p>2, should have the term x]in their

algebraic normal form representation.

3) Let f(x,X%y50X,) = f1(X)5X55000s %, ) + [5(X,115X, 1 25---X, ) OVET GF(p), then
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F(0,0,,.,0,) = F(0,0;,.,0,)F(®,,,0,,,.,0,) .

n

Thus if either f; or f,is balanced, then fis balanced. This follows by noting that for any
balanced function g, G(0)=0. Since non constant linear functions are balanced, it follows

that if f, or f,1is non constant linear function then fis balanced.

5.2 Nonlinear Resilient Functions with Maximum Resiliency

Degree

In this section, using the results in [38], we show that all resilient functions in the
form (n,n—3,2,2""%) are either bent-based or linear-based. Then we extend some of the
obtained results to functions defined over GF(p).

Recall that for an n-variable function, of degree ANFD and correlation immunity of order

m , the following holds:

m+ ANFD < n..

Further, if the function is balanced then
m+ ANFD <n-1.
Thus for nonlinear Boolean functions (i.e., for ANFD>1), the maximum resiliency degree
m is (n-3).
Carlet et al. [38] proved that (n,n-3,2,2"%) resilient functions can only take the

following four forms:

Form 1

f(x)=xx;+ Zx, +ax, +bx; +c,
te{{1,n]-(1,2)}
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a,b,ceZ,
Form 2

@) =0 +x)x,+x)+Ax+a,

where 7, j and k are distinct elements of [l,n] and a€Z,,

Xx=zn:x, or Ax= Zx, or Ax= Zx, or Ax= Zx,

t=1 te{{Ln]-(i, )} te{{ln]-(i,k)} te{[Ln}-(j,5)}

Form 3
J@) =0 +x)x, +Ax+a,

where i, j and k are distinct elements of [l,n] and a€Z,,

Ax= Zx, or Ax= Zx, or Ax= Zx, or Ax= Zx,.

te{[1,n]~i} te{[1,n]~j} te{[1,n)~(i,k)} te{{l,n}-(4,k)}
Form 4

S =0, +x,)(x; +x)+Ax+a,

where i, j and k are distinct elements of [I,n] and a€Z,,

Ax= Zx, or Ax= Zx, or Ax= Zx, or Ax= Zx,.

te{[Ln)-(i,/j )} te{[l,n}-(i,k)} te{{Ln}-(1, )} te{[l,n]-(l,k)
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In here, based on observation (1) in p 53, we provide a simple restriction on these forms

such that the resulting functions are bent-based.

Form 1
f(x)=xx, + th +ax, +bx, +c,
te{fl,n]-(1,2)}
a,b,ceZ,

By a simple counting argument, it is easy to show that the number of functions

described by this form N are given by

N =8.

Example: For n=3, wehave N; =8 and the functions are:

f@)=xx,+x +x, +x,, S(X)=xx,+x +x,+x, +1,
fX)=xx, +x +x,, SX)=xx, +x +x, +1,
X)) =xx, +x, +x, , S(xX)=x,x, +x, +x; +1,
S(x)=xx, +x,, S(x)=x,x, +x; +1.

Form 2

SX)=(x +x)x+x)+Ax+a,

where i, is an element of [3,n] and a€Z,,
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kxzzn:x, or Ax= Zx, or Ax= Zx, or lx— Zx.

t=1 tef[1,n]-(,i)} te{{l,n]-(2,1)} e{[Ln]-(1,2)}

We have 4 choices for 4, 2 choices for a and (n-2) choices for i. Thus the number of

functions described by this form, N , is given by

N, =8(n-2).

