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Abstract

A Fast Method in Simulations of Supercontinuum Generation in Photonic Crystal Fibers

Shuang Jin

Over the past few years photonic crystal fibers (PCFs) had shown potential for
optical supercontinuum (SC) generations that permitted significant progress in various
applications such as optical metrology, medical science or telecommunications.
Simulation of SC generation played a crucial role in demonstrating the physical
mechanisms behind the process of SC generation in PCFs although many experimental
studies have shown the novel phenomenon.

In this thesis, general nonlinear Schrédinger equation is solved in very detailed
numerical process by using Symmetrized Split-Step Fourier Method (S-SSFM), Higher-
Order Symmetrized Split-Step Fourier Method (HO-S-SSFM) and Predictor-Corrector
Symmetrized Split-Step Fourier Method (PC-S-SSFM). We simulated the SC generations
in the PCF by using HO-S-SSFM and PC-S-SSFM respectively. To our knowledge, this
is the first time the PC-S-SSFM is used in simulations of SC generation. Typical physical
parameters of a PCF are chosen in our simulations. Based on the same condition, the
simulation results of the HO-S-SSFM and the PC-S-SSFM are compared with the results
from a published paper, and the comparison proves that our simulations are correct and
accurate. Then, the time used by the HO-S-SSFM and the PC-S-SSFM in our simulations
are compared at different points of propagation along the PCF and at the end of the PCF
with different step sizes. The comparison results show that the PC-S-SSFM can save

almost one third time used by the HO-S-SSFM under the same accuracy.
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Chapter 1

Introduction

A supercontinuum (SC) is a broad spectrum extending beyond all visible colors
with the properties of a laser. In other words, a supercontinuum is coherent white light.
The first observation of a supercontinuum dates back to 1970, when Alfano and Shapiro
focused powerful picosecond pulses into a glass sample [1]. Supercontinuum generation
was achieved in a conventional single-mode optical fiber in 1987 [2], [3]. Several fiber
designs have been proposed to enhance the generated bandwidth. Supercontinuum
generation in a photonic crystal fiber (PCF) was demonstrated in 1999 by Ranka et al. [4].
With newly invented microstructure photonic crystal fibers, the spectral broadening is so
pronounced that the resulting frequency comb can span more than an optical octave.

A supercontinuum light source finds numerous novel applications in the field of
telecommunication [5], optical metrology [6] and medical science. The interest in
applying supercontinuum sources in dense wavelength-division multiplexing (DWDM)
transmission is increasing. By slicing the broad spectrum of the supercontinuum into
hundreds of channels, and utilizing an optical time domain multiplexing technique for
each channel, transmission bandwidths of terahertz can be achieved [7]. Also the use of a
supercontinuum in single-shot characterization of fiber-optic components has been
demonstrated {8]. The continuum consists of millions of peaks equally spaced by the

repetition rate of the laser [9]. Indeed, the usage of a supercontinuum generated in a



photonic crystal fiber in the creation of a stabilized frequency comb provides convenient
means to link optical frequency standards together. In addition, the relation between the
repetition rate of the pulses and the comb spacing has provided a link between optical and
microwave frequencies for the first time. This enables comparison of the performance of
Cesium atomic clocks with stabilized lasers.

The physics behind the process of supercontinuum generation in photonic crystal
fibers has been studied since the results of Ranka et al., and several attempts have been
made to explain the generated broad bandwidth [10], [11], [12]. The dominant nonlinear
effects responsible for the continuum generation are expected to be self-phase modulation
(SPM), self-steepening (SS), intrapulse Raman scattering and four-wave mixing (FWM).
To acquire a better understanding of the physical mechanisms of the process, and to study
the effects of the supercontinuum generation in a photonic crystal fiber, simulations of
supercontinuum generation in photonic crystal fibers become more and more significant
in this area.

The objective of this thesis is to numerically solve a generalized scalar
propagation equation, which is derived from General Nonlinear Schrédinger Equation
(GNLS) and to find a faster approach to present the simulated results which are satisfied
in studying the supercontinuum generation in photonic crystal fibers. In Chapter 2 of this
thesis, basic concepts of supercontinuum and Photonic crystal fibers are described with
some figures. In Chapter 3, a generalized scalar propagation equation that governs
propagation of optical pulses in PCF is presented. Solving the GNLS by using
Symmetrized Split-Step Fourier Method (S-SSFM), Higher Order Symmetrized Split-

Step Fourier Method (HO-S-SSFM) and Predictor-Corrector Symmetrized Split-Step



Fourier Method (PC-S-SSFM) are discussed in details. In Chapter 4, the simulations by
using the two different ways mentioned above are given and the results of the simulations
are compared with the results of a published paper. Also the Higher Order Split-Step
Fourier Method and the Predictor-Corrector Split-Step Method are compared by using
time efficiency. Finally, conclusion is found in Chapter 5 of this thesis that PC-S-SSFM
is an effective method of SC generation in photonic crystal fibers, and it is a new

technique to accelerate S-SSFM.



Chapter 2

Supercontinuum and Photonic Crystal Fibers

2.1 Supercontinuum

The interaction of intense pulses with a nonlinear medium can lead to
considerable broadening of the pulse spectrum. The resulting spectrum can exceed
several hundreds of nanometers, which is commonly referred to as supercontinuum (SC).
The properties of the SC depend critically on the input pulse parameters and on the
medium in which it is generated. When the SC covers the whole spectral visible region, it

appears as white light as shown in Figure 1[13].

Figure 1. Image of a supercontinuum generated in a photonic crystal fiber and recorded

with a digital camera.



The supercontinuum has shown potential for many practical applications and
permits significant progress in various domains such as telecommunications, optical

metrology and medical science.

2.2 Photonic Crystal Fibers

Photonic crystal fibers were first demonstrated in 1970 [14]. They became
commercially available in the late nineties by the development of new fiber
manufacturing technologies. Photonic crystal fibers exhibit a novel structure compared
with that of conventional optical fibers. Conventional optical fibers consist of a cladding
made of silica, and a doped silica core of which the refractive index is slightly higher
than that of the cladding. According to the principle of total internal reflection, difference
in the refractive index between the core and the cladding allows to guide light within the
core of the fiber. In a PCF, the cladding is formed by introducing a periodic pattern of
air-holes around a silica core. The air-holes lower the effective refractive index of the
cladding compared to the solid silica core, therefore light coupled into the fiber is guided
within the core due to reflection from the glass-air interface. Control of the air-holes of
photonic crystal fibers permits to tailor the dispersion profile and the efficiency of
nonlinear effects [15].

Photonic crystal fibers are fabricated by stacking small glass capillary tubes

around one solid glass tube which will form the core of the fiber as shown in Figure 2

[13].



Figure 2. Preform of a photonic crystal fiber.

The optical properties of photonic crystal fibers differ from those of conventional
fibers. The index difference between the core and the cladding and the effective core area
can easily be tailored to obtain properties for the intended application. Varying the air-
hole size, arrangement and symmetry allows for tailoring the group-delay and the
dispersion properties of the fiber. New technique used to fabricate photonic crystal fibers
permits to reduce the core diameter down to 1.0 um (see Figure 3 [13]), thus increasing
considerably the efficiency of nonlinear processes since such processes are approximately
inversely proportional to the area of the fiber core. This makes photonic crystal fibers
particularly suitable for supercontinuum generation where high nonlinearities are
required. These nonlinearities include self-phase modulation (SPM), self-steepening (SS),

stimulated Raman scattering (SRS) and four-wave mixing (FWM)[13].



Figure 3. Scanning electron micrograph (SEM) of a small core PCF.



Chapter 3
Higher-Order Symmetrized Split-Step Fourier

Method and Predictor-Corrector Symmetrized

Split-Step Fourier Method

3.1 Numerical Model

The supercontinuum generation was modelled by using a generalized scalar

propagation equation suitable for studying broad-band pulse evolution in optical fibers

[16],[17]

hd ] a 1] 1 2 1
+i 7(1 +—(;)L—6—;J(A(Z,T) [ R@)azT-1) dt) (1)

0

Here, A = A(z,T) is the electric field envelope, the f,’s are the usual dispersion
coefficients at center frequency wq , Y = ny wo/(c Ae) is the nonlinear coefficient with n,
the nonlinear refractive index , ¢ the speed of light in vacuum and A the fiber effective

area, and a is the fiber loss. The very right hand side of Equation (1) models self-phase



modulation, self-steepening the optical shock formation, and stimulated Raman scattering.

The response function R(f) can be written as [17], [18], [19].

R(t) = (= f)o0() + frh (1) - )

it includes both instantaneous electronic and delayed Raman contributions. For Ag(?) ,
experimental attempts have been made to determine an approximate analytic form of the

Raman response of function [17].

2 2
he(t) = % exp(—t/z,)sin(t/1,).
0T

The parameters 7; and 7; are two adjustable parameters and are chosen to provide a good
fit to the actual Raman-gain spectrum. Their appropriate values are 7, =12.2 fs and 7, = 32
fs [17]. By using the known numerical value of peak Raman gain f; is estimated to be
about 0.18 [17], [18], [19]. Equation (1) together with the response function R(¢) given by
Equation (2) governs evolution of the pulses in optical fibers. When R(?) is replaced by

Equation (2), optical propagation Equation (1) can be written as Equation (3).

0A(z,T) "o«
= ———+—|A4(z,T
Oz [,,,Z;ﬂ'” m! OT™ 2} =T)

i
o, 0T

+i}/[l+-~ 0 J(A(Z,T) [‘;[(1— f)o@) + thR(t')]|A(z,T—t')|2dt') 3)



Equation (3) is solved as Equation (4)

A T) " a
oz (Zﬂm m! i JA(Z’T)

), @

+ i}/[l + Z’)L%](A(Z,T)(l ~ [l AT + A2, T (T) *|A(2,T)

where h,(T) * |A(z,T )|2 is the convolution of 4,(7) and IA(Z,T )|2 .

By calculating /0T at the very right side part of Equation (4) and using 4 = A(z,T) to

simplify the notation, Equation (4) becomes Equation (5).

m=2

.m-1 m
A lyp 2y
oz m! oT" 2

i 2 | O 2 i 0 2
+1y{<l—fk>[A|A| +wiﬁ(AlA| >J+fR(1+;5;J(AhR<T>*IAI )} )

0
Numerical solutions to the Equation (5) are going to use the Split-Step Fourier Method.

3.2 Split-Step Fourier Method

The GNLS equation (5) is a nonlinear partial differential equation that does not

generally lend itself to analytic solutions except for some specific case. A numerical

10



approach is therefore often necessary for an understanding of the nonlinear effects in
optical fibers. Split-Step Fourier Method is an extensive way to solve the pulse-
propagation problem in nonlinear dispersive media.

To understand the philosophy behind the Split-Step Fourier Method, it is useful to

write Equation (5) formally in the form as Equation (6) [20].

04 A -
5, (PN, (6)

where D is a differential operator that accounts for dispersion and absorption in a linear

medium and N is a nonlinear operator that governs the effect of fiber nonlinearities on

pulse propagation. These operators are given by

[):_Zﬂ’"l ! aé;m _% (7)
N= i7{(1 - fR)(IAI2 + ;i—%%(/qAr)J}
' f’*[hR(T) T *ﬁ}g% () *|A(z,T)|2)} ®)

In general, dispersion and nonlinearity act together along the length of the fiber.

The Split-Step Fourier Method obtains an approximate solution by assuming that in

11



propagating the optical field over a small distance 4, the dispersive and nonlinear effects

can be pretended to act independently. More specifically, propagation from z to z + A is
carried out in two steps. In the first step, the nonlinearity acts alone, and D=0 in

Equation (7). In the second step, dispersion acts alone, and N =0in Equation (8).

Mathematically,

Az + h,T) ~ exp(hD)exp(hN) A(z,T) ©)

The exponential operator exp(hﬁ) can be evaluated in the Fourier domain using the

prescription [20]

exp(hD)A(z,T) ~ F; exp[hD(iw)]F, A(z,T), (10)

where F, denotes the Fourier-transform operation, 15(1' ) is obtain from Equation (7) by

replacing the differential operator 0/07T by iw, and wis the frequency in the Fourier
domain.
To estimate the accuracy of the Split-Step Fourier Method, we note that a

formally exact solution of Equation (6) is given by

A(z+h,T) = exp[h(D + N)A(z,T) (11

12



if N is assumed to be z independent. At this point, it is useful to recall the Baker-

Hausdorff formula [21] for two noncommuting operators a and b ,

exp(d) exp(b) = exp(& +h+ %[&,13] + %[& —b,[a,b]]+ - j (12)
where [Ez,l;] = &b —bé . A comparison of Equations (9) and (11) shows that the Split-Step

Fourier Method ignores the noncommutating nature of the operators D and N. By

using Equation (12) with g = hD and b=hN , the dominant error term is found to result
from the single commutator %hz[ﬁ, N ]. Thus, the Split-Step Fourier Method is accurate

to second order in the step size k& [20].

3.3 Symmetrized Split-Step Fourier Method

The accuracy of the Split-Step Fourier Method can be improved by adopting a
different procedure to propagate the optical pulse over one segment from z to z+A. In this

procedure Equation (9) is replaced by

A(z+hT)~ exp[gﬁjexp( _[H’J(’(Z')dz') exp(%[)jA(z,T) . (13)

The main difference is that the effect of nonlinearity is included in the middle of the

segment rather than at the segment boundary. Because of the symmetric form of the

13



exponential operators in Equation (13), this scheme is known as the Symmetrized Split-
Step Fourier Method (S-SSFM) [22]. The integral in the middle exponential is useful to
include the z dependence of the nonlinear operator N . If the step size h is small enough,
it can be approximated by exp(h](f ) , similar to Equation (9). The most important
advantage of using the symmetrized form of Equation (13) is that the leading error term
results from the double commutator in Equation (12) and is of third order in the step size
h.

The accuracy of the Split-Step Fourier Method can be improved by evaluating the
interal in Equation (13) more accurately than approximating it by hN (z). A simple

approach is to employ the trapezoidal rule and approximate the integral by [23]
+h A . h A A
[ NGz ZIN () + Nz + b)) (14)

However, the implementation of Equation (14) is not simple because N (z+h) is
unknown at the midsegment located at z + & / 2. It is necessary to follow an iterative

procedure that is initiated by replacing N (z+h) by N (z) . Equation (13) is then used to

estimate A(z+ A,T) which in turn is used to calculate the new value of ]\7(2+h).

Although the iteration procedure is time-consuming, it can still reduce the overall
computing time if the step size 4 can be increased because of the improved accuracy of
the numerical algorithm. Two iterations are generally enough in practice.

The implementation of the Symmetrized Split-Step Fourier Method is relatively

straightforward. As shown in Figure 4, the fiber length is divided into a large number of

14



segments that need not be spaced equally. The optical pulse is propagated from segment
to segment using the prescription of Equation (13). More specifically, the optical field
A(z,T) is first propagated for a distance 2 / 2 with dispersion only using the FFT
algorithm and Equation (10). At the midplane z + 4 / 2, the field is multiplied by a
nonlinear term that represents the effect of nonlinearity over the whole segment length 4.
Finally, the field is propagated the remaining distance 4 / 2 with dispersion only to obtain
A(z+h,T) . In effect, the nonlinearity is assumed to be lumped at the midplane of each

segment( dashed lines in Figure 4).

Dispersion only Nonlinearity only
/i

[

[
L
|
|
h —>

z=0 «—

Figure 4. Schematic illustration of the Symmetrized Split-Step Fourier Method used for
numerical simulations. Fiber length is divided into large number of segments of width h.
With in a segment, the effect of nonlinearity is included at the midplane shown by a

dashed line.

To be clear, we list the specific procedures in details.
The Symmetrized Split-Step Fourier Method:

The first step:

15



AO+h,T) = exp(-g-f)) exp[g- N(0)+ —;-N(o + h)]exp(gz‘))A(o, T), (15)

where A(0,7T) is the initial field.
From Equation (8), N (0) of Equation (15) is easy to acquire, but it’s N (0 + h) is not
known right now, because A(0+ A,7) is needed to calculate N O+hn).

So, an approximation of N (0+ &) is obtained by using the following way.

First of all,
[ " N (22"~ S[N(z =0)+ N(z =0)] (16)

Secondly, substitute Equation (16) into Equation (13),

then we have
— h ~ h o~ h ~ h -
AO+hrT)= exp(ED) exp[EN(O) + EN(O)]exp(ED)A(O, 7). an

Now, A(0+h,T) is ready for estimating N 0+h).

From Equation (8),

i 1 0

(A0 +h,T|AO+h, T)IZ)J}

16



1 0

+ fR[h (T)*[A(0+h, T)| maT

(A(0+h TYh(T) *|A(0+ A, T)| )}

(18)

Finally, A(0+ h,T) can be acquired.
h A h - h - h
A(0+h,T) = exp(—z—D) exp[EN(O) + EN(O + h)]exp(ED)A(O, T) (19)

The second step:

To acquire A(h+h,T), we need to calculate N (h) and N (h+h).
From the First step, we have already known N (h), so only N (h+ k) should be estimated.

Before estimating N (h+h), A(h+h,T) is acquired by using Equation (20) as following
— h A h h « h A
Ah+hT)= exp(ED) exp[EN(h) + EN(h)]exp(ED)A(h,T) . (20)

In Equation (20), A(h,T) and N (h) are from the First step.

By using Equation (20) in Equation (8), N (h+ h) can be written as

1

N(h+h)—t7{(1—fk (‘A(“h T)I maT

(A(h+h,T)|d(h+h T)] )]}

1

+f,{h (T)*|4(h +h, T)} +——————-A(h+h T

(A(h+h TYhy(T) *|A(h + h, T)\ )J (21)
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Therefore, A(h+ h,T) is finally given by
h A h o~ h - h A
Ah+h,T)= exp(ED) exp[EN(h) + EN(h + h)]exp(—z—D)A(h,T) . (22)

To obtain the final numerical result, the Second step is repeated the times of amount of

segments minus 2.

3.4 Higher Order Symmtrized Split-Step Method

To improve the accuracy of standard Symmetrized Split-Step Method, Higher
Order Symmetrized Split-Step Method is chosen in our numerical scheme. In the higher
order scheme, the leading error term is cancelled out by a form of extrapolation. The
method is simple: we take four forward steps of length h, followed by one backward step
of length 2h, then four more forward steps of length h. Then the leading order term in the
accumulated error is proportional to 44> + (-2h)° + 4k°, it cancels out at this order,
leaving the leading term in the error per step proportional to 4. This scheme is therefore
globally fourth-order accurate [17].

But, note that we have taken, in effect, nine steps to propagate forward a total

distance of 64. So, this error extrapolation technique will introduce an overhead.
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3.5 Prodictor-Corrector Symmetrized Split-Step Method

Predictor-Corrector Method is a multistep method, because it requires many
previous results in the calculation of the next point. By using the combinations of Adams-
Bashforth predictor and Adams-Moulton corrector, the accuracy of numerical result of
Nonlinear Schrodinger Equation (NLS) can be improved [24]. Fornberg and Driscoll

proposed a fast spectral algorithm based on the explicit Adams-Bashforth for the

nonlinear part N- operator and implicit Adams-Moulton for linear part D- operator of
Nonlinear Schrédinger Equation [25].
Employing the Predictor-Corrector Method, Equation (5) can be solved as

Predictor

~

_— hD - - . hD
A(Zj+1:T) = exp[TJexp[h(Pij + f)j—le—l +-t f)j—n+1Nj—n+1)]exp(7]A(zjaT) s (23)

where coefficients P, P, |, -+, and P,_,,, shown in Table 1 [26] are dependent on the

order number n of Predictor-Corrector Method. In Equation (23), N ;= N (z;).

