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ABSTRACT

An Integrated Approach to the Design of Cellular Manufacturing Systems for

Dynamic Production Requirements

Fantahun Melaku Defersha, Ph.D.

Concordia University, 2006

Due to increasing international competition, shorter product life-cycles, vari-
able demand, diverse customer needs and customized products, manufacturers are
forced from mass production to the production of large product mixes. In order
to adapt to such changes, firms are required to make their manufacturing systems
efficient and flexible. Traditional manufacturing systems, such as job shops and
flow lines, cannot provide the required efficiently coupled with flexibility to handle
these changes. Cellular manufacturing (CM), which incorporates the flexibility of
job shops and the high production rate of flow lines, has emerged as a promising
alternative. Although CM provides great benefits, its design process is complex for
real-life problems. The design process should pass through a number of steps in-
volving several structural and operational aspects. The first important critical step
is the formation of part families and machine cells. The effectiveness of this design
step heavily depends on the proper consideration of several relevant factors. To this
end, a model that incorporates various pragmatic issues is essential. This research is
aimed at the development of comprehensive mathematical models to serve in the de-
sign of cellular manufacturing systems for dynamic production requirements. In this

work, two different mathematical models have been proposed and efficient solution
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procedures are developed to solve these models.

The first mathematical model addresses the design of a dynamic cellular man-
ufacturing system. In this model, the product mix is assumed to vary from period to
period where the production quantity of each product during each period is a given
data. System reconfiguration is considered to respond to the changing product mix
variation. In addition to dynamic system reconfiguration, the model incorporates
several pragmatic issues such as alternative routings, lot splitting, sequence of oper-
ations, multiple units of identical machines, machine capacity, workload balancing
among cells, operation cost, cost of subcontracting part processing, tool consump-
tion cost, setup cost and other practical constraints. The solution of this model is
obviously NP-hard. Off-shelf optimization software cannot be used to solve real size
problems of this nature. In order to solve real size problems efliciently, we develop
two different heuristics: one based on genetic algorithm and the other based on sim-
ulated annealing. The algorithms have been implemented both on a sequential and
a parallel computing environments. Numerical examples show that the proposed
methods are efficient in solving the proposed model for large size problems.

The second mathematical model addresses an integrated approach to the de-
sign of dynamic cellular manufacturing systems and production planning in MRP
environment. The major difference of second model from first one is that in the
second model the production lot size of each product during each period is a deci-
sion variable but not a given data. The model also consider the effect of lot sizes
on the product quality. Proponents of the Just-In-Time philosophy contend that
smaller lot sizes result in improved product quality. Others (from the disruptive
philosophy) argue that smaller lot sizes result in excessive interruptions and dis-
ruptive environments that impair learning and increase defects. The cell formation

model is formulated to account for either philosophy allowing the model user to
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select his/her preference. In order to solve this integrated cell formation and pro-
duction planning model, two search heuristics, one based on genetic algorithm and
the other based on simulated annealing, have been developed. During the course of
the search, these methods interactively use the simplex algorithm in ILOG CPLEX
to solve a Linear Programming sub-problem corresponding to each solution visited.
Numerical examples showed that the proposed method were efficient. The obtained
solution is finally submitted, as a starting point, to a post-optimization module. The
post-optimization module is the general branch and cut algorithm in ILOG CPLEX

attempting to solve the proposed MIP model starting from a known good solution.
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Chapter 1

Introduction

In the past few decades, there has been an increasing worldwide awareness towards
productivity improvement. Advanced countries are changing to progressive concept
and philosophies in the manufacturing area. The main interest of such changes lies
in decentralization of the activities hitherto carried out in an autocratic and bu-
reaucratic manner in the production units. A new style of operation and a new
environment in the work place conductive to improvement in such factors as flex-
ibility, efficiency, management-worker relation, team work and job satisfaction are
becoming important for survival in the international market. Group Technology
(GT) has emerged as one of the manufacturing philosophies to address such require-
ments. The concept is aimed at an increased productivity by exploiting the design
and process similarities of the parts. Cellular manufacturing (CM) is one of the

major implementations of this concept.
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1.1. Cellular Manufacturing

Shorter product life-cycles, customized products, variable demand, diverse cus-
tomer needs, international competitions, among others are forcing manufacturers to
shift from mass production to the production of large product mixes. In order to
adapt to such changes, firms are required to make their manufacturing systems ef-
ficient and flexible. Traditional manufacturing systems, such as job shops and flow
lines, cannot provide the required efficiency coupled with flexibility to handle these
changes.

Job shops group machines together according té the general type of manufac-
turing process: lathes in turning department, drill presses in drilling department,
milling machines in milling department, and so forth. These type of systems are
designed to achieve maximum flexibility such that a wide variety of products with
small lot sizes can be manufactured. General-purpose machines are utilized because
they are capable of performing many different types of operations. Figure 1.1 illus-
trates a job shop. When operations are completed in one department, a part has
to be moved a relatively large distance to reach the next department for the next
operations. In completing all the required operations, a part may have to travel the
entire facility as shown in Figure 1.1. Therefore, to make the movement of parts in
the system more economical, parts are transferred in batches from one department
to the next. Each part in a batch must wait for the remaining parts in its batch
to complete processing in a given department before it is transferred to the next
department. This leads to longer production times, high levels of in-process inven-
tory, high production costs and low production rates. In contrast to job shops, flow
lines (Figure 1.2) are organized according to the sequence of operations required for

a product. These systems are designed to manufacture high volumes of products
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Figure 1.1: Job shop manufacturing system

with high production rates and low costs. In each line, specialized machines are
dedicated to manufacture the product at high production rates. These machines
are usually expensive. A large volume of the product must be produced in order
to justify the investment cost of such machines. Major drawback of flow lines is
the lack of flexibility. They are not suitable to produce products for which they
are not designed. This is because specialized machines are setup to perform limited
operations. If the design of the product is changed, a major reconfiguration of the
line may be required. If new products are introduced, it may be absolutely essential
to open up a new line with additional investment.

As indicated above, job shops and flow lines cannot simultaneously provide
the flexibility and efficiency requirements of today’s production. Cellular manu-

facturing, which attempts to incorporate the flexibility of job shops and the high
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production rate of flow lines, has emerged as a promising alternative to these tra-
ditional manufacturing systems. CM is a production approach aimed at increased
production efficiency and system flexibility by utilizing processing similarities of the
parts. It involves grouping similar parts into part families and the corresponding
machines into machine cells. This results in the organization of production systems
into more or less self-contained and self-regulated groups of machines such that each
group of machines undertake an efficient production of a family of parts. Figure
1.3 illustrated a particular CM layout. The design of CM involves the formation of
part families based upon their similar processing requirements and the grouping of
machines into manufacturing cells to produce the part families. A part family is a
collection of parts which are similar either because of geometric shape and size or

similar processing steps required in their manufacture. A manufacturing cell consists
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of several functionally dissimilar machines which are placed in close proximity to one
another and dedicated to the manufacture of a part family. The manufacturing cells
should be as independent as possible in order to satisfy the required performance

criteria, for example the number of inter-cell movements.

1.2. Advantages of Cellular Manufacturing

The wide acceptance and the successful implementation of CM have been
discussed and surveyed in [159] and [112]. According to these two papers and other
related reports, the advantages derived from successful implementation of CM can

be summarized as follows.
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1. Reduction in tooling and setup time: A manufacturing cell is designed
to handle part families having similar manufacturing requirements. For this
reason, it is logical to design a group of jig/fixture to accommodate the tooling
requirement of the part family. Usually these group jig/fixtures are designed to
accept all members of the family accompanied with adapters that meet the spe-
cific needs and differences of the parts in the family. With a group jig/fixture,
there is no need to design each individual tooling for each part. Most adapters
are very inexpensive compared to the regular jig/fixtures. Therefore, obviously
this save a great deal of tooling costs. In addition to this, the use of generic
fixtures for the part family can reduce the time required for changing fixtures

and tools.

2. Simplified production and inventory control: Several benefits accrue to a
company’s production and inventory control function as a consequence of CM.
Production scheduling is simplified with CM. In effect, grouping of machines
into cells reduces the number of production centers that must be scheduled.
Grouping of parts into families reduces the complexity and size of the parts
scheduling problem. Because of more efficient material handling within ma-
chine cells, manufacturing lead time and work-in-process (WIP) are reduced
making the inventory control much simpler. Reduced setup cost makes smaller
lot sizes economical. Smaller lot sizes are directly related to the reduction of

WIP.

3. Reduced material handling cost and flow time: In CM, each part is
processed completely within a single cell (where possible). Thus, part travel
time and distance moved between consecutive operations is minimal. Thus, a

reduction in material handling cost and flow time is obtained.
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4. Reduced throughput times: In a job shop, parts are transferred between
machines in batches. However, in CM each part is transferred immediately
to the next machine after it has been processed. Thus, the waiting time is

reduced substantially.

5. Improved product quality: Since parts travel from one station to another
as single units, they are completely processed in a small area. The feedback is

immediate and the process can be stopped when things go wrong.

6. Better employee satisfaction: The machine cell often allows parts to be
processed from raw material to finished state by a small group of workers. The
workers are able to visualize their contribution to the firm clearly. This tends
to cultivate an improved worker attitude and a higher level of job satisfaction.
Employee/worker benefits also include worker flexibility, importance of social

group, reduced frustration and improved status and job security.

1.3. Research Objectives

The design of CM can be broadly divided into two major phases [19]. The first
phase of CM design is cell formation while the second phase consists of the system
design of each of the individual cells. The first phase is the major concern of this
thesis work. The effectiveness of this phase depends heavily on the consideration of
several factors. From our review of recently published cell formation methods we

noticed that these factors include:

1. Alternative routing 4. Workload balancing
2. Demand fluctuation 5. Lot-splitting
3. Dynamic cell reconfiguration 6. Types of tools required by a part
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7. Types of tools available on a ma-  14. Presence of identical machines

chine 15. Machine investment cost
8. Machine proximity constraint 16. Subcontracting cost
9. Sequence of operation 17. Tool consumption cost
10. Setup cost/time 18. Unit operation time
11. Cell / part family size constraint 19. Operation cost

12. Movement of parts (material han-  20. Product structure (bill of materi-
dling cost) als)
13. Machine capacity 21. Production planning

Our review also showed that individual methods published recently addressed only
a limited subsets of these factors. The objective of this research is, therefore, to
develop a comprehensive mathematical model that will cover the majority/all of
these factors. The solution of such a model is NP-hard. The general branch and
bound approach used by most off-the-shelf optimization software cannot be used
to solve real size problems of this nature. In order to solve real size problems
efficiently, a heuristic search method based on a selected meta-heuristic as genetic
algorithm, simulated annealing or tabu search will be developed. In this endeavor,
the possibility of developing an interactive solver between simplex algorithms and

search method and the use of parallel computing opportunities will be also explored.

1.4. Research Approach

To achieve the development of the comprehensive CM design methodology, the

research approach consists of the following steps:

1. Identify the factors that should be considered during the design of CM by
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10.

making a review of published articles.

. Formulate a comprehensive mathematical model for dynamic production re-

quirements incorporating the factors identified in step 1 above.

. Convert the mathematical formulation into a format that can be recognized

by a selected off-the-shelf optimization package.
Generate problem instances to be used for validating the developed model.
(Data will be generated in the range of the data found in published articles

and case studies)

. Solve the problem instances optimally using the selected software package and

analyze results.

. Evaluate the potential benefits of the model gained through the consideration

of the various factors incorporated in it.

Develop a heuristic approach to solve the model efficiently for large data set.

. Write a computer code of the developed heuristic using a selected programming

language.

. Validate the computational efficiency of the developed heuristic by comparing

its performance to that of the selected software package.

Draw conclusions and discuss the directions for future works.

1.5. List of Publications

In this section is the list of papers and conference presentations that I co-

authored during my stay in Concordia University as a PhD student.
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Accepted Journal Paper

1

Defrsha, F. M., and Chen, M., (2005). Machine Cell Formation Using a Math-
ematical Model and a Genetic Algorithm Based Heuristic. Accepted in July
2005 for publication in the International Journal of Production Research. Ref-

erence No. IJPR 40372
Defrsha, F. M., and Chen, M., (2005). A Comprehensive Mathematical Model

in the Design of Cellular Manufacturing System. Accepted in October 2005 for

publication in the International Journal of Production Economics. Reference

No. IJPE 425 ACMA
Hu, B., Chen, M., and Defersha, F. M., (2005). An Integrated Method for

Multi-Objective Cell Formation in Cellular Manufacturing Systems. Accepted
in November 2005 for publication in the International Journal of Manufacturing

Technology and Management. Reference No. IJMTM-MCE-012

Refereed Conference Proceeding

4

Defersha, F.M., and Chen, M., (2004), Designing Cellular Manufacturing Sys-
tems: A Genetic Algorithm Approach in Advances in Dynamics, Instrumenta-
tion and Control, Editors: C-Y. Su, S. Rakheja, E. Wang and R. Bhat ( World

Scientific Publishing Co.) pp.387-396
Cao, D., Chen, M., and Defersha, F.M., (2005), Lot streaming and operation

regrouping considering alternative process routes and production quality in the
proceedings of the International Conference on Production Research (ICPR)

Salerno, Italy, July 31 - August 4, 2005

10
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Conference Presentation

Defersha, F.M., and Chen, M., (2005), A Coarse-Grained Parallel Genetic Al-
gorithm for Cellular Manufacturing System Design. Optimization Days 2005,

Montreal, CANADA, May 9 - 11, 2005
Defersha, F.M., and Chen, M., (2005), A Parallel Simulated Annealing Algo-

rithm for Cellular Manufacturing System Design. 47th Annual Conference of
the Canadian Operational Research Society, Halifax, CANADA, May 16 - 18,

2005
Hu, B., Chen, M., and Defersha, F.M., (2005), An Integrated Method for Cel-

lular Manufacturing Systems Design and Operation. 17th Triennial Conference
of the International Federation of Operational Research Societies, Honolulu,

Hawaii, United States, July 11 - 15, 2005

Journal Paper Under Review

9

10

Cao, D., Defersha, F. M., and Chen, M., — Lot Streaming and Product Quality
Improvement in Cellular Manufacturing Systems. Submitted to the Interna-

tional Journal of Production Research on February 10, 2005.
Defrsha, F. M., and Chen, M., — A Parallel Multiple Markov Chain Simulated

Annealing for Cellular Manufacturing System Design. Submitted to Computers

in Industrial Engineering on October 17, 2005.

Refereed Conference Proceeding Under Review

11

Koganti, R., Chen, M., and Defersha, F.M., (2006), Design for Integrated As-
sembly and Disassembly of Automotive Products. Under review for the pro-

ceedings of SAE World Congress, Detroit, Michigan, USA, April 3-6, 2006

11
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Accepted Conference Abstracts

12 Defersha, F.M., and Chen, M., (2006), An Integrated Approach in the Design
of Cellular Manufacturing and Production Planning for Dynamic Production
Requirements. To be presented in the upcoming Optimization Days/CORS

2006 joint conference.

13 Defersha, F.M., and Chen, M., (2006), A Multi-level Multi-item Capacitated
Lot Sizing by considering the Impact of Run Length on Product Quality. To

be presented in the upcoming Optimization Days/CORS 2006 joint conference.
14

1.6. Outline of Document

The remainder of this thesis is organized as follows. In chapter 2, we present
a review of the literature in the design of cellular manufacturing systems. Chapter
3 provides a comprehensive mathematical model developed for designing a dynamic
cellular manufacturing system. Numerical examples are provided by solving the
model using off-the-shelf optimization software to illustrate the features of the model
and its potential benefits. In Chapter 4 and 5, search heuristics based on genetic
algorithm and simulated annealing respectively, are presented to solve the proposed
model. The heuristics were implemented both on single processor machine and in a
parallel computing environment. Chapter 6 presents a second mathematical model
addressing an integrated cell formation and production planning problem in MRP
environment. The impact of lot size on product quality is also incorporated in
the developed model. In Chapter 7 we developed a hybrid search heuristics that
integrates the simplex method in linear programming with genetic algorithm in

order to solve integrated cell formation production planning model efficiently. The

12
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basic genetic algorithm uses the simplex method to solve a linear programming sub-
problem corresponding to each individual in the population in each generation. In
this chapter, a similar hybrid heuristic is also presented using simulated annealing.

Summary, conclusion and future research are presented in Chapter 8.

13



Chapter 2

Literature Review

2.1. Introduction

Since it was asserted for the first time, the cell formation problem has grown into an
area in which much research has been conducted. Various methods of cell formation
have also been proposed. Comprehensive summaries and taxonomies of studies
devoted to part-machine grouping problems are presented by many researchers (e.g.,
(158, 80, 148, 66, 131]). This chapter presents a review of related literatures in the
area of machine cell formation in cellular manufacturing system. Recently published
articles are considered in order to identify the manufacturing attributes that should

be considered during the design of CM.

2.2. Taxonomy of CM Design Methods

At the highest level, methods for part family /machine cell formation can be
classified as design-oriented or production-oriented. Design-oriented approaches

group parts into families based on similar design features while production-oriented

14
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techniques aggregate parts requiring similar processing. Classification and coding
schemes are design-oriented tools that can be used to implement G'T' applications
[59, 83). An overview of classification and coding is presented by Askin and Vakharia
[7]. Analysis of codes facilitates the rationalization of the design process, rapid pro-
totyping, the development of new parts, and to a certain extent can be used for ma-
chine cell formation. Since part codes are assigned based upon physical geometry,
parts having similar design features have similar codes providing a week connection
between part features and machine grouping [74, 158]. This makes the application
of classification and coding to machine cell formation very limited. This can be
seen by the fact that the large number of CM designed methods proposed during
the late decades are not based on classification and coding. They are production-
oriented approaches. The production-oriented approaches can be further classified
into: Cluster Analysis, graph partitioning, mathematical programming, Al-based

approaches, and heuristics [47, 69, 66].

2.2.1. Cluster Analysis Procedures

Cluster analysis is composed of many diverse techniques for recognizing structure
in a complex data set. The main objective of this statistical tool is to group either
objects or entities or their attributes into clusters such that individual elements
within a cluster have a high degree of “natural association” among themselves and
that there is very little “natural association” between clusters. Clustering procedures
can be classified as: 1) array-based clustering techniques, 2) hierarchical clustering

techniques, and 3) non-hierarchical clustering techniques.

15
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Array-based clustering

Array-based clustering techniques are the most cited methods in CM research.
In these methods, the processing requirements of parts on machines are represented
by an incidence matrix, referred to as the machine-part matrix. The machine-part
matrix has zero and one entries (a;). A 1 entry in row &k and column i (ag; = 1) of
the matrix indicates that part ¢ has one or more operations on machine %k, whereas
a 0 entry indicates that it does not. These techniques try to allocate machines to
groups and parts to families by appropriately rearranging the order of rows and
columns to find a block diagonal form of the az; = 1 entries in the machine—part
matrix. Bond Energy Analysis (BEA) [99], Rank Order Clustering (ROC) [76]
and Direct Clustering Algorithm (DCA) [24] are typical examples of array-based
clustering methods. Chu and Tsai [37] conducted a comparative study of BEA,
ROC and DCA. They concluded that the BEA significantly outperformed the other
two regardless the nature of the initial part/machine incidence matrix.

Matrix manipulation methods are very simple and computationally efficient to
apply to the part/machine incidence matrix [38]. Their popularity stems from this
fact. However, these algorithms generally do not take into account other types of
manufacturing data such as production volume, machine capacity, cost of machines
and cell size limits. These techniques also usually required visual inspection of
the output to determine the composition of the manufacturing cell. Such visual
inspections are very difficult for matrixes of practical sizes. In addition to these
limitations, the array based methods have the disadvantages of being dependent on
the initial configuration of the zero-one matrix [139]. They are not able to provide

disjoint part-families and machine-cells for ill structured matrix.
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Hierarchical clustering

Hierarchical clustering techniques operate on an input data set described in
terms of a similarity or distance coefficient between each pair of individuals. This can
be represented as a lower triangular matrix since the similarity between individuals
is commutative. Using the data contained in this matrix the technique produce a
hierarchy of cluster or partition in a progressive manner. Thus, the data are not
partitioned into a particular cluster in a single step. This clustering technique is
subdivided into divisive and agglomerative methods. Divisive methods run from a
single cluster containing all objects to n clusters each containing a single object.
On the other hand, agglomerative methods run from n clusters each containing a
single object to a single cluster containing all objects. Hierarchical clustering may be
represented by a two dimensional diagram known as dendrogram which illustrates
the fusions or divisions made at each successive stage of analysis. An example of such
a dendrogram is given in Figure 2.1.The cell designer must choose a similarity level
or threshold in order to define the number of clusters. As the threshold increases,
the number of cells in creases while the size of each cell decreases.

Stanfel [142] seems to be the only researcher who applied the divisive approach
to cell formation. Agglomerative techniques are more commonly used. These tech-
niques generate a series of partitions of the data, P,, P,_1, ..., PA. The first P,
consists of n single object ‘clusters’, the last P;, consists of single group containing
all n cases. At each particular stage the method joins together the two clusters which
are closest together (most similar). Differences between methods arise because of the
different ways of defining distance (or similarity) between clusters. This results in a
different agglomerative techniques as single linkage clustering (SLC), average link-

age clustering (ALC) and complete linkage clustering(CLC). The defining feature of
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Figure 2.1: An example of dendrogram

SLC is that distance between clusters is defined as the distance between the closest
pair of objects where a pair of objects is constructed by taking one element from
each of the two clusters. McAuley [98] was probably the first author who applied
hierarchical clustering to solve cell formation problem using SLC. This technique
has a sever chaining problem, which means that two cluster can be grouped based
merely upon a single bond between one machine in ache cluster [98, 105, 51]. The
chaining problem can lead to improper machine assignments in the groups. To help
reduce the chaining problem, Seifoddini [129] applied ALC. In this technique, the
similarity between two clusters is defined as the average of the similarities of each
pair of objects taken from each cluster. CLC further reduces the chaining problem
by selection the minimum similarity coefficient as the in-between cluster relationship

instead of the maximum or average [105, 51].

18



Chapter 2. Literature Review

As it has been stated at the outset, the input for hierarchical clustering tech-
niques is the similarity coefficients between each pair of individuals in the data set.
Thus, a choice of similarity measure is an important aspect in the use of hierarchical
clustering technique for CM design. Similarity coefficients can incorporate manufac-
turing data other than just the binary part/machine incidence matrix. A number of
research papers have used different types of similarity and dissimilarity coefficients
for determining part families. McAuley [98] was the first researcher to apply the
Jaccard similarity coefficient to the cell formation problem. McAuley calculated
the Jaccard similarity coefficient for each machine type pair. Selvam and Bala-
subramanian [132] developed a dissimilarity measure based on operation sequences.
Dutta et al. [42] developed a dissimilarity coefficient to cluster parts. Choobineh [35]
proposed a similarity measure which uses the manufacturing operations and their
sequences in the first stage. Gunasingh and Lashkari [48] suggested a similarity
index which expressed the capability between two machines in processing a set of
parts that need both machines. The capability of a machine is defined in terms
of the tools available to it and tooling requirements of the parts. Tam [146] also
proposed a new similarity coefficient based on the similarity of operation sequences.
Gupta and Seifoddini [51] suggested a new similarity coefficient which was based on
the idea that necessary production data should be incorporated in the early stages
of the machine-component grouping process. They considered processing require-
ments of parts, pair wise average production volume and unit operation time as new
production parameters. Vakharia and Wemmerl6ve [149] proposed a new coeflicient
for use in the clustering process by considering the within-cell machine sequence
and machine loads. In this similarity coeflicient, the proportion of machine types
required by two parts in the same order is measured. Kusiak and Cho [82] pro-

posed two new similarity measures in which one is a binary measure that indicates
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whether one part’s process plan is a subset of another part’s process plan. The other
similarity measure is a modified version of the first which is to be used when the
value of the first similarity measure would have been zero. Gupta [50] suggested a
new similarity coefficient which required that alternative routing of parts should be
considered while calculating the pair wise similarity coefficient between machines.
Kamrani and Parsaie [68] proposed a weighted dissimilarity coefficient based on a
disagreement measure of both design and manufacturing attributes between two
parts. Jeon et al. [65] developed a similarity coefficient which considers alternative
routes during machine failure. Yasuda and Yin [167] proposed a new dissimilarity
measure for cell formation problem based upon the calculation of an average voids
value (AVV). The AVV indicates the average number of newly produced voids when

a pair of machine groups are combined.

