CASCADED REFACTORING FOR FRAMEWORK
DEVELOPMENT AND EVOLUTION

Lucang Xu

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

DECEMBER 2005
© Lucang Xu, 2006



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-16287-3
Our file  Notre référence
ISBN: 978-0-494-16287-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

Cascaded refactoring for framework development and evolution

Lugang Xu, Ph.D.
Concordia University, 2006

This thesis addresses three problems of framework development and evolution: identi-
fication and realization of variability, framework evolution, and framework documen-
tation. A solution, called the cascaded refactoring methodology, is proposed. The
methodology is validated by a case study, the Know-It-All framework for relational
Database Management Systems.

The cascaded refactoring methodology views framework development as frame-
work evolution, which consists of framework refactoring followed by framework exten-
sion. A framework is specified by a set of models: feature model, use case model, ar-
chitectural model, design model, and source code. Framework refactoring is achieved
by a set of refactorings cascaded from the feature model, to use case model, archi-
tectural model, design model, and source code. The constraints of refactorings on a
model are derived from the refactorings performed on its previous model. Alignment
maps are defined to maintain the traceability amongst the models.

The thesis broadens the refactoring concept from the design and source code level
to include the feature model, use case model, and architectural model. Metamod-
els and refactorings are defined for the feature model and architectural model. A

document template is proposed to document the framework refactoring.

iii



Acknowledgements

First and most importantly, I am deeply indebted to my supervisor, Dr. Greg Butler.
This thesis would not have come about without his persistent guidance, support,
encouragement, and his faith in my aptitude throughout my Ph.D. program. He had
not only been an academic supervisor in providing constant direction and focus to
my research, but also a mentor — a role model who had affected me so much in the
view of the world — with his kindness, open-mindedness and warmth. Thank you,
Dr. Butler!

[ would also thank the other members of my committee, for their feedback and
input on this thesis.

I would like to thank our graduate secretary, Halina, TA program assistant,
Pauline, and the secretary to chairman, Stephanie, for their tireless efforts in support-
ing me with their kind attentiveness and for providing me with ample opportunities
to prove my teaching skills throughout this academic career.

[ am thankful to Yue Wang for voluntarily and patiently proofreading parts of
this thesis, and for discussion about the work and the way to present it. Several
improvements of the writing are due to her comments.

I wish to especially thank Sue for her love and support throughout the entire
process of my research and for having provided the much-needed motivation with her
constant reminder of how long I have been in the program.

I would express my warmest gratitude to my parents and my grandma for loving
me for whatever I am.

Most importantly, I thank God for granting me the talents and opportunites to

achieve this accomplishment.

iv



Contents

List of Figures

List of Tables

1 Introduction
1.1 The Problem . . . . . . . . ..

1.1.1
1.1.2
1.1.3

Object Oriented Application Framework . . . .. . ... ...
Framework Development Methodologies . . . . . . ... ...

Three Support Issues . . . . . . .. ... ... ... .. ....

1.2 Cascaded Refactoring Methodology . . . . . .. ... ... ... ...
1.3 CaseStudy . .. .. .. . . .
1.4 Contributions . . . . . . . . . ...

1.5 Thesis Organization . . . . . . . . . . . ... ... . .. ...

2 Background

2.1 Software Evolution . . . . . . . . . . ...,

211
2.1.2
2.1.3
214
2.1.5

Maintenance and Evolution . . . . .. ... .. ... ... ..
Dimensions of Evolution . . . . .. ... ... ... ......
Laws of Software Evolution . . ... . ... ... ... ....
Tools and Techniques . . . . . . .. . ... .. .. .. .....

Software Process Models . . . . . . . . . . .. ... ... ...

2.2 Domain Specific Software Development . . . . . . . .. .. ... ...

2.2.1
2.2.2
2.2.3
224

Software Reuse . . . . . ... .. ... .. ... ...
Domain Engineering . . . . ... ... ... L.
Software Product Line . . . . . .. ... ... ... ......
Other Work . . . . ... .. ... .. .. ...

ix

xi

© N RN =



2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

UML Design Models . . . . . .. .. ... ... .. ... .. ..... 29

2.3.1 Unified Modeling Language . . . . ... ... ... ...... 29
2.3.2 Structural Models . . . . . . ... ... . 30
2.3.3 Behaviour Models . . . . . .. ... ... .. ... ... ..., 32
2.3.4 Model Extension . . . ... ... .. .. ... ... ... ... 34
Feature Model . . . . . . . . . . .. .. ... .. 36
2.4.1 Feature Oriented Domain Analysis . . . .. ... ... .. .. 36
2.4.2 Feature Oriented Reuse Method . . . . . . .. ... ... ... 38
243 OtherWork . ... ... ... .. .. ... ... 40
Use Case Model . . . . .. . ... . ... .. ... 41
251 UseCasein UML . . . . .. ... .. ... .. .. ..... 41
2.5.2 Other Work . . . . ... ... ... ... 43
Software Architectural Model . . . . . . ... ... ... ... ... 45
2.6.1 Architecture Model . . . . . .. . ... .. 45
2.6.2 4417 View . . .. 46
2.6.3 Applied Software Architecture . . . . . . ... ... 47
Design Pattern . . . . . . . . ... oL 48
2.7.1 Pattern . . . .. .. 49
2.7.2 Object Oriented Design Pattern . . . . . ... ... ... ... 50
Framework . . . . . . . . ... o1
2.8.1 Framework Introduction . . . . . .. ... ... ... 51
2.8.2 Framework Development . . . . . . ... ... ... ... .. 54
2.8.3 Framework Evolution . . . . . .. ... ... ... ... ... 60
2.8.4 Framework Documentation. . . . . . ... .. ... ... ... 62
Refactoring . . . . . . . . . .. 65
2.9.1 Program Refactoring . . . . ... . ... ... ... ... ... 66
2.9.2 Refactoring Formalisms. . . . . . .. ... ... ... .. ... 71
2.9.3 Tool Support . . . .. ... 74
2.9.4 Other Refactorings . . . . . .. ... ... ... ..., 75
295 Openlssues . . . .. ... Lo 77
Software Traceability . . . . . .. .. ... ... L. 78
2.10.1 Requirements Traceability . . . . . ... ... ... .. ... 79
2.10.2 Dimensions of Traceability . . . . .. .. ... .. ... ... 81

vi



2.10.3 Traceability Characterization . . .. . .. ... .. ... ... 82

2.10.4 Automation and Tool Support . . . . . . ... ... ... ... 84

3 Cascaded Refactoring Methodology 86
3.1 Models . . . . . . oL 87
3.1.1 Choiceof Models . . . . ... ... ... ... ... ...... 88

3.1.2 Feature Model . . . . . . .. ... ... 91
313 UseCaseModel . . . . ... . ... .. ... . ........ 96

3.1.4 Architectural Model . . . . . . ... ... ... 100

3.1.5 Design Model . . . ... ... .. ... .. 105
3.1.6 Source Code . . . . . . . . .. ... 107
3.1.7 Model Notation . . . . . ... ... .. . ... ... ..., 107

3.2 Alignment Maps between Models . . . . . ... ... ... ... ... 113
3.2.1 Modeling Commonality and Variability . . . . ... ... ... 114
3.22 Maps. . . .. 115

3.3 Cascaded Refactoring Methodology . . . . . . .. .. ... ... ... 130
3.3.1 Cascade of Refactorings . . . . .. ... ... ... ..... 131
3.3.2 Model Refactoring . . . . ... ... ... ... ... ... 134
3.3.3 Documenting Refactoring . . . .. ... ... ... ...... 136
3.3.4 Refactorings . . . . . . .. .. ..o 138
3.3.5 Conclusion. . . . ... ... .. 146

4 Know-It-All Case Study 148
4.1 Case Study . . . . . . . 149
4.1.1 Introduction to the Domain . . . . . .. ... .. ... .. .. 149
4.1.2 Introduction to the Framework . . . . . ... .. ... .... 152

4.2 Case Study Models . . . . . . . . .. . .. 153
4.2.1 Feature Model . . . . . .. . ... oo 153
422 UseQCaseModel . . . . .. ... .. ... . ... ... 157
4.2.3 Architectural Model . . . . . . ... 0oL 158
424 Design Model . . . .. .. ... . oL 162
4.2.5 Source Code Model . . . . . . . ... ... L. 170

4.3 Model Alignment Maps . . . . . . . . ... Lo 171
4.3.1 Capability Feature Model to Use Case Model . . . ... ... 172

vii



4.4

4.5

4.3.2 Operating Environment Feature Model to Architectural Model
4.3.3 Domain Technology Feature Model to Design Model . . . . . .
4.3.4 TImplementation Technique Feature Model to Source Code

4.3.5 Use Case Model to Architectural Model . . . . . . . .. .. ..
4.3.6 Use Case Model to Design Model . . . . . .. ... ... ...
4.3.7 Architectural Model to Design Model . . . . . . . . ... ...
Model Refactorings . . . . . . . . . . . ...
441 Examplel . . . . . . . ...
442 Example2 . .. .. . .

Discussion . . . . . . . .. . e e e

Conclusion

5.1
5.2
5.3
5.4

9.5

5.6

OVEIVIEW . . . . . o v ot e e e e e
Contributions . . . . . . . . . . .
Limitations . . . . . . . . . ..
Related Work . . . . . . . . . . . .
5.4.1 Framework Development . . . . .. .. ... .. ... ... ..
5.4.2 Refactoring . . . . . .. ... oo
Validation Issue . . . . . . . . . . ... Lo
5.5.1 Validation in Academic Refactoring Community . . . . . . . .
5.5.2 Ideal Industry Validation . . . . . .. .. ... ... ... ...

Future work . . . . . . . .. e

viii

173
174
177
177
180
183
187
187
195
205



List of Figures

© 00 N O Ut kW N =

DN BN DN NN N N = b e R e e
@@#QDL\DP—‘C)©OO\]CDC)1>¥>OJMP—‘5

Layer Structure . . . . . . . . . . .. .. 12
The Waterfall Model . . . . ... .. ... ... ... . ........ 22
A Class Diagram Example . . . . . . ... . ... ... ... ..... 32
A Collaboration Diagram Example . . . .. ... ... ... ... .. 33
A Statechart Diagram Example . . . ... ... ... ... .. .... 34
An Activity Diagram Example . . . . . . ... .. ... ... ... .. 35
An Example of UML Extensibility . . . . . ... ... .. ... .... 35
A Feature Diagram of the Database Domain . . . . . ... . ... .. 37
Use Case Example . . . . . . . .. ... ... . ... .. ... ... 43
The Four Views of Applied Software Architecture . . . . . ... . .. 48
The Module View Metamodel . . . . . . ... ... .. ... .. ... 49
The Graphical Traceability Web . . . . . . . . ... ... . ... ... 82
Feature Model Metamodel . . . . . . . .. ... .. .. ... . .... 92
Feature Model Metamodel Subset . . . . . . ... ... ... ..., 96
Use Case Metamodel . . . . . . . .. .. ... ... ... ..., 97
Use Case Model Metamodel Subset . . . . . ... .. .. ... .... 99
Architecture Metamodel . . . . . . . ... 0oL 100
An Example of the UML Framework Concept . . . . . ... ... .. 104
Feature Model Notation . . . . . .. .. ... ... ... . ...... 108
Use Case Model Notation . . .. .. ... ... ... ......... 109
Architectural Model Element Notation . . . .. .. ... ... .... 110
Architectural Model Relationship Notation . . . . . . ... ... ... 111
Design Model Element Notation . . . . .. .. ... ... ... .... 112
Design Model Relationship Notation . . . . ... ... ... ..... 113
Trace Maps . . . . . . . e 117
A Decision Record Example . . . . .. .. ... ... ... ...... 137

X



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
55
o0

A Simplified Relational DBMS Architecture . . . . ... ... .... 150

Know-It-All FORM Feature Model . . . . . .. ... ... ...... 154
Know-It-All Use Case Model . . ... ... ... .. ... ....... 158
Know-It-All Architectural Model . . . ... ... .. ... ... ... 159
Know-It-All Design Model: High Level View . . . . . ... ... ... 163
Know-It-All Design Model I: Logical Layer . . ... ... ... ... 164
Know-It-All Design Model II: Physical Layer . . . . ... ... ... 166
Know-1t-All Design Model III: DBMS Subsystem . . . . . ... ... 168
The Sequence Diagram of Query Processing . . . .. ... ... ... 169
Roadmap of Refactorings in Example One . . . . . . ... ... ... 188
Feature Model Refactoring: Decision Record 1 . . . . . . . ... . .. 189
Modified Know-It-All Feature Model . . . . . . . .. ... ... ... 191
Use Case Model Refactoring: Decision Record 1 . . . . . . ... ... 192
Use Case Model Refactoring: Decision Record 2 . . . . . . ... ... 192
Modified Know-1t-All Use Case Model . . . . . . .. ... ... ... 192
Design Model Refactoring: Decision Record 1 . . . . . .. ... ... 194
Design Model Refactoring: Decision Record 2 . . . . . . . .. .. .. 194
Modified Design Model . . . . . . . ... oo 195
Roadmap of Refactorings in Example Two . . . . . .. .. ... ... 196
Architectural Model Refactoring: Decision Record 1 . . . . . . . . .. 197
Architectural Refactoring I. . . . . . ... .. .. ... ... 198
Architectural Model Refactoring: Decision Record 2 . . . . . . . . .. 198
Architectural Refactoring IT . . . . . . ... ... ... ... 199
Architectural Model Refactoring: Decision Record 3 . . . . . . . . .. 199
Architectural Refactoring III . . . . . . ... .. ... ... ... .. 200
Design Model Refactoring: Decision Record 1 . . . . . . . ... . .. 201
Design Model Refactoring I . . . ... ... ... . ..., .. 202
Design Model Refactoring: Decision Record 2 . . . . . . . . ... .. 202
Design Model Refactoring IT . . . . . ... ... ... .. ... ..., 203
Design Model Refactoring IIT . . . . ... .. .. ... ... ... 204



List of Tables

O 00 3 O Ut k=W N

L el e s T e SO U U U WY
© 0 J O U W N =

Design Patterns for Variability . . . . . .. .. ... ... ... .... 51
Commonality of Framework Development Approaches . . . . . . . .. 60
The Summary of Feature Model Elements and Relationships . . . . . 94
The Summary of Architectural Model Elements and Relationships . . 103
Design Model Elements . . . . . . . . .. ... ... ... ....... 106
Design Model Relationships . . . . . . . . . .. ... ... ... ... 107
Entity and Qualifier Map of Ty, . . . . . . . 0 . o000 170
Relationship Map of Ty, . . . . . . o oo oo 00000 171
Entity and Qualifier Mapof Ty, . . . . . . . .. ..o 172
Relationship Map of T¢ . . . . 0 . 0 o o000 0o 173
Entity and Qualifier Map of Tgq . . . . . . . . . .. .. 0L 175
Relationship Map of Tgq . . . . . . . . 00000000 176
Entity and Qualifier Map of T . . . . . . o o o oo oL 178
Relationship Map of Ty . . . . . . o o 0 o o L oo 179
Entity and Qualifier Mapof Ty . . . . . . . . . . . o . ..o 181
Relationship Map of Ty . . . . . . . o o oo o000 oL 182
Entity and Qualifier Map of Tyy: Part 1. . . . . . .. .. .. ... .. 184
Entity and Qualifier Map of Tyq: Part IT . . . . . ... .. ... ... 185
Relationship Map of Tog . . . .« . 0 o 0 0 0 oo 186

xi



Chapter 1

Introduction

Be happy.
It’s one way of being wise.
~Colette

1.1 The Problem

This thesis addresses three problems of framework development and evolution: iden-
tification and realization of the required variability of a framework; framework evolu-
tion; and framework documentation. We propose the cascaded refactoring method-
ology as a solution to address the problems. The methodology is validated by a case
study, the Know-It-All framework for relational database management systems.
Software reuse employs artefacts from existing systems to build new ones in order
to improve productivity, reliability, and maintainability, and to reduce cost and de-
velopment time [TRACS88]. Early experience with software reuse was limited to reuse
of program source code. Object-oriented programming offers reusability of code via
its techniques such as inheritance and composition. Class libraries with intelligent
browsers and application generators were developed to help in this process. The
contemporary reuse techniques have shifted the focus from code reuse to design and
architecture reuse because of the larger potential benefits [LI93]. Software product
lines and application frameworks are two of the latest cutting-edge reuse techniques.
A software product line describes a family of related software products in a specific

problem domain [WL99]. These products share a common, managed set of features



satisfying the specific needs of the domain, and are developed from a common set of
core assets in a prescribed way. Those features form a reusable platform, which can
be used to build products through extension with variable features that are specific
to particular products. By using a software product line, application developers are
able to focus on product specific issues rather than issues that are common to all
products.

As with all software, software product lines or frameworks undergo extensive evo-
lution, and there is the need to have methodologies that support their development
and evolution [MB99]. Although evolution in software product lines or frameworks is
more complex due to their higher level abstraction and interdependency, it has not
been studied much by the research community [SB99].

The cascaded refactoring methodology views framework development as frame-
work evolution, which consists of framework refactoring followed by framework exten-
sion. A framework is specified by a set of models: feature model, use case model, ar-
chitectural model, design model, and source code. Framework refactoring is achieved
by a set of refactorings cascaded from the feature model, to use case model, archi-
tectural model, design model, and source code. The constraints of refactorings on a
model are derived from the refactorings performed on its previous model. Alignment
maps are defined to maintain the traceability amongst the models.

The thesis broadens the refactoring concept from the design and source code level
to include the feature model, use case model, and architectural model. Metamod-
els and refactorings are defined for the feature model and architectural model. A
document template is proposed to document the framework refactoring.

Next, we will at first give a brief view of object oriented application frameworks.
Part 2 introduces the existing framework development methodologies. The issues

addressed by our work are summarized in the last part.

1.1.1 Object Oriented Application Framework

An application framework provides a generic design within a given domain and a
reusable implementation of that design [JF88]. An object-oriented application frame-
work presents its design and implementation through a set of abstract classes and
their collaborations [BJ94]. The design of a framework fixes certain roles and respon-

sibilities amongst the classes, as well as standard protocols for their collaboration.



Customizing a framework by subclassing the given abstract classes makes the de-
velopment of individual application cost-effective. Frameworks are extensible and
flexible so that new components can be built and easily fitted into the infrastructure.
Typically, a framework is developed by expert designers who have deep knowledge of
the application domain and long experiences of software design. Frameworks offer a
concrete realization of a software product line [CN02].

In the context of a framework, variability between applications in a specific domain
is represented as hot spots, which is a variable aspect of the domain with associated
responsibilities [PG94]. A framework provides simple mechanisms to customize each
hot spot that resides in the framework architecture to instantiate concrete applica-
tions. A hot spot may have many hooks within it. A hook is a place in a framework
that can be adapted or extended in some way, such as by filling in parameters or cre-
ating subclasses, to provide application specific functionality [PREE94]. Hot spots
are usually realized with design patterns [PREE99]. Design patterns describes a com-
monly recurring structure of communicating components that solves a general design
problem within a particular context [GOF94]. They capture the intent behind a
design by identifying objects, their collaborations, and the distribution of responsi-
bilities. Design patterns present proven solutions for how to internally structure hot
spots in a framework [SCHM97]. Frameworks make heavy use of design patterns in
the design and documentation [RJ97] [FSJ99].

The first widely used framework was the Smalltalk-80 user interface framework,
called the Model/View/Controller(MVC) [KRAS88], which was developed in late
1970’s. MVC divides the user interface into three parts; models, an application ob-
ject that is independent of the user interface; views, which manages a region of the
display; and controllers, which converts user input events into operations on its model
and view. MVC was followed by other GUI frameworks including ET++ from the
University of Zurich [WGMS88]. There are a number of large commercial frameworks
such as Microsoft Foundation Class (MFC) [PROS99], Taligent [CP95], Java Abstract
Window Toolkit (AWT) and its successor Swing [DFKO04]. Frameworks can be built
on other domains, such as Choices for operating systems [RUSS91], and MET++ for
multimedia applications [ACKE96]. Frameworks do not need to restrict the imple-
mentation to object-oriented languages. The Genesis database system compiler is a

framework for database management systems {BBG+89]. It is implemented in the C



language.

Johnson and Roberts [RJ97] observe that a framework always evolves through
a number of levels of maturity from White-Box to Black-Box, as the level of ease
in the framework customization increases. Application developers of a White-Box
framework have to understand the internal structure of the framework, and provide
the subclasses to the abstract classes in the framework. Whereas a Black-Boz frame-
work encompasses a fairly complete set of concrete subclasses for each of the abstract
class, and the customization can be done by choosing the appropriate subclasses for
class composition. The core structure of a Black-Box framework is transparent to the
application developers. A framework evolves from White-Box to Black-Box as the
framework developers increase their understanding of the domain [JF88].

A framework is not easy to understand at first use. The large learning curve faced
by the first time users of a framework is a serious impediment to successfully reap-
ing the benefits of reuse [BD99]. Good framework documentation assists application
developers in framework reuse [JOHN92]. Documentation is a key step in framework
development, since the ability to write clear documentation that explains how appli-
cation developers should reuse the framework means that the concepts of the design
are clear and that the steps required for customization have been clearly thought
out [BCC+02]. Hence, documentation verifies that the framework is easy to use, and

this is the overriding goal of framework design.

1.1.2 Framework Development Methodologies

Developing a framework is different from developing an individual application because
a framework has to cover all relevant concepts in a domain, whereas an application
is only concerned with the application requirements [BMMBO00]. Thus, standard
software development methodologies are not sufficient for developing object-oriented
frameworks [PG94]. Moreover, framework evolution should be considered in frame-
work development since all frameworks seem to mature from initial versions through
to a stable platform [RJ97]. Framework evolution as a concept is broader than soft-
ware evolution because frameworks also evolve along maturity levels.

A framework as all software evolves [FSJ99]. Software evolution is “the dynamic
behaviour of programming systems as they are maintained and enhanced over their

life times” [BL76]. Perry [PERR94] classifies the source of software evolution into



three interrelated dimensions: the ever-changing environment, the process, and the
developers’ experiences. Software must continually evolve to remain satisfactory in
use [LR02]. Nonetheless, continuous evolution may reach a point that software be-
comes too complex to evolve cost-effectively. Parnas [PARN94] refers to this problem
as “software aging” and argues that the aging problem occur in all successful soft-
ware products, because uncontrolled changes deteriorate software structures and the
software artefacts become inconsistent. He suggests design for change and precise
documentation to address the issue.

Although research has been conducted on software evolution for decades, the
outcome is still far from expectation [TURS00]. Experiences from both academia and
industry have shown that, existing software development processes still lack adequate
support to deal with software evolution [LR02]. Mens [MENSO05] observes a set of
open issues in software evolution. He claims that evolution techniques for higher
levels of abstraction other than source code evolution are expected.

Several methodologies have been suggested for the development of frameworks.
However, the methodologies vary quite widely, and have been poorly supported by no-
tations for models [FSJ99]. The existing methodologies can be classified into Bottom-
Up, Top-Down, Hot Spot Generalization, and Use Case Driven. They are summarized

as follows [F'SJ99:

e Bottom-Up approaches build a number of applications in the framework domain
prior to developing the first version White-Box framework [JF88] [WW93]. The
common and variable features of those applications are identified during the
abstraction of the application design and encompassed in the framework [RJ97].
The framework is refactored in an iterative process until the framework can
handle all applications in the domain. Each new version of the framework is

validated via instantiating applications from the framework.

e Top-Down approaches perform analysis on the framework domain and capture
all features in terms of commonality and variability [STAR96] [WL99]. The
result of domain analysis is used to define the Domain Specific System Archi-
tecture (DSSA) and appropriate reusable components that can be customized
during actual application development [KKL+98]. The DSSA can be instanti-
ated to frameworks since frameworks are a kind of DSSA [TRACY94].



e Hot spot generalization approaches plan all applications before starting to build
a framework. They use an application object model to capture the domain spe-
cific knowledge [SCHM97] [PREE99]. Variability in the model is identified as
hot spots, which is realized by a hot spot subsystem. Each variation point in the
object model is associated with a hot spot subsystem that provides the variabil-
ity. Hence the framework class structure is “generalized” from the application

class structure.

e A use case describes the external visible behaviour of a system [JCJO92]. Use
case driven approaches start with domain analysis and organize the results
into use cases. Variability is modeled in use cases using variation points or
generalization [JGJ97] [DW98]. They then proceed with either top-down or hot
spot generalization approaches. The variation points are realized with design

patterns.

Design of a framework emphasizes the elicitation of the required variability. Use
cases models can be employed to capture the requirements since use cases have be-
come one of the standard techniques to model software requirements, especially after
the emergence of the Unified Modeling Language (UML) [BRJ99]. However, non-
functional requirements such as performance or implementation standard might be
difficult to model in use cases, due to its intrinsic “function-oriented” property. Fur-
thermore, experiences [GFA98] [VAM+98] have shown that readability of use case
models may be decreased by incorporating variability into already complicated mod-
els.

Traceability is the ability to trace the dependent items within a model and the
ability to trace the corresponding items in other related models [PB90]. It is used to
know the exact relationship between each requirement and its corresponding design
and implementation, also to verify whether the requirement is implemented [RG93].
Furthermore, framework development requires an iterative approach in which the
framework is refined a number of times [BOOC94]. As mentioned earlier, a framework
always evolves along two dimensions during its development lifecycle. Impact on
the design and implementation due to a change in requirements should be clearly

identified, propagated, and documented to maintain the traceability during evolution.



1.1.3 Three Support Issues

Based upon the above discussion, we observe that the existing framework develop-
ment methodologies lack adequate support to three issues. They are summarized as
follows [BX01]:

1. Identification and realization of the required variability of a frame-

work

Johnson [JOHN93] claims that an ideal way to develop frameworks should be an
iterative process which is composed of domain analysis, generic design, and vali-
dation. Domain analysis is a process to capture and represent information about
a family of applications in a domain [CN02]. It is an indispensable step to obtain
the requirements of a framework [RJ97]. Identification of the required variabil-
ity is particularly important for framework development because a framework
inherently contains more variability than a typical application. The bottom-up
and hot spot generalization approaches do not define an explicit domain analy-
sis stage, instead, they use standard use cases or object models to capture and
organize the analysis result. Some of the use case driven approaches such as
FeatuRSEB [GFA98] and top-down approaches use a feature model to capture
the variability, which has been a proven solution [KCH+90].

The common and variable aspects identified during the domain analysis should
be reflected appropriately into framework design [SCHM97]. Keeping traceabil-
ity from the requirements to design and implementation is essential to guarantee
the realization of the required variability. Use case driven approaches such as
Reuse-driven Software Engineering Business (RSEB) [JGJ97] place an emphasis
on keeping the traceability links of the representation of variability amongst the
models of a framework. Top-down approaches such as Feature Oriented Reuse
Method (FORM) [KKL+98] also propose a guideline to map requirements to
architecture and object models. Nonetheless, those guidelines are too general
to ensure and validate the realization of the identified variability in framework

design and implementation [FSJ99].

2. Framework evolution

Johnson and Foote [JF88] claim that developing a Black-Box framework at



the initial stages of the framework’s history is extremely expensive and diffi-
cult. Thus, most frameworks start their lifecycle as a White-Box framework
and evolve to a Black-Box framework in an iterative process. Framework de-
sign takes iteration because of three reasons: mistakes in requirements due to
the complexity of domain analysis; mistakes in abstraction due to inadequate
applications for generalization, which is very expensive; and the law of reuse,
which requires reusable software to be used in a context other than its initial

context to prove its reusability [FSJ99].

Only bottom-up approaches explicitly specify the common path a framework
takes in evolution [FSJ99]. However, there is no explicit description of where
and how a framework evolves when it has reached a certain state [MB99]. Refac-
toring is used extensively in bottom-up approaches to restructure the code
and design of frameworks without changing the visible behaviour [OPDY92].
Nonetheless, the transformation is only limited to source code and design,
and may cause inconsistence between different software artefacts during evo-
lution [MENSO05]. Furthermore, changes in a framework may cause conflicts
between the framework and the existing applications developed with the frame-
work, which is identified as one of the most common problems regarding frame-
work evolution [CHSV97]. Another problem is the increased structure complex-
ity, which causes a framework difficult to be comprehended and reused. Bosch
et al. [BMMBOO] states that these issues have not been addressed by the existing

framework development methodologies.

. Framework documentation

Different audiences are concerned with different aspects of framework documen-
tation [BD99]. Good documentation has to suit different audiences to meet their
needs. Two groups of audiences are application developers to reuse frameworks;

and framework maintainers to evolve frameworks [BD99).

Framework design is made abstract to accommodate commonality; is sometimes
incomplete in order to provide extensibility; and is complex because the collab-
oration and dependencies among classes can be indirect and obscure [JOHN92].
Thus, understanding a framework is more difficult than understanding an appli-

cation. Nonetheless, a framework must not be too complex to be comprehended



efficiently from the reuse viewpoint [BCC+02]. Therefore, accurate and com-
prehensive documentation is essential to reuse frameworks from the perspective
of application developers [FSJ99]. However, such a documentation approach

does not exist [BD99].

Parnas [PARN94] argues that good documentation is crucial to deal with soft-
ware aging. Keeping traceability during software evolution propagates the
changes on requirements to design and implementation, so to improves soft-
ware maintainability [DW98]. However, few existing development methodolo-
gies have provided a set of coherent models as the notion to document a frame-
work, and to support preserving traceability with precise guidelines. Fayad et
al. [FSJ99] state that framework documentation is still one of the open issues

in the framework research area.