Example: For n=3, we have N_ =8 and the functions are:

S =(x +x)(x, +x) +x,+x, + x5, SO = +x)(x +x) +x,+x, +x, +1,

S =(x +x)(x +x,) + x5, S (X)) =0 +x,)(x +x;) +x, +1,
J(x) =0 +x)(x +x,) + x5, J(x)=(x +x,)0r +x;) +x, +1,
Fx)=(x + x,)(x; + x3) + x,, S =0 +x,)(x +x3) +x, +1.
Form 3

Sx)=(x,+x)x, +Ax+a,

where i,ke{l,2} i#k, j isanelementof[3,n]aeZ,

Zx or Ax= Zx or kx- Zx, or Ax= Zx,.

te{[1,n]~i te{[l,n]-j} e{{1,n]-(i,k)} te{[Ln]-(j.k)}
We have 4 choices for 4, 2 choices for a , 2 choices for i and j and (n-2) choices for k.

Thus the number of functions described by this form, Ny, , is given by
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N =16(n-2).

Example: For n=3, wehave N_ =16 and these functions are:

FO) = (x,+ %)%, + X, +%,, Fx) = +x5)%, +x+x,+1,
Fx)=(x, +x,)x, + X, +x,, F) =(x +x)x%, +x, +x,+1,
Fx)=(x, +x,)x, + x,, f(x);(x, +x)x, +x, +1,
Fx)=(x +x)x%, + x5, , F)=(x +x,)x, +x,+1,
Fx)=(x, +x,)x, + X, + %, F)=(x, + %)% + %, +x, +1,
F(X) = (3 + %)%, + %, + %y, F(x) = (%, + X)X, +x,+ %, +1,
F@)=(x,+x)x, +x, , Fx) =(x, +x,)x, +x, +1,
Fx)=(x, + %)%, + 1, , Fx) = (x, + x,)x, + X, 1.
Form 4

Sx)=(q+x)x,+x;)+Ax+a,

where i and j are distinct elements of [3,n] and aeZ,,

Ax= Zx, or Ax= Zx, or Ax= Zx, or Ax= Zx,.

tef(1,n]-(1,2)} te{[Ln)-(2,0)} re{[ln}—(1./)} 1e{[Ln}-(i, )}
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We have 4 choices for 4, 2 choices for a and C; choices for i and j. Thus the number

of functions described by this form, Ny is given by

N; =16-C;72.

Example: For n=3, there are no functions of the form 4. For n=4, we have N, =16 and

these functions are:

S) =0 + )%, +x,) + X3, + x4, SX)=(x +x)(x, +x)+x;,+x, +1,
S ()= (3, +x;,)0(x, + x,)+ %, + x4, SX) = (X +x, )%, +x,)+x, +x, +1,
J(xX) =0 +x)(x, +x)+x, + x5, JX)=(x, +x,)(x, + x)+x, +x; +1,
S(xX)=(x+x)(x, +x)+x, +x,, Sx) =0 +x,)(x, +x,) +x,+x, +1,
S =(x, +x)(x, + X))+ x;, + x4, SX) =0+ x)(x +x)+x,+x,+1,

J(x)=(x, +x)0x, +x3)+x, + x5, JX) =0 +x)(x, + X)) +x,+x,+1,
S =(x, +x)(x, +x)+x, +x,, S =0 +x)(x, +x)+x, +x, +1,
SO = +x)(x,+x)+x+x,, Sx)=(x, +x,)(x, +x,)+x,+x, +1.

The total number of BB functions are given by

Noar =8(C; 2+ Cr 2 +2-C2+2-C7%)
=8(l+n-2+2(n-2)+(n-2)n-3)) (5.1
=8(n -1

Table 5.3 presents the number of BB functions for each form for different .
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n 3 4 5 6 7
f
Forml 8 8 8 8 8
Form2 8 16 24 32 40
Form3 16 32 48 64 80
Form4 0 16 48 96 160
Total 32 72 128 200 288

Table 5.3: The number of BB functions for different ».

Carlet [38] calculated the total number of quadratic functions that have the form

(n,n—3,2,2") by :
N, = %[n(n -DGBn-2)(n+1)]. (5.2)

Using (5.1) with (5.2) one can obtain the number of LB functions as follows,
Ny =N, o~ N gy

= {é—[n(n ~1)(Bn-2)(n+1)]-8(n-1*}

={n- 1)[§n(3n ~2)(n+1)~8(n-1)]}.
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Table 5.4 presents the number of BB functions and LB functions for different value of ».

n 3 4 5 6 7
f
BB 32 72 128 200 288
LB 24 128 392 32 1840
Total 56 200 520 920 2128

Table 5.4: The number of BB and LB functions for different ».

5.2.1 Extensions to GF(p)

It is interesting to note that the above resilient functions constructions can be

extended to functions over GF(p); p > 2 with the same resilient degree (n-3) . In this

case, the Walsh transform of the function f: Z; — Z, is defined by

2z
J—(f{x)to.x)
Fw)=Ye* ,

n
xeZ,

where @ - x denotes the dot product between @ and x over GF(p), i.e.,
n
@ -x= Za),.x,. mod p.
i=1

Unlike the binary case where bent functions exist only for even n, bent functions over
GF(p), p>2, exist for all n including #n=1. Table 5.5 shows all the 18 bent functions for

the case n=1 and p=3.
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Bent
Functions

100

200

010

110

020

220

001

101

011

211

121

221

002

202

112

212

022

122

All the results obtained in this section are based on observation 2 and 3 in pages 53

and 54. In particular, in order to prove that f'is a resilient function of degree n-3 , we need

to show that any function, f*, obtained from fby fixing ¢ <n-3 variable is balanced. We

do this by showing that we can write f as the sum of two functions (with disjoint

arguments) where one of these functions is a balanced linear function. From observation

3 in page 53, it follows that f'is a resilient function of degree n-3 .The following 3 forms

Table 5.5: Bent functions over GF(3), n=1.

are bent-based resilient functions of degree n-3.

Form 1

where a,beZ, cdeZ,.

In order to prove that f'is a resilient function of degree n-3, we need to show that any
function, £, obtained from f by fixing ¢ <#n—3 variable is balanced. Thus we need to

consider the following three cases.

Case I: x;1s fixed i.e., we fix Xps X 5 Xy geens X, wherei, #i, forl#k.

For this case, we can express f as

H
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te{[1,n]-(1,2)}




n
f(xl.lﬂ,...,x,.n):d +b Z X s
1=t+1
ie(1,2)

whered € Z,.
Case 2: x,is not fixed i.e., we fix X 5 Xy sees X, where i, #i, forl#k.

For this case, we can express f as

n
S % sk, )=ax] +cx,+b Y x, +d.
I=t+1
ie(1,2)

Case 3: t =0, we can express f as

n
[ (% X ) =ax] +ex, +bz x,+d.

1=3

In Form 1, we have p-1 choices for a, (p-1) choices for b, p choices for ¢, and p choices

for d. Thus the number of such functions is given by

N,(p)=p*(p-1).

Form 2

S(x)=(ax, +bx,)(cx, +dx;) + ek x + h,
where a,b,c,d,e e Z; heZ ,» A x can take one of the following values:

DAx= Yx, 2ix= x  3Nix= >Dx,.

te{(Ln]-(1,1)} te{[L,n}-(1,j)} te{[L,n]-(i.)}
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Similar to Form 1, in order to prove that f is a resilient function of degree n-3, we
need to show that any function, f , obtained from f by fixing ¢<n-3 variable is

balanced. Thus we need to consider five cases for the forms 2.1, 2.2 and 2.3.

Form 2.1:

Case I: x1s fixed L.e., we fix x,,x, ,x, ,...,x, wherei, #i, forl#k.

For this case, we can express f " as

n
S X, )=b"xx, +C'x,+d'x +e Zx,.[ +h,
I=t+1
i ell,i}
where b,c,d eZ, heZ,
Case 2: xx;are fixed i.e., we fiX x,,x, ,x, ,..., X;,.... x, Wherei, =i, forl=k
i #1. For this case, we can express f as
, n
= A '
f(x penx, )=d'x; +e in, +h'.
I=t+1
el )
Case 3: x,,x.x;are fixed i.e., we fix x,,x, ,x, sees Xipeoss X5y X, Where iy #1,  forl#k,
izl j=1.

