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ABSTRACT

Analysis of Simply-Supported Single Cell Prismatic Box Sections

Sk Amjad Hossain

This research extends Maisel’s (1982) methodology, the generalization of Vlasov’s,
simple beam theory, and its extension to evaluate torsional, distortional and shear lag
effects in simply-supported girder consisting of a single cell uniform box section. The
computer program developed can analyse simply supported box sections with trapezoidal
and rectangular sections, any material properties, for a unit eccentric loading at midspan,
formulate the bending, shear, torsion, distortion and warping stress at different locations
of the section. Two separate computer programs have been developed, the first dealing
with shear flow, shear stresses, combined shearing stress, torsional warping stress,
distortional warping stress, maximum transverse bending stress, etc. The second program
includes shear lag only. Torsional warping is treated using the method of Kollbrunner and
Hajdin and Heilig (1966), while Sedlacek’s (1971) method is used to account for the

distortional effects.
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CHAPTER-1

INTRODUCTION

1.1 General:

Box girder bridges have a proven high structural efficiency and are therefore used in a
wide variety of bridge applications. The use of concrete box beams in bridge deck
construction has led to considerable economy in the use of materials. The advantage of
the hollow section is that the material is efficiently used both in bending and in torsion
comperative to bridge with concrete or steel I section. Lateral load-distribution
characteristics are found to be good in this type of construction. The structural actions
that need to be considered are the loading effects that cannot be predicted by the simple
bending theory.It is revised to consider all structural actions such as shear lag effects,
torsional and other shear stresses, warping stresses due to torsion and distorsion,
transverse stress due to distorsion, bimoment, effect of creep ,relaxation and

shrinkage and those of local stress concentrations.

The development of the curved beam theory by Saint-Venant (1843) and later the thin-
walled beam theory by Vlasov (1965) marked the birth of all research efforts published to
date on the analysis and design of straight and curved box-girder bridges.Since then,
numerous technical papers, reports, and books have been published in the literature
concerning the various applications and even modifications the two theories. A
comprehensive review of analytical and experimental studies on box-girder bridges was
undertaken by Maisel (1970). This comprehensive review was extended by Swann
(1972), Maisel et al. (1973), and Maisel (1982) .

This report extends Maisel’s (1982) methodology for analysing single cell simply-

supported box section.



1.2 Literature Review:

1.2.1 Elastic Analysis of Box Girder Bridges

Analysis is usually simplified by means of assumptions that establish the relationship
between the behaviour of single elements in the integrated structure in the design of
bridges. These single element’s combined response is assumed to represent the response
of the entire structure, and the accuracy of these solutions depends on the validity of the
assumptions made.The Canadian Highway Bridge Design Code CHBDC 2000 as well as
the American Association of State Highway Transportation Officials AASHTO
1996,AASHTO 1994 have recommended several methods of analysis for only straight
box-girder bridges.These include: orthotropic plate theory, finite-difference technique,
grillage analogy, folded plate method, finite strip method and the finite element
method.These methods along with the thin-walled beam theory have been applied by

several authors to the analysis of straight and curved box-girder bridges.

1.2.2 Orthotropic Plate Theory Method

In the orthotropic plate method, the stiffness of the flanges and girders are lumped into an
orthotropic plate of equal stiffness, and the stiffness of diaphragms is distributed over the
girder length.This method is suitable mainly for multigirder straight and curved
bridges.However, this method has been recommended by CHBDC(2000) for the analysis
of only straight box girder bridges of multispine cross-section but not multicell cross-
section.The various methods of calculating the equivalent plate parameters, which are
necessary for 2D analysis of straight cellular and voided slab bridges were presented by
Bakht et al.(1981).The orthotropic method also used by Cheung et al (1982) to calculate
the longitudinal moments and transverse shear in multispine box-girder bridges.The
results were compared to those obtained from three dimensional analysis using the finite-
strip method to establish the limits of validity of the orthotropic plate method. It was
concluded that the orthotropic plate method gives accurate results provided that the
number of spines is not less than three. Another method proposed by Kristek et al. (1990)

for shear lag analysis of steel and composite single-cell box girders, using harmonic



analysis and simple calculations.This method was extended later to consider girders with

more complex multicellular cross-sections by Evans et al. (1993)

1.2.3 Grillage-Analogy Method

In this method, the muiticellular super structure was idealized as a grid assembly by
Hambly and Pennells (1975). Kissane and Beal (1975) also applied similar idealization to
curved multispine box-girder bridges. Cheung et al. (1982) dealt with the calculation of
the longitudinal bending moment and transverse shear in multispine box-girder bridges
using the grillage-analogy method.These results compared favourably with the results
obtained from the three dimensional analysis using the finite-strip method.One difficulty
in the grillage-analogy method lies in the representation of torsional stiffness of the
closed cells.Satisfactory, but approximate representation can be achieved in modelling the
torsional stiffness of a single closed cell by an equivalent 1 —beam torsional
stiffness,Evans and Shanmugam,(1984). This method was used by Evans(1984) in the
analysis of cellular bridge decks in the linear elastic and in the non-linear post buckling
range.By using a simplified grillage technique Shan-mugam and Balendra (1986)
described the dynamic analysis for free-vibration characteristics of multicell structures
and the problems like adequate representation of the shear lag effects, and torsional
stiffness of closed cells were discussed.Canadian Highway Bridge Design Code (CHBDC
2000) suggest that this method is only suitable for voided slab and box-girder bridges in

which the number of cells or boxes is greater than two.

1.2.4 Folded-Plate Method

The folded plate method utilizes the plane-stress elasticity theory and the classical two-
way plate bending theory to determine the membrane stresses and the slab moments in
each folded plate member. The folded plate system consists of an assemblage of
longitudinal annular plate elements interconnected at joints along their longitudinal edges
and simply supported at the ends. No intermediate diaphragms are assumed.The solution
of simply supported straight or curved box-girder bridges is obtained for any arbitrary

longitudinal load function by using direct stiffness harmonic analysis. The method has



been applied to cellular structures by Meyer and Scordelis ( 1971) , Al-Rifaie and Evans
(1979) , and Evans (1984) . However, it was evident that the method is complicated and
time-consuming. Furthermore, the Canadian High-way Bridge Design Code (CHBDC,
2000) restricted this method to bridges with support conditions closely equivalent to line
supports at both ends of the bridge. Marsh and Taylor (1990) developed a method that
incorporates a classical folded plate analysis of an assemblage of orthotropic or isotropic
plates to form box girders. Beam elements were included in the assembly, and the
compatibility of actions and displacements at element junctions was established by a

stiffness analysis under the effect of the applied loads, including the effect of settlement.

1.2.5 Finite-Strip Method

The finite-strip method may be regarded as a special formulation of the finite-element
method. In principle, it employs the minimum total potential energy theorem to develop
the relationship between the unknown nodal displacement parameters and the applied
load. In this method, the box girders and the plates are discretized into annular finite
strips running from one end support to the other and connected transversely along their
edges by longitudinal nodal lines. The displacement functions of the finite strips are
assumed to be combination of harmonics varying longitudinally with polynomials
varying in the transverse direction. Cheung and Cheung (1971) applied the finite-strip
method for curved box-girder bridges. Buragohain and Agrawal (1973) presented a
method based on a harmonic analysis in the circumferential direction and a modified
finite difference technique in the transverse direction of a curved box-girder bridge.
Cusens and Loo (1974 ) presented a general finite-strip technique to single and multispan
box bridges with an extension to the consideration of prestressing forces. At the same
time, Kabir and Scordelis (1974) developed a finite-strip computer program to analyze
curved continuous span cellular bridges with interior radial diaphragms on supporting
planar frame bents. Cheung and Chan (1978) used the finite-strip method to determine the
effective width of the compression flange of straight multispine and multicell box-girder
bridges. Using the finite-strip method, Branco and Green (1984) investigated the effect of

a cross- bracing system, as well as that of the transverse web stiffeners, in resisting



distortion and twist of straight composite twin-spine box girder bridges during service.
Cheung (1984 ) used a numerical technique based on the finite-strip method and the force
method for the analysis of continuous curved multicell box-girder bridges. Scordelis et al.
(1985) extended the applicability of the available computer program, Kabir and Scordelis
(1974) accounted the effect of post tensioned prestressing tendons. Li et al. (1988)
presented the application of the spline finite-strip method to the elasto-static analysis of
circular, and on circular multicell box-girder bridges. Arizumi et al. (1988) studied the
distortional and slip behavior of simply supported curved composite box- girder bridges
using the finite-strip method with spring elements representing the shear connectors. The
results from the proposed finite-strip method were compared to those obtained from
curved beam theory, distortional theory, and static tests. At the same time, Gambhir and
Singla (1988) presented an optimization study, using the finite-strip method of prismatic
multicellular bridge decks for minimum cost. Cheung and Li (1989) extended the
applicability of finite-strip method to analyze continuous haunched box-girder bridges
with variable depth web strip . Later, Cheung and Jaeger (1992 ) applied the spline finite-
strip method to the same bridge configuration. Chang and Gang ( 1990) presented a spline
finite-strip approach to analyze the cantilever deck of single-cell box-girder bridge. The
effects of distortion of a thin-walled box section are taken into account by treating the
cantilever deck as a cantilever slab with horizontally distributed spring support along the
cantilever root. Abdullah and Abdul Razzak (1990 ) applied the finite-strip method for the
analysis of a prestressed concrete box-girder bridge using higher order bending and in-
plane strips and an auxiliary nodal line technique. Maleki (1991) further expanded the
compound strip method for plates to analyze box girders. Shimizu and Yoshida (1991)
utilized the finite-strip method to evaluate the reaction forces to be used in the design of
load-bearing diaphragms at the intermediate support of two-span continuous curved box-
girder bridges. Cheung and Li (1991 ) extended the spline finite-strip method for free-
vibration analysis of curved box-girder bridges. Bradford and Wong (1992) used the
finite-strip method to study the local buckling of straight composite concrete deck-steel
box section in negative bending. Cheung and Au (1992) presented a spline finite-strip
procedure using computed shape functions in the transverse direction for the analysis of

right box-girder bridges. This procedure results in a relatively narrow band matrix that



requires only a nominal computational effort to solve. Lounis and Cohn (1995) illustrated
the application of an effective optimization procedure for the design of prestressed
concrete cellular bridge decks consisting of single-and two-cell box girders or voided slab
systems. Using nonlinear programming for optimum design, using the finite-strip method
and finite-difference techniques, an approximate live load moment analysis that
determines moment sensitivities to change in the deck depth and flange thickness was
proposed. Senthilvasan et al. (1996) developed stiffness and mass matrices of curved
single- and multicell bridges by combining the spline finite-strip method and a
horizontally curved folded-plate model of the bridge. Compared to the finite-element
method, the finite-strip method yields considerable savings in both computer time and
effort, because only a small number of unknowns are generally required in the analysis.
However, the drawback of the finite-strip method is that the method is limited to simply
supported prismatic structures with simple line support (CHBDC 2000) .

1.2.6 Finite-Element Method

During the past two decades, finite-element structural analysis haé fapidly become a very
popular technique for the computer solution of complex problems in engineering. In
structural analysis, the method can be regarded as an extension of the earlier established
analytical techniques, in which a structure is represented as an assemblage of discrete
elements interconnected at a finite number of nodal points. Chapman et al. (1971)
conducted a finite-element analysis on steel and concrete box-girder bridges to investigate
the effect of intermediate diaphragms on the warping and distortional stresses. Lim et al.
(1971) developed an element that has a beam-like-in-plane displacement field. The
element is trapezoidal in shape, and it, can be used to analyze right, skew, or curved box-
girder bridges with constant depth and width. Sisodiya et al. (1970) approximated the
curvilinear boundaries of finite elements used to model the curved box-girder bridges by
a series of straight boundaries using parallelogram elements. This approximation would
require a large number of elements to achieve a satisfactory solution. Such an approach is
impractical, especially for highly curved box section bridges. Bazant and El Nimeiri

(1974) attributed the problems associated with the neglect of curvilinear boundaries in



elements used to model curved box beams to the loss of continuity at the end cross
sections of two adjunct elements meeting at an angle. They developed a skew-ended finite
element with shear deformation using straight elements and adopted a more accurate
formulation to account theory that allows for transverse shear deformations. Chu and
Pinjarkar (1971) developed a finite element formulation of curved box-girder bridges,
consisting of horizontal sector plates and vertical cylindrical shell elements. The method
can be applied only to simply supported bridges without intermediate diaphragms.
William and Scordelis (1972) presented an elastic analysis of cellular structures of
constant depth with arbitrary geometry in plan using quadrilateral elements. Fam and
Turkstra (1975) developed a finite-element scheme for static and free-vibration analysis
of box girders with orthogonal boundaries and arbitrary combinations of straight and
horizontally curved sections using a four-node plate bending annular element with two
straight radial boundaries, for the top and bottom flanges, and conical elements for the
inclined web members. Ramesh et al. (1976) uncoupled in-plane and out-of-plane forces
and neglected shear deformation to introduce a curved element with 6 degrees of freedom
at each node. Their method is applicable to single and multicell sections. Moffat and Lim
(1976) presented a finite-element technique to analyze straight composite box-girder
bridges will complete or incomplete interaction with respect to the distribution of the
shear connectors. Malcolm and Redwood (1970) and Moffatt and Dowling (1975)
investigated the shear lag phenomena in steel box-girder bridges. Later on, Turkstra and
Fam (1978) demonstrated the importance of warping and distortional stresses in a single-
cell curved bridge, in relation to the longitudinal normal bending stresses obtained from
curved beam theory. Sargious et al. (1979) studied the behavior of end diaphragm with
opening in single-cell concrete box-girder bridges supported by a central pier. At the
same time, Daniels et al. (1979) presented the results of a finite-element study concerning
the effect of spacing of the rigid interior diaphragms on the fatigue strength of curved
steel box girders. The results showed that reducing the interior diaphragms spacing
effectively controls the distortional normal and bending stresses and increases the fatigue
strength of curved steel box girders. Jirousek and Bouberguig (1979) presented an
efficient macro-element formulation for static analysis of curved box-girder bridges with

variable cross sections. Templeman and Winterbottom (1979) used the finite-element



method to investigate the minimum cost design of concrete spine box beam bridge decks.
Dezi (1985) examined the influence of some parameters on the deformation of the cross
section in curved single-cell box beams over those in straight single-cell box beams. The
parameters considered in this study were transverse and longitudinal locations of external
loads, span-to-radius ratio, width-to-depth of the cell, and number of cross diaphragms.
Ishac and Smith (1985) presented simple design approximations for determining the
transverse moments in single-span single-cell concrete box-girder bridges. Chang and
Zheng (1987) used the finite-element method to analyze the shear lag effects in cantilever
box girders. Expressions were derived to determine the region of negative shear lag effect
with the interrelation of span and width parameters. Dilger et al. (1988) studied the effect
of presence and orientation of diaphragms on the reaction, internal forces, and the
behavior of skew, single cell, concrete box-girder bridges. Shushkewich (1988) showed
that the actual 3D behavior of a straight box-girder bridge, as predicted by a folded-plate,
finite-strip, or finite-element analysis, can be approximated by using some simple
membrane equations in conjunction with a plane frame analysis. In particular, the
proposed method allows the reinforcing and prestressing to be proportional for transverse
flexure, as well as the stirrups to be proportioned for longitudinal shear and torsion in
single-cell, precast concrete, segmental box-girder bridges. Mishra et al. (1992) presented
an investigation into the use of closely associated finite-difference technique for the
analysis of right box-girder bridges as a feasible alternative to the finite-element method.
The method discritizes the total energy of the structure into energy due to extension and
bending and that due to shear and twisting contributed by two separate sets of rectangular

elements formed by a suitable finite-difference network.

Galuta and Cheung (1995) developed a hybrid analytical solution that combines the
boundary element method with the finite-element method to analyze box-girder bridges.
The finite-element method was used to model the webs and bottom slab of the bridge,
while the boundary element method was employed to model the top slab. Jeon et al.
(1995) presented a procedure for static and dynamic analysis of composite box beams
using a large deflection beam theory. The finite-element equations of motion for beams

undergoing arbitrary large displacements and rotations, but small strains, were obtained



from Hamilton’s principle. Fafitis and Rong (1995) presented a substructuring analysis
method for thin-walled box girders. In this method, instead of solving the condensed
equilibrium equations in the traditional substructuring method, a mix of compatibility and
equilibrium equations are employed with shear forces at the interfaces of thin walls as
major unknowns. The proposed method can be performed using any commercial finite-
element analysis software. Abdelfattah (1997) utilized three dimensional finite-element
modelling to study the efficiency of different systems for stiffening steel box girders

against shear lag.

Recently, few authors have dealt with temperature effects in box-girder bridges. Branco
and Martins (1984) studied the temperature distribution in straight concrete box bridges
based on a finite-element solution of the Fourier equation. This study gives the
temperature gradient that should be considered in the design of such bridges. Chan et
al.(1990) presented temperature data collected continuously in three composite box-girder
bridges over a one-to-two year period. The first bridge was the Portage Bridge spanning
the Ottawa River between Hull, Quebec, and Ottawa, Ontario. This bridge is a three-lane,
three-span, continuous, composite concrete deck-five-box steel structure with a total
length of 158.5 m. The second bridge was the St. Leonard International Bridge over the
St. John River connecting St. Leonard, New Brunswick, and Van Buren, Maine. This
bridge is a continuous, five-span, composite concrete, deck-steel, two-box girder bridge
with a total length of 222.5 m. The third bridge was the Robert Campbell Bridge that
spans the Yukon River in the city of White-horse. It is a continuous, two-span, composite
concrete, deck, three-box section steel bridge with a total span of 109.7 m. Thermal
stresses induced in these bridges were determined using the finite-element method with
input being the measured extreme temperature profiles. Mirambell and Aguado (1990)
presented an analytical model, based on a mathematical technique and the finite-
difference method, to predict temperature and stress distributions in concrete box-girder
bridges. Elbadry and Ibrahim (1996) determined the time-dependent temperature
variations within the cross section and along the length of curved concrete single-cell
box-girder bridges using a three dimensional finite-element model used in heat transfer. A

similar study was presented by Gilliland and Dilger (1998).



Elbadry and Debaiky (1998) presented a numerical procedure and a computer program
for the analysis of the time-dependent stresses and deformations induced in curved,
prestressed, concrete cellular bridges due to changes in geometry, in the statical system,
and in the loading conditions during construction. The effects of creep and shrinkage in
concrete and relaxation of prestressed steel during and after construction were considered.
The procedure was based on the displacement formulation of the finite-element method in
which multi-node, variable, cross-section curved beam elements were used to model
prestressed concrete bridges of an arbitrary geometry in plan. A similar study was

presented by Luoxi et al. (1993) .

1.3 Objectives of This Research:

e To develop computer program for analysing a simply-supported single cell box

section considering all structural actions.

¢ To study the load deformation behaviour of a single cell box beam with different

loading and geometric condition.

e To develop a complete stress analysis chart considering all structural action,
flexure, shear, torsion, distortion, warping, and shear lag in calibrated form for
different loading and geometric condition, so that one designer could get some

reasonable help for designing a single cell simply supported box section .
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CHAPTER 2

BEHAVIOUR OF THIN WALLED CROSS-SECTIONS

2.1 General:

An appropriate sign convension for the analysis of thin-walled box sections can be
defined by following the work of Maisel (1982) .The sign convension of all stresses, co-
ordinate axes, displacements patterns, positive and negative sections for analysis of all

structural actions are shown for a multicell section.
2.2 Definition of Thin-Walled Beam:

Vlasov (1961) defines a thin-walled beams as a structure having the form of a long,
prismatic shell. The shell thickness is small compared with any characteristic dimension
of the cross-section, and the cross-sectional dimensions are small compared with the

length of the shell. He gives as criteria the following:

shell thickness < 0.1
width or depth of cross-section
and
width or depth of cross-section < 0.1

length of shell

The first criterion is frequently not satisfied for concrete boxbeams, but Vlasov’s theory
has nevertheless been used for analysis. Dabrowski (1972) epresses the view that the
theory of beam-type members applies if the span is more than 3 or 4 times the breadth of
the cross-section measured between the outer webs of a (multicell girder). Kollbrunner
and Basler (1969), in discussing St. Venant torsion, state the following criterion for

classifying a section as thin-walled, by specifying a certain accuracy of calculation.

There is less than 10% error in calculating the shear stresses for hollow cross-section with
a constant wall thickness, if the effective area of cross-section is less than one-fifth of the

area enclosed by the wall centre line. Concrete structures do not usually satisfy this

11



geometrical condition. There is less than 10% error in the calculated internal torsional
moment if the effective area of cross-section does not exceed the area enclosed by the

wall centre line. Concrete structures usually do satisfy this geometrical condition.

2.2.1: Co-ordinate Axes:

To obtain a right-handed system of co-ordinates, the arrangement shown in Figure-2.1 is

adopted.

y
Figure 2. 1:Co-ordinate axes x,y and z

The position of the origin within the cross-section is usually taken as the centroid for a
longitudinal bending analysis and as the shear centre for a torsional warping analysis. For
a distortional analysis, this origin could be taken arbitrary as the midpoint of the central
cell, or centre web, but it is more important to refer such an analysis to the peripheral
co-ordinate, sy Figure 2,2(a), 2.2(b) and 3.2 show the arrangements of origin and
positive directions considered appropriate for sy in the treatment of longitudinal bending

and torsional warping, respectively.
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(a) For longitudinal bending (without torsion)
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(b) For torsional warping
Figure 2. 2: Peripheral co-ordinate sy, sShowing origin and positive directions

(Maisel, 1982)

2.3: Displacements:

Displacements in the directions of the x, y, z axes are positive when in the positive
directions of these axes , and are denoted by a,, a,, a, respectively, as shown in Figure

2.3. Rotations &, and 6, and twist 6,, are also shown, and are positive when they occur

in the directions indicated.
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Face of cross-section:

A positive face of cross-section is one whose external normal points are in the positive
directions of the z axis. A negative face of cross-section is one whose external normal

points are in the negative direction of the z axis.

Stresss:
All stresses discussed in this report are internal resistive stresses caused by applied

external loading.

£y

Figure 2. 3: Positive directions of displacements, rotation and twist (Maisel, 1982)

14



2.4: Positive directions of stresses and stress-resultants:

The following sign convention applies for normal stresses f and shear stresses v.

Right hand screw vector representation of moment

my.ext _— >———>—>
My‘ext

Figure 2. 4: Positive directions of internal stress-resultants and external loading
(Maisel, 1982)
For a positive direction of an axis; a stress component is to be regarded as positive if it
acts in the positive direction of an axis, otherwise it is negative. For a negative face of the
cross-section, a stress components acting in the negative direction of an axis is positive.
Hence, tensile stresses on a cross-section are always positive quantities, and compressive

stresses are negative.

Shear stresses acting in the positive direction of the spe co-ordinate are positive,

otherwise they are negative (for the positive face of cross-section). Where as in Figure

15



2.2, the positive direction of spe, varies accordingly to the type of structural action being
considered, each type of analysis must be performed separately. This leads to a
knowledge of the physical directions of the component shear stress in all parts of the
cross-section. Only then, these component shear stresses can be superimposed for thpese

cases in which two or more types of structural action occur simultaneously.

Since internal forces or stress-resultants are the resultants of internal stresses, they follow
the same rule of signs. The positive directions of the internal stress-resultants acting on a
posive face of a cross-section are shown in Figure 2.4 . Note that the shear forces Vy and
V, and the axial force N are positive when in the positive directions of the x, y and z axes,
respectively. The bending moments My, M, and twisting moments T are shown using the
right-hand rotational vector representing of moment. My and My are positive when in the

negative senses of rotation of & and 6, respectively, because of the definition adopted

for positive bending; Kollbrunner and Basler (1964). T is positive when in the positive
sence of twist, & , and B is the internal bimoment, shown acting positively accordingly to

the convention . Maisel and Roll, F. (1974)).

Figure 2.4 also shows the positive directions of applied loading on the beam element: ny,
ny and n, are distributed loadings in the x,y and z directions, respectively, and Fy, Fy and
F, are concentrated loads acting in these directions; te and Tey are, respectively, the
distributed and concentrated applied torsional moments myex and my ey are distributed
applied bending moments about the x and y axes, respectively, and My and My, are
the corresponding concentrated applied bending moments; Bey; is the concentrated applied
bimoment.It will be noted, from Figure 2.4, that the positive directions of the internal
resistive stress-resultants acting on the positive face of the cross-section shown are the

same as those of the external applied loads acting on the beam element shown.
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CHAPTER-3

ANALYSIS OF SIMPLE BENDING AND ST VENANT TORSION

3.1: Assumptions:

The structural effects neglected here are torsional and distortional warping, shear lag and

distortion.

3.2: Simple Bending Without Twist:

The following expression is obtained for the normal stresses in longitudinal bending,
using engineer’s theory of bending, in which plane cross-sections are assumed to remain
plane before and after the bending of a thin —walled beam whose cross-section has a

vertical axis of symmetry (Figure 3.1)

bcant bl b2 bl bcant
“ =': :!: :!: e >
L | P ! l
! 1 I !
I TS fr—r———— ‘i ........... frmrm—— -
T I I |
| | l |
hwebl_' I« web 2 | [ webZl_. | '—hwebl e B
| | | |
[ e —— == s
|
i

Figure 3..1: Dimension§ of cross-section (Maisel, 1982)

My Myx
=T — 3.1
.f;bg Ix Iy ( )
where f,,. =normal stress in longitudinal bending (positive tensile)
X,y = co-ordinates of a point on the mid-line of the wall of cross-

section,referred to centroidal axes (see Figure 2.1)
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M,= bending moment about x axis (see Figure 2.4);

M,= bending moment about y axis (see Figure 2.4)

I,= second moment of entire cross-section about centroidal x axis;

I,= second moment of entire cross-section about centroidal y axis;

3.3: Longitudinal Shearing Stress:

3.3.1: Multicell Sections:

For the shear stresses arising due to the longitudinal bending, Venkatraman and Petel
(1970) developed an analysis for the general multicell, thin walled section, and the results
of this are given here in the form appropriate to vertical loading on a three-cell section of

the type shown in Figures-3.1.