Table 1. Coefficients P for the different order number n of PC-S-SSFM

Order number n P; Py P2 Pis Py

2 32 -1/2

3 23/12 -16/12 5/12

4 5524 -59/24 37/24 -9/24

5 1901/720 | -2774/720 | 2616/720 | -1274/720 | 251/720
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The estimated A(z,,;,T) in turn is used to calculate the new value of N ;11 by using

Equation (8) as

]_(f_, _17/{(1 fR [IA(ZJ”’T)I —E—‘L—-——T)%(A(Zjﬂ)T)iA(ZjH)T)IZ)]}
1 0

— a4z,
0, Az, T) GT( (2

v E i )} 24)

+ f{h ()[4, D] +—
Finally Equation (5) is solved as
Alz;,,,T) = exp( 5 ]exp[h(CmNj+1 +C,; N o+ C, N, M)]exp( JA(Z ,TY, (25)

where coefficients C,,,,C,,--- and C,_,, shown in Table 2 [26] are dependent on the

Jj+l2 Jn+

order number n of Predictor-Corrector Method.

Table 2. Coefficients C for the different order number n of PC-S-SSFM

Order number n Gt G G Gz Cis G

2 1/4 2/4 1/4

3 524 13/24 724 -1/24

4 9/48 28/48 14/48 -4/48 1/48

5 251/1440 | 897/1440 | 382/1440 | -158/1440 | 87/1440 -19/1440
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In Equations (24) and (25), N, = N(z,) and N1 = N(z, + h).

Also, to be clear, we chose the 4" order Predictor-Corrector S-SSFM as an
example and list the specific procedures in details.
The first step:

First of all, the fiber is initiated by A(z,,T) = A(z,,T) whenj = 0.

A

A(z,T) = exp(%} exp{h(j—i]\?o)} exp(hTD)A(zo,T) (26)

In Equation (26), NO can be obtained by using Equation (8)

i1
o, A(z,,T) 0T

N, = iy{(l - fR)(|A<zo,T)I2 + (A(zo,T)IA(zo,DIz)j}

i 1 o )
o, A(z,,T) E(A(ZO’T Ve (T) * |A(z5,T) )} @7)

+fk{hR(T) *IA(ZmT)IZ +

Second, by substituting Equation (26) into Equation (24), we have

= —— i 1 9 ' 2
N, =z7{(l—fR)[]A(zl,T)l * o T ar A TG )j}
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A D]+t -Q{Aafwgm*h@ﬂwﬁ} @8)

i R[hR(T)* o, A(z,T) 6T

Finally, the corrector A(z,,T) is acquired.

A

A(z,,T) = exp(hTDj exp[h(%]T\/l)} exp(%jA(zo,T ) (29)

The second step:

By using the result of the first step Equation (29), N , can be estimated as

i1 —a—(A(zl,T)|A(ZI,T)|2))}

N, =iy{(l—fk)(lA(ZvT f+g A(z,,T) 8T

i1 9
w, A(z,,T) 6T

+ﬁpﬂnﬂmaff+ @@J%Aﬂﬂﬂaifﬂ (30)

So, the next predictor is

hD 55+ =59 « hD
A(z,,T)= exp[—i—}:xp{h(zN, + 7]\70)}37(?(7}4(21]) 3D

Using the predictor Equation (31), ]T\/2 can be found as
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41 i(A(zz,T)iA(ZZ,T)iZ)]}

Nz :iy{(l_fR)UA(zz’T)l ¥ @, A(Z2’T) or

i_1 90
w, A(z,,T) 8T

+ fR[hR (@) *[AG, T + (A Tohe (1) [ ] )] ()

So, the corrector is obtained as

hD 9 = 28 hD
A(z,,T) = exp[—z--}:xp[h(&N2 +&Nl)} exp(TJA(zl,T) (33)

To be simple, we just give the corresponding Predictors and Correctors of the next three
steps.
The third step:

The predictor:

hD 55 ~ —59 A 37 A hD
A(z,,T) = exp| 2— N, + 2N +22N, Az, T) (34
(z3 ) eXP[ ) Jexp[ (24 2 24 1T oy o)}exp[ ) J (z,,T) (34)

The corrector:

hD 9% 287 14= hD
A(z,,T) = exp| — WE-N, + 22N, +—N 4,1y (35
(z, ) exp( 5 JeXp[ (48 3782 T g 1)i|exp[ ) J (z,,T) (35)
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The fourth step:

The predictor:

hD 55, =59, 37 -9 hD
A(z,,T) = —_— h(—N,+—N, +—N, +—N, — |A4(z,,T) (36
(z,,T) eXp[zJeXP[ (24 Ty e T Ty o):Iexp(zJ (z5,T)(36)
The corrector:
hD 9% 28% 147 -4= kD
A(z,,T) = — h(—N,+—N,+—N, +—N, — |A(z,,T) (37
(z4,T) exp[ 5 jexp{ (48 st gt gt 2 1)]6Xp[ > J (z;,T) (37)
The fifth step:
The predictor:
hD 55~ —59. 37, -9, hD
Az, T) = — h(—N,+——N,+—N,+—N — 1A(z,,T) (38
(z5,T) eXP[zlexP[ (24 STy T o T 5y 2)]6741{2] (z4,T)(38)
The corrector:
hD 9= 28% 147 -47% 1= hD
Az, T) = exp(—{]exp[h(%N5 +EN4 +4—8N3 + 4—8N2 +—‘§Nl)}exp(7JA(z4,T)

(39)
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The above five main steps clearly show the Predictor-Corrector-Symmetrized-Split-Step

Fourier Method, and just following the same rules, the final result can be easily found.
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Chapter 4

Simulations and Comparisons

4.1 The Platform of Simulations

We choose Matlab Development Environment shown in Figure 5 as our platform
of simulations because MATLAB is an interactive system whose basic data element is an
array that does not require dimensioning. This allows us to solve many technical
computing problems, especially those with matrix and vector formulations. Also, Matlab
is a high-performance language for technical computing. It integrates computation,
visualizaﬁén, and programming in an easy-to-use environment where problems and

solutions are expressed in familiar mathematical notation.

toolbox_path_tache” tor more inf
* from the Help menu.
4 Figures ‘older
i 100, 21y FIG-file
chnvl.- M-file
W Convolution.n N-file

>

£_0x3e+8/ (Lanbda_0
1 tsel.5:51 fomsosecs
fn=l/(2*ts*le-15

shift=500:
TO=30;% femte

Lt SR

Figure 5. The desktop of Matlab Development Environment.
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4.2 The Background of Simulations

Photonic Crystal Fibers show great potential for various applications in the field
of optical frequency metrology, sensor technology, and optical telecommunications [7],
[9], [27], [28]. These fibers consist of a solid silica core surrounded by an array of air
holes running along the fiber. The special structure provides a wavelength-dependent
effective index for the cladding and can allow single-mode guidance throughout the
visible and near infrared [29]. By varying the arrangement and size of the holes, the
dispersion properties of the fiber can be tailored in broad ranges and, for instance, the
effective area of the propagating mode can be adjusted to enhance the optical
nonlinearities in the fiber. The combination of the unique dispersion properties and
enhanced nonlinearities can be used for advantage to obtain efficient generation of
supercontinuum when the fiber is pumped with short pulses of laser light with
wavelength located in the vicinity of the zero-dispersion wavelength.

To simulate the generation of supercontinuum through photonic crystal fibers, a
schematic setup is depicted in Figure 6. The output pulse train of a mode-locked

Ti:Sapphire laser (Tsunami/Spectra Physics) is coupled into a PCF.

PCF

Pulse train of laser O
OSA

B,
.

Figure 6. The schematic setup of generation of supercontinuum through PCF.
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The laser produces 100 femtoseconds pulses (FWHM) at a repetition rate of 80 MHz and
with the peak power of 10 kW. The optical spectrum is recorded at the fiber output by
using an optical spectrum analyzer (OSA).

Because the purpose of our simulations is to find a faster method in the
simulations of generation of supercontinuum, what we need is only to use some
parameters of the photonic crystal fibers that are already found to have the property to
generate the supercontinuum. The corresponding parameters borrowed from reference

[30] are as following:

B,=-1276x107ps* - m™, B, =8.119x107 ps* - m™, B, =-1.321x107 ps* -m™",
B =3.032x107" ps’ -m™ |, B, =-4.196x107" ps®-m™, B, =2.570x107" ps® -m™,
7 =0.04521/W -m, w, =850nm.

We choose a =0, because the length of the PCF is only 10 cm.

Initial field is expressed as
T .
A(0,T) =[P, seC[Fj, Ty ~1.763 T,, Po=10 kW, P, is the peak power,
0

TFWHM =100 fs.

4.3 The Simulation by Using the Higher Order Symmetrized Split-

Step Method

In the simulation of Higher Order Symmetrized Split-Step Method, the optical
field expressed by using peak power 10 kW hyperbolic-secant pulse with Trpmp = 100 fs

is pumped into the PCF of 10 cm length. The practical parameters of the PCF are given in
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Chapter 4. Section 4.2. To make sure the generation of supercontinuum can be obtained,
2! points are necessary in the windows of time and spectrum. Forward step of length 4 is
10 pm, and backward step length is 20 pm. In higher order scheme, nine steps propagate
forward a total distance of six steps, so total 15000 steps are needed to propagate 10 cm
distance of the photonic crystal fiber. The Matlab program of the Higher Order
Symmetrized Split-Step Fourier Method is given in Appendix L. In Figure 7, the optical
fields in time domain and frequency domain before and after the propagation through the
photonic crystal fiber are plotted. As shown in Figure 7, (a) the one on the left top is the
optical pulse before the propagation, and (c) the right top one is the spectrum of the initial
optical pulse; (b) on the bottom of left, the picture shows the shaped pulse at the end of

the PCF, and (d) the one on the right bottom is the broadened spectrum.

@ ©

Normalized Intensity(a.u.)

Norrnalized [ntensity(50dB/div)

0 1000 2000 3000 500 1000 1500
Time (femtosecond) Wavelength (nrm)
3 s
; M
= ® g @
s z
@ @
= 5
3 €
N =
2 £
0 1000 2000 3000 2 500 1000 1500
Time {femtosecond) Wavelength (hm)

Figure 7. The optical fields in time domain and frequency domain before and after the
propagation through the PCF in the simulation of HO-S-SSFM. (a) The input pulse in
time domain; (b) The output pulse in time domain; (c) The spectrum of the input pulse; (d)

The spectrum of the output pulse.