Non-hierarchical Clustering

Non-hierarchical clustering methods are iterative methods and they begin with
either an initial partition of the data set or the choice of a few seed points. In either
case, one has to decide the number of clusters in advance. After initial clusters
are formed reallocation occurs iteratively according to some optimality criterion. In
contrast to the hierarchical method, this technique permits objects to change group
membership through the cluster formation process. As an example, let us consider
one of the most popular non-hierarchical clustering technique, namely the k-mean
algorithm. Suppose we have n feature vectors X;, X, ..., X, all belonging to
the same class C. We assume that they belong to k& clusters such that ¥ < n and
initialize the means (seed vectors) p, ..., px as the centers of the k clusters to be
formed. One of the ways to do this is just to assign random vectors to them. We

then determine the membership of each X by taking the ||X — y;||. The minimum
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distance determines X’s membership in a respective cluster. Hence, one vector
will only belong to one and only one cluster. Once the membership of each X is
determined, new values of means y, ..., px will be determined as the centroid of
the generated k cluster. With these newly calculated mean vectors, the membership
of each X will be recalculated. Some vectors will then be relocated. This process
will continue until no changes in the membership occur. As it can be seen from
this process, in non-hierarchical clustering techniques, there is no need to process a
tree-like structure to determine the final clusters. Clusters are formed by relocating
objects to predetermined number of clusters. Thus, only & partition are processed
during the entire process. Notice that, the agglomerative hierarchical clustering
starts with n partitions each of them containing only one object. Then, by successive
merging it ends up with one partition containing all the objects. This successive
merging is represented by an inverted tree like structure - a hierarchy of clusters.
The final cluster are then identified by examining the tree with certain threshold
value of similarities. The advantage of non-hierarchical clustering over hierarchical
clustering is that there is no need to examine a tree like structure to determine the
final cluster which is a difficult job for large data set; a similarity or distance matrix
does not need to be computed or sorted [4]; more natural cluster tend to be formed
because data members are not permanently bound to a group during the cluster
identification process [25]. The obvious disadvantage is that the number of clusters
must be specified a prior, potentially forcing some natural clusters to merged or
partitioned. This may require reprocessing the data for different cluster numbers to
evaluate the sensitivity of the result.

Lemoine and Mutel [88] proposed a non-hierarchical clustering technique for
automatic recognition of production cells and part families in the design of CM.

Chandrasekharan and Rajagopalan [25] developed an algorithm called Ideal Seed
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Non-hierarchical Clustering (ISNC) for either machine cell or part family formation.
This technique uses an evaluation criterion called group efficiency, which measures
intercell movement and within-cell machine utilization. To overcome the limitation
of specifying the number of clusters a priori, the problem is first formed as a bipartite
graph. Then, a theoretical upper limit on the maximum number of independent part
families or machine cells is developed. Another non-hierarchical clustering technique
called ZODIAC (zero-one data ideal seed algorithm for clustering) was developed
by Chandrasekharan and Rajagopalan [26] which is a much improved and expanded
version of ISNC [25]. ZODIAC was designed to simultaneously identifies the part
families and machine cells. Srinivasan and Narendran [140] showed that the initial
seed selection of ZODIAC can still lead to a collapse of some beneficial clusters or
numerous groups with singleton members. Also the minimum rectilinear distance
used as the basis for clustering does not truly represent the machine processing
that is required by individual parts. To overcome these limitations of ZODIAC,
Srinivasan and Narendran [140] developed an algorithm called GRAFICS which
generate initial seeds from an assignment problem, which maximizes the similarity
between machines. Each of the sub-tours is identified and used as initial seeds
in a non-hierarchical clustering algorithm using the maximum density rule as the
clustering criterion. Recently, Nair and Narendran [108] presented non-hierarchical
clustering algorithm which clusters machines and parts on the basis of sequence
data. Ohta and Nakamura [111] extended this work and proposed a new non-
hierarchical clustering algorithm for cell formation with reduction in setup times

between machines in the same cell.
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2.2.2. Graph Partitioning Approaches

A graph G(V, E) is a structure consisting of a set of vertices V = {v1,v2, ... v}
and a set of edges E = {ey, ez, €5...}. All vertices are represented by circles (nodes)
and edges as lines in a graph. Cell formation graph partitioning methods treat
the machines and/or parts as vertices and the processing of parts as arcs connecting
these nodes. These models aim at obtaining disconnected subgraphs from a machine-
machine or machine-part graph to identify manufacturing cells. Rajagopalan and
Batra [123] were among the first to apply a purely graph theoretic approach to the
cell formation problem. Machines are represented by vertices. The edges between
each pair of vertices are assigned the Jaccard’s similarity coefficients to represent the
strength relationship of a machine pair. The authors assumed prespecified threshold
value of the similarity coefficient to avoid using a weak relationship; i.e., no edges
exist between a pair of machines whose Jaccard’s similarity is below a threshold
value. After all allowable edges have been introduced, cliques are formed. These
cliques are then merged to create cells so that intercell moves are minimized. An
upper limit on cell size determines the maximum number of machines in each par-
tition. During the process high and balanced machine utilization are strived for
and machine loads are used to determine the number of machines of a given type
needed for each cell. Witte [161] use this approach with different similarity coeffi-
cients. King and Nakornchai [77] suggested that cell formation could be represented
as a bipartite graph by letting the parts and machines represent the two sets. An
edge between the sets represents the processing of a part on a machine. Faber and
Carter [43] developed a graph theoretic algorithm for grouping machines and parts
into manufacturing cells by converting the machine similarity matrix into a cluster

network. The cluster network is partitioned into cells by solving a minimum cost
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flow problem. Vohra et al. [153] proposed a network approach using a modified
Gomory-Hu algorithm to find the minimum intercellular interaction. Askin and
Chiu [6] proposed a cost-based mathematical formulation and heuristic graph par-
titioning solution procedure for the cell formation problem. Hertz et al. [54] applied
graph theory approach to three types of economic decisions in CM: subcontracting,
machine duplication and intercell moves. The problem is formulated as a minimum
weighted node covering problem in a hypergamy, and they showed that it can be
solved in polynomial time by finding a maximum weighted stable set in a bipar-
tite graph. Recently, Mukhopadhyay et al. [106] applied Hamiltonian chain graph
theoretic approach to group technology. Hamiltonian path was modified by using
dummy edges for better accessibility in order to arrive at a block diagonal solution
to a given problem. They used the number of parts requiring a given machine pair

as a measure of strength.

2.2.3. Al-based Approaches

Researchers have increasingly applied artificial intelligence (Al) techniques to
the cellular manufacturing problem. These techniques include syntactic pattern
recognition, expert systems, fuzzy mathematics, neural network, evolutionary ap-

proaches (EA), simulated annealing (SA) and tabu search (TS).

Syntactic pattern recognition

Syntactic pattern recognition has been commonly used in the field of Al for
parsing strings in natural language processing. Wu et al. [164] applied this tech-
nique to design of manufacturing cells given the machine sequence data of the parts.

Machine sequences are treated as strings which are used to form part families. The
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method derives a dendrogram from which multiple clusters with different number of
cells can be derived. It is possible to generate alternative groupings of some parts
from the dendrogram allowing the decision maker to balance load among cells to a
certain extent. Classification of a new/modified part into an existing machine cell

can be done by matching the parts machine sequence with that of a cells pattern.

Expert systems

Kusiak [81] proposed a method based on expert systems, the most successful
and developed branch of AI. Kusiak starts with the machine- part incidence matrix
modified to include the processing time of part j on machine i instead of the binary
(0, 1) data. The procedure to form part families and machine cells uses a knowledge-

“base and a clustering algorithm closely interacting with each other. Each iteration
determines machine cells and selects part families based on a heuristic which takes
into account variables such as production costs, material carrier, etc. The assign-
ment is checked for satisfaction of three or four meta-constraints such as availability
of processing time in a cell and maximum number of machine cells. If any of the
constraints is violated, appropriate rules from the knowledge-base are fired to correct
the situation. For example, if the processing time constraint of a cell is violated, new
machines are introduced or alternative processing plans are considered. Recently,
Luong [96] developed an knowledge-based (KB) system that attempts to make rec-
ommendations of system feasibility, cell formation techniques and cell types during
the conceptual design of CM. The recommendation for system feasibility is based on
the production quantity and product variety }‘ation (Q\P). The cell formation tech-
niques that the KB system will recommend are either classification and coding or
production flow analysis. The types of cells that are recognized by the KB system for

recommendation are classified as product focused, process-focused, general-purpose

25



Chapter 2. Literature Review

and hybrid cells.

Fuzzy Logic

Most clustering methods assume that part families are mutually exclusive and
collectively exhaustive [168]. While some parts definitely belong to certain part
families, it is not always clear which families is appropriate. Xu and Wang [166]
applied a fuzzy mathematics to this problem. Part features (e.g., length, diameter)
are transformed by membership functions into fuzzy numbers. The membership
function of each feature is designed such that the resulting fuzzy number is able to
differentiate parts according to the feature’s processing needs. The fuzzy numbers
are then used to construct a similarity coefficient matrix. A threshold value is used
to specify the minimum value of the similarity coefficient for a part to be in the same
family. Narayanaswamy et al. [109] developed a non-binary machine component ma-
trix wherein each entry indicates the suitability of a machine to process a part in
dealing with alternative routings. Fuzzy logic concepts were used to consider the
interaction between part features and the importance of certain part features. The
uncertainties in the dimensional tolerance and processing times were also considered
for the determination of the overall suitability of a machine to process a part. They
concluded that existing fuzzy rank order and fuzzy single linkage clustering algo-
rithms can be applied to this non-binary machine-component matrix for subsequent
part family and machine group formation. Giingér and Arikan [49] applied fuzzy
set theory and developed an algorithm which considers both design and manufac-
turing attributes and operation sequences as input parameters to formulate the cell
formation problem. These parameters are fuzzified using membership function con-
cept. Using the fuzzified input parameters, IF-THEN decision rules are applied to

determine parts relationship as fuzzy sets. Crisp values of the parts relationship is

26



Chapter 2. Literature Review

then calculated by the defuzzification step. After these steps, the defuzzified parts
relationship chart is used as an input to the traditional cell formation procedure
namely Single Linkage Clustering (SLC). Spatial arrangement of machines in each
cell are found by using the Computerized Relative Allocation of Facilities Technique
(CRAFT). Recent repots on the use of fuzzy mathematics for CM design can be
found in [67] and [95].

Numeral Network

Artificial neural networks have been applied successfully to many manufactur-
ing areas [169]. These techniques have substantial potential for application to GT
because of their ability to learn through a training process by recognizing patterns
and memorizing special features associated with input data. Several researchers have
applied artificial neural networks to the classification and coding and related prob-
lems in GT. Awwal and Karim [9] applied a hopfield neural network to recognize the
shapes of the parts in the form of binary images. Four part shapes were used to train
a neural network and nine partial inputs shapes were provided to test the recognition
capabilities of the network. Kaparthi and Suresh [70, 71] have applied the ANNs
for classification and coding of rotational parts using three-digit part description,
whereas Liao and Lee [90] presented an automated GT coding and part-gased CAD
system. The above mentioned ANN methods are for design-oriented GT application.
ANNSs have been also applied to a production-oriented methods to determine ma-
chine cells and part families. Malave [97] applied a modified version of the Hebbian
learning rule to the cell formation problem, while others have applied other unsu-
pervised neural learning algorithms such as competitive learning [36, 104, 150] and
Kohonen nets [150]. Several researchers used the neural network classifier based on

an unsupervised learning model by Carpenter and Grossberg [21] and its variants in

27



Chapter 2. Literature Review

[32, 84, 39]. Another variant of the ART model, Fuzzy-ART, handles both analogue

and binary valued inputs while utilizing new learning laws [18, 145].

Evolutionary and Local Search Based Algorithms (EA, SA & TS)

Evolutionary approaches (EA), simulated annealing (SA), and tabu search
(TS) are very efficient search algorithms gaining popularity in solving a wide variety
of engineering problems. In literature, these approaches are classified under artificial
intelligence techniques.

EAs has shown an interesting potential in the engineering fields. The opti-
mization strategies used, based on a population of solutions, have led an increasing
number of researchers to publish articles that address several types of problems
encountered in the area of manufacturing systems [114]. EAs have been applied
to solve part-machine problems by several researchers separately. Pierreval and
Plaquin [116] address the formation of cells to minimize the traffic of parts. In their
approach, solutions are coded through integer strings where the value of an element
represents the cell number containing a machine. The crossover operator is aimed
at passing the similarities between the two parents on the offspring and builds only
feasible solutions. Caux and Pierreval [23] propose a method to form cells composed
both of machines and operators, taking into account the operators skills. They avoid
assigning an operator to a cell containing machines on which this operator is not
skilled. Training costs can be considered to increase the quantity of work performed
in each cell. The objective is then to minimize the training costs regarding to the
quantity of work. In this case, the EA manages a population of solutions where each
solution indicates the grouping of machines and operators into cells. King et al. [78]
propose a GA for the cell formation problem that takes into account alternative

routings. The vector coding solutions contains two kinds of information: the first
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part models the assignment of machines to cells and the second part indicates the
chosen routing for each part. Kazerooni et al. {73] solved a part-machine problem
using GA taking into account production volumes, alternative routings and process
sequences. Cheng et al. [33] addressed the formulation of the part-machine problem
through a traveling salesman problem (TSP) and developed a genetic algorithm so-
lution procedure. A flow method then optimally assigns, within each cell, operators
to machines. Multi-criteria cell formation is addressed using an EA in [115]. In this
case, the selection process of the EA is based on a tournament and uses the notion of
Pareto-optimality (or non-dominated individuals). In their article, the multi-criteria
approach is illustrated on an example where the inter-cell traffic is minimized and
the cell workload is balanced. The evaluation function is the number of intercellular
movements. The inter-cell minimization problem also including specific constraints.
The cell design has to be done, such as, for example, some machines must be in the
same cell or conversely in two different cells. Rao et al. [125] addressed the machine-
grouping problem using a EA and the layout problem using a placement algorithm.
The EA provides a population of solutions for the machine grouping problem, then
for each solution, they apply a greedy algorithm in order to obtain a layout, which
meets the physical constraints (e.g. a machine cannot be moved). The total distance
traveled is then computed for each solution and, obviously, the objective is to min-
imize this distance. A genetic algorithm approach based on a coding specification
scheme, as used in Group Technology, is proposed by [87] to identify part families.
The GA aims at creating part families by maximizing the similarities among parts of
a same family. The similarity between two parts depends both of design attributes
(shape, tolerances, etc.) and manufacturing attributes (operation sequence, process,
etc.). In certain cases, it may not be relevant to structure the total workshop in a

cellular organization. In a hybrid organization, in addition to group technology cells
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certain machines are grouped into functional cells, composed only of machines of
the same type. Genetic algorithm approaches for designing cellular manufacturing
systems with dynamic part populations can be found in [160] and [107]. In these
articles, the cell formation problem is considered over a multiple planning periods.
System reconfiguration is taken into consideration in order to cope with the changes
in demand. Mungwattana [107] considered both deterministic and probabilistic de-
mand fluctuation. Viguier and Pierreval [151] propose a multi-criteria evolutionary
programming approach to define a hybrid organization, taking into account sev-
eral possible routings for the parts. The solutions representations are vectors that
contain both information related to which cell contains which machine, and which
routing is assigned to which part. Mutations can change the assignment of machines
or the routing of parts. Zolfaghari and Liang [171] developed a GA for solving a ma-
chine/part grouping problem by considering processing times, lot sizes and machine
capacities. In their article, they provided a generalized group efficiency index (T')
used as a fitness function to guide the genetic search. I'; quantifies the density of
operations within cells (within cell utilization) and the intercell moves in a grouping
problem by utilizing the processing time and lot sizes.

SA is another successful stochastic approaches in the class of Al based methods.
Kirkpatrick et al. [79] initially presented the simulated annealing algorithm, which
attempts to solve hard combinatorial optimization problems through controlled ran-
domization. Since then the algorithm has been applied to many optimization prob-
lems in a wide variety of areas, including cell formation problems [27, 1, 135, 143,
107, 157, 165]. Mungwattana [107] developed a problem specific heuristic that gen-
erated an initial configuration. Simulated annealing is then employed to improve
the initial cell configuration generated by the heuristic. His work considered system

reconfiguration to cope with changes in demand over the planning horizon. Wang
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et al. [157] applied simulated annealing to solve inter- and intra-cellular facility lay-
out of CM simultaneously assuming the demand rate varies over the product life
cycle. Cell formation techniques using TS can be found in [93], [92], [94], [41, 20],
and [31]

2.2.4. Mathematical Programming

Mathematical programming approaches are widely employed in the design of
CMSs. These techniques can be classified as linear programming (LP), linear and
quadratic programming (LQP), dynamic programming (DP) and goal programming
(GP) [131]. They offer distinct advantage over other cell formation techniques as
they can easily incorporate a number of design logics in their objective and con-
straint functions. Mathematical formulations enable cell designers to easily incor-
porate ordered sequences of operations, alternative process plans, multiple and non-
consecutive part operation on the same machines, operation cost, machine holding
cost, setup and processing times, the use of multiple identical machines, workload
balancing, production planning issues as well as outsourcing of parts. These formu-
lations also suffer from critical limitation of being computationally intractable for
realistically sized problems. Large scala problems typically require heuristics and
approximate methods such as Lagrangian relaxation with subgradient optimization,
simulated annealing and genetic algorithms. Purcheck [1974, 1975] was among the
first to apply linear programming techniques to the GT problem. As an optimiza-
tion technique, the objective in cluster analysis is to maximize the total sum of
similarities between each pair of individuals (machines or parts) or to minimize the
distances between each pair.

The classical clustering p-median model is used to cluster n parts (machines)
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into p part families (machine cells). Constraints specify that each part can belong
to only one part family and the required number of part families is p. A part can
be only assigned to a part family that has been formed. Solutions obtained are
optimal for a specified p, requiring that all values of p be evaluated to find the
minimum objective function [141]. The p-median model assumes that each part
has only one set of machining operation, i.e., there are no alternative process plans.
The generalized p-median model [80] relaxed this assumption and considerers the
presence of alternative routings. Since Kusiak suggested the generalized p-median
model as a solution methodology for solving cell formation problem, many authors
have reported successful applications to cell configuration with slight modifications
over Kusiaks p-median model [126, 85, 152, 156, 40]. However, real applications of
the p-median model were severely restricted due to the two major factors: prob-
lem size and software type [163]. First, regarding the problem size, let us suppose
an m x n machine-part incidence matrix. Then m? binary variables are needed
to implement the previous p-median models of machine cell formation and the CF
problem is NP-complete [77]. Therefore, it takes prohibitive computation time to
even solve medium-sized CF problem by using the previous p-median models with-
out proper acceleration schemes. The performances on large scale CF problems with
40 or more machines has been little reported in literature. Secondly, with respect
to the software type, the HYPER LINDO program is the most popular software
for solving mathematical formulations of the CF problem [85]. However, it has a
limited capability of solving small-size CF problems with less machines. To resolve
the drawbacks of the original version by Kusiak [80], Kaparthi and Suresh [72] aug-
mented the original p-median model so that it can accommodate larger CF problems

with the merit of much fewer binary variables by adopting the similarity coefficient
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defined between parts. But it still requires too many constraints even on medium-
sized CF problems. Wang and Roze [156] and Islam and Sarker [61] proposed more
efficient versions with fewer constraints by introducing an upper limit on the cell
size which indicates the maximum number of machines allowable to each cell. But
those modified versions of the p-median model did not suggest any efficient schemes
for speedy implementation of the proposed linear integer programming formulations
[163]. Won [162] used the binary variable reduction technique to reformulate the
classical p-median model so that the resulting one contains fewer binary variables.
But the authors reformulation also does not seem to guarantee speedy implemen-
tation of the model since the reformulation requires extra continuous variables and
constraints that tend to increase linearly as the value of p increases. In an attempt
to overcome the limitations of the existing p-median approaches for solving GT cell
formation problem, Won and Lee [163] proposed new scheme for implementing the
p-median model. They reformulate the p-median model with the binary variables
corresponding to the machines not in the candidate set of median machines being
excluded from the beginning. This resulted a modified p-median model with reduced
number of binary variables.

Shtub [133] modeled the cell formation problem as a generalized assignment
problem (GAP) and proved that the model is equivalent to the general formulation
of the GT problem (p-median model) and the generalized GT problem (the gener-
alized p-median model). Srinivasan et al. [141] showed that the assignment model
can overcome some of the limitations of the p-median model, i.e., the number of
parts families is not specified a priory. Boctor [16] proposed analytical model that
simultaneously cluster or assigns machines and parts to cells. The objective is to
minimizing the number of exceptional elements in the final solution. The general-

ized p-median model in [80] considered alternative routings to increase the number
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of cells can be formed to minimize intercell movements. However, this model did
not include the cost and capacity of machines. Choobineh [35] developed a simi-
larity measure which uses the manufacturing operations and their sequences and a
linear programming model that takes the cost and capacity of machines. However,
their formulation did not include different alternative routings explicitly. Rajamani
et al. [124] proposed three integer programming models that incorporate both bud-
get and machine capacity, as well as alternative process plans. Recent development
of mathematical programming approach that used Benders’ decomposition for opti-
mal solution can be found in [53, 28]. Wang [155] proposed a new linear assignment
algorithm for machine-cell and part-family formation for the design of cellular man-
ufacturing systems. The approach begins with the determination of part-family or
machine-cell representatives by means of comparing similarity coefficients between
parts or machines and finding a set of the least similar parts or machines. Using
the group representatives and associated similarity coefficients, a linear assignment
model is formulated for solving the formation problem by allocating the remaining
parts or machines and maximizing a similarity index. Based on the formulated linear

assignment model, a group formation algorithm was developed.

2.3. Manufacturing Attributes Considered in CMS

Design Methods

The design of CM can be broadly divided into two major phases [19]. The first
phase of CM design is cell formation. The effectiveness of this phase depends heavily
on the consideration of several factors. Review of recently published articles showed

that these factors include dynamic cell reconfiguration, lot splitting, sequence of
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operations, alternate part routings, operation time and cost, cost of subcontracting
part processing, machine capacity, setup cost, tool consumption, workload balanc-
ing, cell size limit, machines separation constraints, among others. Detailed list
of these attributes is given in Table 2.1. Table 2.2 shows a sample of 18 recently
published articles and the corresponding sets of attributes that have been used in
their procedures. The attributes used in the model proposed in Chapter 3 are also
indicated. As it can be seen from this table the proposed model provides a greater
coverage of the attribute than the sample articles. This model is also further ex-
panded in Chapter 6 to include production planning decisions in MRP environment.
The impact of lot size on product quality is also taken into consideration. Articles
relevant to production planning and the impact of lot size on product quality and
are briefly reviewed in Chapter 6.

The second phase of CM design consists of the system design of each of
the individual cells. Typical decisions in this phase include equipment layout, de-
sign/selection of material handling equipment, assignment of operators to machines,
machine loading and scheduling, job dispatching, among others. This research aims
at a comprehensive study on the first phase of designing cellular manufacturing

systems using a mathematical programming approach.
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Chapter 3

Mathematical Model-A

3.1. Introduction

The design of cellular manufacturing systems (CMS) involves many structural and
operational issues. One of the first important design steps is the formation of part
families and machine cells. The effectiveness of this design step heavily depends on
the proper consideration of relevant aspects. To this end, a model that incorporates
various pragmatic issues is essential. In this chapter a comprehensive mathematical
model for the design of cellular manufacturing systems is proposed. The model is
formulated based on the tooling requirements of the parts and the tooling available
on the machines. It incorporates dynamic cell configuration, alternative routings,
lot splitting, sequence of operations, multiple units of identical machines, machine
capacity, workload balancing among cells, operation cost, cost of subcontracting
part processing, tool consumption cost, setup cost and other practical constraints. A

numerical example is presented to demonstrate the model and its potential benefits.
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3.2. The Proposed Mathematical Model

This section presents the problem description, the proposed mathematical pro-

gramming model and manufacturing system features incorporated in the model.

3.2.1. Problem Definition

Consider a manufacturing system consisting of a number of machines to pro-
cess different parts. Each machine has a number of tools available on it and a part
may require some or all of the tools on a given machine. A part may require sev-
eral operations in a given sequence. An operation of a part can be processed by a
machine if the required tool is available on that machine. If the tool is available
on more than one machine type then the machines are considered as alternative
routings for processing the part. An entire lot of a part may be split into different
cells for the processing of an operation if economic advantage can be gained. In ad-
dition, we consider the manufacturing system in a number of time periods ¢, where
t=1,2,..,T with T > 1. One time period could be a month, a season, or a year.
Each machine has a limited capacity expressed in hours during each time period.
Machines can have one or more identical copies to meet capacity requirements and
reduce/eliminate inter-cell movement. Assuming that the demand for the parts to
be processed by the machines vary with ¢ in a deterministic manner, machines are
to be grouped into relatively independent cells with minimum inter-cell movement
of the parts. In grouping the machines, it is also required that the workload of the
cells should be balanced. Machines that cannot be located in the same cell should be
separated. Machines that cannot be separated should be co-located. To address this
multiple time period cell clustering problem, a mixed integer programming model

is formulated. The objective of the model is to minimize machine maintenance and
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overhead cost, machine procurement cost, inter-cell travel cost, machine operation

and setup cost, tool consumption cost and machine configuration cost for the entire

planning time horizon 7. The notations used in the model are presented below.

Indices:

Time period index: ¢ =1,2,...,T

Part type index: 1 =1,2,..., [

Index of operations of part ¢: j = 1,2,..., J;

Machine index: £k =1,2,..., K

Tool index: ¢ =1,2,...,G

Cell index: 1 =1,2,...,L

Input Data:

S

i(t) -

& ;=

)\jia -
Jak -
hijik -

Wyik -

Mjik -

Qr(t) -

Pi(1) -

Demand for part ¢ in time period ¢

Unit cost to move part ¢ between cells

Batch size of product ¢

Cost of subcontracting part 4

Equals to 1 if operation j of part ¢ requires tool a; 0, otherwise
Equals to 1 if tool a is available on machine k; 0, otherwise

Processing time of operation j of part ¢ on machine type k

Tool consumption cost of operation j of each part ¢ on machine type

k
Setup cost for operation j of part ¢ on machine type k

Maximum number of machine type k that can be procured at the
beginning of period ¢

Procurement cost of machine type &k at the beginning of period ¢
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Ck -
LB, -
UB, -
R} -

Maintenance and overhead costs of machine type & per time period ¢
Operation cost per hour of machine type k

Capacity of one machine of type & for one time period

Minimum number of machines in cell {

Maximum number of machines in cell [

Cost of installing one machine of type &

Cost of removing one machine of type &

0 < ¢ < 1; A factor for the work load of a cell being as low as ¢ x 100%

from the average work load per cell

The number of cells among which an entire lot of part i may split
into during time period ¢ for the processing of certain operations;
Zit)ye {1, 2,..., L}

A large positive number

A set of machine pairs {(k®, k°)/k%,k® € {1,---,K},k* # k®, and k°
cannot be placed in the same cell with k°}

A set of machine pairs {(k, k%)/k° k% € {1,---, K}, k° # k%, and k°

should be placed in the same cell with k%}

Decision Variables:

General Integer:-

Ny (t) -

@ -

Yul) -

Continuous:-

niim(t) -

Number of type k¥ machines to assign to cell ! at the beginning of

period ¢
Number of type £ machines to add to cell [ at the beginning of period

t

Number of type k& machines to remove from cell { at the beginning of

period t

The proportion of the total demand of part i with the j® operation
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to perform by machine type & in cell | during period ¢
7i(t) - The proportion of the total demand of part ¢ to be subcontracted in

time period ¢

Auxiliary Binary Variables:

The auxiliary binary variables are used to formulate logical constraints. The
values of these variables are not required to make decisions for system configuration

and operation assignments. These variables are:

(%) - Equals to 1, if type k& machines are to be assigned to cell ! during
time period ¢; 0, otherwise

pialt) - Equals to 1, if operation j of part i is to be processed in cell / during

period ¢; 0, otherwise

3.2.2. Objective Function and Constraints

Following the problem description and notations given in Section 3.2.1, the
comprehensive mixed integer programming model for cellular manufacturing system

design is presented below.

Objective:

E
M
M=
£

Minimize Z =

(t) - G

-
1l
—
o~
1
i
ES
il
—

Pk iNkl(t) — zL:Nkl(t - 1))

=1 =1

J;—1 K K
}: nj+1,ik (T) — Z ﬂjikt(t)D
k=1

k=1

dz(t) Njikt(t) - hji(t) - O

+
M=
M=

o
]
—
=
{i
=

di(t) - Vi
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T L K P J

+ D22 D> dilt) - myawa(t) - wyak
t=11=1 k=1i=1 j=1
T L K P I g) et

THD 90 90 35 ) DAt LUy
t=11=1 k=1 i=1 j=1 ¢
T L K

+ 232 (B v + Ry - v(®)
t=11=1 k=1
T P

+ D0 - di(t) - ()
t=1 =1

Subject to:
' L K
di(t) - DD miim(t) = di(®)(1 — H(2)) ;5 V(,5,1)

=1 k=1
04iki(t) < Ajia X dak

K
> njim(t) < pjult)
k=1

> pua(t) < Zi(t)
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0<m(t) <1 ;5 V(i) (3.15)
o), va(t), Nu®) € {0,1,2,---} ; V(k,1,1) (3.16)
pju(t) and r(t) € {0,1} ; V(,4,k,1,t) (3.17)

Model Objective Function: The 1st term of Z is machine maintenance and over-
head costs. The 2nd term is machine procurement cost where Y2 Ny(t), Vt > 1,
is the number of machines of type k£ in the system at the beginning of period t.
YF | Ny(0) is the number of machines of type k available from a previous system
if the problem is to reconfigure an existing system. For setting up a new system,
Y% | Ni(0) = 0, Vk. The 3rd term represents the inter-cell material handling cost.
Assume that the costs of moving the same material between different cells are the
same since the fixed costs involved in moving materials are normally large while the
distance related cost components are typically small [53], and hence are negligible.
The 4th-7th terms of Z are machine operating cost, tool consumption cost, setup
cost, and machine relocation cost, respectively. The 8th term is the cost for sub-

contracting parts.

Model Constraints: Eq. (3.2) is to ensure that if a part is not subcontracted, the
processing of each operation of this part must be assigned to a machine. An assign-
ment of an operation of a part is permitted only to a machine having the required
tool using (3.3). This constraint is also for limiting the values of 7;;(t) within [0, 1].
The processing of an operation j of part ¢ is allowed to be performed in at most
Z;(t) cells in time period t with (3.4) and (3.5). Machine capacity constraints are
in (3.6). Workload balancing among cells is enforced with (3.7) where the factor
g € [0,1) is used to determine the extent of the workload balance. If the number

of cells is L, the minimum allowable workload of a cell is £ x 100% of the total
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workload in terms of processing time. The maximum allowable workload is given by
(% +1-— q) x 100% of the total workload. If ¢ is chosen close to 1.0, the allowable
workload of each cell will be close to the average workload given by % x 100% of
the total workload. Eq. (3.8) implies that the number of type k¥ machines used any
period is greater than or equal to that of the previous period. This means that the
model is not going to remove extra machines of any type if that type of machines
happen to be in excess in a certain time period. The presence of extra machines in
the system increases system flexibility and reliability by providing alternative routes
during machine breakdown. Lower and upper bounds on the sizes of the cells are
enforced with (3.9). Eq. (3.10) is to ensure that the number of machines of type
k in the current period in a particular cell is equal to the number of machines in
the previous period, adding the number of machines moved in and subtracting the
number of machines moved out of the cell. Eqgs. (3.11) and (3.12) are for setting
rri(t) to 1 if at least one type k machine is located in cell ! during period ¢, 0 other-
wise. Eq. (3.13) is to ensure that machine pairs included in © should not be placed
in the same cell. Eq. (3.14) is to ensure that machine pairs included in 2 should be
placed in the same cell. The values of #;(¢) are limited within [0, 1] by (3.15). Eq.

(3.16) and (3.17) are integrality constraints.

3.2.3. Features of the Model

The distinguishing feature of the model presented in this chapter is that it
simultaneously addresses several pragmatic issues in the design of cellular manufac-
turing systems. Some of these issues are briefly discussed below.

Dynamic Reconfiguration of Cells: In the presence of product mix varia-

tions, cell reconfiguration is an obligatory issue that should not be overlooked if the
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manufacturing system is to remain efficient. With increased demand for manufac-
turing flexibility, this problem becomes more prominent in designing manufacturing
cells [29]. Most developed procedures use static product mix to cluster machines
into cells. In a dynamic manufacturing environment, it is very likely that production
demand and part mix change with time. System reconfiguration is required in order
to efficiently operate the system under such product mix variations. The issue of
designing CMS in a dynamic environment was discussed in [107], [130], [160], [29]
and [52]. In this research, we attempt to address this issue in a more realistic way by
incorporating many other practical matters into the proposed mathematical model.

Alternative Routings: The presence of alternative routings is very custom-
ary in many discrete, multi-batch, small lot size production environments. Routing
flexibility increases the number of ways that manufacturing cells can be formed to
save cost. The proposed mathematical model has been formulated based on the
tooling requirements of the parts and tooling availability on the machines. If a tool
is available on more than one machine, then these machines can make alternative
routings for operations requiring that particular tool. The previous research work
found in the literature considering dynamic cell reconfiguration has either ignored
routing flexibility [29] or only found the best route for each part from the available
routes and disregarded the remaining routings from further consideration [160, 107].
However, ignoring the remaining alternative routings can result in one or more of
the following undesirable effects: machine under utilization, increased operation cost
and additional investment on machines. For this reason, in the model proposed in
this chapter, alternative routings are allowed to coexist and share the total produc-
tion volume if economic advantage can occur.

Lot Splitting: Lot splitting is a process used primarily in batch manufactur-

ing scheduling. It divides large orders into smaller batches providing the opportunity
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for simultaneous processing of orders on more than one work center. This may re-
~sult in reduced flow time [63] and better due date performance [154]. In the context
of cellular manufacturing systems operation, [91] and [144] used the concept of lot
splitting in order to improve the effectiveness of scheduling decisions. However, some
lot splitting decisions that have not been considered at the early stage of the system
design may not be optimal in terms of intercellular movement, operation cost and
other cell formation objectives. In our research, we introduce lot splitting at the
design phase of cellular manufacturing systems as it may result in improved machine
utilization, reduced inter-cell movement, decreased operation cost, reduced machine
investment and evenly distributed workload. If a cell designer sets the value of Z;(t)
greater than one in Eq. (3.5), the whole lot may split into Z;(¢) cells allowing simul-
taneous processing of an operation of a part provided that the required machines
 are available in these cells. The lot splitting introduced during this design ph;ase
can be utilized in the scheduling function with no or insignificant negative impact
on cell formation decisions.

Sequence of Operations: The consideration of sequence of operations helps
to determine the exact count of inter-cell movement of parts. Models that do not use
operation sequence data may result in non-optimal solutions in terms of inter-cell
movement of parts. In our mathematical model, operation sequence data is used in
order to more accurately calculate inter-cell movement.

Workload Balancing: Workload balancing contributes to a smooth running
of the system and better performance in terms of throughput, makespan, flow time
and tardiness [75]. Balancing workload reduces work-in-process and improves the
flow of the parts through the system. A constraint enforcing workload balancing
among cells (Eq. 3.7) is included in the proposed model. In this constraint, the

factor ¢ € [0,1) determines the extent of the workload balance. If the number of
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cells is L, the minimum allowable workload of a cell is £ x 100% of the total workload
in terms of processing time. This corresponds to the maximum allowable workload
given by (—Z— +1- q) x 100% of the total workload.

Machine Adjacency Constraint: A number of authors addressed machine
adjacency requirement in CMS design [41, 117, 136, 53]. Such requirements exist
since some machines must be separated from each other while other machines must
be placed together due to technical and safety considerations. For example, machines
that produce vibrations, dust, noise, or high temperatures may need to be separated
from electronic assembly and final testing. In other situations, certain machines
should be placed in the same cells. For example, a heat treatment station and a
forging station may be placed adjacent to each other for safety reasons. Machines
that share a common resource or those that require a particular operator’s skill may
also be placed in a same cell.

Other Features: The proposed model also incorporates cell size limits, setup

cost, tool consumption cost and subcontracting cost of parts processing.

3.2.4. Linearizing the Model

The proposed model is a non-linear model because of the absolute value in
the third term of the objective function. This term can be linearized by introducing

non-negative real variables n;(¢) and n3;(t) and a binary variable B;;(t) as follows:
The term IZkK=1 Nijripa(t) — 5, njikl(t)l in the third cost element of the objec-

tive function is replaced by nf;(t) + n;(t) with the added constriants:

K K
> Migrim(t) = D mim(t) + nfy (1) — ni() (3.18)

k=1 k=1
nt(t) < M- Biu(t) (3.19)
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() < M- (1 - Biu(t)) (3.20)
Biji(t) is binary. (3.21)

After this term is linearized, the integer programming model has objective func-
tion with linear terms only and all constraint functions are linear functions. This
linearization is required in order to solve the model using commercially available

software for small size problem.

3.3. Numerical Examples

Several example problems, all solved with LINGO, a commercially available
optimization software, are presented in this section. Example 1 is explained in
detail for its input data and computational results. Since other example problems
are similar to Example 1, only summarized results are presented to further illustrate

the CMS design issues addressed with the proposed model.

3.3.1. Example 1

In solving this example, we consider 10 different types of machines, 25 part
types, and two planning time periods. The machines are to be grouped into three
relatively independent cells and reconfiguration is to be performed at the beginning
of the second period to respond to the changes of production demand. For this
numerical example, the model presented in Section 3.2 has a total of 6,438 variables
having potentially non-zero values. 2,100 of these variables were integers. The

corresponding number of functional constraints is 6,723.
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Input Data

The input data of this example problem are given in Tables A.1 to A.6. These sets
of data were generated randomly within the ranges of data found in most published
articles and case studies. Table A.1 contains data on production batch size, unit
cost of inter-cell movement and the demand for the parts in the two time periods.
Table A.2 shows the tools required by the operations to process the parts. Table
A.3 presents the tool availability on the machines. Table A.4 contains data related
to alternative routings. The data in Table A.4 are generated by matching tool
requirement by operations of the parts and tool availability on the machines. For
example, Table A.2 shows the first operation of part 1 requires tool A01. This tool
is available on machine types 1 and 2 (Table A.3). Hence machine types 1 and 2 can
be used in alternative routings for the first operation of part 1. The corresponding
setup costs and operation times are assumed known as shown in Table A.4. Machine
cost data and other machine data are given in Table A.5. These include machine
overhead costs, operating costs, machine installation and removal costs, machine
capacities, the maximum number of machines that can be procured and machine
procurement costs. We assume that the problem is to setup a new system from
the beginning thus Ny (0) = 0, V¢. Table A.6 contains some miscellaneous data. It
shows the number of cells to be formed, lower and upper bounds for the cell sizes,
list of machine pairs that cannot be placed in a same cell and work load balancing
factor g. For this example problem, we assume that no part processing will be
contracted out, so the subcontracting cost ®; was given a large number for each
part type. We also assume that the variations in tool consumption cost for various
alternative routings are negligible because of the smaller number of parts considered

in the example.
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Solution of the Example Problem

Using the model proposed in Section 3.2 and the above data, optimal cell formation
and part processing decisions are found using LINGO software. The cells generated
during each time period and the part assignment to the various cells are given in
Tables A.7 and A.8. The assignment of the various operations to the machines is
indicated by the decision variable 7;(¢). The number of variables 7;:(t), for all
i,J,k,1 and t is very large. Here we only present a sample set of ;. (t) for part
types 1, 6, 10, 15 and 21 shown in Table A.9. As can be seen from this table, part
15 is entirely processed in cell 1 during period 1, with operations 1 and 4 processed
by machine type 1, operation 2 processed by machine type 3, operations 3 and 5
processed by machine type 4 and operation 6 by machine type 8. This is indicated
in Table A.7 by a unit value corresponding to machine types 1, 3, 4 and 8 in cell 1.
Similar to part 15, part 1 is also processed in one cell during period 1. Notice that
the fourth operation of part type 1 is performed partially by machine type 3 and
partially by machine type 4 due to its alternative routings that coexist. Part 10 is
processed partially in cell 1 and partially in cell 2 due to lot splitting. This result is
reflected in Table A.7. One can see that part 10 appears in columns 7 and 10 and
there are no values outside the diagonal block corresponding to this part. Similar
to part 10, part 6 is also processed in two cells during period 2. Notice that there
is a combined effect of lot splitting and alternative routings as the fourth and fifth
operations of this part are performed by machine type 1 in cell 2 and by machine
type 2 in cell 3. The first four operations of part 21 are processed partially in cell
2 and partially in cell 3. The fifth operation is processed partially in cell 3 and
partially in cell 1 while the last three operations are performed within cell 1. Hence,

there is an inter-cell movement from cell 2 and cell 3 to cell 1. This is reflected by
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elements outside the diagonal block in Table A.8.

The reconfiguration performed at the beginning of period 2 is indicated by the
decision variables y7;(¢) and yj;(t) and the values of these variable can be determined
from the data given in Tables A.7 and A.8. For example, six units of machine type
2, one unit of machine type 3 and four units of machine type 6 are added to cell 1
in period 2. At the same time, one unit of each of machine types 1, 4, 7, 8, 9, 10

and two units of machine type 5 are removed from cell 1.

‘Workload Distribution

The above discussed solution was based on the workload balancing factor ¢ set
to 0.9. Hence, for the three cells generated, the minimum allowable work load is
959 x 100 = 30% of the total workload in processing time with the maximum being
(0349 +1 - 0.9) x 100 = 40%. In order to see the impact of the constraint that
enforces workload balancing, we also run the example problem with ¢ = 0. The
resulting workload distributions and the corresponding objective function values for

these two different values of ¢ are given in Table 3.1.

Table 3.1: Workload distribution

Workload of cells in processing time Objective
and as a percentage of the total workload function
q Cell Period-1 Period-2 value
1 1527821 40% 2053727 44%
0 2 1380987 36% 1597487 34% 2,613,864.00
3 957854 25% 1025005 22%
1 1259986 33% 1644312 35%
0.9 2 1160890 30% 1616507 35% 2,626,995.00
3 1448759 37% 1397494 30%

As it can be seen from Table 3.1, for ¢ = 0 (or without the constraint that en-

force workload balancing), there are significant workload differences among the cells.
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In period 1, the workload difference between cell 1 and cell 2 is 569967 processing
time in minutes. If we assume an average processing time of the operations to be 12
minutes, then 47498 more operations are performed in cell 1 than in cell 3. In pe-
riod 2, cell 3 receives only half of the load of cell 1. Such unbalanced workload may
lead to a poor performance of the system in terms of production throughput and
increased work-in-process. For ¢ = 0.9, the workload is evenly distributed among

the cells with certain increment of the objective function value.

Cost Savings

We briefly discuss cost saving issue related to the example problem from different
aspects of the proposed model. These include dynamic cell reconfiguration, lot
splitting and routing flexibility. To investigate the cost saving as a result of these
features, we solve the model presented in Section 3.2 by eliminating these features

one at a time. If we add the constraint:

Yr(t) = y(t) =0,t > 2 (3.22)

to the basic model, it will enforce that all required machines be installed at the
beginning of period 1 and there will be no system reconfiguration. If Z;(t) is set
equal to 1 for all 7 and ¢ in Eq. (3.5) of the basic model, then no lot-splitting can
take place. If we add the constraint:
T
> m(t) =0 (3.23)
t=1 =1
to the model, it prevents the use of machine type 1 for the first operation of part

1 since this machine involves a higher sum of setup and operation cost per unit of

part than machine type 2 (i.e., [“gl" + O X h11.] > [”}11’2 + O X hy1]). Similar

constraints can be added corresponding to each alternative routes of a part involving
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higher sum of setup and operation cost per unit of that part. This process will
eliminate all alternative routings having higher setup and operations cost. Thus
each operation will have exactly one route and alternative routes will no longer be

used in the cell formation decision. On the other hand, if we add the constraints:

zL:ﬂl,l,l,z(t) < M- Xy(t) (3.24)

=1
_iﬂm,z,z(t) < M*-(1-X1(t) (3.25)
X1(t) is binary. (3.26)

to the basic model, then the model will select either machine type 1 or machine
type 2 for the first operation of part 1. Similar sets of constraints can be imposed
corresponding to other operations having alternative routings. This process will

inhibit coexistence of alternative routings.

Table 3.2: Cost saving as a result of some features of the model

Feature inhibited Objective Function Cost Saving by

from the basic model Value Considering the feature
None 2,626,995.00 NA

Dynamic Reconfiguration

of cells 2,661,179.00 34,184.00

Lot Splitting 2,696,860.00 69,865.00

Alternative Routings 2,732,050.00 105,055.00

Coexistence of Alternative
Routings 2,656,860.00 29,865.00

By eliminating the features mentioned above one at a time from the basic
model using the corresponding sets of constraints, we run the example problem to see
their impacts on the objective function. As it can be seen from Table 3.2, cost savings
are significant for the example problem resulted from dynamic reconfiguration, lot

splitting and routing flexibility.
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3.3.2. Other Example Problems

We further illustrate the proposed model using ten other numerical examples,
problems 2 to 11. The data for these examples were generated by varying the data

related to the following problem aspects.

e Number of planning periods and demands for part processing

Number of cells, number of machines, machine capacities, machine procure-

ment, holding, and operation costs
e Number of part types

e Numbers and sequences of operations of the parts

Setup costs and processing times of the operations

The variations mentioned above are within relatively small ranges but do not
follow any particular pattern. General features of these additional problems are in
Table A.10.

A summary of the impact of the workload balancing constraint on the work-
load distributions and objective function values of these 10 problems is in Table 3.3.
In the third and fourth columns of this table are the maximum workload differences,
expressed as a percentage of the total workloads. From these columns it can be seen
that there are considerable workload differences in these examples if the workload
balancing constraint is not imposed. A maximum workload difference of 37% is
observed in problem 2, where one of the cells carries 55% and another cell carries
only 18% of the total workload. The averages of the maximum workload differences
of all the problems are 7.0% and 23.8% with and without the workload balancing

constraint, respectively. The last column of this table are the increments of the
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objective function value due to workload balancing constraint. As can be seen from
this column, the increment of the objective function value is less than 0.1% for the
seven of the ten problems and the average percentage increment is 0.14%. In Table
3.4 we present the cost savings observed from these 10 example problems as a result
of dynamic reconfiguration, lot splitting, alternative routings and allowing alterna-
tive routings to coexist. As can be seen from this table, lot splitting and alternative
routing have resulted in significant cost savings with the averages being 5.95% and
6.47%, respectively. Cost saving from lot splitting‘can be due to reduced inter-cell
movement, reduced machine investment, and better machine utilization. It can also
enable workload balancing with minimal inter-cell movement since the processing
of an operation of a batch can be allocated to different cells. The cost saving from
alternative routings can be from reduced inter-cell movement, operation cost, setup
costs, and machine investment cost since it can increase the number of ways in which
the cells can be formed to reduce these costs. Dynamic reconfiguration and allowing
alternative routings to coexist have resulted in cost savings in these 10 problems
with the averages being 0.50% and 0.53% respectively. These small percentages can

mean a considerable cost saving when large investments are considered.

3.4. Summary and Discussion

In this chapter we consider a multiple time period system planning problem in
cellular manufacturing systems. We proposed a comprehensive mathematical model
to generate manufacturing cells which may be sustained for a number of planning
time periods. The model attempts to minimize machine investment cost, inter-cell

material handling cost, operating cost, cost of subcontracting part processing, tool
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Table 3.3
Impacts of the workload balancing constraint on the workload distributions and
objective function values of the 10 arbitrarily generated problems

Maximum Cell Load Difference Objective Value

Problem as % of Total Increment

No. Period g=0 g=0.9 %

2 1 37 10 0.05
2 29 8

3 1 25 3 0.11
2 24 10

4 1 33 4 0.03
2 26 4

5 1 31 7 0.01
2 35 10

6 1 11 6 0.02
2 29 7

7 1 33 9 0.04
2 18 6

8 1 10 9 0.07
2 27 8
3 9 8

9 1 13 10 0.33
2 11 6
3 32 10

10 1 21 7 0.04
2 15 )

11 1 29 4 0.74
2 25 4

Average - 23.8 7.0 0.14
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Table 3.4
Cost savings resulted from some features of the model on 10 arbitrarily generated
problems

Feature Eliminated-Objective/Cost Saving

Coexistence of

Problem Dynamic Lot Alternative Alternative

No. None Reconfiguration Splitting Routing Routings

2 3,296,888.00 3,308,990.00 3,661,735.00 3,364,681.00 3,326,555.00
NA 12,102.00 364,847.00 67,793.00  29,667.00

3 3,794,331.00 3,804,331.00 3,879,594.00 3,848,139.00 3,824,084.00
NA 10,000.00 85,263.00  53,808.00  29,753.00

4 2,022,009.00 2,024,922.00 2,065,277.00 2,088,094.00 2,023,695.00
NA 2,913.00 43,268.00  66,085.00  1,686.00

5 2,924,824.00 2,929,882.00 2,986,842.00 3,072,987.00 2,940,365.00
NA 5,058.00 62,018.00  148,163.00 15,541.00

6 1,529,347.00 1,548,218.00 1,548,005.00 1,666,412.00 1,530,340.00
NA 18,871.00 18,658.00  137,065.00 993.00

7 1,535,497.00 1,538,605.00 1,549,114.00 1,705,372.00 1,536,560.00
NA 3,108.00 13,617.00  169,875.00 1,063.00

8 2,067,705.00 2,070,649.00 2,141,568.00 2,283,562.00 2,069,057.00
NA 2,944.00 73,863.00  215,857.00 1,352.00

9 2,214,939.00 2,227,884.00 2,556,638.00 2,246,319.00 2,231,734.00
NA 12,945.00 341,699.00  31,380.00  16,795.00

10 1,744,313.00 1,757,518.00 1,844,063.00 1,769,873.00 1,763,632.00
NA 13,205.00 99,750.00  25,560.00  19,319.00

11 2,439,456.00 2,448,741.00 2,611,847.00 2,478,229.00 2,449,698.00
NA 9,285.00 72,391.00  38,773.00  10,242.00

Average Saving

in Percent 0.50 5.95 6.47 0.53
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consumption cost, setup cost and system reconfiguration cost in an integrated man-
ner. The model also addresses many pragmatic issues such as alternative routings,
lot splitting, sequence of operations, workload balancing and separation requirement
on machines that should not be located in a same cell due to safety, vibration and
other considerations. For small size problems, commercially available integer pro-
gramming codes may be used to solve the formulation. Computational experience
on such small problems showed that a significant amount of cost savings can be
achieved by considering system reconfigurations, lot splitting and system flexibil-
ity. Our computational results also showed that there are significant differences on

workload distribution among the cells, if workload balancing is not attempted.
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GA Based Solution Procedure for

Math Model-A

4.1. Introduction

In the previous chapter, we present a comprehensive mathematical programming
model for the formation of manufacturing cells over multiple time periods. For
small size problems, off-the-shelf optimization software LINGO was used to solve
this formulation. For solving large size problems, branch and bound based general
search algorithm employed by such software cannot give optimal or near optimal
solutions within acceptable computational times on widely available platforms such
as a PC computer. To this end, in this chapter, we develop an efficient heuristic
based on genetic algorithm (GA). GAs are efficient search methods based on the
principles of natural selection and genetics (Holland [55]). They are being applied
successfully to find acceptable solutions to a variety of problems in different dis-
ciplines. GAs are generally able to find good solutions in reasonable amounts of

time. The performance of the proposed GA was evaluated against LINGO and the
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result was very encouraging. To further improve the performance of the developed
GA, we considered parallel implementation of the algorithm on cluster of worksta-
tions. Numerical examples showed that the parallel implementation demonstrates
a remarkable improvement of the search performance in terms of both computation
time and solution quality. To our knowledge the use of parallel GAs (PGA) in CMS
design was reported only in [12], though a number of researchers agreed that CMS
design is a complex problem. As yet, the PGA methodology has not been exploited

for the design of CMSs and so this novel approach is attempted in this chapter.

4.2. Components of the Proposed GA

The genetic algorithm developed in this work is tailored in accordance with
the nature of the cell formation problem. This includes the development of solution
representation, fitness evaluation, genetic operators and heuristic techniques that

are specific to the model presented in the previous chapter.

4.2.1. The Chromosomal Encoding of a Solution

The chromosomal encoding of a solution is the first task in applying a genetic
algorithm. In this research we developed a chromosomal representation of a solu-
tion which can satisfy some of the constraints of the model. Fig. 4.1 illustrates
a chromosome structure for a particular problem with two planning period and 11
part types. The variable 7;(t) takes a value in [0, 1] denoting the proposition of
the total demand of part ¢ subcontracted during period ¢. The variable c; takes a
value in {1,2,...L} representing the cell in which operation j is performed. The z;’s
assume values in [0, 1] and are used to calculate the proportions of the production

volume among alternative routings. Operations without alternative routings do not
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have z’s associated with them. In the chromosome structure, parts which do not
have demand in a given period are not included in the segment of the chromosome
representing the product mix for that particular period. For example parts 2, 5 and
10 shown in Fig. 4.1 do not appear in the first half of the chromosome since there is
no such demand in period 1. The detailed representation of part 6 is shown in this
figure. This part is assumed to have nine operations and the 2™¢, 8 and 9% oper-
ations have two alternative routings each. The 4% operation has three alternative
routings and the remaining operations have only one route each. Lot splitting is not
taken into consideration in this solution representation and hence each operation
will be performed in a single cell. Lot splitting has been addressed in Chapters 6

and 7.

Period 1 Period 2
Pam]Pm;TPmZ[Pm61Pm7|Pms|Pa:t9[Pan11 pm2|pm31Pan4|Pan5|Part7|Pmsij9;Pm10

Details for Part 6

by 1 Opr.l| Opr2 Opr.3 Opr.4 Opr.5]Opr.6|Opr.7 Opr.8 Opr.9
776() C | IX2,1 C3 | Cq )X4,1 IJC4,2 Cs [Cs |C7 | Cs [xs,l Cy ]JC9,1

Figure 4.1: A chromosome structure for a two-planning period problem

4.2.2. Decoding a Chromosome

The decision variables 7;(t) and 7 (t) are determined by decoding a chro-
mosome under consideration. The value of 7;(¢) is directly read from the chro-
mosome. For an operation with n alternative routings along machines k!, k2, .-, k",
the values of 7;41(t), Nk (t), - - - Mjikni1(t) are determined using the sets of equations

given in Fig. 4.2. In this set of equations the values of z;1, zjo, -++,Zjn_1 are
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obtained from the chromosome and z;, is set to 1. The subscript / takes the value

c¢; which is also obtained from the chromosome.

naen(t) = (1 —17(t) x zj1,

naa(t) = (1 —5(t)) x (1 — ;1) ¥ x50,

man(t) = (1 —=5(t)) x (1 —x5) x (1 —z52) x 53,

Miiea(t) = (1—=7:(t) X (1 —251) X (1 —2j2) X -+ X (1 = Zjpn_2) X Tjn_1 X Tjn,
&

@) = 0; k& {kLK, - k"), L # ¢

Figure 4.2: Equations required for decoding a chromosome

As an example, for an operation with three alternative routings along machines
k', k% and k3, the values 9ji1;(t), njir(t) and n;;3(t) are determined using the first
three equations for z;; = 1 while z;; and z;, are obtained from the chromosome.

Here, it can be seen that:

L K
S i) = M, @)+ mise, g0+ My, o (2)
=1 k=1

1 =m() xzjn + (1 —=7:(t) x (1 - zjn) X zj

+ (1=m@) x (1 —zh) x (1 - z5)

= 1-m(t)
This ensures the constraint in Eq. (3.2). From Fig. 4.2, n;(t) = 0 for all
k & {k',k? k®}. This ensures the constraint in Eq. (3.3) which restricts the assign-
ment of an operation to those machines that can process the operation. Moreover,
njiri(t) = 0 for I 5 ¢;. This is in agreement with the constraints in Eqs. (3.4) and
(3.5) which limit the assignment of an operation to only one cell. From the above
discussion it can be seen that the chromosomal encoding enables a randomly gener-

ated solution satisfying the constraints in Egs. (3.2)-(3.5) of the model presented
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in Chapter 3

4.2.3. The Fitness Function

The purpose of the fitness function is to measure the fitness of candidate
solutions in the population with respect to the objective and constraint functions
of the model. It is given by Eq. (4.2.3) as the sum of the objective function and
the penalty terms of constraint violations. Workload balancing, cell size constraints
and machine co-location are enforced by such penalty terms. The factors fup, fes
“and f,,. are used for scaling the penalty terms corresponding to these constraints.
The minimum allowable and the actual work performed in a cell in time period ¢

are W (t) and Wi(t) and computed by Eqs. (4.2) and (4.3), respectively.

T L
E = Model Objective Function + fup- Y Y max{0, Wpu(t) — Wi(t)}
t=11=1

T L K K
+ fcs-ZZmax {0, ZNkl(t) —LBl 3 ZNkl(t)_UBl}
k=1

t=11[=1 k=1

T L
+ fmer 2,0 O rea(t) — rei(t)] (4.1)

t=1I=1 V(ke k¢)eQ

L K J;
Wnin(t) = %Z D3N dilt) X mggrlt) X hige (4.2)
=1 k=11i=1j=1
K P J;
Wit) = > > > dilt) X migw(t) x hign (43)
k=1i=1 j=1

For solutions of a given generation, the most promising ones are those with the
minimum E. However, genetic algorithm works with maximization function. Hence,
the raw fitness scores need to be transformed so that the minimum raw fitness will

correspond to the maximum transformed fitness. This is achieved using Eq. (4.4)
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where E,,,, and FE,,;, are the maximum and the minimum values of the raw fitness
E in the current population.

(

1 ; Zf Emaa: = Emin
E = § gBuecB  if BnasB 501 (4.9)
| 0.1 ;. otherwise.

4.2.4. Genetic Operators

Genetic operators make the population to evolve by creating promising can-
didate solutions to replace those less promising ones. These operators are generally

classified as selection, crossover, and mutation operators.

Selection Operator: The selection operator selects, with replacement, individuals
having the potential to replace the current population according to the transformed
fitness function F. This selection operator may be implemented by simulating a
biased roulette wheel where each individual chromosome in the current population
has a roulette wheel slot sized in proportion to its transformed fitness [45]. Once
the mating pool is formed, individuals are randomly paired and crossover operator

will be applied to each pair with certain probability.

Crossover Operators: The crossover operators produce children by exchanging in-
formation contained in the parents. The genetic algorithm used to solve the proposed
model employs the standard single-point crossover operator. It randomly generates
a single crossover point along the length of the chromosome. This crossover point di-

vides each of the parent chromosomes into two segments. The single-point crossover
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swamps the right-hand-side segments of the parents. The algorithm also incorpo-
rates three problem specific crossover operators: the period-swap, part-swamp and
operations-swamp crossover operators. The period-swap crossover operator ran-
domly selects a period in the planning horizon and exchanges the subcontracting
and operations assignment information of all the parts for the selected period be-
tween the parents. The part-swap (operation-swamp) crossover operator randomly
selects a part (an operation) in the length of the chromosome and exchanges all the

information about this part (operation) between the parents.

Mutation Operators: Selection and crossover do not introduce new genetic ma-
terial into the population pool. This task is performed by the mutation operators
acting at the gene level to alter information contained in the gene. Mutation op-
erators are critical to the success of genetic algorithms since they diversify search
directions and avoid premature convergence to local optima. Hong et al. [56] sug-
gested that each problem, even each stage of the genetic process in a single problem,
may require appropriately defined multiple mutation operators for best results. In
this research, we developed six different mutation operators. These are:

o part-level cell mutator,

e operation-level cell mutator,

¢ subcontract mutator,

e alternative route mutator,

e subcontract degenerator and

e alternative route degenerator.

The part-level cell mutator performs cell mutation. This operator randomly

alters the c¢;’s of all the operations of a part to other identical values in {1,2,---L}.
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It is applied during the first phase of the genetic search where the quest is to find
the best configuration with independent cells. Similarly, operation-level cell mutator
alters the value of c¢;’s. However, this operator is applied for each operation indepen-
dently and may result in different values of c;’s of the operations of a part. Hence,
it may result in inter-cell movements. For this reason, this operator is applied in
the second phase of the genetic search where the attempt is to optimize the cost of
inter-cell movement along other cost terms of the model. Moreover, this operator
is applied at a lower mutation rate than part-level cell mutator to avoid unneces-
sary perturbations. Subcontract mutator randomly steps up or down the variable 7;
with a step-amount. This operator also takes care of the constraint in Eq. (3.15) of
the model. Alternative route mutator randomly steps up or down the variable z;’s
for all the operations having alternative routings with a step-amount while keeping
these values in [0, 1]. Since both 7; and z;’s are kept in [0, 1], the variable 7
will also be kept in the same interval (see Fig. 4.2) to ensure the constraint in Eq.
(3.15) of the model. All the mutation operators discussed above are applied with
small probabilities.

The subcontract and alternative route degenerators are non-probabilistic mu-
tation operators. The subcontract degenerator sets the value of 7; = 0 if its current
value is less than a degeneration limit, d;. It also sets ; = 1 if its current value
is greater than 1 — d;. The alternative routing degenerator sets a value of z; = 0
or 1 based on the magnitude of flow along the alternative routes of an operation.
For an operation j of part < with two alternative routings, the operator sets z;; = 0
if its current value time (1 — ;) is less than a degeneration limit, d,. It also sets
zj1 = 1 if its current value times (1 — #;) is greater than 1 — dy. The purpose of
developing and applying these two operators is to speed up convergence by quickly

degenerating insignificantly small values of the continuous decision variables.
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4.2.5. Repair Heuristic

The Repair Heuristic is run for each individual chromosome representing a
solution which violates the machine separation constraint. This heuristic is required
because the machine separation constraint becomes difficult to satisfy by the penalty
method. The Repair Heuristic first arbitrarily forms a certain number of mutually
exclusive sets of machines taken from S such that the machines in a given set can
be placed in the same cell. Once these sets of machines are identified, a certain
number of cells will be associated with each set. A cell will be associated with
at most one set of machines while a set can be associated with more than one cell.
Finally, for a chromosome under repair, operations that require a machine in a given
set are arbitrarily assigned to one of the cells associated with that particular set.
This guarantees the fulfillment of machine separation constraint. The heuristic has
randomness behavior making it compatible with the genetic search. The heuristic

has been explained here under in an algorithmic format using the following notations.

o Set of machines (unpaired) included in O,

9, ¢ Counter variables,

Ove Set, of machines from which ¢™ machine of the ¥ set is to be arbitrarily
taken,

ko, The ** machine of the ¥ set arbitrarily taken from G,

A A function that take a set of machines ©v \ {ks,} and machine ky, as

the first and second arguments respectively and returns a set of machine
Oy, 4+1, taken from its first argument, that can be placed in the same

cell with machine type ky,,

Ty The 9" set of machines taken from ©’ that can be placed in the same

cell
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Using the above notations, the algorithm for Repair-Heuristic is presented

below. A simple example will follow to make the heuristic more clear.

Stepl. Setd=1and ¢ =1and ©,; =06

Step 2. Arbitrarily take machine k,, from Op,.

Step 3. Determined Oy, 41 = A(Opq \ {kpqe}, Fpg)

Step 4.  If Oy, p41 # 0, set ¢ = ¢ + 1 and go to step 2; otherwise go to step 5.

Step 5. Yy = {ko1, ko2, ...k} forms the 9™ set of machines arbitrarily taken
from ©' that can be placed in the same cell. Set ©g.11 = O,/ Ly. If
Opt11 # 0, set 9 =9+ 1 and ¢ = 1 and go to step 3b; otherwise go to
step 3f.

Step 6. At this step 9 equal to the number of sets of machines taken from ©
which can be placed in the same cell. Randomly and evenly associate the
cells with the 9 sets identified such that a cell is associated with at most

one set and each set is associated with minimum of L mod 9 cells.

Step 7.  For a chromosome under repair, assign operations that require a machine

in a given set to one of the cells associated with that particular set.

The following example demonstrates the application of Repair-Heuristic on a
chromosome violating machine separation constraint. For this example let us assume
that the set of machine pairs that cannot be located in the same cell be given by ©
={(1,2), (1, 4), (2, 5), (4, 7), (2, 8)}. Let us also assume that the first operation of
part 1 requires machine 1, the third operation of part 3 requires machine 4 and the

fifth operation of part 4 requires machine 7. Consider a chromosome that assigns
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all of these operations to cell 1. Then it is obvious that this chromosome violates
machine separation constraint since it requires the placement of machines 1, 4 and
7 in cell 1. Hence, Repair-Heuristic has to be applied on this chromosome. A step

by step execution of this heuristic is shown below.

S
@I

{(1,2), (1,4), (2,5), (4, 7), (2, 8)}
{1,2,4,5,7, 8}

Stepl. d9=1, =1 6,;,=0"={1,2,4,57,8}.
Step 2. ky,; = 4 (arbitrarily selected from Oy ).

Step 3. ©;, A(©1,1/{k1 1}, k11)
A({1,2,5,7,8), 4)
~ {2,5,8).

fl

Step 4. ©;2# 0. Hence, set ¢ = p+1=1+1=2 and go to step 2.
Step 2. k12 =5 (arbitrarily selected from ©4 ).

Step 3. @1,3 = A(@Lg/{kl,g}, kl,g)
= A({2,8}, 5)
= {8}.
Step 4. ©O;3# 0. Hence, set ¢ = ¢ +1=2+1=3 and go to step 2.

Step 2. k;,3 = 8 (arbitrarily selected from O 3).

Step 3. ©14 = A(O13/{k13}, k13)
= A(@, 8)
= 0.
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Step 4. ©;4 = . Hence, go to step 5.

Step 5. T = {ki1, k12, K13}
= {4, 5, 8}
61 = 01,/Ty
= {1, 2, 7}

# (. Hence,set 9=9+1=1+1=2, o =1 and go to

step 2.

Step 2. ky; =1 (arbitrarily selected from ©,,).

Step 3. O, A(©z1/{k21}, kaa)
A({2,7}, 1)

= {7}

il

Step 4. ©25 # 0. Hence, set p =¢p+1=1+1=2 and go to step 2.
Step 2. kg2 =7 (arbitrarily selected from O, 3).

Step 3. O3 A(Oqa/{k22}, kop2)
= A, 7)
= .

Step 4. ©y3 = (0. Hence, go to step 5.

Step 5. Ty = {ka1, kao}
= {1, 7}
O31 = ©9:/Ts
= {2}
# (. Hence,set 9 =9+1=24+1=3, p=1 and go to

step 2.

71



Chapter 4.

GA Based Solution Procedure for Math Model-A

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

ks i = 2 (arbitrarily selected from ©3,).

O30 = A(O31/{ks 1}, ks1)
= A, 2)

©32 = (0. Hence, go to step 5.

T3 = {ks1}
= {2}
O41 = ©31/7;3

= (). Hence, go to step 6.

In the previous steps ¥ = 3 groups are identified. Assuming in the
problem at hand four cells (L = 4) are to be generated, allocated the
four cells randomly and evenly to the three groups identified. Let cell 3

be allocated to group 1, cells 1 and 2 to group 2 and cell 4 to group 3.

For the example chromosome under consideration assign operations re-
quiring either of machines 4, 5, or 8 to cell 3, each of those requiring
either of machines 1 or 7 to cell 1 or 2, and those requiring machine 2
to cell 4. By doing so the chromosome now satisfies machine separation

constraint.

4.2.6. Machine Assignment Heuristic

The continuous variables 7;:x:(t) and 7;(t) are determined by decoding a chro-

mosome. The corresponding integer variables Ny, (t), y(t) and yg;(¢) are determined

using the Machine Assignment Heuristic. The heuristic was applied for each indi-

vidual chromosome so that the corresponding value of the fitness function can be
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evaluated. Once the values of the continuous variables 7;:,(¢) and 7;(t) are known,
the minimum number of each type of machines My (t) to satisfy capacity requirement

in each cell during each period is determined by the following equation:

M (t) = [ =L (di(gk. Myini (1) - hi)

where [z] returns the smallest integer greater or equal to .

(4.5)

After this step, the heuristic sets the number of machines, Ny, (1), in each cell
for period 1 equal to My;(1). The number of machines of each type installed in the
various cells for ¢ > 1 are determined as follows. Let M (t) and M (¢) represent the
minimum number of type ¥ machines required in cell [ and in the system respectively
and N; () represents the actual number of type k machines installed in the system
during period ¢. If Ny(t — 1) < Mi(t), then the heuristic sets Ny (t) = My(t). If
Ni(t — 1) > My(t) , then heuristic assigns those type k machines to the various
cells to satisfy the required minimum number of machines in period ¢ and leaves the
extra machines in the cells in which they were perviously installed. This process of
determining the number of machines of each type installed in each cell for ¢ > 1 can
be better illustrated using the pseudocode given in Fig. 4.3.

To further illustrate, we present a simple example to place type 5 machines
in a 4-cell system for 4 time periods. The minimum number of type 5 machines
required in each cell for each period are shown in Table 4.1. For period 1, we have
Ns54(1) = Ms,(1). Hence, N51(1) = 2, N52(1) =1, Ns3(1) = 3, N51(1) = 2 and

N5 4(1) = 0. The following step by step application of the pseudocode gives N (%)

for t > 1.
FOR! : k=5
FOR?2 : t=1
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Declare new integer variable called Buf fer and Add
FOR! k=1to K
FOR? t=1toT -1
Ni() =0
Mk(t +1)=0
FOR? i=1toL
Ni(t) = Ni(t) + Nu(t)
Mi(t+1) = My(t+1) + My (t+1)
END FOR?
IF! Mt +1) < Ni(t)
Buffer = Ny(t) — Mi(t +1)
FOR* I=1toL
IF?2 My (t+ 1) < Nu(t)
Add = min{Buffer, Ny(t) — My(t+ 1)}
Nu(t+1) = My (t+1) + Add
Buf fer = Buf fer — Add
END IF?
ELSE?
Nu(t+1) = Mu(t+1)
END ELSE?
END FOR*
END IF!
ELSE!
FORS l=1toL
Nu(t+1) = Mu(t +1)
END FOR® I=1toL
END ELSE!
END FOR?
END FOR!

Figure 4.3: Psudocode of step 4 of the machine assignment heuristic

Initialize Ns(1) = 0 and Ms5(2) =0
FOR3? : [=1 to 4 (performing successive addition)

N5(1) = 7 and M;5(2) = 4

IF? : The logical test M5(2) = 4 < N5(1) = 7 is TRUE
Buffer = N5(1) — Ms(2) =7—-4=3

FOR* : l=1

IF? : The logical test M51(2) =0 < N51(1) =2 is TRUE

Add = min{Buffer, N5,1(1) - M5,1 (2))} = m’m{3, 2 — 0} = 2.
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Table 4.1
Minimum number of type 5 machine to meet capacity requirement
L Ms,(1) M;s,(2) Ms,.(3) Ms,(4)
1 2 0 1 1
2 1 2 4 3
3 3 1 2 0
4 0 1 2 3
Ms(t) 7 4 9 7

N5‘1(2) = M5,1(2) +Add= 0+2 =2
Buffer = Buffer —Add=3—-2=1

FOR* : 1=2

IF? : The logical test M52(2) =2 < N52(1) =1 is FALSE
ELSE? : Nja(2) = Msa(2) =2

FOR* : [=3

IF? : The logical test M52(2) =1 < N51(1) = 3 is TRUE

Add = min{Buf fer, N52(1) — M52(2))} = min{1,3 -1} = 1.
N53(2) = M53(2) + Add=1+1=2
Buffer =Buffer —Add=1—-1=20
FOR* : [=4
IF? : The logical test Ms54(2) = 1 < Nj4(1) =0 is FALSE
ELSE? : Ns4(2) = Ms4(2) =1
From the above steps
Ns1(2) =2, N5a(2) =2, Ns5(2) = 2 and Ns4(2) = 1
FOR? : t=2
Initialize N5(1) = 0 and M5(2) =0
FOR?® : [=1to 4 (performing successive addition)

Ns(2) =7 and Ms(3) =9
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IFY  : The logical test M5(3) =9 < Ns(2) = 7 is FALSE
ELSE! :
FOR® : [=1 to 4 (performing successive assignment operation)

N5,1(3) - M5,1(1) = 1, N5,2(3) = M5’1(2) =4
N5,3(3) = M5,1 (3) - 2, N5’4(3) = M5,1(4) =2

Continuing the above computation for ¢ = 3, we can determine Nj;(¢) for
t = 4. The results of the above computations are summarized in Table 4.2. From
Table 4.2, one can see that Nj,(t) is greater than or equal to the required number
of machines Mj;(t) shown in Table 4.1. Hence, the machine capacity constraint,
Eq. (3.6), is satisfied. At the same time, we have N5(t) > Nj(t) for ¢’ > . This
guarantees the fulfilment of the constraint in Eq. (3.8) of the model. Once the
decision variables N (t) are determined, the configuration decision variables y;;(t)
and y;(t) can be determined using Eqs. (4.6) and (4.7) respectively. This last step

satisfies the constraint in Eq. (3.10) of the proposed model.

Nkl(t)’ ift =1,
yia(t) = (4.6)
mam{O, Nkl(t) - Nkl(t - 1)}, ift>1.

0, ift=1,
yu(t) = (4.7)
mam{O, Nkl(t — 1) — Nkl(t)}, if ¢t > 1.

76



Chapter 4. GA Based Solution Procedure for Math Model-A

Table 4.2
Actual number of type 5 machines installed
! Ns,(1) Ns,(2) Ns,(3) Ns(4)
1 2 2 1 1
2 1 2 4 4
3 3 2 2 1
4 0 1 2 3
Ns(t) 7 7 9 9

4.2.7. Constraints Handling

[102] stated that the central problem in the application of genetic algorithms
is constraint handling. He proposed different approaches to handle constraints such
as rejection of infeasible solutions (death penalty), penalty methods and repair al-
gorithms. In this study, the latter two and other approaches were used to handle
constraint violations. Constraints in Egs. (3.7), (3.9) and (3.14) are handled us-
ing the penalty method. This method adds penalty quantities if corresponding
constraints are not satisfied. A problem specific Repair Heuristic{ is developed to
handle the constraints in Egs. (3.11)—(3.13). Constraints in Eqs. (3.2)-(3.5) are
handled by the use of the chromosomal structure to generate solutions satisfying
these constraints. The Machine Assignment Heuristic handles constraints in Egs.
(3.6), (3.8) and (3.10). Constraints in Eqgs. (3.15) is handled by genetic operators
which assign values in [0, 1] to 7;(¢) and z;’s. The integrality constraint given by Eq.

(3.16) is handled by the Machine Assignment Heuristic and the Repair Heuristic.

4.2.8. The Two-Phase Genetic Algorithm

Generating independent cells is computationally simpler than generating cells

which optimize inter-cell movements and other cost terms of the objective function.
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In the solution space, the best configuration with independent cells is a neighbor-
hood solution to the best configuration with optimal inter-cell movements. In the
first phase, the algorithm attempts to quickly find the best configuration with inde-
pendent cells. To perform this task, the algorithm applies genetic operators which
do not produce solutions having inter-cell movement. These include all the operators
other than the single-point crossover and the operation-level cell mutator. Inter-cell
movement can occur during the first phase only as a result of the Repair Heuristic.
In the second phase, the algorithm finds the configuration with best inter-cell move-
ments. All the genetic operators other than the part-level cell mutator are applied
during the second phase. In addition to running in two phases, the proposed genetic
algorithm has a procedure called population rejuvenation. This procedure reduces
and focusses the search domain around the best solution found if this value does
not improve in a given number of successive generations. After a given number of
successive generations without any improvement of the incumbent solution, we con-
sider that the genetic algorithm has detected the promising area. A certain number
of individuals of the current population will be replaced by the duplicates of the
best individual so far found. Hence, the population diversity will be reduced and
centered around the best solution. This process rejuvenates the population which
may have been deteriorated by a large number of applications of the genetic opera-

tors. The following symbols and notations used are present the steps of the genetic

algorithm.
g Generation counter, g = 1,2, ..., 9maz,
Gmaz Maximum number of generations,

PP(g) Parents population of generation g,
CP(g)  The current children population which makes up PP(g + 1),

BI Best feasible individual so far found,
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Phase The current phase of the search which equals to 1 for the first phase or 2

for the second phase,

Ophase Generation at which the value of Phase should be set equal to 2 if it were

not previously set to this value by other conditions,

w Number of successive generations counted without any improvement of

the best individual so far found,

Winaz Maximum value of w at which point population rejuvenation is to be
performed,
b Number of successive population rejuvenations counted without any im-

provement of the best individual so far found,

bynazt Maximum value of b at which point the second phase is to be entered if

Phase was equal to 1,

bnaz2 Maximum value of b in the second phase at which point the search will

be terminated.

Using the above notations, the steps of the proposed genetic algorithm based
heuristic are listed below. These steps were coded using C++ programming language

and run on a Pentium-4 (2.4 GH, 768 MB Ram) PC computer.

Step 1. Initialize the counters g, w, b and Phase such that ¢ = w = b = 0 and
Phase = 1. Initialize the Best-Individual BI so far found with a null

value.

Step 2. Randomly generate initial parent-population PP(0) such that each indi-
vidual represents a solution having independent cells (i.e. the ¢;’s of all

the operations of a given part are set equal),

Step 3. Apply the Repair Heuristic (Steps 3a to 3g) for each individual chro-

mosome violating machine separation constraint.
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Step 4. For each chromosome, using the Machine Assignment Heuristic, deter-
mine the number of machines of each type assigned to the various cells

during each period.

Step 5. For each individual, determine F. If an improvement has been obtained
update the previous BI by the current BI, set w = b = 0; otherwise

increase w by one.

Step 6. If w = wpg, rejuvenate the population by replacing k% of the population

by the duplicates of previous BI and reset w = 0 and increase b by one.
Step 7. If b = b,421 and Phase = 1 set Phase =2 and w =b=0.

Step 8. Select individuals from the current parent-population to become parents

of the next generation according to their fitness value.

Step 9. Randomly mate parent-population and create children-population C'P(g)

by applying genetic operators valid to the current phase of the search.

Step 10. Replace the current parent-population PP(g) by the children-population
CP(g) and form the new parent-population PP(g + 1). Increase the
generation counter, ¢ = g+ 1. If g = gprese and Phase = 1, then set

Phase = 2.

Step 11. If the termination criterion has not been met, go to step 3. Termination

criterion is g = gz, OF b = bpago for phase = 2.

4.3. Parallelizing the GA

Sequential GAs (SGAs) have been shown to be very successful in many appli-

cations and in very different domains. However there exist some problems in their
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utilization. In certain problems, fitness evaluation can be a very time-consuming
process (e.g. if it is determined by using simulation, by solving certain sub-problems,
e.t.c). For some other problems, the population needs to be very large and the mem-
ory required to store each individual may be considerable. SGAs might be trapped
in a sub-optimal region of the search space as they use and evolve only a single popu-
lation. These problems of the SGAs can all be addressed with some form of Parallel
GA (PGA). The parallelism of fitness evaluations was the first approach for PGA,
called the Master-Slave PGA (MSPGA). This model uses a single global population
and the fitness evaluation is done on different processors. Furthermore, crossover and
mutation operations may also be done in parallel. The nature of GA is not changed
because the selection operation is done globally with the whole population using the
master computer. This parallelism can be very useful when the fitness evaluation is
a time consuming process. The other types of parallelism, called distributed PGAs
(DPGAs), use multiple populations maintained by different processors. These can
be classified as coarse-grained and fine-grained DPGA. The coarse-grained DPGAs
use few large sub-populations and can be further classified in to two categories [110}:
those using sub-populations with migration of individuals from one subpopulation
to another (island model) and those with overlapping sub-populations where genetic
materials are exchanged via the overlapping portions of the sub-populations. The
island model can easily be implemented on a multiple-memory-multiple-processor
architecture or network of workstations while the overlapping subpopulation ap-
proach is suitable for a share memory architectures. Fine-grained DPGAs use a
population separated into a large number of very small sub-populations, which are
maintained by different processors. The subpopulation may be only an individual.
This model is suitable for massively parallel architectures - machines consisting of a

huge number of basic processors and connected with a specific high speed topology.
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The psudocodes for SGA and DPGA are given in Fig. 4.4. The two psudocodes are
essentially the same except for the communication routines of DPGA. Hence, only
a little effort is needed for converting sequential GA to coarse-grained PGA. The
complete algorithm of DPGA consists of multiple copies of its sub-algorithm being

excused in parallel.

Initialize population Initialize subpopulation

Repeat g =1,2,3, .... Repeat g =1,2,3,....
Evaluate solutions in the population Evaluate solutions in the population
Perform competitive selection Perform competitive selection

If it is time to communicate {
Select migrants
Send migrants to destinations

Receive migrants from sources

}

Apply genetic operators Apply genetic operators
Until convergence criterion satisfied Until convergence criterion satisfied
(a) SGA (b) DPGA Sub-algorithm

Figure 4.4: Psudocode for sequential and distributed parallel genetic algorithms.

DPGAs have an appealing trait in that they often reduce the computational
effort to solve the same problem as compared to SGAs, even when run in a single
processor [46]. This characteristic makes a difference with respect to other searching
algorithms, in that DPGAs are not simple parallel versions of sequential algorithms.

Thus they represent a new class of algorithms in that they search the solution space
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differently ([110]). The reason for this can be found in the most striking charac-
teristics of DPGAs [3] as (1) their decentralized search, which allows speciation
(different sub-populations evolve towards different solutions), (2) the larger diver-
sity levels (many search regions are sought at the same time) and (3) exploitation
inside these sub-populations, i.e., refining the better partial solutions found in each

sub-populations.

4.3.1. 'The Proposed Coarse-Grained DPGA

Being motivated by the characteristics of DPGA mentioned in the previous
section, we develop a coarse-grained DPGA for designing cellular manufacturing
systems based on the island model. The island model is selected because this model
is easily implemented on a clustered computers using public domain libraries such as
MPI and PVM. In this model, the migration of individuals from one subpopulation
to another is controlled by two parameters. The first is the topology that defines
the connection among the sub-populations. Commonly used topologies are ring,
two dimensional mesh, hypercubes and fully connected. In this study we use fully

connected topologies shown in Figs 4.5.
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Figure 4.5: Fully connected topology

The second parameter, controlling the migration of individuals, is the migra-
tion operator. This operator is composed of a number of attributes like: (1) the
number of individuals undergoing migration, (2) the frequency of migration in num-
bers of generations and (3) the migration scheme, that controls which individuals
from the source subpopulation (best, according to fitness, random, etc.) migrate to
another subpopulation, and which individuals are replaced (worst, random, etc.).
The incoming individuals are combined with a subpopulation after the selection and
before the crossover and mutation operators are applied in the destination subpop-

ulation.

4.4. Computational Performance of Proposed GA

44.1. Computational Performance of SGA

The performance of the developed heuristic was evaluated against the results
from LINGO. As can be seen from Table 4.3, the lower bound and the best objec-

tive function value found by LINGO after 5 hours of computation were 1.69346 and
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1.76865 respectively. From this table and Fig. 4.6, it can be seen that the devel-
oped heuristic was able to determine a solution having an objective function value
equal to 96% of the lower bound in less than 20 minutes. The figure also shows
that the average of the objective function values of the feasible solutions varies from
generation to generation and is far from the best objective function value found.
This indicates that the genetic algorithm has maintained diversity of the population
in performing a global search. In addition to maintaining the population diversity,
the genetic algorithm has converged to an acceptable solution very quickly. This
was achieved by using those problem specific procedures as systematically dividing
search phases, population rejuvenation, constraint handling and other related ge-
netic operators. As shown in Figs. 4.7 and 4.8, dividing the search into phases,
populations rejuvenating and using the degenerator operators enable the genetic
algorithm to find near optimal solutions very quickly. The values of the various pa-
rameters of the GA used for this computation are given in Table B.1 under Test 1.
The experiment was repeated under other 12 parameter settings given in table B.1
under the Tests 2 though 13. The convergence graphs of the GA for these tests are
given figure 4.9. From this figure it can be seen that the GA was able to converge
to an acceptable solution for several parameter settings. We were also able to find
several other parameter settings for which the genetic algorithm performs very well.

This can be an indication for the relative robustness of the proposed method.
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Table 4.3

Comparison of the proposed GA with LINGO

Time Lower Bound Objective value using
hr:min:sec determined by LINGO LINGO the proposed GA

00:00:15 - X 1.933360
00:00:30 1.69274 X 1.785400
00:01:00 1.69274 X 1.781189
00:02:00 1.69274 X 1.779745
00:06:00 1.69274 1.86962 1.776739
00:08:00 1.69275 1.86962 1.762127
00:10:00 1.69277 1.86962 1.761973
00:12:00 1.69282 1.81068 1.761863
00:16:00 1.69282 1.81068 1.761793
00:20:00 1.69309 1.81068 1.761793
00:30:00 1.69311 1.77401 1.761793
01:00:00 1.69323 1.76934 *
03:00:00 1.69344 1.76934 *
05:00:00 1.69346 1.76865 *
10:00:00 1.69353 1.76865 *
15:00:00 1.69366 1.76865 *
20:30:00 1.69377 1.76865 *

x - Feasible solution was not found
* - A termination criterion was met.
Note: Values are in Millions.
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Figure 4.6: A 15-minutes convergence history of the proposed GA.
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Figure 4.7: The effect of dividing the search into phases
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Figure 4.8: The effects of population rejuvenation and degenerator operators
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Figure 4.9: Less than an our convergence history of the proposed GA using 13
different parameter settings given in table B.1
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4.4.2. Performance Improvement through Parallelization

The proposed parallel GA was coded in C++ programming language using
MPI message-passing library for communication. The code was tested in a parallel
computation environment composed of 872 waiters containing each one Pentium 4
processor (3.2 GHz, 2GB RAM). The test problem was run using only 1, 2, 4, 8,
12, and 16 processors with a subpopulation size of 460. Each sub-algorithm uses
separately seeded pseudo-random number generator to promote the sub-algorithms
exploring different parts of the search space. Migration was taking place every
40 generation (migration frequency) and the number of migrants M (the migration
rate) was determined in such a way that the total number of migrants joining a given
subpopulation is about equal to 10% of its size. To meet this requirement in a fully
connected topology, where each subpopulation receives M migrants from each other
subpopulation, M was determined such that (P —1) x M ~ 0.1 x 460 where P is the
total number of sub-populations (or processors). Migrants were selected randomly
from the source subpopulation and the individuals in a destination subpopulation
were replaced randomly by the incoming migrants. The total number of individuals
evaluated per generation is equal to P x 460. Our observations as P increases
was that, by mapping each subpopulation to each processor, the total elapsed time
remain relatively constant (except for the parallel computing overheads associated
with the migration of individuals, which is relatively very small in the proposed
coarse-grained PGA). A run was terminated after 32,000 generation. Fig. 4.10 shows
the convergence graphs of SGA and DPGA with different number of processors. The
graph shows that increasing the number of processing nodes help much on improving
convergence. It also shows that the difference between the results with parallel and

serial algorithm is more evident. This can be explained by the various features of
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Figure 4.10: Convergence graphs using different number processors

DPGA mentioned in Section 4.3.

The performance of the proposed island model was also evaluated on single
machine having only one processor (2.4 GH, 720 MB Ram) using MPICH!. The im-
plementation of the island PGA on single processor machine consists of autonomous
processes?; each executing its own code in its own address space and evolve its own
subpopulation. The processes communicate via calls to MPI communication prim-
itives, similar to the actual parallel implementations. The convergence graph was
similar to the one shown in Fig. 4.10, except the DPGA requires longer exclusion
time. As an example, the times required to move 32,000 generations by the SGA and
the eight-subpopulation DPGA are 00:24:30 and 04:07:36 respectively on a single
processor machine. Though the DPGA requires longer time to run the whole 32,000

generations on such single processor machine, it was able to give better solutions in

1A freely available, portable implementation of MPI
?Identical codes running simultaneousty.
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few generations than those can be found using SGA.

4.5. Summary and Discussions

In the previous chapter, we present a comprehensive mathematical program-
ming model for the formation of manufacturing cells over multiple time periods. For
small size problems, off-the-shelf optimization software LINGO was used to solve
this formulation. For solving large size problems, branch and bound based general
search algorithm employed by such software cannot give optimal or near optimal
solutions within acceptable computational times on widely available platforms such
as a PC computer. To this end, in this chapter, we developed an efficient heuristic
based on genetic algorithm. The proposed heuristic runs in two phases. In the first
phase, independent cells are formed which are relatively simple to generate. In the
second phase, the solution found during the first phase is gradually improved to
generate cells optimizing inter cell movement and other cost terms of the model.
The algorithm also incorporates several problem specific genetic operators and con-
straint handling techniques. The proposed heuristic was evaluated by comparing its
computational results and those from available optimization software. The results
obtained by using the heuristic method were very encouraging. In order to further
improve the obtained results, a parallel implementation of the algorithm (PGA) is
also attempted.

In literature, there have been a few report on the use of PGA for CMS design.
To our knowledge the use of PGA in CMS design was reported only in [12]. As

yet, the PGA methodology has not been exploited for the design of CMSs and so
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this novel approach is attempted in this chapter. The parallel algorithm was im-
plemented based on the island model on parallel computing environment composed
of a cluster of workstations. The parallel implementation of the algorithm demon-
strates a reduction of processing time and improved search performance, even when
it is implemented on a single machine with one processor. Thus, with this work,
we could ratify the importance of using parallel genetic algorithm in CMS design
where there are a few reports on its use. The coarse-grained island model PGA
is selected with three criteria: (1) It is suitable for a clustered computer, which is
easily implemented from cheap PCs connected through a low cost network and using
public domain software; (2) A little effort is needed for converting sequential GA
to coarse-grained PGA since each processor performs simple GA except periodically
exchanges some population by migration operators; (3) It can be implemented on
a single processor machine and perform better than SGA. We evaluate the perfor-
mances of SGA and coarse-grained PGA with varying a number of processing nodes.
The convergence graphs were used to compare the parallel algorithm with the serial
one. The difference between the empirical efficiency of the serial and the parallel

algorithm is clear. The later demonstrates an improved search performance.
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SA Based Solution Procedure for

Math Model-A

5.1. Introduction

Simulated annealing is a general-purpose optimization technique capable of finding
optimal or near-optimal solutions in various applications. The major disadvantage
of this technique is its slow convergence making it not suitable for solving many
complex optimization problems. This limitation may be alleviated by parallel com-
puting using a multiprocessor computer or a cluster of workstations. In this chapter,
we developed and presented a multiple Markov chain simulated annealing algorithm
which allows multiple search directions to be traced simultaneously. Our computa-
tional results on a single processor machine showed that multiple Markov chain SA
is much more efficient than a conventional single Markov chain SA. The parallel im-
plementation of the multiple Markov chain SA greatly improved its computational

efficiency in terms of solution quality and execution time.
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5.2. Simulated Annealing Based Heuristics

5.2.1. The Basic Algorithm

Kirkpatrick et al. [79] first introduced the general optimization algorithm of
simulated annealing based on the work of Metropolis et al. [101]. It is a stochastic
algorithm generating a sequence Xy, Xi, -+, Xp, -+ of random solutions of a
problem approaching the set of optimal solutions as n — oo. This sequence of
solutions is generated by following Eq. 5.1 where X], is a neighborhood solution

generated by slightly perturbing X,, and E(X,) is the value objective function.
X, i B(X,) < B(X)

Xnt1 =9 X! if exp (ﬂ&‘)—iﬁ(ﬁﬁ) > rand() (5.1)

{ X, otherwise
In the above equation, rand() is a random number generator for making a stochastic
decision for the new solution. T}, > 0 is the temperatures at the n** and the sequence
of T,, such that T,, > T, with the lim,,_,o, T, = 0 is the cooling schedule. From Eq.
5.1, it can be seen that the choice of X,,,; depends only on the current solution X,
but not on the previously visited solutions. Thus, the search path of such simulated
annealing algorithms follows a Markov chain. From here onwards we refer the basic
algorithm to as a Sequential Single Markov Chain Simulated Annealing Algorithm
(SSMC-SA). For a suitable cooling schedule, the probability of the error of not
getting an optimal solution after n iterations using SSMC-SA is characterized by

Eq. 5.2 where U,;, is a set of optimal solution points [34]. In this equation, n

is large enough and K > 0 and € > 0 are constants peculiar to a given energy
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landscape and neighborhood generation. Thus as n — oo, the solution converges to

one of the optimal points in U,,;, with a probability of 1.

P(Xo # Vi) ~ (5 (52)

n

5.2.2. Sequential Multiple Markov Chain SA

Most SA schemes in the literature follow a single Markov chain. However,
following a single Markov chain may not be necessary from performance point of view
[86]. A Sequential Multiple Markov Chain SA (SMMC-SA) performs S independent
versions of annealing on a single processor computer, using the same search space,
neighborhood generation and cooling schedule. Each one of this independent version
is stopped after n iterations to provide S independent terminal solutions {X, 1, Xn2,

-+, Xn,s}. Then out of these terminal solutions, the best one is chosen as the final
solution X",’ A psudocode for an instance of such Sequential Multiple Markov
Chain SA (SMMC-SA) is given in Fig. 5.1. The characteristic equation for the
error probability achieved by this algorithm can be derived from Eq. 5.2 and is
given by Eq. 5.3. Thus, from Eq. 5.3, for 0 < K/n < 1, it can be seen that the
probability of the error of not getting an optimal solution decreases exponentially as
S increases in using SMMC-SA [11]. The computational time increases linearly as
the function of S. If the time required to move n iteration by a SSMC-SA is given
by t, then a SMMC-SA requires S x t time to operate every independent simulated
annealing by n iteration. Thus, if § x ¢ is very large for better results, the time
consumption can be a problem limiting the use of SMMC-SA. This problem may
constraint SMMC-SA to work on a rather small number of Markov chains and/or

shorten the run length of each individual Markov chain. However, using fewer
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number of Markov chains or shortening the run length of the individual Markov chain

can decrease the effectiveness of the algorithm. This limitation can be alleviated

using parallel computing by distributing the S Markov chains to multiple computers.

Each computer uses a separate pseudo-random number generator to explore different

areas of the search space.

SMMC-SA() //Sequential Multiple Markov Chain SA
{

Randomly generate .S solution points {Xg 1, Xo,2, -, Xo,5}
Set initial temperature Tj

Set n=0,r =0;

REPEAT

{

Generate X, ; from X, ;

NF E(X}, ;) < E(Xn,j)
!

Xn-|—1,j = Xn,j ,
ELSE IF exp (252 2Xed)) 5
Xnt1,5 = X;z,j
ELSE
Xn+1,j = Xna]
}
n=n+1
}
r=r+1
Tr =ax T, —1

UNTIL a stoping criterion is met
Xn = Xp j» such that E(X, ;) < E(X, ;) for j=1to S
}

FOR(g=1to Q) //Q = number of iteration at temperatuve T

FORj=1to S //8 = numwber of independent Markov chains

Figure 5.1: Psudocode for an instance of a SMMC-SA

PO, # Ui = [T PO # Ui ~ () < ()

i=1 n
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5.2.3. Parallelizing Multiple Markov Chain SA

As discussed in the previous section, SMMC-SA may result in an exponential
reduction of the error probability with a linearly increasing computational time as
the number of independent simulated annealing runs increases. A promising tech-
nique to achieve this exponential reduction of the error probability with less or no
increment of computational time can be to use parallel computing. By means of
parallelization, it is more likely to have a shortening of the total computation time
in proportion to the number of processors used while keeping the total number of it-
erations unchanged. In order to achieve this, let the S Markov chains be partitioned
into equal sub-groups as Sy, Sa,--,.S, and distributed to p concurrently available
processors. The computational time for the Parallel Multiple Markov Chain SA
(PMMC-SA), t, will be equal to t;/p where ¢, is the computational time for the
SMMC-SA. This computational time may slightly increase if less frequent commu-
nication takes among the parallel processors. Parallelizing SMMC-SA may also be
done to improve solution quality while keeping the computational time unchanged.
Assume SMMC-SA with S Markov chains requiring ¢, unit time to perform n it-
erations in each search direction. The value of S can be increased in many folds
keeping ¢, and n unchanged using parallel computing to further reduce the error
probability. This can be done by having a multiple copies of SMMC-SA to run on
several concurrently available computers. A good introduction on parallel simulated
annealing with multiple Markov chains can be found in [10], [86], and [100] where
the authors assumed only a single Markov chain per processor. Since the exponen-
tial reduction of error probability suggests that multiple short SA runs are better
than a single long run, in our parallel simulated annealing we have allowed several

shorter Markov chains to be traced on each processor.
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5.2.4. Components of the Proposed SA

The simulated annealing shares many similar components and features of the genetic

algorithm presented in Section 4.2.

Energy Function

The energy function is used to make a stochastic decision whether to accept a new
solution or not according to Eq. (5.1). The fitness function of the genetic algorithm
given in Eq. (4.2.3) is used as energy function for the simulated annealing in solving

the same mathematical model.

Search Space/Solution Representation

The search space determines the number of potential solutions that may be visited by
a search heuristics and may influence the performance of the heuristic. The structure
of search space is mainly determined by the solution representation adopted. The
simulated annealing uses a similar solution representation given in Figure 4.1 as that
of the genetic algorithm . The procedure of decoding a solution and the machine

assignment heuristics of the GA are also used by the SA.

Neighborhood Generation/Solution Perturbation

Well designed solution perturbation operators are critical to the success of simulated
annealing. The proposed SA uses perturbation operators that are similar to the
mutation operators of the GA. These are part-level cell assignment perturbation
(SP1), operation-level cell assignment perturbation (SP2), subcontract perturbation
(SP3), alternative route perturbation (SP4), subcontract degenerator (SP5), and

alternative route degenerator (SP6). The perturbation operator SP1 plays the role
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of part level cell mutator of the GA and is applied under a probability p;. Similarly,
SP2 plays the role of operation level cell mutator of the GA and is applied with
a probability p,. SP3 randomly steps up or down the variable 7;(t) with a fixed
value under probability ps. SP4 randomly steps up or down the variable z;’s for
all the operations having alternative routings with a fixed value while keeping these
values in [0, 1]. This operator is effected with probability ps. SP5 and SP6 are
non-probabilistic operators and are similar to the degenerator operators of the GA.
A neighborhood solution violating machine separation constraint is also repaired

using the repair heuristic presented in Section 4.2.5.

Two Search Phases

Similar to the GA, the SA run in two search phases by using different solution
perturbation operators valid to the different phases of the search. In the first phase,
independent cells are formed. In the second phase, the solution found during the
first phase is gradually improved to generate cells optimizing inter cell movement

and other cost terms of the model.

Cooling Schedule

The rules to determine (a) how high the starting temperature should be, (b) when
the current temperature should be lowered, and (c) by how much the temperature
should be lowered are called cooling schedule. In the proposed SA, we use a quite
popular cooling schedule in which a specified number of iterations are performed
at a constant temperature 7. = o X T,_;. In this cooling schedule, r is the index
of temperature levels and the constant ¢, in [0, 1], is the cooling coefficient and
generally chosen to be close to 1. Thus, the parameters of the proposed simulated

annealing method associated with the cooling schedule are the initial temperature
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Th, the cooling exponent «, and the number of iteration at each temperature level.

Interactions of Markov Chains

In the proposed simulated annealing algorithm, S Markov chains are followed by each
of the P concurrently available processors. For better performance, these Markov
chains may be allowed to interact within and across the processors. In this study
we consider two interaction schemes of the Markov chains. In the first scheme,
the master computer periodically gathers the best solution so far found by each
computer and determines a winner solution as the best of all. Once the master
computer determines the winner solution, it broadcast this winner solution to all
the computers. Then, at this same period, each computer will start all the Markov
chains in its domain from the winner solution at current level of the temperature.
In the second scheme, similar to the first one, the master and the worker computers
interact periodically to determine the winner solution. However, each computer will
dynamically determine the number of successive iterations each Markov chain may
elapse without improvement and update those that do not improve for a certain large
number of consecutive iterations. Thus the computers are interacting periodically
while each computer update its Markov chains dynamically when necessary rather

than with a fixed period.

5.2.5. Steps of the PSA

The steps of the parallel simulated annealing based on the first interaction
scheme of the Markov chains are presented next. Several symbols are used in pre-

senting the algorithm which are explained below.

D Processor Index (processor ID), p = 0, 2, ..., P—1 where P is the number

100



Chapter 5. SA Based Solution Procedure for Math Model-A

X, nsp

!

CF

BI,
BI
Phase

Cphase

of concurrently available processors
Index of Markov chain, s =1, 2, ..., S where S is the number of Markov
chains followed by each processors

Iteration counter, n = 1, 2, ..., N where N is the maximum number of

iterations in each Markov chain

The solution at the n®* iteration along the s Markov chain in the p*

processor

Cooling schedule exponent

Index for the temperature levels in the cooling schedule

Temperature at the r** level, T, = a xTr_1 =a" x Tg

Number of iterations to be performed in each Markov chain at each tem-
perature level

Communication frequency. It is defined as the number of iterations to be
performed by each Markov chain before communication is effected among
the processors

Best feasible individual so far found in the p** processor

Best feasible individual so far found by all the processors

The current phase of the search which equals to 1 for the first phase or 2
for the second phase

The number of iterations to be performed by each Markov chain before

the search phase is changed from Phase =1 to Phase = 2

rand() Random number generator

Using the above notations, the steps of the proposed simulated annealing based

heuristic are listed below. These steps were coded in C++ with MPI message-

passing library for communication. The code was tested in a parallel computation

environment composed of several waiters each containing a Pentium 4 processor (3.2

GHz, 2GB RAM).
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Step 0. Initialization
Set p = My_Processor_ID

Initialize counter: n = 0, r = 0, and Phase = 1. Initialize the Best-
Individual BI, with a null value. If p = 0, set the Best-Individual BI so

far found with a null value too.

Randomly generate initial solution points X1, Xo2p, - Xo,sp such
that each of them represents a solution having independent cells (i.e. the

c;’s of all the operations of a given part are set equal).

Repair initial solutions violating machine separation constraint using the

Repair Heuristic.

For s = 1 to S : Decode Xy, for the continuous variable and deter-
mine the corresponding values of the integer variable using the Machine

Assignment Heuristic and then evaluate F(Xg ;).
Step1l. Fors=1to S

Move: Using the perturbation operators valid to the current phase of

the search, perturb X, to get X, ,. If X, violates machine

nsp

separation constraint, repair it using Repair Heuristic.

Evaluate: Decode X, for the continuous variable and determine the

corresponding values of the integer variable using the Ma-

chine Assignment Heuristic. Evaluate E(X],,).

Decide: If B(X},,) < E(Xnsp), then Xy i1 9 = X5,

Else If exp§ |E(X],,) — E(Xusp)| /Tr} > rand(), then X, 14 =
nsp P P
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Step 2.

Step 3.

5.3.

XI

nsp

Else Xpi1,6p = Xnsp

Update:  If E(Xpi1,5p) < E(BI,), then Bl, = X, 14

Set n =n + 1.

If n = Cphgse, then set Phase = 2.

Ifnmod @ =0,thenset r=r+1,and T, =a x T,

If (n < N+1) AND (n mod CF # 0) go to Step 1.

If (n ¢ N+1) AND (n mod CF = 0) go to Step 3.
Ifn=N+1, STOP.

If p# 0, send BI, to the processor whose Processor_ID = 0.

If p = 0, receive the best solutions found by each processor and determine

BI and send this solution to all the other processors.
If p# 0, receive BI from the processor whose Processor ID = 0.

Set X, = BI for all s and go to Step 1.

Computational Performances of the PSA

Using the problem considered in evaluating the genetic algorithm, the perfor-

mance of the developed parallel simulated annealing is evaluated for 15 different

parameter settings to test its robustness. These test parameters are given in Table

5.1. The first two parameters in the fist group are the scale factors for the penalty

terms in the energy function as explained in Section 4.2.3. The third parameter
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Table 5.1: Parameter settings for 15 different test cases on Example 1
Parameters related to:
Test | Energy Function Perturbation Operators Cooling Schedule
No. | fur  fes [foup | D1 P2 P3 P4 Q To a
1 1.000 100 200 |0.010 0.010 0.050 0.0050 }120000 10000000 0.985
2 0.005 100 300 |[0.030 0.020 0.060 0.0010 | 60000 12000000 0.900
3 0.020 200 400 |0.040 0.060 0.030 0.0080 {30000 900000 0.985
4 2.000 250 150 {0.250 0.100 0.100 0.0100 {60000 10000000 0.850
5 0.010 400 250 {0.230 0.150 0.100 0.0150 {70000 16000000 0.885
6
7
8

0.003 150 150 |{0.350 0.250 0.150 0.0070 {50000 1000000 0.985
1.500 200 150 |0.050 0.040 0.050 0.1000 {40000 10000000 0.985
0.600 200 150 |0.150 0.240 0.050 0.0010 {90000 12000000 0.985
9 0.200 300 100 |{0.350 0.150 0.050 0.0050 {80000 20000000 0.755
10 [{0.250 100 100 |0.150 0.250 0.050 0.0150 { 100000 10000000 0.985
11 {1.500 400 150 [0.055 0.040 0.055 0.1800 |90000 10000000 0.985
12 10.055 100 300 |{0.035 0.320 0.066 0.0015 {30000 9000000 0.885
13 [0.150 200 220 |{0.355 0.220 0.008 0.0150 {90000 12000000 0.985
14 {0.250 100 220 |0.300 0.250 0.018 0.0150 | 70000 7000000 0.985
15 {0.003 150 250 |{0.250 0.150 0.100 0.0070 | 90000 15000000 0.955

| fsup is introduced here as a scale factor for the penalty term of subcontracting parts
as we assumed no part shall be subcontracted for this numerical example. The
second group of parameters are the probabilities by which the four probabilistic
perturbation operators are applied as explained in Section 5.2.4. The last group of
parameters are related to the cooling schedule and these are the number of iterations
Q@ of the SSMC-SA at each temperature level, the initial temperature Ty, and the
cooling exponent .

We implemented the PMMC-SA on 12 connected PCs within the RQCHP
cluster in Montreal. In each computer 30 Markov chains are simultaneously traced.
The cooling schedule consists of a sequence of 2000 temperature levels. The number
of iterations at each temperature level in each Markov chain is set to Q/30. The
communication among the computers is set to take place every 100,000 iterations.

A Markov chain that do not improve for consecutive 300,000 SA moves re-starts
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Table 5.2: Comparison of the proposed parallel SA with LINGO

Time LINGO The proposed Parallel SA

hr:min:sec  Lower Bound  Objective  Test 1 Test 2 Test 3 Test 4 Test 5
00:00:15 - X 1.86206 1.94255 1.78819 1.90043  2.07089
00:00:30 1.69274 X 1.78606  1.77391 1.78810 1.81659  1.84362
00:01:00 1.69274 X 1.78606  1.77150 1.78695 1.79369  1.84362
00:02:00 1.69274 X 1.78606 1.77124 1.77153 1.79236  1.84362
00:06:00 1.69274 1.86962 1.78606  1.77023 1.77153  1.79207 1.84362
00:08:00 1.69275 1.86962 1.78606  1.77023 1.76291 1.79190  1.76568
00:10:00 1.69277 1.86962 1.78210 1.77023 1.76291 1.79185 1.76330
00:12:00 1.69282 1.81068 1.77932  1.77023 1.76067 1.79174 1.76317
00:16:00 1.69282 1.81068 1.77774  1.76536  1.75881  1.79140  1.76287
00:20:00 1.69309 1.81068 177774  1.76518  1.75844  1.79140 1.76245
00:30:00 1.69311 1.77401 1.77705  1.76223 1.75752 1.76378  1.76209
01:00:00 1.69323 1.76934 1.76628 1.76054 1.75746  1.76060  1.75927
01:30:00 1.69323 1.76934 1.76338  1.75990 * 1.75933  1.75795
02:00:00 1.69323 1.76934 1.76180 * * 1.75907  1.75792
02:30:00 1.69323 1.76934 1.76081 * * *
03:00:00 1.69344 1.76934 1.76081 * * * *
05:00:00 1.69346 1.76865 * * * * *
10:00:00 1.69353 1.76865 * * * * *
15:00:00 1.69366 1.76865 * * * * *
20:30:00 1.69377 1.76865 * * * * *

X - Feasible solution was not found
* - A termination criterion was met.
Note: Values are in Millions.

1.8000
1.7950 4,
1.7900
C Lo (0 N R I——
1.7800 -
1.7750 -
17650 4o o L
1.7600 4 -
1.7550

1 -7500 T { 1 T T T T T T T ¥ T T ¥ T Ll T T T T
0 400 800 1200 1600 2000

Teperature Index r

" a. Running in phase -1 alone
b. Running in phase-2 alone
c. Running in phase-1 followed by running in phase-2

Objective (in Millions)

Figure 5.2: The impact of dividing the search into pases
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Table 5.3: Objective function value of the best solution found in 15 test cases

Test PMMC-SA (Type of Interaction scheme)
No. SSMC-SA SMMC-SA Non-Interacting First Scheme Second Scheme
1 1.77660 1.76410 1.76240 1.77689 1.76081
2 1.81660 1.76321 1.75741 1.76051 1.75990
3 NFS 1.75851 1.75851 1.75839 1.75746
4 1.78434 1.76919 1.76099 1.75795 1.75907
5 NFS 1.76252 1.76014 1.75732 1.75792
6 NFS NFS 1.78415 1.76269 1.76515
7 1.86653 1.78025 1.77973 1.78171 1.78171
8 1.78389 1.77081 1.76448 1.76327 1.76134
9 1.86196 1.76927 1.76211 1.75865 1.76059
10 1.76458 1.76658 1.76153 1.75874 1.76079
11 1.77913 1.79145 1.77208 1.77099 1.77099
12 1.76120 1.77087 1.76248 1.75976 1.76057
13 1.77382 1.77157 1.76677 1.76346 1.76491
14 1.79781 1.76556 1.76556 1.76571 1.76128
15 NFS 1.79873 1.76038 1.75798 1.75778
BTL 2 5 12 12 13

NFS - No Feasible Solution was found
BTL - Number of times a solution Better Than LINGO is found

from the best known solution at the current temperature level. The performance of
this parallel simulated annealing was evaluated against the results from LINGO. To
find solutions using LINGOQ, the absolute value term of the objective function in the
integer programming model was linearized. As can be seen from Table 4.3, the lower
bound and the best objective function value found by LINGO after several hours
of computation were 1.69346 and 1.76865 respectively. From this table, it can be
seen that, in most of the test cases, the developed heuristic was able to determine
solutions that LINGO could not find after several hours of computation. Such
results were achieved by using those problem specific procedures as systematically
dividing search phases and the related perturbation operators, constraint handling
and parallel computing. As shown in Figures 4.7, dividing the search into phases

enables the parallel SA algorithm to find near optimal solutions quickly.
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Figure 5.3: Convergence graphs of (a) SSMC-SA, (b) SMMC-SA, (c) PMMC-SA
non-interaction (d) Average convergence of a, b, and c for the 15 test cases
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5.3.1. Single Versus Multiple Markov Chain SA

In this section, SSMC-SA and SMMC-SA were compared for their performance
by keeping the total number of SA iterations the same in both cases. If the number
of iterations performed by the SSMC-SA at a given temperature level is set to Q ,
then a SMMC-SA with S Markov chains is allowed to execute each of its Markov
chains for @)/S iterations at each temperature level. If N levels were used, the
total number of iterations in both cases will be the same and equal to @ x N. For
this experimental study we set N = 2000, S = 30 and @ to the values shown in
Table 5.1. As shown in the first two columns of Table 5.3, the SMMC-SA reaches
better results than that SSMC-SA in 11 test cases. Moreover, SMMC-SA found
better results than those from LINGO for 5 times while SSMC-SA found better
results twice. These results are further illustrated in Figures 5.3-(a), 5.3-(b) and
5.3-(d). From this comparative study, it is evident that the convergence behavior
and the robustness of the algorithm are greatly improved by using multiple short
runs instead of one single long run with the same total computational time. This
result is further improved by parallel computing as it is shown in Table 5.3 and
Figures 5.3-(c) and 5.3-(d). In the parallel computing, multiple copies of SMMC-
SA were run on concurrently available computers. By allowing the computers to
communicate with each will likely to improve the computational results. Table
5.3 shows that in most cases the solutions found by allowing the Markov chains
to interact are better than those found using non-interacting scheme. It also shows
that it is more likely to obtain better solutions using the first communication scheme
than using the second one. However, from the average convergence graphs given in
Figure 5.4, the second interaction scheme is slightly better than the first one. This

entails that both interaction schemes may be considered to reduce computational

108



Chapter 5. SA Based Solution Procedure for Math Model-A

1.775

(a) Non-interacting
(b) Periodic-Periodic Interaction
(c) Periodic-Dynamic Interaction

-— —

NN

~N N

o W
1 L

Ave. objective (in Millions)

1.768 1 - (@) o
L
1.765 1 T
1.763 - ey -
1-760 T L T T T T T ¥ T T T
500 750 1000 1250 1500 1750 2000

Temperature Index r

Figure 5.4: The impact of communication schemes on convergence

time in searching for better solutions.

5.4. Summary and Discussions

Simulated annealing is a general-purpose optimization technique capable of
finding optimal or near-optimal solutions in various applications. The major disad-
vantage of this technique is its slow convergence making it not suitable for solving
many complex optimization problems. Most SA schemes in literature follow a sin-
gle Markov chain. However, following a single Markov chain may not be necessary
from a performance point of view. Hence, we developed a multiple Markov chain
simulated annealing algorithm which allows multiple search directions to be traced
simultaneously. The algorithm incorporates several problem specific perturbation
operators and constraint handling techniques. Our computational results showed
that the multiple Markov chain SA is. much more efficient than the conventional
single Markov chain SA. The solution quality obtained using such multiple Markov

chain SA can be further improved by increasing the number of Markov chains to
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be traced. This results in an exponential reduction of the error probability and
a linearly increasing computational time. A promising technique to achieve this
exponential reduction of the error probability with less or no increment of computa-
tional time is parallel computing. To this end, we implement the proposed multiple
Markov chain SA in a parallel computing environment. The parallel implementa-
tion improved computational efficiency of the multiple Markov chain SA in terms
of solution quality and computational time. The parallelization was achieved by

distributing the Markov chains to concurrently available processors.
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Mathematical Model-B

6.1. Introduction

Various manufacturing production planning and inventory control problems have
been studied extensively by many production management researchers. Different
models and methods developed to solve these problems can be found in widely used
textbooks of production engineering or manufacturing systems [127, 134]. Inventory
control models from simple EOQ to more complicated MRP, kanban and CONWIP
[103, 138] models have been developed and widely used in today’s manufacturing
industry. Some of them are very successful in practical applications. Mathematical
programming is also a powerful tool for solving complicated production planning
problems, when product structures with multi-item multi-level lot sizing are con-
sidered. Review and discussion on mathematical programming models for certain
kanban and MRP systems can be found in [119]. Other mathematical programming
models for MRP- or kanban-based production planning have also been developed
in [13, 15, 120]. Many of the mathematical models and solution methods were de-

veloped to solve problems in general manufacturing or service industries and can
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be widely applied. Prominent manufacturing features such as production flexibility
and manufacturing cell formation were usually not considered in developing produc-
tion planning models [30]. On the other hand, manufacturing systems analysis tend
to study more specific system characters such as job sequencing and scheduling,
alternative process plans and different ways of forming manufacturing cells as well
as handling production materials and tools (e.g. [17, 32, 64]). As pointed out in
Arvindh and Irani [5], an integrated approach should be pursued in manufacturing
system analysis, since different aspects of a system are interrelated in many ways. In
addition, comprehensive model consisting of different aspects of the System can help
one to understand the problem better. Integrated systems approaches can minimize
the possibility of certain important aspects of the system being overlooked, while
other issues are being studied. Based on the above considerations, we proposed
a mathematical model for an integrated approach to study cellular manufacturing
and a multi-item multi-level capacitated lot sizing problem. In fact this model is
an extension of the model discussed in Chen [30] where product structure (bill-of-
material), machine capacity, workload balancing, alternative routings and impacts

of lot sizes on product quality were not taken into account.

6.2. The Effect of Run Length on Product Quality

Manufacturers often do not meet their annual quantities through one long
production run. Rather, they produce their products in smaller volumes and sep-
arate lots at different times of the year. The precise size and timing of the runs
is a scheduling decision, which is governed by sales and inventory targets. Quality
seldom entered into the equation. Yet at the same time, several managers pointed

to a connection between run length and defect rates [44]. Long runs, they noted,
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providing a stable environment—the opportunity to master required skill through
repetition (Disruptive-Philosophy). As operators become familiar with the produc-
tion process, defect rates normally fall, and eventually diminishing to a minimum
when technical limits are reached and opportunities for learning are exhausted. The
worst manufacturing environment is one with short runs and frequent changeovers.
Each changeover is likely to cause defects to rise abnormally for a brief period. More-
over, defect rates will fall only a small amount between changeovers as the workers
never reap the full benefits of experience due to changing work assignments and
short production runs. Garvin [44] pointed out that this observation was strongly
supported by statistical analysis and concluded that the differences in run length
alone explained 50-70% of the variation in defect rates.

Contrary to the above observation, Huge and Anderson [57], Jaber and Bonney
[62], Li and Cheng [89] and Porteus [118] showed that product quality is positively
affected by reduced lot-sizes (JIT-Philosophy). Huge and Anderson [57] state that
without even working on quality improvement, reject rates improve proportionally
with the reduction in lot sizes. “Prompt identification of defects” is the major reason
frequently given for justifying this positive relationship between short run length and
product quality. Smaller lots get used up sooner; hence defective parts are caught
earlier [128]. This reduces scrap and rework and allows sources of problems to be
quickly caught and corrected. Thus there is an incentive to produce smaller lots,
and have a smaller fraction of defective units.

Urban [147] proposed a simple relation between lot size z and defect rate v
given by the equation v = & + B/x. In his model, the number of defects items in
a lot size of z is given by vz which is equal to ax + 3. The constant « is chosen
in [0,1]. The other constant § is positive for JIT-philosophy and negative for the

disruptive philosophy. The plots of v versus x are given in Figure 6.1. His objective
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is to incorporate the influence of run length on product quality into a production
planning model that can be utilized under either JIT- or disruptive philosophy. He

did not justify or condone one philosophy over the other.

Defect Defect
rate, v rate, v
a ______________________________
B>0
p<0
a ______________________________
Lot size, x Lot size, x
(a) Disruptive-Philosophy (b) JIT-Philosophy

Figure 6.1: The impact of lot size on product quality (Urban [147])

6.3. Lot Sizing by Considering Product Quality

As it was indicated in Section 6.2, several authors noted the impact of run
length on product quality. Jaber and Bonney [62], Li and Cheng [89] and Porteus
[118] presented an economic production quantity (EPQ) model for a single item
following the JIT-Philosophy. Urban [147] developed a single item EPQ model
which allowing the user to follow either Disruptive- or JIT-Philosophy. In this
section we extend the approach of Urban [147] by developing a model to address a
multi-item multi-level capacitated lot sizing problem (MLCLSP). We use this model
to demonstrate the impact of run length on product quality and as a bases for an
integrated lot sizing and cell formation model presented in the next section. The

notations and the mathematical model of the MLCLSP are presented below.
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Indexes:
t - Period index: ¢t =1,2,---,T
z - Part index: 1 =1,2,---,T
r - Route index of part i: r =1,2,---, R;
- Index of operations of part ¢ in route r: 7 =1,2,---,0,;
k - Machine index: £ =1,2,.-- | K

Input Data:

di(t) - Demand for part ¢ in time period ¢

T; - The set of immediate successor items to item ¢

T - The number of item ¢ needed by one unit of item ¢, where 7' € I'(7)

Mjri - Index of the machine type used to process operation j of part i along
route 7

Ajri - Processing time in minutes of operation j of part ¢ along route r

Sri - Cost to set up route r of part ¢

R; - Average rework and replacement cost of one defective item of type ¢

H; - Unit inventory carrying cost per period for item 3%

By - Procurement cost of type k& machine,

Gr - Maintenance and other overhead cost of machine type k,

Ok - Operation cost per hour of type ¥ machine

Cy - Capacity of one unit of type £ machine

Ry - Cost of installing one unit of type k machine,

M - Large positive number,

Decision Variables:

Continuous:
Zpi(t) - The production sub-lot size of item % along route r in period ¢
Zi(t) - The quantity of item 7 outsourced in period ¢ through subcontracting
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L) - Inventory level of product 7 at the beginning of time period ¢

General Integer:

Ni(t) - Number of type k machines in the system in period ¢
yi(t) - Number of type £ machines procured at the beginning of period ¢
Binary:
© 1, if route r of part ¢ is set up for production during time period ¢
Zri -
0, otherwise.
Minimize:
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Subject to:

-'L'ri(t) <M- Zri(t) ; V(T, i, t) (62)
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R; R;
Ii(t - 1) + Zx'ri(t) + jz(t) - X—;[ari *Tyi + :Bri ' Zri(t)]

r=1

jeT;

=L(t) = di(t) + Y 7y (ZJI zr5(t) + Z;(t)—

R;
Do - Toj + Bri - 2 (t)]) ; V(5,1) (6:3)
Qi * Tpj + ,Bri : zri(t) _>_ 0 ) V(’I”, ia t) (64)

S mlt) - 2lt) - N < Cr - Ni(t) 5 (kLD (6.5)

V(j,T,i) |mj Ti:k

Ni(t) = Np(t = 1) + 5 (¢) ;5 V(K1) (6.6)
Nk(t) — Nk(t - 1) >0 ; V(k),t)lt >1 (67)
Ne() € 40,1,2,--} ;5 V(k, 1) 6.8)

zril(t) 6{011} ) V(T,i7t) (69)

In the above model we assume that there are a total of P part types, and
some of which are end items with known external demand in each of the T periods
of the planning horizon. We further assume that the component items that appear
in the product structures can also have a know external demand in each period in
addition to the dependent demand generated by the successor items. The product
structures which specify the assembly relations are assumed to be general in the
sense that I'; may have more than one element; on the other hand, the product
structures are called linear or assembly product structures if I"; has a single element
for all the items. A part may be processed in different alternative routes and an
entire lot of a part may split into these different alternative routes. In each route
a part may requires several operations to be processed on different machine types.
Accordingly the machining times needed on each machine type by each operation
are known. Part production may be subcontracted for economic reasons. Capacity

limitations are imposed on the availabilities of the machines. If additional machines
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are required to meet capacity requirement, these machines can be procured provided
that there is an economic advantage over part subcontracting,.

The objective function given in Eq. (6.1) comprises seven cost terms. These
cost terms are related to (1) machine maintenance and holding, (2) machine procure-
ment, (3) machine operation, (4) installing new machines (5) part sub-contracting,
(6) setup, (7) inventory holding, and (8) replacement of defective parts. The con-
straint in Eq. (6.2) ensures that setup is performed (ie. z;(t) = 1) whenever
there is production in period t (i.e. z;(tf) > 0). Eq. (6.3) is inventory balance
constraint. It states that for each item in each period the beginning inventories
together with the production quantity less the defect allowance and the inventory
at the end of the period should meet the external demand and the dependent de-
mand generated by the non-defective successor items. The constraint in Eq. (6.4)
enforces non-negativity on the number of defective items under the JIT-Philosophy
in which §; is negative. This constraint is not required if the decision maker applies
the Disruptive-Philosophy. The capacity limitations of the machines are expressed
in Eq. 6.5. Eq. (6.6) states that the number of type k machines in the system in
period ¢ is equal to the number of machines in period ¢ — 1 plus those procured and
installed in period t. Eq. (6.7) states that machines will not be removed from the

system. The constraints in Eq. (6.8) and (6.9) are integrality constraints.

6.4. Integrated Cell Formation and Lot Sizing

In this section we present the problem description, the mathematical formu-
lation and the features of the proposed integrated cell formation and MRP based
lot sizing model. The choice of MRP as the production planning technique in the

integrated model follows the recent report in [58] which states most CMS user firms
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employ MRP in their production planning activities. The MLCLSP model presented
in the previous section is used as the bases for the production planning part of the

integrated cell formation and lot sizing model.

6.4.1. Problem Description

Consider a manufacturing system consisting of a number of machines to pro-
cess different parts. A part may be processed in different alternative routes and in
each route it may requires several operations to be processed on different machine
types in a given sequence. An entire lot of a part may be split into different alterna-
tive routes. In addition, we consider the manufacturing system in a number of time
periods. One time period could be a month, a season, or a year. Each machine has
a limited capacity expressed in hours during each time period. Machines can have
one or more identical copies to meet capacity requirements and reduce/eliminate
inter-cell movement. Bill-of-material of finished products is known. The indepen-
dent demand for the parts vary with ¢ in a deterministic manner. In planning the
production, the production volume of a part in a given period should be deducted
from the number of finished parts in storage, the level of its independent demand
and the required production volume of the parent parts in the products structure
during that same period. Moreover, the effect of the run length of production (lot
size) on product quality will be considered in account of either JIT- or disruptive-
philosophy. The problem is to group the machines into relatively independent cells
with minimum inter-cell movement of the parts and decide on the subsequent system
reconfiguration and lot sizes of the parts in order to minimize the system operation
costs. In grouping the machines, it is also required that the workload of the cells

should be balanced. Machines that cannot be located in the same cell should be
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separated. Machines that cannot be separated should be co-located. The overall
objective is to minimize the system costs due to machine maintenance and overhead,
machine procurement, inter-cell materials handling, machine operation, system re-
configuration, part subcontracting, setup, inventory holding, and replacement of
defective parts for the entire planning horizon.

Additional Indexes:
| - Cellindex: I=1,2,---,L

Additional Input Data:

V; - Unit cost to move part ¢ between cells,

S - A set of machine pairs {(k?, k°)/k%, k® € {1,--+,K},k® # k°, and k°
cannot be placed in the same cell with k°}

LB, - Minimum number of machines in cell [

UB, - Maximum number of machines in cell {

R, - Cost of removing one unit of type k& machine

Decision Variables:

General Integer:

Ny(t) - Number of type k machines assigned to cell [ at the beginning of period
t
yh(t) - Number of type & machines added to cell / at the beginning of period
14
ya(t) - Number of type k machines removed from cell ! at the beginning of
period ¢
Continuous:
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zni(t) - The production sub-lot size of item ¢ along route r in period ¢
Zi(t) - The quantity of item ¢ outsourced in period ¢ through subcontracting
L) - Inventory level of product ¢ at the beginning of time period ¢
Binary:
0 1, if type k machines are to be assigned to cell [ during time period ¢
Tkl -
' 0, otherwise.
0 J 1, if route r of part ¢ is set up for production during time period ¢
Zri -
0, otherwise.
\
)
1, if j** operation in route r of part i is processed in cell [ during time
Njrit(t) - ] period ¢
0, otherwise.

6.4.2. Objective Function and Constraints

. Following the problem description and notations given in the previous section,
the integrated mathematical model for cellular manufacturing system design and
production planning is presented below.

Minimize:
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T P
+ 3D B z(t)
t=1 i=1
T P R;
+ Z Z Z Sri * zri(t)
t=1 i=1r=1
T P
+ DD Hi L)
t=1 i=1
T P
+ Z Z% Z[arz Tpi + /Brz zrz(t)]
t=1i=1
Subject to:
Z njrzl = Zrq )
xm(t) < M- z4(t)
R; R;
Li(t = 1) 4+ D 2rilt) + Zilt) — D _lowi - 2ri(t) + Bri - 2ri(2)]
r=1 r=1
~Lt) =di(t)+ D 7ij- (Z zrj(t) + Z;(t)—
jerT;

Z[a'r] xr] +)8rz er(t )

Qi Tpg +i6r1, zrz >0

o z(t)  mipalt) - Njii < Cr - Nu(t)
V(j,T,’I:)l?TIj,.i:k

zL:Nkz(t) ~> Nut-1)>0 ;
I=1

=1
P 1. 01'1.
Z Z xrz njnl )\jri >
i=1 r=1 j=1
q L P Ry Oy
Z Z Z Z Tri(t) - ﬂmz(t) Ajri
1i=1r=1j=1

kl(t = Nt — 1) + 3 (t) — v (t)
K
LB <) Nu(t) <UB

k=1
Nkl(t) < M Tkl( )
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; VY(r,i,1)

; V(i)
3 V(r7i7t)
s V(k,1,1)

V()

5 V(1)
s V(k, 1, 1)
. V(1)
s V(k,1,1)

(6.10)

(6.11)

(6.12)

(6.13)
(6.14)

(6.15)

(6.16)

(6.17)
(6.18)
(6.19)

(6.20)
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ra(t) < Na() ; V(k,1,t)  (6.21)
rea(t) Frm(t) <1 5 (k%K) €6,
v(i,1) (6.22)
reat) — () =0 5 (k% K%) € Q,
(i, 1) (6.23)
va(t), va(t), Na()€{0,1,2,---} ;5 V(kLt) (6.24)

'I’]jm'l(t), Zm'(t), Tkl(t) < {0, 1} 3 V(], r, 1, l,t) (625)

Model Objective Function: The objective function given in Eq. (6.10) comprises
several cost terms. The first term is machine maintenance and overhead costs. The
second term is machine procurement cost at the beginning of each period. In this
cost term, Ni,;(0) stands for the number of type k& machines available from the pre-
vious job shop system. N (0) = 0,Vk in the case of setting up a new system. The
third term of the objective function represents the inter-cell material handling cost.
The forth, fifth, and sixth terms stand for machine operating, machine relocation,
subcontracting costs. The last three terms are similar to those comprising the ob-
jective function of MLCLSP model presented Section 6.3. These terms are machine

setup, inventory holding and replacement costs of defective parts.

Model Constraints: The constraint in Eq. (6.11) ensures that if a production
route of a part is setup, an operation in that route will be assigned to a cell. Eq.
(6.12) ensures that setup is performed (i.e. z,;(t) = 1) whenever there is production
in period t (i.e. z,;(¢) > 0). Eq. (6.13) is inventory balance constraint. It states that
the beginning inventories together with the production and subcontracted quantities
of each item in each period less the inventory at the end of the period and the defect

allowance should meet the external demand and the dependent demand generated
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by its non-defective successor items. The constraint in Eq. (6.14) is required to
enforce non-negativity on the number of defective items under the JIT-Philosophy.
The capacity limitations of the machines are expressed in Eq. (6.15). Eq. (6.16)
implies that the number of type &£ machines used any period is greater than or equal
to that of the previous period. This means that the model is not going to remove
extra machines of any type if that type of machines happen to be in excess in a
certain time period. The presence of extra machines in the system increases system
flexibility and reliability by providing alternative routes during machine breakdown.
Eq. (6.17) enforces workload balance among cells. Eq. (6.18) states that the number
of type k£ machines in the current period in a particular cell is equal to the number
of machines in the previous period, adding the number of machines being moved in
and subtracting the number of machines being moved out of the cell. Eq. (6.19)
specifies the lower and upper bounds of cell sizes. Eqgs. (6.20) and (6.21) set the
value of 7(t) equal to 1 if at least one unit of type k& machine is placed in cell ! dur-
ing period ¢ or 0 otherwise. Eq. (6.22) ensures that machine pairs included in © are
not placed in the same cell. Eq. (6.23) is to ensure that machine pairs included in €

should be placed in the same cell. Egs. (6.24) and (6.25) are integrality constraint.

6.4.3. Linearizing the Model

The model presented above is a nonlinear model due to the nonlinear terms
in the second term of the objective function, the capacity constraint (Eq. (6.15)) and
the workload balancing constraint (Eq. (6.17)). The nonlinear term z,;(t) |7;+1,r(t)—
n;rit(t)| in the second term of the objective function can be linearized in two steps. In
the first steps, we introduce a binary variable a;;(t) and replace Zy;(t) |7j1,ra(t)—

n;rit(t)| by the quadratic term x,;(¢) - a;r4(t) with the additional constraints given
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in Eqs. (6.26)—(6.28). In the second step, we replace z,;(t) - ara(t) by a continuous
variable b;.;1(t) with the additional constraints given in Eqgs. (6.29)-(6.31). Simi-
larly, the quadratic terms z;(t) - 7;74(t) in the capacity and the workload balancing
constraints can be replaced an other continuous variable c;j;(t) with the added

constraints given in Eqs. (6.32)-(6.34).

Nj+1rit(t) — Mrar(t) < ajra(t) 5 Y(4,7,4,1,t) (6.26)
—Nj1,it(t) + Mirir(t) < ajra(t) 5 V{4, 7,4,1,1) (6.27)
airit(t) € {0,1} 5 V(5,74 1,t) (6.28)

birit(t) > zpi(t) + M - ajy(t) — M 5 V(j,7,%,1,t) (6.29)
bj'ril(t) S xrz’(t) 3 V(]: T, 7;, l’ t) (630)

bjril(t) S M - aj'ril(t) ) V(]a T,’i, l)t) (631)

Cirit(t) 2 xpi(t) + M - mja(t) — M 5 V(j,7,4,1,t) (6.32)
Ciril (t) S Lri (t) ) V(J) T, i; la t) (633)

Cj’r‘il(t) S M- n]rzl(t) 3 V(.]a r, i? l, t) (634)

6.5. Numerical Examples

In this section we present a numerical example of the lot sizing model presented
in Section 6.3. This numerical example demonstrates the impact of lot size on
product quality assuming either the Disruptive- or the JIT-philosophy and is aimed
at to show whether these philosophies are correctly model or not. The example

has twelve part types to be processed by six machine types in six planning period.
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The product structure involving the twelve part types is given in Figure 6.2. Other
relevant data for the part and machine types are given in Tables C.1, C.2 and C.3.
We assume that there are 4 machines of each type at the beginning of the first
planning period. The detail solutions of this numerical example are given in Table
C.4 when none of the philosophies are applied, in Table C.5 when JIT-philosophy is
applied and in Table C.6 when Disruptive-philosophy is applied. In Table C.4, the
shortage related to a given lot size « under JIT-philosophy is calculated as a xz —f
while a number of defective items in producing z non-defective parts is calculated as
[(z-B)/(1—a)] x a—B. Similar calculations are done for Disruptive-philosophy and
the quantities from each setup are summed up together and given in the last four
columns of Table C.4. The summary of the solutions are presented in Figures 6.3,
6.4 and 6.5. In Figure 6.3, it can be seen that for most of the part types there are
more setups in JIT-philosophy. This is also reflected in Figure 6.4-(a) by a reduction
of average run length from about 1890 to 1500. According to the JIT philosophy,
this reduction of run length causes a reduction of average number of defective from
about 623 to 520 as shown in Figure 6.4-(b). In Figure 6.3, it can be seen there are
lesser number of setups when the Disruptive-philosophy is in place. This reduced
number of setups causes the average run length to increase from about 1890 to 3390
as shown in Figure 6.5-(a) and the average number of defects to fall from 828 to 553
as shown in Figure 6.5-(b). The results of the numerical example are in agreement

with the philosophy in place.
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Figure 6.4: (a) Average run length (lot size), (b) average number of defective as per
the JIT-philosophy when this philosophy is (1) not applied and (2) applied
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Figure 6.5: (a) Average run length (lot size), (b) average number of defective as per
the disruptive philosophy when this philosophy is (1) not applied and (2) applied
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Solution Procedures for Math

Model-B

7.1. Introduction

In the preﬁious chapter it was mentioned that an integrated approach should be
pursued in manufacturing system analysis, since different aspects of a system are
interrelated in many ways. In this endeavor, a comprehensive model consisting of
different aspects of the system can help system designers understand the problem
better. On the other hand, integrated model may impose computational difficulties
and may not be solvable using off-the-shelf optimization software even for small size
problems. Thus, efficient heuristic methods are required to solve the proposed model
for problems of larger sizes. The heuristic methods developed in Chapters 4 and 5 to
solve the model presented in Chapter 3 cannot directly be used to solve the model
presented in Chapter 6. One of the basic differences between the mathematical
models presented in Chapters 3 and 6 is that in the former case the production

quantity in each period is a given data while in the later it is decision variable.
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This difference, among others, has brought a significant changes in the solution
approaches. In this chapter we present two different heuristics, one based on genetic
algorithm and the other based on simulated annealing, to solve the model presented
in Chapter 6. During the course of the search, these methods interactively use
the simplex algorithm in ILOG CPLEX [60] to solve a Linear Programming (LP)
sub-problem corresponding to each solution point visited. Finally, the branch and
cut algorithm in ILOG CPLEX is used as a post-optimizer to further improve the
solution found by the meta-heuristics. The model of the proposed optimization

approach is schematically showing in Figure 7.1 below.

Main Optimization Algorithm

> Simplex Method
for Linear
Programming

Meta heuristic
(GA,SA or TS)

A

Post Optimization

Branch and cut algorithm for
Mixed Integer Programming

Figure 7.1: The proposed optimization model
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7.2. LP Embedded Genetic Algorithm

7.2.1. Chromosomal Encoding of a Solution

As it was stated in Chapter 4, the chromosomal encoding of a solution is the
first task in applying a genetic algorithm. In this section, we developed a chromo-
somal representation of a solution of the model presented in the previous chapter.
The solution encoding involves the integer decision variables Ng(t), n;ra(t), and
2,4(t) enabling a randomly generated solution satisfy the constraint in (6.11). The
constraints in (6.16), (6.18), (6.20), (6.21), and (6.22) are being taken care by a
repair heuristic. Once an integer solution satisfying these constraints is obtained,
the corresponding continuous decision variables z;.(t) and Z;(t) are determined by
solving a Linear Programming sub-problem as explained in the latter section. Fig-
ure 7.2 illustrates a chromosome structure assuming 6 part types (P, to Pg) are
to be precessed in 3 cells (C;, C2 and Cj;) during 7" planning period. A segment
corresponding to a given time period has two sub-segments: the first sub-segment,
labeled ‘cells’, represents the machine configurations and the second sub-segment,
labeled ‘parts’, represents the operation assignment of the parts to the various cells.
In this figure, C; in the cells sub-segment and P, in the parts sub-segment of period
1 are shown in details. The gene Ny, in the chromosome takes a positive integer
value. It is the number of machines of type k installed in cell C; in the period
corresponding to its location it the chromosome structure. In the detail for P, we
assume that part type 1 has two alternative routes labeled R; 1 and Ry with three
and two operations respectively. The gene Z, takes an integer value in {0, 1} to
éhow whether route r is to be setup for production or not. The gene Cj,; takes the
value in {1,---, L} and represents the index of the cell in which operation j in route

r of part i is to be processed.
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Period T
Cells Parts

C1|C2|C3|P1|P2|P3|P4|P5|Ps

Period 1 !
Cells Parts )

C1|C2|C3|P1|P2|P3|P4|P5|Ps ||

\

Ci )) P1

Ri,1 R2,1
Ni1 | N21 | Nas N41§§NK1 7 |C1,1,1IC2,1,1 |C3,1,1 Z2 lCl,:,lICZ,Z,l

My

Y

Figure 7.2: Solution representation

7.2.2. Decoding a Chromosome

The values of the variables Ny (), zr+(t) and 0,4 (t) are determined by decoding
a chromosome under consideration. The values of decision variables N (¢) and
2,i(t) are directly picked from chromosome, whereas the decision variable 7;.; is
determined using Eq. (7.1). From this equation, it can be seen that the constraint
in Eq. (6.11) can be satisfied by any randomly generated solution as shown in Eq.
(7.2).
zi(t) ; If the subscritp I = Cjpy

Njrit(t) = (7.1)
0 ; otherwise.
L
Z Njril = Z Nirit | + Mjricjrs = 0+ 20i(t) = 204(t) (7.2)
=1 v1£Cjri

132



Chapter 7. Solution Procedures for Math Model-B

Repairing Heuristics

The machine configuration decision Ny;(t) directly obtained from the chromosome
can be regarded as a preliminary value since the chromosome may violate the con-
straint in Eq. (6.16) and the machine separation constraint in Eq. (6.22). A chro-
mosome violating the constraint in Eq. (6.16) can be repaired by repairing heuristic
similar to the Machine Assignment Heuristic presented in Section 4.2.6. However, in
this case Mkl(t), the minimum number of machines of each type required in each cell
during each period, is set equal to the preliminary values Ny (t) as obtained from
chromosome. Once the value of Mj,(t) is fixed, the steps of the Machine Assignment
Heuristic can be followed in order to recalculate Ny (t) so that the constraint in Eq.
(6.16) can be satisfied. A chromosome violating the constraint in Eq. (6.22) can be
repaired using the repair heuristic presented in Section 4.2.5 with a some variation
of the last step of this heuristic. In the solution procedures presented in Section 4,
the machine assignment was determined entirely based on the operation assignment.
However, in the solution procedure presented in this chapter the machine assignment
is directly encoded in the chromosome and it determines the operation assignment.
This difference requires a change in the last step of the repair heuristic presented in
Section 4.2.5. The last step of the modified repair heuristic is given here under and

the other steps need not be changed.

Step 7. For a chromosome under repair, move out all the machine in a given group
T, from the cells that are not associated to this group and arbitrarily

redistribute these machines among the cells associated to this group.

The last repair to be done on a chromosome is on its operation assignment. If
the j®* operation in r** route of part i is assigned to a cell in which the required

machine type is not available, then the gene C,,; has to be reset to the index of one
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of the cells containing the machine type mj,. This requires recalculating 7.4 (%)
using Eq. (7.1). After the decision variables Ny (t) are determined by decoding and
repairing a chromosome, the reconfiguration decision variables yj;(¢) and yg;(¢) can
be determined using Eqs. (4.6) and (4.7) respectively. This last step satisfies the

constraint in Eq. (6.18) of the proposed model.

LP Subproblem

The values of all the integer decision variables are obtained by decoding a chro-
mosome under consideration and repair heuristics. These integers solution can sat-
isfies all the constraints involving only the integer variables other than the cell size
constraint. The corresponding values of the sub-lot sizes z,;(t) and subcontract-
ing quantities Z;(¢) can be obtained by solving a Linear Programming sub-problem
given below. This LP sub-problem is to minimize the sum of inter-cell movement
cost, operation cost, inventory holding cost and replacement cost of defective parts
subject to the constraints in Eqs. (6.12)—(6.15) and (6.17). In the subproblem, these
constraints are renumbered as Eqgs. (7.4)—(7.8).

Minimize

1
V; .’Em |7]3+1,ml (t) — Njril (t)l

L P R;
>0
I=1i=1r=1
i Ori

Oyi
2
Jj=

=1
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ERS
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Subject to:

R
Ii(t — 1) + me‘(t)

r=1

—Iit) =

>

V(jar’i)lmjri'—"k

7.2.3.

Zri(t) < M - 25(8) ;5 Y(ri,t) (7.4)
+ -’z‘z(t) - i[ari * Tpg + ,B'ri : zri(t)]
R;
t)+ ‘ZF Tij - (Z%(t) +Z;(1) -
Jjer; r=1
R;
> lows - @oj + Bri - zrj(t)]) ; V() (7.5)
Qi Tpi + Bri - zri(t) >0 ; V(’I“, i, t) (76)
z;(t) - Nirir(t) - Njs < Cr - Ny(t) ;5 V(k,1,t)  (7.7)
P R; Oy
Z Z Lri (t) : njril(t) . /\jri >
i=1r=1 j=1
g LB B Oni
Z Z Z Z Z Tri (t njrzl(t) jri V(l, t) (78)

I=1 i=1r=1 j=1

The Fitness Function

As it was stated in Chapter 5, the purpose of the fitness function is to measure

the fitness of candidate solutions in the population with respect to the objective and

constraint functions of the model. For a given individual, its fitness is given by Eq.

(7.9) as the sum of the objective function of the model (Eq. (6.10)) and the penalty

terms of constraint violations. The cell size and machine co-location constraint are

enforced by such penalty terms. The factors f,; and f,,. are used for scaling these

penalty terms. Finally, the raw fitness scores F' need to be transformed so that the

minimum raw fitness will correspond to the maximum transformed fitness. This is

achieved using Eq. (4.4).
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F = Model Objective Function

+  fes- iZL:max {0, ‘ZNkl(t) — LBy, i{: Nkl(t) - UBl}

t=1 =1 k=1

+ fmc.ZZ{ 3 |rkcl(t)—rkbl(t)|} (7.9)

t=11=1 | V(ke kd)eN
7.2.4. Genetic Operators

The genetic operator developed in this chapter are more or less similar to those
used in Chapter 4 except these are tailored to the structure of the solution repre-

sentation shown in Figure 7.2. These operators are explained here under.

Selection Operator: The selection operator used in this chapter is based on the

simulation of roulette wheel and it is the same as the one used in Chapter 4.

Crossover Operators: The crossover operators produce children by exchanging
information contained in the parents. In this section we present several crossover
operators tailored to the structure of the solution representation shown in Figure
7.2. These are:

e Single point crossover,

o Period swamp crossover,

o All-cell swamp crossover,

e All-part swamp crossover,

¢ Single-cell swamp crossover,

¢ Single-part swamp crossover and

¢ Route swamp crossover
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Single-point crossover operator is a standard crossover operator used in ge-
netic algorithm. It randomly generates a single crossover point along the length
of the chromosome and swamps the right-hand-side segments of the parents. The
period-swap crossover operator randomly selects a period in the planning horizon
and exchanges the segments of the parent chromosomes corresponding to that pe-
riod. All-cell (all-part) swap crossover operator randomly selects a cells- (parts-)
sub-segment and exchanges this sub-segment of the parents. Single-cell (single-
part) swap crossover operator randomly selects a single cell (part) along the length
of the chromosome and exchange it between parents. Route swamp crossover ran-
domly selects a production route of a part along the length of the chromosome and

exchange the information about this route between parents.

Mutation Operators: The mutation operators act on a single chromosome to
alter the information contained in the genes. These operators are usually applied
under certain probabilities much less that the crossover probabilities. In this section
we present five mutation operators used in the genetic algorithm developed in this

chapter. These are:

Machine mutator,

Setup mutator,

Part level cell mutator,

Route level cell mutator,

e Operation level cell mutator,

Machine mutator applied along the entire length of a chromosome to step up or
down the number of machine of each type installed in each cell during each period.

The step amount is equal to unity. The setup mutator is applied to each of the z,;(¢)
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in the chromosome to switch its value between 0 and 1. The part-level cell mutator
randomly alters the cj,;’s of all the operations in all the routes of a part to other
identical values in {1,2,---L}. The route-level cell mutator randomly alters the
cjri’s of all the operations of a given route of a given part to other identical values
in {1,2,--- L}. The part- and route-level mutation operators are applied during the
first phase of the genetic search where the quest is to find the best configuration with
independent cells. Operation-level cell mutator alters the value of each of ¢;;’s of the
operations of the parts in various route. However, this operator is applied for each
operation independently and may result in different values of c;r;’s of the operations
of a part. Hence, it may result in inter-cell movements. For this reason, this operator
is applied in the second phase of the genetic search where the attempt is to optimize
the cost of inter-cell movement along other cost terms of the model. Moreover, this
operator is applied at a lower mutation rate than part-level cell mutator to avoid

unnecessary perturbations.

7.2.5. Two Searching Phases

By following similar reasoning given in section 4.2.8, the LPEGA runs in two
phases. In first search phase, single-point crossover and the operation-level cell
mutator are not applied as their use can result in solution with inter-cell movement.
In the second phase, part-level and route-level cell mutator operators are not applied
as these operator only promote the generation of independent cells. The LPEGA
also has a procedure called population rejuvenation similar to the one explained in

Section 4.2.8.
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7.2.6. Steps of the LPEGA

The general sets of the LPEGA are similar to that of the GA presented in
Chapter 4. The major difference is that the LPEGA requires solving a linear pro-
gramming sub-problem corresponding to each individual in the population in each
generation. With this difference, the steps of the LPEGA are represented in the

flow chart given in Figure 7.3 using the following notations.

pPS Population size

p Index for individual in a given population
g Generation counter, p = 1,2, ..., Prmaz,
9maz Maximum number of generations,

Phase The current phase of the search which equals to 1 for the first phase or 2

for the second phase,

Ophase Generation at which the value of Phase should be set equal to 2 if it were

not previously set to this value by other conditions,

w Number of successive generations counted without any improvement of

the best individual so far found,

Winaz Maximum value of w at which point population rejuvenation is to be
performed,
b Number of successive population rejuvenations counted without any im-

provement of the best individual so far found,

bmazt Maximum value of b at which point the second phase is to be entered if

Phase was equal to 1,

brmaz2 Maximum value of b in the second phase at which point the search will

be terminated.
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f An indicator binary variable which equal to 1 if population rejuvenation

is to be accomplished; 0 otherwise.

The steps were coded in C++ and run on a Pentium-4 (2.93 GH, 512 MB
Ram) PC computer. Simplex subroutines within ILOG CPLEX package [60] was

used to solve the embedded linear programming model.

7.3. LP Embedded Simulated Annealing

In this section we developed simulated annealing algorithm to solve the model
presented in the Chapter 6. Similar to the genetic algorithm presented above, the
proposed simulated annealing uses the simplex method to solve a linear programming
sub-problem corresponding to each solution visited. The simulated annealing is
based on a SMMC-SA presented in Section 5.2.2. The components and steps of this

LP embedded simulated annealing (LPESA) are explained in the next sections.

7.3.1. Components of LPESA

LPESA shares many similar components and features of LPEGA. Solution
representation and decoding, repair heuristics, perturbation operators (mutation
operators), energy function (fitness function) and two search phases are common
t.o both LPESA and LPEGA. The cooling schedule used in LPESA is same as the
one presented in Section 5.2.4. The Markov chains in LPESA interact in similar
fashions as that of the parallel simulated annealing (Section 5.2.4) except that the

interactions in the LPESA are limited within a single computer.
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Figure 7.3: The steps of LPEGA
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7.3.2.

Steps of the LPESA

The steps of LPESA based on a periodic interaction scheme of the Markov

chains are presented in Figure 7.4. The notations used in presenting the algorithm

are given below.

BI
Phase

Cphase

Index of Markov chain, s =1, 2, ..., S where S is the number of Markov

chains followed

Iteration counter, n = 1, 2, ..., N where N is the maximum number of
iterations in each Markov chain

The solution at the n*® iteration along the s** Markov chain

Cooling schedule exponent

Index for the temperature levels in the cooling schedule

Temperature at the r* level, T, =a x T,_; = o x T

Number of iterations to be performed in each Markov chain at each tem-
perature level

Interaction frequency. It is defined as the number of iterations to be per-
formed by each Markov chain before interaction is effected among these

Markov chains
Best feasible individual so far found

The current phase of the search which equals to 1 for the first phase or 2

for the second phase

The number of iterations to be performed by each Markov chain before

the search phase is changed from Phase =1 to Phase = 2
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Figure 7.4: The steps of LPESA
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7.4. Branch and Cut Algorithm as Post-optimizer

Mungwattana [107] recommended, as a future research, the use of CPLEX
as a post optimizer in solving cell formation models where good initial solutions
can be generated using heuristic methods. Following his recommendation, we use
the branch and cut algorithm in ILOG CPLEX as a post-optimizer. The solution
generated by the GA (or SA) is used as the first incumbent solution for the branch

and cut algorithm.

7.5. Computational Performances

The problem presented in Section 6.5 was used to evaluate the performance
of the proposed heuristic in generating two manufacturing cells. In Figure 7.5 is
the convergence of the proposed GA followed by the branch and cut algorithm as
a post optimization. In this figure the best solution so far know after several hours
using CPLEX and two lower bounds on the solution are also shown. The lower
bound determined by the CPLEX is very low compared to the solution determined
by the proposed heuristic. The second and improved lower bound was determined
by solving the model to optimality after relaxing the machine separation constraint
and allowing all the machine to be installed in a single big cell. Thus the optimal
solution of the original model is well above this lower bound. This implies that the
proposed heuristic has found a solution very close to global optimal solution. Similar
computational performance was also observed using the simulated annealing based

heuristic.
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Figure 7.5: The convergence of the proposed heuristic for the example problem
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Chapter 8

Summary, Conclusion and Future

Research

8.1. Summary and Conclusion

In the past few decades, there has been an increasing worldwide awareness towards
productivity improvement. A new style of operation and a new environment in
the work place conductive to improvement in such factors as flexibility, efficiency,
management-worker relation, team work and job satisfaction are becoming impor-
tant for survival in the international market. CMS has emerged as one of the promis-
ing strategies to address such requirements. The contributions of this research lie in
developing (1) comprehensive mathematical models for CMS design problems and

(2) efficient solution procedures to solve the model developed.

8.1.1. Contributions in Modeling CMS Problems

The design of CMS involves many structural and operational issues. One of

the first important design steps is the formation of part families and machine cells.
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The effectiveness of this design step heavily depends on the proper consideration of
relevant issues. From our review of recently published cell formation methods we

noticed that these factors include:

1. Alternative routing 12. Movement of parts (material han-

2. Demand fluctuation dling cost)

3. Dynamic cell reconfiguration 13. Machine capacity

4. Workload balancing 14. Presence of identical machines

5. Lot-splitting 15. Machine investment cost

6. Types of tools required by a part 16. Subcontracting cost

7. Types of tools available on a ma- 17. Tool consumption cost

chine 18. Unit operation time

8. Machine proximity constraint 19. Operation cost

9. Sequence of operation 20. Product structure (bill of materi-
10. Setup cost/time als)
11. Cell / part family size constraint 21. Production planning

However, our review also showed that individual methods published recently ad-
dressed only a limited subsets of these factors. To this end, a model that incorpo-
rates all or the majority of these factors is essential. In Chapter 3, a comprehensive
mathematical model for the design of cellular manufacturing systems is proposed
incorporating more of these attributes than recently published articles. The model
incorporates the attributes from 1 through 19 in the list above. Numerical examples
using small size problems, all solved by LINGO, were presented to demonstrate the
model and its potential benefits. Computational experience on such small problems
showed that a significant amount of cost savings can be achieved by considering sys-

tem reconfigurations, lot splitting and system flexibility. Our computational results
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also showed that there are significant differences on workload distribution among the
cells, if workload balancing is not attempted. The result is compiled in a paper and
accepted for publication in International Journal of Production Economics.

In the model developed in Chapter 3, the production quantity of a part in a
given time period is a given data and equals to the demand of the part in that time
period. However, a production quantity can be a decision variable to be determined
by the production planning function. Principally, production quantity (lot size)
depends on the setup cost, inventory holding cost and capacity constraints. Produc-
tion capacity in turn depends, among others, on the type and number of machines
installed in the manufacturing cells which is a cell formation decision. Thus, produc-
tion planing and dynamic cell formation can be viewed as interdependent problems
which need an iﬁtegrated approach. Based on this considerations, in Chapter 6, we
expand the model presented in Chapter 3 to address dynamic cell formation and a
multi-item multi-level capacitated lot sizing problems in an integrated manner. The
model also considers the effect of lot sizes on the product quality. Proponents of the
Just-In-Time philosophy contend that smaller lot sizes result in improved product
quality. Others (from the disruptive philosophy) argue that smaller lot sizes result
in ‘excessive interruptions and disruptive environments that impair learning and in-
crease defects. The intent in-our model is not to justify or condone one philosophy
over the‘ other; i.e. whether short production runs have a positive effect (JIT phi-
losophy) or a negative effect (disruptive philosophy) on product Quality. Rather, it
is our intention to incorporate this frequently identified influence of run length on
product quality into an integrated dynamic cell formation and production control

model that can be utilized under either circumstance.
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8.1.2. Contributions in Developing Solution Methods

In the previous section, we mention that one of the major contribution of
this research is in developing a comprehensive mathematical programming model
for dynamic cellular manufacturing system design. In solving such a comprehensive
mathematical programming model for large size problems, branch and bound general
search algorithms cannot give optimal or near optimal solutions within acceptable
computational times. To this end, in Chapter 4, we developed an efficient heuristic
based on genetic algorithm to solve the comprehensive model presented in Chapter
3. The algorithm incorporates several problein specific genetic operators, constraint
handling techniques and divided searching phases. Its performance was evaluated
against available off-the-shelf optimization software. The results obtained by using
the heuristic method were very encouraging and a paper reporting these results has
been accepted for publication in the International Journal of Production Re-
search. In order to further improve the obtained results, a parallel implementation
of the algorithm (PGA) is also attempted. Though researchers agreed that CMS
design is a complex problem and tried to develop efficient solution procedures for
the last decades, there have been a few report on the use of PGA for CMS design.
As yet, the PGA methodology has not been exploited for the design of CMSs and
so this novel approach is attempted in this research. The parallel implementation
of the algorithm demonstrates a reduction of processing time and improved search
performance. Thus, with this work, we could ratify the importance of using parallel
genetic algorithm in CMS design where there are a few reports on its use.

In Chapter 5, we developed an alternative solution approach based on sim-
ulated annealing to solve the model presented in Chapter 3. Most SA schemes in

literature follow a single Markov chain. However, following a single Markov chain
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may not be necessary from a performance point of view. Hence, we developed a
multiple Markov chain simulated annealing algorithm which allows multiple search
directions to be traced simultaneously. Our computational results showed that the
multiple Markov chain SA is more efficient than the conventional single Markov
chain SA. To further improve the performance of the proposed multiple Markov
chain SA, we implement it in a parallel computing environment. The parallelization
was achieved by distributing several Markov chains to concurrently available pro-
cessors. The parallel implementation greatly improved computational efliciency of
the multiple Markov chain SA in terms of solution quality and computational time.
The result was compiled in paper and submitted to Computers € Industrial
Engineering for possible publication.

The heuristic methods developed to solve the model presented in Chapter 3
cannot directly be used to solve the model presented in Chapter 6. As it was pointed
out in the previous section, one of the basic differences between the mathematical
models presented in Chapters 3 and 6 is that in the former case the production
quantity in each period is a given data while in the later it is decision variable.
This difference, among others, has brought a significant changes in the solution
approaches. In Chapter 7 we present GA and SA based different heuristics in order
to efficiently solve the model presented in Chapter 6. In these search heuristics,
only the integer variables were directly encoded in a solution representation. The
structure of the solution representation and repair heuristics enable a randomly
generated integer solution to satisfy several constraints composed of the integer
variables. For a given integer solution, the corresponding continuous variables were
determined by solving a linear programming model minimizing several cost terms
and satisfying constraints with continuous variables. This strategy leads to a highly

reduced search space resulting in a lesser number of solution points that may be
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potentially visited by the search methods to reach optimal or near optimal solution.
The simplex algorithm in ILOG CPLEX was used to solve a Linear Programming
(LP) sub-problem corresponding to each solution point visited. The performances
of the heuristics were very encouraging in solving the integrated cell formation and
production planning model. Finally, The branch and cut algorithm is used as a

post-optimizer to further improve the solution found by the meta-heuristics.

8.2. Future Research

8.2.1. Second Phase of CMS Design

As it has been stated in Section 1.3, the second phase of CM design consists of

system design of each of the individual cells. Typical decisions in this phase include:

1. Equipment layout

Design/selection of material handling equipment
Assessment of operators training requirement
Operators assignment

Machine loading and scheduling

Job dispatching

Maintenance planning

N o gvok N

Quality control and inspection policies

However, we have felt that the consideration of the second phase of CM design
is beyond the scope of this thesis. Its consideration will require substantial time and
cannot be fitted within the time frame of the work of this thesis. For this reason,

the second phase of CM design will be considered in our future research work.
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8.2.2. Multi-objective Optimization

The heuristic methods developed in this research can give only one optimal
or near optimal solution for the proposed mathematical models. These heuristic
methods will be modified and improved to generate several near optimal alternative
solutions. Then, a simulation model will be developed and used to further evaluated
the alternative solutions for their machine utilization, work-in-process, due date
performance, reliability, flexibility and other performance measures that are difficult

to express in monetary terms.
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Appendix A

Data and Solutions for Chapter 3

Table A.1:Parts’data

Cost of inter-cellular | Demand during period ¢
Part No. | Batch size B; | movement per unit V; t=1 t=2
1 100 6 4000 0
2 150 12 0 3200
3 300 27 4000 2500
4 200 18 0 4500
5 100 15 4400 0
6 100 15 0 4500
7 150 24 0 4500
8 150 12 3600 0
9 150 12 - 3400 0
10 200 18 6500 0
11 300 24 0 4500
12 100 12 0 3550
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Table A.1: Continued

Cost of inter-cellular | Demand during period ¢
Part No. | Batch size B; | movement per unit V; t=1 t=2
13 100 27 2000 6000
14 150 21 4000 0
15 300 27 4400 4500
16 150 24 0 6000
17 200 12 3500 0
18 100 21 3800 5700
19 100 18 4800 0
20 100 12 0 3800
21 100 24 0 3000
22 150 15 4700 3000
23 120 18 5400 0
24 150 27 0 4500
25 150 18 0 4500
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Table A.2: Tool requirement of parts (tool codes assumed)

Part Tool required for operation j (Sequence of Operations)

No. 1 2 3 4 5 6 7 8 9
1 A01 Co1 A03 Co4 Co06
2 GO01 GO02 GO06 Fo1 F03 F02 HO02 HO1 HO03
3 B01 B02 B03 A02 A0l E01 E03 E02
4 Do1 D02 D06 HO1 HO03
5 GO05 HO02 HO03 F02 F04 F05 F03 GO03 G04
6 Do02 D04 D06 A01 A02 HO02
7 A0l A02 A03 Co02 Co03 C06 A04 A05 D05
8 BO1 B02 EO01 E02 B03 B04
9 FO4 F05 G04 HO3 Ho4 GO05 G06
10 DO01 D02 D03 D05 HO04 HO05
11 A01 Co1 Co03 A03 B01 E03
12 B03 B04 A01 Fo1 E03 .
13 F03 F02 Fo1 GO1 G02 G04 D04 D03 D05
14 EO01 E02 E03 D02 D06
15 A03 C02 C03 A05 C06 G06
16 GO05 GO06 FoO1 F02 F05
17 AQ2 B03 B04 E03
18 Co1 Co02 Co04 A01 C06
19 D03 D04 D05 HO1 HO3 HO2
20 B01 B02 B03 A01 A02 B04 EQ2 EQ03
21 HO04 HO05 F03 F04 FO5 EO01 GO1 G02
22 A0l A03 C01 C03 B01 E03
23 A01 AQ2 D02 D04 D06 Ho1
24 E01 E02 B02 B01 B04
25 Fo4 F05 GO03 GO05 GO06 H04
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Table A.3: Tool availability on machines

Machine
type k Available tools
1 A01, A02, A03, A04, A0S
2 A01, A02, B01, B02, B03, BO4
3 Co1, C02, C03, C04
4 C03, Co04, C05, Co6
5 D01, D02, D03, D04, D05, D06
6 E01, E02, EO3
7 F01, F02, F03, F04, F05
8 GO01, G02, GO3, G04, GO5, GO6
9 HO01, H02, HO3, H04, HO5
10 HO1, H02, HO3

The tool index g = 1 for AOL, 2 for A02, ..., and 40 for HO5.
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Table A.4: Routes and alternative routings data (k, yijk, ijk)

Part Operation No.
No. 1 2 3 4 5 6 7 8 9
1 (1,100,12) (3,80,18) (1,150,10) (3,120,10) (4,90,16)
(2,110,11) (4,155,8)
2 (8,40,16) (8,40,14) (8,40,16)  (7,90,12)  (7,120,12) (7,90,10)  (9,100,10) (9,130,17) (9,180,16)
(10,120,10) (10,120,18) (10,120,18)
3 (2,90,5  (2,90,10) (2,90,15)  (1,100,10) (1,100,16) (6,30,20)  (6,40,15)  (6,40,10)
(2,120,9)  (2,120,15)
4 (530,8) (530,10) (5,90,12)  (9,70,16)  (9,70,20)

(10,140 15) (10,120,19)

5 (8,60,9) (9,90,10) (9,60,12) (7,906)  (7,1208) (7,100,8)  (7,120,10) (8,40,16)  (8,60,12)
(10,120,9) (10,120,11)

6 (5,30,16) (5,60,10) (5,90,8)  (1,100,12) (1,100,16) (9,100,12)
(2,100,12) (1,120,14) (10,120,12)

7 (1,100,5) (1,100,8) (1,150,6) (3,80,10)  (3,120,12) (4,90,14)  (1,150,16) (1,150,10) (5,70,8)

(2,120,5)  (2,120,9) (4,140,11)
8 (2,90,6)  (2,90,8) (6,30,12) (6,40,14) (2,110,8)  (2,110,8)
9 (7,120,6) (7,100,12) (8,60,16)  (9,60,14)  (9,80,20)  (8,60,6)  (8,60,16)
(10,120,13)

10 (5,30,12) (530,6) (5608)  (570,16) (9,80,7)  (9,80,4)
11 (1,100,7) (3,80,10) (3,120,10) (1,150,15) (2,90,8)  (6,40,5)

(2,90,7) (4,140,9)
12 (2,110,7) (2,110,11) (1,100,8) (7,90,15)  (6,40,15)
. (2,120,7)

13 (7,205) (7,90,14) (7,90,8)  (8,40,10) (8,40,6)  (8,60,5)  (5,60,10)  (5,60,12)  (5,70,12)
14 (6,30,16) (640,8) (6,40,12) (530,6)  (590,4)

15 (L,150,5) (3,80,10) (3,120,12) (1,150,5)  (4,90,8)  (8,60,4)
(4,140,11)

16 (8,60,12) (8,60,10) (7,90,14) (7,90,9)  (7,100,14)

17 (1,100,16) (2,110,6) (2,110,18) (6,40,12)
(2,120,16)

18 (3,80,5) (3,80,8) (3,130,10) (1,100,8)  (4,90,16)
©(4,140,9)  (2,120,7)

19 (560,10) (560,9) (570,13) (9,70,12)  (9,60,12)  (9,70,16)
(10,120,11) (10,110,11) (10,120,15)

20 (2,90,8) (2,90,6) (2,110,6) (1,100,9)  (1,100,16) (2,110,7) (6,40,15)  (6,40,12)
(2,100,9)  (2,110,15)

21 (9,80,14) (9,80,10) (7,120,8) (7,120,5) (7,100,5)  (6,30,12)  (8,40,18)  (8,40,12)
22 (1,100,18) (1,150,8) (3,80,14) (3,140,16) (2,90,12)  (6,40,12)

(2,105,17) (4,125,15)
23 (1,100,8) (1,110,20) (5,30,7)  (560,9)  (590,12)  (9,70,12)
(2,120,7)  (2,140,18) (10,125,11)

24 (6,30,14) (6,40,16) (2,90,8)  (2,90,10)  (2,110,8)
25 (7,120,8) (7,120,6) (8,40,12) (8,60,10  (8,60,6)  (9,80,5)
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Table A.6: Miscellaneous data

No of cells

Lower bound for the cell size
Upper bound for the cell size

Pair of machines that should not be
located in the same cell (arbitrarily selected)

Work load balancing factor, ¢

3

2 machines
25 machines

{2, 4} and
{6, 9}

0.90

Table A.7: Part-cell assignment for period 1

Machine Parts Types

Cell | Type | Qnt. 5 9F 0¥ 23 ] 9% 10% 13%

15

18 1913 8

13¥

14

17 22

=
[

Cl1 Mb 033 1
: 0.41
0.41
041 033 1

0.41 1

e

C1 M5 0.67 0.31
0.59 0.31
0.59 0.31
0.59 0.67

0.59

[y

C3 M5

B = ol = N O DD e = DD QO DD b i e e DD DD DN ke N

0.69

0.69
0.69

1
1

The numbers in the body of the table indicate the proportion of the total demand

of parts whose operations are performed in the corresponding cell.

* Parts appearing in more than one column of this table represent lot splitting
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Table A.8: Part-cell assignment for period 2

Cell

Parts Types

12

16*

20

21

6%

7 13*

15

16*

18

6F

13*

25

C1

0.94
0.94

1

—

Cc2

0.60

0.60

0.18

0.18

0.18

0.66
0.66
0.66

o=y

0.87
0.87

=

C3

umwwwmwwwwwmww»—-kwmh“g}
=+

0.06

0.40
0.40

e b e

1

1
1

0.82
0.82

0.82

0.34
0.34
0.34

1
1
1

Numbers outside the diagonal blocks indicate the presence of intercell movement.
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Table A.9: Sample values of the decision variable 7k (%)

Machine, 7;:x:(t)

Part Operation
Period | No. | Cell 1 2 3 4 5 6 7 8

1 15 | 1 |1,1.00 3,1.00 4,1.00 1,1.00 4,100 8,1.00

3, 0.90
1 1 | 1 |1,100 3,100 1,1.00 4, 1.00
4,0.10

1 [5033 5033 5033 5033 9,033 9,033

2 |5,067 5,0.67 5,067 5,067 9,067 9,0.67

2 |5 018 5018 5018 1,018 1,018 9,0.18

3 |5082 5082 508 2082 2082 9 0.82

2 [9,060 9,060 7,060 7,060
2 21 | 3 [9,040 9,040 7,040 7,040 7,0.40

1 ‘ 7,060 6,1.00 8§, 1.00 8,1.00
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Table A.10
Generic attributes of the 10 additional problems

No of Noof Noof No of potentially
Problem Planning No of Machines Part non zero variables No of
No. Periods  Cells Types  Types Integer Total  Constraints
2 2 3 10 25 2120 6392 5694
3 2 3 10 25 2024 6098 5676
4 2 3 6 25 2040 6190 5376
5 2 3 6 25 1932 5860 5420
6 2 3 6 15 1392 4186 3664
7 2 3 6 15 1392 4186 3772
8 3 3 6 15 2088 6275 5506
9 3 3 6 15 2088 6284 5579
10 2 4 8 20 1856 5474 4928
11 2 4 8 20 5474 1856 4993

162



Appendix B

GA Parameters for Chapter 4
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Appendix C

Data and Solution for the

Example Problems in Chapter 6
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Table C.1
Data for the parts for Section 6.5

Costs related to

Independent

Inventory Replacing Inter-cell Sub- Demand in Period t
Part holding Defective Movement contracting 1 2 3 4 5 6
1 14 5 1.2 16 500 500 400 0 300 500
2 1.4 10 1.8 24 100 400 200 300 O 400
3 14 10 1.8 24 230 0 350 400 320 0
4 0.7 5 1.6 16 200 250 400 350 200 450
5 14 10 1.5 24 100 800 600 400 0 600
6 2.1 10 24 24 100 500 200 600 250 300
7 1.4 10 1.2 24 0 400 600 300 500 O
8 1.4 5 1.2 24 200 300 600 400 500 100
9 2.1 10 1.1 24 100 200 0 200 O 400
10 2.1 5 2.1 28 0 200 500 O 200 300
11 14 10 1.2 28 200 500 O 520 600 300
12 1.4 10 24 28 100 O 400 300 O 600
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Table C.2
Data for the parts for Section 6.5 (Continued)

Defect Rate Operation Sequence(mjri, Ajri)

JIT Disruptive Operation
Part Route Setup (o, B) (a, B) 1 2 3
1 1 920 (0.10, 48) (0.02, 180) (3, 3) (6, 4)
2 1 900  (0.15,56) (0.03,210) (1,4) (3,5) (6, 5)
2 920  (0.20, 56) (0.04,210) (1,4) (4,5) (3, 5)
3 1 400  (0.15,40) (0.03,150) (2,2) (5, 3) (4, 3)
4 1 920  (0.10,40) (0.02,150) (3,3) (5, 4) (2, 3)
5 1 930  (0.05,48) (0.01,180) (2,4) (6,4)
6 1 770 (0.10,48) (0.02,180) (2,3) (3,3) (6, 2)
2 700 (0.10,56) (0.02,210) (2,4) (6, 4)
3 800  (0.15,56) (0.03,210) (2,2) (1,3) (4, 3)
7 1 800  (0.10,56) (0.02,210) (6,4) (2,5)
2 820  (0.10,64) (0.02,240) (2,3) (5,3) (3, 3)
8 1 890  (0.10,48) (0.02,180) (1,4) (4, 4) (2, 4)
9 1 900  (0.15,64) (0.03,240) (6,3) (3,3)
10 1 930  (0.15,48) (0.03,180) (1,4) (4,3) (3, 4)
2 780  (0.15,64) (0.03,240) (3,5 (1,4) 4, 2)
11 1 920  (0.10,64) (0.02,240) (1,3) (4,4) (3, 3)
2 940  (0.15,64) (0.03,240) (5,3) (4, 6)
3 990  (0.10, 56) (0.02,210) (1,2) (4,3) (5, 4)
12 1 890  (0.10,64) (0.02,240) (2,2) (6,3)
Table C.3

Data for the machines for Section 6.5

Machine Procurement Holding Capacity Installation Uninstalling Operation

Type Cost Cost (hrs) Cost cost Cors/hrs
1 1120 200 340 60 60 8
2 1000 100 320 80 80 9
3 1250 150 300 80 80 7
4 1720 200 310 90 90 7
5 1320 100 340 60 60 8
6 1400 200 350 70 70 7
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Table C.4
Lot sizes when neither JIT- nor disruptive-philosophy is applied

Selected Route
Lot Size

Inventory Level No of Setups Total No of
in period t = Ave. Lot Size Shortage Defective
Part 1 2 3 4 5 6 Ave. Inventory JIT  Disr. JIT - Disr.
1 1 - 1 - 1 - 3
1000 - 400 - 800 - 733 84 584 93 596
500 0 0 0 500 0 167
2 1 - 1 - 1 - 3
2500 - 1300 - 1999 - 1933 702 804 826 829
400 O 300 0 400 O 183
3 1 - 1 - 1 - 3
1230 - 1150 - 1120 - 1167 405 555 476 572
0 0 400 O 0 0 67
4 1 - 1 - 1 - 3
4140 - 4200 - 4010 - 4117 1115 697 1239 711
250 O 350 0 450 O 175
5 1 - 1 - - 1 3
899 - 999 - - 599 833 2 565 2 571
800 O 400 O 0 0 200
6 1 2 1 2 - 2 5
2798 500 3198 850 - 2099 1890 687 1179 763 1203
0 0 0 250 O 0 42
7 2 - 2 - 1 1 4
2199 - 2899 - 500 1199 1700 446 1036 496 1057
400 O 300 O 0 0 117
8 1 - - 1 - - 2
1100 - - 1000 - - 1050 114 402 127 410
900 600 O 600 100 O 367
9 1 - - 1 - 1 3
2499 - - 2200 - 400 1700 577 873 679 900
2006 O 0 0 0 0 33
10 2 - 2 2 - 2 4
2400 - 499 2200 - 300 1350 573 1122 674 1157
200 O 0 200 O 0 67
11 2 - - 2 - - 2
1799 - - 2419 - - 2110 505 607 594 625
500 O 0 900 300 O 283
12 1 - 1 1 - 1 4
6700 - 1399 7120 - 1200 4105 1386 1288 1540 1315
0 0 0 0 0 0 0
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Table C.5
Lot sizes when JIT-philosophy is applied

Selected Route

Lot Size

Inventory Level

No of Setups

in period t = Average Lot Size No of
Part 1 2 3 4 5 6 Average Inventory  defective
1 1 - 1 - 1 - 3
1057 - 480 - 746 - 761 84
500 0 80 80 500 0 193
2 1 1 1 1 1 1 6
2404 404 1298 373 1541 404 1071 628
0 0 0 73 0 0 12
3 1 - 1 1 1 - 4
1399 - 929 423 1176 - 982 429
0 0 0 0 0 0 0
4 1 - 1 1 1 - 4
4555 - 3166 1677 4144 - 3386 1194
250 0 0 0 450 0 117
5 1 - 1 - - - 2
960 - 1570 - - - 1265 31
860 60 1000 600 600 0 520
6 2 2 1 2 2 - 5
3248 560 5235 604 560 - 2042 749
0 60 0 0 310 10 63
7 2 1 2 2 - - 4
2062 560 3839 817 - - 1820 480
0 160 0 500 0 0 110
8 1 1 - 1 1 - 4
480 635 - 480 513 - 527 19
280 600 0 80 90 0 175
9 1 1 - 1 1 1 5
1171 1618 - 1289 1124 426 1126 525
0 0 0 0 0 7 1
10 2 2 2 2 2 1 6
1054 1618 512 1054 1359 319 987 520
0 0 0 0 0 0 0
11 1 1 - 1 1 - 4
684 1172 - 1039 1505 - 1101 184
0 0 0 0 310 0 52
12 1 1 1 1 1 1 6
2928 4373 1484 3506 4217 1306 2970 1398
0 0 0 0 0 0 0
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Table C.6

Lot sizes when disruptive-philosophy is applied

Selected Route

Lot Size

Inventory Level

No of Setups

in period t = Average Lot Size No of
Part 1 2 3 4 5 6 Average Inventory  defective
1 1 - - 1 - - 2
1612 - - 999 - - 1306 412
900 400 0 800 500 O 433
2 1 - - 1 - - 2
3824 - - 2587 - - 3206 612
600 200 0 400 400 O 267
3 1 - -1 - - 2
2195 - - 1721 - - 1959 418
350 350 0 320 0 0 170
4 1 - -1 - - 2
7081 - - 5826 - - 6454 558
650 400 0 650 450 O 358
5 1 - -1 - - 2
1696 - - 1191 - - 1444 389
1400 600 O 600 600 O 533
6 1 - -1 - - 2
5591 - - 4418 - - 5005 560
700 200 0 550 300 0 292
7 1 - -1 - - 2
4295 - - 3071 - - 3684 567
10600 600 0 500 0 0 350
8 1 - -1 - 1 3
1306 - - 1357 - 30 898 594
900 600 0 750 250 0 417
9 1 - -1 - - 2
2824 - - 2927 - - 2876 653
200 ¢ 100 100 0 67
10 1 -1 - - 2
3175 - - 2762 - - 2969 538
700 500 0 200 0 0 233
1 3 - - 3 - - 2
2051 - - 2683 - - 2367 515
500 0 0 750 150 0 233
12 1 - - 1 - - 2
8510 - - 8734 - - 8622 825
400 400 0 600 600 O 333
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