C B A I H Sper 4
sp; s cell-1 cell-2 cell-3 B
e e

cut 1 cut 2 F cut 3

Figure 3. 2: Peripheral co-ordinate s, and cuts in the cross-section (Maisel ,1982)

Let vipg be the shear stress in longitudinal bending and h be the wall thickness. The
positive directions of the peripheral co-ordinate, sy, are defined as shown in Figure

2.2(a) and shown as Speri 10 Spers in Figure 3.2.
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Q

b g by,

cut 1 cut 2 F cut 3
Figure 3. 3: Positive directions of statically determinate shear flows

Insert imaginary cuts 1, 2, 3 at the points indicated, thus transforming the open-closed
cross-section into a fully open section.Megson (1974 ) states that there are arithmetic
advantages in placing the cut midway between adjacent webs. Let the origins of Sper1, Sper2,

Sper3, b€ at cut 1, cut 2 and cut 3, rspectively, as shown in Figure-3.2.

Define (Vivg h)1,(Vivg h)2,(Vivg h)3 and (Vipg h)cant as the shear flows in longitudinal bending
of the open section, in cells 1,2 and 3, and along the cantilevers, respectively.They are

positive in the directions shown in Figure-3.3

-

-
ANNNY
(—T
[ <

(7777 |

v/ //] J

J L 11 51

Figure 3. 4: Evaluation of ( A_y), the first moment of area of the partial cross-section
about the centroidal x-axis (Maisel, 1982)
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Let (Viog h)o1, (Vivg D)oz, (Ving h)os be the statically indeterminate shear flows required to
restore compatibility at cuts 1,2 and 3, respectively.These shear flows are positive in the

same directions as Spert,Sper2 aNd Sper respectively.

Let V,=shear force on the cross-section in the y direction (see Figure 2.4). Then, for the

fully open section (i,e with the imaginary cuts)

V,(4y)
I

x

where (:431_) is the first moment of the partial area of cross-section about the centroidal x

(Vibg W)1etc =— (3.2)

axis [see Figure 3.4:(A_y) at K,L or M is the first moment of the shaded area about the X
axis].
To obtain (vivg h)o1 in each cell, the following system of simultaneous equations is set up,

corresponding to the condition that there is no twist of the section.

(vlbgh)l /

h perl

(vlbgh)OZ Ifl'ipﬂ =- J.

EAq h ABDE

ds .
(vlbgh)()l I—pl"’

ABDE h

(3.3)

er dS er er (v h)
(vwgh)mj ;2+(wgh)02 [ == (lbgh)osj O L V)

AE AEFI FI AEFI

ds e, r (vy, h)
(vlbgh)OZ J. ;; > +( 1bgh)03 J. 1’ : = j 1 > per3 (35)

FGHI FGHI

In evaluating the right-hand sides, the sign of the statically determinate shear flow

(Vibgh)1,2,3 must be changed whenever its positive direction,as shown in Figure3.3;

20



(vlbgh)M + (vlbg 1) ou

| < |
! |
(vlbgh)M + (vlbgh dml (vlbgh)O.M—l /\
SperM (vlbgh)M H#( lbgh)OM -
Vi) 0001
L T ]
| > l
(vlbgh)M + (ng 1) om

Figure 3. 5: Shear flows in cell M due to longitudinal bending (Maisel 1982)

This conflicts with the positive direction of sy as shown in Figure 3.2.This will be the
case in webs EA and FI.
Solving for (Viegh)o1, (Vibgh)o2 and (vingh)os, the final values of shear flow for the actual

section are given by

Viggh) = (Vipgh)y + (Vi 1) o in walls AB,BD and DE ofcell 1
(Viggh) = (V1) + (Vi) o; — (Viggh)o,  in wall EA of cell 1 (3.6)

and similarly for the other cells. Figure 3.5 shows the general situation for cell M of a
multi-cell cross-section. In the cantilevers, the statically indeterminate shear flows
(Vivgh)o do not act. The positive directions of all shear flows in equations 3.6 are the same

as those of sy in Figure 3.2.
To evaluate the shear stresses in bending due to the horizontal loading,the analyses given

by Venkatraman and Patel (1970) are used for the bending of unsymmetrical sections.

In summary, the above procedure for vetical loading consists of the following steps.
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(1) Insert imaginary cuts in the section to make it statically determinate.

(2) From equation 3.2, determine the shear flows (vipgh)i, etc. in the resulting open
sections.

(3) Insert results of (2) on the right hand sides of equations 3.3,3.4 and 3.5 and solve

for statically indeterminate shear flows (vipgh)oi, etc.

(4) Evaluate the resultant shear flows (vipgh) from equation 3.6.

3.3.2: Single Cell Section:

o et e o~ ——— . [ ——

| I litop |

|
¢ 1 hweb
| X |
i [
i ‘I' [
'__.—)_ ......... —_) ....... —

T hbot

Figure 3. 6: Dimensions of cross-sections and peripheral coordinate sy.,showing
origin and positive directions (Maisel and Roll 1974)

B ’ G E‘/ - E F
=
l y
i
5 H,' D
Figure 3. 7: Zero bending shear stress vy, on the axis of symmetry for vertical
loading

For shear stresses arising in longitudinal bending due to the vertical loading only, note
that because of the symmetry about the vertical axis of the cross-section, the longitudinal
shear stress is zero at this axis, hence the complementary shear stress vipg in the plane of

cross-section is also zero at x=0, as shown in Figure 3.7.
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Therefore half of the open-closed section (BACHG in Figure 3.7) can therefore be
analysed as an open section, since the boundary conditions for the open sections are now
satisfied, i.e there are zero longitudinal shear stress in bending at the ends of the cross-

section (G,B and H). Kollbrunner and Basler (1964) developed the following equation

which can be applied here:
V(4
(Vipgh) = _y_(_)_))_”_z (3.7)
IX

where (v, h) = shear flow in longitudinal bending

Vibg= shear stress in longitudinal bending
h=thickness of the wall

Vy=shear force on the cross-section in the y direction

(4y),,, = first moment of area of the partial half-cross section about the centridal x

axis.(See Figure 3.8). (4y),,, atJ, K or L is the first moment of the shaded area about the

X axis.
o K !
v =1 ;
i i
x |
X 1y

Iy |
| ]
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|
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!

Figure 3. 8: Evaluation of (4y),,, , the first moment of area of the partial half cross-
section about the centridal x axis (Maisel and Roll , 1974)
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Ix =second moment of entire cross-section about the centroidal x axis.

I; = second moment of entire cross-section about the centroidal y axis.

To find the statically ndeterminate shear flows in a single-cell section

(Figure3.7), equations 3.3, 3.4,3.5 get reduces to:

ds ., (Visgh);
(vlbgh)o AiE ’: = _AiE _%_—dsper ( 3’8)

3.4: St.Venant Torsional Shearing Stress:

i < (V svth)M :
___________ RPN R
[ |
[ [
[ i
! i
(stth)M'(stth)M-l : o f \ : (stth)M_
i !
[ : (Vsvih)m-1
! !
[ [
. o _________
| l
| > |
' (v svl)m

(a): St. venant torsional shear flows in cell M

F
D F G
(b): Three —cell section for St. Venant torsion analysis

Figure 3. 9: St. Venant torsional shear flow (Maisel,1982)
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For the St. Venant torsion of thin-walled multi-cell box beams of open-closed section, the
analysis given by Venkatraman and Patel (1970) may be expressed in the following form.
Kelsey (1961).

Consider a torsional moment, Ty, to act on a section in St. Venant torsion. Let v, be the
shear stress in St. Venant torsion and h be the wall thickness.Then (vs:h) is the
corresponding shear flow.

As the torsional strength of the cantilevers is small in comparison with that of the closed
portion of cross-section, neglect the cantilevers and define the positive directions of the

peripheral co-ordinate, s, ,as shown in Figure 3.2. for cells 1,2 and 3.

Define (veih)i, (Vsvih)2, (Vsvth)s as the shear flows in St. Venant torsion in cells1,2and 3,
respectively.They are positive in the same directions as spe for the respective cells.If each
cell is considered individually, as indicated in Figure 3.9(a), the St. Venant torsion theory

gives the following equation:

dez _ (vsvth)M (j-ds;:rM (39)

dz  24,,G
where @, =angle of twist of cell M;
z= longitudinal co-ordinate

vsih)M= shear flow in cell M;

AncM=area enclosed by mid-line of wall of cell M;
SperM= Sper in cell M

G= shear modulus of elasticity.

The symbol cj denotes integration along the mid-line of the wall of a closed portion of

the cross-section.
Note that in the common walls between the adjacents cells, the positive directions of

shear flow, as defined above, oppose one another.This is shown in Figure 3.9(a).
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An equation similar to (3.9) can be set up for each cell of a multi-cell section.The
condition that there is no distortion of the entire cross-section implies that d@, /dz is the
same for each cell.

In addition,on taking moment about any point in the plane of cross-section, the theory

yields the result that

T;vt = Z 2AencM (vsvth)M (3 ’ 1 0)
M

where Tsvt =Total torsional moment at the cross-section in St. Venant torsion, and the
summation extends over all the cells.
For the case of a three-cell section, as shown in Figure 3.9(b), the set of simultaneous

equations corresponding to equation 3.9 has the following form:

ds ds
(v_w,h)l J‘ ;;erl _ (stth)Z J’—%ﬂ = 2Aench%o"z" (31 la)
/4
ABDE EA
v ds er2 ds er2 dS er2 dl9
— Ve h), |+, ) P2~ (V) |- =24,,,G— (3.11b)
ds ds
- (vsvlh)Z J‘ per + (vsvth)S J‘ _pﬂ = 2Aenc3G del (3-1 1C)
IF romr 1 dz
The solution of equations 3.11a,b,c is of the type
deo
(Vo) = Ky G dz‘ (3.12)

where Ky is a known numerical constant corresponding to cell M.

From equation 3.10,
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Therefore,

Hence, in equation 3.12,

Vo) =i

svt

) Z 2AencMKM
M

As all the quantities on the right hand side of equation 3.13 are known, this completes

(3.13)

the solution for the St. Venant torsion shear flows

For single cell section: For a single-cell section, equation 3.13 reduces to

T,
w,.h) = 2A+”' (3.14)

enc
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CHAPTERH4

ANALYSIS OF TORSIONAL WARPING

4.1: Assumptions:
e In torsional warping analysis, it is assumed ,by definition, that there is no
distortion of the cross-section.
o The only other structural effect neglected is a minor one, giving rise to

transverse normal stresses constant through the wall thickness.

4.2: Stress Pattern and the Physical Significance of Structural Actions:

When the cross-section of a beam does not remain plane and it is free to warp under a
torsional load, it is considered being subjected to St.Venant or uniform torsion.If
however,one or more cross-sections are forced to remain plane, or not free to warp then
“warping stresses” would arise and such torsion is termed warping or non uniform
torsion.The simply-supported beam of Figure 4.1 is subjected to a torsional load at its
midspan.This midspan cross-section remains plane because of symmetry
considerations.The longitudinal out-of-plane displacements (or warping displacements)

are also shown in the same Figure 4.1.

The pattern of these displacements is such that the longitudinal torsional warping stresses
vary both around the perimeter of the cross-section and along the axis of the beam. Hence
longitudinal shear stresses arise which cause complementary shear stresses in the cross-

section of the beam; these are called warping shear stresses.

Assuming that the cross-section does not distort in its own plane, as in Figure 4.1(c) and

thus distortional warping displacements are neglected.

A box beam whose cross-section is not permitted to distort, develops its resistive torsional

moment as a combination of the torsional moment caused by the St. Venant shear stresses
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and that caused by the torsional warping shear stresses. It is shown in Figure 4.2 that the

moment due to the torsional warping shear stresses are maximum near the section where

(a) Torsional and distorsional warping

-------------- undeflected form of structure

-_—— deflected form of structure with rigid transverse diaphragms

all along the span
deflected form of structure after removal of diaphragms
between supports

29



1
i, /
| - —}—'—‘- T — s of
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(b) Twisting of midspan cross-section (c) Additional twisting of midspan
without distortion cross-section when distortion is

permitted

Figure 4. 1: Torsional loading of a simply supported box beam. (Maisel ,1982)

warping is restrained and it gradually decrease toward the region where the cross-section
is free to warp. Note that the sum of the magnitudes of the two above torques is always
equal to the total resistive torque caused by the external loading (Tex/2 in the case of
Figure 4.2)

midspan concentrated

torsional momgnt Tey
A A

(a) Elevation of the beam (Torsional restraint at the supports but no warping restraint)

* moment due to

Text/2 St. Venant moment due to torsional
k ‘ warping shear stresses

Shear s §
| L1

' 4
’ Text/ 2

(b) Variation of component internal torsional moments along the beam.

Figure 4. 2: Distribution of the internal torsional moments due to St.Venant and
torsional warping shear stresses along the beam (Maisel , 1982)
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The warping stresses, as mentioned above, give rise to shear deformations. These
deformations are normally neglected in the case of open thin walled cross-sections
(Kollbrunner and Basler(1966)) and Oden, J.T. and Ripperger(1981). However, it has
been shown by a number of authors, Godden and Aslam (1974), Maisel and Roll (1974)
and Scordelis, Bouwkamp and Wasti (1971) that the influence of this deformation must

be considered in any torsional warping analysis of closed cross-sections.

4.3: Analysis of Torsional warping by the method of Kollbrunner,Hajdin and
Heilig(1966)[Single cell]:

4.3.1 Loading:

The analysis considers only the torsional system of Figure 4.1(b) .The torsional

component of the actual loading is used, and not its Fourier representation .

4.3.2 Summary of Procedure for Analysis:

Following Vlasov (1961), Kollbrunner and Hajdin (1966) have developed the theory of
warping torsion of thin walled beams of closed or open-closed, undeformable cross-
section. The torsional warping (longitudinal) stresses, fi, and torsional warping shear
stresses, Viyr, are obtained in terms of the applied torsional moment, the bimoment By,
and the section properties known as the sectorial coordinate, w,, and the torsional
warping moment of inertia, Ci,,. The algebraic expressions required for obtaining the
above quantities, as well as the St.Venant torsional shear stresses, Vg, are given, for a

number of load cases and end conditions.
4.3.3 Bimoment B,;:

Instead of working with a group of four forces,it is usual to represent them by a pair of
equal and opposite moments in parallel planes, as shown in Figure 4.3 (b) where the
moments are taken about a horizontal axis( Figure 4.3(c) )where the axis of the moments
as vertical. Such a pair of moments is called a bimoment, and has zero force resultant and

zero moment resultant.
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(a) Warping force group (b) Positive bimoment (c) Positive bimoment

(Four forces equal in magnitude) (Shown using horizontal axis) (Shown using verticalaxis)

Figure 4. 3: Warping force group and bimoment (Maisel B.I and Roll. F, 1974)

The idea of representing warping stress system by a pair of equal and opposite moments
in parallel planes was developed by Vlasov (1967).The magnitude of the bimoment is
measured by one component moment multiplied by the distance between the planes. This
gives dimension of (force*length?). A bimoment is the simplest possible physical
representation of the longitudinal normal stress system associated with warping. It
satisfies the following conditions, which arose in Vlasovs analysis of a thin-walled beam.
(1) There must be zero force resultant and zero moment resultant of the longitudinal
normal stress system, which is therefore self-equilibrating at a cross-section.
(2) In general, there must exist longitudinal displacements of cross-section, varying
around the perimeter.

(3) The quantity which enters into the analysis must be of dimension (force*length?)

There is fundamental difference between the bimoment on one hand, and the usual six
quantities axial force,longitudinal bending moment (vertical and horizontal transverse
shear forces (vertical and horizontal), and torsional moments, on the other.The latter six
generalized forces can be found at any cross-section from the equilibrium conditions for
external and internal forces acting on the beam, if the forces and moments acting at one
end of the beam are known. However the bimoments (of torsional and distortional

warping) cannot be found from from the equilibrium equations for the beam, since a self
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equilibrating quantity does not affect equilibrium.It can therefore always be said that an
individual thin walled beam in a system of such beams is internally statically
indeterminate when considered by itself ( Kollbrunner. and Hajdin,1966).Only when the
deformation is known,in particular the angle of twist(Kollbrunner and Hajdin, 1966) and
the distortional deflection(Steinle, 1970), and their second derivatives with respect to the
longitudinal coordinate, the bimoments of torsional and distortional warping ,respectively

can be obtained.

In the torsional warping analysis of systems of two or more interconnected beams, the
loading condition cannot usually be divided into warping torsion, axial loading and
bending (Kollbrunner and Hajdin, 1966). Only in particular cases it possible to separate
warping torsion from the other loadings.With straight beams, the bimoment are

independent of the bending moments, however this is not true of curved beams.

For purpose of numerical calculations, a quantitative definition of the torsional warping

bimoment is:

B,, = [fu®,,d4 (4.1)

where,

A= total area of cross-section including side cantilevers.

S =torsional warping stress.

o,, =sectorial coordinate in torsional warping, referred to the shear centre.

Note that the integral I is summed over the entire cross-sectional area.
A
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Sectorial coordinate:

The sectorial coordinate wyy, 1s defined as

S per C
o,, = (g, ——=)ds 4.2)
wr OI 24 R P

where,
ag= the perpendicular distance from the shear centre to the tangent to the mid-line of wall
at the point considered, and

C,v=torsional second moment of cross-sectional area in St. Venant torsion

44, °
= L 4.3)
4 ds per
h
ds,, b b 2d
cj' =—+—+
h htop hbot hweb
where,

b=breadth, the distance between mid-lines of webs

d=depth, the distance between mid-lines of top and bottom slabs
hyp=thickness of top slab

hyo=thickness of bottom slab

hwep=thickness of web

spe—peripheral coordinate along the mid-line of the wall

All of these dimensions are shown in Figure 3.6,

cj‘ =integral along the mid-line of wall of the closed portion of cross-section.

ENCL
—

Figure 4. 4: Position of shbar centre (Maisel and Roll 1974)
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It should be noted that the term (Csvt/2Aech) is included only for integration round the
wall of the closed portion of the cross-section. It is not included for integration along the

side cantilevers.

To find ag, the following expression is used for the position of shear centre

Kollbrunner.and Hajdin, (1965).

_b’d [K13+K14 +K, +K
she I K”

y

(4.4)

where

dshe= depth of shear centre below the mid-line of top slab (Figure 4.4)

I, =second moment of entire cross-section about the centroidal y axis.

+3dh,,)

bot bot

1 1
K, =—bh,,h,.,(=bh
13 4 web(3

1

1
K14 = bdhtop (ghbat2 _Zhwebz)

1 1
K15 = Ehtophbothweb (gbz + d2 )
K 16 = bcant htop hbot hweb (bcant + b)
K17 = bhweb (htop + hbat) + 2dhtop hbot

The following sign convention is adopted for @,,, , Kollbrunner.and Hajdin,(1965):

Regard the element of mid-line dsy: as a vector whose direction is the same as that of the
direction of integration.If this vector causes an anticlockwise rotation about the shear
centre, then the increment ag dsy.r is considered positive.Conversely, a negative increment
corresponds to a clockwise rotaion of the vector dsp.r about the shear centre. Figure 3.6
shows the origin and the positive directions of the peripheral coordinate, Syr. The term

(Csvi/2Aench) in equation (4.2) is always positive for a single-cell section.

35



Hence, by the above convention, the magnitude and sign of @,,, can be determined for all

points on the mid-line of the cross-section.The dimensions of @,, are (length?)

Torsional warping moment of inertia of cross-section ,Cuyy:

C, = j w,, dA 4.5)
A

This quantity is of dimension (length®)

4.3.4 Relation Between Applied Load, Internal Stress-Resultants and Twist:

Kollbrunner and Hajdin (1965) and Heilig (1971) give the following expressions for the
torsional warping of a single single-span thin walled beam of closed or open-closed cross-
section, torsionally restrained at each end but without restraint at the ends, and subject to

a midspan concentrated torsional moment Ty, as shown in following Figure.

Text

_—

Figure 4. 5: Concentrated torsional moment applied to the beam at midspan
(Torsional restraint at supports but no warping restraint)

when
0<z<1/2:
T sinhK .z
B, (2)= ext K‘8 7 (4.6)
2KiuKis cosn 2ast
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coshK ,z

(2)= Lo 1- )
SV‘
2 choshKlsl
2
T.. coshK, z
T (Z)= ext 18
" 2K, osh—K”l
2
T, sinhK .z
(2) = 2GC K K, (K 5Kz - =
svt cosh
when
1/12<z<1:
B ()= T,, sinhK;(-2)
" 2I<18‘[<19

osh—&l
2

coshK;(I-z2)
7]

T
T, (2)= %’[—1 +

19

T. coshK, . (I—z
T, ()= -5 e RSl 0D
¥ cosh—%
T, sinhK (I — 2)
6,(2)= (K5 Ko (I —2) - = =]
2GC ,K K, 18
sv cosh—=

where

. (2) =bimoment of torsional warping at section z.

T, ,(z) = torsional moment due to St.Venant shear stresses at section z.

T, (z) =torsional moment due to torsional warping shear stresses at section z.

6, (z) =twist about shear axis at section z

GC

svt

EC,,

18~

cen svt
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C. =K,C,. (4.16)
C

cen

= [a%edd (4.17)
A

= central torsional moment of inertia of cross-section

Note that (7, +7T,,,) equals %2 Teyx in magnitude for all sections z , as is required for

svt

equilibrium(Figure 4.2(b))
Torsional warping stresses fiy,:

The tortional warping stresses are given by the following expression:

f,, =—wror (4.18)

The form of this expression is the same as that of equation 1.1, since My, My, B, are all
stress-resultants at section z; x,y and @, are all coordinates of the point considered on

the cross-section; and I, I, and C,,, are all geometrical properties of the entire cross-
section

Under eccentric loading, the longitudinal stresses fipg of equation 1.1 and fi, of equation
4.18 are superimposed, with due regard to sign.

Torsional warping shear stresses , Vi these are given by the following expression:
da,,

— T dS per

twr twr
Ccen - Csvt

v (4.19)

where 4D =g, ——™
ds 24

per enc

for a single cell cross-section
4.4: Analysis of Torsional warping by the method of Kollbrunner, Hajdin and Heilig
(1966) [multicell section]:

4.4.1: Summary of Procedure For Analysis:

The above analytical treatment to cover multicell box-beams, as originally presented by

Kollbrunner and Hajdin (1965) and Heilig (1971). The method is applicable to thin-waled
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beams of closed or open closed cross-section.The torsional warping(longitudinal)
stresses, fiyr, and torsional warping shear stresses, Vi, ,are obtained in terms of the applied
torsional moment,the bimoment By,, and the section properties known the sectorial
coordinate, w,, and the torsional warping second moment of area, Cy, The algebric
expressions for obtaining these section properties and stresses, and also the St.Venant
torsional shear stresses vgy are given. St. Venant shear stresses are important because part
of the torsional moment is resisted by these stresses and the rest is resisted by the

torsional warping shear stresses , Viwr.

4.4.2 Sectorial Co-ordinate :

It has been found convenient to refer to points on the cross-section using a sectorial co-

ordinate @,, .The physical , definition of this quantity has been shown by Kollbrunner

and Hajdin(1964) to correspond to the warping displacements of the point per unit rate of
twist, d@, /dz, of the cross-section, and it has therefore also been called the unit

warping.The dimensions are accordingly

L/(1/L)=L?
where L denotes length.There is also a geometrical definition of @,,, ,which is illustrated
in Figure 4.6 for an open thin walled cross-sections.

x

Figure 4. 6: Geometrical definition of sectorial co-ordinate (Maisel, 1982)
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Let S be any point on the mid-line of the wall of cross-section.Let P be an arbitrary
point in the cross-sectional plane, taken as the origin (or pole) of a radial vector running
to S, and let O1 be an arbitrary origin for the peripheral co-ordinate sp, as used in
torsional warping analysis. The unit warping, @, , is given by twice where the suffix P
refers to the use of P as the radial vector origin and of the lever arm a, extending from P

to the tangent at S.The doubled incremental area PSS’ is given by

a,ds,, =da,,

which leads to the analytical definition

Opyp = [a,ds (4.20)

This is consistent with the above statement that the sectorial co-ordinate is of dimension
(length)®

A modification is necessary for closed thin walled sections such as box beams or open-
closed sections such as box beams with side cantilevers.

The analytical definition of @,,, in equation 4.20 now becomes:

Oprp = (@, =7,,)ds,,, (4.21)
0

where v

svt 2

which is a function of sper, is the value of St. Venant torsional shear stress, vy
,for G(dO,/dz)=1. The term v, is the shear stress distribution function of the cross-

section for the case of pure torsion.It follows that

-¢9%;

4 dZ svt

(4.22)

svt

Here, v, is determined from the analysis of St. Venant torsion in the previous chapter.By

F1%4
putting G(d6,/dz)=1 in equations 3.11 a,b and c, the equations are solved for the

quantities
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W)y = — (v, ), 23)
ao.
G
dz

where (v,,h),, is the St. Venant torsional shear flow in a typical cell M of a multicell

svt

section for G(d6,/dz)=1.1t is constant for cell M and is positive anticlockwise

direction; it is identical to Ky in equation 3.12.

Once (v, h) is known for all points on the closed portion of a cross-section, division by

svt

the wall thickness h gives the function v, ,. Hence w,,,, can be determined from equation

svt* wr

4.21.

It should be noted that The integration in equation 4.21 is performed over the entire area

of cross-section, but the second term, v, , is included in the integrand only for integration

vt 3
round the wall of the closed portion of the cross-section.It is not included for integration
along the side cantilevers, since the action of these cantilevers in St. Venant torsion is

neglected.

For a single cell section,

Con_ (4.24)

Vv =
svt
24, .h
where C;=torsional second moment of a single-cell cross-section in St. Venant torsion,

and is given by:

_AA e
T ds o
=

svt
The symbol q denotes integration over the closed portion of the cross-section only.
ym gr y

(4.25)

The value of w,,,, depends upon the co-ordinates x;, anf y, of the point P and upon the

value of spe; at point S, i,e., upon the position chosen for the origin O1. The theory is
simplified by a suitable choice of the points P and O1,with P at the shear centre Q and O1
such that
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[opdt = [o,,hds,, =0 (4.26)
A

where h denotes the wall thickness and the integration is performed over the entire cross-
section .The shear centre is chractised by the fact that, when the resultant transverse shear
on the section acts through it, there is no torsion on the section. The above choices result
in the uncoupling of the equations of flexure and torsional warping. The sectorial
coordinate referred to these specific positions of P and Ol is called the normalized

sectorial coordinate.

4.4.3 The Procedure for Determining the Position of the Shear Centre and the
Diagram of the Normalized Sectorial Co-ordinate:

As in Figures 4.6 and 4.7, select an arbitrary pole P (xp,yp) and an arbitrary origin O1 for

the peripheral coordinate sperp.

Figure 4. 7: Portion of diagram of J. a,ds

(Maisel, 1982)

perP
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For the numerical determination of the sectorial coordinate, w,,,, ,

which depends upon

P, O1 and Spep, the following sign convensions is adopted for the first term only in the
integrand of equation 4.21 .Consider syerp to be increasing in both directions from O1.The
increament, apdspep, is regarded as positive if the directed element dspep on the positive
face of cross-section has an anticlockwise sence of rotation relative to pole P.If the sense

is clockwise, the increament is negative. With regard to the second term v, in the

svt

integrand of equation 4.21, this is obtained as a shear stress vector in accordance with the

St. Venant torsion analysis of Chapter 3. If the physical direction of v,, in a particular

vt

problem agrees with that of ds,.p in integration, then the increament Vv, dsperp is

positive;otherwise, it is negative.

The diagram of the sectorial coordinate ,,,, as defined in equation 4.21 is drawn by

plotting this quantity as an ordinate from the mid-line of cross-section, the value at O1
being taken as zero.The coordinate of the shear centre Q, reffered to the principal axes of

~ the cross-section ,are then given by:

I
X =2+ X, (4.27)
Ix
wa
Ve =~ I g + Yp
y
where

Iwa = ywtwrPdA
4

I,.,= jxmedA
A

are the sectorial products of the cross-sectional area, obtained by numerical integration

from the diagram for @,,, and the known values of x and y for all points on the cross-

section, referred to the principal axes, and

I = second moment of the cross-sectional area about the principal x-axis.

I,= second moment of the cross-sectional area about the principal y axis.
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Once the position of the shear centre Q is known, the diagram of @,,,, is now redrawn,

using Q and not P as the pole.This gives w,,,, , which can be checked using the equation:
I,,=0=1I,
This follows from equations 4.27 uppon substituting

Xp=XQ™Xshe and YP=YQ™Yshe
To obtain the specific position Os of the arbitrary origin O1, giving the normalized

sectorial coordinate , @,,, , the equation

[0,,d4=0 (4.28)
A

is satisfied by substituting

Bppp = Dppry + @ (4.29)

where @, = —% IwdeA (4.30)
A

with the integrating performed over the entire cross-sectional area.

This defines the distance between the origins as

4.31)

Here O1 and Os lie on a straight-line portion of the midline of section at a distance a,,;

from the shear centre.

The quantity , @,,, , is evaluated using equation 4.29, and the diagram for
®,, is drawn .An arithmetic check can be made,using the condition in equation in

equation 4.28.
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The torsional warping moment of the cross-sectional area C,,, is also required, and is
defined as

C, = [0}, dA (4.32)
A

This quantity has the dimension of (length)® and is evaluated from the diagram of @,
by numerical integration

The torsional second moment of the cross-sectional area of a multicell section in St.

Venant torsion, Ky, and is given by

stt = 22 AencM (ah)M (4'33)
M

where the summation extends over all cells of a multicell section.The suffix M refers to a

typical cell in such a section .Aencm is the area enclosed by the midline of the walls of the

cell M and (v_m-h) . has been defined by equation 4.23.

For a single cell section, K, =C

svt 2

as can be seen from equation 4.24.

This procedure for determining the section properties described above is applicable in the

case of general, asymmetrical, thin walled cross section.

4.4.4 Torsional Warping Stresses f, :

The rorsional warping stress, f,,, ,is given by:

Jow =50 (4.34)

The form of this equation is the same as that of equation 1.1,since My, My and By, are all

stress resultants at that section z; x, y and @, are all coordinates of the point considered

on the cross-section; and I, Iy, and Cy,, are all geometrical properties of the entire

cross-section.
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Under eccentric loading the longitudinal stresses f,,, , of equation 1.1 and fiw of equation

4.34 are superimposed, with due regard to sign.

The Torsional warping shear stresses v, . is given by:

do,,
ds per
cen svt

where dw,,, /ds,, is the slope of the @,, diagram, obtained by numerical differentiation

The positive direction sy, is as shown in Figure 2.2(b).
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CHAPTER S

ANALYSIS OF DISTORTIONAL EFFECTS

5.1 Introduction:

Distortional effects comprise distortional warping and transverse bending, and arise in
concrete box beam construction as a result of the usual practice of inserting diaphragms
only at the supports, or at specific spacings within the span. They are superimposed upon
the effects of longitudinal bending and torsional warping.

Figure 5.1 shows schematically the modes of distortion possible in the various types of
singly symmetric cross-sections. These are the linearly independent basic modes, i.e.,
none of them can be expressed as a linear combination of any, or all of the others, for a

given form of cross-section. The analysis to follow is formulated in terms of these modes.

3 |

Figure 5. 1: Modes of distortion (schematic) for various box-beam cross-sections
(Maisel,1982)

The redistribution of stress caused by distortion of cross-section is a measure of the

deterioration of transverse load distribution towards that obtaining in a grillage structure.
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Distortion can be regarded as a differential torsional deformation of the individual
portions of the cross-section, as indicated by the schematic deflected shapes in Figure
5.1. The elastic resistances with which the structure opposes these deformations can be
subdivided into warping resistance and torsional resistance (as in torsional warping) and,
in addition, an elastic transverse bending resistance of a ‘frame’ of the same configuration

as the cross-section; this resistance is proportional to the amount of distortion occurring.

Sedlacek’s (1968) procedure uses warping functions defined to be associated with the
physical behavior through the independent sway modes of the ‘frame’, representing the
cross-sectional distortion. The warping functions are linear over each individual wall
element, as in Vlasov’s generalized co-ordinate method, but they are associated with the
kinematics degrees of freedoms of the cross-section selected to define the distortional
behavior. A virtual work approach yields the following fourth-order matrix differential

equation below:

ECi" -GJa" +Ba =# (5.1)

where @ is a displacement vector including distortional displacements at section z;

' is a load vector including distortional loading

~

C is a matrix of the section properties in warping including distortional warping;
J is a matrix of the section properties in torsion,;

B is amatrix of the section properties in transverse bending.

Sedlacek(1968) separately considered the non-distortional modes (axial extension,
longitudinal bending about the two principal axes of the cross-section, and torsional
warping).Equation 5.1 refers in its orthogonalized form to the distortional modes only.
The process of orthogonalization, denoted by the symbol ~, yields an uncoupled system
of fourth-order differential equations, and the equation for each mode of distortion (in a

multi-cell box beam) is of the same form as that for a beam on elastic foundation.
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For the prismatic thin-walled beams considered, the analysis does not require
discretization of the structure in the longitudinal direction, so that the matrices arising are
of a much lower order than those in a finite element treatment. The use of the methods of
calculus (via beam statics) to solve the governing quation gives an analytical solution for
the sharply peaking, longitudinally localized stress distributions near concentrated loads,
or the supports of a continuous thin-walled beam. Local effects near the loads not applied
at web-flange junctions, and similar effects must be considered separately. The global

analysis in these cases uses statically equivalent loading at the web-junctions.

5.2 Method of Distortional Analysis Developed by Sedlacek (1968)

5.2.1 Distortional Components, Warping Displacements and Shear Stresses

Consider a general polygonal cell of a prismatic box beam, as shown in Figure 5.2.
Distortional movement may be regarded as leading to the relative inclinations between
the individual plates at the nodes, the angle of inclination &, being referred to the line
joining the node points. The total deformation of the cross-section can be represented by a
linear combination of the independent basic deformations a; for each mode i. To
determine these latter deformations, the periphery is treated as a hinged system, with
hinges at all nodes, and the various systems with only one degree of freedom are
considered successively. Thus, the basic unit relative deformation, a;=1 , is defined as
the basic rotation, 8, =1 of a movable plate m, as shown in Figure 5.2, where only a
three-bar link mechanism is allowed to move, and the nodes of the other members of the
‘frame’ are constrained. Such a three-bar mechanism is kinematically determinate, i.e., all

its movements are known when 6, is known. Figure 5.1 illustrates the way in which this

general concept is applied to the types of the cross-section considered here.
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Figure 5. 2: Basic unit deformation in distortional analysi s of aclosed section
(Maisel, 1982)

Sedlacek (1968) and Roik, Carl and Linder (1972) developed the matrix differential

equation for the non-distortional behaviour of a prismatic thin-walled beam as:

S per

EC.a’-GJ.a!=n, + In;w,dspe,

where a, is a vector of orthogonalized, non-distortional displacements at section z.

Spe,

I a,,(z)dz

S per=0

in which a,,(z) is an integration constant, giving the initial value of a,(z,s,,) at the

per

point, s, =0.The components a,,a,,a,,0, are shown in Figure 2.3. C, is a diagonal

matrix of the sectional properties./, is a matrix of the shear second moments of the

cross-sectional areas.

If the definition of vector a, described above is extended to include the distortional

components, the column vector

a={a,}={a,}:a,a5......... a,} (5.2)
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represents all n possible modes of displacement of the cross-section. Here,a, is the

column vector of the four orthogonalized, non-distortional displacements, and a, to a

are the components of distortion. The total number of linearly independent distortional

modes is (n-4).

In the distortional analysis of single-cell box beams performed by Maisel and Roll (1974),
it was found from the parametric studies that conservative values of maximum
distortional warping stress are obtained, If the shear deformations in the planes of the
walls are neglected in the distortional analysis; this justifies the uncoupling of torsional
warping and distortional warping analyses, as a safe approximation. Accordingly, to
simplify the calculation, it is assumed that individual walls of the box beam behave as
simple beams longitudinally when they undergo distorsional warping. Likewise, for the
twisting of individual walls occurring in distortion, St Venant torsion theory is applied.

This leads to the following expression for the warping vector, w:

w={w}= [{r-v}ds,, (53)
where

i 0 0
x cosa 0
y sin 0
Dy aQ stt
W rs Vs

w=|w, |and r =|r, and v =| v
Wn rn ‘711
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The first four components of each vector relate to the non-distortional behaviour. Here
w; to w, are the components of distortional warping arising from the various basic modes
of distorsion.

The second, third and fourth components of r are defined in Figure 5.3, where « is the

angle between the tangent to the wall element and the principal x-axis; a,, is the distance
from the shear centre to this tangent.The variables 7, to 7, are of the same nature as a,,
and are illustrated typically, for distortional mode i in Figure 5.3, as the distance from the
centre of rotation defining a, to the tangent to a wall element experiencing the tangential

movement. Thus the distortional components of r are radial distances.

The component v, of v was defined in equation 4.21 as the St Venant torsional shear

vt
stress for G(d6, /dz) =1. Simultaneous equations need to be solved to obtain v, for a
multicell section.The components v, to v, are the corresponding statically indeterminate
St Venant shear stress functions associated with the distortional behavior. Thus v; is the
distortional warping shear stress in mode i for G(da,/dz) =1 .For a multi-cell secﬁon,

the corresponding shear flows (v;4) are obtained from a set of simultaneous equations,

formed as follows.

For a typical cell M in distortional mode i, where i runs from 5 to n,

_ ds er: — ds er: — ds er.
= (il pa J. ;lM +(vih)M<j. ;IM = (Vih) I pTM= J‘ridsperM (5.4)

M-1LM M M. M+1 M
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%

Q
(shear centre)

i

Figure 5. 3: Radial distance 7, for wall element experiencing tangential movement
(Maisel, 1982)

The left hand side is constructed in the same fashion as that of equations 3.11(a),(b) and

(c) in the analysis of St Venant torston, presented in chapter-3. Here, (v;4),, is the value
of distortional warping shear flow (v;4)in cell M for G(da,/dz) =1, h is the wall

thickness and s is the peripheral coordinate in cell M.

perM

The integral on the right-hand side is a measure of warping incompatibility related to
the tangential movements of the statically determinate, cut section, illustrated in Figure
3.2 for a three-cell section. The tangential movements are those indicated in Figure 5.4,

where for unit anticlockwise rotation of A, only the portion ABC moves. Such
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movements are positive if in the positive directions of s,

. and they generate warping
incompatibility at a cut, and represent the shear deformation associated with the particular
mode of distortion.

There is one equation of the above type for each cell, and the solution of the
simultaneous equations gives the distribution of shear flow over the entire cross-section,

such that compatibility is restored at each cut.

LLLLLLLLLLLL L LLL LS/ LE

\ positive

direction

pet

2

Figure 5. 4: Distortion of statically determinate cut section (Maisel,1982)

5.2.2 Relations Between Stresses, St. Venant Torsional Moments in Individual Walls,
Transverse Bending Moments and Deformations of Cross-Section.

Sedlacek(1971) showed that the resultant longitudinal normal stress, f, is given by
f=—Ew'a" (5.5)

where T denotes the transpose of a vector or matrix and = denotes d* /dz* . E is Youngs
modulus of elasticity.

In addition, the superimposed torsional and distortional shear stresses give
v=Gv'a' (5.6)
where the operator  denotes d/dz and G is the shear modulus.

For each wall element m, St. Venant torsion theory states that
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(];Vt)m = Gjmelm
where
(7,..), = St. Venant torsional moment on wall m;
1
J,==b, In (5.7)

=St. Venant torsional moment of inertia of plate of breadth b,, and thickness h,,;
and &, =rate of twist of wall element m.

The individual rates of twist,@', , of the m wall elements are collected together as a

column vector §'={0’}, and this is related to the deformation vector, a’, by the
equation
0'=Ta' (5.8)

where the transformation matrix T, of order mx n, is

Columns of T beyond the fourth contain non-zero terms which reflect the rotations of the
individual wall elements m set up in the various basic distortional modes i. In Figure 5.5,
the

@ values are the changes in slope of chords AB, BD, DE and EA due to the relative
rotation a; between EA and AB, imposed at A, as shown. These values form the ith
column of T.

The diagonal matrix J;of torsional moments of inertia can be defined as:
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[J, 0 0 0]

0 J, 0 0

0 0 .
Jo=| . .. . (5.9)

: 0

[0 0 I ]

—

{

o

S S

Figure 5. 5: Deflected shape in distortion and rotations of chords (Maisel,1982)

The following relation is obtained between the vector of the St Venant torsional moments

T.,,, on individual walls and the deformation vector, a’:
T,,=GJ,60'=GJ\Ta' = GT,a’ (5.10)
where
T =JT (5.11)

To derive the relationship between the transverse bending moments in the walls, and the
deformation vector, a, it is assumed that the torsional moments and longitudinal moments
occurring within the plates can be neglected, and that the transverse bending strength
arises as if there were infinitely many cross-sectional ‘frames’ of inﬁnitesimal breadth
positioned next to one another along the box beam. It is required to evaluate the
transverse bending moments at all nodes of the ‘frame’ of unit breadth (along the beam)

when subjected to unit relative rotation of two adjacent members in distortional mode i as
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in Figure 5.5 (a; =1). These moments can be found by conventional frame analysis. The

internal work done is then given by:

> M_AG, (5.12)
P

where M, is the transverse bending moment at node p due to unit @, andA@, is the

relative rotation of chords meeting at node p, due to unit a,.Thus, at B in Figure 5.5,

AgBi = 0131) - eAB

In general, A6, =6, -6, for adjacent walls (m+1) and (m) in mode i, with 6, measured

positively anticlockwise, and m increasing anticlockwise round the periphery of a cell.

By considering each distortional mode i separately, and the nodal transverse moments

occurring in each mode, the following equation is obtained.
M,=K,A0 (5.13)

where K, is the symmetrical square stiffness matrix giving the transverse moments at nodes,

generated by unit relative rotations , A@, at nodes (the typical element , K _;, of this matrix is the

i’
transverse moment at node p due to the unit relative rotation defining mode i);

A6 is a column vector of relative rotations at nodes;

M, is a column vector of transverse moments at nodes.
Now equation 5.8 gives:

A6 = ATa (5.14)

where AT is obtained from the differences between the appropriate T values to give A@ for

each distortional mode i.
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Therefore,
M, =K, ATa

=ATa (5.15)

where AT, = K,AT (5.16)

5.2.3 Derivation of the Differential Equation

If the beam undergoes a virtual displacement da from its equilibrium position, there is no

change in its potential energy, i.e. the virtual work oW, done by the external loads is
equal to the virtual work oW, done by the internal forces.The differential equation of the

problem can be found by equating oW, to. W,

L
Wy, = [{[(fo£ +v0y)dA +T},50'+ M 5A6}dz (5.17)
0 A4
where
f =normal stress in z direction;
£ =normal strain corresponding to f;
14 =shear stress in the plane of cross-section;
14 =shear strain corresponding to  v;
o =a variation symbol denoting virtual displacement,virtual strain or virtual work;
L=total length of beam;

A= cross-sectional of beam.

If the stresses, strains, moments and rotations are expressed in terms of the displacements,

the equation becomes
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My = [{E [(@") W)W &a")dA+ G [(a') 577 8a")dA+ G(a") (T T)oa’

0

+a’ (AT))" ATéa}dz

L
= j{E(a")T fww"dasa" + G(a') ([75"dA+ T, T)u' +a” (AT,)" ATSa}dz (5.18)
0 A A

Sedlacek (1968) derived the following equation for 6W,,

L
ow,, = J‘{n,,r'Taa —~ In,wTdsperaa'}dz + Y [F,r "oa—Fw'da'l  (5.19)
0 F

sper
where

n, =transverse distributed load;

n,=longitudinal distributed load, varying generally around the perimeter of cross-section,
F, =transverse concentrated load;

F, =longitudinal concentrated load;

r" =a vector associated with loading positions.

Z =summation over all concentrated loads.
F

W, to W, areequal, and integrated by parts and the following summarized notation is
introduced.

C=[C;]= [ww"d4 (5.20)

J=[J;1= [ da+T'T (5.21)
A

B =[B;]1=(AT,)" AT (5.22)

where C,J and B are matrices of section properties in warping, torsion and distortion,

respectively, the following differential equation is obtained:
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ECa"" -GJa"+Ba=n,r" + In,'wdspe, (5.23)

This is the generalized differential equation representing combined bending, torsional and

distortional behavior. Shear lag is not considered.

5.2.4 Orthogonalization of the Basic Co-Ordinates:

The matrix differential equation 5.23 expressed in terms of the displacement vector a,
represents a system of coupled, simultancous differential equations in the basic

displacements components a;,. To simplify the solution, the displacements or

deformations , a;, are to be orthogonalized in such a way that matrices C,J and B attain

diagonal form simultaneously, as much as possible.

5.2.4.1 Orthogonalization of Non-Distotional Displacements :

Sedlacek(1968) and Roik, Carl and Linder(1972) developed the following matrix
differential equation(as described before) for non-distortional behaviour of a prismatic,
thin-walled beam:

S per

ECa-GJ,al =n, + In; w,ds ,, (5.24)
where a, is a vector of orthogonalized displacements at section z , given by

S per

- I a,,(2)dz

S per=0

in which a_,(z) is an integration constant, giving the initial value of a,(z,s ) atthe

per

point s = 0.
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The components a,,a,,a,,0, are shown in Figure 2.3. The longitudinal displacements,
a,,are measured along the centroidal axis of the beam; a,and a, are the flexural

displacements of the points on the shear axis of the beam. 8, is the rotation about the

shear centre.The suffix r in a, denotes “rigid” i,e undistored, form of all cross-sections

on the application of load to the structure.

C, is a diagonal matrix of section properties, given by:

A0 0 0
0 I, 0 0
“=lo 0 1 o
00 0 C,

where

A= area of cross-section;

I = second moment of cross-sectional area about principal x axis;

I,=second moment of cross-sectional area about principal y axis;

C,,, = torsional warping second moment of the cross-sectional area refer to the shear
centre.

The matrix is diagonal because the displacements have been referred to principal axes and

the shear centre, i.e. they have been orthogonalized.
J, is a matrix of shear second moments of cross-sectional area, populated only by the

St. Venant torsional second moment of area, K, , given by:

S O O O
S O O O
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E=Young’s modulus of elasticity
G=shear modulus of elasticity

n, =is a vector of loading defined as

z

P4

S NS

y
t

ext

the components of this vector are shown in Figure 2.4.

S per

In;w, ds ,, is a vector of loading associated with the variable longitudinal load intensity

and is defined by Roik, Carl and Linder(1972) as:

0
s 1 (On, ] 0z).
jn;wrds er = '[ ( nl Z)x S er
d @n, /)y | °
(On,/02).m,,

w, is a vector of orthogonalized co-ordinates of a point on the cross-section, given

by:

1
x
y
a)twr
where x and y are referred to the principal axes as before and w,,, is the normalized

sectorial co-ordinate discussed previously.

The operators '," and"" ,respectively denote the first,second and fourth derivatives with

respect to the axial coordinate z.
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The solution of equation 5.24 yields the following expression for longitudinal normal

stress f, at section z;

4
M.
f, =Z——C” W, (5.25)
i=1 ri

i

where 1 denotes a non-distortional mode of displacement; there are four such modes.

M, is the ith component of the warping moment vector M; at section z

M =" (5.26)

with the components as defined in Figure 2.4

C,, is the element C; of matrix C,

w,; 1s the ith element of vector w,

5.2.4.2 Orthogonalization of Distortional Displacements:

The non-distortional displacements have already been orthogonalized, so that the first
four rows of equation 5.23 correspond to equation 5.24. The remaining rows represent

the distortional modes of behaviour.

Further orthogonalization required is performed in two stages. Firstly, the elements

matrices of C,J and B showing coupling with the non-distortional elements are eliminated
using the transformation matrix K,. This gives matrices C,J and B , respectively.In the

second stage, any remaining non-zero off-diagonal elements of two of these matrices are
eliminated by a transformation matrix, K,, obtained in general by solution of an
eigenvalue problem. Any off-diagonal terms in the third matrix which still remain after

the use of Ky, are neglected. The diagonalized forms of matrices C,J and B are denoted by

C,J andB respectively.
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First stage: Orthogonalization with respect to the non-distortional displacements :

Transformation matrix ,K,, is defined as follows:

1 0 0 0 00 o] 1 ]
0 1 0 0 00 0 X
0 0 1 0 00 0 y
0 0 0 1 00 0 5,”
W=K,w= K, Ko, Ky Ky, 10 O ws (5.27)
Koo Koo Koo Kaw 01 01| we
_Knla Kn2a Kn3a Kn4a O O 1_ L wn N
=w+K . 1+K,¥+K, y+K,0,, (5.28)
The symbol ~ denotes full orthogonalization. For values of j from 1 to 4,
o
0
0
0
K.
K, = 1 (5.29)
’ K6ja
Knja
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K, is a vector of unknown terms forming the jth column of the matrix K. The matrix
K, is calculated from equations 5.30 and 5.31 below, which correspond to the condition

that the off-diagonal submatrices of C are zero.

[wiwldd = [wivldd+K,, (W, dd=0 (5.30)
A A A

for i and j from 1 to 4 and only for distortional modes of W and w. W, is the ith

component of the orthogonalized non-distortional vector W, (equation 5.25)

Written more fully, equation 5.30 becomes

—Csj'— -Ksj'a_
C6j K6ja
+|  |C, =0 for values of iandj from 1to 4 (5.31)
an Knja

Each of the four column vectors K, is obtained from equation 5.31 for the appropriate

value of j. The transformation matrix K, is now known, giving

A 0 0 0
01 0 0 0
0 0 I, 0
o0 0C, O 0 0

_ 0 C.. C C.

C =[C.,1=K.CKT = 3% _ 5.32

B T N A Can e

L O (_:ns EN6 —nn

In addition, Sedlacek(1968) used the transformation
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0 0 0 0
000 O 0
000 O
000 J, J, T
J=KaJK: = _54 _55 js;. (5.33)
0
L jn4 jnS _mx_
As the matrix B refers only to distortional behaviour, it follows that
[0 0 0 0 ]
0 00O 0
0 0 0O
0 000 O O 0
— 0 B, B, B.
B=B= _55 _56 _Sn (534)
O B65 B66 BSn
0
] 0B, By . .. B,|

For a closed box sections, it is known from thin-walled beam theory that the St.Venant

torsional second moment of the cross-sectional area, J,, is significant for such sections,

whereas the torsional warping moment of inertia C,, or (C,,,), is relatively insignificant.

Sedlacek(1971) therefore suggested that, when C and J are evaluated in the first stage
of orthogonalization, only three non-distortional displacements a;,a; and aj(or ay,a, and
a,) be orthogonalized with respect to the distortional displacements using the above
procedure involving warping displacements as in equations 5.27 to 5.31, and that the
fourth non-distortional displacements a4 (twist) be orthogonalized using shear functions

v, defined in equations 5.3 and 5.4, because the shear stress is a more sensitive measure

of the stress state in torsion than in torsional warping stress, for a closed box section. If

66



orthogonalization is viewed as the selection of mutually independent components of the
total stress or deformation state, the best selection is the one in which the components are

the most sensitive possible measures of that state.

This gives the following equation as a substitute for equation 5.31:

Js4 —K‘54a
J64 K;a

+ 0 L =0 (5.35)
_J"4_ _K:4a B

where the second column vector K, is used instead of K,, inequation 5.28.

In general matrices of the following form are then obtained.where x denotes a non-zero

element.
» -
X 0 0
X
0 X X X X
C= e § (5.36)
X X X X
0
L X X X X_
Any non-zero warping stiffness among the terms C,,,Cy, ,.......... C,, are neglected as

being of relatively low structural significance in closed box sections.
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FO .
0 0 0
0
00 0
J= <X 8 (5.37)
0 x x X
0
| 0 x x X |
" -
0 0 0
0
0 0 0
B= o 8 (5.38)
X X X
0
B X X X_

The first stage of orthogonalization thus yields the following differential equation for the

partially orthogonalized displacement vector a.

ECa™ -GJa"+Ba =n, 7" + nwds,, =n (5.39)

where @ =(K7)"a, and 7~ and 7 are the appropriate transformed versions of " and

the load vectors.
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Second stage: Orthogonalization with respect to deformations which are still

coupled after the first stage
The transformation matrices K and Ky, are now defined such that

K=K,K, (5.40)

The use of Ky, transform at most two of the three stiffness matrices C,J and B into the

diagonal form.Sedlacek(1968) analysed single cell, two-cell and three-cell box beams

whose sections were symmetrical about a vertical axis, and found that the second stage of
orthogonalization is necessary only for the three-cell section.He chose C and B as the

two matrices to be orthogonalized, pointing out that the off-diagonal terms of J in his

example were small enough and could be to neglected.

The matrix Ky is required to be such that

~

C=K,CK",
B=K,BK]
J=K,JK"y

where Cand B are diagonal matrices and the non-zero off-diagonal elements of J are

neglected.
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CHAPTER-6

ANALYSIS OF SHEAR LAG EFFECT
6.1 Shear Lag Analysis of Box Girder
6.1.1 Introduction:

The theory presented is general enough to handle loadings causing both longitudinal
bending and torsion, but only longitudinal bending with shear lag will be considered
here, as torsional warping and distortional effects were discussed in Chapter-5.

Roik and Sedlacek (1970) extended the engineers bending theory for thin walled sections
by allowing for shear deformation in the plane of the walls, by introducing additional
internal forces chosen in such a way that their distribution over the section is related the
shear deformation, leading to the definition of a warping function associated with the
shear lag. The capacity of shear deformation can either be considered at discrete points on
the cross-section (such as those at which longitudinal slip might occur elastically at joints
in composite construction), or taken to vary contiﬁiblisly around the perimeter of the
cross-section, reflecting the deformability of plate elements in shear.Suitable warping
functions can be chosen for either case , and the choice can be based on the results of

simple bending theory. or its refinement.

The governing differential equations developed for the shear lag mode of deformation are
uncoupled and are of the same form that for the simple beam subjected to combined
transverse loading and axial tension.The additional internal forces mentioned above can
thus be obtained using statics. It is not necessary to assume an “effective flange width”
in the analysis, but such a quantity can be evaluated latter, once the variation of the stress

over the cross-section has been obtained from the completed shear lag calculation.

At the junctions between flanges and webs, Kuper and Ewald (1977) found that the
stress state can be one of combined shear and transverse tensile stress. They have
developed design proposals for reinforcement to resist these stresses, but these are not

considered in the work by Roik and Sedlacek (1968) .

70



6.1.2 Definition of Shear Lag:

Accoring to the basic assumptions of the simple beam theory, where the cross sections are
assumed to remain plane before and after bending , the stress distribution across the top
flange of a beam is constant. In a wide flanged T or I or Box section , this assumption is
not true except for sections which are far from the point of contraflexure. At the point of
contraflexure the section is subjected to shearing force, but no bending moment. The
zero moment implies that there is no direct stress in the flanges, while transverse shear on
the section indicates that there are horizontal shearing stress reducing in intencity
towards the extremities of the section . For the case of wide flanged I or Box section, this
implies that the horizontal shear flow diminishes to zero at the outer edges of the flanges.
Away from the point of contraflexure, direct stresses are present because of the moment
on the section and therefore the shearing stress gets modified. As for the case of the
simple beam bending theory for beam the horizontal shear flow and direct stresses are
inter-related and they can be visualized as the shear flow injecting direct stresses into the
flange. The build up of these direct stresses resulting from the shear flow is not uniform
across the width of the wide flange, but‘if produces stresses which tail off towards the
extremities, until a distance is attained that is far enough from the point of contraflexure
for the pattern of stresses to have reached a balance which produces uniform direct stress.
This phenomenon of the change of distribution of direct stress are known as shear lag and
it consequently reduces the effectiveness of the area of compression flange.In the design,
consideration of effective flange width is the indirect representation of shear lag
phenomenon.

Positive shear lag: The bending stress in the regions close to webs are necessarily greater
than those in the flange remote from the web as a consequences of shear deformation of
the thin flange plate. This phenomenon is called positive shear lag.

Ref: Lee; Yoo, and Yoon: Analysis of Shear Lag Anomaly in Box Girders, Journal of
Structural Engineering, Vol.128, No. 11, November 1, 2002. ASCE

Negative shear lag: Where the centre line stress exceeds the edge stress in the flange. This

unusual stress distribution is sometimes called negative shear lag.
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Ref: Lee; Yoo, and Yoon: Analysis of Shear Lag Anomaly in Box Girders, Journal of
Structural Engineering, Vol.128, No. 11 , November 1, 2002. ASCE

6.1.3 Method of Shear-Lag Analysis Developed by Roik,Sedlacek(1970) and
Schmackpfe(1972):

6.1.3.1 Choice of Warping Displacement Functions for Shear Lag:

These are chosen for each portion of the cross-section for which a shear lag analysis is
required. Figure 6.1 shows qualitatively the kind of functions that might be selected for
flange stress variation in single symmetrical one,two and three cell cross-sections acting
in longitudinal bending without torsion.If shear lag were considered to be significant in
the webs (as might occur with very thin webs, possibly having longitudinal prestressing)
functions similar to the ones defined in this region could represent shear lag effects in the
webs near the points of introduction of the prestressing forces.The magnitudes of the
various ordinates can be made arbitrary, as they are automatically adjusted in the analysis
when combined with simple bending effects. The units of the warping functions are
defined so as to give the correct stress in the numerical work.
T T g

(a) Single-cell section

= o — o

{b) Two-cell section

Figure 6. 1: Basic warping displacement functions for shear-lag analysis (Maisel,
1982)
In the program summarized in the appendices, parabolic warping functions are used, as

these have been found to give good agreement with the folded plate theory for the
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concrete cross-section investigated by Turner,Rawnsley and Salter (1977).However,
Moffat and Dowling(1976) noted that for steel box girders with stiffened flanges, the
flange stress variation is approximately to a fourth —order curve.As more experimental
evidence becomes available for concrete, the choice of warping functions in shear lag can

be modified, if desired.

6.1.3.2 Derivation of Differential Equation:

Define the basic shear lag warping function w, as

w,={w,}=|_" (6.1)

w

nv

where the suffix v refers to shear lag behaviour.The first four components of w, are the

same as those of w in equation 5.3, and relate to simple beam behaviour and torsional
warping terms. w,, to w,, are (n-4) functions illustrated typically in Figure 6.1. Here n
denotes the total number of deformation modes appropriate to non-distortional and shear

lag behaviour.

Define the basic deformation vector a, as:
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a,={a,}=| " (6.2)

where a, is the vector of orthogonalized non-distortional displacements as in equation
5.24, and a,, to a,, are (n-4) components of displacement, each of which characterizes

the mode of shear lag behaviour corresponding to components w,,to w

ny ?

respectively.

At any point on the cross-section, the resultant longitudinal displacement is
(Roik and Sedlacek (1970):

a(z,5,,,) =-w, a, (6.3)

The resultant longitudinal strain is

£(2,8,,) =—w, a, (6.4)
and the corresponding longitudinal normal stress is

f(z,5,,)=—Ew,a, (6.5)

If consider the continious shear deformation is considered in plate elements(and not the
possible slip at the joints in composite construction), the continuity condition for shear
strain y is:

aa(z’sper) + at(zﬁsper) _
Bs o

per

74



where a,(z,s,, ) is the transverse displacement in the plate element, along the tangent to

per

the cross-sectional periphery at the point (z,s ,,, ).

Schmackpfeffer (1972) quotes Schmidt’s work(1970) as justifying the neglect of

Poisson’s ratio effects, and accordingly a,(z,s,, ) will beneglected here.Hence

per

Ba(z,sper) v
T per’ L, Y 6.6
2 r=G (6.6)

per

where v is the resultant shear stress in the plane of the cross-section due to combined non-

distortional and shear lag behaviour.

Equations 6.3,6.4 and 6.5 result in the variation of f being proportional to that of w,;

Equations 6.6 and 6.3 lead to the variation of v over the cross-section for shear lag effects

only being proportional to that of da/ds,, and therefore to that of ow,/0s,, =Ww,,
where the dot denots partial differentiation with respect to the peripheral co-ordinate s, .

Thus for shear lag only:

v=-Gw a/ (6.7)

In the virtual work analysis to follow, there will be a need for the vector r, of order (nx1),

where,
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cosa

sina

r= 0 (6.8)

The first four components of r, are the same as those for r in equation 5.3 , and they refer

here to the position and direction of the resultant applied loading.

Now consider the beam to undergo a virtual displacement da, from its equilibrium
position. There is no change in the potential energy, i,e the virtual work oW, , done by

the external loads is equal to the virtual work OW,, done by the internal forces.By

equating these two quantities, the differential equation of the problem can be obtained.

The virtual work is found for oW, .

oW, = Lj{ [(f2e +voy)daydz 6.9)

where

f = normal stress in the z direction;

& = normal strain corresponding to f;

v = shear stress in the plane of cross-section,;
y = shear strain corresponding to v;

J = a variational symbol denoting virtual displacement, virtual strain or virtual work;
L= total length of beam;

A = cross-sectional area of beam;
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If the stresses and strains are expressed in terms of displacements, the equation becomes

Wy = [{E [((a})"w,)(w] Ga})dA+ G [((a})" ,) (W] 8a,)dA}dz

L
= [{E(})" [w,wldAda] +G(a,)" [, w]dAda)}dz (6.10)
0 A A
Roik and Sedlacek(1970) derived the following equation for 6W,, ;

L
W, = [tn,r}0a, - [nw]ds,,oa )z + Y [F,r b, - Fw]da)] (6.11)
0 F

S per

where

n, =transverse distributed load;
n, =longitudinal distributed load, in general varying around the periphery of the cross-

section;

F, =transverse comcentrated load,;
F, =longitudinal concentrated load;
r, =a vector associated with loading positions;

Z = summation over all concentrated loads;
F

Equating oW, to JW,_, and integrating by parts and introducing the summarized
notation

C, =[Cy1= [w,wd4 C(6.12)
A

S, =[8;,1= [W,W]d4 (6.13)
A

where C,and S, are matrices of section properties in shear lag warping and shear

stiffness, respectively, the following differential equation is obtained:
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ECa’-GS,a’ =nr,+ |nwds 6.14
vy vy tr'v 17v™ per

S per

This is the generalized differential equation representing the shear lag behaviour.

6.1.3.3 Orthogonalization of the Basic Co-Ordinates:

The matrix differential equation 6.14, expressed in terms of the displacement vector ,a,,

represents a system of coupled, simultaneous differential equations in the basic

displacement components , a;,

As the first four displacement components have already been orthogonalized, the first
four rows of equation 6.14 correspond to equation 5.24. The remaining rows represents

the shear lag modes of behaviour.

Further orthogonalization is performed in two stages.Firstly , the elements of C,

showing coupling with the shear lag elements are eliminated by using of a transformation

matrix K, . (Such coupling will not occur in §, if only the flange shear lag is

considered.)This results in matrices év and §v, respectfully.In the second stage, any

remaining non-zero off —diagonal elements of these matrices are eliminated by a

transformation matrix,K,, obtained by solution of an eigenvalue problem.The

diagonalized form of C, and S, , are denoted by év and §,, respectfully.

First stage: Orthoganalization with respect to the first four displacement

components:

Define transformation matrix, K, as indicated in the following equations:
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1 0 0 0 00 of 1
0 1 0 0 00 o x
0 0 1 0 00 off y
0 0 1 0 0 0l @,,
W =K w o= KSlav K52av K53av K54av 1 O O WSV (6 15)
’ R Kélav K62av K63av K64av 0 1 O W6v
L* " nlav n2av n3av ndav 0 0 ° O__wnv n
= Wav + I<1av‘1 + KZaVE + K}av; + K4av5M (6'16)
For values of j from 1 to 4,
- 0 .
0
0
0
K,
K, =| (6.17)
¢ K6jav
L_Knjav i

where Ky is a vector of unknown terms forming the jth column of matrix K, K, is

calculated using the following equations 6.18 and 6.19, below, which correspond to the

condition that the off-diagonal submatrices of C, are zero.

rer

- [wwldda= [w#ldda+K,, [#,Wd4=0 (6.18)
A A A
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For values of i and j from 1 to 4 and only for shear lag modes of W, and w,. W, is the

ith component of the orthogonalized vector w, (equation5.25).

Written more fully, equation 6.18 becomes

CSjv KSjav
C6jv K6jav

+|  |C, =0 forvalues ofiandj from 1 to 4 (6.19)
_anv 1 L K njav |

is obtained from equation 6.19 for the appropriate

v

Each of the four column vectors K ia

value of j. The transformation matrix K, is now known, giving

A 0 O 0

0 I, 0 0 0

0 0 I, O

00 0¢C, O 0 0
_ 0 C, C C.
Cv = [Ci'v] = KavaKZ;I = __55" _56" _5'“’ (620)

Y C65v C66v C6nv
0
L O —nSv Enﬁv * * ¢ Z:—rmv n

In addition,
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0 0 00

0 0 00 0

0 0 00

0 0 00
S, S S,

S, =K,S,K,, Z 2 " (6.21)
S65v S66v S6nv
0
L §n5v §n6v ¢ ‘ * Ennv a

The first stage of orthogonalization thus yields the following differential equation for the

partially orthogonalized displacement vector a, :

Va4l T = _ - r— =
EC,a’-GS,a) =n,F, + In,wvdspe,—n

s

(6.22)

v

per

where
— T \-1
aV = (Kav ) a v

and 7 =K r,

Second stage: Orthogonalization with respect to deformations which are still
coupled after the first stage.

Transformation matrices K, and K,, are now defined such that
K, =K, K, (6.23)
Use of K, transforms C, and S, into the diagonal form. K, is required to be such that

C, =K, CK! (6.24)

and S =K, S KL (6.25)
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where év and § , are diagonal matrices.

As in the distortional analysis, the requirements in equations 6.24 and 6.25 are met if the
rows [, of matrix K, satisfy the eigenvalue equation

[C,-4,S,1L, =0 (6.26)
for a typical row q, where 4, are the eigenvalues obtained from the condition for a

non-trival solution.

€. - 15,

=0 (6.27)

The governing equation now has the form

where
a,=(K")a, (6.29)
r.=K,r, (6.30)
and
w, =K w, (6.31)

Hetenyi(1946) derived the following equation for an ordinary beam on elastic

foundation,subjected to vertical loading ny and axial tension N;

d‘ d’
EI,‘(}Z—“(ay)—N-‘EZ—(ay)-i-kfdnay =n,

Substituting & ,, =0 gives the following equation :

d* d?
Elxy(ay)—-NE(ay)=ny (632)
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Equations 6.28 and 6.32 are of the same mathematical form, and since equation 6.28 now
represents an uncoupled system, each member of this system can be solved
independently by analogy with equation 6.32, using ordinary beam statics. Figure 6.2

illustrates this, with each shear lag mode having a separate equivalent beam.

||

<NW“W %’ov GS, >

El, or ECv

Figure 6. 2: Beam analogy for shear lag (Maisel, 1982)

6.1.3.4 Relation Between Stresses, Internal Forces and Deformations:

Considering only the shear lag effects, and not the first four mode of simple beam action
and torsional warping, equation 6.28 is solved using the analogy of the beam on the

elastic foundation .

Here the following quantities are required.

Column vector of “shear lag moments” M ,

l

=_ECa" (6.33)

Longitudinal normal stress at section z
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) (6.34)

where f,, is the value of f, inmodei ;
w, is the ith component of the vector w,, ;
5,.,.v is the iith element of matrix C b
The column vector of shear lag shear force, I7v is given by
V,={V,})=M,=-EC,a] (6.35)
The shear lag shear stress , v, ,can be obtained by transforming equation 6.7, using

equations 6.29 and 6.31. Thus

_ T 1 __ ~T ~INT prTrvr ~T~r
v, =-Gw,a,=—Gw, (K, ) K a,=-Gw, a,
n n . .
. ~ ~
ie., > v, =—GY W,a, (6.36)

where v,, is the value of v, inmode i ;

< d .
= W.
v v?
ds .,
o d
ay an

as obtained from the analogous beam calculation.

In equation 6.36, the quantity Ga,, can be specified more explicitly in terms of the loads

on the analogous beam in mode i .

Consider an element of this beam, as shown in Figure 6.3.
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z q dz
1

.

Vi + AVie

68, LI

i, A M, +dM,

-G8y GS,,
A B

lGSu. (&, +dd,)

lﬂu+dﬁu+Aﬂ“+dAz_

Figure 6. 3: Element of analogous beam in shear lag mode i (Maisel,1982)

Small deflection theory is assumed to be valid, and the transverse shear force at section z

is composed partly of GS. a,, which is the transverse component of axial force, GS.

uv iv? iiv?

and V o+ AVwo, where I7r.v0 is the shear force on the analogous beam when the axial

force is zero and AV o is the change in ¥,, when the axial load is applied.The

distributed load of intensity #;, also acts on the element.

Taking moments about A in Figure 6.3 gives

jzw+dd?w"nW(Z%)

~GS, (@, +dd.)dz — (Vo +dV,;)dz — (AV,, + dAV, )dz - M,
=0

Neglecting quantities of second order this goves

dM, -GS, a.dz~V,,dz— AV, ,dz =0

therefore, b= GS, AL +V,, + AV,
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Therefore, in equation 6.36

v, =3, = Y BT+ AT~ M (6.37)
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CHAPTER-7
ANALYSIS OF A SINGLE-CELL BOX SECTION BEAM

7.1 General:

The analysis procedure described in the previous chapters has been applied a numerical
example in this Chapter. Consider a simply-supported single cell box beam over a span of
32 m, which has diaphragms only at the supports, where there is full torsional and
distorsional restraint, but no resistance to warping.At midspan there is a live concentrated

load of 1000 kN over the web as shown in Figure 7.1

1100 kN

A
AN A 2\
L s |
i EYyAiil
I ¥/
1000 kN
4000 6600 4000
D vy X M
I D405 W —— ) (N e
805 1
1760
: 17
\ S ___-__. ! :
5600 '
Section A-A

Dimensions in mm

Figure 7. 1: Loading and geometry

7.1.1 Analysis of simple bending and St. Venant torsional effects:

(a) Calculation of dead and live load moment and section properties:
Assume that the density of concrete=25 kN/m’

Area of cross-section = 8.283 m?
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Total dead load =32%8.283*25

=6626 kN
At midspan, the bending moment My =6626*32/8+1000*32/4
=34504 kN.m
At z=0, shear force V, = (6626+1000)/2
| =3813 kN

The depth of centroid below the mid-line of the top slab: =

((5600*%170*2760)+(2*2805*500*1380))/8.283* 10°
=785 mm

The second moment of area of the cross-section about the centroidal x axis, I, =
(14600*310%/12)+(14600*310*785%)+(2*2805*500%2760%/12)+(2*2805*500*(1380-
785)2)+(5600%170%/12)+(5600%170*%1975%)
I, =9.3146*10"2 mm*

Similarly therefore the second moment of the area of cross-section about centroidal y

axis, I,

I =1.093*10" mm*

y
The bending moment, shearing force and the twisting moment diagrams are shown in

Figure 7.2
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34504

(a) Bending moment diagram(kN.m)

3813
500

813

(b) shear force diagram(kN)
1650

1650

(¢) Twisting moment diagram (kN.m)

Figure 7. 2:Bending moment, shear force and twisting moment diagrams due to
combined dead and live load
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(b) Bending stress due to dead and live load:

By Equation 1.1 gives:

Mxy + Myx
1 I

x y

.flbg =

At midspan, M,=34504 kN.m ; M,=0
Hence, at the mid-line of the top slab
fivg= -2.907 MPa
and at mid-line of the bottom slab
fivg=7.3159 MPa

These stresses are shown in Figure 7.3

-2.907

2907 -2.907

7.31

7.30L59

Figure 7. 3: Bending stress fj,; at midspan section (MPa) from the beam bending
theory

(c ) Shear stresses vypg at the left-hand support:

Insert an imaginary cut in middle of the bottom flange to make it determinate as shown in

Figure 7.4.
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f

cut

Figure 7. 4: Peripheral coordinate Sper and cut in cross-section

The statically determinate shear flows are now determined from equation 3.2 as:

V,(4y)
I

X

ngh =-

Calculation of A_y at different locations of the cross-section:

The positive directions must be the same as those of Sp(Figure 7.4)

At cut, Ty —0 since statically determinate shear flow=0

At C, Z); —  =-(2800*170*1975)= -940100000 mm’ since positive direction in
Figure 7.4 runs from C towards cut.

Similarly, at the mid-depth of web AC, Z; = (-940100000-(2805*0.5*500*(1975-
1380/2))= -1841206250 mm’

The values of Zy- can be determined similarly for the rest of the cross-sections.The

above moments of area are converted to shear flow in accordance with equation 3.2 and

then divided by the thickness to calculate the shear stresses.
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1.285  0.642

Figure 7. 5: Diagrams of shear stresses(MPa) derived using the beam bending
theory at z=0

Statically indeterminate shear flows: To find the statically indeterminate shear flows

in a single cell section, equations 3.3,3.4 and 3.5 reduces to

ds er (vlb h)l
Cugh)y § —2==- d ——ds,, (7.1)

ACDE ACDE

The integral on the right-hand side extends round the periphery of the closed cell, and as
the integrand in antisymmetric about the vertical centre-line, the integral is zero. The
integral on the left-hand side is not equal to zero, hence the statically indeterminate shear

flow in the cell is equal to zero.

7.1.2 St.Venant torsional shear stresses due to live load:

From equation 3.14,

T,
v h —_ vt
Vi) =52

enc

At =0, Ts=1650 kN.m ( Figure 7.2)
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The area enclosed with the midlines of the sides,

Aenc=2760/2*(6600+5600)=16836000 mm*

Therefore from equation 3.14, St.Venant shear stresses can be calculated at different
location of the section. Figure 7.6 shows the St.Venant shear stresses at z=0 on the

positive face of the section.

\I 71 0.098

0.098 —>

0.288

Figure 7. 6: Diagram for St.Venants shear stresses (MPa) at z=0 on the positive face
of cross-section

7.1.3 Analysis of torsional warping by the method of Kollbrunner,Hajdin and
Heilig:

The required section properties are first evaluated:

Sectorial coordinate w,,, :

As shown in Figure 7.7(a), choose the midpoint of the top flange as the position for pole
P and and origin O1 of coordinate sperp .To evaluate w,,,, from equation 4.21, use Sperp as
a temporary coordinate instead of s,... The value of v, is obtained from equations 4.24

and 4.25, as :
2
C — 4A enc
despe,
h

svt
By substituting the above value= 4*(16836000)*/(6600/310+2*2805/500+5600/170)
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=1.732*10"> mm*

and ‘-} CSV!

svt = 2 Aenc h

=514457.277/h mm

The positive directions of v, are shown in Figure7.6. On the left hand side of the

centre-line of the section, the positive directions coincide with those of syep in Figure
7.7(a) and on the right hand side, they are oppose.Hence by the sign convension stated in

connection with equation 4.21, the increment v, ds

sVt

serp 18 POSIitive on the left-hand side

of the section, and negative on the right-hand side.

B A E F
< \:(‘ o1 =/ -
C ] ) D
(a) Coordinate Sperp
-5476480.694 5476480.694

— 5476480.694

-5474 :

— -750269.375
750269.375

(b) Values of w,,, in mm’
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7300
3300 -3300

27300
l\
2800

(c) Values of x in mm

Figure 7. 7: Determination of shear centre position

From geometry of Figure7.7(a), perpendicular distance of P from AC=3248.789 mm

The integration for w,,,, will now be performed, using equation 4.21
At01, w,,,=0

3300
_ J-(O_514457.277)d

At A’ wtwrP 3 1 0 perP

=-5476480.694 mm®

The values of the sectorial co-ordinate, 6, can be similarly evaluated for other sections.

The variations of @,,,, around the section are plotted in Figure7.7(b)

Location of the shear centre:

From equation 4.27 ,

xoP

I

y

Yehe = +¥Vp

From Figure 7.7 and using Simpson’s integration formula gives:

1..,=|xo,,,d4

A
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=2*4000*310/6*(7300+4*5300+3300)*(5476480.694)+ ---------
=-1.045*10"" mm’
Hence, the position of shear centre: =-(-1.045%10'"/1 .093*1014)+(-785)
=172 mm
Hence, the shear centre Q lies at a distance of 172 mm below the centroid or 957 mm

below the midline of the top flange.

Now the sectorial coordinate must be orthogonalised. Using Q as a pole in the &, ,

diagram, and with O1 as the origin of the peripheral coordinate, the following values are

calculated.

30 mQ(ishear centre) /
i

Figure 7.8(a) Shear centre position and s,..p

231 83 80.694

15 -2318380.694
TN A

F
\] -1509619
-2318384.694 2318380.694
D-3429303.98

3429303.98

Figure7.8 (b) Values of «,,, and @,, in mm?

Figure 7. 8: Shear center and normalized sectorial coordinate w,,,
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Figure 7.8(a) indicates the dimensions to be used in the integration for w,,, . Hence by
equation 4.21

AtOL, @,,,.=0
3300
AtA, ,,,= j (957 ——S—Ii‘i‘%%ﬂ)dsw = -2318380.694 mm>
0

Similarly, the values of ®,,,, canbe derived for the rest of the cross-section.

Figure 7.8(b) shows the variation of @,,,,, around the section

The arithmatic check 7,,,, =0 is now applied. From Figure 7.8(b) and 7.7(c), using the
Simpson’s integration method

I,,p= 2*4000*310/6%((7300)*(1509619)+4*(5300)*((1509619-
2318380.694)/2)+(3300)*(-2318380.694))=0

To normalize @, ,

antisymmetric (Figure 7.8(b))

obtain @, from equation 4.30.Since the diagram of @,,,, is

@, = —% Ia),w,QdA is equal to zero. Hence, from equation 4.29
A
By = Dy

i,e., Figure 7.8(b) is also the diagram of the normalized sectorial coordinate, w,,,

Torsional warping second moment of area, C,, :

Torsional warping second moment of area is obtained from equation 4.32 and Figure
7.8(b), using Simpson’s integration method

Cy, = [@*,,d4 =1941*10" mm’
A
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Internal stress-resultants B, ,7,

svt

and T, :

For the given loading and support conditions, the expressions for the above internal
stress-resultants at midspan are obtained from equations 4.6,4.7 and 4.8.

By substituting z=1/2

The equation 4.6,4.7 gives:

T K
B, (1/2) = —Let__ tanp Kl

187719 2

T,1/2)= %(l - —Kl—) just to left of midspan section

19

From equation 4.15,

Ccen
b= C-Cur

cen svt

where C_,, =central torsional second moment of area of cross-section

= a2QdA
A
Where aq is the perpendicular distance from the shear centre at the tangent to the midline
of wall at the point considered.(Figure 4.7 when Q is replaced by P)
From Figure, 7.1 and 7.8(a),

Ceen= (14600*31();(957)2)+(2*2805*500*(3078)2)+(5600*170*(2760-957)2)
=3.194*10

Hence from equation 4.15

K19= 2.185

Using equation 4.16 gives:

C,, =K,C,,=4.243*10" mm®

From equation 4.14
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= [9Cm _ 0.000421mm’"!

18 =l
twr

(Assume the Poisson’s ratio to be 0.15
Therefore G/E=1/2(1+0.15)=0.435)

From equations 4.6 and 4.7

T K
B, (1/2) =——=—tanh ! 1 70110 N.mm?
2K, K, 2
T 1
T,(1/2)="21-—) = 894860373.4 N.mm
2 K,
inh K,/ /2
T,0)=T, [-1- MR 12 1648350000 Nomm

2 K,sinhK g/

From equation 4.8,

cosh K,z
2I<l9 COSh M

T,,(1/2)= 755139626.6 N.mm [here Tx=3300 kN.m]
T,,(0)= 1,650,000 N.mm

Torsional equilibrium:

Here T

svt

+T,, =T, /2

Hence, torsional equilibrium is satisfied.

Torsional warping stresses f, at midspan:

From equation 4.34,

__Btwrwlwr
ftwr - C

twr

=9.227*10%* »_ MPa
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The diagram for w,, is presented in Figure 7.8(b).
Hence at A

f., = -0.213 N/mm?

The values of f,,, for the rest of the cross-sections can be similarly evaluated.
Figure 7.9(a) shows the torsional warping stresses at different location of the section.

Torsional warping shear stresses v, atz=L

From equation 4.19,

dw

wr

_ T dS per
Vor = Low cC -C
cen svt

Substituting the valuesof 7,,,.,C,,,and C

cen svt

gives,

d
v, = 5.165%105% 22 \py

ds per

andat z=0, v, =1.128*%107 *dw,, /ds,,
The term dw,,, /ds ,,, is equal to the slope of the @, diagram (Figure 7.8(b)) in each

segment of the cross-section.The positive directions of sy are shown in Figure 7.4.

Hence, in segment EA(Figure 7.8b)

da,, /ds ., =((-2318380.694)-(2318380.694))/6600=-703 mm
In segment AB, dw,, /ds ,, =957 mm

In segment AC, dw,, /ds ,, =2049 mm

In segment CD, dw,, /ds ,,, =-1225mm

Hence, using equation 4.19, torsional warping shear stresses (v,,.) can be evaluated.
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at segment EA and itis -0.0363 MPa

Similarly, the values of v, can be calculated at different sections along the rest of the
segment.

At z=0, v, is negligible.
Figure 7.9(b) shows the variation of v, around the cross-section.

0.213

0130 N, 0213 N
\lg/ N 0139
021

\ 0.213

0.3T6

-0.316

Figure 7.9 (a) Torsional warping stress(MPa ) f, = at midspan section

0.0494 0.0494
< 0.036 <
0305 \ \ /!
105
-0.063

«— <« <«

Figure 7.9(b) Torsional warping shear stress v, (MPa) on the positive face of cross-
section z=16000mm.

Figure 7. 9: Diagrams of live load stresses f,, ,v,,, (MPa), due to torsional loading

7.1.4 Analysis of distortional effects:

In the single-cell cross-section, there is only one mode of global distortion as shown in

Figure 5.1, and is called mode 5 in the notation of equation 5.2.
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Unit warping function W, and section properties C 55 and .755:

To determine the basic distortion function as, the box section is regarded as a hinged

quadrilateral mechanism, with one side held fixed, one plate is twisted through a unit
angle. Thus the remaining members of the kinematic chain move as well, as shown in
Figure 7.10(a), which represents the single antisymmetric mode of distortion arising in

the symmetric single-cell box section.

In equation 5.3, define the basic distortional function w? as

w! = |r.ds (7.2)
5 5 per

(a) Hinged quadrilateral mechanism.

A E F

- + ——

R G N\ cut
C AN
= D
S

(b) Open section

Figure 7. 10: Distortion of section
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The function can be determined by reducing the closed box section to an open section by

introducing a cut, (Figure 7.10b). Placing the origin of coordinat e,s,,, positive

anticlockwise, and 7, defined as the radial distance from hinge A to the tangent at the
point under consideration, the right hand side of equation 7.2 is evaluated for the segment
ACD only,

as the remainder of the periphery of the cut section is not caused to move tangentially by

substituting #,. =1. The tangential movements considered positive in the positive

direction of s,

For AC, r, =0.
At G, the origin of s

2800

AtD, w{= [2760ds,, from Figure7.1
0

- a0
Irsds por =0 =W

per ?

=7728000 mm?>

At C, integration from G to C against the positive direction of s, gives

wl =-7728000 mm®

For AC, w;’ retains this value, as 7, is zero in this member, and in the stationary

portions of the periphery there is also no increment in wy.

The values of w; over the entire cross-section are shown in Figure 7.11(a)
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-7728000 -7728000

B /"\_E F
-7728000 7728000
N\ t
-7728000 \l\ C D
7728000
(a) Values of w! in mm’
761.755
B A E F
4Y2.288 477288
C
1389.084
(c) Valuesof v, in mm
2513794.417
_A\2513794.417 /
2513794.417

-3838564.075

3838564.075

(c) Values of w, in mm’
Figure 7. 11:Basic distortional warping function
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At the cut, there is a discontinuity , Awg = 7728000+7728000=15,456,000 mm>

This represents a warping incompatibility, and is removed by calculating the unit shear

stress function v, in equation 5.4 and substituting it in equation 5.3 to obtain the

compatible warping function w;. For the single cell section, equation 5.4 becomes:

— dS er
(vsh)cj ; = Aw? (7.3)

therefore substituting the value of Aw; in equation 7.3, gives:

(m =15456000/(5600/170+2*2805/500+6600/310)=236144.324 mm?
ForCD, v, = 1,389.084 mm

Similarly, the values of ¥, can be evaluated for the rest of the sections.
These values of v, are plotted in Figure 7.11(b).

From equation 5.3,
Wy = W5 — I‘—’sds per
At G, (Figure 7.10b)
w, =0-1389.084*0=0
AtDinCD,
w, =-(7728000)-(1389.084)*(-2800)
=3838564.075 mm’

Similarly, the values of w, can be calculated for the remainder of the sections.

Figure 7.11(c) shows the diagram of w, regarded as antisymmetrical about the vertical
centre line of cross-section.

The orthogonalization associated with equations 5.28,5.31 and 5.35 is now performed.

Equation 5.31 has only one row with terms Cy,, C,,, Cs;, C,;, Cy,, C;;, Ky, Ks,, and

K,,,. Instead of C,,,C,, and K, , the terms J,,,J,, and K., are considered for the

closed box sections as discussed in connection with equation 5.35.
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Beginning with the latter group,

Jo = [92,d4 (7.4)
A
using only the first term on the right-hand side of equation 5.21.

Substituting the value of v_, fron equation 4.25 in equation 7.4

Hence, for the top flange AE, v, = 1659.539 mm
For the web AC and DE, v, = 1028914 mm
For the bottom flange CD, v, = 3026.219 mm

Using Simpson’s integration formula, for the closed portion of the section gives,

J o= (6600%310/6)*[6*(1659.539) +------nennn- ]

=1.732*10" mm*, as found previously for C,,

Again, using the first term on the right-side of equation 5.21, and referring to Figure
7.11b

Jsi = [7,9,,d4 (7.5)

A

=6600*310/6*%[6*761.755*1659.539]+--------

=7.951*%10'> mm*

Hence, from equation 5.35,

. J
K., = —-J—“— =-0.459

44

Substituting the values of j=1,2 and 3 in equation 5.31 gives:

G, = stwjdA as in equation 5.20, and the w, diagram is antisymmetric about the
A

vertical centre line of cross-section, as shown in Figure 7.11(c ). The w, and w,

diagrams are a constant ordinate of unity and the y coordinatly, respectively and are
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symmetrical about the vertical centre line, hence C,, =C,, =0.The w,(=X%) diagram,

shown in Figure 7.7(c), is antisymmetric about the vertical centre line, hence by

Simpson’s integration formula,

Cy, = st w,dA
A

=-6.912*10'® mm®
Cy =1, =1.093*10"" mm*

Hence, from equation 5.31, substituting i=j=2,

C
K,,, =-—2= 632 mm
C

22

Equation 5.28 now becomes,

* ~

= _ * % _ *
ws =ws + K5, *X-Kg,, *Ww,,

As the right hand lower submatrices in equations 5.32,5.33 and 5.34 are of order (1x1),
there is no second stage of orthogonalization, and

Wy =W =w; +632*X —-0.459*w, (7.6)
where w,,X and W, are obtained from Figures 7.11(c),7.7(c)and 7.8(b)respectively.

From equation 7.6 , W, can be calculated at different points of the cross-section.

The antisymmetric diagram for w, is shown in Figure 7.12.
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06866
-635980.327

635980. 3279
865.574
-3643070.82 3643070.82

Figure 7. 12: Values of #%; in mm’

The distortional warping second moment of cross-sectional area C ,, will be required for
the calculation of distortional warping stress. Using Simpson’s rule:

Cy,= |W,wsdA

A

=1.781*%10"° mm®

Unit transverse bending moment distribution function m;:

This function is determined for a frame comprising a transverse slice of the box beam,
Imm “wide” measured along the span. To represent the assumed cross-sectional

distortion @, a unit angular deformation is applied as shown in Figure 7.13(a), and the
corresponding transverse bending moment values 7, are calculated, assuming that the

small deflection theory is applicable.
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3300

(a) Deflected shape of frame due to imposed unit angular deformation.
Dimensions in mm (not to scale)

A

29152 KN.mm

6649 kN.mm

N N

(b) Bending moment diagram and reactions for frame loaded by F=10 kN at C.
ordinates plotted on tension face.

Figure 7. 13: Distortional analysis of cross-sectional frame.

Due to symmentry of the frame, the deflected shape is antisymmetric, and half the frame
can be analysed , as indicated in Figure 7.13b. A dummy load F=10 kN is applied at the
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comer (Figure 7.13(b), and the resulting deflections and moments are scaled to
correspond with the unit angular deformation of the Figure 7.13(a). The relative angular
deformations @ are taken as positive when the resulting transverse bending causes

tension on the inner face of the comer angle where the members meet.

Sideway at the level of the load is calculated from Program-A [See appendix-1]

The sideway &, =1237.97 [Computed using the computer program-A,matrix B,
element 1] for F=10 kN.

Therefore, F=26.676 kN , considering E=34.5 GPa.

Using this scaled value of F, the bending moments i, are plotted in Figure 7.14.

777
B R 7\ F

77766

17737

D
17737

Figure 7. 14: Transverse bending moments 7, (kN/mm/mm) due to a unit angular
distortion on frame of unit “width” (Ordinates on tension face)
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Transverse bending stiffness, B, :

-This is the only term of matrix B, which is defined in equation 5.22. It acts as a spring

stiffness in resisting distortion and corresponds to the foundation modulus in the beam-

on-elastic foundation analogy, illustrated in Figure 7.15

F,

G.755 =0 i sts =

pAaN /S /S /7 / 7 X / VARYVAN
32000 mm

~

B, =228348

kN.mnv/mm
Figure 7. 15: Analogous beam on elastic foundation

From equations 5.22 and 5.16,

B=(AL,)"AT

= (AZ)TKtZ
By equation 5.14,
A@ = AT for unit a

Therefore
B=(A0)"K,A0
=AM,

from equation 5.13, where M, refers only to mode 5.

i.€, By = ZmpsAﬁps summed over nodes p.
P

where 71, is the transverse bending moment at node p due to a unit angular distortion

~

as
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and A6, is the relative rotation of the cords meeting at the node p due to a unit @;

As stated in equation 5.12, §55 is the internal work done when unit a; is imposed on the

frame, and is therefore also given by

ds per
EI

trb

Ess = I(ﬁ5)2

(7.7)

where m, has been defined previously as the transverse bending moment (within a

member) due to a unit @; and [, is the second moment of the cross-sectional area of
the frame member in transverse bending.

To evaluate §55 numerically, use Figure 7.14 and Simpson’s integration method.

EB., = [5600/(6*4.094*10%)]* {2*(17737)*=-nvrnmvnmv

=7878019

Therefore, §55 =228,348 kN.mm/mm”width “ of frame with E=34.5 GPa.
Orthogonalization of loading terms:

Consider the general transverse loading vector, n ,with nondistortional components, n,
and n,. These components can be interpreted, respectively, as the product of the load and

the displacement under the load and in its direction, due to the respective unit

displacements a, =1 and a, =1. This is indicated in Figure 7.16aand b for n, and n,.
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4%

(@) n, =ncosa

A

sina

r4 '
) "'ﬂ-<(/aa=@=1
* \ |_-- /

- - —“:
- \I
°s Shear centx)é

\ K
I)_ .

* »
o~ - I ‘ q= r4 92 = r4

-

(C) Appliﬁé tOI'que= n4= nr;

Figure 7. 16: Non-distortional loading components
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For warping torsion, the applied torque is the product of the transverse loading and the
lever arm to the shear centre. This can also be interpreted as the product of the transverse
loading and the displacement under the load and in its direction due to the unit

displacement a,(= 6,) =1, as shown in Figure 7.16(c) for vertical loading.

Thus, for transverse loading n, the non-distortional load components are:
n, =ncosa =n,, -
n, =nsina =n, and

n, =nr, (for vertical loading) can be expressed as 7 =nr"

where r* is defined by analogy with equation 5.3, and r, is the distance from the shear

centre to the line of action of the load. The components n;,n; and ng are already

orthogonalized, as they refer to the principal axes of the cross-section and the shear

centre. Hence n, =n,,n, =n, and n, =n,.

Extending the above interpretation of the load components to the loading in distortional

modes, the loading 7, in the single cell box beam requires consideration of the

*

displacements in mode 5, using the vector 7 =K 7 .

a—

Thus, as in equations 5.28 and 5.35 for w,

*

— * * * L] * *
rg =15 + K, n +Kg,, 1 + K, 1 + K, 7y

This shows that 7, is composed of the basic quantity 7, and the components added to it

by orthogonalization. Similarly, the orthogonalized distortional loading 7, can be put

together as a sum of the components, arising from the displacements under the load n and

its direction due to the unit deformations , a;=1=a, =a, =a, =6,. Thus
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— * * * * * * *

ng =n(rs + K1 +Kg,,r, + Koy 1y + Ko, 1,
— — — * —

=ns+ K ,n +Ks,n,+K,,n, + K, 1,

Now 7 =0 from equation 5.3, so that 77,= 0 for transverse loading. Also, for vertical
loading, n, =0=n,.

As the w, diagram (Figure 7.11c) is antisymmetric and the w,(=y) diagram is
symmetric about the vertical centre line of the cross-section; C, in equation 5.31 is zero

and K., is also zero.Hence, for vertical loading,

ns=ns+K., 7, (7.8)
The component »n, arises from the displacements due to distortion of the cross-sectional

frame, which give rise to moments 7i,.These displacements », are represented in Figure

7.13(a) by the differences between the deflected shape drawn as the solid curve and the
deflected hinged polygon drawn as the dased lines, plus the deflection of the hinged.
polygon in Figure 7.10(a).

From this expression, Sedlacek(1971) constructed an influence line for 7, laterally

moving the vertical load and this can be used to design for distortional effects. As noted
previously, the symbol - may be replaced by ~ , as there is no second stage of

orthogonalization needed.

For the concentrated live loading shown in Figure 7.1, n is replaced by

F, =1000 kN.Also, 7, is now T,, =1000*3300 =3.3*10° KN.mm. K, has previously

been found to be -0.459. For the mode of distortion, a,=1, shown in Figure 7.13a, r; is

zero at A, since the solid and dased deflection shapes coincide at this point, there is no

deflection at point A (Figure 7.10a). Hence, in equation 7.8, using F to represent a

vector of concentrated transverse loading, the component of F in mode 5 is,
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of F,=F,=F, +K., T (7.9)

54a~ ext

Substituting the values in equation 7.9 gives:

F, =-1514754 kN.mm

Use of the beam-on-elastic-foundation analogy to evaluate distortional effects:
The beam and the loading to be considered are shown in Figure 7.15.

The following quantities are required:

Concentrated load: F, = -1514754 kN.mm
Axial load, = GJ,=0

The foundation modulus,
=B,, = 228348 kN.mm/mm

The ﬂexurai rigidity,
EC,, = 6.147%10®° kN.mm*

The end conditions are simply supports, as the end diaphragms are assumed to prevent
distortion but not warping.

Hetenyi (1946) developed the following expressions for deflection a,, moment M, and

shear V, at midspan, for a beam on elastic foundation, loaded and supported as shown in
Figure 7.15.

_F,4 sinhA'1-sin2'1

a, = : : (7.10)
¥ 2kg, coshA'1+cos A1
F . * - *
M, =2 smh/ltl + sm/?,.l (7.11)
424 coshA 1+cosd'l
F
v, = Ty just to the left at midspan (7.12)
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where

F = concentrated load at midspan

1= span
k s, = foundation modulus

ﬂ; 4 kfdn

“V4EI

El= flexural rigidity of beam

Applying equations 7.10-7.12 to the box beam problem, at the section just to the left of
midspan,

Substituting the values of By, and C,; , gives:

._|B -5 -1
A =1 %~ =9.816%10" mm
4EC,,

Al=3.141

From equation 7.10, a, = -0.0004, it is dimensionless, and represents an angle of cross-

sectional distortion in the box beam, corresponding to &, in equation 5.15.
From equation 7.11,

M, =-4206325770 kN.mm* , M, correpond to M
Again V, = F,/2=-757377.049 kN.mm, V, represents the derivative with respect to z of

the bimoment, (Maisel and Roll1974) on distortional warping shear stresses. It

correspond to ¥ 5
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Distortional warping stresses due to live load:

Connection to previous text as f

fs = (7.13)

h

% Z|FZ
z

Using the values of W, given in Figure 7.12 and substituting the values of M s

and C ss » the distortional warping stresses are calculated at different points of the cross-
section.

These stresses are plotted in Figure 7.17(a).

0.3321

_~1-0.15

-0.3321

20.859
0.859

(a) Distortional warping stress  f; at midspan section(MPa)

< <— .0.038

(b) Distortional warping shear stress v, on positive face section z=16000 mm
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0.746 1.942

0.746
1.9 1.472

0.1{/ 0.17

1.472

(¢) Maximum transverse bending stress f,,; at midspan section(extreme fibre
stress) ordinates drawn on the tension face.

Figure 7. 17: Diagrams of live load stresses f;,v; and f,,, (MPa) ,due to distortion
calculated using the beam on elastic foundation analogy

Distortional warping shear stress:

Consider the positive face of the cross-section at z=16000 mm, i.e just to the left of the

midspan applied load.

The following equations due to Maisel (1982) are used for the evaluation of the

distortional warping stresses.

Ve = —r——— 7.14
=T h (7.14)
S=S,-7% (7.15)
ds S
‘75 }:er = (j.é‘i—o-dsper (716)
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Where §50 is the moment of area IWSdA for the statically determinate, section, and will

now be evaluated with the cut at the centre of the bottom flange, as shown in Figure

7.18a.
A H E F
\ cut
| ]
C R Ire!

(a) Statically determinate section

T. 383*10‘T
-1.26¢

8.67*10“

1 709%10'?
-7.527*%10"

2.975*10"?

(b) Values of S 5 in mm*
6.88*10"!

[Tt | 7.52%10"

1.955%10"?

1.651*%10"2

-1.534*10"!
(c) Values of §5 in mm*

Figure 7. 18:Diagrams of moments of area for evaluating distortional warping shear
stress
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Taking the origin of sy, at the cut, the values of 550 Iis calculated.
AtG, S, =0

AtD, S, = 170%*2800%0.5*-3643070.82=8.67*10'" mm* (from Figure 7.1 and 7.12)
50 gur

Similarly, the values of §50 can be calculated for the remainder of the section

Figure 7.18b shows the values of §50 plotted round the periphery of the cross-section.

From equation 7.16,

~

4_dS2° 5 0 =(5600/6%170)[2*8.67% 10! [ --meemmeee [from Figures 7.1 and 7.18b]

per

- =6.679*10" mm*

ds
and P = 6600/310+2*2805/500+5600/170=65.45 [from Figure 7.1]

Therefore, V; = 1.02*10" (from equation 7.16).

Now §5 can be calculated from equation 7.15 and the values are plotted in Figure

7.18(c).

The, distortional warping shear stress are calculated from equation 7.14 and are plotted in
Figure 7.17(b) together with the physical directions in which they act on the positive face

of cross-section at mispan.
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Transverse bending stresses due to live load:

The transverse bending moments M; in each distortional mode are given by equations

5.13,5.14 and 5.15 once a is known. Hence, the transverse bending stress f,,; ate i at

the extreme fibres are

6
Sowi = ?FM ‘ (7.17)

In equation 7.17 , the extreme fibre stresses, f,,,, require a knowledge of the transverse

bending moments, M, at the nodes of the cross-section in the deflected shape
corresponding to mode 5, under the given midspan concentrated load of 1000 kN over

one web. Figure 7.14 shows the bending moments 7, (kN.mm/mm) due to unit angular
distortion a; (Figure 7.13a). Application of the beam-on-elastic foundation analogy has

already given the value of a; at midspan as —0.0004. Hence, from equation 7.17

6 ~
S s h—z(—0-0004)m5- (7.18)

The negative sign indicates that the sense of distortion under the given loading is opposite

to that selected arbitrarily as positive in Figure 7.13(a)
Substituting the values of 7, from Figure 7.14 in equation 7.18, the transverse bending

stress is calculated at different points of the cross-section. Figure 7.17(c) shows the values

of f,.s plotted on the tension face.

7.1.5 Analysis of shear lag effects:

7.1.5.1 Assumption:

Since torsional and distortional effects are not being considered in the treatment of shear
lag, the live loading of Figure 7.1 will be regarded as acting at the vertical centre-line of

cross-section.
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7.1.5.2 Basic shear lag warping function w, and section properties C, and S :

Parabolic warping functions:

Three parabolic warping functions w;,,w,, and w, are chosen to represent shear lag

displacements in the flanges under symmetric downward loading. These functions are
shown in Figures 7.19(a), 7.20(a) and 7.21(a)

-100
_V—!\ =75

<+ -+ < F
B \

(a) Function w;,

T~

-0.0606

(b) Function w,,

Figure 7. 19: Basic shear lag warping functions w,, and w;,,
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-100 -100

-75 75
l\ Sper

A 4

(a) Function w,

0.05

(b)Function w,, (mm'l)

Figure 7. 20: Basic shear lag functions w,, and w;,

Sper

A
A

75 75
100

(a) Function w,,
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7

0714
(a) Function w7v(mm'l)

Figure 7. 21: Basic shear lag warping functions w,, and w,,

[* AV e JA VY

Y

Figure 7. 22: Parabolic function

The ordinates of 100 are arbitrary, and the units are assumed to be dimensionless.

Equation 6.13 shows that w, is required and the functions are calculated using the

following equations .For the general parabolic function in Figure 7.22, with ordinates

Yo»y; and y, , the derivatives are:
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d 1,3 1
Atx, L (-2y +2y —— 7.19
Xo T Ax( 2)’0 Y 2)’1) ( )

dy 1
Atx|, —==—(y, - 7.20
X1 I 2Ax(y2 yo) ( )
dy 1 1 3

At x;, Ey =GV =2 y) (7.21)

These functions are plotted in Figures 7.19(b),7.20(b) and 7.21(b)

7.1.5.3 Evaluation of C:

Using equation 6.12, the elements of C, involving w,,,w,, and w, will now be

determined. Figures 7.19(a), 7.20(a) and 7.21(a) show that these three functions are

symmetric about the vertical centre line of the cross-section, as are w,(=1) at all points of
cross-sections and w, (= y) . From Figures 7.7(c) and 7.8(b), w,(=X) and w,(=Ww,,, ) are

antisymmetric, so that

C52v =0= C62v = C72v = C54v =C64v= C74v

In addition, Cg, =0=C,,, =C,, can be noted, from the range of definition of w;,, w,,

and w,,
The non-zero elements are obtained using Simpson’s integration formula.

Cy, = Wy, wdA =6600%310/6*[0+4*(-100)(1)+0]= -136,400,000 mm’ [from
A

Figure7.1]
Similarly, C,,.C,,, are calculated.

C,;,=6600*310/6*[0+4*(-100)(-785)+0]=1.070*10" mm®>  [J =785]
Similarly Cy,, and C,,, are calculated as:

In evaluating C;,,C,, and C,,, the integrads are fourth order functions, since
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w;,, , W, and w,, are parabolic. For these three functions, the following equations are

used:

¥ Ax 4 Vo +y
e = 2200 + 4y 4y axde 2y (7.22)

The matrix C, is now formed formed. These processes are included in the
Mathematica.See Appendix-1, program-B.

7.1.5.4 Evaluation of S, :

Equation 6.13 will be used, and can be noted that w, in the flanges is either zero or

symmetrical about the vertical centre line of the cross-section, for values of i from 1 to

4. Figures 7.19(b), 7.20(b) and 7.21(b) show that w, is antisymmetric for values of 1

from 5 to 7, so that the non-zero elements of S, are S, ,,S¢, and S,,,,and

S5, = 6600*310/6*[2*(0.0606)’] [from Figure 7.1 and 7.19(b)]
Similarly, the other values of S, can be calculated for the different sections. This would
lead to the formation of the S, matrix.

Now §, matrix is formed.

First stage of orthogonalization:

From equation 6.19,

K, =-S00 = 16.467
C

11

Similarly, the values of the K,,,,K,,, are calculated.
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Here, K, =0=K¢,,, =K1,

C53V

33
Similarly, the values of K;,,K,,;, are calculated.

Kg, =-— =-0.01149
Again, K, =0=K, =K,,,
Now from equation 6.15,K, matrix is formed. These process are included in the
Mathematica.See Appendix-1,Program-B.
Evaluation of C, matrix:
From equation 6.20
QV = Ka'V QV KQTV

Now C, matrix is formed using Mathematica (See Appendix-1, program-B)

Evaluation of S, matrix:
From equation 6.21

§,=K.5,K, =S,
Using Mathematica Program B, find the S, matrix.

7.1.5.5 Second stage of orthogonalization:

Considering only the right-hand lower submatrices, C, and S,
equation 6.27 gives:

IC, -5, |=0

Using the Mmathematica subroutine-C , the eigenvalues are calculated to be:

[{A- 1.3298%10%, {1 >1.9036x10%, {1 - 5.35916x10%)
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Evaluation of vectors:

Subroutines D,E and F [Appendix-1] help evaluate the first,second and the third
eigenvectors.The eigenvectors are as follows:

First eigenvector is [-0.555099,-0.488713,-0.6730711=[1, 0.88, 1.21]=[ 111y 112y 113/]

[from subroutine-D,Appendix-1]

The second eigenvector is [-0.431985, <0.34487, 0.833339]=[1.25, 1, -2.42}=[121v 122y
13v]

[from subroutine-E,Appendix-1]

The third eigenvector is [0.573315, -0.81886 , 0.02789]=[20.55, -29.36 ,1}=[131v 132y
133v]

[from subroutine —F,Appendix-1]

Hence matrix K,, is formed. [Program-B, Output B13]

QOO OCOoOOO
OO OO O+ O
OO OOLOO

QOO+ OO0

From equation 6.23 ,

K, =K, K

v tbvtav

From Program-B[Output- B14],Appendix -1, establish the X, matrix as:
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OO

0

From equation 6.24,

From Program-B[Output- B16], Appendix -1, establish the § , matrix as:

8.283x 106
0.
0.

0.
1.74092
-3.44798
1.33657

0.
1.09037 x 1014
0.

0
0
0.
0

From equation 6.25,

OO

0.

0. 0.
0. 0.
9.315x 1012 0.

0, 1,93915x 1019
-1.45109x 107 0.
1.14682x 106 0.
5.11085x 107 0.

§.v = .K..bv.‘s.v

= OO
OO0

0

16.4675 0. -0.0114953 0. .
19.9606 0. -0.0139337 0. 1.25
-7.66228 0.

OO OO

1

OO OO0

0.88 1.21
1. -2.42

-0.013457 0. 20.55 -29.36

C,=k,C K’

hv=vilby

1.74092

-3.44798

0

1.

1.33657
0

-1.45109x 107 1.14682x10% 5.11085x 107

0.

0

8.34509x10% 3.47766x108 2.69685x 108

3.47766x 108
2.69685x 108

T
_K_bv

2.99942 x 1010
-1.31737x 10° 1.52381x10%3

-1.31737x 109

§~_ , matrix [from Program-B,Output B17,Apendix-1] can be formulated as:

O O OO OO O0Oo

O OO OO OO0

0.
0.
0.
0.
0.

[ I & N )

0.
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6476.06 209.454
0. 209.454 15462.6

0. 32.0744 -257.912 2.84126x10°)

O OO

0.
32.0744
-257.912




Neglecting the small off-diagonal terms, S , 1s a diagonal matrix; the non-zero terms are
dimensionless.

7.1.5.6 Orthogonalization of w, and r,:
From equation 6.31,
‘Z’Sv = K w

—V—V

Using K, [Program-B,Output B14,Appendix-1] matrix, the following three equations are
formed.

W,, =16.4675—0.011495 + w;, +0.88w,, +1.21w,, (7.23)
W, =19.96 —0.013937 +1.25w,, + w,, —2.42w,, (7.24)
W,, = =7.66—0.0134y + 20.55w,, —29.36w,, +w,, (7.25)

The inclusion of the #W(=1) and W(=Y) terms in the above equations means that
Ws,,W,, and W, exist both in the flanges and in the webs.

For the vertical loading on the vertical centre-line of the cross-section, from equations 6.8

and 6.30 with o =7/2,

(= e = =]

o O

0

Therefore, 7, =K ,r

V—v

From the Mathematica Program-B[Output B18], Appendix-1, establish the 7, matrix as
follows:
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O O

0.
-0.0114953
-0.0139337

-0.013457

Orthogonalization of w,

The matrices S, and S, are populated only in their right-hand lower submatrices in
equations 6.13 and 6.21 .This will also be true of S , in equation 6.25. Hence, the terms
involving w,(=1) and W,(=¥) in equations 7.23,7.24 and 7.25 must be omitted when

these equations are differentiated with respect to s, to give w,, which accordingly

exists only in the flanges.Thus:

Wy, =W, +0.88w,, +1.21w,, o 7.23(a)
We, =1.25w,, +w,, —2.42w,, 7.24(a)
Wy, = 20.55v;, —29.36v,, +W,, 7.25(a)

The diagrams of W, ,W,, , W,, and #,,,#,,, #,, obtained using equations 7.23-7.25

and 7.23(a)-7.25(a)are shown in Figures 7.23, 7.24 and 7.25 .

25.49
25 49
—-40. 51 -40,.51

-62.51 x\\ﬁ/ \l -62.51

-6.23

(a) Function 1w,
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0.0606 0.044

' 0.022

0.086

(b) Function #, (mm™)

Figure 7. 23:0Orthogonalized shear lag warping functions (#,, and W)

30.87 30.87
441N\ N A

-235.55 / -69.13

N

-1.55 -7.55

(a) Function W,

0757 lms\
! 0.025
-0.075

\10.1727

(b) Function f?)w (mm’l)

Figure 7. 24:Orthogonalized shear lag warping functions w,, and %
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2933.15 2199.15 2933.15

R 285 | 285 9.1

b4

(b) Function WW (mm‘l)

Figure 7. 25: Orthogonalized shear lag warping functions w,, and W,v
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7.1.5.7 Solution of the analogous beam problem for shear lag effects.
Mode-5 as defined by Maisel (1982)

~

F,=-11.49 kN/mm

s, = —0.00238
16000 mm

| )
e - / kN/mm ;

- EC.=2877*10" kN 32000 mm

>

.

Figure 7. 26: Analogous beam for shear lag analysis in mode 5

Applying the analogy to shear lag mode 5 for the box beam behaviour, the beam and
loading are shown in Figure 7.26. The following quantities are required.Figure 7.19(a)

represents the mode 5 of shear lag behaviour of the box beam.

Concentrated live load = F,=F Jsy  =11.49 kN/mm
Distributed dead load =fl;, =n,Fs, =-0.00238 kN/mm’
Axial load =GS,,, =97189.47 kN/mm’
Flexural rigidity =EC,,, =2.877%10"" kN

Analysis for concentrated live loading:

For the beam of Figure 7.26, the bending moment My at midspan is given by
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M

X

=-9889.475 kN.M

_—11.49 tanh;1><32000
2u 2

where y = J% =0.00058 mm""

—11.49sinh(0.00058 *16000

sinh(0.00058 * 32000)
From the simple beam theory, at z=0,

The values of M| at z=0

~  F
V, =V, ,="=-574TkN /mm
2

y

For the statically determinate single-span beam AV, =0

Analysis for distributed dead load:

The bending moment My at midspan is given
—-0.00238 | 1

*(0.00058)% - cosh(0.00058 *16000)

]=-7045.44 kN.m

— *®
_—0.00238 tanh 0.00058 *16000
0.00058 2

= —4.095kN / mm

M! atz=0

From the simple beam theory, at z=0

V, =V, = s, *16000=-38.08 kKN/mm

At z=0, AI7M =0 for the single-span, statically determinate beam
7.1.5.7 Shear lag stresses in mode S due to live load:

From equation 6.34

M, -
foy = =1, =(-9889.475*1000/8.34%10%)=-0.0011857* #%,, N/mm>

55v

a

~

[C,;, = from program-B,output B16]
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7.1.5.8 Shear lag stresses in mode 5 due to dead load:

From equation 6.34

_ *
fom 2 0aA4T1000, 5 — 00085 *#, N/mm’ (7.27)
5v C Sv v
55v

Diagrams of w,, are shown in Figure 7.23(a)

Substituting the values of w;, in equations 7.26 and 7.27 , the shear lag stresses due to

live load and daed loads at different points on the cross-section can be calculated.These

stresses are plotted in the following Figures 7.27(a) and (b) .

0.0'?4 | 0.048 0.048

0.0074

(a) Longitudinal stresses f,, (MPa) at midspan section due to live load
at mode 5
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0.063

0.053 0.034 N 0.034

g 0.053

0.0053

(b) Longitudinal stresses f;, (MPa) at midspan section due to dead load at mode S.

Figure 7. 27: Diagrams of shear lag stresses (MPa) at midspan section due to live
and dead loads.

Similarly, the shear lag stresses due to mode 6 and 7 can be calculated. Detailed
numerical calculation are shown in the spreadsheet programming sheet[Program-2},see

Appendix-3.

7.2 Computer Programs Developed for Analysis of Simply-Supported Single Cell

Prismatic Box Sections:

The above procedures have been formulated into two computer programs, the first
dealing with shear flow, shear stresses, combined shearing stress, torsional warping
stress, distortional warping stress, maximum transverse bending stress, etc. and the
second program includes shear lag only. The computer programs developed can analyse
simply supported box sections with trapezoidal and rectangular sections, any material
properties, for a unit eccentric loading at midspan, formulate the bending, shear, torsion

,distortion and warping stresses at different location of the section.
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The program has the following features:

(1) The programs can calculate the stresses concerning all structural actions at any

location of the cross-section [Figure7.1]

(2) The programs can handle a single cell box section with both traphezoidal and

rectangular geometry

(3) The programs handle the sections with side cantilever.

4) The programs handle the box sections with only simply-supported support condition.

The analysis consists of the following operations:

(1) Input geometriy , loading and material properties data.

(2)Calculation of flexural stresses by engineer’s bending theory.

(3)Calculation of longitudinal bending and St. Venant torsional shear stresses.

(4) Calculation of torsional warping stresses using method of Kollbrunner,Hajdin and

Heilig.

(5) Calculation of distortional warping stresses, distortional warping shear stresses,

transverse bending stresses using method developed by Sedlacek.

(6) Analysis of shear lag stresses using method developed by Roik,Sedlacek and

Schmackpfeffer.

7.2.1 User interface:

7.2.1(a)Input data for program —1

Input parameters or symbols

Description

Geometric data:

Span length(m)

Top flange width(mm)

Botton flange width(mm)

Cantilever width(mm)

Depth of web vertical (mm)

Depth of web inclined (mm)

Thickness of top flange with side cantilever
(mm)

Thickness of bottom flange (mm)

Geometry data from Figure 7.1

Point load over a web at midspan (kN)

Load data
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Torsional moment (kN.m) From Figure 7.2(c)
Material properties data:
Density of concrete (kN/m”) Given parameter

Poisson’s ratio

Modulus of Elasticity

For distortional analysis:

IGC (mm") Second moment of area of member GC
of Figure 7.13

ICA (mm°) Second moment of area of member CA
of Figure 7.13

IAH (mm®) Second moment of area of member AH

of Figure 7.13

Sidesway at level of load () [Figure 7.13]

From Program-A , Output Matrix A2,
element 1;

Rotation at C from matrix analysis

From Program-A , Output Matrix A2,
element 3

Rotation at A from matrix analysis

From Program-A , Output Matrix A2,
element 4;

7.2.1.(b) Input data for program-2

Input parameters or symbols

Descriptions

Geometric data:

Span length (m)

Top flange width (mm)

Cantilever width (mm)

Bottom flange width (mm)

Top flange thickness (mm)

Web thickness (mm)

Bottom flange thickness (mm)

Live load at flange web junction (kN)

From Figure 7.1

Material data:

Shear modulus of elasticity

Modulus of elasticity

Given data for material properties.

Ordinates of general parabolic function
for shear lag:

Yo

1

Y

Ax for top flange(1/4 th width)

Ax for wy, for cantilever(1/2 width)

Ax for w,, for bottom flange(1/2 width)

From Figure 7.19(a), 7.20(a) and 7.21(a)
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Distance of the cntroid from top flange ()

Total dead load (kN)

A(total cross-sectional area)

1

X

I

y

C,,, (torsional warping moment of inertia)

From program-1[Appendix-2]

From Mathematica analysis:

5

Sss

C. From Program-B Output matrices,
= Appendix 1

£6v

§66v

_C_66

Z7v

C From Program-B Output Matrices,
=77 .

= Appendix 1

_‘5177v

For orthogonalization of basic warping
functions:

w,, at

A and E

C and D

Band F

Between B and A & between E and F

Between A and E

Between C and D

From equation 7.23

W, at

A and E

CandD

BandF

Between B and A & between E and F

Between A and E

Between C and D

From equation 7.24

w,, at

A and E

C and D

Band F
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Between B and A & between E and F

Between A and E

From equation 7.25

Between C and D

w,, at

A (posi)

A (neg)

E (posi)

E (neg)

From equation 7.23(a)

C

D

Between B and A

Between E and F

at

v

W

A (posi)

A (neg)

E (posi)

E (neg)

From equation 7.24(a)

C

D

Between B and A

Between E and F

at

w7v

A (posi)

A (neg)

E (neg)

E (neg)

From equation 7.25(a)

C

D

Between B and A

Between E and F
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CHAPTER-8

RESULTS

8.1 General:

As mentioned earlier the main purpose of this invgstigation was to develop computer
programs that would perform the stress calculations for box sections with different
geometry and loading condition. In these programs it is assumed that diaphragms are
used only at the supports where there is full torsional and distortional restraint, but no
resistance to warping. Between the supports no diaphragms are considered to allow
distortional effects. Live load is located eccentrically on only one web at midspan. The
results were analyzed using the above two compouter programs (Program-1,Appendix 2

and Program-2 Appendix- 3) and the stress charts are developed and plotted as follows.

8.2 Geometry studied :

There are two types of geometry studied here.

!

(a) Box beam span

(b) Trapezoidal section
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(c) Rectangular section

Figure 8. 1: Typical box sections.
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8.3 Flexural stresses:
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Figure 8. 2: Bending stress at midspan from engineers bending theory

From Figure 8.2: The flexural stresses are calculated considering the conventional
bending theory.The results indicate that by increasing the live loading by 50 percent ,the
bending stress increases by 11.6 percent at A & B and 11.47 percent at C.The shear

deformation is not considered in this theory.
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8.4: Statically Determinate Shear Flow vs live loading:
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Figure 8. 3: Statically Determinate Shear Flow Vs Load
Increament

From Figure 8.3, The statically determinate shear flows are plotted with increamental live

loading at different locations of the section.The study shows that by increasing the live

loading by 50 percent, the shear flow will increase 6.5 percent in all location of the cross-

section (Figure 8.3)
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8.5 Statically determinate shear flow vs variable span:
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Figure 8. 4: Statically Determinate Shear Flow Vs Span Of Trapezoidal Section

From Figure 8.4 the statically determinate shear flows are plotted with variable span. In
this case the results indicate non-uniform increaments of shear flows at different
locations of the cross-section. The results show that by increasing live loading by 56.25
percent, the shear flow increases by 48.87 percent at A on AE, by 22.29 percent at A on
AC, by 35.6 percent at the middle of AC and by 48.87 percent at C.
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8.6 Conventional Shearing Stresses:

—&—A on AE —i— A on AC =& Mid. AB ——Md. AC —¥—AtC
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Live load [kN]

Figure 8. 5: Shearing stress in bending calculated by engineers bending theory at z=0.

From Figure 8.5 The conventional shearing stresses are plotted with variable live

loading.The study shows that by increasing live loading by 30 percent, the corresponding
increamental shearing stresses are 7.9,8.13, 9.8, 8.27 and 8.29 percent at A on AE, A on

AC, middle of AB, middle of AC and C, respectively.
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8.7 :Shearing stresses due to St. Venant’s torsion theory:
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Figure 8. 6: Shearing stresses due to St. Venant torsion theory at z=0.

From Figure 8.6: The theory of St. Venant torsion (pure torsion) assumes that there is no
constraint on warping.Thus only shear stresses arise in the cross-section and there are no

longitudinal warping stress as the torsional moments are considered as two equal and
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opposite, one at each end. The St. Venant torsional stresses are usually taken as constant
- through the wall thickness of the closed box, although a more refined calculation, which
considers a linear variation through the wall thickness.The St. Venants torsional shearing
stresses at different locations of the cross-section are plotted (Figure 8.6).The results
indicate that by increasing the torsional moment by 81.82 percent ,the corresponding
increments of St. Venant’s shearing torsional shearing stresses at A on AE, C on AC, C
on CD and E on DE are 81.64, 81.64, 87.14 and 81.6 percent, respectively.

8.8: Maximum transverse bending stress:
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Figure 8. 7: Maximum transverse bending stress at midspan with constant torsional
moment.
From Figure 8.7:

The maximum transverse bending stresses are plotted for a variable span of a simply-

supported box beam.The results indicate that if the box beam span is more than 40 m
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there is no change of maximum transverse bending stresses at all location of the cross-
section, i,e., it will remain constant .

8.9:Maximum transverse bending stresses due to variable torsional moment:
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Figure 8. 8: Max transverse bending stress at midspan

From Figure 8.8,The maximum transverse bending stresses due to the variable torsional
moment at midspan are plotted.The transverse bending stresses are increased with
increasing torsional moments.The study shows that by increasing of torsional moment by

81.8 percent, the corresponding transverse bending stress will increase at A on AE is 50
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percent, at A on AC the increase is also 50 percent, C on CD ( 49.65 percent) and C on
AC (47.05 percent.)

8.10: Torsional warping shear stresses:
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Figure 8. 9: Torsional warping shear stress at midspan.

When torsional warping arises, the pattern of warping displacements is such that the

longitudinal torsional warping stresses vary both around the cross-sectional perimeter and
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along the beam. Hence, longitudinal shear stress arise, and these cause complementary
shear stresses to occur in the plane of the cross-section.These are called torsional
warping shear stress.The torsional warping shear stresses are taken as constant through
the wall thickness in the torsional warping theory. In the torsional warping of a closed
section beam, the warping stress gives rise to shear deformations. It has been shown by
Von Karman and Chein (1946), Heilig (1971), Benscoter (1954), Umansky (1948) and
Dzhanelidze and Panovko (1948) that the influence of this warping shear deformation
must be taken into account in the torsional warping analysis of a closed section beam.
Stiissi (1965) pointed out that when warping shear deformation is considered in torsional
warping analysis, the shear centre of the cross-section is no longer a fixed point and the
shear axis or line joining the shear centres of the cross-sections is a curved line.Here it

has been considered shear deformation.

The results indicate that by increasing the torsional moment by 81.8 percent, the torsional
warping shear stresses increases on AB,AC,CD and AE by 80.16 ,81.47,82.53 and 83.33

percent, respectively.
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8.11:Distortional warping shear stresses:
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Figure 8. 10: Distortional warping shear stress at midspan

As with torsional warping, the pattern of this displacement is such that the longitudinal
distortional warping stresses which arise, vary both around the cross-sectional perimeter

and along the beam. Hence, longitudinal shear stress arise, and these cause
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complementary shear stresses to occur in the plane of the cross-section.These are called

distortional warping shear stresses.

The distortional warping shear stresses are plotted with increamental torsional
moment.The Study shows that by increasing torsional moment at midspan by81.8 percent
at midspan, the distortional warping shear stresses will increase at E on ED, E on EA,
middle of EF, middle of DE, D on CD, middle of AE and middle of CD by 80.72, 81.9,
81.5, 82.14, 81.57, 80.72 and 81.56 percent, respectively.

8.12:Torsional warping stresses:
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Figure 8. 11: Torsional warping stress at midspan section
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The elastic resistance with which the structure oppose the distortional deformation can be
subdivided into warping resistance and torsional resistance;these known as torsional
warping stress.The torsional warping stresses are plotted against variable torsional
moments.The results indicate that by increasing the torsional warping by 81.8 percent,
the torsional warping stress increases at A,C,D,E,B and F by 82.15, 81.9, 81.9, 82.15,
82.01 and 82.01 percent, respectively.

8.13:Distortional warping stresses:
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Figure 8. 12: Distortional warping stress at midspan

The distortional effects comprise distortional warping and transverse bending, and arise in

concrete box beam construction as a result of the usual practice of inserting diaphragms
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only at the supports, or at large spacing within the span. These effects need to be
superimposed upon the effects of longitudinal bending and torsional warping.

If distortion is not prevented, distortional warping of a thin walled box beam always
occurs under torsional load which arise in the bridge design practice,irrespective of the
cross-sectional properties.In the distortional analysis of a box beam, Richmond (1969)
shows that when the cross-section has a fairly low resistance to distortion, shear
deformation is not important.He states that an increase in the distortional stiffness leads to
shear deformation which is more important, and in the limiting case of a rigid cross-
section, a solution can only be found by considering the shear deformation.

The distortional warping stresses are plotted against variable torsional moments.The
results indicate that by increasing torsional moments at midspan by 81.8 percent, the
distortional warping stresses increases at A,C,D,E,B and F are 80, 81.6, 81.6, 80, 81.6

and 81.6 percent ,respectively.

157



8.14: Different stresses at A and C:
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Figure 8. 13: Different stresses at A
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Figure 8. 14: Different stresses at C

Table 8.1 compares of all stresses at points A and C on the cross-section of Figure 8.1(a)

Table 8.1: Comparison between Figure 8.13 and 8.14

Stresses

% increase in
Torsional Moment

Corresponding %
increase at A

Corresponding %
increase at C

Torsional warping
stress

81.8

82.15

81.96

Distortional warping | 81.8 80 81.6
stress

Transverse bending | 81.8 50 49.65
stress at A on AE

Transverse bending | 81.8 50 47.05
stress at A on AC
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8.15: Effect of flange and web thickness on shear flow

The shear flow at different locations of the cross-sections are calculated for different top

flange and web thickness for the cross-section (Figure 7.1) using the computer Program —

1[Appendix-2].These stresses are summarized in Tables 8.2(a) and 8.2(b).

Table 8.2: Effect of flange and web thickness on shear flow

Table 8.2(a)
Position Thickness 310 Thickness 350 Percentage Percentage
mm(top flange) (top flange) increase(Flange | increase
thickness) (Shear
flow)
Shear flow N/mm Shear flow N/mm
A 327.97 354.18 12.9 7.99
B -199.23 -214.79 12.9 7.81
C 384.83 403.90 12.9 4.95
D -384.83 -403.90 12.9 4.95
Table 8.2 (b)
Position Thickness Thickness Thickness Percentage | Percentage
170mm(Web) 250 300 increase(Web | increase
(Web) (Web) thickness) (Shear
flow)
Shear flow Shear flow Shear flow
N/mm N/mm
A 327.97 329.44 332.26 76.47 1.3
B -199.23 -199.74 -201.23 1.00
C 384.83 477.009 524.48 36.28
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8.16: Effect of top flange thickness on stresses of different location of the cross-
section.

The shearing stress,torsional warping stresses,distortional warping stresses and transverse
bending stresses are calculated for different top flange thicknesses for the cross-section
(Figure 7.1) using the computer Program —1{Appendix-2].These stresses are summarized
in Tables 8.3(a) to 8.3(e).

Table 8.3: Effect of top flange thickness on stresses of different location of the cross-
section.

Table 8.3 (a) stresses at A

Distortional.
Top flange| Shearing stress Torsional Warping |Transverse
thickness warping Stress{ Stress bending
mm MPa MPa MPa [stress(MPa)
310 1.216 -1.28 -0.214 -0.15 1.94
350 1.15 -1.23 -0.19 -0.12 1.64
380 1.11 -1.19 -0.17 -0.10 1.18
400 1.08 -1.16 -0.169 -0.09 1.25
Table 8.3 (b) stresses at B
Distortional
Top flangel Shearing stress Torsional Warping |Transverse
thickness warping Stress| Stress bending
mm MPa MPa MPa |stress(MPa)
310 -0.64 0.139 -0.33
350 -0.61 0.11 -0.26
380 -0.59 0.1 -0.22
400 -0.58 0.09 -0.20
Table 8.3 (c ) stresses at C
Distortional.
Top flange| Shearing stress Torsional Warping | Transverse
thickness warping Stress| Stress bending
mm MPa MPa MPa istress(MPa)
310 2.55 0.316 0.86 1.47
350 2.66 0.311 0.749 1.10
380 2.74 0.308 0.68 0.73
400 2.8 0.306 0.64 0.73
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Table 8.3 (d ) stresses at D

Torsional |Distortional
Top flange warping | Warping | Transverse
thickness | Shearing stress Stress stress bending
mm MPa MPa MPa stress(MPa)
310 -1.97 -0.316 -0.86 1.47
350 -2.08 -0.311 -0.749 1.10
380 -2.17 -0.308 -0.68 0.73
400 -2.22 -0.306 -0.64 0.73
Table 8.3 (e)stresses at E
Distortional.
Top flange [Shearing stress Torsional Warping  [Transverse
thickness warping Stress|Stress bending
mm MPa MPa MPa stress(MPa)
310 1.28 -0.89 0.213 0.156 1.94
350 1.23 -0.87 0.191 0.12 1.64
380 1.19 -0.85 0.177 0.10 1.18
400 1.16 -0.84 0.169 0.09 1.25

8.17: Effect of bottom flange thickness on stresses of different location of the cross-

section.

The shearing stress,torsional warping stresses,distortional warping stresses and transverse
bending stresses

section (Figure 7.1) using the computer Program —1[Appendix-2].These stresses are

summarized in Tables 8.4(a) to 8.4(¢).
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Table 8.4: Effect of bottom flange thickness on stresses of different location of the

cross-section.

Table 8.4(a) stresses at A

Shearing stress
Bottom Torsional |Distortional
flange warping | Warping | Transverse
thickness MPa Stress stress bending
mm onAE on AB MPa MPa stress(MPa)
150 1.22 -1.28 -0.216 -0.15 1.94
170 1.216 -1.28 -0.213 -0.15 1.94
190 1.216 -1.28 -0.21 -0.15 1.45
250 1.22 -1.28 -0.198 -0.13 1.45
Table 8.4(b)stresses at B
Bottom Torsional| Distortional
flange warping | Warping | Transverse
thickness Shearing stress Stress stress bending
mm MPa MPa MPa stress(MPa)
-0.64 '
150 0.12 -0.34
-0.64
170 0.139 -0.33
-0.64
190 0.15 -0.32
-0.64
250 0.18 -0.293
Table 8.4(c ) stresses at C
Bottom Torsional [Distortional
flange Shearing stress warping | Warping | Transverse
thickness Stress stress bending
mm MPa MPa MPa stress(MPa)
150 2.708 0.358 0.89 1.29
170 2.55 0.316 0.859 1.47
190 2.42 0.28 0.82 1.23
250 2.10 0.198 0.701 1.63
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Table 8.4(d)stresses at D

Bottom Torsional |Distortional
flange warping | Warping | Transverse
thickness Shearing stress Stress stress bending
mm MPa MPa MPa stress(MPa)
150 -2.05 -0.358 -0.89 1.29
170 -1.97 -0.316 -0.859 1.47
190 -1.90 -0.28 -0.82 1.23
250 -1.71 -0.198 -0.701 1.63
Table 8.4(e)stresses at E
Bottom Shearing stress | Torsional |Distortional
flange MPa warping | Warping | Transverse
thickness Stress stress bending
mm EF AE MPa MPa stress(MPa)
150 1.28 -0.90 0.216 0.15 1.939
170 1.28 -0.89 0.213 0.15 1.47
190 1.28 -0.90 0.210 0.15 1.45
250 1.28 -0.90 0.198 0.13 1.45

8.18: Effect of L/B ratio ,web inclination by using different geometry[Rectangular

section]:

The shear flow, combined shearing stresses, torsional and distortional warping stresses
and the maximum transverse bending stress values are calculated for different span-flange

width (I/B) ratios for the rectangular section (Figure 8.1(b)) using the computer Program-

1 (Appendix-1). These stresses are summarized in Tables 8.5(b) to 8.5(f).
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Table 8.5: Effect of L/B ratio ,web inclination by using different

geometry[Rectangular section]

Table-8.5 (a) Geometry for Rectangle section

Span (m) Total width Top and Cantilever | Vertical web L/B
(mm) bottom (mm) (mm)
flange
width(mm)

27.4 16000 6000 4000 2760 1.71
32 14600 6600 4000 2760 2.19

35 15000 7000 4000 2760 2.33
27.4 10800 5640 2580 2760 2.53

Table-8.5 (b) stresses at A

L/B Shear flow Combined Torsional | Distortional | Maximum
(N/mm) shearing stress warping | Warping | Transverse
(MPa) stress stress Bending
(MPa) (MPa) Stress
, (MPa)
AE AC AC AE
1.7125 | 264.21 | -352.73 -1.13 1.01 -0.221 -0.18 2.139
2.19 327.47 | -396.33 -1.27 1.20 -0.203 -0.18 1.94
233 371.41 | -424.88 | -1.37 1.33 -0.192 -0.18 1.83
2.53 276.51 |-252.49 | -0.81 1.06 -0.216 -0.3 2.27

Table-8.5 (¢) stresses at B

L/B Shear flow Combined shearing | Torsional | Distortional | Maximum
(N/mm) stress (MPa) warping | Warping | Transverse
stress stress Bending
(MPa) (MPa) Stress
(MPa)
1.712 -176.36 -0.568 0.1215 -0.429 -
2.19 -198.16 -0.639 0.095 -0.403 -
2.33 -212.44 -0.68 0.08 -0.387 -
2.53 -126.24 -0.407 0.045 -0.581 -
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Table-8.5 (d) stresses at E
L/B | Shear flow (N/mm) [ Combined Torsional | Distortional | Maximum
shearing stress | warping | Warping Transverse
(MPa) stress stress Bending
(MPa) (MPa) Stress
(MPa)
AE DE DE AE
1.712 | 352.73 | -264.21 |-0.69 1.137 | 0.2215 0.429 2.139
2.19 39633 |-327.47 |-091 1.27 |0.203 0.403 1.94
233 42488 |-3714 -1.06 1.37 10.192 0.387 1.83
2.53 25249 |-276.51 |-0.72 0.814 | 0.216 0.58 2.276
Table-8.5 (e) stress at C
L/B Shear | Combined shearing | Torsional warping | Distortional | Maximum
flow stress (MPa) stress Warping | Transverse
(N/mm) (MPa) stress Bending
(MPa) Stress
(MPa)
1.712 | 345.62 2.326 0.3179 0.998 1.174
2.19 423.48 2.75 0.315 0914 1.06
2.33 478.18 3.06 0.3115 0.87 1.007
2.53 306.16 2.11 0.3409 0.983 1.25
Table-8.5 (f ) stresses at D
L/B Shear Combined Torsional warping | Distortional | Maximum
flow shearing stress stress Warping Transverse
(N/mm) (MPa) (MPa) stress Bending
(MPa) Stress
(MPa)
1.712 | -345.62 -1.74 -0.317 -0.998 1.174
2.19 -423.48 -2.22 -0.315 -0.914 1.06
2.33 -478.18 -2.56 -0.3115 -0.870 1.007
2.53 -306.16 -1.49 -0.3409 -0.983 1.25
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8.19: Effect of L/B ratio ,web inclination by using different geometry[Trapezoidal
section]:

The shear flow, combined shearing stresses, torsional and distortional warping stresses
and the maximum transverse bending stress values are calculated for different span-flange
width (L/B) ratio for the trapezoidal section (Figure 8.1(a)) using the computer Program-1
(Appendix-1). These stresses are summarized in Tables 8.6(b) to 8.6(f).

Table 8.6:Effect of L/B ratio , web inclination by using different

geometry[Trapezoidal section]

Table-8.6 (a) Geometry for Trapezoidal section

Span | Total | Top flange | Bottom flange | Cantilever | Inclined | Vertical | L/B
(m) | width [ width(mm) | width(mm) (mm) Web web
(mm) (mm) (mm)

27.4 | 15000 7000 5600 4000 2847 2760 1.82
32 15000 7000 5600 4000 2847 2760 2.13
32 | 14600 6600 5600 4000 2804 2760 2.19
35 14600 6600 - - 5600 4000 2804 2760 2.39

27.4 | 10800 5640 5600 2580 2760 2760 2.53

Table-8.6 (b) stresses at A
L/B Shear flow (N/mm) | Combined shearing | Torsional | Distortional | Maximum
stress (MPa) warping Warping Transverse
stress stress Bending
(MPa) (MPa) Stress
(MPa)
AE AC AC AE
1.82 | 302.91 -346.15 | -1.11 1.13 -0.205 -0.16 1.83
2.13 | 346.30 -395.72 | -1.27 1.27 -0.205 -0.15 1.83
2.19 |[327.97 -398.46 | -1.28 1.216 |-0.213 -0.15 1.94
2.39 | 354.67 -4309 | -1.39 1.30 -0.213 -0.14 1.456
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Table 8.6 (c) stresses at B

L/B Shear flow | Combined shearing Torsional warping Distortional Maximum
(N/mm) stress (MPa) stress Warping stress | Transverse
(MPa) (MPa) Bending
Stress
(MPa)
1.82 -173.07 -0.558 0.137 -0.344
2.13 -197.86 -0.64 0.137 -0.314
2.19 -199.23 -0.64 0.139 -0.33
2.39 -215.45 -0.695 0.139 -0.317
2.53 -126.36 -0.407 0.047 -0.57
Table-8.6 (d) stresses at E
L/B Shear flow (N/mm) Combined shearing Torsional Distortional Maximum
stress (MPa) warping | Warping stress | Transverse
stress (MPa) Bending
(MPa) Stress
o (MPa)
AE DE DE AE
1.82 346.15 -302.91 | -0.82 1.11 0.205 0.344 1.83
2.13 [395.72 -346.30 | -0.96 1.27 0.205 0.314 1.83
2.19 |398.46 -327.97 | -0.89 1.28 0.2139 0.332 1.94
239 | 43091 -354.67 | -0.98 1.39 0.2139 0.317 1.456
2.53 [252.73 -275.83 | -0.71 0.815 | 0.2165 0.577 2.27
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Table-8.6 (e) stresses at C

L/B Shear flow | Combined Torsional | Distortional | Maximum
(N/mm) shearing stress | warping | Warping Transverse
(MPa) stress stress Bending
(MPa) (MPa) Stress
(MPa)
1.82 339.73 2.27 0.313 0914 1.56
2.13 388.38 2.56 0.313 0.8337 1.56
2.19 384.83 2.55 0.316 0.859 1.47
2.39 416.17 2.73 0.316 0.823 1.104
2.53 304.79 2.105 0.341 0.981 1.26
Table-8.6 (f ) stresses at D
L/B Shear flow Combined Torsional | Distortional | Maximum
(N/mm) shearing stress warping Warping Transverse
(MPa) stress stress Bending
(MPa) (MPa) Stress
, (MPa)
1.82 -339.73 -1.72 -0.313 -0.914 1.56
2.13 -388.38 -2.005 -0.313 -0.833 1.56
2.19 -384.83 -1.975 -0.316 -0.859 1.47
2.39 -416.17 -2.159 -0.316 -0.823 1.104
2.53 -304.79 -1.48 -0.341 -0.981 1.26
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8.20: Shear lag stresses:
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Figure 8. 15: Shear lag stresses

Only shear lag stresses due to the live load along the width of the top flange are
plotted. The study shows that for live load 1000 kN, the shear lag stresses is almost 2

percent for combined dead and live load stresses at the midspan section.
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8.21 Effect of Flange Thickness on Different Stress:

8.21.1 Effect of top flange thickness:

Considering geometry ( Figures 7.1) for an eccentric loading of 1000 kN at midspan,
study shows that with increase of top flange thickness, the shearing stresses increase at
A,B and E.Consequently the shearing stresses decreases at C and D as these locations are
on the bottom flange. Torsional warping stresses and distortional warping stresses
decrease at A,B,C ,D and E with increase of top flange thckness.The ratio of bottom
flange thickness and top flange thickness varies between 0.54 to 0.425.

8.21.2 Effect of bottom flange thickness:

Considering the geometry described in Figure 7.1 with 1000kN eccentric loading an
increase of bottom flange thickness does not affect the shearing stresses at A,B and E.
Also, shearing stresses at on C and D decrease with an increasing of bottom flange

thickness. The ratio of bottom flange thickness to top flange thickness varies 0.48 to 0.8

| —#—AonAE ——B —A—C —#—D —M—EonEF|
i i
25 :
g 1.5 |
a 1.
@
&
[
2 05
7]
o
1 1 1 2 210 220 2 2
g -0.51 &y ] 30 L
Q
&
15 )
|
254 ] l
Bottom flange thickness(mm)

Figure 8.16:Variation of shearing stresses with bottom flange thickness ( constant
top flange thickness)
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Figure 8.17: Variation of torsional warping stresses with bottom flange thickness
(constant top flange thickness)

|—¢—Aon AE —@—B —A—C ——D —¥%—EonEF

1
1
I

0.8

0.6

04

0.2

Y
l&

1& T
-02 T 1 T | 1 1
F

-0.4

-0.6

Distortional warping stresses(MPa)
o

-0.8

11 !
R - 1

Bottom flange thick. (mm)

Figure 8.18: Variation of distortional warping stresses with bottom flange
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8.22 Effect of /B ratio on Different Stresses:

Different stresses at A for different L/B ratio, geometry shown in Table 8.5(a)
Rectangular Section
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Figure 8.22: Stresses at A with different L/B ratio(Rectangular section)
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Figure 8.23: Stresses at B with different L/B ratio (Rectangular section)
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Different stresses at C for different L/B ratio, geometry shown in Table 8.5 (a)
Rectangular Section
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Figure 8.24: Stresses at C with different L/B ratios (Rectangular section)

From Figure 8.22-8.24, it can be noted that in the rectangular section at point B,
combined shearing stresses and torsional warping shear stresses decrease with an
increasing L/B ratio with a constant cantilever length. If the cantilever length decreases,
the stresses start increasing.Distortional warping shear stresses increase with increasing
L/B ratio with a constant cantilever length, similarly, if the cantilever length decreases,
the stresses start decreasing.At point A, torsional warping stresses and combined shearing
stresses decrease with an increasing L/B ratio with constant cantilever length.If the
cantilever length decreases, the above stresses start increasing.At C, torsional warping
shear stresses increase with an increase in the L/B ratio with constant cantilever length.If
the cantilever length decreases, the stresses start decreasing.Also the distortional warping

stresses, maximum transverse bending stresses decrease with an increasing L/B ratio.
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8.23 Calculation of deflection:

For years, transverse flexure problem of box girders has been a subject of considerable
research (Barker and Puckett, 1997; Schlaich and Scheef 1982) To summarize, there are
several methods listed.

For an isotropic plate subjected to the transverse distributed load q, the equation

governing the bending is given by (Reddy 1999)

4 4 4
D(a Zv+2 62w2 +a Zv

Ox ox“oy- Oy
where D = Et,> /12(1- 4?)

)=¢ 8.1

Navier’s Method

The solution of equation 8.1 in the case where a rectangular plate with simply supported
boundary conditions can be obtained using Navier’s method (Reddy 1999). In Navier’s
method, the displacement and load are expanded in trigonometric series. The choice of

these functions is restricted to those that satisfy the boundary conditions of the problem.

The simply supported boundary conditions are met by the following form of the
transverse deflection;

W)=Y 5" W, sin___ml’“ Sinl;ﬁ 82

where b= width of the top slab and I=span length.

Levy’s Method:

The solution of equation 8.1 for a rectangular plate with simply supported edges along
x=0, x=1, and the remaining two edges are free, simply supported, or clamped, can be
obtained using Levy’s method (Reddy 1999). The solution to the problem is represented

as

w(x,y) = Z; W, (y)sin % 8.3

According to the codes and specifications (e.g., National Code and Specification 1985),
the tire loads on pavement are distributed on the top slab with a rectangular configuration

u x v .The intensity of the load on that area is g=P/uv.
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The above two equations can be solved separately using Navier’s method and Levy’s

method. The superposition of the two solutions will give us

2 )
w(x,y) = ! ZL{ E, (- Py sinhmzy—nﬂysinhn;zy+cothﬂnf;—0)—cosh27m—))

27*D i n? sinh? B, l )
,B cosh 3, sinh ™ . 1 nny cosh n;zy)}Sin nmx
smh B, l smh,Bn l l
16P sin nmg sin m]sin nm sin ma
Z Z l b 21 2b sin nnx Sin m7ny
n' Sy “n=1 eim=1 n: m’ ! b
mn(l—2+——2—

8.4

where S, = —l@ b= width of the plate, 1= length of the plate;

The first term is obtained using Levy’s method for the elastic moments at y=0 and y=b,

and the last term is the solution using Navier’s method under load P.

For the elastically clamped boundary conditions, we get
When y=0

z E, sm—— 8.5

and when y=b
K ow _ © F si nnx 8.6
(—ay )yes = 2. Fy sin - .

where k=Kb/D. ¢, =thickness of the top slab; E and x=Young’s modulas and

Poissons ratio, respectively ; D= stiffness of flexure ; and k = rotational elastic
coefficient.

Solving the above equations the constants En and Fn can be solved.
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The moments in the plate in x and y directions can be calculated using the following
formulas:

*w  O*w

M_=-D +
x v uayz)
o’w  d’w
M, =—D(5y2 +'u6x2)

The above procedure for determining longitudinal bending stresses have been formulated

in subroutine -G, Appendices-1.

Geometry considered :

A rectangular box beam of geometry as follows:
b=width of top flange=6600 mm

tw— thickness of the web= 500mm

ty=thickness of bottom flange=170 mm

t,= thickness of top flange=310mm

h=height of the box beam=2760 mm

E= 2900 MPa
3i,i, (21, + 30, )(2i, +1i,)
30 + 30,0, + Ty,

the rotational spring coefficient K =

Et)} Et,)’

w ,i3 =
12h 126

where i, =

By using the above parameter , the longitudinal bending moment M, has been calculated

from subroutine G .M,=5,500 kN.m

oy _M
ox* EI
By solving the equation with the boundary conditions, at x=0, v=0 and x=1l, v=0. The

Now for linear elastic system,

maximum deflection at x=1/2= 3.8 mm .

If the box beam is considered as a beam of equal EI value.
3

48EI

Maximum deflection at midspan = =2.8 mm.

179



CHAPTER9
DISCUSSION AND CONCLUSIONS

9.1 Comparison of Results:

(-3.87)
-3.32 22.59
(-2.88)

+
]
+
6.15
(8.53) (6.68)
8.51
-3.32 - -Author’s calculation
- = (3.837)

Finite strip model by
Maisel’s (1982)
(a) Longitudinal stress at mid-span section

(b) Shear stress on positive face of section z=0
Figure 9.1: Comparison of stresses (MPa) due to combined live and dead load
calculated by the theory presented here and by finite strip model by Maisel’s (1982)
Loading and geometry shown in Figure 7.1

Figure 9.1 summarizes the results obtained for longitudinal stress at mid span section and

shear stress on positive face of the section at z=0 for eccentric live loading 1000 kN at
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midspan, by the thin walled beam theory and the finite strip method.The results obtained

from the computer program are also tabulated in Chapter 8.

There is good agreement between results from Maisel’s finite strip model and author’s
calculations. Similarly there is good agreement for transverse bending stresses, except for
the local regions near the concentrated loads.The use of thin plate theory in the finite strip
method gives rise to a prediction of infinite local bending stresses in such areas, as the
number of load harmonics is increased. This infinite local bending stress is avoided in the

theory presented here in analysis of cross-sectional distortion.

The discrepancy between the values of shear stress obtained by the thin walled beam
theory and the finite strip method appears to be significant. The finite strip theory
considers shear lag effects both in the flanges and webs of a cross-section.The
longitudinal stresses at midspan section calculated using the author’s method (Figure 9.1)
compare as follows with Maisel’s finite strip model(1982)

At C, an increase of 0.23%

At D, an increase of 8%

At E, an increase of 10%

The shear stresses at z=0, calculated using author’s method (Figure9.1) compare as
follows with Maisel’s(1982) finite strip model.
At middle of web AC, a 10% decrease

At A, an increase of 5%
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9.2: Conclusions:

An in-depth study for analysis of simply supported, single cell prismatic box sections
was conducted to evaluate all structural actions, and to develop stress charts for use by

the practising engineer. The findings and comments are summarized as follows:

o Flexural stresses are calculated considering conventional bending theory.The
results indicate that by increasing live loading by 50 percent , the bending stress
increases by 11.6 percent at top flange and top web junction and end point of the
cantilever and by 11.47 percent at bottom flange and web junction .The shear
deformation were not considered.

¢ The statically determinate shear flows are plotted with incremental live loading at
different locations of the section.The study shows that by increasing the live
loading by 20 percent, the shear flow increases by 2.6 percent in all location of
the cross-section.

¢ Statically determinate shear flows are plotted for varying spans. In this case, the
results indicate that the shear flow increases non-uniformly at different locations
of the cross-section. The results show that by increasing span length by 20 percent
, the shear flow increases by 17.37 percent at A on AE, 7.9 percent at A on AC,
12.6 percent at the middle of AC and 17.37 percent at C.

¢ The study shows that by increasing the live loading by one percent, the increase in
the shearing stresses are 0.26,0.27, 0.32, 0.27 and 0.27 percent at A on AE, at A
on AC, at the middle of AB, at the middle of AC and at C, respectively.

o The results indicate that by increasing the torsional moment by one percent, the
increases in the St. Venant’s shearing stresses at A on AE, at C on AC, at C on
CD and at E on DE are 0.99, 0.99, 1.06 and 0.99 percent ,respectively.

e The results indicate that by increasing the torsional moment by one percent, the
torsional warping shear stresses increase in AB, AC, CD and AE by 0.97
,0.99,1.01 and 1.01 percent, respectively.

¢ The study shows that by increasing the torsional moment by one percent at

midspan, the distortional warping shear stresses increase at E on ED, at E on EA,
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at the middle of EF, at the middle of DE, at D on CD, at the middle of AE and at
the middle of CD by 0.98, 1.0, 0.99, 1.004, 0.99, 0.98 and 0.99 percent,
respectively.

The results indicate that by increasing the torsional moment at midspan by one
percent, the torsional warping stress increases at A,C,D,E,B and F by 1.004,
1.001, 1.001, 1.004, 1.002 and 1.002 percent, respectively.

The results indicate that by increasing the torsional moment at midspan by one
percent, the distortional warping stresses increases at A,C,D,E,B and F by 0.97,
0.99, 0.99, 0.97, 0.99 and 0.99 percent, respectively.

Considering the geometry and the loading studied , it is observed that for a one
percentage increase in the top flange thickness, there will be an increase in the
shear flow at A.B are 0.62, 0.6 percent, respectively and 0.38 percent at C and
D. On the other hand, a one percent increase in the web thickness has very little
effect on the shear flow at A and B  that is 0.017 and 0.013 percent,
respectively.However, the effect is slightly heigher at C , which is 0.47 percent.
Considering the geometry studied Figure 1.2-1.14 and Figure 1.15-1.17 for
eccentric loading of 1000 kN, it is noted that with an increase in the top flange
thickness, the shearing stresses increase at A,B and E.Consequently, the shearing
stresses decrease at C and D as these locations are on the bottom flange. The
torsional warping stresses and the distortional warping stresses decrease at A,B,C
,D and E with an increase in the top flange thckness. Ratios of bottom flange
thickness to top flange thick of 0.54 to 0.425 have been considered here.
Considering the geometry described in Figure 1.2-1.14 and Figurel.18-1.20 with
1000kN eccentric loading, an increase of bottom flange thickness does not affect
on the shearing stress at A,B and E. The shearing stress at C and D decrease with
an increase in the bottom flange thickness. Ratios of the bottom flange thickness
to the top flange thickness of 0.48 to 0.8 have been considered here.

The study shows that for same L/B ratio, it is preferable to use the trapezoidal
section instead of the rectangular section with the same depth for economic
reasons; In addition, the different stresses at all locations with the similar loading

conditions have nearly identical values.
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® Only shear lag stresses due to live load along the width of the top flange are
plotted in Figure 8.15. The study shows that for live load of 1000 kN at midspan,
the shear lag stresses increase by about 2 percent of the combined(live load &
dead load) stresses at the midspan section.
9.3: Limitations:
o It is an elastic analysis.
o Non-linearity of materials including cracking and prestressing of concrete is not

considered here.
¢ Local buckling of steel sections is not considered here.

9.4: Recommendation for Future Research:

The program needs to be extended to enable evaluation of the various stresses for
CHBDC live loads consisting of the truck and lane loads. In addition, the effect of

dynamic loads need to be incorporated in the program.
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APPENDIX-1

Program-A:

L1=2800;L2=3300;1.3=2805;L4=2760;ee=34.5;A3=500;
I1=170~3/12;12=31043/12;13=500~3/12;
kb:Table[ol{illl4}r{jlll4}] ’
kb[[1,1]]1=(3%ee*I1/L1”3)+((A3%ee*(L4/L3)*2)/L3)+((12%ee*I3*(
(L2-L1) /L3) *2) /L3*3);
kb[[1,2]]=-((A3*ee* (L4/L3)*2) /L3)~((12%ee*I3* ( (L2~
L1) /L3) *2) /L3*3);
kb[[1,3]]=~(6%ee*I3*((L2-Ll1l)/L3)/L3%2)+(3%*ee*I1/L12);
kb{[1,4]1]1=-(6*ee*I3*((L2~L1l) /L3)/L3*2);
kb[[2,1]]=kb[[1,2]]:

kb [[2,2]1]1=(A3%ee* ((L4/L3)*2)/L3)+((12%ee*I3* ( (L2~
L1) /1.3)*2) /L343) +(3%ee*I2/L243) ;
kb[[2,3]1]1=(6%ee*I3*((L2~-L1) /L3)/L3"2);
kb([[2,4]1]1=(6*ee*I3* ((L2-L1)/L3) /L3*2)+(3*%ece*I2/1L2*2);
kb[[3,1]]1=kb[[1,3]];

kb[[3,2]1]1=kb[[2,3]]:;
kbl[3,3]]=(4%ee*I3/L3)+(3%ee*I1l/Ll);
kb[[3,4]]1=2%ee*13/L3;

kb[[4,1]11=kb[[1,4]];

kb[[4,2]]=kb[[2,4]];

kb[[4,3]]1=kb[[3,4]]:
kb[[4,4]1]1=(4%ee*I3/L3)+(3%ece*I2/L2) ;

MatrixForm[kb]

hh=Inversel[kb]

R={10,0,0,0}

r=R._hh

MatrixForm|r]

Output program-A:

Al
5.96214 -5.96021 -43.4457 -48.8507

~5.96021 5.96736 48.8507 72.4455
-43.4457 48.8507 527612. 256239.
(-48.8507 72.4455 256239. 590341. )

A2
1237.97

1237.05
0.014418
-0.055624
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Program B

(*Program # B, this program evaluates necessary input data
for spreadsheet programming in excell for the analysis of
shear lag effect in simply-supported single cell box
section*)
all=8.283*1046;al12=0;al13=0;a14=0;a15=-136400000;al16=-
165333333.3;a17=63466666.67;a22=109.037*10+12;
a23=0;a24=0;a25=a26=a27=0;a33=9.315*10412;a34=0;a35=1.07074*
10411;a36=1.29787*10*11;a37=1.25347*10411;
a44=19.3915*%10418;a45=a46=a47=0;a55=10912000000;a56=a57=0;a6
6=13226666667;a67=0;a77=4918666667;
cl1=0;¢c12=0;¢c13=0;c14=0;c15=0;¢cl1l6=0;cl17=0;c22=0;
c23=0;c24=0;c25=c26=c27=0;¢c¢33=0;¢c34=0;c35=0;¢c36=0;c37=0;
c44=0;cd45=c46=c47=0;c55=2505;c56=c57=0;c66=2067;c67=0;c77=16
19;
ull=1;ul2=0;ul3=0;uld4=0;ul5=0;ul6=0;ul7=0;u2l1=0;u22=1;
u23=0;u24=0;u25=u26=u27=0;u31=u32=0;u33=1;u34=0;u35=0;u36=0;
u37=0;
udl=ud42=u43=0;udd=1;ud5=ud6=ud7=0;u51=16.46746348;u52=0;ub3=

0.011495262;u54=0;ub5=1;u56=u57=0;u61=19.96056179;u62=0;u63=
~0.013933651;u64=u65=0;u66=1;u67=0;u71=-7.662280;u72=0;u73=-
0.013456981;u74=u75=u76=0;u77=1;
vll=1;v12=0;v13=0;v14=0;v15=0;v16=0;v17=0;v21=0;v22=1;
v23=0;v24=0;v25=v26=v27=0;v31=v32=0;v33=1;v34=0;v35=0;v36=0;
v37=0;
v4l=v42=v43=0;v44=1;v45=v46=v47=0;v51=0;v52=0;v53=0;v54=0;v5
5=1;v56=0.88;v57=1.21;v61=0;v62=0;v63=0;v64=0;v65=1.25;v66=1
1v67==2.42;v71=0;v72=0;v73=0;v74=0;v75=20.55;v76=-
29.36;v77=1;

rv={0,0,1,0,0,0,0);

mull=1.3298*1046;

mul2=1.9036*1046;

mul3=5,.35916*10"6;

kb=Table[0,{i,1,7)},{3,1,7}1;

kb[[1,1]]=all;

kb[[1,2]]1=kb[[2,1]]=al2;

kb[[1,3]1]=kb[[3,1]]=al3;

kb[[1,4]]1=kb[[4,1]]=al4;

kb[[1,5]]1=kb[[5,1]]=al5;

kb[[1,6]]1=kb[[6,1]]1=al16;

kbl[[1,7]11=kb[[7,1]]1=al17;

kbl[[2,2]]=a22;

kb[[2,3]]=kb[[3,2]]=a23;

kb[[2,4]]1=kb[[4,2]]=a24;

kb[[2,5]]1=kb[[5,2]]=a25;

kb[[2,6]]=kb[[6,2]]=a26;

kb[[2,7]]1=kb[[7,2]]1=a27;

kb[[3,3]]=a33;
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kb([[3,4]]1=kb[[4,3]]1=a34;
kb[[3,5]]=kb[[5,3]]=a35;
kb[[3,6]]1=kb[[6,3]]=a36;
kb[[3,7]1]1=kb[[7,3]11=a37;
kb([[4,4]]1=a44;
kb[[4,5]]1=kb[[5,4]]1=a45;
kb[[4,6]]1=kb[[6,4]]1=a46;
kb[[4,7]1]1=kb[[7,41]1=a47;
kb[[5,6]1]1=kb[[6,5]]1=a56;
kb[[5,7]1]1=kb[[7,5]1]1=a57;
kb[[6,7]]1=kb[[7,6]1]=a67;
kbl[7,711=a77:;
nn=MatrixForm[kb]

kd=Table[0,{i,1,7},{j:1:7}];

kd[[1,1]1])=cl1;
kdl[1,2]]1=kd[[2,1]]=cl2;
kdl([1,3]1]1=kd[[3,1]]=cl13;
kdl([1,4]1]1=kd[[4,1]]=cl4;
kdl[[1,5]11=kd[[5,1]]=cl5;
kdl[l,6]]1=kd[{6,1]1]1=cl6;
kdl([1,7]11=kd[[7,1]]1=cl7;
kdl(2,2]]1=c22;
kd[[2,31]1=kd[[3,2]]=c23;
kdl[2,4]]1=kd[[4,2]]=c24;
kdl[[2,5]1]1=Kkdl[[5,2]]=c25;
kdl[[2,6]11=kd[[6,2]]=c26;
kdl[2,7]11=kd[[7,2]]1=c27;
kd[[3,3]]1=c33;
kdl[3,4]1]1=kd[[4,3]])=c34;
kd[[3,5]11=kd[[5,3]]=c35;
kd[[3,6]1]1=kd[[6,3]]1=c36;
kdl[3,711=kd[[7,3]1]1=c37;
kd[[4,4]]1=c44;
kd([4,5]]1=kd[[5,4]]1=c45;
kdl[[4,6]1]1=kd[[6,4]1=c46;
kdl[[4,7]11=kd[[7,4]11=c4d7;
kd[[5,5]1]1=c55;
kd[[5,6]1]1=kd[[6,5]]=c56;
kd[[5,711=kd[[7,5]1]1=c57;
kd[[6,6]]1=c66;
kd([6,7]1]1=kd[[7,6]]=c67;
kdll[7,711=¢c77;
ff=MatrixForm[kd]

ky=Table[0, {i,1,7},{3,1,7}]1;

ky[[1,1]]=ull;
ky[[1,2]]1=ul2;
kyl[[2,1]]1=u2l;
kyl[[1,3]11=ul3;
kyl[[3,1]]1=u3l;
ky[[1,4]11=ul4;
kyl[[4,1]1]1=u4l;
ky[[1,5]1]1=ul5;
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ky[[5,1]1]=u51;
ky[[1,6]]=ul6;
ky[[6,1]]=u6l;
ky[[1,7]]=ul7;
ky[[7,1]1]1=u71;
kyl[2,2]]=u22;
kyl[[2,3]]1=u23;
ky[[3,2]1]1=u32;
kyl[[2,4]1]1=u24;
kyl([4,2]1]1=u4d2;
ky[[2,5]]=u25;
ky[[5,2]]1=ub2;
kyl[[2,6]1]1=u26;
kyl[[6,2]1]1=u62;
kyl[2,7]1]1=u27;
kyl[[7,2]1]1=u72;
ky[[3,3]1]=u33;
kyl([3,4]1]1=u34;
kyl[[4,3]11=u4d3;
ky[[3,5]1]1=u35;
ky[[5,3]1]=u53;
ky[[3,6]1]1=u36;
ky[[6,3]]1=u63;
ky[[7,3]1]1=u73;
kyl[[4,4]]1=u4d4;
kyl[(4,5]1]1=ud5;
ky[[5,4]1]1=u54;
ky[[4,6]]=u46;
ky[[6,4]1]1=u6b4;
kyl[[4,7]11=u4d7;
kyl[[7,4]11=u74;
ky[[5,5]1]1=u55;
ky[[5,6]1]1=u56;
ky[[6,5]1]1=ub5;
ky[[5,7]1]1=ub57;
ky[[7,5]1]1=u75;
ky[[6,6]]1=u66;
ky[[6,7]1]1=u67;
ky[[7,6]1]1=u76;
ky[[7,71]1=u77;
mm=MatrixForm[ky]
jj=Transposelky]
MatrixForm([jj]
R=ky.kb.3jj
MatrixForm[K]
Ri=ky.kd.jj
MatrixForm[Ki1]
RK2a=Simplify[muli*ky.kd.jj]
MatrixForm[K2a]
K3a=Simplify[K-K2a]
MatrixForm[K3a]
K2b=Simplify[mul2*ky.kd.jj]
MatrixForm[K2b]
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K3b=Simplify[K-K2b]

MatrixForm[K3b]

K2c=Simplify[mul3*ky.kd.jjl

MatrixForm[K2c]

K3c=Simplify[K-K2c]

MatrixForm[K3c]

ke=Table[0,(i,1,7},{j:1:7}];

kel[[1,1]]1=v11;
ke([1,2]]=v12;
kel[[2,1]]1=v21;
ke[[1,3]]=v13;
ke[[3,1]]1=v31;
kel[[1,4]1]=v14;
ke([4,1]1]1=v41;
kel[1,5]1]1=v15;
ke[[5,1]1]1=Vv51;
ke[[1,6]]=v16;
ke[[6,1]]=Vv61;
kel[[1,7]1]1=v17;
kel[7,11]1=v71;
kel[[2,2]])=v22;
ke[[2,3]]1=v23;
kel[[3,2]]1=v32;
kel[[2,4]]1=v24;
kel[[4,2]]1=v42;
ke[[2,5]]1=v25;
ke[[5,2]1]1=v52;
kel[[2,6]1]1=v26;
ke[[6,2]]1=v62;
kel[[2,7]11=v27;
kel[7,2]1]1=v72;
ke[[3,3]1]=v33;
ke[[3,4]]1=v34;
ke[[4,3]]1=Vv43;
ke[[3,5]1]1=v35;
ke[[5,3]]1=v53;
kel[[3,6]]=v36;
kel[[6,3]]1=v63;
kel[[3,7]11=v37;
kel[[7,3]1])=v73;
kel[[4,4]]1=v44;
ke[[4,5]1]1=v45;
kel[[5,4]]1=v54;
kel[[4,6]]1=v46;
ke[[6,4]1]1=v64;
kell[4,7]11=v47;
kell[7,4]1]1=v74;
kel[[5,5]1]1=v55;
ke[[5,6]]1=v56;
kel[[6,5]1]1=v65;
ke[[5,7]]1=v57;
ke[[7,5]1]1=v75;
ke[[6,6]]=v66;
ke[[6,7]1]1=v67;
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ke[[7,6]]=v16;
kel[[7,71]1=v77;
MatrixFormlke]
K4=Simplify[ky.ke]
MatrixForm[K4]
hh=Transpose [ke]
K5=MatrixForm[hh]
K9=Simplify[ke.K.hh]
MatrixForm[K9]
K7=Simplify[ke.kd.hh]
MatrixForm[K7]
K8=Simplify[K4.rv]
MatrixForm[K8]

Output Program-B

0 1.07074x 1011 1.29787x 10 1.25347 x 101

196

Bl [C, matrix]
8.283x10% 0 0 0 - 136400000
0 1.09037 x 101 0 0 0
0 0 9.315x 1012
0 0 0 1.93915x 101° 0
-136400000 0 1.07074x 101 0 10912000000
-1.65333x 108 0 1.29787 x 101 0 0
6.34667x 107 0 1.25347x 101 0 0
B2
0000 O 0 0
0000 O 0 0
0000 O 0 0
0000 O 0 0
0000 255 O 0
0000 O 206 0
0000 O 0 1lel
B3
1 0 0 00
0 1 0 00
0 0 1 0O
0 0 0 10
16.4675 0 -0.0114953 0 1
19.9606 0 -0.0139337 0 O
-7.66228 0 -0.013457 0 O

O OO0 OOo
= O OO0 OoOo

-1.65333x 108 6.34667x 107

13226666667




B4

1 00 0 16.4675 19.9606 -7.66228
0100 0 0 0
0 01 0 -0.0114953 -0.0139337 -0.013457
0001 0 0 0
0000 1 0 0
00O00O0 0 1 0
0000 0 0 1
B5 [_Evmatrix]
8.283x 106 a. 0. 0. 0.00483999  0.00656998 1.43
0. 1.09037 x 1014 0. 0. 0. 0. 0.
0. 0. 9.315x 1012 0. -4.36553x 108 -4.95906x 106 -4.77801x 106
0. 0. 0. 1.93915x 10%9 0. 0. g.
0.00483999 0. -4.36553x 106 0. 7.43504x10° -4.2145x10% -3.95703x 108
0.00656998 0. -4.95906x 106 0. -4.2145x10% 8.11818x10% -4.79644x 108
1.43 0. -4.77801x 108 0. -3.95703x 108 -4.79644x 108 2.74564 x 109
B6
0. 0. 0. O. 0. 0. 0.
0. 0. 0. O. 0. 0. 0.
0. 0. 0. O. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 2505. 0 0.
0. 0. 0. O. 0. 2067. 0.
0. 0. 0. O. 0. 0. 16109.
B7
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 3.33115x10? 0. 0.
0. 0. 0. O. 0. 2.7487 x 109 0.
0. 0. 0. O. 0. 0. 2.15295 x 107
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B8 [for first eigenvector]

8.283 x 106 0. 0. 0. 0.00483999  0.00656998 1.43
0. 1.09037 x 101 0. 0. 0. 0. 0.
0. 0. 9.315x 102 0. -4,36553x 10 -4,95906x 106 -4.77801x 106
0. 0. 0. 1.93915x 1019 0. 0. 0.
0.00483999 0. -4.36553x 106 0. 4,1039x10° -4.2145x10°% -3.95703x 108
0.00656998 0. -4.95906x 106 0. -4.2145%x10% 5.36949x10% -4.79644x 108
1.43 0. -4.77801x 105 0. -3.95703x 108 -4.79644x 108 5.92693x 108
B9
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 4.76852x10° 0. 0.
0. 0. 0. O. 0. 3.93474 x 109 0.
0. 0. 0. O. 0. 0. 3.08193x 10°
B10 [for second eigenvector]
8.283x 108 0. 0. 0. 0.00483999  0.00656998 1.43
0. 1.09037 x 1014 0. 0. 0. 0. 0.
0. 0. 9.315x 1012 0. -4.36553x 105 -4.95906x 106 -4.77801x 108
0. 0. 0. 1.93915x 1019 0. 0. 0.
0.00483999 0 -4.36553x 106 0. 2.66653x10° -4.2145x10% -3.95703x 108
0.00656998 0. -4.95906x 106 0. -4.2145% 109 4.18344x10% -4.79644x 108
1.43 0 -4.77801 x 108 0. ~3.95703x 108 -4.79644x 108 -3.36289x 108
B11
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8.283x 10°

0.

0.

0.
0.00483999
0.00656998

1.43

0. 0. 0. 0. 0. 0. 0.
0. 0. 0. O. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. O. 0. 0. 0.
0. 0. 0. 0. 1.34247x10%0 0. 0.
0. 0. 0. O. 0. 1.10774 x 1010 0.
0. 0. 0. 0. 0. 0. 8.67648 x 10°
Bl2[for third eigenvector]
0. 0. 0. 0.00483999  0.00656998 1.43
1.09037 x 1014 0. 0. 0. 0. 0.
Q. 9.315x 1012 0. -4.36553x 106 -4.95906x 106 -4.77801x 106
0. 0. 1.93915x 1019 0. 0. 0.
0. -4.36553x 106 0. -5.98965x 10° -4.2145x10% -3.95703x 108
0. -4.95906x 106 0. -4,2145x10% -2.9592x 10° -4.79644x 108
0. -4.77801x 108 0. -3.95703x 108 -4.79644x 108 -5.93084x 10°
B13 [X,, matrix]
1000 0 0 0
0100 0 0 0
0010 0 0 0
0001 0 0 0
0000 1 0.88 1.21
0000 1.25 1 ~-2.42
0 0 0 0 20.55 -29.36 1
Bl4 [K, matrix]
1. 0. 0. 0 0. 0. 0
0. 1. 0. 0 0. 0. 0.
0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 1. 0. 0. 0.
16.4675 0. -0.0114953 0 1. 0.88 1.21
19.9606 0. -0.0139337 0. 1.25 1. -2.42
-7.66228 0. -0.013457 0. 20.55 -29.36 1.

B1S
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1.09037 x 10

8.283x 106 0.
0.

0. 0.

0. 0.

1.74092 0.
-3.44798 0
1.33657 0
Subroutine-C

O OO0 OO OO0

(o)

OO OO0 O0O

1000 O 0 0
0100 O 0 0
0010 O 0 0
0001 O 0 0
0000 1 1.25 20.55
0000 0.88 1 -29.36
0000 1.21 -2.42 1
Bl6 [E_V matrix]
0. 0. 1.74092 -3.44798
0. 0. 0. Q.
9.315x 1012 0. -1.45109x 107 1.14682 x 106
0. 1.93915 x 1019 0. 0.
-1.45109x% 107 0. 8.34509x 10° 3.47766x 108
1.14682 x 106 0. 3.47766x 108 2,99942 x 1010
5.11085x 107 0. 2.69685x 108 -1.31737x 109
B17 [S, matrix]
0. O. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. O. 0. 0. 0.
0. 0. 6476.06 209.454 32.0744
0. 0. 209.454 15462.6 -257.912
0. 0. 32.0744 -257.912 2.84126x10°

B18 [F, matrix]

0.
0.
1.
0.
-0.0114953
-0.0139337
-0.013457

200

1.33657
0.
5.11085 x 107
0.
2.69685 x 108
-1.31737x 10°
1.52381x 1013




u=(7.43509*%1049-2505%2) * ((2.74564*10*9-

1618*2) *(8.11818*1049-2067*A) -
(4.79*108%4.79*%108) ) +4.2145*10"9* (-

4.2145%1049% (2.74564*1079-1618%)-(4.79*%107~8%3.95%10"8)) ~
.3957*109% ((-4.2145*%1049) *(-0.479644*10"9))~-(8.11818*109-
2067*A) * (-0.395703*1049) ;

sol=8olve[{u=0}, {A}]

Output Subroutine-C:
C1

{{A~>1.3298x10%, {1 >1.9036x10%, (x> 5.35916x10%}

Subroutine-D

(* Subroutine-D, evaluation of first eigenvectorst*)
ke=Table[0,{i,1,3},{3,1,3}];
ke{[1,1]11=4.1039%10"9;
ke[[1,2]11=-4.21%10"9;
ke[[1,3]]=-3.95+10"8;
ke[[2,1]1]=-4.21%10"9;
ke[[2,2]]=5.36%10"9;
ke[[2,3)]1=-4.79*10"8;
ke[[3,1]11=-3.95*108;
kel[3,2]11=-4.79%10"8;
ke[[3,3]1]1=5.92%10"8;
MatrixFormlke]
Eigenvectorske]

Output Subroutine-D:
D1

(4.1039x109 -4.21x10% -3.95x 108
-4.21x10% 5.36x10° -4.79x 108
{ -3.95x 108 -4.79x 108 5.92x108 |
D2
{{0.652124,-0.758008,0.0125623}, {-0.516333, -
0.431953,0.739471}, {-0.555099,~-0.488713,-0.673071}}

Subroutine-E
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(*Subroutine-E,evaluation of second eigen vectors¥)
ke=Table[ol{il1I3}l{jlll3}];
ke[[1,1]1]1=2.666*10*9;
ke[[1,2])]=-4.21%10*9;
ke[[1,3]])=-3.95*108;
ke[[2,1])=-4.21*%10*9;
ke[[2,2]]=4.183%10*9;
ke[[2,3]1]=-4.79%108;
ke[[3,1]11=-3.95*10"8;
kel[[3,2]11=-4.79*10"8;
ke[[3,3]1]1=-3.36*10"8;
MatrixForml[ke]
Eigenvectors[ke]

Output Subroutine-E:
El

2.666x10% -4.21x10° -3.95x 108
-4.21x 109 4.183x10% -4.79x 108
{ -3.95x 108 -4.79x 108 -3.36x 108)

E2
{{0.640514,-0.767813,0.0142762},{-0.634925,-0.539933, -
0.552578},{-0.431985,-0.34487,0.833339}}

Subroutine-F

(*Subroutine-F, evaluation of third eigen vectorst*)

ke=Table[O0,{i,1,3},{3j,1,3}];
ke[[1,1]]=-5.98*1049;
ke[[1,2]]=-4.21*10*9;
ka[[1,3]]1=-3.95*10"8;
ke[[2,1]]1=-4.21*%10*9;
ke[[2,2]]1=-2.95*%10*9;
ke[[2,3]]=-4.79*%10"8;
ke[[3,1]1]1=-3.95*10"8;
ke{[3,2]1]1=-4.79*%10"8;
ke[[3,3]1]1=-5.93*10*9;
MatrixFormlke]
Eigenvectorslke]

Output program-F:

Fl
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~5.98x10% -4.21x10% -3.95x 108
~4.21x10% -2.95x 109 -4.79x 108
{-3.95x 108 -4.79x 108 -5.93x 10%)

F2
{{-0.80149,-0.567569,-0.188359}, {-0.170069, -
0.0856356,0.981704},{0.573315,-0.81886,0.02789}}

Subroutine -G:

k=0.032;1=32000;t=310;.=1/6;Dm=7.4*10"10;u=0.74;v=0.74;£=16000;n=3300;P=1000
000;b=6600;
Bn=n*3.14*b/l;
wlx_y_J=(1"2/(2* 7" 2*Dm))*(Sum{(1/n2)*(En*(-(Sn/(Sinh[An])*2)*Sinh{n* sr*y/1}-
(n*re*y/ly*Sinh{n* r*y/1]+Coth[ Bn]* (n* 7*y/1)* Cosh[n* n*y/1])+Fn*((Bn*Cosh[3n}/Sinh|
An]*2)*Sinh[n* *y/l}-
(1/Sinh[Bn])* (n* r*y/1)*Cosh[n* r*y/ID))*(Sin[n* r*x/1]), {n,1,40} D+(16*P/(7"6*u*v*D
m))*(Sum[((Sin[n*r* £/11*Sin[m*7t* n/b]* Sin[n* 7+ w/(2*D)]* Sin[m* re* v/(2*b)]))/(m* n*(
n"2/1"2+m"2/b"2)"2)*Sin[n* r*x/1]*Sin[m* 7n*y/b}],{n,1,40},{m,1,40}]);
w2[x_y_J=wllxy};
rrpfx_y_1=D[w2[x.ylyl;
aalx_y_l=rrp[x,y];
rrl=aalx,0];
rr2=aa[x,b];
K=k*Dm/b;
r3=rr1 *K;
rd=rr2*K;
ttt=-Sum[En*Sin[n**x/1},{n,1,40}];
ttt2=Sum{Fn*Sin[n* m*x/1},{n,1,40}];
uu=rr3-ttt;
uu2=rr4-tt2;
sol=Solve{ {uu=-0,uu2-:0},{En,Fn}];
MM[x_y_J=wlix,y)/ .sol;
hh1=D[MM]x,y}.{x,2}};
=D[MM[x,y],{y.2}];
MX[x_,y_]=-Dm*(bh1+,*hh2);
MY([x_y_]=Dm*(hh2+.*hhl);
VALX=MY[16000,3300};
VAY=MX[16000,3300]
Plot{MX[x,66001,{x,0,32000} };
PlotfMY[16000,y],{y,0,6600}];
qq=MX][x,3300];
qqq=MY[16000,y];
For[qqq=MY[16000,y];y=0,y<6600,y=y+1000,Print[qqq,y]};
For[qg=MX[x,6600];x=0,x<32000,x=x+8000,Print[qq,x]];
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APPENDIX-2

PROGRAM-1

(Spread-sheet program)

Analysis of Simply-Supported Single Cell Prismatic Box Sections

INPUT SHEET

The box beam is idealized as being simply supported over a span given bellow, and has

diaphragms only at the supports, where there is full torsional and distortional restraint,

but no resistance to warping. At midspan there is a live point load at flange web junction

(Figure 7.1) shows the geometry and loading.

Geometry data:

Span length

Top flange width

Bottom flange width
Cantilever width

Depth of web (vertical)
Depth of web (inclined)
Thickness of top slab

With side cantilever
Thickness of bottom flange
Thickness of web

Load data:

Live load at flange web junction:

Torsional moment

Material properties:

=274 m

= 5640 mm
= 5640 mm
= 2580 mm
= 2760 mm
= 2760 mm

=310 mm
=170 mm
=500 mm

= 1000 kN
=1650 kN.m
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Density of concrete =25 kN/m’

Poisson’s ratio =0.15

Distortional analysis of frame representing cross-section: (Figure 7.13b)

IGC = 409400 mm*
ICA = 10420000 mm*
IAH = 2483000 mm*
Sidesway at level of ldad 5 (forF=10kN) =871.27 mm

E =34.5 kN/mm’
Rotation at C from matrix analysis =0.01724
Rotation at A from matrix analysis =-0.053342
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APPENDIX-3

PROGRAM-2

(Spread-sheet program)

Analysis of Simply-Supported Single Cell Prismatic Box Sections

(Shear lag analysis)

INPUT SHEET

Since torsional and distortional effects are not being considered in the treatment of shear
lag, the live loading of Figure 7.1 will be regarded as acting at the vertical centre line of

cross-section,
Span length
Geometric data:

Width:

Top flange
Cantilever
Bottom flange

Thickness:
Top flange

Web
Bottom flange

Load data:

Live load at flange web junction
(Appendix-1)

Material data:

=32m

= 6600 mm
= 4000 mm
= 5600 mm

=310 mm
= 500 mm

=170 mm

= 3000 kN

=15.0075
=34.5
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Ordinates of general parabolic function for shear lag:

Yo
Y1
y2

Ax (Top flange)
Ax for w,, (Cantilever)

Ax for w,, (Bottom flange)

From Program B:

¥ (From top flange)
¥ (From bottom flange)

Total dead load

For C, matrix:
A

L

From Mathematica analysis:

wil

i [
L =
O o

S

= 1650 mm
= 2000 mm

= 1400 mm

=785 mm
= 1975 mm

= 6626 mm

= 8283000 mm?

=9.31*10"? mm*

=1.093*10"* mm*

=1.939*10"

=-0.0114953
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5. = 6476.06

Cys = 8340000000
T, =-0.0139337
S = 15462.6

Ce = 29994200000
r,, =-0.013457
C., =1.5238* 10"
S = 2841260
For orthogonalization of basic warping functions:

From Figure 7.23(a)

W, at,

AE =25.49

C,D =-6.23

B,F = -62.51
BetweenBand A &

Between E and F =-40.51
Between A and E =-74.51
Between C and D =-114.77
From Figure 7.24 (a)

W, at,

AE =30.87

C,D =.7.55

B,F =-69.13
Between Band A &

Between E and F =-44.13
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Between A and E
Between Cand D

From Figure 7.25(a)

w,, at,

AE

C,D

B,F

Between B and A &
between E and F
Between A and E
Between C and D
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=-94.13
= -249.55

=2.85
=-34.12
=2933.15

=2199.15
=-2052.15
=65.88