29



To be clear, we show the spectrums of the pulse before and after broadening in
Figure 8 and Figure 9. It is obvious to see that the spectrum of the pulse is drastically

broadened.

201

40 +

B0 F

Normalized Intensity { 20 dB/div )

-100F

1 L 1 1

-120 1 1 1 1 1 1
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Wavelengeh (hm)

Figure 8. The spectrum of the initial pulse in the simulation of HO-S-SSFM.
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Figure 9. The spectrum of the pulse after propagation through 10cm PCF in the

simulation of HO-S-SSFM.
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4.4 The Simulation by Using the Predictor-Corrector Symmetrized

Split-Step Method

In the simulation of Predictor-Corrector Symmetrized Split-Step Method, the fifth
order PC-S-SSFM is employed. The optical field expressed by using peak power 10 kW
hyperbolic-secant pulse with Tz = 100 fs is pumped into the PCF of 10 cm length.
The practical parameters of the PCF are the same with those given in Chapter 4. Section
4.2. To make sure the generation of supercontinuum can be obtained, 2'' points are also
necessary in the windows of time and spectrum. Forward step of length 4 is 10 pm. In the
Predictor-Corrector Symmetrized Split-Step Fourier Method, one step propagates
forward a distance of one step, so total 10000 steps are needed to propagate 10 cm
distance of the PCF. The Matlab program of the Predictor-Corrector Symmetrized Split-
Step Fourier Method can be found in Appendix II. In Figure 10, the optical fields in the
time domain and the frequency domain before and after the propagation through the PCF
are plotted. As shown in Figure 10, the one on the left top (a) is the optical pulse without
any propagation, and the right top one (c) is the spectrum of the initial optical field; on
the bottom of the left (b), the picture shows the shaped pulse at the end of the PCF of
10cm length, and the one on the right bottom (d) is the broadened spectrum.

Also, we especially give the Figure 11 and Figure 12 to show how the two
spectrums look like and how much the spectrum of the initial pulse becomes wider after
it goes out through the PCF of 10cm length.

By comparing Figure 11 and Figure 12, the concept of the spectral

supercontinuum generation will be easy to find in our simulations.
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Figure 10. The optical fields in time domain and frequency domain before and after the
propagation through the PCF in the simulation of PC-S-SSFM. (a) The input pulse in
time domain; (b) The output pulse in time domain; (c) The spectrum of the input pulse; (d)

The spectrum of the output pulse.
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Figure 11. The spectrum of initial pulse in the simulation of PC-S-SSFM.
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Figure 12. The spectrum of the pulse after propagation through 10cm PCF in the

simulation of PC-S-SSFM.

4.5 The Simulations of the Evolution of Supercontinuum
Generation

In the area of fiber source, to understand the underlying mechanisms leading to
the supercontinuum generation, the evolution of SC generation plays a very important
role. So, in our simulations we give the detailed information of how the optical field
develops in the time domain and the frequency domain.

Peak power 10 kW hyperbolic-secant pulse with Trwyps = 100 fs is pumped into
the PCF of 10 cm length. Step size is 10 um. The practical parameters of the PCF are the

same with those given in Chapter 4. Section 4.2.
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4.5.1 The Simulations of the Evolution of SC by Using HO-S-

SSFM

Actually a dynamic process of development of SC can be acquired in our
simulations, but in this thesis our intention is focused on efficiency of simulation method.
So we do not have to show the whole process of the evolution of SC, and some
observation points are chosen to demonstrate the evolution of SC. Typical observing
points are selected at the points of Ocm, 1cm, 2cm, 3cm, 4cm, Scm, 6¢cm, 7cm, 8cm, 9cm
and 10cm length. The corresponding program is given in Appendix III. In Figure 13 and
Figure 14, the simulations of evolution are given in the frequency domain and in the time
domain. In each figure, the curve is organized in the sequence of advanced direction, and

the advanced direction is from the bottom to the top.

500 BUD 700 900 1DDU 1100 12UIJ 1300 MUU 1500
Wavelength (nm)

Spectra (100dB/div)

Figure 13. The evolution of spectrum is shown at the points of Ocm to 10cm with lum

step size by using HO-S-SSFM.
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Figure 14. The evolution of the pulse in the time domain is shown at the points of Ocm to

10cm with 1 um step size by using HO-S-SSFM.

4.5.2 The Simulations of the Evolution of SC by Using PC-S-

SSFM

Typical observing points are selected at the points of Ocm, 1cm, 2cm, 3cm, 4cm,
5cm, 6cm, 7cm, 8cm, 9cm and 10cm length. The corresponding program is given in
Appendix IV. In Figure 15 and Figure 16, the simulations of evolution are given in the
frequency domain and in the time domain. In each figure, the curve is organized in the

sequence of advanced direction, and the advanced direction is from the bottom to the top.

35



Spectra (100dB/div)
33
;

1 1 1 1 1 1 1 1
500 600 700 GO0 SO0 1000 1100 1200 1300 1400 1500
Wavelength (nm)

Figure 15. The evolution of spectrum is shown at the points of Ocm to 10cm with Ium

step size by using PC-S-SSFM.
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Figure 16. The evolution of the pulse in the time domain is shown at the points of Ocm to

10cm with 1um step size by using PC-S-SSFM.
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4.6 The Comparisons of the Simulations

In the past few years, supercontinuum generation in photonic crystal fibers has
become a subject of intense worldwide study. But in most publications, supercontinuum
generations are focused on experimental study. Although the simulations of SC
generation are mentioned in some of publications, they never mentioned the very basic
parameters and even which methods they used. We read a lot of references, and finally
we found an important publication that could help us to verify the accuracy of our
simulations.

The reference [30] is a very typical publication in simulations of supercontinuum
generation. Very detailed parameters and method used in simulations of SC can be found
in that paper. So we borrowed the physical parameters and the result of their simulations

to testify what we did.

4.6.1 The Results of Simulations in the Reference [30]

In the reference [30], the effect of dispersion is described by using terms up to 3, .
Particular values at w, =850nm are B, =-1.276x107 ps* -m™",
B, =8.119x10"ps’ -m™, B, =-1.321x107 ps* -m™", B, =3.032x10" ps’ - m™",
B, =—4.196x10" ps® -m™', B, =2.570x10" ps® -m™, y =0.04521/W -m .
They choose a =0, because the length of the PCF is only 10 cm.

Initial field is expressed as

A(0,T) =[P, sec(-;—] s Ty ~1.763 T, Py =10 kW, P is the peak power,
0
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Trwry = 50 fs.

The numerical method to solve the propagation Equation (1) is the so called
Enhanced Split-Step Fourier Method [30], which is the similar with the Higher Order
Symmetrized Split-Step Method we use. Spectral evolution at the points of Ocm, 0.5cm,

lcm, 2cm, 4cm, 6¢m, 8cm and 10cm along the PCF is shown in Figure 17 [30].

-
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s00C 800 1000 1200 1400
Wawvelangth (rvwmn)

Figure 17. Evolution of 50 fs input pulse along 10cm of PCF[30].

4.6.2 The Results of Simulations of the HO-S-SSFM

To compare the results of simulations of HO-S-SSFM with the published results,
we choose the exact parameters used in the reference [30] and the simulation results are

shown in Figure 18.
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Figure 18. Evolution of 50 fs input pulse along 10cm of PCF by using HO-S-SSFM.

As we have seen in Figures 17 and 18, very good agreements between the two
results of simulations can be found.

First of all, drastic spectral broadening is observed in both Figures 17 and 18.
Each output spectra of simulations extends over an octave 550-1100 nm.

Second, both input pulses experience significantly more spectral broadening in
the first few centimeters of propagation. For example, drastic broadenings both occur
after 2cm propagation.

Third, it is easy to find that both initial stages of propagation are associated with

approximately symmetrical spectral broadenings centered at @, =850nm and the

symmetries are broken after 2cm propagation.
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Finally, the spectral intensities both exhibit a somewhat complex structure with
particularly distinct peaks on along the spectrums although the output spectra are

essentially continuous over this range.

By the comparison, we think that our simulations of the HO-S-SSFM are correct

and accurate.

4.6.3 The Results of Simulations of the PC-S-SSFM

Also, to compare the results of simulations of PC-S-SSFM with the published

results, we choose the exact parameters used in the reference [30] and the simulation

results are shown in Figure 19.

Spectra (20dB/div)
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Figure 19. Evolution of 50 fs input pulse along 10cm of PCF by using PC-S-SSFM.

As we have seen in Figures 17 and 19, very good agreements between the two

results of simulations can be found.
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First of all, drastic spectral broadening is observed in both Figures 17 and 19.
Each output spectra of simulations extends over an octave 550-1100 nm.

Second, both input pulses experience significantly more spectral broadening in
the first few centimeters of propagation. For example, drastic broadenings both occur
after 2cm propagation.

Third, it is easy to find that both initial stages of propagation are associated with

approximately symmetrical spectral broadenings centered at @, =850nm and the

symmetries are broken after 2cm propagation.

Finally, the spectral intensities both exhibit a somewhat complex structure with
particularly distinct peaks on along the spectrums although the output spectra are
essentially continuous over this range.

By the comparison, we show that the simulations of PC-S-SSFM are correct and

accurate.

4.7 The Comparisons of the HO-S-SSFM and the PC-S-SSFM

In Sections 4.6.2 and 4.6.3, by the comparisons with the published result, we
qualitatively prove that HO-S-SSFM and PC-S-SSFM are both very effective methods in
simulations of supercontinuum generation of PCF.

But we must point out that the time used in the two simulation methods is very
different although the two simulation results show the same level of accuracy. In this
section, we are going to compare the time which the two methods use in the same

condition.
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4.7.1 The Accuracy Comparison of the HO-S-SSFM and the PC-S-

SSFM

Relative errors are used in the accuracy comparison of the HO-S-SSFM and the

PC-S-SSFM. The relative error d is defined by

_ -1l

o
|4

(40)

where the norm ||A|| is defined as ||A|| = 1/ 'ﬂA(T )Isz , and 4 and Ay are the numerical and

the exact values at the end of the PCF, respectively. Because Equation (5) does not have
the exact solution in our simulations, Ay should be numerically acquired when the step

size h is enough small. In our comparison, 4y is obtained when the step size h is 1 um,

and ||A0|| is the average of ||A0|| from the HO-S-SSFM and "AO” from the PC-S-SSFM.

The PCF’s parameters are the same with the previous sections. In Figure 20, the relative
errors with different step sizes by using the HO-S-SSFM and the PC-S-SSFM are given.
As we have seen in Figure 20, the relative errors of the PC-S-SSFM become smaller than
those of the HO-S-SSFM when the step size is 20 um. And also with the reducing of step
size h, the relative errors of the PC-S-SSFM decrease rapidly until the step size reaches
12.5 pm and keep almost the same value when step size is 10 um. On the other hand, the
relative errors of the HO-S-SSFM change very little, but after the step size is less 22.5

um, they are smaller than the ones of the PC-S-SSFM.
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Figure 20. The relative errors with different step sizes by using the HO-S-SSFM and the

PC-S5-SSFM.

4.7.2 Time Used to Reach Different Points Along the PCF

In the simulations of supercontinuum generation, the evolution of a spectrum is
very useful to understand the underlying mechanisms leading to the SC generation.
Normally it is unnecessary to acquire the whole process of an evolution, therefore only
some typical points are needed to demonstrate the evolution.

As we did before, we use hyperbolic scant input pulses with a peak power of 10
kW and a wavelength of 850 nm. The input pulse parameters are typical of those used in
Chapter 4. Section 4.6. The PCF is 10 cm length, and observing points at Ocm, 1cm, 2cm,
3cm, 4cm, Scm, 6cm, 7cm, 8cm, 9cm and 10cm length of the PCF are chosen. The step
length is 10 pm. In Figure 21, the time used by HO-S-SSFM and PC-S-SSFM at different

points is plotted.
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Figure 21. Evolution time used in simulations of HO-S-SSFM & PC-S-SSFM at different

points.

Figure 21 illustrates the times used in simulations of HO-S-SSFM and PC-S-
SSFM. In the two simulations, evolutions of SC generation are based on the same
condition. We separately use HO-S-SSFM and PC-S-SSFM to simulate the evolution of
SC generation.

Time is recorded at different points of Ocm, 1cm, 2cm, 3cm, 4cm, Scm, 6cm, 7cm,
8cm, 9cm and 10cm length of the PCF. As we see in the Figure 21, the time used by the
two methods at each same point is different, and at each point the time used by HO-S-
SSFM is more than the time used by PC-S-SSFM. And a very clear trend can be seen that
the further the pulse propagates along the PCF the more the time is needed by the two

methods, but the time of HO-S-SSFM increases faster than the time of PC-S-SSFM. At
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the end of the PCF, the HO-S-SSFM costs one thirds more the time needed by the PC-S-

SSFM.

4.7.3 Time Used to Reach the End of the PCF with Different Step

Sizes

In the simulations of SC generation, the step size is also very important. The
amount of step size directly decides how long a simulation will run. So in this section, we
are going to compare the PC-S-SSFM with the HO-S-SSFM to see which one is more
time-efficient. The two simulations are based on the same condition. A hyperbolic scant
pulse with a peak power of 10 kW and the center wavelength of 850 nm is used as the
input optical field. The full width of half maximum of the input pulse is 50 fs. The PCF
of 10cm length is chosen as the typical one used in our simulations before. By employing
the two simulation methods, we select the step size as 10 pm, 12.5 pm, 15um, 15.5 pm,
20 pm, 25 pm, 30 pm, 40 pm, 50pm and 60 um. In each simulation, the running time is
recorded with different step size when the input pulse reaches the end of the PCF. Figure

22 shows all the time used with different step size.
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Figure 22. Time used in simulations of HO-S-SSFM & PC-S-SSFM with different steps.

Figure 22 exhibits that the time used in the simulations of the HO-S-SSFM and
the PC-S-SSFM with different step size. The horizontal axis gives the step size from 10
um to 60 pm, and the vertical axis illustrates the time with maximum 25 minutes. When
the step size is bigger than 50 pm, the two curves are a little flat. That means times of
simulations change very little, but the HO-S-SSFM still costs more time than the PC-S-
SSFM. With the step size getting small, for example less 30 pm, both simulation time
drastically increase. But the HO-S-SSFM shows more increasing rate than the PC-S-
SSFM. With 10 um step size, the PC-S-SSFM only needs a little bit more than 15
minutes, but the HO-S-SSFM almost reaches 25 minutes. And the trend of the two curves
tells that the difference between the time of HO-S-SSFM and PC-S-SSFM will goes far

away as the step size becomes smaller.
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Chapter 5

Conclusion

In this thesis, we simulated the supercontinuum generation of photonic crystal
fiber by using the Higher-Order Symmetrized Split-Step Fourier Method and the
Predictor-Corrector Symmetrized Split-Step Fourier Method respectively. Typical
physical parameters of a photonic crystal fiber are adopted in our simulations. Based on
the same condition, simulation results of the Higher-Order Symmetrized Split-Step
Fourier Method, the Predictor-Corrector Symmetrized Split-Step Fourier Method and the
published paper are compared, and our simulations are proved to be correct and accurate.
To our knowledge, the Predictor-Corrector Symmetrized Split-Step Fourier Method is the
first time used in the simulations of supercontinuum generation, and the results of this
simulation method are very satisfied. Meanwhile, we compare the time used by the
Higher Order Symmetrized Split-Step Fourier Method and the Predictor-Corrector
Symmetrized Split-Step Method in two different ways, and the result shows that the
Predictor-Corrector Symmetrized Split-Step Method can save almost one third of time
used by the Higher Order Symmetrized Split-Step Fourier Method. So we conclude that
the Predictor Corrector Symmetrized Split-Step Fourier Method is a new technique to

accelerate Symmetrized Split-Step Fourier Method.
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Appendix I

cle;%clear command window

clear;

close;

Steps =15000;

P_0=10000;%unit W = J/S= J/fs*1e+15

ti = clock;

Lambda 0 = 850;%unit is nm(central frequency-carrier frequency)
f 0=3et+8/(Lambda_0*1e-9);%central frequency(Hz)

ts=1;%1 femtosecond,sampling period.
h=1/(2*ts*1e-15);%Nyquist frequency(Hz)

t = 0:t5:2999;%unit is femtosecond

shift=500;%unit is femtosecond

T0=56.7;%femtosecond, TO width of the pulse
A=sqrt(P_0/1e+15)*sech((t-shift)/T0);%Input pulse A(0,t)-(Hyperbolic pulse)
subplot(2,2,1);

plot(t,((abs(A))."2)/(P_0/1e+15));%amplitudes of the pulse in time domain
title('Input pulse in time domain');

xlabel('Time (femtosecond));

grid on;

Y=ffishift(fft(A));

N=length(Y);

P_input=Y .*conj(Y);%spectral amplitudes of the pulse

Max_input pulse = max(P_input);

P _input=P_input/Max_input pulse;%Normalized Spectral Intensity
f=linspace(-fn,fn,N+1);

=f(1:N);

f=f+f 0;

shift_points = 800;

subplot(2,2,2);

shift_points:(N/2)+shift_points),:*b");%spectrum of the pulse
semilogy(3e+17./f((N/2)+shift_points:-1:(N/2)-shift points),P_input((N/2)-
shift_points:(N/2)+shift_points),’b');%spectrum of the pulse
title("The spectrum of the input pulse');

xlabel("Wavelength (nm)');

Omega 0 = 2*pi*((3e+8/1e+15)/850e-9);%unit is rad/femtosecond
Alpha = 0%(10e-3)/4.343 ;%unit is 1/m

gamma = 0.0452e+15;%1/(W*m)--------------- 1W = 1J/s =le-15J/1s; fs is femtosecond
Beta 2 =-1.276e+4;%15"2/m

Beta 3 = 8.119e+4;%fs"3/m

Beta 4 =-1.321e+5;%fs"4/m

Beta 5 =3.032e+5;%fs"5/m

Beta 6 = -4.196e+5;%1s"6/m

Beta 7 =2.570e+5;%f{s"7/m
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96******************************************************************
=0.18;
tt1=12.2;%femtosecond
tt2=32;%femtosecond
hr t=((tt172+tt272)/(tt1 *tt2°2))*((exp(-(t/tt2))). *sin(t/tt1));
hr_f= fft(hr _t);
96******************************************************************
part A srs 0=0;
part A steepening 0= 0;
part A srs h=0;
part_A_steepening h =0;
96******************************************************************
h 0 =0.002¢-2;%the lengeh of one step in split step Fourier Method,unit is meter
step_counter = 0;
forI=1: Steps;
if step_counter == 4;
h=-2*h 0;
step_counter = -1;
else
h=h 0;
end
Y = fft(A);
N = length(Y);
Omega = linspace(0,fn,(N/2)+1);
Omega 1 = 2*pi*(1e-15)*Omega(1:N/2);%unit is rad/femtosecond
Omega 2 = -2*pi*(1le-15)*linspace(fn,Omega(2),N/2);%unit is rad/femtosecond
Omega(1:N/2) = Omega 1;
Omega(((N/2)+1):N) = Omega 2;
D f=-j*(Beta 2/2)*(j*Omega).”2 + (Beta_3/6)*(j*Omega)."3 +
j*(Beta_4/24)*(7*Omega).”4 - (Beta_5/120)*(3*Omega)."5 -
j*(Beta_6/720)*(j*Omega)."6 + (Beta_7/5040)*(j*Omega).*7 - Alpha/2 ;%frequency
domain
Y = exp(0.5*h*D _f).*Y;
%P=Y(1:N/2).*conj(Y(1:N/2));%spectral amplitudes of the pulse;
A D1 _t=iffi(Y);

96******************************************************************

A v=A;
fork=1:N
if A(k) ==0;
A v(k)=1e-100;
else
A v(k) = A(k);
end
end
A srs_1 =ifftthr_f*fft((abs(A)).*2));
Z=A*A srs 1;
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dt =ts;

M=N;

sign = part A srs _0;

[A srs 2,part A srs_0] = Derivation(Z,dt,M,sign);

A srs=A srs_1 +((j/Omega 0)*A srs 2)./A v;
96*****************************************************
Z = ((abs(A))."2).*A;

dt =ts;

M=N;

sign = part_A_steepening_0;

[A_steepening,part A steepening 0] = Derivation(Z,dt,M,sign);
A_steepening = A_steepening./A_v;

A steepening = j*A_steepening/Omega 0;
96*****************************************************
A _spm = (abs(A))."2;
96*****************************************************
N_0=j*gamma*((1-fr)*(A_spm + A steepening) + fr*A_srs);
96*****************************************************
A N = (exp(0.5*h*N_0+ 0.5*h*N_0)).*A D1 t;

A N f=ff{(A N);

A D2 f=(exp(0.5*h*D _{f)).*A N f;

A h t=ifft(A D2 f);

A=A ht;
96*****************************************************
A v=A;
fork=1:N
if A(k) ==0;
A v(k) =1e-100;
else
A _v(k) = A);
end
end

96*****************************************************

A srs_1 =ifftthr_f*fft((abs(A)).”2));

Z=AX*A srs 1;
dt = ts;
M=N;

sign = part A srs h;

[A srs 2,part A srs_h] = Derivation(Z,dt,M,sign);

A srs=A srs 1+ ((j/Omega_0)*A_srs_2)./A v;
96*****************************************************
Z = ((abs(A))."2).*A;

dt=ts;

M=N;

sign = part_A_steepening_h;

[A steepening,part A steepening_ h] = Derivation(Z,dt,M,sign);
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A steepening = A_steepening./A_v;

A_steepening = j*A_steepening/Omega 0;

A _spm = (abs(A))."2;
%*****************************************************
N _h = j*gamma*((1-fr)*(A_spm + A_steepening) + fr*A_srs);
%*****************************************************
A N = (exp(0.5*h*N_0 + 0.5*h*N_h)).*A DI t;

A N f=fft(A_N);

A D2 f=(exp(0.5*h*D f)).*A N f;

A h t=ifft(A_D2 f);

A=A ht

step_counter = step_counter + 1;

end

subplot (2,2,3);

Output_pulse = (abs(A))."2;

Max_output_pulse = max((abs(A).*2));

Output_pulse = Output_pulse/Max_output_pulse;%Normalized output pulse
plot(t,Output_pulse,'');

title('Output pulse in time domain');

xlabel('Time (femtosecond)');

grid on;

Y={tt(A);

Y=fftshift(Y);

P=Y.*conj(Y);%spectral amplitudes of the pulse
Max_output_spectrum = max(P);
P=P/Max_output_spectrum;%Normalized Spectral Intensity
subplot(2,2,4);
semilogy(3e+17./f((N/2)+shift_points:-1:(N/2)-shift_points),P((N/2)-
shift_points:(N/2)+shift points),'b");%spectrum of the output pulse
title('The specturm of the output pulse');

xlabel("Wavelength (nm)");

figure;

semilogy(3e+17./f((N/2)+shift points:-1:(N/2)-shift_points),P_input((N/2)-
shift points:(N/2)+shift points),'b");%spectrum of the pulse
title('The spectrum of the input pulse');

xlabel("Wavelengeh (nm)");

figure;

semilogy(3e+17./f(N/2)+shift_points:-1:(N/2)-shift points),P((N/2)-
shift points:(N/2)+shift_points),'b");%spectrum of the output pulse
title("The spectrum of the output pulse');

xlabel('Wavelength (nm)');

etime(clock,ti)

clear;
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Appendix II

clc;%clear command window

clear;

close;

Steps =10000;

P_0=10000;%unit W = J/S= J/fs*1e+15

ti = clock;

Lambda_ 0 = 850;%unit is nm(central frequency-carrier frequency)

f 0=3e+8/(Lambda_0*1e-9);%central frequency(Hz)

ts=1;%1 femtosecond,sampling period.

fn=1/(2*ts*1e-15);%Nyquist frequency(Hz)

t = 0:ts:2999;%unit is femtosecond

shift=500;%unit is femtosecond

T0=56.7;%femtosecond, TO width of the pulse
A=sqrt(P_0/1e+15)*(sech((t-shift)/T0));%Input pulse A(0,t)-(Hyperbolic pulse)
subplot(2,2,1);

plot(t,((abs(A))."2)/(P_0/1e+15));%amplitudes of the pulse in time domain
title('Input pulse in time domain');

xlabel('Time (femtosecond)");

grid on;

Y=fftshift(fft(A));

N=length(Y);

P _input=Y.*conj(Y);%spectral amplitudes of the pulse

Max_input pulse = max(P_input);
P_input=P_input/Max_input_pulse;%Normalized Spectral Intensity
f=linspace(-fn, fn,N+1);

=1(1:N);

f=f+f 0;

shift_points = 800;

subplot(2,2,2);
%plot(3e+17./f(N/2)-shift_points:(N/2)+shift_points),P_input((N/2)-
shift_points:(N/2)+shift points),":*b');%spectrum of the pulse
semilogy(3e+17./f((N/2)+shift_points:-1:(N/2)-shift points),P_input((N/2)-
shift points:(N/2)+shift points),’b');%spectrum of the pulse

title('The spectrum of the input pulse');

xlabel('Wavelengeh (nm)');

Omega 0= 2*pi*((3et+8/1e+15)/850e-9);%unit is rad/femtosecond
Alpha = 0*(10e-3)/4.343 ;%unit is 1/m

gamma = 0.0452e+15;%1/(W*m)--------------- 1W = 1J/s =le-15J/fs; fs is femtosecond
Beta 2 =-1.276e+4;%fs"2/m

Beta 3 = 8.119¢+4;%f5"3/m

Beta 4 = -1.321e+5;%fs"4/m

Beta 5 =3.032e+5;%fs"5/m

Beta 6 = -4.196e+5;%fs"6/m
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a 7 =2.570e+5;%fs"7/m

2

[Par gy [Py

ZZZZZUU
-lkut\)»—*o
Il

0;
0
0.
0
0;

-

a_0=1901/720;
a_1=-2774/720;
a 2=2616/720;
a 3=-1274/720;
a 4=251/720;
= 251/1440;
c_0=2897/1440;
c_1=382/1440;
c 2 =-158/1440;
c_ 3 =87/1440;
c_4=-19/1440;
%**********************************************************************
Hkoskok
fr=0.18;
tt1=12.2;%femtosecond
tt2=32;%femtosecond
hr t=((tt1"2+tt2°2)/(tt1*tt2"2))*((exp(- (t/tt2))) *sin(t/tt1));
hr f= fft(hr t);
/******************************************************************
part A srs 0=0;
part_ A steepening 0 = 0;
part A srs h=0;
part A steepening h = 0;
%******************************************************************
h = 0.0025e-2;%the lengeh of one step in split step Fourier Method,unit is meter
forI=1: Steps;
Y = fit(A);
N = length(Y);
Omega = linspace(0,fn,(N/2)+1);
Omega 1 =2%pi*(1e-15)*Omega(1:N/2);%unit is rad/femtosecond
Omega 2 = -2*pi*(1e-15)*linspace(fn,Omega(2),N/2);%unit is rad/femtosecond
Omega(1:N/2) = Omega 1;
Omega(((N/2)+1):N) = Omega 2;
D_f= - j*(Beta_2/2)*(j*Omega).*2 + (Beta_3/6)*(j*Omega)."3 +
j*(Beta_4/24)*(j*Omega).”4 - (Beta_5/120)*(j*Omega)."5 -
j*(Beta_6/720)*(j*Omega).”6 + (Beta_7/5040)*(j*Omega).”7 - Alpha/2 ;%frequency
domain
Y = exp(0.5*h*D_f).*Y;
%P=Y(1:N/2).*conj(Y(1:N/2));%spectral amplitudes of the pulse;
A D1 _t=ifft(Y);
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96******************************************************************

A v=A;
fork=1:N
if A(k) ==0;
A v(k)=1e-100;
else
A v(k) = Ak);
end
end

96******************************************************************

%This is the step to acquire N(0)

O 3k ok ok ook koo ok ok ok sk sk stk ok ok sk ok sk sk ok sk sk sk sk ks sk sk sk ok sk R sk sk ok ok

A_sts_1 =ifft(hr_f*fft((abs(A))."2));

Z=A*A srs 1;
dt =ts;
M =N;

sign = part_A_srs _0;

[A srs 2,part A srs_0] = Derivation(Z,dt,M,sign);

A srs=A srs 1+ ((j/Omega 0)*A_srs 2)./A v;
96*****************************************************
Z = ((abs(A))."2).*A,;

dt=ts;

M=N;

sign = part A_steepening O; o
[A_steepening,part A steepening 0] = Derivation(Z,dt,M,sign);
A steepening = A_steepening./A_v;

A_steepening = j*A_steepening/Omega 0;

96*****************************************************

A_spm = (abs(A))."2;

96*****************************************************

N_0 = j*gamma*((1-fr)*(A_spm + A_steepening) + fr*A_srs);

O F ok ok s stk ok ok ko R sk ks ok sk Rk Rk sk sk sk ks ko ok

A N=(exp(h*(a 0*N O+a 1*N 1+a 2*N 2+a3*N 3+a4*
N 4)).*A D1 t;

A N f=ffi(A N);

A D2 f=(exp(0.5*h*D_f)).*A N f;

Ah t =iffi(A_ D2 f);

A=A ht
0 ekttt ok ok okt ok koot k k ok
A v=A;
fork=1:N
if A(k) ==0;
A v(k) = 1e-100;
else
A_v(k) = Ak);
end
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end
%*****************************************************

A srs 1 =ifft(hr_f*fft((abs(A)).”2));

Z=A*A srs 1;
dt = ts;
M=N;

sign = part A_srs_h;

[A _srs 2,part A srs h] = Derivation(Z,dt,M,sign);

A srs=A srs_1+((j/Omega 0)*A srs 2)./A v;

0 skt ok ok sk e ok ok otk koo ootk ook ok kb e e e ok
Z = ((abs(A))."2).*A;

dt = ts;

M=N;

sign = part A_steepening_h;

[A_steepening,part A steepening_h] = Derivation(Z,dt,M,sign);

A steepening = A_steepening./A_v;

A_steepening = j*A_steepening/Omega 0;
%*****************************************************
A _spm = (abs(A)).”2;

O koo okttt ok ok ootttk ko okt ok ok ek e o
N1 =j*gamma*((1-fr)*(A_spm + A_steepening) + fr*A_srs);
%*****************************************************
A N=(exp(h*(cl*Nl+c O0*N O+c I *N 1+c2*N 2+c 3*N 3+c 4*
)). *A D1 t;

- Ffi(A_N);
= (exp(0.5%h*D f)).*A N f;
= ifft(A_D2_f);

> >
n,‘

end

subplot (2,2,3);

Output_pulse = (abs(A))."2;

Max_output_pulse = max((abs(A)."2));

Output_pulse = Output_pulse/Max_output_pulse;%Normalized output pulse
plot(t,Output_pulse,'r");

title("Output pulse in time domain');

xlabel('Time (femtosecond)');

grid on;

Y={tt(A);

Y=fftshift(Y);

P=Y .*conj(Y);%spectral amplitudes of the pulse

Max_ output_spectrum = max(P);
P=P/Max_output_spectrum;%Normalized Spectral Intensity
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subplot(2,2,4);
semilogy(3e+17./f((N/2)+shift_points:-1:(N/2)-shift_points),P((N/2)-
shift_points:(N/2)+shift_points),'b");%spectrum of the output pulse
title('The spectrum of the output pulse');

xlabel('Wavelength (nm)');
%*****************************************************
figure;
semilogy(3e+17./f(N/2)+shift_points:-1:(N/2)-shift_points),P_input((N/2)-
shift_points:(N/2)+shift_points),'b');%spectrum of the pulse
title('The spectrum of the input pulse');

xlabel('Wavelengeh (nm)');

figure;
semilogy(3e+17./f(N/2)+shift_points:-1:(N/2)-shift_points),P((N/2)-
shift points:(N/2)+shift points),'b");%spectrum of the output pulse
title('The spectrum of the output pulse');

xlabel("Wavelength (nm)');
%*****************************************************
etime(clock,t1)

clear;
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Appendix III

clc;%clear command window

clear;

close;

Steps =15000;

P_0=10000;%unit W = J/S= J/fs*1e+15

ti = clock;

Lambda 0= 850;%unit is nm(central frequency-carrier frequency)
f 0=3e+8/(Lambda_0*1e-9);%central frequency(Hz)

ts=1;%1 femtosecond,sampling period.
n=1/(2*ts*1e-15);%Nyquist frequency(Hz)

t = 0:t5:2999;%unit is femtosecond

shift=500;%unit is femtosecond

T0=57;%femtosecond, TO width of the pulse
A=sqrt(P_0/1e+15)*sech((t-shift)/T0);%Input pulse A(0,t)-(Hyperbolic pulse)
subplot(2,2,1);

plot(t,((abs(A)).”2)/(P_0/1e+15));%amplitudes of the pulse in time domain
title('Input pulse in time domain');

xlabel('Time (femosecond)");

grid on;

Y=fitshift(ffi(A));

N=length(Y);

P_input=Y.*conj(Y);%spectral amplitudes of the pulse
Max_input_pulse = max(P_input);
P_input=P_input/Max_input_pulse;%Normalized Spectral Intensity
f=linspace(-fn,fn,N+1);

={(1:N);

f=f+f 0,

shift points = 800;

subplot(2,2,2);

plot(3e+17./f((N/2)-shift_points:(N/2)+shift points),P_input((N/2)-
shift points:(N/2)+shift_points),":*b');%spectrum of the pulse
title('The spectrum of the input pulse");

xlabel('Wavelength (nm)');

Omega 0= 2*pi*((3et8/1e+15)/850e-9);%unit is rad/femtosecond
Alpha = 0*(10e-3)/4.343 ;%unit is 1/m

gamma = 0.0452¢+15;%1/(W*m)--------------- 1W = 1)/s =le-15]/fs; fs is femtosecond
Beta 2 =-1.276e+4;%fs"2/m

Beta 3 = 8.119¢+4;%{f5"3/m

Beta 4 =-1.321e+5;%fs"4/m

Beta 5 =3.032e+5;%f5"5/m

Beta 6 = -4.196¢+5;%fs"6/m

Beta 7 =2.570e+5;%1s"7/m

%******************************************************************
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fr=0.18;
tt1=12.2;%femtosecond
tt2=32;%femtosecond
hr t=((tt1"2+tt2°2)/(tt 1 *tt2°2))*((exp(-(t/tt2))). *sin(t/tt1));
hr f= fft(hr t);
96******************************************************************
part A srs 0=0;
part A steepening 0 = 0;
part A srs h=0;
part A steepening h = 0;
96******************************************************************
h 0= 0.001e-2;%the lengeh of one step in split step Fourier Method,unit is meter
step_counter = 0;
for [ =1 : Steps;
if step_counter == 4;
h=-2*h 0;
step _counter = -1;
else
h=h 0;
end

Y = fft(A);

N = length(Y);

Omega = linspace(0,fn,(N/2)+1);

Omega_1 =2*pi*(1e-15)*Omega(1:N/2);%unit is rad/femtosecond

Omega 2 = -2*pi*(1e-15)*linspace(fn,Omega(2),N/2);%unit is rad/femtosecond
Omega(1:N/2) = Omega_1;

Omega(((N/2)+1):N) = Omega 2;

D f=-j*(Beta _2/2)*(j*Omega)."2 + (Beta_3/6)*(*Omega)."3 +

j*(Beta 4/24)*(j*Omega).”4 - (Beta_5/120)*(j*Omega).”5 -
j*(Beta_6/720)*(j*Omega).”6 + (Beta_7/5040)*(j*Omega)."7 - Alpha/2 ;%frequency
domain

Y = exp(0.5*h*D_f{).*Y;

%P=Y(1:N/2).*conj(Y(1:N/2));%spectral amplitudes of the pulse;

A D1 t=ifft(Y);

96******************************************************************

A v=A;
fork=1:N
if A(k) ==0;
A_v(k) = 1e-100;
else
A v(k) = A);,
end
end

96******************************************************************

A_sts_1 = iffi(hr_£*fft((abs(A)).22));
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Z=A%*A srs 1;

dt = ts;

M=N;

sign = part A srs 0;

[A_srs 2,part A srs 0] = Derivation(Z,dt,M,sign);

A srs=A srs 1+ ((j/Omega_0)*A_srs 2)./A_v;
96*****************************************************
Z = ((abs(A))."2).*A;

dt=ts;

M =N;

sign = part_A_steepening_0;

[A_steepening,part A steepening 0] = Derivation(Z,dt,M,sign);

A _steepening = A_steepening./A_v;

A_steepening = j*A_steepening/Omega 0;
96*****************************************************
A_spm = (abs(A))."2;
96*****************************************************
N_0=j*gamma*((1-fr)*(A_spm + A_steepening) + fr*A_srs);
96*****************************************************
A N=(exp(0.5*h*N_0 + 0.5*h*N_0)).*A_ D1 t;

A N f=fft(A_N);

A D2 f=(exp(0.5*h*D _f)).*A N f;

A h t=ifft(A D2 f),

A=A ht
96*****************************************************
A v=A;
fork=1:N
if A(k) == 0;
A v(k) = 1e-100;
else
A v(k) = Ak);
end
end

96*****************************************************

A srs 1 =ifft(hr_f *fft((abs(A))."2));

Z=A*A srs 1;
dt = ts;
M=N;

sign = part_ A _srs_h;

[A_srs 2,part A srs h]= Derivation(Z,dt,M,sign);

A srs=A srs 1+ ((j/Omega 0)*A srs 2)./A v;
96*****************************************************
Z = ((abs(A))."2).*A;

dt=ts;

M=N;
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sign = part_A_steepening h;
[A_steepening,part A _steepening h] = Derivation(Z,dt,M,sign);
A steepening = A_steepening./A_v;

A_steepening = j*A_steepening/Omega 0;

A _spm = (abs(A))."2;

N_h=j*gamma*((1-fr)*(A_spm + A_steepening) + fr*A srs);
A N = (exp(0.5*h*N 0+ 0.5%h*N_h)).*A D1 t;

A N f=fft(A_N);

A D2 f=(exp(0.5*h*D f)).*A N f;

A h t=ifft(A_D2 f),

A=A ht
step_counter = step_counter + 1;
if I == 15000,
B10=A;
end
if I == 13500,
B9 =A;
end
if I ==12000,
B8 = A;
end
if I == 10500,
B7=A;
end
if I ==9000,
B6=A;
end
if I == 7500,
B5=A;
end
if I == 6000,
B4 =A;
end
if I==4500,
B3=A;
end
if I==3000,
B2=A;
end
if I == 1500,
Bl =A;
end
if I== 500,
B0O5 = A;
end
end

65



save datax_spectrum_total 4order BO5 B1 B2 B3 B4 BS B6 B7 B8 B9 B10 Stepsht f N
P_0 shift points;

subplot (2,2,3);

Output_pulse = (abs(A))."2;

Max_output_pulse = max((abs(A).”2));

Output_pulse = Output_pulse/Max_output pulse;%Normalized output pulse
plot(t,Output_pulse,'r');

title("Output pulse in time domain');

xlabel('Time (femosecond)");

grid on;

Y={ft(A);

Y=fitshift(Y);

P=Y.*conj(Y);%spectral amplitudes of the pulse
Max_output_spectrum = max(P);
P=P/Max_output_spectrum;%Normalized Spectral Intensity
subplot(2,2,4);

semilogy(3e+17./f((N/2)-shift points:(N/2)+shift points),P((N/2)-
shift points:(N/2)+shift points),'b");%spectrum of the output pulse
title('"The specturm of the output pulse');

xlabel("Wavelength (nm)");

figure;
plot(3e+17./f((N/2)-shift_points:(N/2)+shift_points),P((N/2)-

shift points:(N/2)+shift_points),'b");%spectrum of the output pulse
title("The specturm of the output pulse');

xlabel("Wavelengeh (nm)');

figure;

semilogy(3e+17./f(N/2)-shift_points:(N/2)+shift points),P((N/2)-
shift points:(N/2)+shift points),'b);%spectrum of the output pulse
title('The specturm of the output pulse');

xlabel('Wavelength (nm));

figure;
plot(3e+17./f((N/2)+shift_points:-1:(N/2)-shift_points),P((N/2)-
shift points:(N/2)+shift_points),'b");%espectrum of the pulse
figure;

semilogy(3e+17./f((N/2)+shift_points:-1:(N/2)-shift points),P((N/2)-
shift points:(N/2)+shift points),'b");%spectrum of the pulse
etime(clock,ti)

clear;
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Appendix [V

cle;%clear command window

clear;

close;

Steps =10000;

P_0=10000;%unit W = J/S= J/fs*1e+15

ti = clock;

Lambda_0 = 850;%unit is nm(central frequency-carrier frequency)
f 0=3e+8/(Lambda_0*1e-9);%central frequency(Hz)

ts=1;%1 femtosecond,sampling period.
fn=1/(2*ts*1e-15);%Nyquist frequency(Hz)

t = 0:ts:2999;%unit is femtosecond

shift=500;%unit is femtosecond

T0=56;%femtosecond, TO width of the pulse
A=sqrt(P_0/1e+15)*(sech((t-shift)/T0));%Input pulse A(0,t)-(Hyperbolic pulse)
subplot(2,2,1);

plot(t,((abs(A)).”2)/(P_0/1e+15));%amplitudes of the pulse in time domain
title('Input pulse in time domain');

xlabel('Time (femosecond)');

grid on;

Y=fitshift(fft(A));

N=length(Y);

P_input=Y.*conj(Y);%spectral amplitudes of the pulse
Max_input_pulse = max(P_input);

P_input=P_input/Max_input pulse;%Normalized Spectral Intensity
f=linspace(-fn,fn,N+1);

=f(1:N),

f=f+f 0,

shift_points = 800;

subplot(2,2,2);

plot(3e+17./f((N/2)-shift_points:(N/2)+shift points),P_input((N/2)-
shift points:(N/2)+shift_points),":*¥b');%spectrum of the pulse
title('The specturm of the input pulse’);

xlabel("'Wavelengeh (nm)");

Omega 0 = 2*pi*((3e+8/1e+15)/850e-9);%unit is rad/femtosecond
Alpha = 0*(10e-3)/4.343 ;%unit is 1/m

gamma = 0.0452e+15;%1/(W*m)--------------- 1W = 1J/s =le-15J/1s; fs is femtosecond
Beta 2 =-1.276e+4;%fs"2/m

Beta 3 = 8.119¢+4;%15"3/m

Beta 4 =-1.321e+5;%fs"4/m

Beta 5 =3.032e+5;%fs"5/m

Beta 6 = -4.196e+5;%f5"6/m

Beta 7 =2.570e+5;%fs"7/m

N 0=0;
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I

b

0
0
0;
0

- .

I

Ol-bwt\)»—‘
1l

1901/720;
1=-2774/720;
a 2=12616/720;
a 3=-1274/720;
a_4=1251/720;

=251/1440;
c_0=_897/1440;
c_1=382/1440;
c 2 =-158/1440;
c 3 =87/1440;
c 4 =-19/1440;
fr=0.18;
tt1=12.2;%femtosecond
tt2=32;%femtosecond
hr t=((tt1°2+tt272)/(tt1 *tt2°2))*((exp(-(t/tt2))). *sin(t/tt1));
hr f= fft(hr t);
part A srs 0=0;
part A steepening 0 =0;
part A srs h=0;
part A _steepening h =0;
h = 0.001e-2;%the lengeh of one step in split step Fourier Method,unit is meter
forI =1 : Steps;
Y = f{ft(A);

= length(Y);
Omega = linspace(0,fn,(N/2)+1);
Omega 1 =2*pi*(1e-15)*Omega(1:N/2);%unit is rad/femtosecond
Omega 2 = -2*pi*(1e-15)*linspace(fn,Omega(2),N/2);%unit is rad/femtosecond
Omega(1:N/2) = Omega 1;
Omega(((N/2)+1):N) = Omega 2;
D f=-j*(Beta 2/2)*(j*Omega)."2 + (Beta_3/6)*(j*Omega)."3 +
j¥*(Beta_4/24)*(j*Omega).”4 - (Beta_5/120)*(j*Omega)."5 -
j*(Beta_6/720)*(j*Omega)."6 + (Beta_7/5040)*(*Omega).”7 - Alpha/2 ;%frequency
domain
Y = exp(0.5*h*D _f).*¥Y;
%P=Y (1:N/2).*conj(Y(1:N/2));%spectral amplitudes of the pulse;
A_D1_t=iffi(Y);
%******************************************************************
A v=A;
fork=1:N

if A(k) ==0;

A v(k)=1e-100;
else

N_
N_
N_.
N
a_
a_
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A v(k) = A(k);

end
end
A srs 1 =ifftthr f*ffi((abs(A)).”2));
Z=A%*A srs 1;
dt = ts;
M=N;

sign =part A srs 0;

[A _srs 2,part A srs 0] = Derivation(Z,dt,M,sign);

A srs=A srs_1+((j/Omega 0)*A_srs 2)./A_v;
96*****************************************************
Z = ((abs(A))."2).*A;

dt =ts;

M=N;

sign = part A _steepening O;

[A_steepening,part A steepening 0] = Derivation(Z,dt,M,sign);
A_steepening = A_steepening./A_v;

A steepening = j*A_steepening/Omega 0;
96*****************************************************
A _spm = (abs(A))."2;
96*****************************************************
N_0=j*gamma*((1-fr)*(A_spm + A_steepening) + fr*A_srs);
96*****************************************************
A N=(exp(h*(a 0O*NO+al*N 1+a2*N2+a3*N3+a4*
N 4)).*A_D1 t;

A N f=fft(A N);

A D2 f=(exp(0.5*h*D f)).*A N f;
A h t=ifft(A D2 f);
A=A h t;
26*****************************************************
A v=A;
fork=1:N
if A(k) ==0;
A v(k) = 1e-100;
else
A_v(k) = AKk);
end
end

O ks sk ook sk ook ook koot fokok ok sk ok ok ko ok ok sk ook koo ok o ook ok
A _srs 1 =ifftthr_f*fft((abs(A))."2));

Z=A*A srs 1;
dt =ts;
M=N;

sign = part A srs_h;
[A sts 2,part A srs h] = Derivation(Z,dt,M,sign);
A srs=A srs_1+((3/Omega 0)*A_srs_2)./A_v;
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96*****************************************************
Z = ((abs(A))."2).*A;

dt=ts;

M=N;

sign = part A_steepening_h;

[A steepening,part A steepening h] = Derivation(Z,dt,M,sign);

A steepening = A_steepening./A_v;

A _steepening = j*A_steepening/Omega O;

0 okttt koo ook kol et ok koo ok ook ok
A _spm = (abs(A))."2;
96*****************************************************
N1 = j*gamma*((1-fr)*(A_spm + A_steepening) + fr*A_srs);

96*****************************************************

A N=(exp(h*(cl *Nl+c 0*N O+c 1*N 1+c 2*N 2+c 3*N 3+c 4%

N 4))).*A D1 t
N 4=N 3;
N 3=N_2;
N 2=N_1;
N 1=N 0

A D2 f= (exp(O 5*%h*D f)).*A N f;
A_h_t =ifft(A_D2 f);
A=A h t;
if I == 10000,
Bi10=A;
end
if I == 9000,
B9=A;
end
if I == 8000,
B8 =A;
end
if I == 7000,
B7 =A;
end
if I == 6000,
B6=A;
end
if I == 5000,
B5=A;
end
if I == 4000,
B4=A;
end
if I == 3000,
B3=A;
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end

if == 2000,
B2=A;

end

if I == 1000,
Bl =A;
etime(clock,ti)

end

if I == 500,
BO5S=A;

end

end

save datax_spectrum_total pc BOS B1 B2 B3 B4 B5 B6 B7 B§ B9 B10 Stepsht fNP_0
shift points;

subplot (2,2,3);

Output_pulse = (abs(A)).”2;

Max_output_pulse = max((abs(A)."2));

Output_pulse = Output_pulse/Max_output_pulse;%Normalized output pulse
plot(t,Output_pulse,'r");

title('"Output pulse in time domain');

xlabel('Time (femosecond)');

grid on;

Y={ft(A);

Y=fitshift(Y);

P=Y.*conj(Y);%spectral amplitudes of the pulse

Max_output spectrum = max(P);
P=P/Max_output_spectrum;%Normalized Spectral Intensity
subplot(2,2,4);

semilogy(3e+17./f(N/2)-shift_points:(N/2)+shift points),P((N/2)-
shift_points:(N/2)+shift points),'b'");%spectrum of the output pulse
title('The specturm of the output pulse');

xlabel("Wavelength (nm)');

figure;

plot(3e+17./f((N/2)-shift _points:(N/2)+shift points),P((N/2)-
shift_points:(N/2)+shift points),'b");%spectrum of the output pulse
title('The specturm of the output pulse');

xlabel("Wavelengeh (nm)');

figure;

semilogy(3e+17./f((N/2)-shift_points:(N/2)+shift points),P((N/2)-
shift points:(N/2)+shift points),’b");%spectrum of the output pulse
title('The specturm of the output pulse’);

xlabel("Wavelength (nm)');

figure;

plot(3e+17./f((N/2)+shift points:-1:(N/2)-shift points),P((N/2)-
shift_points:(N/2)+shift_points),'b');%spectrum of the output pulse
figure;
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semilogy(3e+17./f(N/2)+shift_points:-1:(N/2)-shift_points),P((N/2)-
shift_points:(N/2)+shift_points),’b"); Yespectrum of the output pulse

etime(clock,ti)
O/ sk ook sk ok ok sk kot sk skt skl skl stttk okl stk sk ok ok

clear;
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