For this case, we can express f as

n
J(x, o, )=h'te inl .
I=t+1
je{Li)

Case 4. x,,x;x; are not fixed i.e., we fix X; 5 Xy sees X, where i, =i, forl#k,i=l, j=1.

For this case, we can express [ as

n
J(x; ses X, )= (ax, +bx,)(cx, +dx;)+ex; +e le., +h'.
é;t{:fi,j)

Case 5: t =0, we can express [ " as
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S, s ) = (ax, +bx,)(ex, +dx ) +ex, +e D x, + 1.
1=2

Ie{i, j)
Form 2.2

Case I: x1s fixed i.e., we fix x,x, ,x, ,...,x, Wherei, # i, forl#k.

For this case, we can express f as

n
S (x X, )=b'xx, +c'x, +d'x; +e Zx,.’ +h,
I=t+1
hell,j}

where b,c,d eZ, h €Z,

Case 2: x,x;are fixed i.e., we fiX x,,%; ,X, yores X; e, X, Whered, # i, forl#k

i #1. For this case, we can express f as

n
— 1 \J
WX )=d'x; +e Zx,., +h'.
I=1+1
ie{l,j}

f'(xi

1+1 ’

Case 3: X, X, X ; are fixed i.e., we fix X5 X 3 Xy s Xppeens X ey X; where i, #i, forl+k,

i#1, j#1. For this case, we can express f as

n
S X, )= H+e D x,
I=t+1
heflj)

Case 4: x,x;x;are not fixed i.e., we fix x, ,x, ,..,x, where i, #i, forl=k,i=l, j=1.
For this case, we can express f as
n
' . '
S (x5 %, ) = (ax, + bx; )(cx, +dx;)+ex; +e Zx,} +h'.

I=t+]
ie{li,j}

Case 5: t =0, we can express f as

n
f’(xi“l s X; ) =(ax, +bx;)(cx, +dx;) +ex; +e Zx, +h.
1=
leti.i
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Form 2.3

Case 1: xis fixed i.e., we fix x,,x, ,x, ,...,x, wherei, # i, for 1 # k.

For this case, we can express f as

n
F (X, X, )=b'xx, +'x, +d'x; +e Zx,.’ +h,.
I=t+1
ir#4i,j)
where b ,c ,d eZp h €Z,.
Case 2: xx,are fixedie., we fix x;,X, ,X; s, X;5..., X, Wheres, #1, forl#k
, n
i # 1. For this case, we can express fas f (x; ,...x, )=d'x; +e in, +h'.
I=t+1
(i, j)
Case 3: x,,x;x; are fixed i.e., we fix X3 X s X ey Xjperes X ey X, where i, #i, forl#k,
izl j£1.

For this case, we can express f as

n
f (x,.l+1,...,x,.n)=h'+e in, .

s
ieti,j}

Case 4: x,,xx;are not fixed i.e., we fix x, ,x, ,...,x, where i, #i, forl=k,i#l, j#l.

For this case, we can express f as

f'(x,.”l seees X, ) = (ax, + bx;)(cx, +dx ;) + ixil +h
I=t+1
ieli,j}
Case 5: t =0, we can express f as
f'(x,.M e X; ) = (ax, +bx; )(ex, +dx;) +ex, +e zn:x, +h'.
1=2
lefi, j}
So the forms 2.1, 2.2 and 2.3 are n-3 resilient functions. We have 3 choices for A x, p-
1 choices for a , p-1 choices for b, p-1 choices for ¢, p-1 choices for d, p-1 choices for e,
p choices for h and C,™ choices for i and j . Thus the number of such functions is given

by
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N,(p)=3p(p-1)°C;".

Form 3

S(x)=(ax, +bx)x, +chx+d,

where a,b,c € Z; deZ p, A x can take one of the following values:

1) Ax= Zx, 2) Ax= Zx, 3) Ax= Zx,.

te{{l,n]-1} te{[1,n]-i} te{[1,n]-(1,)}
In order to prove that fis a resilient function of degree n-3, we need to show that any
function, 1", obtained from fby fixing 7 < n—3 variable is balanced. Thus we need to

consider four cases for the forms 3.1, 3.2 and 3.3.

Form 3.1

Case 1: xis fixed, i.e., we fix x,,x, ,x, ,..,x, wherei, #i, forl=k.

For this case, we can express f as

n
f (x,.M,...,x,.") =b'x, +c in[ +d ,
I=t+1
i gL}

where b eZ, deZ,
Case 2: xxare fixed, i.e., we fix x,,x, ,X, ,....X;,..,x, wherei, i, forl#k

i #1. For this case, we can express f as

f(x, X )= %, +d .

I=t+]
i#1

Case 3: x.xare not fixed, i.e., we fix x, ,x, ,...,x, wherei, #i, forl#k i#1. For this

case, We can express f as
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n
f'(x,.m,...,x,.")z (ax, +bx;)x, +ex, +ex, +c inl +d.
f;'{l!i,j}
Case 4: t =0, we can express f as
, n
S (X e ) = (ax, +bx,)x, +ox, +cx; +c Zx, +d.

1=2
lei,j}

Form 3.2
Case I: xis fixed L.e., we fix x,,x, ,x, ,...,x, wherei, =i, forl=k.
For this case, we can express f as
n
[, X, )=b'x,+c Y x, +d

I=t+1
e {Li)

where b eZ; d €z,

Case 2: x,x,are fixed i.e., we fix x, s Xi 5 Xy ey Xppeess X, wherei, #i, forl#k

i #1. For this case, we can express f as

n
f(x,.M,...,x,.")=chil +d .

I=t+1

Case 3: x,x,are not fixed i.e., we fix x, ,x, ,...,.x, wherei, #i, forl#k i#1. For this

case, we can express f as

n
S (s X; ) = (ax, +bx,)x, +cx, +cx; +¢ in, +d.
I=
et )
Case 4: t =0, we can express [ as
s n
S e X, ) = (ax, +bx,)x, +ox, +ex; + ¢ Zx, +d.
1=2
lefi,j}

Form 3.3

Case I: x1s fixed i.e., we fix x,x,,Xx, ,...,x, wherei, =i, forl#k.

68



For this case, we can express f as

n
S X, ) =B x4 D x, +d

I=t+]

ie{li}
Case 2: x,xare fixed ie., we fix x,,x, ,x; ;... X; ..., X; Whered, # i, forl#k
i #1. For this case, we can express f as

n
S (% sX, )=cC Zx,.[ +d,

I=t+1
ie{l}

where b eZ, deZ,
Case 3: x,x;are not fixed i.e., we fix x, ,x, ,...,x, Wherei, #i, forl=k i#1. For this

i3

case, we can express f as

n
S (X s X; )= (ax, +bx,)x, +cx; +c inl +d .
f,?{q{i,j)

Case 4: t =0, we can express f as

n
S (x, s x; ) =(ax, +bx,)x, +cx; +c Zx, +d.
reti.)

So the Forms 3.1, 3.2 and 3.3 are n-3 resilient functions. We have 3 choices for 1 x, p-1

choices for a , p-1 choices for b, p-1 choices for ¢, p choices for d, and n-1choices for i.

Thus the number of such functions is given by

Ny(p)=3p(p-1)°’(n-1).

We obtain also a construction in the form of (n,n-2,2,-)

f(x)=ax12 +Ax+ec,
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where a e Z; ceZ, ,Ax cantake one of the following values:

DAx= Y Ax, i)Ax= D Ax, , A eZ,{l2}

te{(1,n}} te{[1,n]-1}

In order to prove that f'is a resilient function of degree n-2, we need to show that any
function, f, obtained from f by fixing ¢ <n -2 variable is balanced. Thus we need to

consider the following three cases for the form i and ii.

Form i

Case 1: x,is fixed i.e., we fix X5 X, 5 X; 5o X, Wherel; #i, forl#k.

For this case, we can express f as

n
f (xiM sers X )=c'+ Zk. X, ,

U]
I=t+1

where c € Z,.
Case 2. x isnot fixed i.e., we fix x, ,x, ,..,x, where i, #i, forl=k.
2 3 i

For this case, we can express f as

n
' 2
J O s X )= ax; +Ax, + Zx,.lx,., +c.
I=t+]
iefl)
Case 3: t =0, we can express | " as

n
J (X pesx, )= ax} +Ax, +Zk,x, +c.
1=2

Form ii

Case I: x1s fixed i.e., we fix x,,x, ,x, ,...,x; wherei, #i, forl=k.

For this case, we can express f as

n
S (x;, s X, )=C+ Zx,.,x,., ,
I=t+1
le{l}
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where ¢ € Z,

Case 2: x isnot fixed i.e., we fix x, ,x; ,..,x, where §, =i, forl+#k.
2 3 t

case, we can express f as

n
F (0%, ) =ax] + Z?x‘x, +c.

Wy
I=t+1
il

Case 3: t =0, we can express f as

n
J(x X, )= ax! +Zk,x, +c.

I=2

For this

So the forms i and ii are n-2 resilient functions. We have 2 choices for A x, p-1 choices

fora, and p-1 choices for 5. Thus the number of such functions is given by

N(p)=2p(p-1).

5.3 Symmetric Functions

Symmetric Boolean functions have the property that the function value depends only

on the value of the Hamming weight of the input [53]. Consequently, the truth table of

the symmetric function on Z; can be replaced by a vector v ,of length n + 1 where the

components v (i) for 0<i<n represent the function value for vectors of weight i. The

vector v, is called the value vector of the symmetric Boolean function f. The properties

of the symmetric Boolean functions such as balancedness, resiliency, algebraic degree

and nonlinearity were studied in [50]. Although random symmetric functions do not
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behave well with respect to a combination of nonlinearity, algebraic degree, and
resiliency, are still attractive option for low memory software and in hardware
implementations, where only a low number of gates is available [51].

Savicky proved in [52] that all symmetric bent functions are quadratic and the
number of bent functions is always four. Since these functions are quadratic, then they
are either linear-based or bent based [24], but since in the case of symmetric Boolean
function all the terms of the same degree should appear in the ANF, then the term
xx,always exists. Hence all the four symmetric bent functions are bent-based bent
function.

Example: f(x)=xx,® x,x; ® xx, ®x,x, ®x,x, ®x,x,. Then f{x) is bent and can be
represented by its binary truth table as f{x)=[0001 0111 0111 1110] which is a BB
function .

In the case of odd n, Maitra and Sarkar [53] proved that the maximum
nonlinearity achievable by » -variable symmetric Boolean function is 2" — 2'17_1

They also showed that there are exactly four possible symmetric Boolean functions

n-1

achieving the nonlinearity 2" — 2%, and all these functions are quadratic. It is clear

that all these 4 functions are also BB functions for the same reason in the case of even #.
Example: f(x)=xx,® xx, ®x,x,. f(x) can be represented by its binary truth table as

J{x)=[0001 0111 ]. It is clear that fis a BB function with maximum nonlinearity 2.

5.4 Homogeneous Functions
A Boolean function is said to be homogenous if all the terms in its algebraic

normal form (4ANF) have the same degree.
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Recall that any Boolean function fcan be expressed by the following polynomial
[()=8,, ax?,

)

where x = x"...x" and a, € Z,. We say that a Boolean function f{x) is homogenous

of degree ANFD if a, =0Owhenever i has weight not equal to ANFD , ie.,
a; = 0if wt(i) # ANFD.
For ANFD =3 the term which contains the subterm x,x, is multiplied with other terms

resulting in a function that is not either LB or BB. Therefore, we cannot obtain BB
functions for ANFD > 3. However, if these terms vanished we will obtain LB functions.
From this observation, the number of LB functions is given by

— Clhnep~Clivip-2) _
N, =2 1,

where 25 represents the total number of monomials of degree ANFD , and

0 Civio-2 represents the monomial which will result in mixed terms. The “1” term in the

expression above is used to exclude the all zero function from the count.
Example : Let n=4 and ANFD =3, then f(x) = a,x,x,x, + @, X,%,X, + @Q,X,X; X, + A X, X, X,.
In this case, the number of LB functions 1s given by N, = 2(Cnro=Cliio2) _1 =3,
Example : Let n=5 and ANFD=3, then N,, =2© 69 _1=127.
In the case of quadratic homogenous functions the term x,x, may or may not exist . If

x,x, exists then the result will be BB functions and if not the result will be LB functions.

The number of BB functions is equal to 2~ and the number of LB functions is equal

t02%7 -1,
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Example: Let n=4 and f(x) = a,x,x, ® ax,x, @ a,x,x, ® a;x,x; ® a,x,x, ® a;x,x,,
then:

(1) If a, =0, all the combination of a,'s will lead to LB functions with

N, =25"-1=31.

(i) If a, =1, then all the combination of a,'s will lead to BB with

N,, =2%71=32.

5.5 Average Algebraic Inmunity for BB and LB Functions

Algebraic attacks against stream ciphers based on linear feedback shift registers
(LFSR’s) have been proposed in [54]. Many stream ciphers consist of a linear part,
producing a sequence with a large period, usually composed of one or several (LFSR’s),
and a nonlinear combining function f that produces the output, given the state of the
linear part. Algebraic attacks recover the secret key by solving an over defined system of
multivariate algebraic equations. These attacks exploit multivariate relations involving
key/state bits and output bits of . If one such relation 1s found, that is of low degree in the
key/state bits, algebraic attacks are very efficient [54].

Low degree relations have been shown to exist for several well known
constructions of stream ciphers that are immune to all previously known attacks. Such
relations can be derived by multiplying the output function of a stream cipher by a well
chosen low degree function, such that the product function is again of low degree. In

view of algebraic attacks, low degree multiples of Boolean functions are a basic concern
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in the design of stream ciphers as well as of block ciphers. In this section we study the

average algebraic immunity for BB and LB functions.

5.5.1 Calculating the Algebraic Immunity

In [54], three different scenarios are described under which low degree relation may
exist that can be exploit in algebraic attacks. The three scenarios are:
1)Assume that there exists a function g of low degree such that the product function is of
low degree, i.e. f * g = h, where 4 is a nonzero function of low degree.

2) Assume that there exists a function g of low degree such that f*g =0
3)Assume that there exists a function g of high degree such that f * g =h, where 4 is
nonzero and of low degree.

In [55] the known scenarios under which low degree multiples exist are reduced and
simplified to two scenarios, that are treated differently in algebraic attacks. This
simplified description of scenarios leads to precise measure of algebraic immunity of a
Boolean function f: The algebraic immunity, A/(f), is the minimum value of ANFD such
that f or f +1 admits an annihilating function of degree ANFD. The annihilator of fis a
non-zero function g such that f * g =0.

The new criteria that f shouldn’t have a low algebraic immunity, may be in conflict
with some established criteria. This is exemplified for the Maiorana-Mcfarland class [35].
These functions can have high resiliency, high nonlinearity and optimum algebraic

degree. Nevertheless it is shown in [55] that such functions can have relatively low

algebraic immunity.
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In the design of stream cipher we need Boolean functions with high degree
annihilator, therefore, it is desirable to have an efficient algorithm for deciding whether a
given Boolean function has no low degree annihilator. Such an algorithm is derived in
[55] where it allows to successfully decide whether a Boolean function has low degree
multiples or not. This represents a significant step towards provable security against

algebraic attacks.

Example: Consider the function /=] 0111110000000000]. It has the following properties
(4,3,4,0). Applying the algorithm proposed in [55], we find that it has an algebraic
immunity 47 =1 which means that this function has an annihilator of degree 1. From

Table 5.6 we see that f *g =0. The annihilator, as shown from Table 5.6, is g =

[0000000011111111], which is a linear function.

f | g8 | f*g
0| 0 0
1| o0 0
1 |0 0
1 | 0 0
1 |0 0
1 [0 0
0 | 0 0
0 | o 0
0 | 1 0
0 | 1 0
0 | 1 0
0 | 1 0
0 | 1 0
0 | 1 0
0 | 1 0
0 | 1 0

Table 5.6: The annihilator g of f.
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5.5.2 Expected Value of the Al for Randomly Selected Functions

Table 5.7, and Table 5.8 show how the average Al of LB and BB functions are
compared to that of a random Boolean function. Exhaustive search is used for n <5. For

n>5we tested 5000 LB functions, 5000 BB functions, and 5000 random Boolean

functions.
n 3 5 7
Al for BB 1.5 2.2 3.024
Al for LB 1.34375 2.166661 3.02
Al 1.210938 2.044261 3.002
Table 5.7: Average algebraic immunity for odd ».
n 2 4 6 8
Al for BB 1 1.875 2.9212 3.997
Al for LB 0.75 1.79052 2.8956 3.998
Al 0.875 1.83847 2.9258 4

Table 5.8: Average algebraic immunity for even ».

. . . . n-1
From our experimental results, we conjecture that the average A7 is asymptotic to -

for n odd (see Figure 5.1), and asymptotic to % for n even (see Figure 5.2).

77



Average Algebraic Immunity for Odd n
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_ 25 —e— Average Al
< 2 / —aA— Asymptotic Direction (n-1)/2
15 /
1 &
0.5
0 — :
0 2 4 6 8 10
n
Figure 5.1: Average algebraic immunity for odd ».
Average Algebraic Immunity for Even n
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Figure 5.2: Average algebraic immunity for even n.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we analyzed some criteria that are of great importance in designing
cryptographic Boolean functions. In particular,

e We introduced new restrictions on the partial sum of the Walsh transform of

binary functions and we extended some of the obtained results to functions

defined over GF(p).
e We presented some simple constructions for binary bent functions of length 2%

using a known bent function of length 2% Qur construction techniques are
simple and can be performed using hand computations starting with the set of 8
bent functions forn =2 .

e We proved that all nonlinear resilient functions with maximum resiliency degree
are cither bent-based or linear-based. We provided an explicit count for the

functions in both classes.

79



We introduced new forms for resilient functions over GF(p) and we provided a
count for these forms.

We proved that there are no bent-based homogeneous functions with degree >2.

We also provided a count for linear-based homogeneous functions.

We proved that all symmetric bent functions achieving the maximum possible

nonlinearity are bent-based.
Based on our experimental results, we conjecture that the expected value of the

Algebraic Immunity for a randomly selected Boolean function is asymptotic to

n-l for n odd, and asymptotic to —’21- for n even.

6.2 Future Work

The results obtained in this thesis can be extended to several directions. For example,

One can study similér restrictions on the discrete Fourier transform (DFT) of
Boolean functions similar to our work on the Walsh transform.

The restrictions on the partial sum of the Walsh transform of binary functions can
be used to speed-up cryptographic Boolean function constructions, based on
spectral inversion heuristic search techniques [ 45].

Several cryptographic Boolean functions were obtained based on small affine
functions [44]. The use of BB functions in similar constructions should be

explored.
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All the results obtained in this thesis deal with a single output Boolean function,
ie., f:Z, = Z,. Since many cryptographic primitives can be modeled as multi-
output functions, it is interesting to extend the results obtained in this thesis to

multi-output Boolean functions, i.e., for functions in the form f:Z) —» Z).
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