1.2 Cascaded Refactoring Methodology

Current programming practice usually involves maintaining and updating programs
in source code form. Opdyke [OPDY92] categories software changes into three levels:
high level requirement changes, low level source code changes, and the intermediate
level between them. He introduces the term refactoring as “reorganization plans
that support change at an intermediate level”. For example, the refactoring that
moves a member variable from one class to another class. He also identifies the
intrinsic property of refactorings: refactorings should not change the behaviour of
a program. Opdyke uses preconditions to preserve behaviour during refactorings.
Tokuda and Batory [TB99] follow his work and propose additional refactorings to
support design patterns installation, i.e. change class structure to an appropriate
design pattern to increase flexibility. In order to facilitate the iterative process of
framework development, we take the idea of refactoring and extend the concept into
other type of software artefacts.

We propose the cascaded refactoring methodology to address the earlier mentioned
issues and provide a solution. The methodology is a hybrid approach, which com-
bines the modeling aspects of the top-down approaches, and the iterative refactoring
approaches of the bottom-up community. The methodology views framework develop-

ment as framework evolution, which is framework refactoring followed by framework



extension. The methodology only focuses on framework refactoring at the current
stage.

A framework is specified by a chosen set of models: a feature model that identifies
and organizes the commonality and variability of the framework; a use case model that
captures the requirements; an architectural model that specifies the high level design
in term of layers and subsystems; a design model that illustrates the interactions
of classes and objects; and source code. The required variability of a framework
is identified and captured into the feature model. In order to describe refactorings
and justify preservation of behaviour, metamodels of feature model and architectural
model are defined. The use case metamodel proposed by Rui [RB03] is adopted in
the methodology.

The methodology stresses traceability between the models. It defines a set of
alignment maps between the models to specify the traceability links amongst them.
An alignment map between two models maps every entity and relationship in the
domain to an object in the range without altering the functionality and variability.
The realization of the required variability of the framework is obtained by keeping
the alignment maps from the feature model and use case model, to the architectural
mode, design model, and source code.

The process of cascaded refactoring is a series of refactorings of the models. The
impact of the refactorings on a model M; to a model M, is translated via the align-
ment maps that have M; as the domain and M; as the range. Refactorings of a
framework is achieved through a set of cascaded refactorings on the models. Changes
on the requirements of a framework during the framework evolution are propagated to
the design and implementation by cascading the refactorings from the feature model
to other models.

We have defined a set of refactorings for the feature model, the use case model,
and the architectural model. The notion of the preserved “behaviour” of refactor-
ings of those models is clarified. For each model, a partial list of refactorings with
preconditions is defined.

The iterative process of framework evolution expects consistent and comprehen-
sive documentation. Rationale of software design allows maintainers to follow the

reasoning used by the designers [KEAN97]. The rationale behind refactorings of a

10



framework should be recorded. The methodology views a refactoring as an issue-
driven activity. The overall rationale is a collection of decisions, which is organized
into a template defined in the methodology. Each decision records the rationale,
choice, argument, and impact of an individual refactoring on one of the models. The
process of cascaded refactoring is documented by a series of decision record collec-
tions. As part of the framework documentation, the refactoring document presents a
clear roadmap of the sequence of applied refactorings on the involved models, in order
to evolve the framework.

The cascaded refactoring methodology broadens refactoring as a concept to feature
model, use case model, and architectural model. It weaves together steps for partial
domain engineering and steps of system refactoring. The methodology has been

validated by a case study.

1.3 Case Study

The research on software methodology in an academic setting needs a concrete case
study for the purpose of validation. Therefore, Know-It-All, a database management
system (DBMS) framework has been underway since 1997 [BCC+02]. It is a case
study to validate the cascaded refactoring methodology. In our initial ambition, Know-
[t-All is intended to support a variety of data models of data and knowledge, different
paradigms integration, and heterogeneous databases. It is intended to be used to
customize advanced database applications in bioinformatics. While the applications
to bioinformatics allow the framework to be verified, along the way, the research in
software technology leads to a platform for research in database technology, which in
turns leads to advances in bioinformatics and genomics.

Know-It-All is designed with scientific databases in mind, and does not provide
transactions. Instead, it provides a data feed mechanism for bulk or incremental data
loads. The prime task is querying of existing data. The framework provides a generic
infrastructure for database management systems and allows them to support a range
of data models (relational, object, object-relational, etc) where the data model itself,
and its constituents for query language, query optimizing, indexing, and storage have
clearly defined roles.

A database in Know-It-All is seen as a series of layers, each of which provides

11



the common interface. The usual breakdown of responsibilities into physical, logi-
cal, conceptual, and view layers is followed by Know-It-All. Each layer in Know-It-All
is basically a translator between its client layer and its supplier layer, as shown in
Figure 1. A layer provides a mechanism to decompose or translate queries, and a
mechanism to reconstruct answers (for example, an execution plan for relational al-
gebra expressions). The translation is done with the aid of the schema, and produces
both the translated query, and the mechanism to reconstruct answers. The layer
architecture is adapted from one for heterogeneous databases [MB96], while the re-
construction is carried out through navigating an iterator tree which represents the
execution plan. Know-It-All will eventually incorporate composite databases (such as
integrated or heterogeneous databases) and make no distinction between simple and

composite databases.

Next Layer

|I Result

Translate } » ReConstruct
produce
\
T ’"'"'""1
| Language | I A l Layer

Query | m
A
Language :
e |
I
]

Next Layer

Figure 1: Layer Structure

Limited by time and resources, to date Know-It-All only implements a relational
DBMS. The first version prototype is implemented with GNU C++, with some Java
for the user interface, and XML for communication of data between the C++ frame-
work and the Java tools. It supports query processing, data feed and schema defin-

ition. It also contains two sub-frameworks: OPT++ for query optimization [KD98|

12



and Gist for index technique [HKP97]. The prototype provides a generic infrastruc-
ture for relational database management systems and components for query opti-
mizing, indexing, and storage management. ANSI SQL-92 is chosen as the query
language, since it is the standard query language in the relational DBMS domain.
Flat text files are used as a storage medium, as well as a conventional physical stor-
age manager from PostgreSQL [POSTO01]

We construct the feature model, use case model, architectural model, design
model, and implement source code of the Know-It-All framework. The feature model,
use case model, and architectural model conform to the metamodels. The design
model follows the UML standard. The alignment maps between the feature model,
use case model, architectural model, and design model are specified. Based on the
models and maps, we demonstrate the cascaded refactorings with two refactoring

examples. All involved refactorings are recorded with the document template of

refactoring,.

1.4 Contributions

We have made the following contributions:

1. The concept of refactoring is extended to all models and not just source code

and class design.

In terms of level of abstraction, research on object-oriented software refactorings
has been mainly focused on source code and design level. The methodology
extends the notion of refactoring to the feature model, the use case model, and
the architecture. The invariants of refactorings on those models are identified
and a partial set of refactorings is defined for each of those models. Rui [RBO03]

has extended the use case model refactorings.

2. The cascaded refactoring methodology is proposed.

Framework evolution can be viewed as framework refactoring followed by frame-
work extension. The methodology addresses three issues in framework devel-

opment (see page 7). It places an emphasis on traceability of the models of a

13



framework, in order to realize the required variability, and to cascade refactor-
ings to maintain the consistency between the models during framework evolu-
tion. Refactorings of a framework is achieved with a set of cascaded refactorings
on the models. Framework documentation also benefits from using the models
to specify a framework, using alignment maps to specify the traceability links,

and using documented refactorings to specify the evolution steps.

. A set of models are chosen for framework development and evolution.

Precise guidelines to specify a framework with models are not given by the exist-
ing methodologies. We choose a set of coherent models to specify a framework
across the analysis, design, and implementation. The models are able to ex-
press the commonality and variability of a framework. Metamodels are defined
to exactly specify the models, to clearly describe the refactorings, and to allow

the behaviour preservation of refactorings to be justified.

. Alignment maps are defined to maintain the traceability of the models.

A set of alignment maps are defined to specify and maintain the traceability
links between the models. The maps provide a precise guideline to aid the
transition between different models. Change propagation during framework

evolution is obtained by keeping the alignment maps between the models.

. A document template is defined to record the refactorings.

The methodology incorporates the issue-driven approach and views a refactor-
ing as an issue-driven activity. The overall refactoring rationale is a collection
of decisions, which is documented with a template. Each decision records the
intent, choice, arguments, and the consequences of a refactoring. The refac-
torings on the models are recorded in the cascading sequence, as part of the
framework documentation, which is helpful to the design and maintenance of

the framework.

. An academic setting framework for relational database management systems,

called Know-It-All, is developed as the case study to validate the methodology.

The methodology has been validated with the Know-It-All case study. The mod-
els of Know-1t-All, and the alignment maps between the models are specified and

validated. Sample cascaded refactorings on the framework are demonstrated.

14



The limitations on our research are:

1. Cascaded refactoring is not a complete methodology.

The methodology aims to cover framework evolution. However, our work only
focuses on the framework refactoring. The metamodels are not defined in for-
mal languages. We only have initial treatment of variability within framework
models. The alignment maps are not full maps and are only defined on the
subset of each model. Source code related alignment maps are not defined. The
invariants of different models during the cascaded refactorings mainly stress the
functionality. More quality attributes should be considered in the context of a

framework. We have only defined a small subset of refactorings for the models.

2. The architectural modeling is rather limited.

We had difficulty to choose an appropriate architectural model for frameworks.
The traditional way of subsystem and interfaces is used to present the high-level
framework architecture. Other views of architecture such as the process view,

and deployment view are not covered.

3. The case study is not big enough.
Know-It-All only supports a small set of DBMS features. The design still lacks

flexibility. The indexing techniques are quite limited. More work is needed on
the physical layer. We only did a small number of refactorings on the framework.
The framework has not been validated with “rule of thumb”, i.e. a framework
should be verified by building a number of applications from the framework in

different contexts [RJ97].

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the back-
ground knowledge. Chapter 3 elaborates the cascaded refactoring methodology. The
Know-It-All case study is given in chapter 4. The final conclusion and future work is
discussed in chapter 5.

We assume the reader is familiar with the C++ programming language [STRO97].
The Unified Modeling Language (UML) [RATUO03] will be introduced in chapter 2.

15



Chapter 2

Background

Express yourself completely,
then keep quiet.

~Lao Tzu

This chapter introduces the fundamental background to understand the problem
and the solution that are described in this dissertation. Section 1 introduces software
evolution. Section 2 gives an overview of domain engineering and software product
lines. Section 3 introduces the concepts and notations of UML design models. Section
4 presents feature models with two seminal work FODA and FORM. Section 5 intro-
duces the basic concepts and notations of use case models. Section 6 reviews software
architectural models. Section 7 introduces object-oriented design patterns. Section
8 introduces object oriented application frameworks. Section 9 discusses software

refactoring. Software traceability is introduced in the last section.

2.1 Software Evolution

Software systems evolve to meet changing requirements. In this section, we introduce
the basic concepts relating to software evolution. The first part gives a brief view on
software maintenance and evolution. Part 2 explains the reason why evolution is an
intrinsic property of software systems. The laws of software evolution are described
in part 3. Part 4 discusses evolution from the perspective of tools and techniques.

The last part introduces software process models and the open issues for software

evolution.

16



2.1.1 Maintenance and Evolution

Software is much different from the products of other engineering fields in many
ways. It is intangible, complex, and very difficult to make correct changes [SUMMO0].
Hence, the approaches from existing engineering profession cannot be directly applied
on software development. Software engineering is the process of solving clients’ prob-
lems by the systematic development and evolution of large, high-quality software
systems within cost, time, and other constraints [LLO1]. The term “software engi-
neering” was proposed at a NATO conference at 1968 [NR68].

Typically, software engineering work is organized into projects, which can be di-
vided into three types: modifying an existing system, developing a new system from
scratch, and building a new system from existing components {LL01]. Most software
projects are of the first type, which is generally accepted as “software maintenance”.
It is a process not only including bug fixes, but also constant changes requested from
the customers. Swanson [SWANT76] proposed one of the first typologies for software
maintenance activities. The maintenance types are classified into corrective, adap-
tive, and perfective. The classification was adopted by the IEEE as the standard
for software maintenance [IEEE93]. Industry experiences have shown that software
maintenance activities span the production life of a software system and can account
for as much as 80% of its total budget [RBCM91]|. After several years of changes,
software systems are often significantly larger and different with their original state.
Thus, the word “evolution” is used to describe the process over software lifecycles.

Software evolution is “the dynamic behaviour of programming systems as they
are maintained and enhanced over their life times” [BL76]. It is a process of gradual
changes that takes place in a software system over a period of time. It has been gen-
erally accepted that, software must be continually adapted, enhanced, and extended
if it is to remain satisfactory in use [LR02]. Software evolution is usually classified
into three categories: corrections in various artefacts that cover from requirements,
to design and code; improvements on different quality factors, and enhancements on

general functionality and features [PERR94].

2.1.2 Dimensions of Evolution

Given a software system, Perry [PERR94| states that evolution is an intrinsic property

and observes three interrelated dimensions of sources of evolution:

17



1. Domain is divided into three parts. First, the real world and the set of observa-
tions of the real world from the system perspective, that is, the system context.
They are the fundamental sources of system evolution because they inherently
evolve themselves. Second, the system specification that is based on the ab-
straction of the context. Third, the theories that transform the specification

through different abstraction levels into an operational system.

2. Ezperience is the basis of the good judgement used in the process of abstraction
and reification of the system. Experience is gained from feedback, experiments,

and accumulated knowledge from building, evolving and using the system.

3. Process consists of three components: methods that are based on the theory
and experience; technologies that support automation of various aspects of the
building and evolving process of the system; and the organizational environment

in terms of culture and standards for systems and processes.

Perry’s result indicates that software must evolve to meet new requirements. How-
ever, continuous evolution may reach a point that new releases increase the complexity
and decrease the maintainability of software. It becomes too complex to evolve cost-
effectively. Parnas [PARN94| refers to this problem as “software aging’” and argues
that the aging problem occur in all successful software products due to the failure
of the product’s owners to modify software, and bad quality changes that deterio-
rate software structures. He suggests use design principles that expect changes, keep
change encapsulated, and document changes precisely and completely. However, de-

sign for change is difficult since it implies predicting the future.

2.1.3 Laws of Software Evolution

The most prominent studies of software evolution have been directed by Lehman and
his colleagues over a thirty year period dating back to the mid-1970’s [LB85] [LEHM96]
[LRO8] [LRO1]. The case study covers several large scale setting projects, includ-
ing the IBM OS/360 operating system, FEAST (Feedback, Evolution And Software
Technology) and its successor FEAST/1 and ongoing FEAST/2 [LR03]. They have
formulated eight laws of software evolution and claims that these laws reflect observ-

able behaviour that is “organisational and sociological in nature” and irrelevant to

18



the technology being applied in the evolution process. The eight laws are summarized

in the following list:

1. Continuing change: a software application must be continually adapted to sat-

isfy progressively emerging changes in its operational environment.

2. Increasing complexity: software complexity increases due to the uncontrolled

adaptation activity.

3. Self regulation: evolution processes are self regulating within large organisa-

tions.

4. Conservation of organisational stability: the average productivity rate on an

evolving system is steady over its life cycle.

5. Conservation of familiarity: the average knowledge and skills of all participants

to evolve a system are constant during evolution.

6. Continuing growth: the functionality and features of a software application must
be continually increased to maintain user satisfaction. The situation is often
caused by fulfilling requirements that were skipped in the previous releases due

to prioritized trade-off decisions.
7. Declining quality: quality of software applications decline as they evolve.

8. Feedback system: evolution processes are composed of multi-level, multi-loop,
multi-agent feedback systems. This law addresses evolution that involves the
use of Commercial Off The Shelf (COTS) software. A COTS application may
have to be changed due to the new requirements from a larger system in which

it is integrated.

Many empirical studies follow Lehman’s work. Kafura and Reddy [KR87] analyzes
the relationship between software complexity metrics and maintenance. They propose
two types of complexity metrics, code metrics and structure metrics, which were used
to quantify the complexity of different releases of a software system. They claim
that both types of complexity increase during the system maintenance, and extreme
changes of complexity in a procedure or module may suggest possible errors during

the maintenance activity. Their result conforms to Lehman’s fourth law.

19



Gall et al. [GJKT97] examine the structure of a telecommunication switching
system (T'SS) based on the data stored in a product releases database (PRDB). The
system is viewed as a hierarchy of four different levels: system, subsystem, module, and
program. They report that although the growth of the system conforms to Lehman’s
laws at the system level, individual subsystems and modules often do not, and exhibit

significant upward or downward fluctuation in their size across almost all releases.

2.1.4 Tools and Techniques

Lehman’s laws and other related work focus on the nature of software evolution and
the properties of the evolution phenomenon. Other research focuses on the develop-
ment of methods and tools that are used to facilitate software evolution. Mens et
al. [MBZRO03| proposes a taxonomy to categorize the tools and techniques for soft-
ware evolution in order to find the way to improve and collaborate the tools. The

categorization is summarized as follows:

1. When to integrate changes into a system? This category is divided into three
subgroups: time of change, whether the changes occur at compile-time, load-
time, or run-time; change history, which often relies on version control tools; and
change frequency, which is concern with the interval of changes during software

evolution.

2. Where does a change is made? This category is divided into four subgroups:
artefact, which ranges from requirements through architecture, design, source
code, test cases and documentation; granularity, which refers to the coverage
of artefacts to be changed; impact, which is concern with the consequence of
changes; and change propagation, which focuses on the way to keep traceability

between the artefacts (see Section 2.10 for detail on traceability).

3. What are the changed system properties? This category is divided into four sub-
groups: availability, indicates whether the system can be stopped for changes;
activeness, whether the system can automatically make necessary changes by
itself; openness, whether a system is specifically built for extension such as a
framework; and safety, whether the behaviour of a system can be preserved by

changes at compile-time or run-time.

20



4. Howto support changes? This category is divided into four subgroups: degree of
automation, whether changes are performed automatically such as refactoring
tools; degree of formality, whether a tool is based on mathematical formalism;
process support, whether a tool can be efficiently integrated into development
processes; and change type, whether a change being made modify the structure

or behaviour of a system.

Cook et al. [CTHOO] define evolvability as the “capability of software products to
be evolved to continue to serve its customer in a cost effective way”. As a software
quality factor, evolvability is determined by analysability, the ability to understand
a system and its necessary changes; changeability, the ability to transform a system
from one stable state to another state; stability, the flexibility to allow necessary
changes without altering structure or existing functionality; testability, the ability
to verify functional and non-functional requirements; and compliance, the ability of
a software product to adhere to standards relating to maintenance. They propose
an evolvability metrics model based on the classification and addresses evolution of
a system from three areas: software product quality, software evolution processes,
and the organisational environment. They claim that their work integrates modeling

techniques into the evolution phenomenon, hence includes the both views of evolution.

2.1.5 Software Process Models

Software process models are general approaches for organizing a software project
into activities in sequences, to be followed by software developers to perform the
work [BOEHS88]. They are mainly used to “determine the order of the stages in-
volved in software development and evolution and to establish the transition criteria
for progressing from one stage to the next”. A software development methodology
is a critical tool to manage software development processes in terms of risk con-
trol, software design, quality assurance, cost estimation, etc, to meet the clients’ re-
quirements [TRUS99]. A mature methodology increases the chances of making good
quality products “by decreasing the overall complexity of the software engineering ef-
fort” [BERA93]. Thus, a process model is different to a software methodology because
a methodology emphasizes on the stage transition and products representation.
Right after the appearance of “software engineering”, Royce [ROYC70] proposed

the classic stage-wise waterfall process model, which has become the basis for most

21



software acquisition standards [BOEHS8]. Software systems are developed in succes-

sive stages and the output of the previous stage is the input of the following stage as a

cascade. Thus, the model is called waterfall model, and each stage is also referred as

“phase”. Over the past thirty years since its emergence, some of its initial difficulties

have been addressed by adding extensions. Figure 2 [PREE92| shows an extended

waterfall model which stresses quality assurance. The activities of each phase are

described as follows:

Analysis

Verify

Verify

[ I
Specification la

Changed
requirements

~ :
Design

Verify

L implementation |

Verify

1

Integration

Verify

Development
—_——

Maintemance
N

!

Operations
mode

|

!

‘ Retirement J

Figure 2: The Waterfall Model

e Analysis establishes the system’s requirements by consultation with system

users.

format.

22

Specification defines the requirements completely and precisely in a prescribed

Design finds a solution to satisfy the software requirements.

Implementation realizes the design as a set of programs or program units.



e Integration combines the individual program units or programs together and

test as a complete system.

e Operations Mode delivers the system to the clients and put into practical use.
Maintenance work might be necessary at this stage to deal with changed re-

quirements.
e Retirement ceases the use of the system from the clients’ organization.

Verification has to be performed at the end of each phase to ensure the phase
products conform to the expected result or standards. The development process
can navigate through phases backward and forward to propagate changes to keep
traceability.

Based on the waterfall model, many other process models have been invented such
as evolutionary model and spiral model [BOEHS88]. The recent eXtreme Programming
(XP) process model is a lightweight approach of software development [BECK99]. XP
delivers a software system to its customers as early as possible and implements the
changes according to the feedback thereafter. It focuses on software code quality and
tests, quickly responds to the suggested changes with refactoring.

Rajlich and Bennett[RB00] state that the existing software processes do not pro-
vide adequate support for software evolution. They propose a “staged model” that

emphasizes maintenance activities. Software life cycle is viewed as five stages:

1. Initial development: the first version of software is developed and released to the
clients to be put into practical use. Team expertise and familiarity to system

architecture should be obtained to support the work at the later stages.

2. Ewvolution: the iterative process of evolving software based on the feedback from

the clients to satisfy new requirements.

3. Servicing. software enters into this stage when it starts “aging”, mainly caused
by inadequate expertise and familiarity which should be prepared in the ini-
tial stage. Hence, only minor defect repairs and simple functional changes are

applied.

4. Phaseout: when servicing cannot be performed cost effectively any longer,
clients try to gain benefits from the unchanged software as long as possible,

and often have to work around deficiencies.

23



5. Closedown: the clients shut down the software system and possibly replaces it

with a new system.

The global anxiety of “Y2K” problem before year 2000 has raised the awareness
of how extensively software evolution efforts span a system’s productive life and how
important evolution is. However, experiences from both academia and industry have
shown that, existing software development processes still lack support to deal with
software evolution in a cost-effective way [LR02] [MENS05]. Turski [TURS00] argues
that the problem of adapting existing software to evolving specifications remains
largely unsolved, perhaps is algorithmically insoluble in full generality. Although
research has been conducted on software evolution for decades, the outcome is still

far to expectation. Mens [MENSQ5] observes the following open issues in this area:

o Formal methods that stress evolution as an essential fact.

e Evolution techniques that target at higher level of abstraction other than source

code evolution.

e Development processes that support evolution from both technological and man-

agerial perspectives.
e Empirical studies on software evolution with large industrial settings.

e Quality factors that should be preserved during evolution to avoid software

aging.

2.2 Domain Specific Software Development

Early experience with software reuse was limited to reuse of program code, data struc-
tures, and class libraries in the new software projects [PRIE89]. Recent reuse research
concentrates on the development of common architecture with highly reusable com-
ponents for closely related applications in a domain [JGJ97]. In this section, we will
at first give an overview on software reuse. Part 2 introduces domain engineering.
Part 3 discusses software product lines. The last part presents some famous domain

engineering methods.

24



2.2.1 Software Reuse

Reuse is the use of previously acquired concepts or objects in a new situation, it in-
volves encoding development information at different levels of abstraction, storing the
representation for future reference, matching of new and old situations, duplication
of already developed objects and actions, and their adaptation to suit new require-
ments [PRIE89]. Software reuse involves the use of artefacts from existing systems
to build new ones in order to improve productivity, reliability, and maintainability to
reduce cost and development time [TRACSS].

Reusable software products, which are easy to be changed to adapt future re-
quirements, are a way to reduce development costs [CN02]. Meanwhile, feedback,
debugging, and experience gained through reuse improve the quality of products in
an iterative manner. These benefits have been a strong driving force of software
engineering method research and development for a long time {JGJ97].

Early experience with software reuse was limited to reuse of program source
code [PRIE89]. As a consequence, programming languages were developed to sup-
port code reuse, such as parameterization, data sharing via data types, code blocks,
information hiding, modules, generic packages, objects and classes, etc. Code reuse
was further supported by the wide application of software libraries, such as the C++
Standard Template Library (STL) [STRO97], which improve software development
productivity, and have been practiced in nearly every commercial organization [LI93].
The contemporary reuse techniques have shifted the focus from code reuse to design
and architecture reuse because of greater potential benefits [LI93]. One of the latest
cutting-edge reuse techniques is the domain engineering and software product-line. It
is based upon the idea that reusability depends upon a context of the problem and

its solution, which themselves are relatively cohesive and stable [ARAN94].

2.2.2 Domain Engineering

A domain can be considered from two perspectives: either the target world that
an individual application addresses, or a set of applications [SIMO97]. The latter
alternative is used in domain engineering. Tracz [TRAC94] defines a domain as a
collection of problems and a collection of existing or future applications perceived to
be similar. It is an area of knowledge that includes a set of concepts and terminol-

ogy understood by practitioners, and the way how to build software systems in that

25



area [ARAN94]. Domain engineering is a systematic design process of architecture
and a set of reusable assets (components and other work-products) that can be used
to construct a family of related applications in a given domain [CEQ0]. It incorpo-
rates business criteria and produces supporting rationale, models, and architectures
to make good decisions. It plays a key role in providing a stable architecture and
components for reuse.

Domain engineering is usually divided into three phases: domain analysis, domain
design, and domain implementation [CE00]. Domain engineering begins with domain
analysis, a process “for capturing and representing information about applications
in a domain, specifically common characteristics and reasons for variability” [CN02].
Domain scope is the set of selected target applications. The domain scope should
be clarified before starting the domain analysis. Domain analysis investigates both
the problem domain, the context and requirements, and the solution domain, i.e. the
applications [SCHMO00]. The input for domain analysis includes example systems,
user requirements, domain expertise, and future trends that can be gathered from
customer surveys, consultation with experts, and projections of future requirements.
The input is analyzed to identify and characterize elements that are common to all
family members, i.e. commonality, and to deal with elements that vary between

family members, i.e. variability [CE00]. Domain analysis includes three steps:

1. Domain identification and scoping: investigate all the applications in the domain

and try to find the reusable parts in the applications

2. Selection and analysis of examples, requirements, and future trends: the reusable

components have to reflect possible future requirements

3. Identification, factoring and clustering of feature sets: analysis models are used

to gather features into a decision framework. The domain terminology is accu-

mulated.

The output produced by domain analysis includes the taxonomy (glossary or
data dictionary) of the concepts in the problem domain and solution domain, and
the Domain Software Specific Architecture (DSSA) across applications in the do-
main [TRAC94]. A DSSA provides an infrastructure to describe the essential char-
acteristics of the application family, appropriate features for specified customers, and

the process how to refine it [TRAC94).

26



Domain design produces the core architecture and reusable components for a
family of applications. Typically, the design involves the selection of architectural
styles [SG96]. Variability between applications should be provided by the core ar-
chitecture. Other than the architecture itself, a production plan is also provided
to specify the guidelines of building applications from the architecture [CE00]. The
architecture and components are implemented during the domain implementation

phase.

2.2.3 Software Product Line

A software product line describes a family of related software products in a specific
problem domain [CHW98]. These products share a common, managed set of features
satisfying the specific needs of the domain, and are developed from a common set of
core assets in a prescribed way. The features form a reusable platform, which can
be used to build products through extension with variable features that are specific
to particular products. By using a software product line, software developers are
able to focus on product specific issues rather than issue that are common to all
products. Large companies, such as Hewlett-Packard, Nokia, and Nortel, have found
that a product line approach of software development can yield remarkable quantita-
tive improvements in productivity, time to market, product quality, reusability, and
customer satisfaction [CN02].

Typically, there are two relatively independent development lifecycles in software
product lines: one for the software product line itself; the other is for each product
instantiation. The product instantiation is the process of creating a specific software
product using a software product line [CHW98].

Developing a product line is not a trivial task since there are two contradictory
goals have to be satisfied simultaneously. A product line must not only be flexi-
ble in order to allow for diverse product instantiations, but also provide adequate
generic components that can be used to create individual products with minimal
effort [PERR98].

Two key issues in software product line development are requirements analysis and
variability realization [WL99]. Domain analysis has been proven to be one efficient
way to analyze and capture the requirements of a software product line [CN02].

Decisions about developing a product line within a domain can be based upon it.

27



Jacobson et al. [JGJ97] present a list of available techniques to implement variability,

which are summarized as follows:

o Inheritance is used when the variation is a method that needs to be implemented
for every application, or when some applications need to extend a type with
additional functionality. Everything that is common to the new application is

reused and others are replaced or extended through overriding.

e Parameterization is used when unbound parameters or macro expressions can be
inserted into the code and instantiated later by binding the actual parameter
or by expanding the macro. Template constructs in C++ can be used for
parameterization. Pre-processor directives are another feature of C++, which

enable more fine-grained configuration management.

o Configuration is used to select appropriate files and fill in some of the unbound
parameters to connect components to each other. Source code is selected from
code repositories and put together to form a particular product. The final

configuration is usually performed by compile utility, such as make files.

o Generation of derived components is used when there is a higher-level language
that can be used to specify a particular task. The language is then used to

create the actual component.

2.2.4 Other Work

Lucent [WL99] introduced the FAST (Family-Oriented Abstraction, Specification,
and Translation) methodology for product line engineering process. It divides do-
main engineering into domain analysis and domain implementation. Therefore, the
issues involved in domain design are considered in the domain analysis phase. FAST
promotes very small product lines, which are well understood, so development is a
one-increment activity. The methodology provides the systematic guidance to each
step during the product line engineering. These steps are carried out as transitions
between process states, each of which is a group of activities that are performed in a
particular situation to satisfy a specific concern.

Organization Domain Modeling (ODM) [STAR96] is a detailed domain analysis

process with a set of work products and dossiers. ODM mainly concentrates on the

28



domain engineering of legacy systems although it is also capable of analyzing the
requirements of new systems. It combines different artefacts such as requirements,
design, and code from several legacy systems into reusable common assets. ODM is
configurable with dossiers and can be integrated into other technologies. ODM is sup-
ported by DAGAR (Domain Architecture-based Generation for Ada Reuse) [KS96].
The DAGAR process applies ODM for domain modeling since it does not include
that phase. DAGAR consists of activities for both domain engineering and applica-
tion engineering.

Other approaches, FODA [KCH+90] (see Section 2.4.1), FeatuRSEB [GFA98§]
(see Section 2.4.3), FORM [KKL+98] (see Section 2.4.2), and RSEB [JGJ97] (see

Section 2.8.2), will be introduced in the later sections.

2.3 UML Design Models

Software engineers are human beings. There are limits to the human ability to un-
derstand complexity. Modeling is a well-accepted engineering technique that narrows
the problem which is being addressed [BRJ99|. In this section, we will at first intro-
duce the basic concepts of UML. Part 2 discusses the UML structural models. Part
3 discusses the UML behavioural models. The last part discusses the UML extension
mechanisms. We only focus on the UML design model and their notations, which are

used in the methodology and the case study.

2.3.1 Unified Modeling Language

A metamodel is a precise definition of the constructs and rules needed for creating
semantic models [OMGO03]. A metamodel defines the language to specify a model. A
model is a simplification of reality and provides the blueprints of a system [BRJ99).
Models help the modellers to concentrate the important aspects of a system in a less
complexity form through discarding things, which are not concerned in those models.
Software models are used to visualize, specify, construct, and document software
systems. For different aspects of software systems, there are different types of models
constructed to express details in different levels of abstraction [RIJB99].

A modeling language is a language whose vocabulary and rules are used to convey

the conceptual and physical aspects of a system [BRJ99]. The Unified Modeling

29



Language (UML) is a standard graphical language to model object-oriented systems.
UML originates from the “unification” of Booch, Rumbaugh and Jacobson’s object-
oriented modeling methods [RJB99]. It has rapidly become an industrial standard
for software modeling [RATU03]. The current custodian of the UML is the Object
Management Group (OMG) [OMGO03].

Given an object-oriented system, the UML structural models identify the compo-
nents and their relationships; the behavioural models capture the dynamic activities
among the instances of those components. The model extension in UML enable mod-
ellers to add new kinds of modeling elements and attach free-form information to

those elements [OMGO03].

2.3.2 Structural Models

A class represents a concept within the system being modeled. A class has attributes,
operations and relationships to other elements in the model. It is drawn as a solid-
outline rectangle with three compartments separated by horizontal lines, to hold the
name, attributes, and operations of the class. The signature of an operation may
be italicized to indicate the operation is abstract. An object represents an instance
of a class. An object has identity and attribute values. It is depicted similarly to a
class, but with instance-like characteristics. The top compartment shows the name of
the object and its class with underlined format, using the syntax: object name: class
name. The second compartment shows the attributes for the object and their values,
using the syntax: attribute name: type = value.

An association connects exactly two classes. It is depicted as a solid line connect-
ing the two class symbols (or two different ends at one same class). A name string
can be used to indicate the meaning of the path. If an association has class-like
properties, such as attributes, operations, it can be modeled as an association class,
which is represented as a class symbol which is attached to the association line with
a dashed line. An association can be adorned by different kinds of optional property
adornments, two of which are multiplicity and role names. A multiplicity property
indicates the allowable range of the cardinality of the set of instances of the classes
that the association connects. A multiplicity is represented as lower bound .. upper
bound. A star (*) can be used to represent unlimited non-negative integer range. A

role is represented by a name string near the end of the association path. It indicates

30



the role played by the class attached to the association end near the role name. A
link is an instance of an association. The notation of a link is same as that of an
association, but connects the instances of the two classes.

Inheritance in object-oriented paradigm is represented by a generalization rela-
tionship. It is shown as a solid-line path from the child to the parent, with a large
hollow triangle at the end of the path pointing to the parent. An aggregation rela-
tionship is represented as a hollow diamond attached to the end of the association
path pointing to the components. Composition aggregation is a strong form of ag-
gregation, which requires that a part instance be included in at most one composite
at a time and that the composite object has sole responsibility to manage its parts.
It is depicted by a solid filled diamond as an association end adornment. A depen-
dency indicates a “semantic” relationship between two model elements: a change to
the target element may require a change to the source element in the dependency.
A dependency is shown as a dashed arrow between the two model elements, with an
arrowhead pointing to the element on which the other element depends.

An interface specifies the externally visible behaviour of a class or a component
without exposing the internal structure. One class or component may have multiple
interfaces, each of which only specifies a limited part of the behaviour. Interfaces only
have operations. An interface may be shown with a full rectangle symbol with two
compartments and the keyword ((interface)). A list of operations supported by the
interface is placed in the operation compartment. Sometimes an interface is depicted
by a small circle.

A collaboration describes how an element is realized by others in a specific way.
The collaboration defines a set of roles to be played by instances and a set of in-
teractions that define the communication between the instances when they play the
roles. A collaboration is rendered as a dashed ellipse containing the name of the
collaboration. A package is a grouping of model elements. A package may contain
subordinate packages as well as other kinds of elements. All kinds of UML model ele-
ments can be organized into packages. A package is shown as a large rectangle with a
small rectangle attached to the left side of the top of the large rectangle. A note is a
graphical symbol for rendering constraints or comments attached to an element or a
collection of elements. It is depicted as a rectangle with a dog-eared corner, together

with a textual or graphical comment. A note is a common UML mechanism and can

31



Person

Course
Schedule

registers

teaches .

Professor Student

1.0 U

Course

belongs

. belongs
1
Department

Figure 3: A Class Diagram Example

be used in both structural and behavioural models.

Figure 3 shows a simple class diagram. An instance of the Department class
includes more than one instances of the Professor class or Student class. The Person
class is the superclass of the Professor class and the Student class. They have a
“teaches” association. A Student instance can register more than one Course instances,
and one Course instance can be registered by more than one instances of the Student
class. The CourseSchedule class depends on the Course class, i.e. changes made on

the Course class may have impact on the CourseSchedule class.

2.3.3 Behaviour Models

A sequence diagram presents a set of messages between instances to perform a desired
service. There are two dimensions in a sequence diagram: the vertical dimension rep-
resents time, and the horizontal dimension represents different instances. Typically,
time proceeds from top to bottom, and there is no significance to the horizontal or-
dering of the instances. In a sequence diagram, an object box with its vertical dashed
line represents an object. A focus of control shows the period of time during which
an object is performing an action. It is depicted as a tall, thin rectangle.

A collaboration diagram presents the collaboration amongst a set of instances and
their relationships given in a particular context. The notation of a collaboration
diagram is similar to the notation of an object diagram. The difference between them

is that, the links in a collaboration diagram are adorned with messages the objects

32



E FloorButton]
=

\2: FBrequest
Y

A
5: turn off
3:illuminate

1: Press

: ElevatorController

9: EBrequest
—

-

12: turn off 13: open door
10: illuminate / 11: move

7: close door

6: open door

L: Eleva;;gutggnj 4: move

H Elévator

Figure 4: A Collaboration Diagram Example

send and receive, and the order of the interaction is described with a sequence of
numbers starting with the number 1.

Figure 4 shows a collaboration diagram of Elevator System. When a User presses
a FloorButton, a Fbrequest message is sent to an ElevatorController object. The EI-
evatorController illuminates the pressed FloorButton and moves the Elevator towards
the User. The FloorButton is turned off once the Elevator arrives at the floor at which
the User is. The door of the Elevator opens to let the User steps in. The Elevator-
Controller closes the door after a period time. The User presses the ElevatorButton to
specify the destination floor. The EBrequest is sent to the ElevatorController by the
ElevatorButton. It is then illuminated by the message sent from the ElevatorController.
The ElevatorController moves the Elevator to the destination floor. Once the Elevator
arrives, the ElevatorButton is turned off and the door is opened to let the User step
out.

A statechart diagram is used to describe the behaviour of an object or an inter-
action. It focuses on the possible sequences of states and actions through which the
object or the interaction can proceed during its lifetime because of reacting to discrete
events. A statechart diagram is a graphic notation for a finite state machine. A state
is represented as a rectangle with rounded corners. An initial state, which indicates
the default starting place of the state machine, is depicted as a filled black circle. A
final state, which indicates the execution of the state machine, is represented as a
filled black circle surrounded by an unfilled circle. Note, initial and final states are

pseudo-states and may not have usual parts of a normal state except for a name. A

33



transition is a relationship between the two states indicating that the object described
by the state machine will traverse from the source state to the target state when a
specified event occurs and specified conditions are satisfied. A transition is rendered

as a solid directed line from the source state to the target state.

job-to-print

job-completed

Figure 5: A Statechart Diagram Example

Figure 5 gives a simple example of statechart diagrams. It describes the states of
a printer. When a job-to-print event is triggered, the printer shifts its state from ldle
to Printing, and recovers to the ldle state once the printing job is completed.

An activity diagram is a special case of a state diagram in which all or most of
the states are action states and in which all or most of the transitions are triggered
by completion of the actions. Activity diagrams focus on flows driven by internal
processing rather than external events. The notations used in an activity diagram
are almost as same as those of a state diagram, except the forking representation of
branches.

Figure 6 shows an activity diagram example. It describes the state transition of
an Order Processing system. The system displays the login screen for the users to enter
name and password for authentication. Users can perform various activities regarding

with orders: Place order, Display order status, and Cancel order. Users choose "exit" to

terminate the system.

2.3.4 Model Extension

Stereotypes, tagged values, and constraints are the extension mechanisms of UML
[OMGO3]. A stereotype is an extension of the vocabulary of UML, allowing modellers
to create new kinds of modeling elements similar to existing ones. A stereotype is
rendered as a name enclosed by guillemets, and placed above the name of another
element. A tagged value is an extension of the properties of an UML element, allowing

modellers to create new information in the specification of the element. A tagged value

34



LoginScreen
Displayed

Name/
Password
Entered

Verify
Information

Select
Function

@< [exit]

ancelOrde
[Cancel order selected] Form
Displayed

Status On
[Get status selected) Order
Displayed

OrderForm
[Place order selected] Displayed

o

Figure 6: An Activity Diagram Example

is depicted as a string enclosed by brackets and placed below the name of another

element. A constraint is an extension of the semantics of an UML element, allowing

modellers to add new rules or to modify existing ones. Graphically, a constraint is

rendered as a string enclosed by brackets and placed near the associated element or

connected to the elements by dependency relationships. A constraint can be also

rendered as a note.

1

This diagram shows an
example of use of

<<layer>>

LogicalDB
{implementation=C++}

stereotype, tagged value,
constraint, and note.

{both layers are using same schema}

.

<<layer>>

PhysicalDB
{implementation=C++}

Figure 7: An Example of UML Extensibility

In Figure 7, a new modeling element, Layer is defined as a stereotype, based on a

package. The LogicalDB layer depends upon the PhysicalDB layer. Both of them have

a tagged value, which indicates that the layers are implemented with C++ language.

A constraint in natural language bound to the dependency between the two layers.

The note explains the purpose of the diagram.

35



2.4 Feature Model

As one of the widely recognized domain analysis techniques, feature modeling is “the
activity of modeling the common and the variable properties of concepts and their
interdependencies and organizing them into a coherent model referred to as a fea-
ture model” [KCH+90]. A feature model provides an overview of requirements, dis-
tinguishes between common and variable properties, shows dependencies between
features, and enables feature selection to define new products. It also helps devel-
opers define reusable components and describe dependencies between components
and features. Feature modeling is particularly important for reusable software devel-
opment because reusable software contains inherently more variability than typical
non-reusable ones. Feature models have already been applied in large industrial
projects in many domains, such as Electronic Bulletin Board [BRYA94], Telecommu-
nication [VAM+98] [KKLL99], and Elevator systems.

In this section, we will at first introduce FODA since it is the cornerstone of feature
model research. Part 2 discusses another famous method, FORM. Other work in the

literature is given in the last part.

2.4.1 Feature Oriented Domain Analysis

Feature Oriented Domain Analysis (FODA) [KCH+90] was developed at Software
Engineering Institute. Its thorough description of the domain analysis process and
explicit feature modeling has become the foundation for subsequent work in the re-
search area [KKL+98] [GFA98] [KLL+02] [PRO4].

In FODA, a feature is “a prominent or distinctive user visible aspect, quality, or
characteristic of a software system or systems” [KCH+90]. It represents an important
property of a concept in a domain. A concept can be anything of interest in a domain.
Features can be identified from existing and potential customers, domain experts and
literature, and exemplar applications. Feature analysis covers a broader range than
traditional requirement analysis does, since features cover both functional and non-
functional requirements, even non-technical constraints such as business laws in the
domain.

There are three kinds of features: mandatory features, optional features, and

alternative features. Given a domain, a mandatory feature is the core property of a

36



concept, a main domain characteristic, and constitutes the domain infrastructure. An
optional feature represents a property that may not be necessary to some applications
in the domain. Optional features indicate secondary properties of the domain in
contrast with the primary properties represented by mandatory features. Alternative
features represent different ways to configure a mandatory or optional feature. Both
optional features and alternative features are variable features.

A feature can be an aggregation (super-feature) of other features (sub-feature).
A feature set is composed of features, and the constraints over the features: if the
super-feature of a mandatory feature is included in a feature set, the mandatory
feature must be included in the feature set; if the super-feature of an optional feature
is included in a feature set, the optional feature may or may not be included in the
feature set; only one alternative feature is included in the feature set to which the
super-feature of the alternative feature belongs. A feature is a variation point if it
has at least one variable sub-feature. Composition rules specify the dependencies
between variable features in a feature set: two features must be selected together if
there is a “requires” dependency between them; if the selection of two features are

mutual exclusive, there is a “mutez-with” dependency between the two of them.

Relational

e
.

DDL/DML
Language

Model r

Answer
_Representation

I
Theor;
Y Calculus

Database

Memory

Inverted file

Medium

Hashing

6 e
€ oues |
l

Single

Distributes system

Data Structure

Multiple ‘

Figure 8: A Feature Diagram of the Database Domain

37



A feature diagram is the graphic notation of a feature set. A feature is depicted
with a rectangle. A mandatory feature is depicted by attaching a filled circle to
the rectangle. An optional feature is depicted by attaching an empty circle to the
rectangle. An aggregation is illustrated by lines from the super-features to all the
sub-features. Alternative features are portrayed with an arc across the aggregation
relationship. The root of a feature diagram, called “concept node”, represents the
domain concept being modeled. All features in the diagram except the concept node
are properties of the concept. For a feature diagram of a product line, the position of a
feature within the hierarchy shows its influence on the product line architecture. The
composition rules are expressed as: “(featurel) (‘requires’ | ‘mutex-with’) (feature2)”.

A feature diagram is usually accompanied by additional information, such as se-
mantic description of features, feature selection rationale, available exemplar systems,
etc [KCH+90]. A feature model is constituted by feature diagrams and the additional
information. Typically, a feature model focuses on identifying properties, factors, and
assumptions that can characterize products of a product line or differentiate one prod-
uct from others in the same product line, rather than finding implementation detail
of the products.

Figure 8 shows a simplified feature diagram of the database domain. The concept
node is the Database feature. Properties such as “Language”, “Storage” are mandatory
features, and they appear in any instance of the concept, i.e. applications in the
domain. On the other hand, the “Index”, “Transaction” are optional features, and
may not exist in some applications. The “Data Structure” feature has a variation

point, which can be configured to B-tree, hashing, or other mechanisms.

2.4.2 Feature Oriented Reuse Method

The Feature Oriented Reuse Method (FORM) [KKL+98] extends FODA to the design
phase and illustrates how the feature model is used to develop the domain architecture
and components for reuse, under a set of guidelines. Features are organized into four

categories in order to facilitate mappings from the feature model to design artefacts:

o Capability features literally characterize services, operations, and non-functional
constraints of applications in a given domain. For instance, query processing is

a capability feature of a DBMS application.

38



e Operating Environment features represent the environmental constraints from
hardware and software aspect. For example, a DBMS application may need

100GB hard disk spaces.

o Domain Technology features are a set of concepts, terminology, domain specific
methods and standards, laws, which are used for communication in a given

domain. For example, a B-tree index structure in the DBMS domain.

o Implementation Technique features represent low-level implementation issues,
such as an Abstract Data Structure (ADT) or a communication protocol. These

features are more “general” compared with the domain technology features.

Feature identification in FORM is also classified accordingly [KKL+98]. Typically,
capability features are mainly identified from user manuals; the requirement and
design documents are good for finding domain technology and operating environment
features; implementation features can be found in the design documents and source
codes.

There are three types of feature relationships in FORM. The composed-of relation-
ship is same as the aggregation relationship in FODA. A generalization relationship
indicates that a child feature can appear any place its parent feature can. When a
feature is the prerequisite to implement another feature, there is an implemented-by
relationship between them.

FORM consists of two engineering processes: domain engineering and application
engineering [KKL+98]. The domain engineering process starts with domain analysis
to find the commonality and variability across the applications in a given domain.
The analysis results in a feature model, which is used to develop reference architec-
tures and reusable components of the domain. A reference architecture is a common
software architecture for a family of applications in a domain [TRAC94|. The archi-
tecture of an individual application in the family can be obtained by instantiating the
reference architecture. However, a reference architecture is different from a Domain
Specific Software Architecture (DSSA) [TRAC94]. Typically, a DSSA concentrates
on the process to develop and instantiate reference architectures, whereas a reference
architecture focuses on the structure itself.

In FORM, a reference architecture is defined from three viewpoints: subsystem,

process, and module. A subsystem architecture groups service features and allocates

39



them to different hardware. Each subsystem is further decomposed into processes
which are concerned with the operating environment features. Modules are derived
from the domain technology and implementation technique features. The application
engineering process develops applications with the artefacts created in the domain
engineering. Typically, the efforts of building an application can be leveraged by the
customization of reference architectures with feature selection in a mature and stable

domain [KKL+-98].

2.4.3 Other Work

Griss et al. [GFA98] integrates the standard FODA process into the RSEB method-
ology [JGJ97] (see Section 2.8.2) to form the FeatuRSEB methodology. Instead of
the use case models in RSEB, FeatuRSEB uses feature models to play the unifying
role of models. These feature models act as a convenient centre repository to store
features for re-users to develop applications. FeatuRSEB also proposes an approach
to implement the feature diagram notation with the predefined UML modeling el-
ements. The feature models in FeatuRSEB extend those in the original FODA by
distinguishing between OR and XOR alternatives, where XOR shows mutual exclu-
sion and OR enables more than one feature. Czarnecki [CE00] also integrates the
“OR” feature into the feature models for generative programming. He defines a set
of normalization rules to normalize feature diagrams.

Kuusela [KS00] divides software requirements into design objectives and design
decisions. Design objective features are properties related to the functional require-
ments. They are presented within a design objective feature model, which is quite
similar to the one described by FODA. The features are either mandatory or optional,
presented in a tree structure with “decomposed-to”, “requires”, and “excludes” rela-
tionships. A concrete application is represented by a subset of those features. The
design decistons reflect solutions of the requirements and capture the design ratio-
nale. The nodes in the design decision feature model represent solutions, such as data
structures, design patterns, third party components or architectural decisions.

Riebisch [RBSP02] argues that the XOR and OR notation bring ambiguities into
feature models, and are not expressive enough in some circumstances. He introduces
the concept of “multiplicities”, which are similar to those of UML, to group features.

For example, “0..17 means at most one feature can be chosen from the set of the

40



sub-features.

Philippow et al. [PR01] propose a way to maintain traceability between feature
models and design models with feature names. A new stereotype ((variant)) is intro-
duced to model variable features. Each element of the new type is annotated with a
tag value which has a key “feature”. The key’s value is the feature name. They claim
that variant elements in design models refer to the features in the feature model with
the names, to achieve the traceability.

The feature concept has been integrated into UML since version 1.4 [OMGO1].
However, a feature in UML is a property similar to an operation or an attribute, and
is encapsulated in an interface or a class. It is different to the feature concept in

feature models.

2.5 Use Case Model

A use case “specifies the behaviour of a system or a part of a system and is a descrip-
tion of a set of sequences of actions, including variants that a system performs to yield
an observable result of value to an actor” [JBR99]. An actor defines “a coherent set
of roles that users of an entity can play when interacting with the entity.” [OMGO3]
Actors may be users of the software being modeled, or the operating environment,
with which the software must interact, or even part of the software [BRJ99]. A use
case can be viewed as a description of one specific use of the software by an actor.
It includes a set of sequences, in which each sequence represents the interaction be-
tween actors and the software itself. Use cases are defined from the users’ point of
views without exposing unnecessary design or implementation details. A use case
can be specified in natural languages and provides a good way to clarify software
requirements between the developers and the clients [PREE92].

In this section, we will at first introduce the UML use case model and the notation.

Part 2 discusses other work and concepts in the research area.

2.5.1 Use Case in UML

UML integrates use case modeling and provides it a set of graphic notations, which
are widely accepted in the software community [JBR99] [RATUO3]. A use case is

depicted as an ellipse, within which a unique text string is put inside as the name of

41



the use case. An actor is depicted as a stick man figure with the name of the actor
below the figure. Use cases and actors are connected with associations to express
the interaction between them. An association is symbolized as a straight line. UML

defines three relationships among use cases or actors:

e Include: If one use case incorporates the behaviour of another use case to fulfill
its behaviour, they have an include relationship. The former use case is called a
“base use case”, and the latter is called an “included use case”. The location of
the included behaviour is specified in the base use case. An include relationship
is depicted as a dashed line with an open arrowhead from the base use case to

the included use case. The arrow is labelled with the keyword ({include)).

e Frtend: An extend relationship from use case A to use case B indicates that
the behaviour of B may be augmented (subject to specific conditions in the
extension) by the behaviour specified by A. The behaviour is inserted at the
extenston point in B. An extend relationship is shown by a dashed arrow with
an open arrowhead from the extending use case to the base use case. The arrow
is labelled with the keyword ({extend)). The condition of the relationship may

be presented close to the keyword.

e (Generalization: A child use case inherits all the attributes, sequences of behav-
iour, and extension points defined in its parent use case. A child use case can
also override the behaviour of its parent, add new behaviour, and participate all
relationships of the parent use case. A generalization relationship is depicted
as a solid directed line with a large open arrowhead pointing to the parent use
case. The generalization relationship between actors has the same semantics

and notation.

A use case diagram illustrates a set of use cases and actors and their relation-
ships [BRJ99]. In Figure 9, a User is the actor of the DBMS Application. The Process
SQL query use case and Process OQL query use case are the children use case of the
Process Query use case. The Process Query use case includes the behaviour of the Op-
timize Query use case. The Bottom-Up Query Optimization use case and Transformative
Query Optimization use case extend the Optimize Query use case at the extension point

strategy.

42



Process
Query

ransformative
Query
Optimization

<<include>> ptimize
I Query
'Stm? <<extend>>

<<extend>>

User

Bottom-up
Query
Optimization
DBMS Application

Figure 9: Use Case Example

A use case describes a set of sequences, each of which represents one possible
way to carry out the behaviour described by the use case. Each sequence is called a
scenario [BRJ99]. A use case encompasses a collection of scenarios. A scenario can be
described in several ways, from a simple narrative text description, to numbered steps
indicating the “subject, action, object’ triples, or the UML sequence or collaboration
diagrams. A scenario is basically one instance of a use case. UML divides scenarios

into: primary scenario, the essential sequences; and secondary scenario, alternative

sequences [BRJ99].

2.5.2 Other Work

Regarded as the inventor of use case, Jacobson worked with colleagues [JCJO92] to
provide a thorough methodology addressing architectural, process, and organizational
aspects of software reuse. The requirements are gathered in a way from informal sce-
narios to the refined use case models. Each scenario is viewed as a test case of the
target system. Variability is captured with variation points using three mechanisms:
inheritance is used to specialize or extend behaviour with the ((uses)) and ((extends))
stereotypes; configuration slots are filled by choosing alternative component imple-
mentations; parameterization takes the form of a bound variable, a template instan-
tiation, or an evaluated expression.

Potts et al. [PTA94] view a scenario as a way an actor attempt a task that is
specified by a use case. They define different kinds of scenarios. A main scenario de-
scribes the usual way in which the task is successfully performed. Typically, in a main

scenario, the simplest sequence of interactions to execute the task is described, and all

43



steps of the sequence are assumed execute successfully. A variant scenario describes
another way to perform the task and all steps are assumed execute successfully. An
exceptional scenario describes a scenario where exceptional or error conditions may
arise during the task execution. It is possible to recover from the exceptions and
therefore successfully complete the task, which is described in a recovery scenario; if
not, a failure scenario is used for the description. All kinds of scenarios other than
main scenarios are secondary scenarios. The analysis of a software system is based
upon the thorough understanding of the scenarios derived from use cases.

A use case can also be viewed as a description of a cohesive set of dialogues that
the actor initiates with the system [BCKR97]. The dialogues are cohesive in the
sense that they are related to the same task, or form part of the same transaction.
Cohesiveness is often determined by having a goal in common for the tasks, or by
having a common responsibility.

Cockburn [COCK97| identifies four dimensions in use case descriptions: purpose,
content, plurality, and structure. A purpose dimension can be either a user story
or a requirement. A content dimension can be either informal contradicting prose
or formal contents. A plurality dimension indicates the multiplicity of scenarios,
while a structure dimension can be unstructured, semi-formal, or formal structure.
He [COCK97] claims his own approach is “requirements, consistent prose, multiple
scenario, and semi formal structure”.

Use Case Map (UCM) [BUHRYS8] is a visual notation for comprehending and
developing the architecture for emergent behaviour in large, complex, self-adapting
systems. A UCM is a two dimensional map of cause-effect chains from points of
stimuli through the system to points where responses are observed.

The OPEN Modeling Language (OML) [FHGY8] is a competing meta-modeling
language to UML. It represents the merger of SOMA [HFG97], MOSES [FHG98], and
Firesmith [HF97]. One important aspect of OML is the notion of tasks and techniques.
In OML, a task-action grammar is defined, so the requirement identification involves
task scripts.

Andersson and Bergstrand [AB97] present a method to formalize use cases to have
unambiguous syntax with Message Sequence Charts (MSC). This method divides use
case models into three levels. The system level describes the functional view of the

system; the structure level describes the use case behaviour without going into detail

44



by utilizing a hierarchical view that allows information hiding; and the basic level
describes the detailed interaction between the system and actors. The UML sequence
diagrams are used as notations.

Regnell [REGN99] focuses on the role of use case modeling in requirement engi-
neering and its relation to system verification and validation. He defines the process
of Usage-Oriented Requirements Engineering, an extension of use case driven analy-
sis; and Synthesized Usage Model, the output of the process. He also proposes a use
case metamodel, which characterizes the three levels in a use case. The environment
level identifies the relationship between use cases with external entities. The structure
level describes the internal structure of use cases. A use case is described in terms
of episodes [RAB96]. Each episode represents a subtask. An episode is composed of
events, each of which is a significant occurrence that has a location in time and space.

The event level distinguishes the specialized types of events.

2.6 Software Architectural Model

Software architecture is the high level structure of a software system. It defines “a
system in terms of computational components and interactions among those compo-
nents” [SG96]. In this section, we focus on the description of software architecture
with multi-view architectural models. The first part introduces the concepts of ar-
chitecture styles and architectural models. Part 2 discusses the “4+1 view” approach
since it is the cornerstone of this research area. The last part introduces the applied

software architecture.

2.6.1 Architecture Model

Shaw and Garlan [SG96] propose the concept of architectural style to define common
software architecture. An architectural style is described in terms of components,
the description of the elements from which systems are built; connectors, the interac-
tions among those elements; configuration rules, the constraints of how components
and connectors may be configured; semantic interpretation, which defines when suit-
ably configured designs have a well-defined meaning as architecture; and analyses,
which may be performed on well-defined designs. Widely used architectural styles

include pipe and filter, client-server, object-oriented, and layered architecture [SG96).

45



Architecture designers can choose a style based upon the system requirements.

An architectural model is the high-level design abstraction of a software system
in graphical documentation [KRUC95]. Architectural models document architecture
to enable communication on the architecture among stakeholders, to capture early
design decisions, and to provide reusable abstractions of software systems [BCK97].
Kruchten [KRUC95] suggests use multiple, concurrent diagrams to describe the en-
tire software architecture of a system, in order to overcome problems such as crowded
diagrams, inconsistent notation, and missed requirements, etc. Classification of the
diagrams are based on the perspectives, also called views, of different groups of stake-
holders of the system. An architecture view specifies the needs on the architecture
from a specific group.

Among the fundamental work on multi-view architectural modeling, the “4+41
view” approach proposed by Kruchten [KRUC95], and the applied software architec-
ture approach proposed by Hofmeister et al. [HNS99], have attracted interest from
industry and academia [MT00].

2.6.2 “44-1” View

The “4+1” view approach organizes a description of software architecture with five
concurrent views, each of which addresses a specific set of concerns. The logical
view concerns the solutions to functional requirements. The process view focuses on
dynamic aspects of the model and describes runtime behaviour, such as thread of con-
trol. The physical view describes the mapping of the software onto the hardware and
reflects its distributed aspect. It considers the system’s non-functional requirements.
The development view focuses on the actual module organization and the software
development environment. It is concerned with the ease of development, software
management, reuse or commonality, and to the constraints imposed by the toolset or
the programming language. The “+1” stands for scenarios, which are used to unify
the elements of the four views. Requirements are specified with scenarios. Scenar-
ios help designers discover architectural elements during the architecture design, and
validate the design [KRUC95].

Architecture design with the “4+1” view is an evolving process [KRUC95]. At the
beginning, scenarios are chosen based on risk and criticality, and a coarse architecture

of basic elements is created. The elements are organized into the four views. In the

46



next iteration, risks are reassessed and scenarios may be extended. The preliminary
architecture is reviewed and probably additional elements or significant architectural
changes are made. The four views are updated accordingly. In the same time, oppor-
tunities of reuse and identification of commonality are also considered. New iteration
starts and the process evolve until the architecture is stable. These views are carried
over into the UML system modeling [BRJ99].

Kruchten [KRUC95] mentions that not all software architecture need the full set of
views. A view can be omitted from the architectural model if the view is insignificant.
For example, it is not necessary to have the physical view if there is only one processor;
the process view is useless for a single process system; and the logical view can be

combined with the development view for very small systems.

2.6.3 Applied Software Architecture

Applied software architecture, also called the Siemens approach, is a result of a study
into the industrial practices of software architecture [HNS99]. It consists of four
views modeled in UML notation, as shown in Figure 10 [HNS99]. The conceptual view
presents the configuration of components and connectors. The module view shows the
structure in terms of layers, subsystems, modules and their interfaces. The execution
view identifies the hardware resources, communication mechanisms and paths, and
the runtime entities such as processes. The code view presents the organization of
source code, libraries, binaries, and executables.

The four views are loosely coupled. The components and connectors identified
in the conceptual views are used as the rationale in the module view to design the
modules, subsystems, and layers. The artefacts produced in the module view are
consulted in the execution view, and the artefacts in the execution view are consulted
in the code view.

Among the four views, the module view is close to the traditional architectural de-
scription in terms of layers and subsystems. The main purpose of the module view is
to map the functions and responsibilities to different modules. A module encapsulates
data and operations to provide services through its own interface. Modules can be
grouped into a subsystem, or assigned to a layer. A module can contain other mod-
ules. A subsystem is a group of high coupling modules. Typically, modules grouped

into a containing module are more tightly coupled than the modules contained in

47



SOFTWARE ARCHITECTURE
Components
Connectors
Configuration
Conceptual View |
- runtime u
Components constraints 2
Connectors module (u._|> |
Configuration constraints ':‘_-: )
module g
o | Execution < > :
Module View bl View E
Modules F N new module g
Subsystems new partitioning <
Layers Y moduie T
y partitioning
Runtime Entities
Code View hl
v ::hanges to ——
runtime entities
\/
SOURCE CODE

Figure 10: The Four Views of Applied Software Architecture

a subsystem. Layers organize modules into a partially ordered hierarchy. A layer
can contain other layers. An interface is a collection of operations. Interfaces act
as connection points for layers and modules. Subsystems are not allowed to connect
with interfaces. There are two kinds of interfaces: “provide” interface, and “require”
interface. A module can only directly use other modules in the same layer. In order
to use modules in other layers, the module has to use the interface of the layer, to
which those required modules belong. The metamodel of the module view is shown

in Figure 11 [HNS99].

2.7 Design Pattern

Building software is similar to building a house. Bricks, woods, and cements are com-
posed together in different ways to construct houses. Common ways can be found
in the construction of a series of buildings of similar purposes. These ways are re-
ferred as “patterns”. A design pattern describes a commonly recurring structure of

communicating components that solves a general design problem within a particular

48



*

contain
°©
-

Subsystem

*

rovide *
p Interface

0.1
T*—‘—J require * *

assigned to

require

provide
0..1

*

*

e

use contain

Figure 11: The Module View Metamodel

context [GOF94]. In this section, we will at first introduces the basic concepts of de-
sign patterns. Then we give an overview on object oriented design patterns since they

are made heavy use in framework design and documentation [SCHM97] [JOHN92].

2.7.1 Pattern

Alexander [AIS77] defines the concept of pattern as the description of a recurring
problem, and the reusable solution to that problem. Four elements are identified for
a pattern: a unique nmame for communication, the problem described with pre- and
post-conditions, the abstraction of the solution, and the consequence of applying the
pattern.

Buschmann [BMR+96] categorizes software patterns into three groups in terms of
their level of abstraction. An architectural pattern provides a set of predefined sub-
systems, specifies their responsibilities, and includes rules and guidelines to organize
their relationships. A design pattern describes a commonly recurring structure of
communicating components that solves a general design problem within a particular
context. Architectural and design patterns are independent of the implementation
languages. An idiom is a low-level pattern specific to a programming language. It

describes the way to implement particular aspects of components or the relationships

49



between them using the features of the given language. Software patterns capture
design expertise to shorten the path from novel programmer to experienced designer,
facilitate reuse across applications, and provide common vocabulary for the commu-

nication of designers.

2.7.2 Object Oriented Design Pattern

Due to the overwhelming acceptance of the “Gang of Four” book [GOF94], much of
the patterns focused by the software community are object oriented design patterns.
An object-oriented design pattern names, abstracts, and identifies the key aspects of
a common design structure that make it useful for creating a reusable object-oriented
design. It describes the roles and responsibilities of the objects and classes that col-
laborate to solve a general design problem in a particular context. The description
also includes the applicable scenarios, the constraints, and the consequences of apply-
ing the design pattern. Design patterns are classified into three categories: creational
patterns are concerned with initializing and configuring classes and objects; struc-
tural patterns are capable of decoupling interface from implementation of classes and
objects; and behavioural patterns handle dynamic interactions among classes and ob-
jects. It should be noted that we refer to an object-oriented design pattern as “design
pattern” throughout the dissertation.

It is difficult to understand design patterns with many active objects. To solve
this problem, Riehle and Gross [RG98] propose role models to describe the dynamic
aspects of design patterns. A role represents the view an object holds on other objects
and focuses on only one particular aspect of the object. An object may play several
roles at once, and the same role may be played by different objects. A role model
describes a particular aspect of object collaboration in a design pattern as a set of
roles and their relationships. Objects achieve the purpose of a role model by acting
as the definition of the roles they play.

Design patterns are frequently used in software product lines and frameworks
since they provide an effective way to realize variability [JOHN92] [BJ94] [FSJ99].
Roberts and Johnson [RJ97] suggest a list of design patterns and the corresponding
variability they address (Table 1). For example, if a framework has to provide the
flexibility of allowing the application developers to decide specific traversal algorithms

for an aggregate object, the Iterator pattern can be chosen. The pattern takes the

50



Variability Design Patterns
Algorithms Strategy, Visitor
Actions Command
Implementations Bridge

Response to change Observer
Interaction between objects | Mediator

Object creation

Factory, Prototype

Structure creation

Builder

Traversal algorithm

Iterator

Object interfaces

Adapter

Object behavior

Decorator, State

Table 1: Design Patterns for Variability

responsibility for access and traversal out of the aggregate object and put it into
an iterator object. The common interface for the traversal can be defined into an
abstract iterator class, and put it into the framework. Different traversal algorithms

on an aggregate object can be realized by providing the subclasses to the iterator

abstract class.

2.8 Framework

Object oriented application frameworks are believed to be the core of cutting-edge
technology of the twenty-first century [FSJ99]. In this section, we will at first give
an overview of framework and the related concepts. Part 2 introduces the existing
framework development methodologies. Framework evolution is discussed in part 3,

and framework documentation is described in the last part.

2.8.1 Framework Introduction

An application framework provides a generic design within a given domain and a
reusable implementation of the design [JF88]. An object-oriented application frame-
work presents its generic design and reusable implementation through a set of abstract
classes and their collaborations {BJ94]. The design of the framework fixes certain roles
and responsibilities amongst the classes, as well as standard protocols for their collab-

oration. Customizing a framework by subclassing the given abstract classes makes the

o1



development of individual application cost-effectively. Frameworks are extensible and
flexible so that new components can be built and easily fitted into the infrastructure.
Typically, a framework is developed by expert designers who have deep knowledge of
the application domain and long experiences of software design. Frameworks offer a
concrete realization of a software product line [CN02].

The first widely used framework was the Smalltalk-80 user interface framework,
called the Model/View/Controller (MVC) [KRAS88|, which was developed in late
1970’s. MVC divides the user interface into three parts; models, an application object
that is independent of the user interface; views, which manages a region of the dis-
play; and controllers, which converts user input events into operations on its model
and view. MVC was followed by other GUI frameworks such as ET++ from the
University of Zurich [WGMS88|. There are a number of large commercial frameworks
such as Microsoft Foundation Class (MFC) [PROS99], Taligent [CP95], Java Abstract
Window Toolkit (AWT) and its successor Swing [DFK04]. Frameworks can be built
on other domains, such as Choices for operating systems [RUSS91], and MET++ for
multimedia applications [ACKE96]. Frameworks do not need to restrict the imple-
mentation to object-oriented languages. The Genesis database system compiler is a
framework for database management systems [BBG+89]. It is implemented in the C
language.

Cotter and Potel [CP95] view a framework as three parts. The framework core is
composed of abstract classes that define the generic structure and behaviour of the
framework. The framework library comprises concrete components that can be used
with little modification by applications developed from the framework. The unused
library classes are optional for some applications built from the framework. The core
and library are also called ensemble.

Variability between applications in a specific domain is identified in terms of hot
spots. A hot spot is a variable aspect of an application domain with associated re-
sponsibilities [PG94]. A framework provides simple mechanisms to customize each hot
spot that resides in the framework architecture to instantiate concrete applications.
A hot spot may have many hooks within it. A hook is a place in a framework that
can be adapted or extended in some way, such as by filling in parameters or creat-
ing subclasses, to provide application specific functionality [PREE94]. Hot spots are
usually realized with design patterns [GOF94] [PREE99]. In contrast, frozen spots

92



represent commonality across applications.

Frameworks use template methods and hook methods to realize commonality and
variability in source code [PG94]. A template method provides the generic algorithm
or steps to perform a task. It calls one or more hook methods. A hook method
represents a point of variability by providing the calling interface to a variable task.
Each implementation of a hook method provides an alternative of that task. A
template method defines a generic control flow that is composed of hook methods.
An abstract hook method does not have the implementation of the method it defines,
while a regular hook method does. A template class is a class that has a template
method, and a hook class is a class that has a hook method [JR91]. A class can be
both a template class and a hook class depending on different contexts. It should
be noted that template methods in hot spots are different to the C++ template
constructs [STRO97]. In the remainder of the thesis, we always use the term to refer
to a template method in a hot spot if there is no additional description.

Design patterns can be considered as reusable micro-architectures that constitute
a framework [GOF94]. They describe common and frequently observed relationships
among classes, help determine the detail structure of hot spot subsystems, and com-
pose the rationale of the framework design [JOHN92]. Design patterns present proven
solutions for how to internally structure hot spot subsystems in detail [SCHM97].
Typically, design patterns are smaller architectures than frameworks. Frameworks
use a high density of design pattern to provide flexibility and extensibility. Moreover,
frameworks are always related to a specific application domain, and are more special-
ized than design patterns, which can be applied in any application domain [GOF94].

Framework reuse is different with class library reuse. A class library is a set of
related classes that provides general purpose functionality [STRO97]. The classes in a
class library are often not related to a specific application domain, which is the case for
classes in a framework [JF'88]. A class in a class library is reused individually, whereas
a class in a framework is usually reused with other classes in the framework together
under a prescribed protocol. Moreover, a framework is reused in the architectural
level, while a class library is reused in the class level. Cotter and Potel [CP95]

observe the following limitations in class library reuse:

1. The class hierarchies in large systems may be too complex to be comprehended

by designers cost-effectively.

93



2. Parallel development with class libraries may result in different solutions to the

same kinds of problems to obstruct maintenance activities.

3. The collaboration of objects created from class libraries in application devel-
opment has to be decided by the developers and errors can be made in the

process.

Johnson and Foote [JF88] define two types of frameworks from the customization
perspective: White-Box framework, and Black-Boz framework. White-Box frame-
work customization relies on inheritance of existing classes and requires in-depth
framework knowledge, while customization of Black-Box frameworks is performed via
using composition of existing components, each of which understands a particular
protocol. They claim that White-Box frameworks are hard to learn and require much
more efforts to use, in contrast to Black-Box frameworks. A framework “becomes
more reusable as the relationship between its parts is defined in terms of a protocol,

instead of using inheritance” [JF88].

2.8.2 Framework Development

Developing a framework is different from developing an individual application because
a framework has to cover all relevant concepts in a domain, while an application
is only concerned with the application requirements [BMMBO00]. Thus, standard
software development methodologies are not sufficient for developing object-oriented
frameworks [PG94]. Although there have been several methodologies suggested for
the development of frameworks, the methodologies vary quite widely, and have been
poorly supported by notations for models [FSJ99]. The existing methodologies can
be classified into Bottom-Up, Top-Down, Hot Spot Generalization, and Use Case

Driven.

2.8.2.1 Bottom-Up

An intuitive approach to design a framework is to begin with a White-Box framework,
which is the result of generalizing from a number of concrete applications [JF88].
Once the first version of the framework is done, it will be easier to develop more

examples [RJ97]. Wilson et al. [WW93] formalize the idea as:

o4



1. Develop several applications that are planned to be built from the framework
in the problem domain. A general rule is to build the first application; then
build a second application that is slightly different from the first one; and finally
build a third application that is even more different than the first two. This is
often referred to as the “rule of three” [RJ97].

2. Identify the common features in the applications and extract them to construct

a framework.

3. Redevelop those applications from the framework to verify the extracted fea-

tures.
4. Evolve the framework and build more applications from the framework.

5. Iterate step 4 until the framework can handle all applications in the domain.

Because applications are built prior to developing a framework, the approach is of-
ten referred to as “bottom-up”. Johnson [JOHN93]| states that bottom-up approaches
emphasizes an incremental way to build a framework with iterative refactorings to
restructure the framework (see Section 2.9.1). Nevertheless, he also recognizes that

generalizing applications to abstract design are difficult and expensive.

2.8.2.2 Top-Down

Top-Down approaches are domain engineering methods. They start with domain
analysis to organize commonality and variability within a domain into an analysis
model [CHW98] [CE00] [CN02]. The model is used to define the Domain Specific
System Architecture (DSSA) and appropriate reusable components that can be in-
stantiated during actual application development. The DSSA can be instantiated
to frameworks since frameworks are a kind of DSSA [TRAC94]. A framework is
validated by building test applications from the framework and is revised upon the
testing results. The development is an iterative process. The top-down approaches
include ODM [STAR96], FORM [KKL+98], and FAST [WL99](see Section 2.2.4).
Valerio et al. [VSF97] propose a domain analysis process for framework develop-
ment, called Sherlock. It is based on both FODA [KCH+90} and Proteus [HP94]
domain analysis techniques. Proteus is composed of three iterative phases: domain

description and qualification, domain requirements and architectural modeling, and

95



model validation. Similar to Proteus, Sherlock uses object-oriented modeling tech-
niques, and is tightly related to a reference incremental software process (the wa-
terfall model), in order to efficiently handle domain evolution according to the au-
thors [VSF97]. The process also takes the complete documentation from FODA to
prescribe how to model the requirements into reusable components of frameworks.
The approach has been validated with the development of a GUI framework at an
[talian software company [VSF97].

Johnson [JOHNO3] points out that analyzing domain requires analyzing existing
application, which is very hard and is expensive. Furthermore, it is only possible
if those applications are available. Thus, advocates of top-down approaches argue
that the cost can be balanced since a DSSA is rather stable, because “it is pos-
sible to predict the changes that are likely to be needed to a system over its life-
time” [WL99|. However, empirical studies have shown that software developers can
only identify a subset of future changes and they cannot provide the complete picture
of change [LS98]. Coplien et al. [CHW98] also recognize that it would be extremely

difficult to predict unknown future requirements of products in a domain.

2.8.2.3 Hot Spot Generalization

Schmid [SCHM97] claims that it is not cost-effective to start framework design by
trying to model its variability and flexibility at once. Instead, he suggests an “gen-
eralization transformation” approach that place an emphasis on hot spots, which are

the driving force of framework design. The approach is summarized as follows:

1. Develop an object model of an individual application from the framework do-

main with standard object oriented analysis methods.

2. Identify the necessary variation points in the model and write the hot spot speci-
fication. A hot spot specification includes the description of required variability;
granularity, whether the hot spot only covers one elementary variable aspect;
multiplicity, the number of alternatives that may be bound to the hot spot; and

binding time of the hot spot.

3. For each hot spot, design a hot spot subsystem, which is composed of an (ab-

stract) base class, concrete derived subclasses, and possibly additional classes

96



and relationships. Hot spot subsystems are classified into three categories: non-
recursive if a requested service is provided from one subclass object; 1:1 (chain-
structured) recursive if a requested service may be provided by multiple subclass
objects that are structured in a chain; and I1:n (tree-structured) recursive if a
requested service may be provided by a tree of subclass objects. Schmid also
categorizes the design patterns [GOF94] with the same classification and uses

the patterns to realize the subsystems.

4. Associate a hot spot system to each identified variation point to generalize the

application to a framework.

Pree [PREE99] proposes a similar approach called the hot-spot-driven develop-
ment process, which starts with an UML object model that captures the domain-
specific requirements instead of an application object model. The object model is
usually developed by domain experts and experienced software engineers with Class-
Responsibility-Collaboration (CRC) cards [BC89]. A CRC card describes the name
of a class, the responsibility of the class, and the relationships between the class and
other classes. He also suggests using use cases and scenarios to identify and validate
the object model. Hot spots are documented in the hot-spot cards, which contains
the name, description of the required flexibility, and the realization of the hot spot.
Demeyer et al. [DRMG99] introduce a variation to the approach which assigns a sep-
arate abstract class for each dimension of variability of a hot spot, that is, put the
hook methods called by a template method to different classes in order to increase
flexibility.

A framework must embody a theory of the problem domain as the result of domain
analysis, whether explicit and formal, or hidden and informal [RJ97]. However, exist-
ing hot spot generalization approaches do not encompass precise guidelines to perform

domain analysis, nor mapping guidelines from the analysis results to design [HIMO1].

2.8.2.4 Use Case Driven

Jacobson et al. [JGJ97] argue that existing software processes lack concrete tech-
niques to model reusable architecture and components, and precise guidelines to map
requirements to design and implementation. They invent the Reuse-driven Software

Engineering Business (RSEB), which is a systematic, use case driven reuse process

57



based on the UML notations for large-scale software reuse. RSEB has separated
processes for Domain Engineering and Application Engineering. The domain engi-
neering process plans all applications at once, and captures the requirements of the
applications within use cases [JCJO92]. Commonality and variability are specified
with generalization and variation points in use cases. The “4+1 View” [KRUCY95]
approach is adopted by RSEB to model architecture. RSEB places an emphasis on
modeling variability and keeping the traceability links of the representation of vari-
ability that ranges from the analysis, design, and implementation models. Although
RSEB focuses on variability realization, it does not include essential domain analysis
techniques such as feature modeling. To address this issue, Griss et al. [GFA98] extend
RSEB to FeatuRSEB by adding a feature model into RSEB, as the center repository
to store features for re-users to develop reusable architecture (see Section 2.4.3).
D’Souza and Wills [DW98] propose the Catalysis approach, which is a component-
based approach to develop software using UML and its extensions. Catalysis relatively
focuses on business driven solutions [HIMO1]. It uses three UML modeling concepts
to define components and component interfaces. The concepts are summarized as

follows:

e Type: A type models component interfaces by defining the external visible be-
haviour of objects. The UML class construct is used to specify the attributes

and operations of a type. A type does not have implementations.

e (Collaboration: A collaboration specifies how interactions between objects or
components occur with types and actions. Actions are specific invocations
of operations defined in a type. A collaboration is viewed as a design unit,
which defines a design for certain services specified in the system requirements.
Collaborations can be composed to define a more complex service or even an

architecture.

e Refinement. A refinement specifies a relationship between elements of types,
classes, and collaborations. It refers to the abstraction process to generalize
types and collaborations. The concept is mainly used to define different levels

of abstraction of collaborations.

The authors suggest using frameworks as building components at the design phase,

where a framework is viewed as a pattern of model or code that can be applied to

58



different problems. However, Catalysis does not illustrate how to develop the design
artefacts, and to integrate patterns into architecture.

John McGregor et al. [MMM99] introduce the use case assortment approach for
the requirement analysis of framework development. The approach combines a set of
modeling heuristics with an analysis technique to identify commonality and variability
in the use cases of the applications in the framework domain. Use cases exhibit a
same pattern are grouped together to form abstract use cases and abstract actors, i.e.
the assortment process. The assorted use case models provide framework developers

the same type of support as standard application use case models to application

developers.

2.8.2.5 Discussion

Johnson [JOHN93] suggests an ideal way to develop frameworks, which is summarized

as follows:

1. Analysis: Analyze the problem domain with existing applications.
2. Design: Construct abstraction that can be specialized to cover the applications.

3. Test: Test the framework by using it to build applications.

Although his proposition is closely related to the Bottom-Up approaches, it also
has impact on other approaches. Here, we will identify the common elements of the
existing approaches and summarize them in Table 2.

Framework design emphasizes the elicitation of required flexibility. Although all
approaches include domain analysis implicitly or explicitly, few of them have clearly
prescribed an effective way to identify and organize the result of domain analysis.
Except the top-down approaches, others often choose either an object model (with
the aid of use cases and scenarios) or use cases to model the requirements. How-
ever, non-functional requirements such as performance or implementation standard
may not be modeled with use cases, due to the intrinsic “function-oriented” prop-
erty of use cases. Furthermore, experiences have shown that readability of use case
models may be decreased by incorporating variability into already complicated mod-

els [GFA98] [VAM-+98].

99



Commonality| Bottom- Top- Hot Spot | Use Case

Up Down General- Driven
ization

Domain Domain Domain Develop Capture the

Analysis knowledge | analysis a domain | domain re-
is obtained | techniques | object quirements
implicitly such as | model. into  either
by building | feature use cases
applica- modeling. or feature
tions. models.

Variability Hot spot Hot spot Hot spot Hot spot

Realization Design pat- | Design pat- | Design pat- | Design  pat-
tern tern tern tern

Test Yes Yes Yes Yes

Iterative Yes Yes Yes Yes

process

Table 2: Commonality of Framework Development Approaches

Traceability from requirements to design is essential to guarantee the realization
of the required flexibility. Furthermore, developing a framework requires an iterative
approach in which the framework is refined a number of times [BOOC94]. Thus,
adequate supports for change propagation are expected to maintain the consistency
between different artefacts of a framework. Although the Use Case Driven approaches
stress traceability links among different models in order to guarantee the realization

of variability, they do not provide a precise guideline to address the issue.

2.8.3 Framework Evolution

Johnson and Foote [JF88] claim that developing a Black-Box framework at the early
stages of the framework’s history is extremely expensive and difficult. Most frame-
works start their lifecycle as a White-Box framework, which makes heavy use of
inheritance and the application developers must know how a component is imple-
mented in order to reuse it. As a framework becomes more refined, it leads to “black
box” components that can be reused without knowing their implementations. Ideally,
each framework will evolve into a Black-Box framework.

Roberts and Johnson [RJ97] observe that a framework always evolves through a

60



number of levels of maturity as the framework developers increase their understanding

of the framework domain and the required customization:

e White-Box: the application developers create subclasses in order to customize

the framework and need to look at the code of the abstract classes.

e Component Library: many concrete subclasses are available for the application
developers, much fewer subclasses are created during customization, compared

with the White-Box level.

e Pluggable Object: extensive use of delegation and there are concrete subclasses
available to serve as the targets of delegation, so the customization is mainly

achieved by parameterizing subclasses.

e Fine-grained Object: the role or functionality of the abstract classes is decom-
posed into smaller classes, which allow more mix-and-matching of pluggable

objects because of their finer granularity.

e Black-Box: application developers customize the framework without the knowl-
edge of the internal design, instead, existing fine-grained components are se-

lected and composed to build applications.

o Visual Builder: the choice of components and their composition is obtained by

using drag-and-drop in a graphical interface.

The above maturity level describes a common path that a framework takes in
evolution. However, there is no explicit description of where and how a framework
evolves when it has reached a certain state [MB99].

Framework evolution comprises two dimensions: evolves as all software; and ma-
tures from initial versions to a stable platform [RJ97]. At each stage of maturity, the
way that a framework is applied for the development of an application is different,
and demands different documentation in order to make the job of the application
developers easy [FSJ99)].

Codenie et al. [CHSV97] observe that there is very little support for framework
evolution. They identify a number of the most common problems regarding framework

evolution, which are summarized as follows:

61



1. Structural complexity: Framework evolution can make its structure difficult to

manage and comprehend.

2. Changes in the domain: A framework has to evolves once the framework domain
changes. There are three approaches to attack this problem: define the original
framework domain much wider than the current domain scope to accommodate
possible future domain changes; redesign a new framework to cover both the
original and the new domain; and reuse ideas from the original framework to
develop a new framework for the new domain. Each of them has pros and cons.

None of them has been widely accepted as an appropriate solution [FSJ99].

3. New design insights: Design of a framework may have to be enhanced because

of issues that were previously neglected.

4. Evolution conflicts: Changes in a framework may cause the incompatibility
between the architecture of the framework and the architecture of previously

created applications.

Bosch [BOSCO00] claims that the fundamental concern of using software product
line is product line evolution. He [BMMBOO] also states that the above issues have
not been addressed by the existing framework development approaches. The first is-
sue is software aging problem (see Section 2.1.2), which is caused by the inconsistence
between different software artefacts during evolution. Traceability facilitates software
comprehension and change propagation to improve software maintainability [JBR99).
However, the existing development approaches do not have adequate support to main-
tain traceability, as described in Section 2.8.2. One way to address aging problem is

to document software precisely and completely, according to Parnas [PARN94].

2.8.4 Framework Documentation

Documentation is viewed as a key step in framework development [BCC+02]. Prop-
erly documenting a framework is important to facilitate its understanding and use.
Framework design is very abstract and sometimes incomplete; and the collaboration
and dependencies among classes can be indirect and obscure. Therefore, understand-

ing a framework is more difficult than understanding a single application. On the

62



other hand, it should take substantially less time to understand and reuse a frame-
work than to build an equivalent application without using the framework. Moreover,
a framework is typically developed by expert designers who have profound domain
knowledge and design experiences, whereas an application developer who reuses the
framework might be less knowledgeable and less experienced. This kind of situation
also stresses the criticality of good framework documentation [BD99].

The documentation of a framework has to address different audiences to meet their
needs [BD99]. The audiences can be divided into four groups from the perspective of

framework reuse:

1. Application developers: An application developer wants to know how to cus-
tomize the framework to build applications. He is concerned about the relevant
hot spots and how to customize them. An application developer may not be

either a domain expert or an experienced developer.

2. Framework maintainer: A maintainer must understand the internal design of
the framework, including its architecture, design rationale, class collaboration,

problem domain, etc. A maintainer is both a domain expert and a software

expert.

3. Framework verifier: A verifier must validate certain properties of the framework
in order to meet rigorous customer requirements. He is mainly concerned about
whether the documentation is clearly specified. A verifier can be either an

application developer or a framework developer.

4. Developer of another framework: A framework developer seeks ideas from ex-
isting frameworks. He is concerned about the high level abstraction of the

framework. He may not be a domain expert for the reusing framework.

Different audiences have different focuses and need different information [BD99].
Johnson [JOHN92] argues that framework documentation needs at least three parts:
the purpose of the framework, to whom the documentation addresses; how to use the
framework, which is the most important documentation part; and the design of the
framework, which includes the detail design in terms of classes and their collabora-
tions. Framework documentation that meet the criteria help framework developers

construct clear concepts of the design and the steps required for customization. Hence,

63



documentation verifies whether a framework is easy to use, and this is the overriding
goal of framework design [BCC+02].

Most framework users are not interested in the details of a framework but are
looking for documentation that describes how to use the framework. A cookbook of a
framework is a collection of recipes, each of which describes how to perform a typical
example reuse of the framework [BD99].

Krasner and Pope [KRAS88] use a cookbook approach to describe the Model-
View-Controller (MVC) framework. The documentation comprises an informal de-
scription of the framework design, the implementation detail, and a set of examples,
which demonstrate how the framework can be used.

Pree [PREE94] introduces an active cookbook approach that describes an object
oriented framework using metapatterns. He classifies the design patterns [GOF94]
into three groups: patterns based on abstract coupling, the situation that a class
has a reference to an abstract class; patterns based on recursive structures; and the
remainder. Pree combines the concepts of abstract coupling and recursive structures
with the notion of multiplicity to identify seven metapatterns for template and hook
methods. Each variation point of a framework is described with a metapattern,
which defines what the template method or class is, and which is the hook method
or class. The framework design is put into a hypertext system, which is used as
an active cookbook for the framework users. Schmid [SCHM97] has integrated the
concept of metapattern into his generalization transformation approach for framework
development.

Cookbook approaches document the purpose of the framework and present exam-
ples. The guidelines of how to use the framework are described informally in natural
language. Most of them do not provide a precise mechanism to specify the detailed
design of frameworks. Furthermore, the major weakness of cookbook approaches is
that it only describes the typical way to use the framework, but lacks support for the
unpredicted use of the framework [JOHN92].

Johnson [JOHNO92] suggests using a set of patterns to document a framework. The
format of a pattern is composed of three parts: a description of the problem; a detailed
discussion of the alternatives to solve the problem, with examples and cross references;
and a summary of the solution. The first pattern in the documentation describes the

framework domain by giving examples, introduces the rest of the patterns, and often

64



specifies which patterns should be read next. He also places an emphasis on using
examples. He has applied his approach in the documentation of HotDraw [BC87], a
framework for semantic graphic editors.

Butler and Dénommée [BD99| state that the main audience group of framework
documentation is the application developers, who may be inexperienced in either
software development or the domain knowledge. They recommend a guideline on

how to document a framework to assist application developers:

1. An overview of the framework setting a context for the domain and the vari-
ability in the framework. A simple example application may be used as the first

recipe in the cookbook.

2. A set of example applications that are graded from simple through to advanced.
Hot spots should be introduced incrementally. A complex hot spot may need

multiple examples to illustrate its customization.

3. A cookbook of recipes are organized as Johnson’s pattern language [JOHN92].
The recipes should use the example applications to make their discussion con-
crete. Cross references should be used between recipes, recipes and source code,

and any other available documentation, such as design patterns.

Frameworks are more abstract than most software, which makes documenting
them difficult [JOHN92]. Furthermore, deciding whether a framework is successfully
well documented is also difficult, since there is no generally accepted documentation

approach that covers all aspects of frameworks [BMMBOO].

2.9 Refactoring

Software must continue to evolve to adapt to ever-changing requirements. One way to
reduce evolution cost is to automate aspects of the evolutionary cycle whenever pos-
sible [ROBE99]. Refactoring is a behaviour-preserving program transformation that
automatically updates an application’s design and underlying source code [FOWL99].
In this section, we will at first introduce source code refactoring since it is the cor-
nerstone of refactoring research. Part 2 gives a brief view on refactoring formalisms.
Part 3 discusses the tool support for refactoring. Part 4 explores refactoring of other

software artefacts. The last part describes the open issues of refactoring.

65



2.9.1 Program Refactoring

Opdyke [OPDY92] integrates Banerjee’s approach [BKKK87], the design principles
of Johnson and Foote [JF88], and the design history of UTUC Choices software sys-
tem into object-oriented program refactoring. He categories software changes into
three levels: high level requirement changes, low level source code changes, and the
intermediate level between them. Opdyke introduces the term refactoring as “re-
organization plans that support change at an intermediate level”. For example, a
refactoring that moves a member variable from one class to another one. He also
identifies the intrinsic property of refactorings: refactorings should not change the
behaviour of a program. Opdyke [OPDY92] suggests the use of preconditions, which
are the context that a program must satisfy to apply a refactoring, in order to pre-
serve the behaviour of programs. He defines twenty-three primitive refactorings and
three composite refactorings. They are referred to as “low-level refactorings”, in con-
trast to the three “high-level refactorings” that are supported by the former. Each
low-level refactoring is defined rigorously with parameters, preconditions, and proof
of behaviour preservation. They are given in the following list; the last three are the

composite refactorings:
1. create_empty_class: defines a new class without members.
2. create_member_variable: defines an unreferenced member variable in a class.

3. create_member_function: defines a member function in a class that is either

unreferenced or identical to an inherited function.
4. delete_unreferenced_class: removes an unreferenced class.
5. delete_unreferenced_variable: removes an unreferenced variable from a class.

6. delete_member_functions: removes a set of member functions from a class that

are either redundant or unreferenced.
7. change_class_ name: changes the name of a class.
8. change_variable_name: changes the name of a variable.

9. change_member_function name: changes the name of a member function and

all the inherited member functions in the subclasses.

66



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

change_type: changes the types of variables and the return types of functions.

change_access_control_mode: changes the visibility of a member variable or func-

tion.

add_function_argument: adds a new argument to a function and all the overrid-

ing functions in the subclasses.

delete_function_argument: removes an argument from a function and all the

overriding functions in the subclasses.

reorder_function_argument: re-arranges the arguments in a function and all the

overriding functions in the subclasses.
add_function_body: adds a function body to an existing function signature.
delete_function_body: deletes a function body from an existing function.

convert_instance_variable_to_pointer: converts the type of a variable from an

instance of a class to a pointer type of that class. This refactoring is specific to

C++.

convert_variable_reference_to_function_calls: converts all references or assign-

ments to a variable to calls to its accessing or updating functions, respectively.

replace_statement_list_with_function_call: replaces a statement list with the func-

tion call to a function that carries out the same behaviour of the list.
inline_function_call: replaces a function call with the body of the called function.
change_superclass: changes the superclass of a class.

move_member_variable_to_superclasses: moves a variable to the superclass from

all subclasses where the variable is defined.

move_member_variable_to_subclasses: moves a member variable from its current

containing class to each of the immediate subclasses.

abstract_access_to_member_variable: defines a set of functions to replace all

references to a variable with calls to those functions.

67



25. convert_code_segment_to_function: defines a new member function to replace a

statement list that has the same behaviour to the function body.

26. move_class: migrates a class to a new location in its hierarchy.

Opdyke [OPDY92] gives examples of the three high-level refactorings in C++

programs and discusses their behaviour-preservation properties.

1. refactoring to generalize: creates an abstract superclass for multiple classes.

2. refactoring to specialize: decomposes a large complex class to several smaller

classes and creates an inheritance hierarchy with them.

3. refactoring to capture aggregation and components: creates part-whole rela-

tionships between classes to improve flexibility.

He observes seven program properties, also called invariants, to preserve the be-

haviour of C++ source code refactoring:

1. Unique superclass: every class must have at most one superclass.

2. Distinct class names: each class must have a unique class name and classes

cannot be nested

3. Distinct member names: all member variables and functions within a class must

have distinct names

4. Inherited member variables not redefined: a subclass cannot redefine a member

variable of its superclass.

5. Compatible signatures in member function redefinition: redefinition of a mem-

ber function must have the same type signature of the overriding function.

6. Type-safe assignments: the type of each expression assigned to a variable must

be an instance of the variable’s defined type or subtype.

7. Semantically equivalent references and operations: changes can be made on
variables that are either unreferenced, or the new references are semantically

equivalent to the old ones after refactorings

68



Finally, Opdyke implies that his refactorings do not apply to programs that are
dependent on the size or physical layout of objects.

Many of the primitive refactorings defined by Opdyke are implemented by Roberts
in his Smalltalk refactoring browser [RBJ97]. Roberts [ROBE99] extends Opdyke’s
definition of refactoring by adding postconditions, which are assertions that a program
must satisfy after the refactoring has been applied. The idea comes from the obser-
vation that refactorings are typically applied in sequences which set up preconditions
for later refactorings. He argues that using postconditions can reduce the amount of
analysis that later refactorings have to perform, derive the preconditions of composite
refactorings, and calculate dependencies between refactorings. The preconditions of
a composite refactoring are deduced via sequentially evaluating the preconditions of
each refactoring in the interpretation that has been transformed by its earlier refac-
torings in the composite refactoring. He claims that since large design changes can
be composed by a sequence of smaller, primitive refactorings, the entire composition
is also a refactoring [ROBE99]. The dependency between refactorings is defined in
terms of commutativity, which refers to the assumption that refactorings do not have
to be performed in the sequence in which they are supposed under certain condi-
tions. Although he proposes a formula to calculate the conditions under which any
two refactorings may commute, the issue of how to determine the correct refactoring
order still exists. Roberts has also examined run-time analysis techniques that assist
dynamic refactoring in programs.

Tokuda [TOKU99] implements Opdyke’s refactorings in C++, and has shown that
those invariants cannot always preserve the behaviour of transformed C++ source
programs. He proposes additional refactorings to support design patterns as target
states for software restructuring efforts [TB99]. Class structures are changed to an
applicable design pattern to increase flexibility. Tokuda [TB95| claims that at least
seven patterns from the “Gang of Four” book: Abstract Factory, Adapter, Bridge,
Builder, Strategy, Template Method, and Visitor, can be viewed as the target of a
program transformation [GOF94]. He argues that the architectural changes of object-

oriented systems can be classified into three types [TOK99]:

1. Schema transformations: the schema of an object-oriented database manage-

ment system is similar to the class diagrams of an object-oriented application

2. Introduction of design patterns as micro-architectures: a number of patterns

69



can be viewed as automated program transformations that are applied to an

evolving design.

3. Hotspot generalization: refactorings on identified hot spots can be automated

through simple framework creation and adding necessary design patterns

He has shown that all three types of changes can be automated by refactor-
ings [TOK99].
Tokuda [TOK99] views a refactoring as a parameterised behaviour-preserving pro-

gram transformation, and suggests the following template to describe refactorings:
e Purpose: the reason why the refactoring is performed
e Arguments: the entities involved in the refactoring
e Description: how to perform the refactoring

e FEnabling conditions: under which circumstance can the refactoring be per-

formed

Initial state and target state: the structure of the involved entities before and

after the refactoring

Fowler [FOWL99] explains the principles and best practices of refactorings. A
comprehensive catalogue of seventy-two proven refactorings is presented in the book.
Each refactoring has a name, a short summary, a motivation that describes why the
refactoring should be applied, a step-by-step description of how to apply the refactor-
ing, and an example in the Java programming language. There are no conditions in
a refactoring to be satisfied to ensure behaviour preservation. Instead, he places an
emphasis on testing and suggests one prepare a set of test cases prior to start a refac-
toring. The test cases are executed against the changed program after each step of
the refactoring. His book is a landmark in making refactoring known to programmers
in general.

Refactoring is gaining more and more recognition through the application of eX-
treme Programming (XP) processes [BECK99]. In XP, developers evolve the de-
sign incrementally upon new requirements from the clients. One of the key as-
pects of XP is continual refactoring of the source code. Many object-oriented Inte-

grated Development Environments (IDE) provide considerable support for XP, such

70



as Eclipse [STOR02], an extensible open source IDE that supports two core activities
in the XP process: refactoring and unit testing.

An intuitive and pragmatic way to check behaviour preservation of program refac-
toring is to run an extensive set of test cases and compare the pre- and post-refactoring
results. However, Pipka [PIPK02] argues that tests relying on the program structure,
which may be modified by the refactorings, may show different results. Thus, it is
essential to perform behaviour-oriented unit tests before and after refactorings. Large
refactoring processes should be decomposed to set up checkpoints that reveal missing

or overseen preconditions to preserve the system’s behaviour.

2.9.2 Refactoring Formalisms

Refactoring can be represented as graph transformations. Heckel [HECK95] claims
that a direct correspondence between refactorings and graph transformations exists.
Programs or even other kinds of software artefacts can be specified with graphs.
The nodes are the software entities such as classes, variables and methods, while
the relationships between those entities such as inheritance, variable accesses and
method calls are represented by edges between the corresponding nodes. Refactorings
correspond to graph production rules and the application of a refactoring corresponds
to a graph transformation.

Mens et al. [MDJ02] present the formalisation of refactoring using graph rewrit-
ing, a transformation that takes an initial graph as input and transforms it into a
result graph. This transformation occurs according to a set of predetermined rules
that are specified in a graph production, which is specified by means of a left-hand
side (LHS) and a right-hand side (RHS). The LHS is used to specify which parts of
the initial graph should be transformed, while the RHS specifies the result after the
transformation. The “semantics” of a program is defined with well-formedness con-
straints, which are specified with type graphs, a meta-graph expressing restrictions on
the instance graphs that are allowed; and forbidden subgraphs. A graph is well-formed
only if there is a graph morphism into a type graph, that is, all node and edges can
be mapped to the type graph and the mappings preserves sources, targets and labels.
Forbidden graphs exclude illegal configurations in a graph, so that a graph satisfies
the constraints expressed by a forbidden graph if there does not exist a morphism be-

tween the graph and the forbidden graph. The preserved “behaviour” of refactoring

71



is expressed with the implementation of each method that is involved in the refactor-
ing. The “behaviour” can be categorized into: access, if each method implementation
accesses at least the same variables before and after the refactoring; update, a method
updates at least the same variables before and after the refactoring; and call, if each
method implementation performs at least the same method calls before and after the
refactoring. The approach has been validated with Fujaba, a graph-rewriting tool
that is tightly integrated with Java and UML [MEJD04].

Banerjee et al. [BKKK87] investigate object oriented database schema evolution
and identify a set of invariant properties of an object-oriented schema that must be
preserved during schema changes. Changes are specified with a set of transformations
rules. However, there are no rules that allow changing the location of a method in
a class hierarchy. Their work is recognized as the origin of object-oriented software
refactoring since object-oriented database schemas can be seen as the predecessor of
UML class diagrams [MT04].

Mens and D’Hondt [MDO00] propose an evolution contract formalism to manage
UML model transformation. They introduce the concept of evolution contract as
the formal constraints between the provider and the modifier of an artefact with well-
formedness rules expressed in the Object Constraint Language (OCL) [OMGO03]. The
provider clause of an artefact specifies what properties the artefact can be depended
on, while the modifier clause describes how to change the artefact precisely. The
UML metamodel is extended to incorporate the evolution contract as a subclass of the
Dependency metaclass. The exact “semantics” of model transformations is specified
with contract types, which are defined as the stereotypes of the evolution contract
metaclass. A primitive contract type performs the creation or deletion of model
elements and relationships, while a composite contract type is composed of primitive
types. Unexpected behaviour alteration or evolution conflicts can be detected by
comparing evolution contracts during model transformations. They claim that the
formalism can deal with the evolution of all kinds of UML models since it is defined
at the metamodel level.

The Design Maintenance System (DMS) [BAXT92] is a rule-based transformation
system. It works with a hierarchy of domains, each of which is specified with syntax,
semantics, and mappings to the same or other domains. DMS can implement source

code transformations, and has been used for transformation of COBOL programs for

72



the removal of duplicate code and dead code. However, the DMS transformations
cannot ensure behaviour preservation.

Philipps and Rumpe [PR97] present a calculus for stepwise refinement of abstract
data flow architecture in terms of components and connectors (also referred as chan-
nels). Architecture is rendered as a network which is composed of boxes (components)
and arrows (connectors). The calculus consists of a set of graph transformation rules,
such as adding or deleting components and channels. The behaviour of a component
is modeled as a relation from the set of input channels of the component, to the
set of output channels. A whole system is viewed as a black-box component and its
behaviour is specified with the composition of the behaviour of all the components
that are included in the system. The correctness of rules is justified by refinement
relations on the black-box views of architecture.

Griswold [GRIS91] suggests using meaning-preserving transformations to restruc-
ture programs written in a functional programming language, called Scheme. Many
transformations he chooses are compiler optimization techniques such as function
extraction. He uses program dependency graphs to reason the correctness of transfor-
mation rules, in order to ensure the “semantics” preservation. Those rules are not
well suited for object oriented languages since they are concerned with functional
languages and do not consider things like inheritance. He also observes that class
hierarchies complicate transformations.

Lieberherr et al. [LHR88] introduce a programming language independent rule,
called the Law of Demeter, which organizes and reduces the behavioural dependency
between classes to guarantee that methods have limited knowledge of the object
model. The law is originated from work with the Demeter system, which provides
a high level interface to object-oriented systems. They have shown that any object-
oriented program written in “bad style” can be systematically transformed into an
equivalent program that obeys the law [LH89]. The class hierarchy in Demeter is
described using production rules. A collection of these rules is called the class dictio-
nary. The transformation algorithm is defined with the data structure called a class
dictionary graph, in which classes are represented as the nodes, and their relationships
are the edges.

It is sensible to use graph transformation as the formalism to specify refactorings

73



because graphs are a language-independent representation of the source code. More-
over, transformation rules precisely specify code transformation, and the formalism
allows the proof of behaviour preservation. Nonetheless, it is extremely complicated
to deal with large nested structure with graph transformations, and the behaviour

preservation still cannot be guaranteed [MTO04].

2.9.3 Tool Support

Although it is possible to execute refactorings manually, tool support is considered
crucial. Automate refactorings reduce the cost and tedium of debugging and testing
commonly performed modifications, which would otherwise have to be performed
manually, to the internal structure of software systems [BECK99].

A refactoring process can be viewed as a sequence of activities, each of which can

be automated to certain extent [MTO04]:

1. Identify the software artefact that should be refactored
2. Determine which refactorings should be applied

. Verify the behaviour preservation of the applied refactoring

w

4. Apply the refactoring
5. Evaluate the consequence of the refactoring

6. Propagate the changes to other artefacts to maintain traceability

As Mens [MDO03] points out, contemporary refactoring tools usually only support
the automation of step 4, and neglect the remaining steps. Thus, they are referred as
“semi-automatic” tools since the developers still have to manually identify which part
of the software needs to be refactored, and select the most appropriate refactoring
to apply. However, Tokuda and Batory [TBO1] argue that even a semi-automatic
approach can significantly improve the productivity in terms of coding and debugging
time, compared with manual refactoring.

Tourwé and Mens [TMO03| propose a logic meta programming (LMP) based ap-
proach to devise a refactoring tool that automates step 2. They use SOUL, a Prolog-

like logic programming language that is implemented on top of Smalltalk, as the

74



metalanguage. All entities and relationships in source files can be directly accessed
from the SOUL environment through a metalevel interface of representational map-
ping predicates, which are used in queries to retrieve matching entities for refactoring
opportunities. Once an opportunity is found, a list of applicable refactorings is pre-
sented. They also observe the fact that the application of an individual refactoring
may open possibilities for other refactorings to be applied. They call this phenom-
enon cascaded refactoring opportunities, which can also be automatically detected.
The identification of refactoring opportunity, choice of applicable refactorings, and
cascading refactorings are based on predefined logic rules. They have integrated the
approach into a Refactoring Browser in the VisualWorks Smalltalk IDE.

Astel [ASTE02] suggests using an UML tool to analyze the refactoring possibility
in source code, and perform elaborate refactorings via direct manipulation on the
class diagrams of the code. He claims that many people prefer to visualize the classes
and their relationships, and refactorings at design level may be more efficient than
code refactorings in certain situations, such as when a class being changed involves
multiple source files. Refactorings can be done by simple drag-and-drop actions. He
argues that it is necessary to have a reverse-engineering tool to automatically generate
diagrams from code, and to keep the code and models synchronized.

Boger et al. [BSF02] present a refactoring browser for UML to detect evolution
conflicts that may be introduced as the side effects of refactorings. There are two
types of conflicts: warning, which indicates a possible side effect; and error, which
will harm the model or source code. They claim that most refactoring tools for UML
only apply to static structure in terms of class diagrams and lack support to handle
changes on dynamic behaviour. Thus, their tool aims at state and activity diagrams.
Refactorings are expressed with state merging, decomposing, parallelization, and se-
quentialization.

Mens [MENSO05] observes that no existing tool that provides adequate support
for refactoring of software artefacts other than source code, and thus may cause

consistency problem of the involved artefacts during software evolution.

2.9.4 Other Refactorings

Software is composed of many different types of artefacts range from analysis to de-

sign, implementation and test. Thus, all these artefacts should be kept consistent

75



when any of them is being refactored during software evolution. While many tech-
niques are available for program refactoring, some researchers shift their focus from
source code to other software artefacts.

The concept of an evolution contract [MD00] is originated from the reuse contract,
which is suggested by Steyaert et al. [SLMD96] to handle change propagation between
inheritance class hierarchy during software evolution. A reuse contract is an interface
that is composed of a set of method description, each of them consisting of a name,
an annotation, and a specialisation clause that lists the methods required by this
method. Evolution is specified with reuse operators, which define the transformation
rules on class hierarchies. Mens [MENSQ1] extends their work to allow arbitrarily
complex reuse contracts, in order to handle UML collaboration with graph rewriting
rules.

Judson et al. [JCF03] describe a metamodeling approach to perform pattern-based
model refactoring, which incorporates appropriate design patterns into UML design
models for perfective evolution. Transformations are specified with an extended UML
metamodel that is composed of: a source pattern, the classifier of source models to
which the transformations can be applied; a target pattern, the classifier of target mod-
els; and a transformation pattern, which characterizes the transformations to integrate
a design pattern. A transformation pattern includes a transformation schema, which
identifies the model elements that are created and deleted by the transformation; and
a transformation constraint that stipulates the preserved relationships between the
target and source model elements.

Garg et al. [GCC+03] present a graphical environment, called Ménage, to man-
age the evolution of software product line architectures. Ménage uses a XML-based
Architecture Description Language (xADL2.0) [WHO02] to describe product line ar-
chitectures in terms of components, connectors, and their interfaces with structure
and types schemas. All elements (including interfaces) are typed, and the schema also
supports the specification of sub-architectures to address scalability in architectural
specification. Optional and variation points are expressed with Boolean expressions.
Configuration of an architecture can be achieved by applying a set of user-specified
criteria, which is automatically interpreted by Ménage.

Critchlow et al. [CDCHO3] suggest an approach to enhance the Ménage environ-

ment with two tools. They propose the service utilization metrics, which address the

76



structural quality of product line architecture. There are two types of metrics for
a component: the percentage of provided services that are actually used by other
components, and the percentage of required services that are actually provided by
other components. A diagnostic tool, called ARCHMETRIC, is used to automati-
cally calculate and visually present the metrics of all components of a product line
architecture in each configuration. The results are analyzed manually to obtain the
instructions for the refactoring tool, called ARCHREFACTOR, which automates a
set of predefined refactorings on the architecture based on those instructions. The
refactorings are mainly concerned with changes to variability, such as changing an
optional component to be a core component.

Back [BACKO02] introduces a stepwise feature introduction method for software
construction that is based on incrementally extending the system with a new feature
at a time. The behaviour of a system must be preserved when a new feature is added,
or when the system structure is changed to fit new features. Software architecture is
viewed as a hierarchy of layers. Behaviour preservation is handled with correctness
conditions in the refinement calculus. Each class is assumed to have a class invariant,
which expresses the conditions of the attributes that must be established when the
class is instantiated, and which must be preserved by each operation in the class.
A method can be called only when its preconditions is satisfied, and possibly post-
conditions, which express the invariants when the calls return. Back argues that his
approach is a complement to XP because XP literature does not precisely define how
to structure software in an incremental way.

Russo et al. [RB98] suggest restructuring natural language requirement specifica-
tions by decomposing them into a structure of viewpoints, each of which represents
partial requirements of system components. They state that refactorings increase the

comprehension of requirements and detect inconsistencies.

2.9.5 Open Issues

Mens and Deursen [MDO03] identify emerging trends in refactoring research, and ob-

serve a list of open issues, which are summarized as follows:

1. Identify the appropriate formalisms and techniques for different kinds of refac-

torings

77



2. Analyze and manage dependencies between refactorings that are performed to-

gether

3. Extend the notion of behaviour from functionality to include other software

quality attributes
4. Address the scalability of refactorings to handle large industry setting software

5. Build extensible refactoring tools for user-specific or domain-specific customiza-

tion

6. Maintain traceability between software artefacts at different abstraction levels

during refactoring

They also state that the last issue also applies in a framework based or prod-
uct line software development process, when applications are built from framework
instantiation. When a framework is refactored, different instantiations may become
inconsistent. Thus, adequate support to manage consistency in framework refactoring

is desirable.

2.10 Software Traceability

A software system does not only include its code, but also its documents or other
artefacts, as the specification of the system in different levels of abstraction. Each
artefact is viewed as a model of the system [LIND94]. Traceability is the ability to
trace the dependent items within a model and the ability to trace the corresponding
items in other related models [PB90]. It is used to understand the entire software
process and its artefacts, to know exactly the relationship between each requirement
and its corresponding design and implementation, also to verify whether the require-
ment is implemented [RG93]. Complex software systems evolve continuously to meet
changing user needs. Keeping traceability during software evolution propagates the
changes on requirements to design and implementation, and provides a way to find
out how those parts are affected by the changes [DW98]. Thus, traceability facilitates
software comprehension and change propagation to improve software maintainabil-

ity [JBR99)].

78



Finkelstein [FINK91] explains the importance of traceability with another way.
He argues that there will be no need of traceability if software can be developed with
formal methodologies and the implementation is completely generated from a formal
specification. Jacobson [JACO87] introduces the concept of seamlessness. A software
development methodology is seamless if a software system can be completely gener-
ated from its specification and no seam between the two models of the system, with
the methodology. On the other hand, there will be semantic gaps between models,
if the development methodology is not seamless. Two models are seamlessly related
to each other if concepts introduced in one of the models can be found in the other
model through a simple mapping. The mapping is based on the traceability schema,
which are rules to map concepts in one model to concepts in other models. Jacob-
son et al. [JCJO92| claim that object oriented methods are better than structured

methodology since the former result in smaller semantic gaps between models than

the latter.

2.10.1 Requirements Traceability

The most common use of the term traceability is requirements traceability. Require-
ments traceability is “the ability to describe and follow the life of a requirement, in
both a forward and backward direction (i.e., from its origins, through its development
and specification, to its subsequent deployment and use, and through all periods of
ongoing refinement and iteration in any of these phases)” [GF94]. Backward trace-
ability is concerned with whether each requirement explicitly refers to its source in
previous documents, while forward traceability is the ability to refer to each require-
ment in the requirements specification in design and implementation. Requirements
traceability allows software maintainers to keep track of the change in the design and
implementation due to the requirement alteration during software evolution. It can
also assist the justifications and decision making in the design and implementation
phase.

Requirements traceability of software systems is important to different stakehold-
ers, such as clients, project managers, analysts, designers, testers, maintenance per-
sonnel, and end-users [RE93]. They view traceability from various perspectives in
terms of goals and priorities. Requirements traceability is intended to ensure contin-

ued alignment between stakeholders’ requirements and the software artefacts in the

79



development life cycle [RJ01]. The source and rationale of requirements should be
documented in order to understand requirements evolution and verification.
Empirical studies show that even experienced software developers can not predict
all possible future change of a software system [LS98]. On the other hand, more
accurate costs and schedules of changes can be determined with complete traceabil-
ity, rather than depending on the developers to know all the areas affected by these
changes [RJ01]. The estimation can be aided by impact analysis. It is the process to
analyze which parts of a system are affected by proposed change, and how much they
are affected [PB90]. Impact analysis is one of the main application areas of traceabil-
ity [KELL90]. Requirement verification can also benefit from traceability [KELL90].
Gotel and Finkelstein [GF94] classify requirements traceability into two kinds:
pre-RS traceability and post-RS traceability. The pre-RS traceability is concerned
with the aspects of a requirement’s life prior to its inclusion in the requirements
specification (RS); and the post-RS traceability is concerned with the aspects of a
requirement’s life that derived from its inclusion in the RS. Standard software en-
gineering approaches mainly address post-RS traceability. Research has shown that
most of the requirements traceability related problems are caused by the lack of
pre-RS traceability [FINK91] [GF94]. Finkelstein [FINK91] has argued that pre-RS
traceability problem will exist since it is inherently paradigm-independent. In addi-
tion, he also mentions the obstacle of tracing non-functional requirements, which were
not treated by most software development methodologies, and hard to be verified.
Ramesh and Jarke [RJ01] describe a set of requirements traceability reference
models based on empirical studies. The participants were different types of stake-
holders, and categorized into low-end and high-end groups with respect to their trace-
ability practise. There are separate reference models for the two groups, respectively.
The low-end traceability users view traceability as the documents transformation of
requirements to design. The main applications of traceability are requirements de-
composition, requirements allocation into system design, and change management.
The high-end users of traceability employ much richer traceability schemes than low-
end users. The main applications of traceability cover full life cycle including the
communication of clients and end users, design issues and rationales.
Knethen [KNETO02] introduces a conceptual trace model based on the analysis of

change-oriented traceability for embedded systems. The trace model determines the

80



types of traceable documentation entities and relationships to support impact analysis
and change propagation. The trace model consists of conceptual system model and
conceptual documentation model. A conceptual system model describes logical entity
types, their dependency and refinement relationships that are included in the system
at different abstraction levels. Logical entity types and their relationships depend
on the investigated application domain. A conceptual documentation model describes
representation entity types and their relationships that are included in the documents
at various abstraction levels. A conceptual documentation model of a system can be

derived from the conceptual system model.

2.10.2 Dimensions of Traceability

Given a software system, horizontal traceability is the possibility to trace a require-
ment throughout the models, i.e. from requirements throughout the design to its
code implementation. Horizontal traceability conforms to the definition of require-
ments traceability. Vertical traceability is the possibility to trace dependencies within
a model [PB90]. It is also termed as tracing by hierarchy. »

Traceable models should include requirements, specifications, and implementa-
tions [RE93]. Traceability from requirements to design can be recorded into design
rationale. It refers to why a certain design decision is made and which requirements
is fulfilled by a certain decision [CONKS89].

Horizontal traceability and vertical traceability form a traceability web, which is
depicted in a directed graph shown in Figure 12 [LS96]. It is based on Pfleeger’s
work [PB90]. The nodes represent the requirement, design component, and code, and
the edges specify the link of traceable dependency, also called traceability link. Every
node in a model may have many edges to nodes in other models. Lindvall [LIND94]
argues that decreasing the complexity of the tracing dependencies assists impact
analysis and increases the system maintainability.

Traceability can be distinguished to be explicit traceability and implicit traceabil-
ity. Eaplicit traceability is the ability to trace via predefined traceability links or other
kinds of references between items in two models. Implicit traceability occurs in all
situations where explicit traceability does not exist [LIND94].

Level (granularity) of traceability refers to the level of traceable detail between

81



Requirements Analysis Design Code

” Mol [ o1 | c

L3¢ N T\Eb <]

=3 \\/ J T {03 ] @
Vertical Horizontal

m links m links

Figure 12: The Graphical Traceability Web

models [LIND94]. The coarsest level is the ability to trace from a document to an-
other document, and the most refined level is to trace every single statement. Smith
et al. [SDKDO03] define granularity as the size of the sub-units of an artefact under con-
sideration in the traceability context. Coarse granularity implies that an artefact has
few sub-units, while fine granularity indicates a relatively large number of sub-units.
They propose a framework to facilitate change propagation automation [SDKDO03].
Change propagation is regarded as two dimensions: the automation degree to im-
plement change propagation, and the automation degree to be notified of change
propagation. Given an artefact that is involved in change propagation, its traceability
value is the product of these two dimensions and the granularity at which the artefact

is located.

2.10.3 Traceability Characterization

Lindvall [LIND94] provides a set of concrete traceability examples from the perspec-
tive of a software maintainer, based on the case study on a large scale commercial
project using Objectory [JCJO92] as a methodology for system development. He

characterizes traceability into a two-dimensional classification based upon the exam-

ples.

The first dimension is the traced items:

1. Object-to-object traceability: an object in a model is mapped to a corresponding

object in another model.

2. Association-to-association traceability: the ability to trace an association in one

82



model to its corresponding association in another model. If an association can-
not be directly mapped to the range model with the same semantics, discussion,

ratification, and verification should be performed to maintain the traceability.

3. Use-case-to-object traceability: the mapping is based on the object participation

of a use case.

4. Use-case-to-use-case traceability: the mapping is based on the functional re-

quirements specified by a use case.

5. Two-dimensional object-to-object traceability: it deals with tracing class in-
heritance hierarchy between two models. Inheritance represents dependencies
within a model (vertical traceability) since the descendant is depended on all
its ancestors. On the other hand, the traceability links represent horizontal

traceability.

The second dimension is concerned with the tracing process:

1. Tracing via explicit links: the standard process of a typical development envi-

ronment.

2. Tracing by using references: textual references are used to trace between differ-

ent documents.

3. Name tracing: items are traced with names. It is based upon the assumption

that a consistent naming scheme is applied during the model construction.

4. Concept tracing: experienced developers use in-depth system and domain knowl-

edge to trace interrelated items.

He argues that the characterization is not only useful for maintainers to under-
stand the systems, but also beneficial to the cost estimation of change impact analysis.

Olsson and Grundy [OGO02] introduce an approach to support traceability and
change propagation between functional and non-functional requirement description,
use case models and Black-Box test plans. The metamodels of the requirement model,
use case model, and test case model are defined in terms of context, data, and in-
teraction. The model elements are captured from the corresponding representation

such as high-level natural language requirement documents, and summarized into

83



pre-defined forms. Vertical traceability information is inherently specified by the

metamodels. The horizontal inter-model relationships are classified into:

Ezact: Exact duplication information between two models such as name tracing.
Similar: Similar concepts between two models.

Generalisation: More abstract information in one model based on information in

another model.

Specialisation: More detailed information in one model based on information in

another model.

Multiplicity: The multiplicity information of elements between two models. The
relationship is refined into Splits (1: many), Merges (many: 1), and Exact

group (m: n).

2.10.4 Automation and Tool Support

It is essential to have automation tools to support traceability management since
creation and validation of trace information has been proven to be extremely time
consuming and error-prone [EGYEOQ1].

Lange and Nakamura [LN97] present an approach to obtain, manipulate, and vi-
sualize runtime traces that provides fine-grained localization information for program
understanding. Object interactions are captured into an object interaction graph
based on the observable behaviour during execution. Search space reducing tech-
niques such as merging and pruning are applied to remove unwanted information
from the graph, thus limiting its complexity and size. The research prototype, called
Program Explorer, takes a user through a series of executions and visualizations to
comprehend a given program, even to investigate instances of design patterns in a
system.

Olsson and Grundy [OG02] have prototyped an information management tool to
support their approach. The tool includes a set of “extract agents”, which are used
to capture information from requirements, use cases, and test cases. The information
is organized and presented with web user interface for users to navigate and manage

the traceability links.

84



Egyed [EGYEO1] describes an iterative approach to generate traceability infor-
mation based on observing test scenarios at runtime, to tackle with the consistency
problem of legacy software reverse engineering. He refers to the source code that is
executed while testing a scenario as footprint of the scenario. The approach consists
of four major activities: Hypothesizing analyzes existing documents and models to
extract the hypothesized traceability information; the information is organized into
a footprint graph during atomizing, the graph is traversed from each leave node to
their parents, as generalizing, and from the root to its leaves as refining, to further
explore the traceability dependencies of the nodes. A tool, called TraceAnalyzer, is
developed to support the automation of the approach, other than the Hypothesizing
activity.

Zisman et al. [ZSPKO03] propose an approach that automates the discovery of bi-
directional traceability relationships between requirements artefacts. The approach
focuses on three specific types of documents: a commercial requirements specifica-
tion (CRS), a functional requirements specification (FRS), and a requirements object
model (ROM). Both the CRS and FRS are expressed in the XML language, while
the ROM is described in a UML class diagram. The process is driven by the ROM. It
starts with finding traceability relationships between both the CRS and ROM and the
FRS and ROM. These relationships are then used to create the relationships between
the CRS and FRS. They have developed a prototype to automate the process.

85



Chapter 3

Cascaded Refactoring
Methodology

We never know the worth of water
till the well is dry.

~Anonymous

Standard software development methodologies are not sufficient for developing
frameworks [PG94]. Methodologies for the development of a framework have been
suggested that use domain analysis, iterative design, software evolution, and design
patterns [JOHN93] [PG94] [TALI95] [FSJ99]. However, there are no mature frame-
work development methodologies [FHLS99]. Having carefully examined them, we
found three main issues [BUTL99] [BX01] (see Section 1.1.3):

1. Identification and realization of required variability for the family of applications
2. Framework evolution
3. Framework documentation

The Cascaded Refactoring Methodology addresses these problems and provides a
moderate solution. The methodology chooses a set of models to describe a frame-
work: a feature model which identifies and organizes the domain commonality and
variability; a use case model that captures the requirements; an architectural model
to specify the high level collaboration of layers and subsystems; a design model that

illustrates the interactions of classes; and the framework source code. A framework

36



is developed in an iterative process, i.e. evolution. The evolution is naturally viewed
as refactoring followed by extension, the same as in those Bottom-Up approaches
for framework development that are centered on refactoring [RJ97]. In the cascaded
refactoring methodology, the overall refactoring of a framework is regarded as a set
of refactorings performed sequentially on the models, and the constraints on how to
refactor a particular model are determined by the refactorings on the previous models.
Hence, the reconstruction cascades from one model to the next. Alignment maps are
defined to maintain the consistency and traceability of models during the refactoring.
As part of the documentation, the rationale, choices, and impacts of refactorings are
recorded with a template defined in the methodology.

The remainder of this chapter is organized as follows. Section 3.1 describes meta-
models of the chosen models, and specifies the model notations. Section 3.2 defines

the alignment maps amongst the models. Section 3.3 elaborates the methodology.

3.1 Models

A metamodel is a precise definition of the constructs and rules needed for creating
semantic models [OMGO3]. It is the collection of concepts with which a certain
domain can be described. Metamodels are typically built upon a strict ruleset to
specify the definition. In most cases, the ruleset is derived from entity-relationship
diagrams or object-oriented class diagrams.

Metamodels of the feature model and the architectural model are defined. The
literature of those models have been investigated, elements and relationships orga-
nized into the metamodels in UML notations. We have referred to the metamodel

definition in UML [RATUO03] and Siemens approach [HNS99]. The basic structure of

a metamodel is:

e Syntar : elements and relationships of the metamodel are presented in UML

class diagrams

e Semantics: the definition of the elements and relationships are described in the

natural language

e Justification: the explanation of the metamodel in natural language

87



The metamodels are not studied as formal languages. The correctness and com-
pleteness are discussed informally in the justification part. The use case metamodel
proposed by Rui [RB03] is adopted in the methodology. The metamodels are used as

the basis to describe refactorings and to justify preservation of behaviour.

3.1.1 Choice of Models

The design of a framework is similar to the design of most reusable software [TRAC95].
It starts with domain analysis to identify the requirements, constructs a generic design
to meet the requirements, and implements the solution in target languages. Then the
framework is used to build applications to verify its flexibility and extensibility. The
verification finds weak points and leads to design improvements. At the time during
the analysis, design, and implementation, different models can be chosen to specify
the framework. Here, we will explain the rationale behind the choice of models in the

methodology.

3.1.1.1 Feature Model

A framework is always the result of domain analysis, since the development of a
framework demands efficient ways to capture the requirements in terms of common-
ality and variability [RJ97]. Furthermore, it is more important to identify the vari-
ability than to identify the commonalities since the goal of developing a framework
is to provide a reusable platform, which supports sufficient flexibility and extensibil-
ity [ARAN94] [FSJ99].

Feature modeling analyzes commonalities and variability among a family of re-
lated applications in terms of features, and organizes the analysis results into a feature
model [KCH+90]. The construction of feature diagrams can help framework develop-
ers identify the variation points of the framework. Since the introduction of Feature
Oriented Domain Analysis (FODA) approach in 1990, many domain engineering and
software product line methods have adopted feature concept to specify the common-
ality and variability in domain analysis [KLL+02]. Furthermore, Bosch and Gibson
argues that features can be viewed as units of incrementation as applications evolve
since the differences between the products of a product line can be specified in terms
of features [GIBS97] [BOSCO00]. As an analysis technique, the feature modeling should

be done very early in the development process. Features “should be the first class

88



objects in software development” [KKL+98]. Domain analysis with feature modeling
also provides good support when specifying use cases [JCJO92]. Thus, a feature model
is chosen to identify and capture the commonality and variability of a framework, and
is chosen as the starting point of cascaded refactorings.

Although use case models can also capture commonality and variability [MMM99]
[BRJ99], feature models cannot be neglected for three reasons [GFA98]. First, feature
models are “re-user” oriented and use case models are typically user oriented. Second,
a use case model emphasizes “what” applications in the domain do, whereas a feature
model specifies which functionality can be selected when an application is being built.
Third, use cases gather and describe user requirements in terms of functionality,
whereas feature models organize commonality and variability in a much broader range
and cover all aspects of domain concepts. Moreover, experience has shown that use
case models can be very complicated with variation points to express extensibility in

some domains, thus impeding the development [GFA98] [VAM-98].

3.1.1.2 Use Case Model

Use cases capture the functional requirements of a target system, as it is meant to
behave in the host system [JCJO92]. A use case describes how a user will make use
of the system in a time-sequential order [KK03]. The use the user makes is modeled
by the passing of signals or information between the user and the target system.
Use case modeling has become a standard approach of requirement analysis and
specification, especially after its integration into UML [JBR99]. Many use case driven
framework development approaches involve use case models [JGJ97] [MMM99], even
feature model based domain engineering approaches such as FeatuRSEB [GFA9S].
Thus, a use case model is chosen to fill the gap between framework requirements in
terms of features and the framework design artefacts. Use cases support the tran-
sition from a black-box view of a software system, i.e. the interactions between the
system and external entities, to a white-box view of the system, which not only
models the external interactions but also specifies the internal structure and actions
of the system [BCKR97]|. Use cases relate the operations of the target system to
their design and implementation in terms of calls between subsystems. This can
be viewed as the starting point of system decomposition and the subsystem inter-

face design. In addition, scenarios derived from the use cases of a framework can

89



be used to validate its design prior to having the complete implementation of the
framework [CP95] [MMMO99].

The hierarchical view of use cases is provided by the Generalization, Inclusion, and
Extension relationship of use cases [BRJ99] [OMGO3]. Abstract use cases may occur
in a use case model to express commonality amongst use cases, even if an abstract
use case has no concrete scenario. The Inclusion relationship connects a task with a
subtask which is also represented as a use case. Extension points allow variability in
services to be specified. Therefore, use cases are capable of modeling commonality

and variability with those relationships [BRJ99].

3.1.1.3 Architectural Model

Software must have a solid foundation at the level of software architecture [PW92].
Framework documentation should include the architectural design of the framework
[JOHN92]. Software architecture is the high-level abstraction of the components and
their collaboration of the software system [SG96]. The architecture of a framework
organizes the structure of the framework in terms of layers and subsystems, distributes
the responsibilities to their interfaces, and realizes the required flexibility through hot
spots and design patterns [SCHM97] [DW98] [FSJ99).

In addition, it is possible to take a use case view of a given subsystem, where the
rest of the system in the architecture is regarded as actors that request the services
from the given subsystem [BCKR97]. Thus, the services of the subsystem are de-
scribed in its use case model, and accessed through its interfaces. It is also possible to
take a class view of a subsystem, where one identifies a subsystem with a facade class,
and the subsystem interfaces are identified with the class methods [GOF94] [OMGO03].
Hence, an architectural model can aid the traceability from the requirements to the

design of a framework.

3.1.1.4 Design Model

A design model is chosen to illustrate the detail design of frameworks. The UML
structural and behavioural models are adopted since UML has become the de-facto
standard in software modeling language [BRJ99] [KK03] [OMGO03]. The design model
of a framework represents the static structure and dynamic behaviour of the frame-

work. The design pattern usage is encouraged because design patterns provide the

90



flexibility and extensibility of the framework [JOHN92] [GOF94] [BJ94]. Design pat-
terns are also effective in framework documentation [JOHN92| [BD99]. Using com-
monly known design patterns helps framework developers understand the framework
by serving as a common vocabulary between the framework builders and the appli-

cation developers [GOF94].

3.1.1.5 Source Code

The source code of a framework is part of the framework documentation [BD99]. It
describes how the requirements are implemented, how the objects are organized, how
to provide the flexibility and extensibility with hooks and templates in the target
programming language. The source code is also indispensable for the framework

verification.

3.1.2 Feature Model

A feature model provides an overview of the requirements of a software product line
in terms of commonality and variability [CN02]. It is used for the derivation of the
customer’s desired product and provides a hierarchical structure of features according

to the decisions associated to them [KCH+90] [KKL+98).

3.1.2.1 Metamodel

Although much work has been done on feature modeling since the last decade, there is
no consensus on the explicit semantic of feature models [KCH-+90] [KKL-+98] [RBSP02].
On the other hand, it is essential to have clear and coherent feature model semantics
to support its refactoring. Thus, we have defined a metamodel. The metamodel (Fig-
ure 13) incorporates the elements and relationships of feature models from various
research works in the literature, and focuses on FORM. The syntax is described in
the UML class diagram notation.

A feature model consists of features and the relationships between them. A Feature
is a view of a concept, which usually represents a property of a software product line.
In a feature diagram, the concept is represented as the root feature. A Feature has

the following attributes:
e name: each feature has a unique name of string type.

91



o kind: it is Enum type because features are classified into four categories in

FORM:

o Capability features are externally visible behaviours or the way users may

interact with the product, such as services, operations and performances.

o Operating Environment features represent attributes of the environment in
which the product operate. They describe the product’s conformance to

standards or external entities, such as hardware interfaces or constraints.

o Domain Technology features are types of requirement decisions to develop

domain models, such as terminology, domain specific methods.

o Implementation Technique features represent low-level implementation is-

sues, such as the C++ Standard Template Library.

e isRoot: indicates whether the feature is the root feature. It is a Boolean value.

Feature Set

constraint:String

Consists-of
-1 FeatureRelationship
Feature
name: String T
kind: Enum l Requires H Composed-of I[Generalizatioﬂ\ Excludes H Implemented-by” Multiplicity l
isRoot: Boolean

l |

r Optional J ' Alternative ’

feature feature

Mandatory
feature

Figure 13: Feature Model Metamodel

In terms of variability, features can be classified into mandatory, optional and
alternative. A Mandatory feature specifies a core property of the concerned domain
concept, and is common to all instances of the concept. An Optional feature represents
a property that may not be necessary to some instances of the concept. An Alternative

feature represents different ways to configure a mandatory or optional feature.

92



Features are organized with FeatureRelationships in a feature model. FeatureRe-
lationship is an abstract metaclass. There are six specific types of feature relationship
in the metamodel. A “Composed-of” relationship means a feature can be a composite
of its sub-features. A “Generalization” relationship indicates that one feature is an
abstraction of another feature. Similar to generalization in the object-oriented par-
adigm, a parent feature can be replaced by a child feature at the location in which
the parent feature is used. An “Implemented-by” relationship means a feature is a
prerequisite to implement another feature. A “Multiplicity” relationship is used to
specifies allowed number of occurrence of a feature. It is represented as m..n (m and
n are non-negative integers specifying the lower and upper bound on the number of
occurrence.) A “Requires” relationship indicates that to have one feature in a feature
set, another feature must also be included. An “Fzcludes” relationship between two
features means that they cannot be simultaneously selected in a feature set.

A Feature Set consists of a finite set of features and the constraints over the
features. An instance of the product line can be specified by a valid Feature Set,

which satisfies all the constraints. A Feature Set has the following attributes:

e constraint: the rules which should be satisfied by the features included in the
feature set. We only integrate a limited set of the generic constraints in a feature

set:

o If the super-feature of a mandatory feature is included in a feature set, the

mandatory feature must be included in the set, too.

o If a super-feature of an optional feature is included in a set, the optional

feature may or may not be included in the feature set.

o Only one alternative feature is included in the feature set to which the

super-feature of the alternative feature belongs.

o If feature A has a Requires relationship with feature B, feature B must be

included into any feature set which contains feature A.

o If feature A has an Excludes relationship with feature B, feature B must

not be included into any feature set which contains feature A.

93



3.1.2.2 Metamodel Justification

The metamodel is not defined as a formal language, and cannot be validated with
theoretical reasoning. We justify our choice of metamodel by comparing its models

to those in the literature. A summary of existing feature models is shown in Table 3.

Feature Relationships Feature Types
FODA Aggregation Mandatory
Requires (dependency) Optional
Mutex-with (dependency) Alternative
FeatuRSEB Composed-of Mandatory
Requires (dependency) Optional
Excludes (dependency) Alternative
XOR
OR
Generative Aggregation Mandatory
Program- Requires (dependency) Optional
ming Excludes (dependency) Alternative
OR
FORM Composed-of Mandatory
Generalization Optional
Implemented-by Alternative

Mutual dependency (dependency)
Mutual exclusion (dependency)

Riebisch’s Aggregation Mandatory
Extension Refinement Optional
Multiplicity Alternative

Requires (dependency)
Excludes (dependency)

Metamodel Composed-of Mandatory
Generalization Optional
Implemented-by Alternative
Multiplicity
Requires
Excludes

Table 3: The Summary of Feature Model Elements and Relationships

There has already been consensus on the conceptual definitions of Feature and
Feature Sets [KCH+90] [JGJ97] [GFA98] [CE00]. A Feature can be viewed as a re-

quirement of the software products in a domain [KCH+90]. However, the “scope” of

94



a Feature is much broader than traditional software requirements. A Feature cannot
only represent technical aspects of a software product, but also the managerial as-
pects, such as deliverable deadline, budget cost, etc. Even for the technical aspects
alone, Features can represent functional requirements such as operations, services,
and non-functional requirements such as performance, reliability, robustness, porta-
bility, etc. It is difficult to construct accurate maps from a feature model to other
models such as a use case model or a design model, with such a broad feature defi-
nition. Therefore, we followed FORM and defined the kind attribute in the Feature
element [KKL+98]. The functional requirements that are represented by Capability
features are very close to the services described in use case models. The Operating
Environment features specify the conformity to interfaces of external software and
hardware products. They can be related to the interfaces in the architecture. The
Domain Technology features describe the domain concepts, which can be mapped
into design models. The Implementation Technique features can be mapped to the
source code constructs.

The metamodel only divides features into mandatory, optional, and alternative in
terms of variability. However, the semantics of other type of features are also covered
by the metamodel. For example, the same semantics of “or” feature can be obtained
by combining the Multiplicity relationship with Alternative features [CE00] [RBSP02].

A comprehensive set of feature relationships are encompassed in the metamodel. It
covers FODA, FORM, FeatuRSEB, Generative Programming, and the latest Riebisch’s
extension. The Mutual Reliance and Mutual Exclusion feature dependencies are de-
fined as Requires and Excludes relationship in the metamodel. The Aggregation
relationship in FODA, Generative Programming, and Riebisch’s extension specifies
the same concept as the Composed-of relationship in FORM and FeatuRSEB. It is
represented as the Composed-of relationship in the metamodel. The Refinement re-
lationship defined in Riebisch’s extension means one feature can be specialized by
other features. It is same as the Generalization relationship in FORM. Thus, they
are defined as the Generalization relationship in the metamodel. The Implemented-
by relationship in FORM and the Multiplicity relationship in Riebisch’s extension are

incorporated into the metamodel, as well.

95



3.1.2.3 Metamodel Subset

We only use a subset of the feature metamodel in our case study of the cascaded

refactoring methodology. The subset is given in Figure 14.

Feature Set '

constraint:String J

1
T Consists-of
- ! { FeatureRelationship !
Feature
name: String - L l 1
. 1
kind: Enum ’ Composed-of ’ lGeneralizatiorﬂ ‘ Implemented-by ‘
isRoot: Boolean
Mandatory Optional Alternative
feature feature feature

Figure 14: Feature Model Metamodel Subset

3.1.3 Use Case Model

The use case metamodel defined by Rui and Butler [RB03] is adopted in the method-
ology. It incorporates Regnell’s use case specification [REGN99] and other works in
use case modeling [JCJO92] [RAB96] [FHGIS].

3.1.3.1 Metamodel

The metamodel (Figure 15) consists of three level views: the FEnvironment Level
shows the relationships between use cases and the external entities; the Structure
Level describes the use case internal structure; and the Fvent Level represents the
lower abstraction level in terms of events.

A Use Case represents a system usage that is characteristic to a specific Actor.
An Actor defines a coherent set of roles by which users of the system can perform
during their interactions with the system. A User is an instance of an actor. One
User can be the instance of multiple Actors in different contexts. External systems

or devices which communicate with the target system can also be modeled as Actors.

96



inclusion
Task M
1. Fulfills
: 1. .
‘Has . inclusion— "
Actor ) Goal ]
User " -
" Instantiates * - Has ————— Usecase |
: ’ Satisfies | | Relationship
* 1.
Describe——— Service
Parﬁcipates-in—l 1.
— ;
Participates-in ——————— Use Case -
<<INSIANCE-Of>> w2
K>————Has
1.* PR
Environment Level | —9 T
_______ —_——— A e e —
| Consists-of 0.1
: J— Context
S . 1..*t Episode 9;1 .
cenario i .
Defines—Defines
. - ' -
Consists-of Pre-condition Post-condition
Structure Level
Event
Event Level A
PV P
Stimulus Response Action

1(?

Parameter
I

Figure 15: Use Case Metamodel

97



Actors may have commonalities; i.e. communicate with the same set of Use Cases
in the same way. The commonality is expressed with the generalization relationship
between Actors. An instance of a child Actor can be placed where an instance of the
parent is expected. Use Cases describe Services that are provided by the target system
to its Users to accomplish Goals. A Goal is an objective of Users when they request
Services. An inclusion relationship between two Goals specifies that one goal includes
another goal as a sub-goal. Multiple Goals may share commonalities, i.e. contain the
same set of sub-goals. This is represented by the generalization relationship between
goals. A Task represents the way in which the Users interact with the system. An
inclusion relationship between two Tasks indicates that one Task includes another
one as a subtask. Multiple tasks may have commonalities, i.e. contain the same set
of subtasks. This is described by the generalization relationship of Tasks.

A Scenario illustrates a specific realization of a Use Case as a sequence of a finite
number of events with linear time order. A Use Case can be initialized to a collection
of Scenarios. A Use Case may be divided into coherent parts, called Episodes. An
Episode represents a sub-task. One Episode can be included in multiple Use Cases.
The Context of a Use Case defines its Pre-conditions and Post-conditions. A Pre-
condition of a Use Case is the enabling states of the environment and the target
system to execute the use case. A Post-condition is the state of the environment and
the target system after the execution of the Use Case.

An Episode may consist of Events. An FEwvent specifies a significant occurrence
that has a location in time and space. An Event can be a Stimulus, or a Response,
or an Action. A Stimulus is the passing of information from the Users to the target
system. A Response is the passing of information from the target system to the Users.
Both of them can take Parameters to carry data to and from the target system. An
Action describes the intrinsic event of the target system. It is the atomic unit of a
Use Case. There is no communication between the target system and the Users that
take part in a Use Case during the execution of an Action of the Use Case.

Use cases are organized with Usecase Relationships in a use case model. The
Usecase Relationship is an abstract metaclass. There are six specific types of use case
relationship in the metamodel. An inclusion relationship between two Use Cases
means that the behaviour defined in the target Use Case is included at some location

in the sequence of behaviour performed by the base Use Case. When an instance

98



of a base Use Case reaches the location, it performs all the behaviour described by
the included Use Case and continues its own event flow afterwards. An extension
relationship means that a Use Case may be augmented with additional behaviour
which is defined in another Use Case. The relationship contains a condition as an
extension point in the base Use Case. The condition must be satisfied if the extension
is to take place, and the extension point defines the location in the base Use Case
where the additions are to be made. A generalization relationship between Use Cases
implies that the child Use Case contains all the attributes, sequences of behaviour, and
extension points defined in the parent Use Case, and participates in all relationships
of the parent Use Case. The child Use Case may define a new sequence of behaviours,
or specialize an existing behaviour of its parent. A similarity relationship between
two Use Cases means that one Use Case resembles another one in some unspecified
way. This relationship provides a way to foresee relationships among Use Cases even
when the exact relationship is not clear yet. An equivalence relationship between two
Use Cases specifies that one Use Case is equivalent to another one, i.e. an alias. A
precedence relationship between two Use Cases defines that the behaviour of one Use

Case is appended to that of the preceding one.

3.1.3.2 Metamodel Subset

We do not discuss the justification of the metamodel. Interested readers can refer to
the original paper [RB03]. A subset of the use case metamodel (Figure 16) is used in
the case study of the cascaded refactoring methodology. It covers the main concept
and relationships of use case models defined in UML [BRJ99] [OMGO03].

Inclusion

u‘ L S

Actor

’ {—*Parﬁcipates-in——} )

Extension

Episode

Figure 16: Use Case Model Metamodel Subset

99



3.1.4 Architectural Model

No consensus has been made on the architectural model of frameworks, nor does an
metamodel exist [KRUC95] [SG96] [DW98] [RATUO03]. Our architectural metamodel
is a combination of the logical architecture view of the UML{OMGO03] and the module
architecture view of the Siemens approach [HNS99].

3.1.4.1 Metamodel

The syntax of the metamodel is depicted in the UML class diagram (Figure 17). All

architectural elements have a common attribute:
e name: an unique name of string type.

An Interface is a named set of Operations that characterize the behaviour of the
architectural element which realizes the Interface. The behaviour is characterized as
the “service” role, while the element which provides the interface can be viewed as

the “provider”. Interfaces are the connectivity points of other elements.

Inclusion
Inclusion
Inclusion
0.1 0..1 # *
0.1

e Layer Realization Inclusion
P provider | * T

rovider
name:String J s Subsystem 0.1

name:String

)

Realization e

0.1
service| * * Inclusion "
service * ' '''''' ClassRelationship
L Interface Kooy
" Interface = . Class -

0.1+

name:String | —Realization—] name:String
service *

0.1 provider () + |+
Association
1.0

Operation Generalization

name: String
visibility:Enum
isAbstract:Boolean
specification:String

Dependency

Composition

Inclusion

Figure 17: Architecture Metamodel

100



A C(lass represents a modeled concept that has data structure, behaviour, and
relationship to others. The name of a Class has the scope of the Subsystem or Layer
in which it is assigned. Classes interact with each other through Interfaces. A Class
can realize and depend on multiple Interfaces. The relationships between Classes
are represented by the abstract class ClassRelationship. It can be specialized to four
subclasses. A Generalization relationship between two classes indicates that the more
specific Class (child) inherits the structure and behaviour of the more general Class
(parent). Moreover, additional properties can be added to the child Class. A child
can be used anywhere its parent appears. An Association is a structure relationship
which specifies that, an instance of Class A is always connected to an instance of
Class B with a navigation path, if A has an Association relationship with B. If a Class
requires an Interface, that is realized by another Class, to provide its services, there is
a Dependency relationship between them. A Composition relationship between two
Classes indicates that one Class (component) is a part of the other Class (composite).
An instance of the composite always has instances of the component.

An Operation is a service that can be requested to effect behaviour. An Operation

has the following attributes:

e name: each operation has a unique name of string type.

e visibility: it is enumerator type. The visibility attribute specifies whether the
operation can be used by other elements. An Operation can have one of the

following visibility values:

o public: the Operation can be used by any external element with visibility

to the element which contains the operation.

o protected: the Operation can be used by any descendent of the element

which contains the operation.

o private: the Operation can only be used by the element which contains

the Operation.

e isAbstract: it is Boolean type and used to indicate whether the Operation is

abstract.

e specification: the signature of the Operation.

101



Classes with tight coupling relationship can be grouped together into a Subsystem.
A Subsystem offers Interfaces to provide a collection of services. For each Operation
in an Interface offered by a Subsystem, the Subsystem itself or at least one of its
contained element must have a matching Operation. A Subsystem can realize or de-
pend on multiple Interfaces. If a Subsystem requires an Interface which is realized by
another Subsystem, there is a Dependency relationship between them. The Inclusion
relationship indicates that a Subsystem can contain other Subsystems, Layers, and
Classes. A Class cannot directly communicate with Classes that are external to its
Subsystems; it has to interact through the Interfaces of the Subsystems. Classes can
be assigned to a Layer. Layers provide Interfaces. If a Layer requires an Interface
which is realized by another Layer, there is a Dependency relationship between them.
The Inclusion relationship means that a Layer can contain other Layers, Subsystems,
and Classes. Architectural entities that are included in a layer have to interact with
entities outside the layer through the layer interface. Layers and Subsystems orga-
nize architecture into a partially ordered hierarchy in order to reduce complexity and

flexibility.

3.1.4.2 Metamodel Justification

In addition to the Siemens approach [HNS99], there are two other well-known architec-
tural modeling approaches: architectural styles, and the “4+1” views [SG96] [KRUC95]
[DWOI8]. An architectural style is described in terms of components and connector
types; a set of configuration rules, which constrain how components and connectors
may be configured; semantic interpretation, which defines when suitably configured
designs have a well-defined meaning as architecture; and analyses that may be per-
formed on well-defined designs [SG96). Architecture styles are not integrated into the
metamodel because the concepts are covered by the Conceptual view in the Siemens
approach.

The “4+1” view comprises four views plus a use case view to describe archi-
tecture [KRUC95]. It consists of a Logical view, a Process view, a Physical view,
and a Development view. These views are carried over into the UML system mod-
eling [BRJ99]. In addition, the main concept of the “4+1” view are covered in the
Siemens approach except the use case view. The Siemens approach is preferred to the

“4+1” view, because the description of the metamodels together with the stereotypes

102



and notations that extend UML make the Siemens approach much more precise than
that of the “4+1” view. The Use Case view in the “4+1" view specifies the require-
ments in scenarios to validate the design. Its task can be taken over by the use case

model in the cascaded refactoring methodology.

Architectural Relationships
Elements
“441” View Layer Dependency
Development Subsystem Include
View Module
Siemens Layer Contain
Approach Subsystem Composition
Logical View Module Use
Interface Require
Provide
Assigned to
UML Package Dependency
Logical View Subsystem
Interface
The Metamodel | Layer Dependency
Subsystem Realization
Class Inclusion
Interface Composition
Operation Association
Generalization

Table 4: The Summary of Architectural Model Elements and Relationships

In the Siemens approach, software architecture is described by four views. The
Conceptual view presents the configuration of components and connectors. The Mod-
ule view shows the software structure in terms of layer, subsystem, module, and in-
terface. The Execution view identifies the hardware resources, communication mech-
anisms, and the runtime entities such as processes. The Code view presents the
organization of source code, libraries, and executables. Our initial ambition was to
integrate the four views into the architectural metamodel, but scaled back to only the
Logical view due to limitation of architecture experiences. Besides, the case study is
a single thread, standalone system running on a single processor. The Execution view

of the architecture is trivial and not much different from the Module view [HNS99].

103



The Code view describes how the software implementation matches the design deci-
sions in other views. The major work of the Code view is carried out by the source
code related alignment maps in the methodology. The Logical view is prone to the
solution domain as the refinement of the Conceptual view, which is more closely tied

to the problem domain.

<<framework>>
OPT++

]
'J_|

Search Space

Search Strategy

!

Algebra Ze

Figure 18: An Example of the UML Framework Concept

The UML architectural model also includes a Logical view in terms of package,
subsystem, class, interface and their relationships [BRJ99] [OMGO3]. UML defines a
framework concept [OMGO3] as an architectural pattern that provides an extensible
template for applications within a domain. A framework is modeled as a stereotyped
package. It provides a set of elements including classes, interfaces, collaborations,
use cases, and even other frameworks. We have not adopted the framework notion
into the architectural model because it does not provide additional mechanisms to
assist the illustration of framework architecture, compared with the package concept
in UML. An example is shown in Figure 18. The OPT++ is an optimizer framework
for database management systems. It can be customized to support different opti-
mization strategies. The framework is composed of three subsystems. The Search
Strategy subsystem provides the strategies that are used to explore the search space.
The Strategy design pattern supports the variation on the search algorithms. The
Search Space subsystem defines what the search space is, which is determined by the
way the query plan is structured and transformed. The Algebra subsystem defines
the relational operators used in the DBMS and their corresponding algorithms to

execute these operators. The Search Strategy subsystem depends on the Algebra and

104



the Search Space subsystems. The Search Space subsystem depends on the Algebra
subsystem.

Table 4 summarizes the elements and relationships in the Development view of
the “441” view approach, the Logical View of the Siemens approach and UML, and
the metamodel. A Module in the “4+1” view is a collection of data and operations,
and provides services through its interfaces. It has the same semantics as that in the
Siemens approach. A Module can be mapped to an Ada package, a set of classes, a
procedure, etc. Since we are only concerned about with the object oriented paradigm,
we use the Class concept instead of Module. The Include relationship in the “4+1”
view, the Contain and Assigned to relationship in the Siemens approach deliver the
same meaning of nesting structure, which is represented as the Inclusion relation-
ship in the metamodel. The Require and Use relationships in the Siemens approach
describe the dependency between the consumers and the suppliers of services. There-
fore, they are specified as the Dependency relationship. The Provide relationship in
the Siemens approach represents the realization of interfaces, which is defined as the
Realization relationship. A Composition relationship between Modules means that a
Module can be decomposed into one or more Modules. It specifies the same concept
as that of the Inclusion relationship in the metamodel. The Operation concept is
defined as the quantified units of services. It facilitates the trace map between the
architectural model and the design model, since its semantics is the subset of that of

the Operation concept in UML [OMGO3].

3.1.5 Design Model

UML has been proven to be the industry standard of modeling languages for soft-
ware engineering practices [DW98] [BRJ99] [HNS99] [LL01] [OMGO03]. It is used for
specifying, visualizing, constructing, and documenting the artefacts of software sys-
tems. The UML structural and behavioural models are adopted to construct the
design model in the cascaded refactoring methodology. Structural models emphasize
the static organization of objects in a system, including their classes, interfaces, at-
tributes and relationships. Behavioural models concern the behaviour of objects in a
system, including their methods, interactions, collaborations, and state histories. Ta-

ble 5 and Table 6 gives the elements and relationships of the design model [OMGO03].

105



Design Components

Semantics

Class

A description of a set of objects that share the same at-
tributes, operations, methods, relationships, and semantics.

Interface A named set of operations that characterize the behaviour of
an element and defines a service offered by the element.

Attribute A feature within a classifier that describes a range of values
that instances of the classifier may hold.

Operation A service that can be requested from an object to effect be-
haviour. The service is described as a signature with a name
and parameters.

Visibility An enumeration whose value (public, protected, or private)

denotes how the model element to which it refers may be seen
outside in its enclosing namespace.

Abstract Class

A class that cannot be directly instantiated.

Object An entity with a well-defined boundary and identity that en-
capsulates state and behaviour.

Type A domain of objects together with operations applicable to
the objects without defining the physical implementation of
those objects.

Template The descriptor for a class with one or more unbound para-
meters.

Collaboration A set of participants communicates in a specific way to ac-
complish a task.

Message A specification of the conveyance of information from one
instance to another, with the expectation that activity will
ensue.

Constraint A semantic condition or restriction.

Event A specification of a type of observable occurrence.

Role The named specific behaviour of an entity participating in a
particular context.

Transition A relationship between two states indicating that an object
in the first state will perform certain actions and enter the
second state when a specified event occurs and specified con-
ditions are satisfied.

State The named specific behaviour of an entity participating in

a particular context. A situation during the lifetime of an
object when it satisfies certain condition, or waits for events. |

Table 5: Design Model Elements

106



Relationships Semantics

Generalization A subtyping relationship between a more general ele-
ment and a more specific element. The more specific
element is fully consistent with the more general ele-
ment in terms of properties, members, and relation-
ships and may contain additional information.

Association A semantic relationship connects between two classi-
fiers.

Composition A part-whole relationship between a composite and
its components.

Dependency A semantic relationship that indicates a situation in

which a change to the target element may require a
change to the source element in the dependency.

Realization A semantic relationship that indicates that an inter-
face is supported by a class (hierarchy).

Multiplicity The range of allowable cardinalities that a set may
assume.

Table 6: Design Model Relationships

3.1.6 Source Code

The cascaded refactoring methodology focuses on the development of object oriented
application frameworks with object-oriented programming languages, such as C++.
Mechanisms to support variability are encouraged in framework implementation, such

as inheritance, polymorphism, templates, pre-processor, parameterization, etc.

3.1.7 Model Notation

It is important to have a set of pre-defined notations for each of the models, as the
vocabulary to construct the graphic models. Here, we will define the model notations
used in the case study of the methodology.

Figure 19 presents the notations of the subset of the feature model metamodel.

The UML notation standard [OMGO3] is followed for the use case modeling. The
Episode notation is defined, since it is not provided by UML. The use case model
notation is shown in Figure 20.

The architectural model notations are given in Figure 21 and Figure 22.

The UML notation standard [OMGO03] is followed for the design model, shown in

107



h Element/

Relationship

Notation Description

a .
Mandatory feature A rectangle with the feature name.

o Anem i i

. pty circle is attached on the top of the

Optional feature rectangle. The feature name is inside the
rectangle.

/O\ Multiple lines begin from the super-feature, and

Alternative feature . .
¢ end at the alternative sub-features. The lines are

connected with an arc.

Composed-of

. . A solid line connects the two features.
relationship

Generalization

. I A dashed line connects the two features.
relationship

Implemented-by
A feature is a pre-requisite to implement another
relationship —_—— feature. They are connected with a dashed line.

Feature Set h.Lf. i} fi (1<=i<=n) are the names of the features in the
feature set.

Figure 19: Feature Model Notation

108




Element /

Relationship

Notation

Description

Use Case

O

A use case is depicted as an ellipse, within
which a unique text string is put inside as
the name of the use case.

Actor

x

An actor is depicted as a stick man figure
with the name of the actor below the
figure

Episode

Episode name: “description
of the episode”

An episode is depicted as a natural
language statement of the task specified by

the episode.
The episode statement is placed inside the
ellipse of the use case to which the episode
belongs.

Inclusion

<<include>>

An include relationship is depicted as a
dashed line with an open arrowhead from
the base use case to the included use case.
The arrow is labeled with the keyword
<<include>>.

Extension

<<extend>>

An extension relationship is shown by a
dashed arrow with an open arrowhead
from the extending use case to the base
use case. The arrow is labeled with the
keyword <<extend>>.

Generalization

A generalization relationship is depicted
as a solid directed line with a large open
arrowhead pointing to the parent use case.

Participates-in

A participates-in is symbolized as a
straight line with an open arrowhead

pointing from the actor to the use case.

Figure 20: Use Case Model Notation

109



Element Notation Description

]

Layer <<Layer>> A partially ordered hierarchy of classes. A
Layer always has a unique name.

]

Subsystem <<Subsystem>>

A group of tightly coupled classes that
collaborate together to provide services. A
Subsystem always has a unique name.

A Class is a modeled concept that has data
structure, behavior, and relationships to others,
A Class always has a unique name.

Class <<Class>>

<<Interface>>

An Interface is a collection of Operations. The
Interface Or rectangle notion is chosen when the Operations
of the Interface are presented. An Interface
O always has a unique name.

Figure 21: Architectural Model Element Notation

110




Relationship

Notation

Description

Composition

4

A Composition relationship between two Classes
indicates that one Class is a part of the other one.
The filled diamond is attached to the composite.

A Generalization relationship between two

Generalization A Classes indicates that the child class is fully
consistent with the parent class. The triangle is
attached to the parent class.
Association A solid line that connects to the two classes that
— has an Association relationship.
Realization —_—> T.he line ngtatlor} is chosen }f tht? correspondmg
or interface is depicted as a circle; otherwise the
dashed line with a hollow arrow is used.
Dependency > The arrow begins with the depending element, and
ends at the depended element
Inclusion Nesting The notation of the including element is depicted

within the notation of the included one.

Figure 22: Architectural Model Relationship Notation

111




Element

Notation

Description

Class

name
attributes
operations

It is drawn as a solid-outline rectangle with
three compartments separated by horizontal
lines, to hold the name, attributes, and
operations of the class. The signature of an
operation may be italicized to indicate the
operation is abstract. An abstract class is
depicted similar to a class, but with italicized
class name.

Object

object name: class name

attribute name: type=value

operations

An object is depicted similarly to a class, but
with instance-like characteristics. The top
compartment shows the name of the object and
its class with underlined format. The second
compartment shows the attributes for the object
and their values.

Interface

<<Interface>>
name
operations

O

An interface may be shown with a full rectangle
symbol with two compartments and the
keyword <<interface>>. The name of the
interface is put inside the upper compartment,
and a list of operations supported by the
interface is placed in the lower compartment.
Sometimes an interface is depicted by a small
circle for simplicity.

Template

A template class is depicted similarly to a class,
but has a small dashed rectangle superimposed
on the upper right-hand corner of the class
rectangle. The dashed rectangle contains a
parameter list of formal parameters for the class.

Collaboration

A collaboration is rendered as a dashed ellipse
containing the name of the collaboration.

Message

A message is shown as a horizontal solid arrow
from one instance to another instance. The
arrow is labeled with the name of the operation
to be invoked

State

A state is shown as a rectangle with rounded
corners.

Transition

A transition is shown as a solid line originating
from the source state and terminated by an
arrow on the target state. A transition may be
labeled by additional information.

Figure 23: Design Model Element Notation

112




Figure 23 and Figure 24. The case study is implemented with the C++ programming
language.

Relationship Notation

Description

Generalization A generalization is shown as a solid-line path from
the child to the parent, with a large hollow triangle

at the end of the path pointing to the parent.

A solid line that connects to the two classes that has
the association relationship. A name string can be
used to indicate the meaning of the path. An
association class is depicted as a class symbol
which is attached to the association line with a
dashed line. An association can be adorned by
different kinds of optional property adornments,
such as role names. A role is represented by a name
string near the end of the association path.

Association

o ’ A composition relationship between two classes
Composition

indicates that one class is a part of the other one.
The filled diamond is attached to the composite.

Dependency > The arrow begins with the depending element, and
ends at the depended element

Realization —_—> The line notation is chosen if the corresponding

or interface is depicted as a circle; otherwise the
dashed line with a hollow arrow is used.

A multiplicity is a kind of properties of an
association. It indicates the allowable range of the
n cardinality of the set of instances of the classes that
* the association connects. A multiplicity is
represented by two integers as the lower bound and
upper bound of the range. A star (*) can be used to
represent unlimited non-negative integer range.

Multiplicity m

Figure 24: Design Model Relationship Notation

3.2 Alignment Maps between Models

Frameworks are more difficult to design and develop than individual applications. A

framework has to not only capture commonalities of all applications that might be

113



built from the framework, but also possess enough flexibility to allow for the variations
that exist between those applications [FHLS99]. Therefore, the requirement analysis
of frameworks must perform both commonality and variability analysis. Existing
Top-Down development approaches have suggested using domain analysis to capture
framework requirements [STAR96] [FSJ99]. The domain knowledge is captured in
range of outputs, including the context, taxonomy, data dictionary, feature model,
domain specific software architecture, use cases and algorithms, and exemplar systems
in the domain. Moreover, the commonality and variability should be preserved in the
framework design as hot spots and frozen spots [WGM88] [SCHM97]. Therefore, it
is desirable to have explicit guidelines that map the requirements to the design of
frameworks.

Framework development requires an iterative approach in which the framework
is refined a number of times [BOOC94] [JF88]. Bottom-Up approaches emphasize
framework refactorings to evolve a framework to a mature and stable reusable plat-
form [JOHN93] [RJ97]. From the traceability perspective, the changes should be prop-
agated to the design and implementation of the framework. The consistency amongst
the requirement, design, and source code must be identified and preserved. However,
none of the existing methodology has addressed this issue [RJ97] [FSJ99] [SCHM97)
[JGJO97] [WL99].

We want to find a way to capture the commonality and variability in each of
the models, and preserve the traceability between the models. Thus, the identified
commonality and variability are realized by mapping them from the feature model
and use case model, to the architectural model, design model, and the source code.
Here, we will discuss how to encompass the commonality and variability in each of

the models, and define a set of alighment maps to maintain the traceability.

3.2.1 Modeling Commonality and Variability

Feature models capture the variability between different applications within a domain.
The commonality is represented as mandatory features, while the variability is mod-
eled with variable features, i.e. optional and alternative features [KCH+90] [KKL+-98].

Use case models are used to elicit and describe the functional requirements of

114



frameworks. Jacobson and other people have already extended the OOSE methodol-
ogy from simple applications to product families with Reuse Driven Software Engi-
neering Business (RSEB) [JCJO92] [JGJ97] [DW98] [GFA98]. The commonality can
be represented by the generalization and inclusion relationship, while the variability
can be specified with the extension relationship [BRJ99].

Architectural models describe the high-level design abstraction of frameworks in
terms of layer, subsystem, class, and interface. Usage of hot spots and frozen spots,
design patterns, and abstract class hierarchy have been suggested to model the com-
monality and variability of frameworks [JOHNO93] [PG94] [GOF94] [SCHMI7).

Design models illustrate the detail design of frameworks with classes and objects.
An object-oriented framework always has a core of abstract classes which defines the
basic architecture of the framework. Some of those abstract classes can be specialized
by subclasses so polymorphism provides the variability that is expected by different
applications [TALI95]. For Black-Box frameworks, composition might be preferred
to inheritance [JF88]. Parameterization is another means of incorporating variability
into a design [JGJ97].

Object-oriented programming languages such as C++ provide ample mechanisms
to realize commonality and variability in source code [STRO97]. Hook and template
methods (see Section 2.8) are used to implement hot spots [PREE99]. Other than
what we have mentioned in the design level, standard library, template, and pre-

processor directives are also beneficial to this goal.

3.2.2 Maps

The common and variable aspects identified during the analysis should be reflected
appropriately into framework design [SCHM97]. Our methodology uses a set of mod-
els to specify the requirements, design, and implementation of a framework. These
models have different views on a framework at different levels of abstraction, and
model the commonality and variability with various techniques.

Traceability is key to impact analysis during software maintenance and evolu-
tion [KELL90]. Traceability scheme are defined to specify the horizontal traceability
links [PB90] and preserve the commonality and variability between those models.

We use trace maps to record the horizontal traceability links between models. In

general, we trace model elements to model elements, and trace model associations to

115



model associations. The common associations such as generalization, is_part_of, and
dependency are typically preserved by the trace maps.

Furthermore we attempt to align commonality and variability across the models,
i.e. model elements that are common across the product line are mapped to each
other, and model elements that are variable across the product line are mapped to
each other.

We have chosen models in our methodology to encourage ease of describing trace
maps. For example, the FORM decomposition of the feature model into capability,
operating environment, domain technology, and implementation technique specifies
the concerns for each category of feature and determine which model is the range of
the trace map for that category (see Section 3.2.2.2).

It is important to note that we do not consider the “symmetry” of mappings, i.e.
range items might have additional information other than the part that corresponds
to the semantics of the domain items. This is not a problem at the current stage
since the methodology only considers forward traceability. However, it will probably

become an issue if the reverse maps are desired in the future.

3.2.2.1 Terminology

The set of models under discussion are the feature model My, use case model M,,
architectural model M., design model My, and source code M; of a framework as
defined by the set of the metamodels.

A trace map T from model M; to model My records horizontal traceability between
the elements and relationships of the models. That is, it records the dependency of

elements and relationships of My on elements and relationships of M;:

V'm e My, T(m)€e My is dependent on m.

An alignment map T for model My to model My is a trace map which preserves
commonality and variability. That is: if m € My is common across the product line,
then T(m)€ My is common across the product line; if m € M, is variable across the

product line, then T(m)e M, is variable across the product line.

In our methodology, we assume that the trace maps used are indeed alignment

116



maps, so we use the term trace map throughout.

Feature Model
- Operating Domain Implementation
Capability ’ Environment | Technology Technique
T Tq
/ " / - \Id \
Use Case Tua_ | Architectural Taa Design _Tgi’> Source
Model Model Model Code
|
| ; ]

ud

Figure 25: Trace Maps

The trace maps defined for the methodology (see Figure 25) are:
Ty, : the trace map from the capability feature model to the use case model

Ty, : the trace map from the operating environment feature model to the architec-

tural model
Ty, : the trace map from the domain technology feature model to the design model
Ty; : the trace map from the implementation feature model to the source code
T.. : the trace map from the use case model to the architectural model
T,q : the trace map from the use case model to the design model
T.q : the trace map from the architectural model to the design model
T, : the trace map from the design model to the source code

For each trace map, we define the global constraint and concrete map rules for
entities and relationships. The global constraint of a trace map is applied to all rules
of that map by default, unless applicability issues are specified in the rule description.
Ideally, a full map is desirable for each trace map. However, we have only defined

partial maps at the current stage due to our limited experiences. Future work on

trace maps is expected.

117



3.2.2.2 Ty,

Capability features of a framework characterize its services, functions, or non-functional
constraints [KKL+98]. As a traditional problem in the literature of traceability [FINK91],
it is difficult to map the features that represent those non-functional requirements to

a use case model, other than as textual comments. We have not defined concrete map

rules for the non-functional requirement features at the current stage.

Global Constraint : Any subset of capability features must be mapped to a (set

of) service(s) described in the use case model, while preserving variability.

Rule 1 : Mandatory Feature — Use Case

A mandatory feature is a common property that must appear in all applica-
tions built from the framework. A use case describes common services that are

provided by the framework. The map must preserve the variability.

Rule 2 : Optional Feature — Extending Use Case

The super-feature of the optional feature is mapped to the base use case of the
extending use case. An optional feature may or may not exist in the applications
built from the framework. The behaviour described by an extending use case
is only performed when the extension point is reached. Issues about extension

points are not considered in the rule.

Rule 3 : Alternative Feature — Extending Use Case

The super-feature of the alternative feature is mapped to the base use case of the
extending use case. Alternative features represent different ways to configure
their super-features. The variability is preserved by use case extension as same

as Rule 2.

Rule 4 : Composed-of relationship —— Inclusion relationship

If the sub-feature is a variable feature, the composed-of relationship is mapped
to an extension relationship, and follows Rule 2 and Rule 3. Otherwise, it
is mapped to an inclusion relationship. A composed-of relationship between
capability features can be described as “a sub-service must participate in the

execution of its super-service”. This can be specified with a use case inclusion

118



relationship. However, if the sub-feature is a variable feature, the variability has
to be kept by an extension relationship. In a typical FORM model, the root
capability feature often refers to the software being modelled. If a root feature
represents the framework, composed-of relationships originated from the feature

are not mapped.

Rule 5 : Generalization relationship — Generalization relationship

The parent feature is mapped to the parent use case, and the child feature is
mapped to the child use case. The concept captured by a feature generalization
relationship has nothing to do with variability, but specialization, which can be

described by a use case generalization relationship.

Rule 6 : Implemented-by relationship —— Inclusion relationship

Suppose feature f; is implemented by feature fp, then f; is mapped to the base
use case; and fy is mapped to the included use case. The rationale behind the
mapping is same as that of Rule 4. This rule is only applicable when both
features are capability features. We only focus on horizontal traceability. An
implemented-by relationship between features in different feature categories is
vertical trace dependency, and has not been considered at the current stage.

The limitation also exists in other feature categories.

3.2.2.3 Ty,

Operating Environment features represent attributes of the context in which a frame-
work is employed. They describe the framework’s conformance to the interfaces of
external entities. At the current stage, we are only concerned about software related
interfaces, and the architecture metamodel only consists of the logical architecture
view. Therefore, hardware interface features are not mapped into the architectural

model.

Global Constraint : Any subset of the operating environment features must be
mapped to a (set of) interface(s) in the architectural model, while preserving
variability. The protocol specified by the features must be abided by the corre-
sponding interface(s). In terms of software interface, a protocol can be viewed

as the service(s) requested by an external entity.

119



Rule 1 : Mandatory Feature — Interface

A mandatory feature in this category indicates an interface common to all
applications built from the framework. An interface in the architectural model
of a framework must be provided in all applications built from the framework.

The variability is preserved.

Rule 2 : Optional Feature — @&
A hot spot that supports the variability specified by the optional feature must

exist in the architectural entity, which realizes the interface corresponding to
the direct super-feature of the optional feature. Variability denoted by an op-
tional feature cannot be directly realized by an interface alone. Instead, it is
realized by a hot spot. Although an optional feature is not directed mapped into
the architectural model, the mapping does not conflict with the general guide-
lines. As long as the “semantics” of two models correspond, their traceability
is preserved even the structure of corresponding entities and relationships are

different [LS96].

Rule 3 : Alternative Feature — @

A hot spot that supports the variability specified by the alternative feature
must exist in the architectural entity, which realizes the interface corresponding
to the direct super-feature of the alternative feature. The rationale behind the

rule is same as that of Rule 2.

Rule 4 : Composed-of relationship —— Inclusion relationship

If the sub-feature is a variable feature, the composed-of relationship is not
mapped, because the variability has been provided via hot spots, as the de-
scription of Rule 2 and Rule 3. Otherwise, the super-feature is viewed as a set
of distinct operations. The set is decomposed to a group of subsets. Each oper-
ation subset is represented by an interface, which corresponds to a sub-feature.
Any operation inside the union of the subsets must exist in the interface that

is mapped from the super-feature.

Rule 5 : Generalization relationship —— Generalization relationship

The interface specified by the parent feature must be provided by the base class,
and the interface specified by the child feature must be provided by the subclass.

120



Rule 6 : Implemented-by relationship —— Dependency relationship

Suppose feature f; is implemented by feature f,, the interface specified by f; must
be provided by the dependent architectural entity, and the interface specified
by f, must be provided by the depended architectural entity. The rationale
behind Rule 5 and Rule 6 are the general guidelines of relationship traceability

mapping.

3.2.2.4 Ty

Domain Technology features are a set of concepts, terminology, domain specific meth-
ods, and standardization, which are used for communication of stakeholders in a spe-
cific domain. We are only concerned about technical features. Other features such
as business laws are not mapped into the design model. Objects derived from do-
main technology features encapsulate requirement decisions, and the object model is
considered as an analysis model [KKL+98] [PRO1]. So, those requirements should
be fulfilled by the design decisions that are encapsulated by the classes in the design
model. FORM encourages the usage of inheritance to model variability, but other

mechanisms such as polymorphism and composition are also used in the map rules.

Global Constraint : Any subset of domain technology features is mapped to a class
hierarchy in the design model. Requirements that are specified by the feature
subset must be fulfilled by the design decisions which are encapsulated by the

class hierarchy.

Rule 1 : Mandatory Feature —— Class

If the feature has no direct variable sub-feature, it is mapped to a class. Oth-
erwise, the feature is mapped to an abstract class that provides an interface to
realize the required variability specified by the feature. A mandatory feature
represents a common property of a product-line. There is no variability associ-
ated with the property, if the feature has no variable sub-feature. On the other
hand, the variability indicated by the variable sub-features is realized by inher-
itance and polymorphism. Additional description is recommended to indicate

that the abstract class represents a configurable common property.

Rule 2 : Optional Feature —— Class

121



The optional feature is mapped to a subclass, and its super-feature is mapped
to the abstract superclass of the subclass. The requirement is fulfilled by the

class hierarchy. The variability is achieved with inheritance.

Rule 3 : Alternative Feature —— Class

The alternative feature is mapped to a subclass, and its super-feature is mapped
to the abstract superclass of the subclass. The requirement is fulfilled by the
class hierarchy. Alternative features indicate different ways to configure the
requirement that is captured by the super-feature. In the design model, the
variability can be achieved by a set of concrete subclasses, which override the

common interface defined by their superclass.

Rule 4 : Composed-of relationship —— Composition relationship

If the sub-feature is a variable feature, the composed-of relationship is mapped
to a generalization relationship, then follows Rule 2 or Rule 3. Variability
specified by the variable feature is realized by inheritance. Otherwise, the super-
feature is mapped to a composite class, and the sub-feature is mapped to a
component class of the composite. It should be noted that if two classes have a
composition relationship, the “composed” class is referred as the “composite” in

the dissertation. It may be different to the Composite design pattern {GOF94].
Rule 5 : Generalization relationship — Generalization relationship

The parent feature is mapped to the superclass; and the child feature is mapped

to the subclass.

Rule 6 : Implemented-by relationship — Dependency relationship

Suppose feature f; is implemented by feature fo, then f; is mapped to the de-

pendent class; and fy is mapped to the depended class.

3.2.2.5 Ty

Implementation Technique features characterize requirement decisions in terms of
low-level implementation detail. They are more generic than the domain technology
features and not limited in a specific domain. The availability of the realization of all

implementation technique features is restricted by the development environment, and

122



the mechanisms provided by the source code languages. For a given domain entity
or relationship, the mapping will be different in various implementation languages.
Furthermore, Kelley [KELL90] states that the mapping from requirement to code
is always many-to-many, which means that a requirement can be implemented by
several code segments and a code segment can implement several requirements. This
is a fundamental traceability problem, i.e. there is no natural one-to-one mapping
from requirements to code. Thus, the map rules are not defined. However, it is
sensible to assume that the semantics described by the implementation technique
features can be realized by the C++ language with mechanisms such as inheritance,

polymorphism, template, etc [STRO97].

Global Constraint : For any subset of implementation technique features, a finite
number lines of code must exist in the source code to implement the require-

ments that are specified by the feature subset, without variability alteration.

3.2.26 T,

Use cases describe software services which are visible to external entities [JCJO92].
A framework use case model should also capture the commonality and variability
encompassed by the framework. A framework architecture organizes the framework
structure in terms of layers and subsystems, distributes the responsibilities to their
interfaces, and realizes the required flexibility through hot spots and design pat-
terns [DW98] [FSJ99]. As stated by Lindvall [LIND94], use case related traceability
mapping are based on the functional requirements specified by use cases. Further-
more, mapping of commonality and variability should also be considered from the
perspective of frameworks. Here, the trace map focuses on the mapping of services
in terms of interfaces and operations in an architectural model. Variability encapsu-
lated in a use case model with specific types of relationships such as inclusion and
extension is also preserved by the mapping. At the current stage, services related to
hardware entity are not mapped into the architecture model. Since a use case actor
can be either a human being, or an external entity, actors are not mapped into the

architectural model either.

Global Constraint : Any service described by use cases and episodes in the use
case model must be provided by the layers, subsystems, and classes with their

interfaces in the architectural model.

123



Rule 1 : Use Case — Interface

The service described by the use case is specified by the operation(s) in the
interface, which is provided by a layer, a subsystem or a class. Here, the “use
case” refers to a “generic” use case, which has no associated variability. The
rationale behind the rule is that, use cases of a system describe the system’s
visible behaviour, which are specified by interfaces in the architectural model

of the system. Since the use case is a “generic” use case, no variability arises.

Rule 2 : Episode —— Operation

The service described by the episode is provided by the operation. Here, we
assume an episode as the atomic unit of use case models and does not embody
any variability information. Wei [WEI04] introduces the concept of episode
hierarchy in terms of episode tree to describe variability in a composite episode.
Future work to accommodate the concept of episode tree into the mapping is

expected.

Rule 3 : Extension relationship — &

A hot spot that provides the extensibility must exist in the architectural entity,
which realizes the interface that is mapped from the base use case. Issues about
extension points are not considered by the rule. The rationale behind this rule

is similar to that of Rule 2 of T, (see Section 3.2.2.3).

Rule 4 : Generalization relationship — Generalization relationship

The services described by the parent use case must be specified by the interface
that is provided by the superclass; and the services described by the child use
case must be specified by the interface that is provided by the subclass. The
operations involved in the two interfaces are inheritable. It is the typical appli-

cation of traceable relationship mapping, i.e. generalization to generalization.

Rule 5 : Inclusion relationship — Dependency or Composition relationship

The included use case is mapped to an operation, and the base use case is
mapped to an interface, if the variability specified by the inclusion can be
achieved through the composition relationship between the operation and the
interface. Otherwise, the base use case is mapped to an interface that is pro-

vided by the depending entity, which depends on the entity that provides the

124



operation mapped from the included use case. An inclusion relationship in a use
case model means that the functionality described by the included use case is
required to perform the services described by the base use case. It can be viewed
as a dependency relationship. On the other hand, an included use case can be
mapped to an operation that is regarded as a single operation interface, while
the base use case is mapped to another interface which includes that operation.

The rule is (1:many) type of traceability mapping (See 2.10.3).

3.2.27 Ty

The design model of a framework specifies the detail design with classes and objects.
The commonality and variability are realized with inheritance, composition, poly-
morphism, template, etc. Traceability mapping from use cases to classes and objects
in design models is concerned with the functional requirements described by the use
cases, and the participated objects involved in each of the use cases [LIND94]. We
integrate this idea into the definition of the map rules. Every requirement specified
by the use cases of the framework should be fulfilled by the design decisions that are
encapsulated by the classes and their relationships. In addition, the commonality and
variability must be preserved during the mapping. At the current stage, actors and

hardware related use cases are not considered.

Global Constraint : Any service described by the use cases and episodes in a use

case model must be provided by a class hierarchy in the design model, while

preserving variability.

Rule 1 : Use Case —— Interface

The service described by the use case is specified by the operation(s) in the
interface, which is realized by a class hierarchy. Here, the class hierarchy consists
of the classes of the participated objects of the use case. The rationale is similar
to that of Rule 1 of T,,. The “use case” refers to a “generic” use case, and no

variabhility issue arises.

Rule 2 : Episode —— Operation
The service described by the episode is provided by the operation. Actually, it

is sensible to assume that the functionality described by an episode can always

125



be specified by an operation, although that operation might have to be fine-

grained.

Rule 3 : Inclusion relationship —— Dependency or Composition relationship

The included use case is mapped to an operation, and the base use case is
mapped to an interface, if the variability specified by the inclusion can be
achieved through the composition relationship between the operation and the
interface. Otherwise, the base use case is mapped to an interface that is pro-
vided by the depending class, which depends on the class that provides the
operation mapped from the included use case. The rationale is similar to that

of Rule 5 of T,,.

Rule 4 : Extension relationship —— Abstract Class

The services described by the base use case are mapped to the virtual functions
in the abstract class. The behaviour described by the extending use case is
specified by the overridden operations in a subclass of the abstract class. An
extension relationship implies that a use case might extend (“augment”) the
behaviour described in the base use case, restricted by certain condition. The
variability is achieved by overriding the polymorphic operations in the design

model. Issues about extension points are not considered.

Rule 5 : Generalization relationship — Generalization relationship

The services described by the parent use case must be specified by the interface
provided by the superclass; and the services described by the child use case
must be specified by the interface provided by the subclass. The interfaces
are composed of operations. The range subclass operations inherit those range
superclass operations in order to keep the consistency of the semantics, i.e.

generalization.

3.2.2.8 Ty

Framework design consists of architectural design and detailed design [KARL9S].
Framework architecture can be viewed as a set of design decisions within the frame-

work and its smaller component [DW98]. The design model must preserve those

126



design decisions. The services provided by the layers and subsystems in the architec-
tural model should be realized by the design model classes and their relationships.
Hot spots and design patterns are often specified with class hierarchies in object-
oriented application frameworks. Their transition into the design model should not

be difficult, although some classes in the architectural model may need refinements.

Global Constraint : Any design decision in the architectural model must exist in

the design model.

Rule 1 : Interface —— Interface

The design model interface provides all services specified by the interface in the
architectural model. Both architectural and design models use interfaces to pro-
vide functionality, which is specified by certain requirements. The functionality

is regarded as the traceable information between the two models.

Rule 2 : Class —— Class

The design model class encapsulates the design decisions which are provided by
the class in the architectural model. The “class” concept in the range of Tyq4
covers abstract class, template class, and class hierarchy. This convention is

applicable for the rest of the map rules.

Rule 3 : Layer — Class

The class provides the services that are provided by the layer. Variability em-
bodied by the layer must be preserved by the map. A layer can be viewed as a
facade class that provide its services through its interface [GOF94].

Rule 4 : Subsystem —— Class

The class provides the services that are provided by the subsystem. Variability
embodied by the subsystem must be preserved by the map. A subsystem can

be viewed as a facade class that provide its services through its interface.

Rule 5 : Operation —— Operation

The service that is specified by the operation in the domain must be specified
by the range operation. If the domain operation is abstract, then the range

operation must be abstract. The operation attributes must not be changed

127



by the map. Furthermore, if the domain operation is included in an interface
provided by a layer or a subsystem, the range operation must be included in

the interface of the class, which is mapped from that layer or subsystem.

Rule 6 : Composition relationship — Composition relationship

The architectural entities that are connected by the domain composition rela-
tionship must correspond to the design model entities that are connected by the
range composition relationship. The direction of the composition relationship

must be preserved.

Rule 7 : Dependency relationship —— Dependency relationship

A layer dependency relationship is mapped to a dependency relationship be-
tween the classes. The depending layer is mapped to the depending class, while
the depended layer is mapped to the depended class. The same idea is used for

subsystem dependency relationship mapping.

Rule 8 : Association relationship — Association relationship

An association relationship in an architectural model only has two attributes,
name and two association ends. Similar to the process stated in Rule 6, the
entities connected by the range association relationship must correspond to the
entities connected by the domain association relationship. Although a UML
class association relationship also has attributes other than name and attribute
end, the difference does not cause any problem since we do not consider the

reverse map, as explained in 3.2.2.

Rule 9 : Inclusion relationship —— Dependency relationship

The including entity is mapped to the depending class, and the included entity
is mapped to the depended class. The mapping must not violate Rule 2 or Rule
3 or Rule 4 if one of them is applicable. An inclusion relationship indicates
that a layer or a subsystem contains other layers, subsystems, or classes. The
rationale of the rule is to view a layer or subsystem as a facade class, and the

nesting entities act as service providers.

Rule 10 : Realization relationship —— Realization relationship

128



The domain entity that realizes the domain interface is mapped to a class in
the range, which realizes the range interface that corresponds to that domain

interface.

Rule 11 : Generalization relationship — Generalization relationship

The architectural entities that are connected by the domain generalization re-
lationship must correspond to the design model entities that are connected by
the range generalization relationship, i.e. the parent class in the architectural
model is mapped to the parent class in the design model, the child class to the

child class.

3.2.2.9 Ty

The output of detail design are classes with attributes and methods which are specified
with the target implementation language [KARL95]. The design decisions must be
realized, and variability of the framework kept with mechanisms provided by the
language. Other than the problem explained in 3.2.2.5, the map is also restricted by
the target language. For example, implementation of an inheritance relationship in a
language that supports multiple inheritance, may be different to implementation in

a language that does not support multiple inheritance. Therefore, the map rules are

not defined.

Global Constraint : Any design decision in the design model must be realized by

a finite number lines of code in the implementation.

3.2.2.10 Summary

We have elaborated the set of trace maps amongst the models. The metamodels de-
fined in the previous section are concerned with vertical traceability, which is specified
within each of the models. Horizontal traceability is explicitly defined with the trace
maps. The traceability web formed by the vertical and horizontal traceability fully
conveys the traceable information of a framework. In next section, we will discuss
the cascaded refactoring methodology, which utilizes the traceability links between

the models to assist framework evolution.

129



3.3 Cascaded Refactoring Methodology

Industry experiences have proven that frameworks facilitate software reuse by provid-
ing a generic architecture with variable parts to reduce the cost of developing a family
of applications in a given domain [TALI95] [DW98] [FSJ99]. However, no consensus
has been made on a mature framework development methodology. We classified the
existing methodologies into four categories: Bottom-Up [JF88] [JOHN93] [RJ97], Top-
Down [STAR96] [CHW98] [WL99] [CN02], Hot Spot Generalization [PG94] [SCHM97]
[PREE99], and Use Case Driven [JCJO92] [JGJ97] [DW98]. They are not mutually
exclusive. For example, all of them suggest use hot spots and design patterns in the
framework design to provide flexibility. The domain engineering process in Top-Down
approaches analyze the exemplar applications to find the commonality and variabil-
ity. The similar process is also utilized by Use Case Driven approaches to characterize
reusable components. Furthermore, techniques from different categories can be com-
bined, such as the integration of feature modeling into RSEB [GFA98]. Therefore, an

intuitive idea of framework development is derived from them:

1. Perform an analysis on the target domain and specify the framework require-

ments in terms of commonality and variability with a feature model or a use

case model.

2. Design the framework architecture with hot spots and design patterns to meet
those requirements. The architecture design can also be aided by generalizing
the architecture of existing applications in the domain, suggested by Bottom-Up

approaches.

3. Refine the architecture to the detail design in terms of classes and objects. The
commonality and variability are realized with usages of inheritance, composi-

tion, polymorphism, etc.

4. Implement the framework and test. Applications are also built from the frame-

work to verify its flexibility and extensibility.

5. Evolve the framework until it reaches a mature platform.

The idea raises a couple of issues. First, the requirements captured during the

analysis must be satisfied by the design, and realized in the implementation. The

130



commonality and variability of the framework must be preserved through its develop-
ment. Second, framework development is an iterative process [FSJ99]. The evolution
is different to that of individual applications in the “maturity” property. Other than
enhancing the functionality as for individual application evolution, the maturity level
of a framework also has to be improved from White-Box to Black-Box to Visual
Builder [RJ97]. Furthermore, the impact of changes on the design and implementa-
tion due to the alteration on requirements has to be clearly illustrated and managed
with traceability links. Third, the iteration and evolution demands strong support
of framework documentation. Good documentation is also beneficial for application
developers in framework customization [BD99].

The existing development methodologies have little work done on the three issues.
We have refined the previous idea and proposed a moderate solution, called the cas-
caded refactoring methodology, to address those issues [BX01] [BCC+02] [BUTLO02].

3.3.1 Cascade of Refactorings

The cascaded refactoring methodology is a hybrid approach which combines the mod-
eling aspects of Top-Down domain engineering approaches, and the iterative refactor-
ing process from the Bottom-Up approaches. Framework development is viewed as
framework evolution, which is achieved by framework refactoring followed by frame-
work extension. The methodology focuses on framework refactoring, and extends the
notion of refactoring that has been applied to source code, and to design in the form
of class diagrams, to other models of frameworks. It describes a framework with a
set of models and relates the set of refactorings across those models through change

impact analysis using the trace maps. The set of models are:
My : the feature model that organizes the common and variable features.
M. : the use case model that captures the requirements.

M, : the architectural model that describes the high-level design in terms of layers

and subsystems

My : the design model that consists of static class hierarchy and dynamic object

behaviour.

M, : the source code implementation

131



The methodology stresses traceability between the models. In the context of a
framework or product line, the methodology must also stress the distinction between
commonality and variability. The trace maps preserve the traceability of common

and variable features between the models. The set of trace maps is:

Ty, : the trace map from the capability feature model to the use case model

Ty, : the trace map from the operating environment feature model to the architec-

tural model
T4 : the trace map from the domain technology feature model to the design model
Ty; : the trace map from the implementation feature model to the source code
T,. : the trace map from the use case model to the architectural model
T.q : the trace map from the use case model to the design model
T,y : the trace map from the architectural model to the design model

Ty : the trace map from the design model to the source code

The process of cascaded refactoring is a series of refactorings of the models, My
to M;. The impact of the refactorings on a model M; to the refactorings on M;, is
translated via the trace maps that have M, as the domain and M; as the range. For
example: Let f; be a mandatory sub-feature in the capability category. An include
use case mapped from f;, named u;, must exist in the use case model, according to
Rule 4 of Ty,. Assume refactorings on the feature model change f; to an optional
sub-feature, then u; must be changed from an included use case to an extending use
case, to maintain Ty,. Thus, refactorings are cascaded from the feature model to the
use case model in order to preserve the traceability between the two models.

Refactorings of a framework are achieved through cascaded refactorings with one
of the following paths with the format: “M; =M;: T,;;”. That is, refactorings of M;

determine the constraints on the refactorings of M; via T;.

e Capability Feature refactoring path:

1 Mf =M, Tfu

132



2 M, =M,: T,.
3 M, =>Md1 T
4 My =M;: Ty

e Operating Environment feature refactoring path:

1 Mf =M,: Tfa
2 M, =My Tu
3 M;=M,;: Ty

e Domain Technology feature refactoring path:

1 Mf =My de
2 Mg =>M;: Ty

¢ Implementation technique feature refactoring path:
1M f =M;: Tf,'

The starting points of the four paths fully cover the feature model categories.
Refactorings on the feature model can be cascaded step by step to the design and
implementation of the framework. Trace maps support the refactoring process and
deliver a solid foundation for framework evolution.

Given a source code program, a set of input values should result in the same output
values before and after refactorings. This is regarded as the preserved “behaviour”
of program refactoring [OPDY92]. Refactoring of design also treats functionality as
the refactoring invariant. The notion of “behaviour” of the feature model, use case
model, and architectural model is defined (see Section 3.3.2 for detail) to facilitate the
description of refactorings on those models. The process of the cascaded refactorings

of a framework is composed of two stages in terms of granularity:

Stage 1 : Refactorings at an individual model

Stage 2 : Cascaded refactorings between models

133



Any time during the framework refactoring is either at Stage 1 or at Stage 2. The
refactoring rules of each model preserve the “behaviour” at Stage 1. Once refactorings
on the domain of a trace map finish, the entity of the trace map will be updated
according to the constraints prescribed by the map rules of that trace map. Thus, the
trace maps keep the traceability when refactorings are being cascaded between models
at Stage 2. The “behaviour” of a framework during refactorings is preserved from
the requirements to the design and implementation via trace maps. The refactoring
of a framework is a set of model transformations that maps a coherent set of aligned
models to another coherent set of aligned models.

Refactoring of source code and design is to redistribute classes, variables, and
methods across the class hierarchy for the ease of future adaptations and exten-
sions [FOWL99]. In the context of a framework, refactorings should improve flexibility
and extensibility. Especially when refactorings is the preliminary step to extensions,
as the basic philosophy of the methodology. However, little work has been done on

framework extension at the current stage due to our limited experience.

3.3.2 Model Refactoring

Refactoring of source code and design regard functionality as primary and to be
preserved while other quality attributes such as performance take a secondary role.
However, framework refactoring must not only consider functionality, but also flexi-
bility in terms of common and variable aspects. Thus, we must define the appropriate
notion of “behaviour” for the refactoring of the feature model, the use case model,

and the architectural model.

3.3.2.1 Refactoring of Feature Model

A feature model does not only contain features of functionality, but also other proper-
ties such as non-functional requirements, even non-technical features such as business
law. Furthermore, feature variability must be preserved during refactorings. Hence,
it is not sensible to restrict the notion of “behaviour” to just features of functionality.

A feature model defines a collection of valid feature sets. In the context of a
framework or a product line, an application is specified by a valid feature set, i.e. the
set of all features provided by the application [KCH+90] [KKLL99]. If refactoring

of source code of an application is to preserve the functionality of the application,

134



the refactoring effect on a valid feature set, which specifies an application built from
the framework, must preserve every property described by the set of features and
their relationships. So, refactoring of a framework feature model must preserve the
collection of valid feature sets, which specifies all applications that can be built from

the framework. We define the following rules for refactoring of feature model:

Rule 1 : A refactoring of a feature model My preserves the collection of My’s valid
feature sets, each of which specifies an existing application that has been created

from the product line. That is,

Assume APP; be an existing application that has been built from the product
line, which is specified by My; Fset; be the feature set of APP;; S the collection

of feature sets of the existing applications:

VFset; € S, Fset; is valid in the post-refactoring model M’f.

Rule 2 : To apply a feature model refactoring R to a feature model My, the precon-
dition of R must be satisfied by My.

3.3.2.2 Refactoring of Use Case Model

Use cases capture the functionality of a system in a given environment. A use case can
be divided into a cohesive set of episodes, each of which represents a sub-task [RAB96].
The functionality of a system can be defined as the set of episodes in the use cases of
the system. In a context of framework, a use case model must also specify common-
ality with the generalization and inclusion relationship, variability with the extension
relationship amongst use cases.

Refactoring of a framework use case model should preserve not only the function-
ality, but also commonality and variability. At the current stage, the methodology
limits the notion of “behaviour” of use case model refactoring to only the “function-
ality”. Refactoring of use case model preserves the set of episodes. We define the

following rules for refactoring of use case model:

Rule 1 : A refactoring of a use case model M,, preserves the set of episodes of M,.

That is,
Assume e; be an episode of the pre-refactoring M,,; S the set of episodes of M,:

Ve; € S, e; exists in the post-refactoring model M/,.

135



Rule 2 : To apply a use case model refactoring R to a use case model M, the

precondition of R must be satisfied by M,,.

3.3.2.3 Refactoring of Architectural Model

Software architecture provides an abstract description of the organisational and struc-
tural decisions that are evident in a software system. There are too many quality
attributes relevant to architecture to decide which properties should be preserved by
transformations, to the best of our knowledge. It is possible to have a set of quality-
preserving refactorings for each quality attribute. This situation might become even
more complex in the context of a framework, since architecture of frameworks also
contain hot spots and frozen spots to realize variability and commonality. At the
current stage, the methodology takes the default quality attribute, i.e. functionality.
Typically, a use case view can be taken for the subsystems in architecture [BCKR97].
Services of a subsystem are accessed through the interfaces of the subsystem. Func-
tionality of a system can be viewed as a set of services that are provided by the sub-
systems in the system architecture. In the context of our architectural metamodel,
refactoring of architecture should preserve the set of services in terms of operations,
which are provided by the architecture. We define the following rules for refactoring

of architectural model:

Rule 1 : A refactoring of an architectural model M, preserves the set of services of

M,. That is,

Assume s; be a service of the pre-refactoring M,; S the set of services of M,:

Vs; €S, s; is provided by the post-refactoring model M.,.

Rule 2 : To apply an architectural model refactoring R to a architectural model M,,

the precondition of R must be satisfied by M,.

3.3.3 Documenting Refactoring

A design rationale is “a representation of the reasoning behind the design of an
artefact” [KEAN97]. It refers to why a certain design decision is made and which

requirements is realized the decision [CONK89]. A rationale records the assumptions,

136



arguments, and decisions behind a particular design, to allow reviewers and main-
tainers follow the previous reasoning used by the designers. The iterative process of
framework evolution expects consistent and comprehensive documentation, as typical
software application do. The rationale behind refactorings of a framework should be
recorded to assist the evolution. The methodology views a refactoring as an issue-
driven activity. Since framework refactoring is achieved through cascaded refactorings
of a set of models of the framework, the overall rationale of refactoring is a collec-
tion of decisions. Each decision records a refactoring performed on one model of
the framework. The process of cascaded refactoring is documented by a sequence of
refactorings, each of which is described by a decision record. Thus, the refactoring
document presents a clear roadmap of the sequence of refactorings on the involved

models, in order to evolve the framework.

Decision Record 2:

Intent: Make the Configurelmp a subclass of the Configure abstract class.

Choice: Inherit

Arguments: Configurelmp class, Configure class

Validation: The Configurelmp class becomes a subclass of the Configure class.
Since the Configurelmp class has neither parent class nor subclass before the
refactoring, as stated in Decision Record 1, the precondition of the refactoring is
satisfied. The Configures virtual function in the Configure class must be overridden
by the Configurelmp class to provide the default Configure service,

Figure 26: A Decision Record Example

It is also important to capture the rationale behind the individual model refac-
toring. So, the purpose of the refactoring, the choice of refactorings, and the reasons

for its choice should be recorded. We suggest that the decision records the following

information:

intent: the motivation and purpose of this step of restructuring

choice: refactorings that are appropriate for the change, or refactorings for a high-

level refactoring that is composed of a series of lower-level refactorings

arguments: the parameters for the choice, with a possible discussion of trade-off

analysis for other candidate refactorings

validation: the consequences of this step of restructuring, with a possible discussion

of how to preserve behaviour with the preconditions

137



Of course, this rationale should relate to the assumptions and priorities docu-

mented in the original design rationale. Figure 26 gives a decision record example.

3.3.4 Refactorings

The definition of a refactoring often includes invariants (“preserved behaviour”) that
should remain satisfied and pre and postconditions that should hold before and after
the refactoring has been applied. Opdyke suggests the use of preconditions to ensure
the behaviour preservation [OPDY92]. Roberts extended his definition of refactor-
ing by adding postconditions, which are assertions that a program must satisfy for
the refactoring to be applied [ROBE99]. Heckel has formally proved that any set
of refactoring postconditions can be translated into an equivalent set of precondi-

tions [HECK95]. The methodology defines a refactoring in the following format:

Name: a meaningful name to specify the intent of the refactoring
Description: a textual explanation of the refactoring activity
Parameters: the model entities and relationships involved in the refactoring

Preconditions: the context that must be satisfied to execute the refactoring

A set of refactorings is defined for the feature model, the use case model, and
the architectural model, respectively. These lists of refactorings are not complete.
However, they are sufficient for our case study. More refactorings will be added in

the future.

3.3.4.1 Feature Model Refactorings

We use S to represent the collection of feature sets of the existing applications in all
feature model refactorings.

The first set of refactorings modify the variability of a feature:

Name: Change_mandatory_to_optional

Description: takes a mandatory feature f and makes it optional

Parameters: f;

Preconditions: VFset; € S, f ¢ Fset,.

138



Name: Change_optional_to_mandatory

Description: takes an optional feature f and makes it mandatory
Parameters: f;

Preconditions: VFset; € S, f € Fset;.

Name: Change_optional_to_alternative
Description: takes an optional feature f at a variation point V}, and makes it alternative

Parameters: f; Vp;
Preconditions: VFset; € S, if f € Fset;, f takes and only takes one of the enumerated

values fi, fa, ..., fn that are represented by the alternative features.

Name: Change_alternative_to_optional

Description: takes a set of alternative features fi, fs, ..., fn at a variation point V,, and
makes an optional feature f

Parameters: f; fi, fo, ..., fn; Vo,

Preconditions: dFset; € S, Jfi1<e<n) € Fset;. f; is optional at V.

Name: Add_alternative
Description: takes a set of alternative features fi, fa, ..., f, at a variation point V), and
adds another feature f,,;; to the list of alternatives

Parameters: fl: f2) ) fn: fn+1;' ‘/;77'

Preconditions: True.

The second set of refactorings restructures the composed-of hierarchy:

Name: Add_optional
Description: takes a feature f, and makes an optional feature f to be the sub-feature of

s
Parameters: fq; f;
Preconditions: VFset; € S, if (fs € Fset;)A(f € Fset;), f is a sub-feature of f;.

Name: Promote_feature

Description: takes a feature f that is a sub-feature of f; and promotes it in the hierarchy

to be a sibling of f;

139



Parameters: fs; f;
Preconditions: VFset; € S, (fs ¢ Fset;)V(f ¢ Fset;)

Let us choose Add_alternative as an example to illustrate the behaviour preser-
vation of feature model refactorings. Assume all existing applications that have been
created so far from the product line have different values at a variation point V,,, each
of those values is represented as feature fy1<;<n). After the refactoring, any feature
set derived from the post-refactoring feature model can take f;(1<i<n+1) at V,. Any ex-
isting feature set that is prior to the refactoring still conforms to the post-refactoring
feature model no matter which f; is chosen at V,, because fi1<i<n) is a subset of
fta<t<n+1)- Thus, the precondition is always true. That is: VFset; € S, Fset; is valid
in the post-refactoring model M}. The collection of valid feature sets is preserved.

The precondition of Change_alternative_to_optional is derived from the clas-
sification in Generative Programming [CEQ0], that is, any alternative feature set can
be normalized to contain either alternative optional features, or alternative features

(each of them is not optional).

3.3.4.2 Use Case Model Refactorings

We use Uname to represent the set of existing use case names, A, as the set of
existing actor names, and EP(u) as the set of episodes included in a use case u, in all
use case refactorings.

The first set of refactorings are concern about restructuring of actors and behaviour:
Name: Create_abstract_actor

Description: identifies two actors a; and ay and create a common super-actor a as their
parent

Parameters: ay; as; a;

Preconditions: assume u; as the use case that can be associated with aq; uy as the
use case that can be associated with as; u as the use case that can be associated with

a. EP(u1)=EP(u3), or u; and u; have an extension relationship with u. a € Aname.
Name: Create_abstract_usecase

Description: identifies two use cases u; and us as specializations of a common super use

case u

140



Parameters: uy; us; u;

Preconditions: (EP(u;)=EP(us))A (v € Upame)-

Name: Merge_actors
Description: identifies two actors a; and as as a common actor a
Parameters: ay; as; a;

Preconditions: a ¢ Aname.

Name: Split_actor

Description: identifies the special cases a; and a; of an actor a

Parameters: ay; as; a;

Preconditions: assume EP(us1<s<m)) as the set of episodes included in the use cases
associated with ag; EP(Umgtgn)) as the set of episodes included in the use cases
associated with as; EP(u,a<w<k)) as the set of episodes included in the use cases as-
sociated with a. V e; € EP(uwi<w<k)) = (& € EP(usa<s<m))) V (& € EP(uy1<t<n)))-
(a1¢Aname) A (a2&Aname)-

Name: Merge_behaviours
Description: identifies two use cases u; and uy as a common use case u
Parameters: uy; us; u;

Preconditions: Ve; € (EP(u1) UEP({us)) = €; € EP(u). u ¢ Upame.

The next set of refactorings redistributes behaviour in the form of episodes from one
use case to another. These are similar to the refactorings of a class hierarchy that
move methods:

Name: Make_episode_usecase

Description: takes a use case u with an episode e and creates a new use case u; with
behaviour precisely described by e. A relationship link  includes u, is added

Parameters: u; e; uy;
Preconditions: Ve; € EP(u), ; # e = ¢; ¢ EP(u1). e € EP(u1). w1 € Upame.

The last set refactorings restructure use case generalization hierarchy:

Name: Move_episode_to_parent_usecase

141



Description: takes a use case u with child use cases u;(1<i<n), €ach of which includes a
common episode ¢, and moves e to u

Parameters: u; €; Ui(1<i<n),

Preconditions: e ¢ EP(u). Vi € (1 <i<n) = e € EP(u;).

Name: Move_episode_to_child_usecase

Description: takes a use case u with an episode e, moves e to each of the child use cases
of u

Parameters: u; e; un<i<n), as the child use case of u;

Preconditions: e € EP(u). Vi € (1 <i<n) = e ¢ EP(w).

Let us choose Move_episode_to_child_usecase as an example to illustrate the
behaviour preservation of use case model refactorings. In terms of episodes, the
change only relates to the episodes included in u and episodes included in the child
use cases of u. Prior to the refactoring, episode e is not included in any child use case
of u, as dictated by the precondition. However, e can be inherited by all the child use
cases from u, according to the definition of use case generalization relationship. After
the refactoring, e is distributed into every child use case and removed from u. The
distribution will not cause any conflicts to the existing episodes of any child use case,
in order to satisfy the precondition. The set of episodes of u and its child use cases

are not changed before and after the refactoring. Thus, the behaviour is preserved.

3.3.4.3 Architectural Model Refactorings

The work on architectural refactorings focuses on the changes related to the interfaces
of layers or subsystems of architecture. We use SUB,sme to represent the set of
existing subsystem names, LAY, ,me as the set of existing layer names, INT ;e as the
set of existing interface names, Operation(K') as the set of operations included in an
interface K, Interface(K) as the set of interfaces provided by the subsystem (layer)
K, and Client(K) as the set of clients that are depended on the interface K in all
architectural refactorings.

The first set of refactorings manage the creation or name change of interfaces, sub-
systems, and layers:

Name: Create_subsystem

142



Description: creates a new subsystem S

Parameters: S;
Preconditions: S ¢ SUBpame-

Name: Create_layer
Description: creates a new layer L

Parameters: L;
Preconditions: L ¢ LAY name-

Name: Change_interface_name

Description: takes an interface I and changes its name to I3

Parameters: 1,1,

Preconditions: I; € INTame. VC; € Client(I) = C; € Client(/;). VOp, € Operation(])
= Op, € Operation([;).

Name: Change_subsystem_name
Description: takes an subsystem S and changes its name to .S;

Parameters: S; Si;
Preconditions: S; ¢ SUB.me.- VC; € Client(Interface(S)) = C; € Client(Interface(S1)).

Name: Change_layer_name
Description: takes a layer L and changes its name to L

Parameters: L; Ly,
Preconditions: Ly ¢ LAY pame. VC; € Client(Interface(L)) = C; € Client(Interface(L,)).

The second set of refactorings looks at the interfaces of a subsystem or a layer and
re-distributes their operations. Here, although the description is based on subsystem,
all refactorings are also applicable for layers:

Name: Split_interface

Description: takes an interface I of a subsystem S and redistributes the operations of I

across two new interfaces I; and I of the subsystem S

Parameters: I; I; I, S,
Preconditions: (I € INTame)A(l2 & INTpame). I € Interface(S) = (I € