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ABSTRACT
Timed Test Case Execution for Distributed Real-Time

Systems

Shoukat Hayat Siddiquee

A real-time system is a system that is required to react to stimuli from the
environment (including the passage of physical time) within time intervals dictated by the
environment. In real-time applications, the timing requirements are the main constraints
and their mastering is the predominant factor for assessing the quality of service.

We proposed two methods for timed test case execution for distributed real time
systems modeled as TIOA.

Ensuring ’the correctness of real time systems before the development and
guaranteeing that it functions correctly within the specified time constraints are very
critical to avoid catastrophic consequences. A number of design issues affect the testing
strategies and the testability of the system. Existing methods of distributed test systems
still have séme drawbacks. Firstly, there is lack of coordination among local testers in a
distributed system. Secondly, the centralized test method may result in performance
problems, due to the fact that all 7S-IUT interactions are achieved through the network.
With an aim to alleviate the shortcomings, we developed a Synchronizer in centralized
test system, which would control and coordinate the local testers in the test environment.
We implemented these methods and tested them with a benchmark of real life automata
model by using CORBA distributed architecture. As a result, the performance problem

has been reduced in both methodologies. We distinguished between two methodologies

il



and compare their performances in terms of functionalities, based on our implementation
and illustrate their approaches using Train-Gate-Controller case study.
Keywords: Timed input-output automata, Real-time systems, Distributed test system,

Centralized test system, CORBA, Conformance testing.
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Chapter 1

Introduction

Computer applications are being increasingly used as the core of safety-critical
real-time systems, such as patient monitoring systems, plant control systems, air traffic
control systems and telecommunication systems. For such systems, a functional
misbehavior or a deviation ffom the specified time constraints may have catastrophic
consequences. In real-time applications, the timing requirements are the main constraints
and their mastering is the predominant factor for assessing the quality of service.
Therefore, ensuring the correctness of real-time systems become necessary. Two different
techniques are usually used to cope with the correctness of a software system prior to its
deployment, namely - verification and testing.

Testing is an important activity, which aims to ensure the quality of the
implementation. Testing procedure consists of generating test suite and applying them to
the implementation, which is referred to as an implementation under test (IUT). There
exist mainly three testing strategies: white box testing, black box testing, and gray box
testing. In white box testing, the structure of the implementation is known and the test
suite is generated from the implem;:nted structures. In black box testing, however, the
structure of the implementation is not known; we use the specification of the required
functionality at defined interfaces for test generation, execution, and evaluation. Finally,
in gray-box testing, we assume that modular structure of the implementation is known but

not the details of the programs within each component.



The PDCS (Predictably Dependable Computer Systems) (Randell et al.., 1995)
project defines RTS as a system that is required to react to stimuli from the environment
(including the passage of physical time) within time intervals dictated by environment.
To illustrate the various ways in, which ‘real-time’ systems are defined, one further
definition is given. Young (1982) defines a real-time system to be: Any information
processing activity or system, which has to respond to externally gencrated input stimuli
within a finite and specified period. Real time systems are classified into two ways: Hard
real- time systems and Soft real- time systems.

The classic definition is that hard real-time application fails if the system’s
timing requirement is not met. Good examples are digital fly-by-wire system of aircraft
and missile self cruise system.

The soft real-time applications can tolerate some degree of latency in what they
are required by the system. The time constraint violation is not fatal, but the system

performance may degrade. Examples are vendor machine and printer controller.

1.1 Testing Real-Time Software Systems

Real time applications are harder to test because they require not only the correct
output signals, but also the signals occurring at the correct time. To ensure the correctness
of the implementation, the output signals and the time should both be checked upon
testing.

The most efficient way to describe the complicated system behaviors is to use
formal models. There are different models such as Finite State Machine (FSM), Petri-nets

and Input-Output Automata. Most of proposed formal models for real-time systems are



time enrichment of those traditional models, with time constraint and additional time
labels, such as Timed Finite State Machine (TFSM) and Timed Input Output Automata
(TIOA)([30}[31]. To test real-time systems described by formal models, the obvious
means for lowering test cost is deriving test suite from the models automatically. The

observed output traces from the /UT should also be analyzed against the models.

1.2 Contribution of the Thesis

Although there are already some methods for centralized test system, the
problems of those methods still exist. First of all, there is lack of coordination of local
testers in distributed system, because all local testers are independent of JUT. Secondly,
the centralized test method may result in performance problems, due to the fact that all
interactions 7S-IUT are achieved through the network. Thirdly, a quantitative
comparative analysis between the centralized and distributed methods is very relevant.

In this thesis, we propose two methods of timed test case execution based on
specification by formal model of TIOA. We use n-port TIOA to describe the specification
and also consider that test case generation will be applied by transition tour method on
the TIOA specification. We apply these two methods for test case execution on real life
automata model like Train-Gate-Controller distributed system.

The main contributions of our thesis work are the followings:

e Generating test cases from n-TIOA by Transition Tour method.
e Developing an algorithm for test case execution on centralized test system.
e Developing an algorithm for test case execution on distributed test system.

e Implementation and testing of centralized test system through CORBA with Java.



o Implementation and testing of distributed test system through CORBA with Java.
e Implementation of “Train Gate Controller” - a benchmark example, which is real-
time reactive system for JUT through CORBA with Java.

e Comparison between centralized and distributed test systems and case study.

1.3 Organization of the Thesis

The structure of this thesis is as follows:

Chapter 2 presents the overview of the Conformance testing activities. The well
known test methodology is introduced here, as well as the framework of conformance
testing and test methods. We also discuss the conformance relation between reference
specification and JUT. The chapter also introduces the concepts of test hypotheses as well
as fault coverage and fault model.

Chapter 3 represents CORBA to introduce this industrial based architecture for
implementing distributed system and also analyze the Real-Time CORBA to ensure the
distributed system is robust and efficient. The chapter also introduces the CORBA
implementation model for Borland’s visibroker. This software has been used for
implementation by CORBA architecture with Java.

Chapter 4 presents the overview of two proposed methodologies, definition of n-
TIOA for centralized and distributed test systems. It also provides centralized and
distributed test methods with their architectures.

Chapter 5 shows the design details, implementation and case study using an

example that demonstrates our implementation methodology and the usefulness of the



tool. We provide several class diagrams, sequence diagrams and collaboration diagrams
in UML to specify our design and implementation.

Chapter 6 comes with the summary of this thesis and the future work.



Chapter 2

Overview of Conformance Testing

In this chapter, we introduce the background concepts and knowledge about
testing. A standard conformance testing methodology and framework is presented in
section 2.1, section 2.2 introduces conformance testing and specification and section 2.3
represents test hypotheses. Section 2.4 discusses FSMs fault model. Section 2.5 provides
the FSMs based test suite generation in, which several well-known test suite derivation

methods are introduced.

2.1 Conformance Testing and Standards

Conformance is usually defined as testing to see if an implementation faithfully
meets the requirements of a standard or specification. There are many types of testing
including testing for performance, robustness, behavior, functions and interoperability.
Although conformance testing may include some of these kinds of tests, it has one
fundamental difference - the requirements or criteria for conformance must be specified
in the standard or specification. This is usually in a conformance clause or conformance
statement, but sometimes some of the criteria can be found in the body of the
specification. Some standards have subsequent documentation for the test methodology
and assertions to be tested. If the criteria or requirements for conformance are not

specified, there can be no conformance testing.



The distributed real-time systems communicate with each other by exchanging
messages, which are governed by the communication protocol. A communication
protocol is a set of rules that govern an orderly exchange of messages among
communicating entities. Testing plays a major role in the development of communication
protocols.

There are many reasons that cause incompatibility of distributed system i.e. fail to
interact with each other. First, the developer could make some errors due to complexity
of specification. Second, specification could be incomplete, so that different
implementation could have different behaviors for the incomplete part of the
specification. Third, different implementations of the same specification might result
from various interpretations. Finally, the specification could provide a range of choices,
which may result in incompatibilities.

Conformance testing is the activity of checking whether a new implementation
conforms to a specification or not. However, different test developers could have
different principles when deciding if the implementation conforms to its specification.
Moreover, the same product could be tested more than once by different test developers.
Therefore, a general principle and test procedure for conformance testing are necessary,
so that the repeated conformance testing for the same system can be minimized.
International Organization for Standardization (ISO) has developed a standard for
conformance testing, that is ISO IS-9646, “OSI Conformance Testing Methodology and

Framework”.



Reference
specification

Test Purpose Derivation

Test Purposes

Test Suite Development Generic Test Suite Derivation

Generic Test Suite

, Test Methods

,

Test Suite Transform

Abstract Test Suite

) Test Notation

Executable Test Suite Derivation

Information of IUT and
execution Enviornment

Test Execution

Executable Test Suite

Test Execution

Result Log

[
>

Result Analysis

Result Analysis

Test Verdict Report
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2.1.1 Conformance Testing Process

The standard (ISO 1S-9646) defines a framework for conformance testing. It
specifies the principle and general procedure of test suite generation, test execution, and
test result analysis. The representation of test suite and test verdict is also specified in the
standard. The standard does not specify tests for specific protocols, but recommends the
general procedure of testing. It assumes that the natural language is used for
specification.

Fig. 2-1 depicts an overview of ISO IS-9646 recommended conformance testing
process. The whole process can be classified into three phases: test suite development,
test execution, and result analysis.

Test suite development: A test suite is a set of test cases that represents the test for
a specific test purpose. First of all, the test purposes are created from the specification. It
represents what to test. It focuses on one or a group of conformance requirements
specified in the specification. The conformance requirements represent the functionalities
of the system, and they can be divided into groups. The related requirements can be
described as a single test purpose to be tested.

Secondly, after test purposes are available, one generic test suite is generated from
each specific test purpose. A generic test suite describes the high level test actions to
achieve the specific test purpose, without considering any test methods or the execution
environment.

Finally, an abstract test suite is derived from each generic test suite. The derivation

is made by considering a particular test method and the constraints of the applied test



environment. The resulting abstract test suite is independent of any implementation. The
test cases in an abstract test suite are represented in a well-defined test notation.

A semi-formal language to specify abstract test suite is suggested in the standard,,
which is TTCN (Tree and Tabular Combined Notation) [23].

Test execution: Since the abstract test suites are independent of any real testing
environment and /U7, before they can be applied in the real testing devices, the abstract
test suite must be transformed into executable test suite. At this point, the implementation
of the system under test should be considered. For example, test case could be
represented as the parameters of a function, or the payload of a packet unit. To make the
transformations, the information about the testing environment and the /UT must be
supplied. Due to the knowledge that some options provided in the specification may not
be implemented, some test cases in the abstract test suite could be irrelevant for the
implementation. So, a selection is necessary to choose and refine the relevant test cases.

Once the executable test suites have been created and ready for execution, they
are applied to the JUT. The observed outputs from the JUT are recorded in conformance
logs.

Result analysis: The recorded reactions of /UT are compared with the reactions
specified in the test suite, and a verdict report is created for the certification of the final
product. A verdict is assigned to each test case according to the recorded outputs from
IUT. A verdict is either PASS, INCONCLUSIVE or FAIL. If the outputs indicate that the
implementation conforms to the specification and the test purpose, a PASS verdict is

concluded. Otherwise, if the implementation fails to conform to the specification, a FAIL

10



verdict i1s concluded. INCONCLUSIVE verdict is concluded if the implementation

conforms to the specification but the test purpose is not achieved.

2.1.2 Test Methods

A Test Method is an abstract model used to describe how the tester interacts with
IUT. Test method specifies the accessibility of the JUT to the tester; it represents the
logical concept of test architecture. The points where the tester can control and observe
the JUT is called Points of Control and Observation (PCO). At PCO, test suites are
applied to the implementation and the results of the test are observed. Several test
methods are presented in the framework: the Local Single layer test method (LS-method),
the Distributed Single layer test method (DS-method), the Coordinated Single layer test

method (CS-method), and the Remote Single layer test method (RS-method).

A 4

PCO
Upper Tester y
T
Lower Tester [\
PCO

A

Fig. 2-2: Local Single Layer Test Method
As it is depicted in Fig. 2-2, in LS-method, an Upper Tester (UT) provides the
observation and controls on the upper service boundary of IUT. A Lower Tester (LT)

provides the observation and controls on the lower service boundary of JUT. There are

11



two PCOs in LS-method: the upper PCO is used by UT to send and receive signal to and
from the implementation, and the lower PCO is used by LT.

The DS-method is used to test distributed systems as shown in Fig. 2-3. With this
architecture, Upper Tester is at the same location as /UT and controls testing by upper
PCO of IUT. Lower Tester is at the remote site and communicates with /UT by the PCO
of the low layer service provider. UT and LT communicate with each other by Test
Coordination Procedures, so that they can coordinate with each other to apply correct test

suite to JUT, and record corresponding output traces.

Coordination Procedure

> Upper Tester

[

v PCO

\ 4

Lower Tester

4 rco
\ 4 \ 4

Underlined Network Service |

Fig. 2-3: Distributed Single Layer Test Method

Test Coordination Procedures between the Test System, LT and the UT are more
rigorous. Explicit control and observation of ASPs (Abstract Service Primitive) is
possible. ATS (Abstract Test Suite) makes explicit use of these ASPs. Test Coordination
Procedures require either the use of a human operator or the use of a standardized
programming language interface. In most cases a human user acts as the interface
between the Test System and the UT. The interface is created using a system console

and/or by telephone with the remote Test System operator.

12



Particular difficulties exist while testing with DS-method:

e The independence between UT and LT implies possible fault coverage
limitations.

e Because of remote testing, queuing delays could cause remote tester to occupy
incorrect time-related information from /UT.

e The separated testers could face synchronization problems.

e The external coordination between UT and LT could also face failures since the
external environment is not guaranteed to be error free.

In the RS-method (Fig. 2-4), there is no upper tester, and only one PCO is
available for the remote tester. A single PCO is located at the LT in the Test System and
access to an upper tester is not formally required. Test Coordination Procedures between
the Test System LT and the UT (if one exists) are implied or defined in an ad hoc
manner. Typically coordination is achieved by a human user intervening at a system

console,

Underlined Network Service

Fig. 2-4: Remote Single Layer Test Method
It may not always be possible to realize the required test coordination between the
Test System and the /UT at the UT service boundary, however: It may be impossible to
initiate some test cases from the LT because of Service Provider restrictions or
limitations. It is the simplest ATM and makes no special demands on the /UT. It makes

no assumptions about the internal design of the JUT or the JUT within Service Provider

13



PDUs. It essentially treats the SUT as a black box and the least intrusive of the methods
presented.

In CS-method (Fig. 2-5), the UT and LT are separated. They coordinate and
communicate with each other by Test Coordination Procedures, as the same in the DS-
method. The difference between the two is that in CS-method, UT and LT are at the same
location and local to the JUT; the Coordination Procedures are also local and could be an

internal part of them.

Upper Tester
PCO

~

T

Coordination Procedure

r PCO

Lower Tester

A

Fig. 2-5: Coordination Single Layer Test Method

These test methods as mentioned are usually used to test one layer JUT, but they
can also be used to test multi-layer JUT. These layers can be tested as a whole, or one
layer embedded in the other layers can be tested (embedded testing).

When abstract test suites are generated from test purpose, the test method is
considered, so that the generated test suite can be adaptable for the future real test
architecture. Again, test method represents the abstract logical concept of real test
architecture. Before applying to the real test environment, the test method provides a way

for correctly selecting and refining abstract test suites.
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2.2 Conformance Testing and Specification

There are two types of testing, so-called black box testing and white box testing.
In black-box testing, the tester has no knowledge of the internal structure of the
implementation, only the reference specification is known. In this case, the test selection,
fault coverage and test result analysis are done with respect to the reference specification.

In white box testing, the internal structure of the implementation is known. The
knowledge of the implementation structure and reference specification is combined and
used in test selection, fault coverage and test result analysis.

Another type of testing is gray-box testing, only high-level module structure of

the implementation is known, but the structure details are not known.

Test Development
Specification
A \ 4
Conformance Test
Implementation <%

Testing

Fig. 2-6: Conformance Relationship
Conformance testing is black box testing. The implementation is required to
conform to the reference specification. The test suites are derived from the specification,
and then applied to the implementation. In this way, the implementation is tested against
the specification, and the conformance between the implementation and the specification
is verified (as shown in Fig. 2-6). While the specification is specified by the means of
formal models, it is possible to generate test suite automatically from these formal models

by some kind of generation algorithms. Compared to the manual test suite generation,
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automatic generation algorithm from formal models has obvious advantages, such as no

human introducing errors, more fault coverage, and lower test costs.

2.3 Test Hypotheses

To achieve completely error free implementation by testing, we have to do
exhaustive testing. It means applying infinite test cases to the implementation to cover all
possible faults. It is obvious that infinite test cases are impossible. Due to the real
environment limitation and the goal of lower test cost, exhaustive testing can never be
realized, even for the white-box testing where all the details of the internal structure are
known. However, some assumptions are always true when we have some knowledge
about implementation, by, which we can limit and lower the possible test cases. Those
assumptions and knowledge about implementation are called Test hypotheses. For
example, when we test a system, we really know what the system does, and we know that
it does not do something irrelevant. Moreover, when we are testing the implementation
with respect to the reference specification given in a formal model, we assume that the
system is implemented based on the adopted model. These assumptions make a
conformance testing possible.

The purpose to use test hypotheses is to reduce the possible implementations and
test cases. One way to achieve that purpose is by using test purpose. Test purpose
specifies what functionalities of the implementation to be tested. Single or partial
requirements and functions specified in the specification are derived to be tested.

Therefore, not all the requirements, but only a finite set of functions are considered. As

16



we have discussed in section 2.1, ISO conformance testing framework advises that the

test suites are created from the test purposes.

2.4 Fault Model

Since we cannot cover all faults by a test, how can we say a test is good or not? It
is necessary to define specific criteria that can evaluate the quality of a test. Fault Model
does the job. A fault model is used for describing how faults affect the behaviors of the
implementation. In a conformance testing, a test suite is said to have a complete fault
coverage with respect to a given fault model, when it either satisfies the conformance
relation, or there exists a test case in it, which results in a verdict FAIL[6].

A fault model describes the possible high level abstract faults of an
implementation. Because a single fault can create various errors in the JUT, fault model
provides the clear clues where those errors can be form. When the system is specified by
a formal model, fault model is used to describe what kind of faults could happen based on
the formal model. Therefore, test suites can be created to cover those faults.

Most formal models used to describe the behaviors of distributed and real time
systems are based on Finite State Machines (FSMs) or Input Output Automaton (IOA).
The FSM fault model includes [24]:

Output faults: The implementation machine provides a different output from one
specified by the output function in the specification.

Transition faults: For a given state and input, the transition of the
implementation machine arrives at a different state from the one specified by the

specification.
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Additional or missing transition faults: These are additional transitions for the
corresponding pair of states, or a transition is missed in the implementation machine.
This is considered an error for deterministic machines, where only one transition is
allowed for a given input and state.

Additional states faults. The implementation machine enters into a state, which

is not specified by the specification model.

2.5 FSM-Based Test Suite Generation

To cover the faults described in the fault model based on FSM, several test case
generation methods have been developed. All these methods are based on the
assumptions. Firstly, the implementation machine is completed and it has limited number
of extra states; Secondly, the implementation FSM is deterministic, which means that for
a given input and a pair of states, there is only one transition; And finally, there exists a
reset function, which can set the implementation machine to the initial state. These test
derivation methods are described as following:

Transition Tour (TT-method) [25]: The TT-method generates a test sequence
called “transition tour”. For a given FSM, a transition is a sequence, which takes the FSM
| from an initial state, traverses every transition at least once, and returns to the initial state.

The TT-method allows the detection of all output errors but there is no guarantee
that all transfer errors can be detected. This method has a limited error detection power
compared to other methods since it does not consider state checking. However, an
advantage of this method is that the test sequences obtained are usually shorter than test

sequences generated by the other methods.
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Distinguishing Sequence (DS-method) [26]: A distinguishing sequence (DS) is
used as a state identification sequence. An input sequence is a DS for an FSM, if the
output sequence produced by the FSM is different when the input sequence is applied to
each different state. The test sequences obtained by the DS method guarantee to identify
a particular FSM from all other FSMs. It has a full fault coverage (detecting both transfer
and output errors). However, the disadvantage of this method is that a DS may not be
found for a given FSM (as one single sequence is the UIO for all states). Also applying a
fixed length sequence may not lead to the shortest state identification sequence.

Unique Input Output (UIO-method) [27]: A UIO sequence for a state is an
input/output behavior that is not exhibited by any other state. For a test, the input portion
of distinguishing sequence is the same for all states; different states are distinguished by
distinct outputs. For the UIO sequence, the input portion is normally different for each
state. When the input part of the UIO sequence for a certain state s is applied to the FSM,
the output sequence is compared with the expected output sequence. If they are the same,
then the FSM was in state s. On the other hand, when the input portion of the
distinguishing sequence is applied to the FSM, the outputs contain sufficient information
to decide not only whether the machine was in state s, but also if not s, then, which one.
UIO sequences are typically shorter than the distinguishing sequences.

UIO sequences are also different from the so called characterization set generated
using the W-method. The characterization set consists of input sequences, which
distinguish between every pair of states. On the other hand, the UIO sequence for a state
distinguishes it from all other states. Again, this method cannot guarantee full fault

coverage.
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W-method [28]: This method includes two sets of input sequences: W-set, which
consists of input sequences that can distinguish between every pair of states; and P-set,
which consists of input sequences that take the machine from the initial state to a given
state for a given transition. Test sequences are formed by concatenating these two sets: It
provides a way to test all misbehaviors of the implementation machine. The logic of w-
method is that the prefix input sequences bring the FSM to an identified state, and then
the specific transition from the state is tested. This method guarantees the detection of all
faults, but it cannot guarantee the existence of W-set for a given FSM.

Wp-method [29] Wy-method has the same detection power as W-method. The
main advantage of the Wp-method over W-method is that the length of test suite is
reduced. Instead of using a W-set to check each reachable state, only a subset of W-set is
used. Another advantage is that Wp-method is always applicable.

Those test derivation methods are based on FSM as formal model. In
conformance testing, the formal models of the specification are used to derive test suites.
However, these methods have well known problem of state space explosion. The length
of test sequence and the number of test cases could be too high so that the test cost is too
high. That makes real world testing very difficult. Test purposes can be used to solve this
problem by testing only partial specifications, and only specific faults are targeted to be

expressed in formal models.
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2.6 Summary

The complete automation of the testing process requires the use of formal
methods for providing a model of the required system behavior. In this chapter, we
defined conformance testing framework and discussed different test methods and shown
the importance of modeling the aspects to be tested (the right model for the right
problem).

In the next chapter, we will introduce the implementation architecture CORBA,

which is our platform for implementing of timed test case execution.
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Chapter 3

CORBA

In this chapter, we investigate the conformance testing of objects that sit on top of a
CORBA platform and interact via the object request broker, e.g. an implementation of a
particular CORBA object service. Section 3.1 introduces the overview of CORBA.
Section 3.2 describes the real time CORBA platform and finally Section 3.3 represents

the CORBA implementation model by Borland’s Visibroker.

3.1 Overview of CORBA

CORBA is a standard promoted by the OMG consortium (Object Management
Group), which is widely accepted in the telecommunication industry, and the main actors
of this sector have made large investments in this technology.

The CORBA standard defines a general model for distributed programming
addressing heterogeneity at different levels (hardware, operating systems, networks and
protocols, programming languages). CORBA can be viewed as a software infrastructure
allowing the interconnection of heterogencous pieces of software. It is based on an
object-oriented approach and on the client/server model.

The core level of a CORBA implementation is called an ORB (Object Request
Broker). CORBA objects are described in a pivot language called IDL (Interface
Definition Language) CORBA. Unlike other programming languages, such as C++ and

Java, IDL is a declarative language to define object interface in a manner that is
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independent of any particular programming language. With different available IDL
compliers, IDL can be translated to different programming languages, such as C, C++,
Java, Smalltalk and Ada. The standard language mapping makes it feasible that the
developer can implement different portions of a distributed system in different languages.
For example, based on CORBA technology, a high-throughput server application may be
written in C++ for efficiency and client can be developed using Java Applet. The
language independence of CORBA is the key to its value as an integration technology for

heterogeneous systems.
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DID:D] Interface |dentical for all ORB implementations T Up-call interface
There may be multiple object adapters l Normal-call interface
- There are stubs and a skeleton for each object type
: ORB-dependent interface

Fig. 3-1: The Structure of Object request Interface
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An IDL CORBA definition describes the interface of software and not a complete
implementation. The IDL definitions are stored in an interface repository. This repository
is mainly used to dynamically construct a method invocation (dynamic invocation
interface).

The choice of CORBA as a test environment is motivated by the following
reasons: (1) The telecommunication companies are moving to CORBA; (2) CORBA is a
distributed environment guarantying the transparency of resource location and
communication, despite heterogeneity; (3) CORBA is well fit for a modular architecture.

Fig. 3-1 shows the main components of CORBA and the interconnections [32].
Here, client is the entity that wishes to perform an operation on the object and the server
is the code and data that actually implements the object. A client invokes a method of an
object by issuing a request to the object through an interface. The request carries
information including an operation, the object reference of the service provider.

The interfaces of the clients are completely independent of where the object is
located, what programming language it is implemented in, or any other aspect, which is
not reflected in the object’s interface. CORBA interfaces are defined in IDL. This
language defines the types of objects according to the operation that may be performed

on them and the parameters to those operations [33].

3.2 Real-Time CORBA

A growing class of real-time systems requires end-to-end support for various

qualities of service (QoS) aspects, such as bandwidth, latency jitter and dependability.
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Real-time CORBA is an optional set of extensions to CORBA tailored to equip ORBs to

be used as a component of a real-time system [34].
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Fig. 3-2: ORB end system features for Real-Time CORBA

The goals of Real-time CORBA specification is to support developer in building
predictable distributed system, a prerequisite for ensuring real-time performance, by
providing mechanisms to control the use of processor, memory, and network resources.

As shown in Fig.3-2 an ORB endsystem [36] consists of network interfaces,
operating system /O subsystems and communication protocols, and CORBA-compliant
middleware components and services. The RT-CORBA specification identifies
capabilities that must be vertically (i.e. network interface <« application layer) and

horizontally (i.e., peer to peer) integrated and managed by ORB endsystems to ensure
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end-to-end predictable behavior for activities that flow between CORBA clients and
servers. We outline these capabilities, starting from the lowest level of abstraction and
building up to higher-level services and applications are given below:

(1) Communication infrastructure Resource Management
An RT-CORBA endsystem must leverage policies and mechanisms in the underlying
communication infrastructure that support resource guarantees. This support can range
from (a) managing the choice of the connection used for a particular invocation to (b)
exploiting advanced QoS features, such as controlling the ATM virtual circuit cell pacing
rate.

(2) OS scheduling mechanism:
ORBs exploit OS mechanisms to schedule application-level activities end. Since the RT-
CORBA 1.0 specification targets fixed priority real-time systems, these mechanisms
correspond to managing OS thread scheduling priorities. The RT-CORBA specification
focuses on operating systems that allow applications to specify scheduling priorities and
policies.

(3) Real-Time ORB endsystem:
ORBs are responsible for communicating requests between clients and servers
transparently. A real-time ORB endsystem must provide standard interfaces that allow
applications to specify their requirements to the ORB. The policy framework defined by
the OMG Messaging specification [36] allows applications to configure ORB endsystem
resources, such as thread priorities, buffers for message queuing, transport-level

connections, and network signaling, in order to control ORB behavior.
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(4) Real-time services and applications:

Having a real-time ORB manage endsystem and communication resources only provides
a partial solution. Real-time CORBA ORBs must also preserve efficient, scalable, and
predictable end-to-end behavior for higher level services and application components.
For example, a global scheduling service can be used to manage and schedule distributed
resources. Such a scheduling service can interact with an ORB to provide mechanisms

that support the specification and enforcement of end-to-end operating timing behavior.
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Fig. 3-3: Real-time CORBA priority models
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To manage these capabilities, RT-CORBA defines standard interfaces and QoS
policies that allow applications to configure and control (1) Processor resources via
thread pools, priority mechanisms, intra-process mutexes, and a global scheduling
service, (2) communication resources via protocol properties and explicit bindings, and
(3) memory resources via buffering requests in queues and bounding the size of thread
pools.

Priority mechanisms: The RT-CORBA specification defines a PriorityModel
policy with two values, SERVER DECLARED and CLIENT PROPAGATED, as shown
in Fig. 3-3.

This model allows a server to dictate the priority at, which an invocation made on
a particular object will execute. In the server declared model, the priority is designated a
priori by a server based on the value of the PriorityModel policy in the POA (Portable
Object Adapter) where the object was activated. A single priority is encoded into the
object reference, which is then published to the client as a tagged component in an object
reference as shown in Fig.3-3(A). Although the server declares the priority, the client
ORB is aware of the selected priority model policy and can use this information
internally.

Thread Pools: Many embedded systems use multi-threading to distinguish
between different types of services, such as high-priority vs. low-priority tasks and
support thread preemption to prevent unbounded priority inversion. To address the
concurrency issue therefore, the RT-CORBA specification defines a standard thread pool
model. This model allows server developers to pre-allocate pools of threads and to set

certain thread attributes, such as default priority levels. Thread pools are useful for real
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time ORB end systems and applications that want to leverage the benefits of multi-
threading, while bounding the amount of memory resources, such as stack space, they
consume.

RT-CORBA provides an interface that allows server developers to pre-allocate an
initial number of so-called static threads, while allowing this pool to grow dynamically to
handle bursts of client requests. If a request arrives and all existing threads are busy, a
new thread may be created to handle the request. No additional thread will be created,

however, if the maximum number of threads in the pool has been spawned.
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Fig. 3-4: Standard Synchronization

Standard Synchronizers: The CORBA specification does not define a threading
model. Thus, there is no standard, portable API that CORBA applications can use to
ensure semantic consistency between their synchronization mechanisms used by an ORB.
Real time applications, however, require this consistency to enforce priority inheritance
and priority ceiling protocols.

Global Scheduling: More intuitive manner that the RT-CORBA specification
defines a global scheduling service. This service is a CORBA object that is responsible

for allocating system resources to meet the QoS needs of the applications that share the
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ORB end system. Applications can use the real-time scheduling service to specify the
processing requirements of their operations in terms of various parameters, such as worst-

case execution time or period, as shown in Fig. 3-5.
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Fig. 3-5: Real-Time CORBA global scheduling service
Selecting and Configuring Protocol Properties: CORBA uses inter-ORB
communication mechanisms to exchange requests between clients and servers. These
mechanisms are built upon lower level protocols that provide various types of QoS.
Explicit Binding: This mechanism enables clients to (1) pre-establish
connections to servers and (2) control how client requests are sent over these
connections. The following two policies — priority-banded and private connections — are

defined to support explicit binding in RT-CORBA.
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3.3 CORBA Implementation Model

VisiBroker for Java provides a complete CORBA 2.3 ORB runtime and
supporting development environment for building, deploying, and managing distributed
Java applications that are open, flexible, and inter-operable. VisiBroker has a built-in
implementation of ITOP that ensures high-performance and inter-operability. VisiBroker

for Java has several key features as described in the following sections.

3.3.1 Visibroker Smart Agent Architecture

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service
that provides facilities for both client applications and object implementations. Multiple
Smart Agents on a network cooperate to provide load balancing and high availability for
client access to server objects. The Smart Agent keeps track of objects that are available
on a network, and locates objects for client applications at invocation time. VisiBroker
can determine if the connection between client application and a server object has been
lost, due to an error such as a server crash or a network failure. When a failure is
detected, an attempt is automatically made to connect the client to another server on a
different host, if it is so configured.

If the PERSISTENT policy is set on the POA, and activate object with idis
used, the Smart Agent registers the object or implementation so that it can be used by
client programs. When an object or implementation is deactivated, the Smart Agent
removes it from the list of available objects. Like client programs, the communication

with Smart Agent is completely transparent to the object implementation.
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It is often desirable to have two or more separate ORB domains running at the
same time. One domain might consist of the production versions of client programs and
object implementations while another domain might be made up of test versions of the
same clients and objects that have not yet been released for general use. If several
developers are working on the same local network, each may want to establish their own

ORB domain so that their testing efforts do not conflict with one another.

ORB Smart ORB Smart
Agent Agent
Client
Cilient Application
Application

Test Domain Production Domain

Object Object
implementation Implementation
Object . Object
Implementation Implementation

. .

Fig. 3-6: Running separate ORB domains simultaneously

VisiBroker allows us to distinguish between multiple ORB domains on the same
network by using a unique UDP port number for the Smart agents for each domain. By
default, the 0SAGENT PORT variable is set to 14000. If we wish to use different port
numbers, our system administrator check and determine, which port numbers are

available. To override the default setting, the OSAGENT PORT variable must be set
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accordingly before running a Smart Agent, an OAD, object implementations, or client

programs assigned to that ORB domain.

3.3.2 Robust Thread and Connection Management

VisiBroker provides native support for single and multithreading thread management.
With VisiBroker's thread-per-session model, threads are automatically allocated on the
server-per-client connection to service multiple requests, and then are terminated when
the connection ends. With the thread pooling model, threads are allocated based on the
amount of request traffic to the server object. This means that a highly active client will
be serviced by multiple threads-ensuring that the requests are quickly executed. Less

active clients can share a single thread, and still have their requests immediately serviced.

VisiBroker's connection management minimizes the number of client connections
to the server. All client requests for objects residing on the same server are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same server,
eliminating the need for clients to incur the overhead of new connections to the same
server. The size of the thread pool grows based upon server activity and is fully
configurable-either before or during execution-to meet the needs of specific distributed

systems. With thread pooling, we can configure the following:

o  Maximum and minimum number of threads

e Maximum idle time
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Each time a client request is received, an attempt is made to assign a thread from the
thread pool to process the request. If this is the first client request and the pool is empty, a
thread will be created. Likewise, if all threads are busy, a new thread will be created to

service the request.

A server can define a maximum number of threads that can be allocated to handle
client requests. If there are no threads available in the pool and the maximum numbers of
threads have already been created, the request will block until a thread currently in use

has been released back into the pool.
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Fig. 3-7: Thread connection management
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Fig. 3-7 shows, client application #1 establishes a connection to the
Object Implementation and a thread is created to handle requests. In thread pooling, there
is one connection per client and one thread per connection. When a request comes in, a
worker thread receives the request and then it is no longer in the pool. A worker thread is
removed from the thread pool and is always listening for requests. When a request comes
in, worker thread reads the request and dispatches the request to the appropriate object
implementation. Prior to dispatching the request, the worker thread wakes up one other

worker thread, this then listens for the next request.
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Client request for the next request from
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Fig. 3-8: Client application #2 establishes connection
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Fig. 3-8 shows, when Client application #2 establishes its own connection and
sends a request, a second worker thread is created. Worker thread #3 is now listening for
incoming requests. If more requests came in from Client application #1, more threads
would be assigned to handle them-each spawned after the listening thread receives a
request. As worker threads complete their tasks, they are returned to the pool and become

available to handle requests from any client.
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Fig. 3-9: Binding to two objects in the same server process
In Fig. 3-9, a client application is bound to two objects in the server process. Each
bind () shares a common connection to it, even though the bind () is for a different

object in the server process.

3.4 Summary

CORBA is a vendor independent specification designed to let different platforms,
operating systems and compilers work together. The goals of real-time CORBA
specification is to support developer in building predictable distributed system, a
prerequisite for ensuring real-time performance by providing mechanisms to control the
use of processor, memory and network resources. Overall, VisiBroker's connection

management minimizes the number of client connections to the server. In other words
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there is only one connection per server process, which is shared. All client requests are
multiplexed over the same connection, even if they originate from different threads.
Additionally, released client connections are recycled for subsequent reconnects to the
same server, eliminating the need for clients to incur the overhead of new connections to
the server.

In the next chapter, we provide centralized and distributed test methods with their

architectures.
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Chapter 4

Test Case Execution Based on np-TIOA

Two new methods are presented to do test case execution in this chapter. We
consider that n-port TIOA is used for the specification of JUT and the execution of the
test in order to determine whether /UT conforms to the specification. Therefore, transition
tour method is used for the generation of test cases. Section 4.1 introduces an overview of
the methodology for testing distributed real-time system. Section 4.2 describes the timed
test case execution framework step by step. Section 4.2.1 presents the model of input-
output Timed Automata with n ports (np-7/0OA4) for centralized and distributed test
system. Section 4.3 gives the detailed architecture of the centralized test system and
algorithm. Section 4.4 discusses the distributed test system architecture and algorithm.

Finally, section 4.5 gives the summary.

4.1 Overview of the Methodology

Testing consists of generating test sequences and applying them to an
implementation, which is known as Implementation Under Test (/UT).We consider
distributed real-time systems as JUT. Similar to [9, 14, 15, 16], we consider that a
distributed system (IUT) has several ports and that it is reactive. As in [1], we assume

during test execution, controllability represents the ability of test system (7) to
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guarantee timing constraints of inputs, and observability represents the ability of 7S to

check timing constraints of outputs, which are sent from /UT.

Synchronizer
TS

Fig. 4-1: Centralized test architecture for testing distributed system
By centralized test method, we consider a Synchronizer as a single tester in 75,
which communicates with different ports of JUT (as shown in Fig. 4-1). Our target is to
study the phase of test execution i.e. the phase of checking test sequences, which is sent
from Synchronizer to IUT and to conform every given test sequence. The consequence of

conformance testing returns a verdict pass, fail or inconclusive, which has been described

in proposed test procedure in section 4.3,

Tester 3 Tester 2

Fig. 4-2: Distributed Test Architecture
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By distributed test method (Fig. 4-2), we consider a test system, which consists of
several testers communicating through each port of the distributed /UT and also sending
coordination messages among other testers. During coordination, message O is used to
guarantee order constraints of inputs and message T is used to guarantee timing

constraints of inputs.

4.2 Testing Process

Specification

Test Generation
Algorithm

Test cases Feedback

Test Execution
Algorithm

verdict

Stimuli Responses

T

Fig. 4-3: Step by step testing process

In this process (Fig. 4-3), the specification is the input of the test case generation
algorithm. The specification describes the actions that the system is allowed to do. Using
it, the algorithm produces test cases, which are taken by the test system and executed

against the Implementation Under Test (JUT). The tester and the JUT exchange stimuli
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and responses. If one of the executions leads to an error, the verdict will be fail. If no
error is discovered the verdict will be passed. If the tester gives feedback to test
generation algorithm, which will be used for building up the test cases, the test derivation
is called on-the-fly (test generation and test execution are combined in one phase)
procedure. In any other case, it is called batch oriented (test generation and test execution
are separated phase) procedure. The correctness of an implementation with respect to a
specification is checked by executing test cases (which specifies a behavior of the
implementation under test). Now we describe the step by step of the testing process as in

Fig. 4-3.

4.2.1 Input-output Timed Automaton with n Ports (np-ioTA)

In this section, we will introduce the concepts and formal models that are used in our
methods. This is our first step in testing process that would be FSM based specification.

Our timed automaton operates with finite control — a finite set of locations and a finite
set of real valued clocks. All clocks proceed at the same rate and measure the amount of
time that has elapsed since they were started (or reset). Each transition of the automaton
has an associated constraint on the values of the clocks that satisfy this constraint. A
transition, in addition to changing the location of the automaton, may reset some of the

clocks.
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4.2.1.1 Definition of Centralized n-port TIOA Model

As in [1], we consider a model called input-output Timed Automata with n ports

(np-i0TA) for describing the specification. An np-ioTA is a 7-tuple (£, K, 1, O, 6, 4, )

where n > 1 and:

£ is a finite set of states and /y € £ is the initial state.
K is a finite set of intervals bounded by positive values. Every element of X is

written in the form /a, b] and denotes the set {x | a <x <b}.

Iisan-tuple (I, I,.......... 1,), where [; is a finite set of all the inputs of I, 1,N [;
=@ foritjandij=1,....... a Letthen /=, XK) UL XK)U ........... U,
XK).

Ois an-tuple (O, O,,......... 0,), where O; is a finite set of all the outputs of ;,

ONO=Dforifjandij=1,....., n. Letthen O = (O; XK) U {e} X (0; XK)
Ufel X........... X (0, XK) U {e}, where ¢ stands for the empty output.

0 is a transition function : D — £, and 4 is an output function: D —O, where

Do fXI

A transition T, of a np-ioTA is therefore defined by d (g, 0, K) = r and

(9,6, K)=((s1, K),(52K3),ecoevvviniiiiinin.. (s», K,)) where:

g and 7 are origin and destination states of the transition, respectively;

o is the input of the transition and the interval X defines the timing constraint of

Sl 82 eetiiniiiiniin .S, arc the outputs of the transition, in ports 1,2,.....n,

respectively, and each interval K; defines the timing constraint of s;, When the
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transition has no output in port i, then (s, K;) is not defined and is represented by
e

e If g is the current state and o is received at an instant, which falls within X
relatively to the instant when ¢ has been reached.
Then foreachi = 1,................ n: s; (if any) is sent in port i at an instant, which
falls within K; relatively to the instant when o has been received. State » is reached
immediately after that all the outputs s; have been sent. If 7, contains no output
then state r is reached immediately after the reception of o.

e If 7, is the initial transition of an execution, then X is ignored. Note that K is not
ignored when 7, is not the initial transition of an execution even if its origin state

is lo,

c[0,4} / (w[1,31,¢ ,2[0,3])

a[0,3] / (x[1,3], &, z[0,3])
b[0,3]/ (x[1,3], y[2,4],€)

Trd

c[1,4]/ (e, y[2,4], 2[0,3])

Fig. 4-4: n-port TIOA for centralized test method
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An example of np-io TA is represented in above Fig. 4-4: With I; = {a}, [, = {b},
Is={c}, O; = {w, x}, O, = {y}, O3 = {z}. The nodes are the states and the directed edges
are the transitions linking the states. A label oK /(5,K;, s5:K,.........5,K;) on an edge
linking ¢ and » means d(q,0,K) =rand A (g, 0, K) = ((51, K1),(52K2),cevvvvvivinnninnn.. (Sn,
K,)). For example, if the current state T; has been reached at instant 7 and the input a is
received at an instant 7; such that (7; - 7) € [0, 3], then the transition Tr; is executed,
which means that the state changes to T2 and the outputs x and y are sent in ports 1 and 2
at instants vl and v2, respectively, such that (v - 7;) € [I, 3] and (v2 - 1) € [2, 4].
Therefore the state T2 is reached at instant v = sup (v, v2). The transition Tr4 is
executed if and only if ¢ is received at an instant t such that (¢ —v) € [1,4].

We consider the test sequence, which is derived by Transition Tour method
Trl.Tr2.Tr3.Tr4.
Input: a /0, 3].c[1, 4].b[0,4].c[l, 4]
Expected Output: (x /1, 3/, ¢, 2 [0,3] ).(w [2,5], &, z [0,3] ). (x [1,3], ¥y [2,4], ¢). (¢, y
[2,4],2[03])
Inputs a, b, ¢ are received by JUT in ports 1, 2, 3 respectively, and outputs x, y, z are sent

by IUT in ports 1, 2, 3, respectively.

4.2.1.2 Definition of Distributed n-port TIOA Model

We model a specification by a finite state machine with n ports i0-TA. A

np-ioTA is a 7-tuple (Q, 1, O, 6, 4, C, q0) where n > I and: Q is a finite set of states and
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q0 € Q is the initial state; / is a n-tuple (1;, I, Ls........... I,), where I; is a finite set of

inputs of porti, [N =g fori#jandij=1,...... nLetI=L1ULU...... Uul,
Ois anntuple (O, O;,........... 0,) where O; is a finite set of all the outputs of i, O; N O;
=@for i#jandij=1,....... n Letthen O = (0, U{e) X(O, U{e}) X........... X (O,

U {¢}), where € stands for the empty output. J is a transition function : D — Q and A is an

output function. D — O, where D D Q X I. And finally, clock C is a tuple (C,,

- &risa set of transitions.
A transition is therefore defined by ér = < g, r, {?, / }Ja, EC, A, 4> where q and r are
origin and destination locations and a is an event or action ( denoted by {?, ! }a), which
would be input or output action. §r may occur only if EC = True. The subset 4 oCr
specifies the clocks to be reset in this transition and p is associated clock constraint. A
clock constraint is a boolean combination of atomic conditions of the form x<m, x 2m, x

<m, x =m, x > m, where x € Cr and m is the integer constant.

2w/ 18,cl >=¢2, -

N/ cl>=1;¢2<2,-

Fig: 4-5: n-port TIOA model for distributed test method
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We consider a system modeled by TIOA where locations are represented by
nodes, and a transition Tr = (q, 1, {?, ! }a, EC, {ci, cj.......... }) is represented by an arrow
linking q to r .The absence of EC or of clocks to reset is indicated by “-*.

The system is initially in location Lo. It reaches location L1 by the reception of B. Two
clocks are set to zero. In location L1, by the reception of ¢ the system sends

simultaneously p while c1 < 2 is true then the transition will be occurred and the system

goesto L,

4.2.2 Test Generation Method

Different test generation methods have been discussed in section 2.5 in chapter 2.
Here, we focus only transition tour approach, which is going to apply for test case
execution procedure.

The purpose of a test selection method is to come up with a set of test cases,

usually called a “test suite”, which has the following properties:

a) The test suite should be relatively short; that is, the number of test cases
should be small, and each test case should be fast and easily executable
in relation with the Implementation Under Test (/UT).

b) The test suite should cover, as much as possible, all faults, which any
implementation may contain. In the case of a formal specification of the
protocol being available, the test selection and fault analysis can be
based on this specification.

A test generated by the state transition tour approach [19, 20] checks whether the

implementation generates correct outputs in response to a certain input in all states. But it
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does not check whether the implementation enters a correct next state after making a
transition. The extreme example is the transition tour (TT) method [21], which executes
all transitions of the specification at least once but does not make any effort to identify

the target state.

T1: a1 T4: b/2

T8: b/2 T3: a1
T7: a/2

Fig 4-6: FSM example
In Fig. 4-6: the possible transition tour is formed by the transitions’ sequence:
T1.T.T 3.T5.T7.T5. T>. No transition needs to be traversed twice. It’s clear that the arrival
state of the last transition, 75, is not checked. As a result, if 7} transition reaches to S2
instead of S7, this transfer fault will not be detected. In order to systematically detect the
transfer faults, one has to identify the state into, which the implementation goes after the

execution of the tested transition.

4.2.3 Test Case Execution

In [18], Automated test execution is important, especially for debugging (Where
the same tests are executed on different versions of implementations) and for regression
testing. In most cases, abstract test cases are translated into programs, which are compiled

and executed, after being linked directly or through some inter-task communication
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facilities with the JUT (test engine for example). Various tools exist for the management
of a test campaign. Such tools control the execution of many test cases in sequence,
including conditional execution depending on the verdicts of previous test cases. The test
results are usually automatically recorded in the form of so-called test traces. No standard
exists for the description of these traces. Moreover, there are possibilities for partially
automating the test result analysis and diagnostics processes, and obtaining automatically
an oracle starting from a given specification. In the case of a deterministic specification,
which is written in an executable specification language, an execution environment for
this language provides the means for obtaining an oracle, since it is sufficient to execute
the specification with the same inputs as applied to the /UT; the output obtained from the

specification is the output to be expected from the JUT.

Test Suite
apply apply
\ 4 h 4
Black Box
TIOA Specification Implementation Under
Test
Ob d | Output S
Expected | Output Sequence sefve ufput Sequence
Y Y

Compare the output sequences

No Yes

A y

C Fault is detected ) ( Conformed )

Fig: 4-7: Oracle methodology
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In the case of non deterministic specifications, the execution will provide only
one of all the possible outputs (or output sequence), which is allowed. Their direct
comparison with the outputs obtained from the JUT is not suitable for determining
whether this output is correct.

Simulated execution with back-tracking has been explored for the automatic
generation of oracles and diagnostics from a given executable reference specification (e.g
TETRA for LOTOS specifications, and TANGO for Estelle specifications, developed at
university of Montreal). Unfortunately, in many cases there exists an explosion of
possibilities for unsuccessful back-tracking, and these methods become very inefficient,

if not infeasible. However, in other cases, useful results have been obtained.

4.3 Centralized Method for Test Case Execution

In centralized method, the test system is controlled by a single synchronizer or
tester and it is composed of many small internal testers and one global clock. Here, the
synchronizer sends inputs or test sequences to different ports of JUT. Global clock starts
timer for different inputs and waiting for outputs. After receiving those inputs, JUT gives
feedbacks or outputs to the synchronizer. The synchronizer checks the semantics of
outputs and verifies the timing constraint of receiving feedbacks. Therefore, the small
testers of synchronizer finally conform to the specification by checking if each input

sequence corresponds to those outputs with their timing intervals.

49



Tester 1 Tester 2 Tester 3

y

4
Global Clock
K

Synchronizer

Fig. 4-8: Physical connection with Test System and IUT (Centralized)

This section describes the algorithm that will be used by the 7S (Test System) to
verify JUT. The function of the Synchronizer is to check ID (address) of local testers and
port of JIUT, where it makes the data structure to send test cases to the different port of
IUT. In addition, it receives the exact time from global clock at the instant of forwarding
the inputs to the specific port of JUT and also verifies the timing constraint when output
of IUT arrives first in the Synchronizer. For the simplicity, we ignore the timing
difference between Synchronizer and local small testers. Further, the Synchronizer
reserves the route or path for communicating between testers and /UT. In our test
procedure, we consider the Reaction time of IUT, , which is denoted RT}yr, is an upper
bound of time separating (i) any instant when an event e is received by IUT and (ii) the
instant when JUT has terminated to send all the outputs (if any) in response of e. We also
consider the Transfer time between IUT and TS, [TT™, TT™™] the time separating (i) the

instant when a message M is sent by JUT and (ii) the instant when the message M is
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received by TS. These two timing parameters help our test method for real judgment of

receiving and sending data with their required duration.

As in parallel probing approach [38], we first define some node types, and then

define some procedures that will be invoked when a node receives data or packet. The

nodes of the network, with respect to call, are classified into four types:

SOURCE: The source node of a call.

DESTINATION: The destination node of a call.

ID: An intermediate destination of the call. A call can have more than one ID, and
the search for paths proceeds sequentially from one ID to another. The selection
of IDs and the sequence in, which the IDs are to be searched for, is determined by
least-cost metric between the SOURCE and DESTINATION of the call. Let IDy,
IDy, IDy ...ceoeeee. IDn be the sequence of IDs of a call. Without loss of
generality, ID is the SOURCE and IDn is the DESTINATION.

IID. An intended intermediate destination of the call, which is an ID to which a
route is currently being probed, ID; is an IID if and only if ID;.; was the previous
IID and IDjy; will be the next IID. Without loss of generality, SOURCE (IDy) is

the first ITD and DESTINATION (IDn) will be the last IID.

Here, the procedures executed by nodes during call establishment are classified into two

categories:

Reserve (N, ID;, Trp). Route the test sequence (7rp) from node N (internal tester) to
its preferred neighbor for reaching node ID; based on heuristic. This involves
performing a call admission test on the best preferred link of node N, checking for

the availability of bandwidth required by the call. If call admission is successful,
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it returns “success”, and the resources necessary for transmission are reserved;
otherwise, it returns “failure”. If the admission test fails on the best preferred link,
the call admission test is performed on the next-best preferred link. This
procedure is repeated until either the call admission is successful or a fixed
number of tries has been made.

e Forward (ID,, IID, Tr,). This procedure initiates parallel probes on k paths using k

different heuristics and sending test sequences to the destination ID.

Reaction time: RT // As we defined above

Transfer time: TT // same as

No. of test sequences: k;

No. of inputs in one test sequence: m;

Inputs:

Test sequences Tr;, Try,..cooevninveenn... Try.

Outputs:

Conformance: PASS, FAIL and INCONCLUSIVE.

Procedure:

When a test suite (new message) is created from any internal tester, Synchronizer reserves
the path on the preferred link.

SOURCE: Assemble test suite with intermediate destinations (IDg ID, . ..........1IDn
ID,), without loss of generality, ID; is SOURCE and ID,, is DESTINATION.

Begin

Let Hy, H,.......c.c.........Hy be the k heuristics.

ForP=1toKdo

Fig. 4-9: Centralized Test System (Pseudo code)

52



Select the best neighbor based on heuristic Hp,.
Status [P] = Reserve (N, ID;, Trp); /* ID; is the destination node port ID of IUT, N is the*/
Begin /*Source ID of the local tester and the test sequence is Trp.*/
Repeat
If (call admission is successful) then /* Request is accepted by the Synchronizer */
Reserve bandwidth on the preferred link.
Forward (ID;, IID, Tr,); /* Sending inputs from tester to the specific port through
/* Synchronizer.*/

If (Expected output occurs) then /* Returning the Boolean value from function */

Return (success). /* Forward (). Now outputs of IUT */
Receive current time from Global clock by Synchronizer.
/*Waiting for receiving outputs™/
While (no outputs are left)
Synchronizer receives the outputs and checks destination local tester ID and source port ID
of IUT.

Synchronizer sends outputs to the respected local tester.
If (IUT does not satisfy the expected condition, EC) then

Conformance: = FAIL; BREAK

Else if (RT + TT) <= EC) and (Tr; > Tr..}) then

Fig. 4-10: Centralized Test System (Pseudo code) Contd.
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Conformance: = INITPASS; /* It means initial pass. Therefore, IUT responses against */
End If /* one input of one test sequence */
Increment the number of outputs
End while
Conformance = PASS; /* It means complete’ pass’ of the respected test sequence. */
Return (success);
Else If (i.e. a non-expected output occurs) and (IUT satisfy the condition, EC) then
Conformance: = INCONCLUSIVE; BREAK
Else: Conformance: = FAIL; BREAK
End If
Else
Select the next preferred link.
Until (maximum number of neighbors have been tried)
Return (Failure);

End

Fig. 4-11: Centralized Test System (Pseudo code) Contd.

4.4 Distributed Method for Test Case Execution

Distributed test architecture has been studied [37] for testing distributed real time

systems. In this architecture, the implementation under test (/UT) contains several ports,
and the test system (7'S) consists of local testers for each port of the JUT. Each local tester
communicates with the /UT through its corresponding port. Messages exchanged with

other testers are called coordination messages. The local testers allow exchanging
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coordination messages with one another, through a communication medium, which is
independent of JUT. In Fig. 4-12, there are two types of coordination messages- message
O is used to guarantee (response check) order constraints of inputs (résponse outputs),
and message T is used to guarantec (response check) timing constraints of inputs
(response outputs). A local tester, TesterP, in order to obtain timing information from
ClockP, (1) asks ClockP to send the current time; (2) receives the current time from
ClockP; the received current time is used by TesterP to check whether the timing
constraint of a just received output is respected; (3) asks ClockP to notify when the

current time reaches a given value, say 1; and (4) is notified by ClockP when the current

Ask current time Ask current time
< Message O »
Receive current time Receive current timg
Clock 1 — 7| Tester1 Tester2 |, - Clock 2
| Ask for notification Message T ester Ask for notlﬁcatlon‘ 0
Receive notification geceive notification
Y ¥
\ 4 ) 4
Port 1 Port 2
T

Fig. 4-12: Physical connection with Test System and IUT (Distributed)
time is t; the notification is used by TesterP to guarantee the sending of an input at a
selected instant, which respects the timing constraint of the input. The controllability and
observability problems can actually be resolved if and only if certain timing constraints

are satisfied by the 7.
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Reaction time: RT // As we defined above
Transfer time: TT // same as
No. of test sequences: k;

No. of inputs in one test sequence. m;

N number of Testers: TS, TS;............TS,;
N number of Clocks: Cj, Cyuuovevvov e . Gy
Inputs:

Test sequences Try, Try,.oooovivvnininnnn.n, Tr.
Outputs:

Conformance: PASS, FAIL and INCONCLUSIVE.

Procedure:

When a test suite (new message) is created from any Tester, it reserves the path on the
preferred link for connecting to the port of IUT,

SOURCE: Assemble test suite with intermediate destinations (IDy ID; .. .. . .. . . . IDu;
ID,), without loss of generality, ID, is the SOURCE and ID, is the DESTINATION.

Begin

LetHy, H,...................Hy be the k heuristics.

ForP=1toKdo

Select the best neighbor based on heuristic H,.

Status [P] = Reserve (N, ID,, Trp); /*ID; is the destination node port ID of IUT, N is the*/
Begin /*Source ID of the local tester and the test sequence is Trp. */

Repeat

If (call admission is successful) then /* Request is accepted by other testers*/

Fig. 4-13: Distributed Test System (Pseudo code)
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Reserve bandwidth on the preferred link.
Forward (ID,, IID, TrP), /* Sending inputs from tester to the specific port*/
Forward (ID,, IID, O,); /* Sending Coordination message (O) to the other testers */
Forward (ID;, IID, T;); /* Sending Coordination message (T) to the other testers */
Receive current time from local clock C;;
If (Expected output occurs) then /* Returning the Boolean value from function™®/
Return (success);. /*Forward (). Now outputs of IUT */
// Waiting for receiving outputs
While (no outputs are left)
Tester receives the outputs and checks the destination tester ID and source port ID of IUT.
If (IUT does not satisfy the expected condition, EC) then
Conformance: = FAIL; BREAK
Else if (RT + TT) <= EC) and (Tr; > Tri-1) then
Conformance: = INITPASS, /*It means initial pass. Therefore, IUT responses*/
End If /* against one input of one test sequence.*/
Increment the number of outputs
Endwhile
Conformance = PASS; /* It means complete pass of the respected test sequence.*/
Return (success),
Else If (i.e. a non-expected output occurs) and (IUT satisfy the condition, EC) then
Conformance: = INCONCLUSIVE; BREAK
Else Conformance: = FAIL; BREAK
End If

Else

Fig. 4-14: Distributed Test System (Pseudo code) Contd.
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Select the next preferred link.
Until (maximum number of neighbors have been tried)
Return (Failure);

End

Fig. 4-15: Distributed Test System (Pseudo code) Contd.

4.5 Summary

We provided two methods for timed test case execution. These methods are based
on specification expressed in np-TIOA. We have distinguished centralized and
distributed test architecture and their procedures. Coordination messages are exchanged
among testers in distributed test system. Synchronizer virtually acts as a single tester and
controls input-output with timing constraint, which has been applied on centralized test
system only. We have also given the definition of n port TIOA for these two methods. In
addition, step by step testing process has been discussed in this chapter.

In the next chapter, we will provide the detailed implementation of the algorithms

of these two methods.
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Chapter 5

Implementation of the Methodology

We have already introduced our two methods including architectures and
algorithms for test case execution based on n-port TIOA in chapter 4. Now, we
implement those architectures by CORBA- a general model for distributed programming
and object oriented programming language with Java. In this chapter, the design and
specification of centralized and distributed test architectures are presented. A real life
automata model is given to illustrate how our methods work. Section 5.1 introduces the
overview of implementation. Section 5.2 describes the implementation of centralized test
architecture. Section 5.3 represents the implementation of distributed test architecture and
sections 5.4 and 5.5 explain a case study, results and results analysis. Section 5.6 presents

the summary.

5.1 Overview of the Implementation

Our main focus is to implement the test system environment and to apply test
cases on JUT- a distributed real-time system, we consider Train-Gate-Controller — a
railroad crossing system act as an IUT, which is also a reactive system. By using two
methods, we implement centralized and distributed test architecture by CORBA
distributed model. It communicates by sending and receiving inputs and outputs from
IUT i.e. Train-Gate-Controller system. According to our methods and by sending test

cases to JUT, the Test system checks every output coming from /UT on different ports
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corresponding to the inputs and their timing constraints. If the verdict passes according to
our FSM based specification, which is expressed in n-port TIOA, then system is
successfully called “PASSED”; otherwise it is called “FAILED”. For testing of
sequential software, it is usually sufficient to provide the same input (and program state)
in order to reproduce the output. The behavior of distributed real time system, on the
other hand, not only depends on inputs but also on the order and timing of the concurrent

tasks that execute and communicate with each other.

A 4

Specification (UML)

A 4

Design (UML)

y

Translation into (DL

A 4

Compilation(JavatolDL/
C++tolDL)

v

A 4

Implementation Java/C++

v

Code (Java/C++)

Fig. 5-1: A general approach for designing the CORBA system
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Fig. 5-1 depicts an overview of CORBA implementation process. The whole
process has been implemented in our centralized and distributed test system. We analyze
the necessary requirements for CORBA on testing environment. The essential aspects
such as observability are important for determining if /UT performs correctly. In section
5.4, we show that Train-Gate-Controller creates three individual automata models and
discuss about test cases or stimulus generated by Transition Tour method from combined
automata model that ensures correct ordering and timing constraint of each test case.
Also, our Test System observes the actions or outputs created by IUT in response of
stimulus without hampering timing behavior. During testing, we must be able to control
the execution of the system, so that it is possible to reproduce arbitrary test scenarios such
that the system’s reaction is deterministic. Fundamental to our methodology is the notion
of a real time transaction, which is used to express the concerns about functionality and
timeliness of a sequence of computational and communication steps in a single concept.
Here, Real time transactions are used to describe the runtime behavior of Train-Gate-
Controller system.

In order to show the detailed design and implementation, we use class diagrams,

sequence chart diagrams and collaboration diagrams based on Rational rose software.

5.2 Implementation of Centralized Test Architecture

To capture and display the behavior of component-based system, we build a test
system, which is named here Synchronizer. It coordinates the global clock and three
internal testers and also is responsible for injecting required test cases into Train-Gate-

Controller and then display the behavior with respect to the application architecture. The
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design of a CORBA system fits in regular software development process. The IDL code
generated from the logical view serves as baseline for implementing CORBA
mechanism.

We now describe the whole process of implementation (Fig. 5-1) for centralized

test system in the following subsections.

S5.2.1 Specification and Design

Fig 5-2 is the physical layout of client server programming through CORBA
architecture. We represent the client as a Test system and the server as an /UT. Object
Request Broker (ORB) is the communication channel that guaranties the transparency of
resource location and communication between client and server components. An IDL
(Interface Definition Language) describes the interface of software and not a complete
implementation. The IDL definitions are stored in an interface repository. This repository
is mainly used to dynamically construct a method invocation (dynamic invocation
interface). Through interfaces, client side is completely independent of where the object
is located, what programming language it is implemented in, or any other aspect, which is
not reflected in the object’s interface.

The following subsections explain the main component of Centralized Test System,

which is shown in Fig.5-2 and has been implemented by CORBA distributed model.
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Fig. 5-2: Physical architecture of Centralized Test System

5.2.1.1 CORBA ORB

The ORB is the object bus. It lets objects transparently make request to-and
receive responses from-other objects located locally or remotely. The client is not aware
of the mechanisms used to communicate with, activate, or store the server objects. A
CORBA ORB provides a wide variety of distributed middleware services. The ORB lets
objects discover each other at run time and invoke each other’s service. An ORB is much

more sophisticated than alternative forms of client/server middleware including
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traditional Remote Procedure Calls (RPCs), Message Oriented Middleware (MOM),
database stored procedures, and peer to peer services. A CORBA ORB lets us either
statically define our method invocations at compile time, or it lets us dynamically
discover them at run time. It invokes methods on server objects using high level language
of choice irrespective of the language server objects are written in. Every CORBA ORB
must support an Interface Repository that contains real-time information describing the
functions and their parameters. The ORB includes context information in its messages to

handle security and transactions across machine and ORB boundaries.

5.2.1.2 Test System

Our centralized test system is originated from synchronizer, which aggregates
different internal testers and coordinates among them by global clock. The synchronizer
is the heart of the Test system. It controls the sending of test suite to the IUT,
synchronizing of different testers, receiving output from /U7, sending those outputs to the
assigned testers and finally concluding with a verdict: either “Pass”, “Fail” or
“Inconclusive”.

Fig. 5-3 shows the class diagram of Test system where Synchronizer aggregates
Tester classes and associates with AnnoyingBeep Timer class. This Timer class also
associates with RemindTask class, which specially validates the timing constraint of
incoming output. Automatically generated classes, which are produced by IDL compiler,
depend upon Coordination interface classes.

In the Test System, the synchronizer acts as a client object of the CORBA

architecture. Firstly, it initializes the ORB to communicate with server and binds to the
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client stub (CoordinationHelper), which is generated by IDL compiler. Secondly, it sends
test suite to the specific port of the server and in the meantime it starts the timer. Finally,

it waits for the JUT s response.

Synchronizer

<<interace>> AnnoyingBeep
Coordination —
aggregation HTimer() .
Bincrement() ggred |i¥getDefaultiit()
i b association L
1 association
| . realization
\\.
dependency : /
! RemindTask
o\ i%isValid()
Tester i8beep()
_CoordinationStub
. Binit()
Coordination MgetBytes()
CoordinationHelper ®createPolicy()
CoordinationHolder #¥pind()()

CoordinationOperation
CoordinationPOA
CoordinationPOATie

\
i

IDL code
generates stubs
and skeletons for
Testersand IUT
which binds and
communicates
among them.

Fig. 5-3: Class diagram for Test System architecture
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There are some basic CORBA syntax and their operations, which are given below:
By invoking init method Synchronizer initializes CORBA ORB.
org.omg.CORBA.ORB orb = org.omg. CORBA.ORB.init (args, null);
In order to identify the Id object, TesterA invokes getBytes method to retrieve correct Id.
This Id is also used in server side.
Byte [] managerld = "TestManager'.getBytes ();
The Client obtains a reference to this policy object by invoking the ORB object’s
create_policy method and then narrowing the reference of PolicyManager by invoking
resolve_initial_reference method.
Org.omg.CORBA.Policy ctoPolicy = orb.create_policy (RELATIVE_CONN_TIME
OUT _POLICY _TYPE.value, ctopolicyValue);
PolicyManager orbManager = PolicyManagerHelper.narrow (orb.resolve_initial
References (“ORBPolicyManager”));
By invoking bind method, the client stub CoordinationB.SynchronizerHelper object
binds ORB to the actual client object by passing Id.
CoordinationB.SynchronizerB op = CoordinationB.SynchronizerBHelper.bind (orb,
("/TestAdmin", managerld);
Tester class associates the Timer class AnnoyingBeep and create a new timer thread to
start counting and validate time and data by another class RemindTask.

As shown in Fig. 5-4, the synchronizer controls and communicates every object
through different messages in centralized Test system. The main objective of this system

is to maintain and perform testing process by single tester, which is known as
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Synchronizer. Here, we show one transition in collaboration diagram (Fig. 5-4) and

detailed scenarios are depicted in sequence diagram in Fig. 5-5.

S:AnnoyingBeep i2:0RB
{location=CORBA}

{location =via Coordination}

[T}

c:Controller
{location = Server}

4, startTimer() /I\

C: Synchronizer """
{location = Client} {location = Server}

t.Train

2. create_policy() A i
| ' : g: Gate
\!/ {location=Server}

q! —
4:0RB |

{location=CORBA}

} {location=CORBA}
!

Fig. 5-4: Collaboration diagram of Synchronizer

As shown in Fig. 5-5, the synchronizer invokes inif() method for initializing the
CORBA ORB, then binds to the message object by invoking bind() method.
Synchronizer now sends the message “near”, which is our first test suite for Train
component, which is the first port of JUT. Timer class AnnoyingBeep is instantiated and
starts counting time. After receiving the test suite “near”, Train takes few moments,
which is called reaction time and then it is supposed to send “inside” message within 30
seconds to the Synchronizer. Besides these, Gate should send no message i.e. empty

message and Controller should send “lower” message to the Synchronizer. And every
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Fig. 5-5: Sequence diagram of Centralized Test System
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time Synchronizer will check the timing constraint and returning output from Train-Gate-
Controller. This way the first transition is completed.

Now, Synchronizer sends the stimulus to the Gate component. And it will send
“lower” signal to the Gate. Then Synchronizer will be waiting for responses, which will
take few moments for transfer time of their stimulus to reach /UT and reaction time of
their outputs generated by JUT. After 5 seconds, the first returning message will come
from Gate, which is “downward” message to the Synchronizer. Simultaneously, Train
will send “away” message and Controller will send no message or empty message to the
Synchronizer.

In the same way, Synchronizer will send the input “depart” message to the
Controller. 20 seconds later, Synchronizer will receive ‘“elevate” message from
Controller, and “away” message from Train and it will get no message or empty message

from Gate.

5.2.1.3 CORBA.IDL

The first step in the CORBA development process is to create language
independent IDL definitions of our server’s interface. We have two IDL files, which are
CoordinationA and CoordinationB for TRAIN-GATE-CONTROLLER interface. The
CORBA IDL syntax should look very familiar to a C++ or Java programmer. CORBA is
a strongly typed system. All variables, parameters and return values, and attributes are

typed.
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[ I — [ —

CoordinationA Synichronizer CoordinationB

Fig. 5-6: IDL Package diagram

We must map these IDL files into something that Java clients and servers can
understand. So we will need an IDL-to-Java compiler. Here, we use Borland’s Visibroker
compiler to compile these IDL files and to generate many Java classes and interfaces. We
describe some operations of those generated files.

_CoordinationStub is a java class that implements the client-side stub for the
Synchronizer object. It’s really an internal implementation of the Coordination interface
that provides marshaling functions.

CoordinationHelper is a java class that provides useful helper functions for
Synchronizer clients. For example, the compiler automatically generates code for a
narrow function that lets client cast CORBA object reference to Synchronizer type. In
addition to the required CORBA helper functions, the VisiBroker implementation
provides a very useful, but non—standard, function called bind, it is used by clients to
locate objects of this type.

CoordinationHolder is a java class that holds a public instance member of type
synchronizer. It is used by clients and servers to pass objects of type synchronizer as out

and inout parameters inside method invocations.
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Fig. 5-7: The Java classes and Interfaces generated by idl2java compiler

Besides other generated files, Exception-handling is a generic part of client/server
programming with CORBA. It all starts with the idl2java compiler, which automatically
generates the CORBA system exceptions where a method can be generated- these
exceptions are typically generated by the ORB. The idl2java will generate the appropriate
Java exception classes for both types of error. All exceptions have a name and an

interface repository ID. To take advantage of CORBA/Java error-handling, we must

surround our code with standard Java try blocks.

5.2.1.4 Train-Gate-Controller (IUT)

There are three types of interacting entities: Train, Gate and Controller. The

behavior of the systems components are modeled using reactive classes as shown in Fig.

5-8.
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ewents: set =
{near!, exit!}

ewents: set= -
{lower?, elevate?}

Train |~ Gate

Controller ewvents: set
={lowerl,elevatel}

events:set = AN )
{near?,exit?}

Fig. 5-8: Class diagram for Train-Gate-Controller
Our IUT is a reactive distributed system. ‘Train’ realizes the ‘Controller’ and
sends some messages to it at certain interval for rail road crossing. ‘Controller’ also
realizes the ‘Gate’ and conveys some messages to it for some events. These events must

be maintained in real-time in order to avoid fatal consequences.

Fig. 5-9 shows, ‘stillT’ state represents the idle state of ‘Train’ component. The
‘Train’ communicates with ‘Controller’ using two events- “near” and “depart”. The
“Train’ is required to send a signal “near” to the controller within 2 to 4 time units before
it enters the crossing. Moreover, the ‘Train’ must send another signal “depart” to the
‘Controller’ whenever it leaves the crossing and it requires not more than 6 time units

from the initial state.

72



near [ Tvar1:=0 Tvar2:=0]

stillT ; N advanceT
) L_.M.___ﬁ_}

|

depart [ Tvar2<=6) Inside [Tvar1>=2 & Tvar2<=4]

awa
y crossT

Fig. 5-9: State chart diagram for Train

N [___;_tmé.mmw near[Tvar1:=0} f——gﬁ;—avi—tij
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lower[Tvar]:=0]

{ deactivate ) exit monitor
RN D W L_m.__wm_.}
Fig. 5-10: State chart Diagram for Controller
Fig. 5-10 shows state chart diagram for ‘Controller’. The idle state of ‘Controller’
is ‘stillC’ and waiting for Train’s signal. Whenever the ‘Controller’ receives “near”

signal from ‘Train’, it responds by sending the signal “lower” to the ‘Gate’. The respond
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time is 1 time unit. Whenever it receive “exit” signal from ‘Train’, it responds to the

‘Gate’ by “elevate” signal within 1 time unit.

openedG lower{Gvar1:=0] toCloseG

upward[Gvar1>=/1&Gvar2<=2] downward[Gvar1>=0 & Gvar2 <=1}

/

I toOpenG | _ elevate[Gvar1:=0] [ closedG }

Fig. 5-11: State chart diagram for Gate

The ‘Gate’ is open at ‘openedG’ state. It communicates with ‘Controller’ through
the signals “lower” and “elevate”. Within 1 time unit it closes the Gate by “downward”
event after receiving “lower” signal from ‘Controller’. Again it goes to ‘openG’ state by
“upward” event whenever it receives “elevate” signal originated from ‘Controller’ within
1 time unit.

The internal sequence diagram shows (Fig. 5-12) the following scenarios: At first,
The Train object initializes the ORB by invoking init() method. Then it binds
CoordinationHelper object which is automatically generated by IDL compiler. Now,
ORB invokes create_lifespan_policy and passes PERSISTENT value as parameter. By

invoking narrow() method, Train object gets a reference to the root POA.
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Now, it creates policy for persistent POA and also creates the servant object.
Further, it decides on the ID for the servant and activates the POA manager. Finally, the

servant is waiting for incoming request by invoking run() method.

ORB " POA Policy ISvnchronizer
1: ORB.init() [ I | - Impl
) [ i i

2: bind(orb,[/message", managerid);

3: create_lifespan_policy(LifespanPolicyValue. PERSISTENT)

| l

4: namow(orb.resolve_initial_references("RootPOA"))

| 1l

5: create_POA()

’ ‘ 8 activate()
PEN—
7: man = Syngchronizerimpl(String)
‘.. ' 8: wait()
é,-vj
9: activate_object_with id{ managerld, man tr
I L
!

10: run() ;

Fig. 5-12: Internal sequence diagram for Train

The other two components of IUT ( Gate and Controller) behaves same action with ORB.

This is the way to establish the communication channel between IUT and Test System.
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Fig. 5-13: Internal sequence diagram for Gate
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} g
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Fig. 5-14: Internal sequence diagram for Controller
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5.3 Implementation of the Distributed Test Architecture

Three testers are created individually in order to develop the distributed test
architecture. Besides those testers a Timer class has important role to start and stop
timing whenever test cases are sent to JUT and returned output to the test system. Each
tester sends coordination message to leave current status of particular tester and to send
‘ready’ signal to the other testefs. We assume [UT has three ports to access test cases
such as Train, Gate and Controller. Four IDL files are generated to create client stubs and

server skeletons and to communicate among testers and /UT through ORB.

Timer
TesterA
Train
‘\\
TesterB N e
N
: / ~ ) Gate
o omm e
— },} T
TesterC P // .'"‘-\ e Controller
e /“ "\
\
\
\

)

CoordinationA-idl | | GoomiinaionBidl] | CoordinalionGidi| | CoerdinationD i

Fig. 5-15: Physical architecture of Distributed Test System

Fig. 5-15 shows the main components of the distributed test system where the
client part represents TesterA, TesterB and TesterC communicate each other through
ORB and Timer class also associates with test system. On the other hand, server part

depicts three main components Train, Gate and Controller, which is our JUT. There are
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four packages like CoordinationA, CoordinationB, CoordinationC and CoordinationD,
which specify the interfaces and generated client stubs and server skeleton programs.
These classes are also realized to the ORB and make smooth and reliable communication
between client and server.

Fig.5-16 shows the sequence diagram, which basically represents the operations

or interactions between multiple clients and server components through CORBA. By this
interaction, we will able to see the scenarios of transition in TIOA.
At first, we determine the client objects, which constitute our test system. 7S consist of
three testers like TesterA, TesterB and TesterC. Server is composed of three components
like Train, Gate and Controller. CORBA provides the communication channel, which is
object request broker (ORB) and CORBA IDL provides the interface between client and
server. We implement this interface by Java.

Now, TesterA invokes init() method for initialization the CORBA ORB, then
binds to the message object by invoking bind() method. TesterA now sends the message
“near”, which is our first test suite for Train component, the first port of JUT. Timer class
AnnoyingBeep has been instantiated and starts counting time. Besides counting, TesterA
sends the coordination message “ready” to the TesterB and TesterC. It means TesterB
and TesterC should have to wait for the response of JUT and also those testers start their

timer to check the time constraint whenever they receive the output.
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Fig. 5-16: Sequence diagram for distributed Test System

After receiving the test suite “near”, Train will take few moments, which is called
reaction time and then it is supposed to send “inside” message within 30 secs to the

TesterA.
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Besides these, Gate should send no message i.e. empty message to the TesterB
and Controller send “lower” message to the TesterC. Each time testers will check the
timing constraint and returning output from Train-Gate-Controller. This way the first
transition is completed.

Now, TesterB sends the stimulus to the Gate component. TesterB will send
“lower” signal to the Gate and also send “ready” signal, which is coordination message to
the TesterA and TesterC as they should get ready for receiving the output. Then all testers
will be waiting for responses, which will take few moments for transfer time of their
stimulus to reach /UT and reaction time of their outputs generated by IUT. After 5 secs,
the first returning message will come from Gate, which is “downward” message to the
TesterB. Simultaneously, Train will send “away” message to the TesterA and Controller
will send no message or empty message to the TesterC.

In the same way, TesterC will send the input “depart” message to the Controller
and also send “ready” signal to other testers. 20 secs later, TesterC will receive “elevate”
message from Controller, TesterA will receive “away” message from Train and TesterB

will get no message or empty message.
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Fig. 5-17: Collaboration diagram for distributed Test System

As in Fig. 5-17, within the distributed Test system, TesterA, TesterB and TesterC,
communicate each other through coordination message readyMessage() in order to
inform order and timing constraint of inputs and outputs. All testers connect to the

AnnoyingBeep Timer class to validate the timing constraint. At the initial stage, TesterA

initializes ORB by ini#() and binding the ORB by bind().
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5.4 Case Study and Results

In this section, we will provide Train-Gate-Controller automata model on, which
our two test methods are applied. We also look at timed test suite generation through
transition tour method from the specification of the combined automata model and then
through application of our test case execution algorithms on that specification for

conformance testing.

5.4.1 The Real Life Automaton Model

This example involves a Train-Gate-Controller distributed reactive system. The
scenario of this distributed system is as follows: The Train normally sends some
messages to the Controller component at certain time interval with two events “near” and
“depart”. The events “inside” and “away” mark the entry and exit of the Train from the
railroad crossing respectively. Whenever Controller receives the signal “near” from the
Train, it responds by sending the signal “lower” to the Gate. Again, whenever the
Controller receives signal “depart” from Train, it responds with a signal “elevate” to the
Gate within certain period. Gate communicates with the Controller through the signals
“lower” and “elevate”. The events “upward” and “downward” denote the opening and
closing of the Gate. The Gate responds to the signal “lower” by closing within certain
interval, and responds to the signal “‘elevate” by opening within certain period.

Now, Fig. 5-18 shows the automaton modeling of TRAIN component. There are
five events, which might be a set of events {near, depart, inside, away, restT}.The Train

starts in state SO. The event “restT” represents its resting event. The Train communicates
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with the Controller with two events “near” and “depart” as mentioned before. The Train
is required to send the signal “near” at least 2 time units before it enters the crossing.
Thus the minimum delay between “near” and “inside” is 2 time units. Furthermore, we
know that the maximum delay between the signals “near” and “depart” is 5 time units.

This is a liveness requirement on the Train. Both the timing requirements are expressed

inside (x >2) @

near (x:=0) away

restT \>
—8 depart (x >5)

Fig. 5-18: Train

@ downward (y<1) s2

using a single clock x.

/,

lower elevate

restG
y:=0
S_O\: Q
upward (y >1) && (y <2)

Fig 5-19: Gate

83



The Gate is opened in state SO and closed in state S2. It
communicates with the Controller through the signals “lower” and “elevate”. The events
“upward” and “downward” denote the opening and closing of the Gate. The Gate
responds to the signal “lower” by closing within 1 time unit, and responds to the signal
“elevate” within 1 to 2 time units. The Gate can take its resting position “restG” in states

Soor Sz forever.

lower (z:=1)? s2

hear depart (z:=0)

restC /
L\ S3

SO

A

elevate (z<1)?

_Fig. 5-20: Controller

Finally, Fig. 5-20 shows the automaton modeling of Controller. The event set is
{near, depart, elevate, lower, restC} and the Controller idle state is So. Whenever it
receives the signal “near” from the Train, it responds by sending the signal “lower” to the
Gate. The response time is 1 time unit. Whenever it receives the signal “depart”, it
responds with a signal “elevate” to the Gate within 1 time unit. The entire system is then

[TRAIN || GATE || CONTROLLER]
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5.4.1.1 Three-port TIOA

In the previous subsection, we have shown three different automata models to
describe the scenarios for rail road crossing. Now we intend to build only one three-port
TIOA, which is the combination of three automata models and it will be able to specify
the whole operations. In fact, this is our desire or expected specification for our test case
execution. By implementing centralized and distributed test architecture, we apply
different test suite on /UT with respect to our new three-port TIOA and carefully observe

the responses with their timing constraint in order to get the verdict.

?near [5,0]/ (! inside [2,0], e, ! lower [3,0])

S0 »( st
7 N
3 Tr,
Tr,
?elevate [4,01 /{ | depart [5.,0], ! Upward, e) ?lower [3,0]/ ( !away [2,0], ldownward [1,0], e)
Tr,
s Trg ¥
3 De— ( s2

?depart [5,0] / (! away [2,0],e, ! elevate [3,0])

Fig. 5-21: TIOA of Train-Gate-Controller
Fig. 5-21 shows three-port TIOA of Train-Gate-Controller distributed system. In
centralized test system, the environment (e.g.7S), which is the Synchronizer in this case,
communicates with each port of IUT through an input queue and an output queue. First of
all, we use transition tour method to generate test cases from our three-port TIOA. We

consider the test sequence, which corresponds to the sequence of transitions
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Tr.Tr,. Tr3.Try , which would be <?near [5,0] / (! inside [2,0], e, ! lower [3,0])> <
Nower [3,0] / (laway [2,0], !downward [1,0], e)> < ?depart [5,0] / (! away [2,0],e, !

elevate [3;0])> <?7elevate [4,0] /(! depart [5,0], | Upward, e) >

Inputs “near[5,0]”, “lower[3,0]”, “depart[5,0]”, “elevate[4,0]” are received by
IUT in ports 1, 2, 3 respectively, and outputs “inside[2,0]”, “away[2,0]”, “depart[5,0]”,
“downward[1,0]”, “upward”, “elevate[3,0]”, “lower[3,0]” are sent by JUT in ports 1, 2, 3,

respectively.

5.4.1.2 Results

The above three port TIOA is the specification of Train-Gate-Controller
distributed system, which is applied to our program.

First, we generate the test cases by transition tour method from TIOA. During the
execution of a test sequence A, T'S guarantees ( resp. checks) the timing constraints of the
inputs ( resp. outputs) of A.. We do not consider the order constraints separately because

they are implied by the timing constraint.

CENTRALIZED TEST SYSTEM RESULT ANALYSIS
Testing Object Created

Stub[repository_id=IDL.CoordinationA/SynchronizerA.:1.0,key=Serviceld[service=/me

ssage,id={11bytes:[T][e][s][t][M][a][n][a][g][e][r]} key string=2600PMC%00%000
0%04%00%00%00%09/message%00%20%20%20%00%00%00%0bTestManager],code

base=null] is ready.
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Current time =1125019484703msecs

The synchronizer send “near” to the Train
The synchronizer send “near” to the Train
The synchronizer send “near” to the Train
The synchronizer send “near” to the Train
The synchronizer send “near” to the Train
Time's up!

Current time =1125019489703msecs

Avg sending time = 5000 msecs

Initializing the ORB

Binding to message Object

Current time =1125018504609msecs

Avg Client processing time = 1.719 msecs

Testing Object Created
Stub[repository_id=IDL:CoordinationA/SynchronizerA.1.0,key=>Serviceld[service=/me
ssage,id={11bytes:[T][e][s][t][M][a][n][a][g][e][r]} key string=%00PMC%00%00%
0%04%00%00%00%09/message%600%20%20%20%00%00%00%0bBankManager],
codebase= null] is ready.

Current time =1125018664844msecs

The Train send “inside” to the synchronizer

The Train send “inside” to the synchronizer

The Train send “inside” to the TesterA
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Time's up!

Testing Object Created

Stub[repository_id=IDL:CoordinationB/SynchronizerB: 1.0,key=Serviceld[service=/sidd
iq,id={11bytes:[T][e][s][t][M][a][n][a][g][e][r]} key_string=%00PMC%00%600%600%
4%00%00%00%06/Niil%600%20%20%00%00%00%0bTest Manager],codebase=null] is
ready.

Current time =1125018854453msecs

The Gate send “empty” to the synchronizer

The Gate send “empty” to the synchronizer

The Gate send “empty” to the synchronizer

The Gate send “empty” to the TesterB

Time's up!

Initializing the ORB

Binding to message Object

Time's up!

Current time =1125018858641msecs
Reaction time = 4141 msecs
SUCCESS

The result is true

UAMULTITESTER\CENTRAIZED>vbj Controller
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Testing Object Created
Stub[repository_id=IDL:CoordinationB/SynchronizerB:1.0,key=_Serviceld[service=/Man
ager,id={11 bytes:
[T][e][s][t][M][a][n][a][g][e][r]}.key_string=%00PMC%00%00%00%
04%00%00%00%07/Naila%00%20%00%00%00%0bTestManager],codebase=null]  is
ready.

Current time =1125021468984msecs

The Controller send “lower” to the synchronizer

The Controller send “lower” to the synchronizer

The Controller send “lower” to the synchronizer

The Controller send “lower” to the synchronizer

The Controller send “lower” to the synchronizer

The Controller send “lower” to the synchronizer

The Controller send “lower” to the synchronizer

Time's up!

U\MULTITESTER\CENTRAIZED>vbj TesterC
Initializing the ORB

Binding to message Object

Avg Client processing time = 0.484 msecs
Current time =1125019578156msecs

Reaction time = 7156 msecs

The reaction time of Controller is VALID
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The result is true

The final Test is given below:
THE TESTERC IS true

THE TESTERB IS true

THE TESTERA IS true

THE SYSTEM IS SUCCESSFULLY PASSED

DISTRIBUTED TEST SYSTEM RESULT ANALYSIS
U:\MULTITESTER\DISTRIBUTED>vbj TesterC_Coord

Initializing the ORB

Binding to message Object

Coordination Object Created

Stub[repository_id=IDL:CoordinationC/SynchronizerC. 1.0,key=Serviceld[service=/Na
ila,id={11bytes:[T][e][s][t][M][a][n][a][g][e][r]} key_string=%00PMC%00%00%00
%04%00%00%00%07/Naila%00%20%00%00%00%0bTestManager],codebase=null] is
ready.

This is coordination message from TesterC to TesterB

The Controller sends “lower” to the TesterC

The Controller sends “lower” to the TesterC

The Controller sends “lower” to the TesterC

The Controller sends “lower” to the TesterC

The Controller sends “lower” to the TesterC

The Controller sends “lower” to the TesterC
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The Controller sends “lower” to the TesterC
Time's up!

Current time =1127100832953msecs
Reaction time = 7172 msecs

FAILED

The result is false

U \MULTITESTER\DISTRIBUTED>vbj TesterA_Coord

Testing Object Created

Stub[repository_id=IDL. CoordinationD/SynchronizerD: 1.0,key=Serviceld[service=/Na
ila,id={11bytes:[T][e][s][t][M][a][n][a][g][e][r]} key_string=2%00PMC%00%00%00
%04%00%00%00%07/Naila%00%20%00%00%00%0bTestManager],codebase=null] is
ready.

This is coordination message from TesterA to TesterB

The Train sends “inside” to the TesterA

The Train sends “inside” to the TesterA

The Train sends “inside” to the TesterA

Time's up!

Current time =1127101271828msecs

Reaction time = 3187 msecs

FAILED

The result is false
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U:MULTITESTER\DISTRIBUTED>vbj TesterB_Coord_A

Initializing the ORB

Binding to message Object

Testing Object Created

Stub[repository_id=IDL.CoordinationD/SynchronizerD: 1.0,key=Serviceld/service=/Na
ila,id={11bytes:[T][e][s][t][M][a][n][a][g][e][r]} key_string=%00PMC%00%00%0%
04%00%00%00%07/Naila%00%20%00%00%00%0bTestManager],codebase=null]  is
ready.

This is coordination message from TesterB to TesterA

The Gate sends “empty” to the TesterB

The Gate sends “empty” to the TesterB

The Gate sends “empty” to the TesterB

The Gate sends “empty” to the TesterB

Time's up!

Current time =1127101310750msecs

Reaction time = 4156 msecs

The reaction time of Controller is VALID

The result is true
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5.4.1.3 Result Analysis and Comparison

The centralized test method may result in performance problems, due to the fact
that all 7S-JUT interactions are achieved through a network. This problem has been
reduced a lot by using CORBA to implement this method. Because, ORB lets objects
transparently make request to-and receive responses from-other objects located locally or
remotely, it lets us either statically defines our method invocations at compile time, or it
lets us dynamically discover them at run time; no matter what language server objects are
written in. An ORB is much more sophisticated than alternative forms of client/server
middleware including traditional Remote Procedure Calls (RPCs), Message Oriented
Middleware (MOM), database stored procedures, and peer to peer services.

As we use CORBA in the distributed test system too, the network problem can be
reduced while coordination takes place with ORB communication channel among local
testers. As a result we improve the test execution procedure with the help of CORBA
architecture.

During the implementation of distributed test system, we provide three
testers for three components of JUT. It’s not difficult to deal with such /UT. But in the
case of complex distributed system, we need to apply large number of testers and so
many clocks simultaneously. As a result, the complexity of code would be higher and
difficult to maintain real-time transactions. In that case, we can keep our centralized test

method for conformance testing.
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5.5 Summary

We provided the implementation for the timed test case execution on distributed
real-time systems. We used sequence diagrams, collaboration diagrams, state diagrams
and class and package diagrams to describe the design and specification. We also
compared between centralized and distributed test method by analyzing their results and
formal models.

In the next chapter, we will discuss the unsolved problems and possible

improvements regarding our methods.
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CHAPTER 6

Conclusion and Future Work

6.1 Summary

The testing methodology described in ISO IS-9646 provides a unified framework
to conduct the conformance testing process. We defined conformance testing framework
and discussed different test methods. Then we demonstrated the importance of modeling
to be tested (the right model for the right problem).

We provided two methods for test case execution- centralized test system
and distributed test system based on the specification expressed in Timed Input Output
Automaton. In centralized test system, the synchronizer acts as a single tester, which
controls the test sequence and observes the feedback from JUT. The synchronizer is
composed of few internal testers and single global clock. In distributed test system, TS
consists of many local testers and the same number of clocks. These communicate each
other through a communication medium, which is independent of /UT and also maintains
input and output path with different ports of JUT. Testers guarantee order constraints and
timing constraints of inputs by sending coordination messages among each other.

We chose CORBA as a test environment to implement centralized and distributed
test architectures for the following reasons:
> CORBA is well fit for modular architecture.
» CORBA is a distributed environment that guarantees the transparency of

resource location and communication, despite heterogeneity and

95



» Our implementation model is Borland’s VisiBroker for Java, which provides
a complete CORBA 2.3 ORB runtime and supporting development
environment for building, deploying, and managing distributed Java
applications that are open, flexible, and inter-operable.

Both of our methods are applicable to various kinds of applications, which could
be modeled by np-TIOA. We discussed in detail Train-Gate-Controller distributed
system. Also, we created automata models expressed in 3-port TIOA as specification. We
made real time transactions, in order to send test cases to different ports of /UT and to
reccive the output as well. We can also apply our two methods on video-on-demand
service where a server multicasts a video stream to different number of clients. We can
consider a test sequence (consisting of a single input/outputs transition) with a single
input, corresponding to data stream, which is multicast by the server and an output of
each client, corresponding to the data stream, which is received by each client and a
timing constraint between the sending of the input and the reception of each output.

Again, some applications need to acquire multiple inputs before issuing an output.
An example of such kind of applications is a cruise control system that has to acquire
information about, among others, the current speed, desired speed, and operating mode,
before deciding whether to increase or decrease the speed.

For the sake of simplicity, we always provide a single clock for both
methodologies during implementation. But theoretically, we provide single clock for only
centralized test system and multiple clocks are used depends upon the number of testers

in distributed test system.
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6.2 Future Work

We have applied and tested our two methods on Train-Gate-Controller distributed
system and they performed very well in CORBA platform but still there are some
provisions or scope of works to do in future.

Efficient Test Case Generation Method: Our timed test case execution
procedure has been implemented by using only transition tour method in the purpose of
test case generation for the sake of simplicity. There are some limitations for transition
tour method to cover maximum faults from n port input output automata. We intend to
apply most efficient test generation methods like Wy, timed W, or DS methods into our
test execution procedure.

Complex distributed Systems: We intend to apply our two methods on concrete
and complex examples, for example in the areas of communications protocols and
robotics. Also, we need to apply and possibly adapt the proposed methods for testing

multimedia applications with timing constraints.
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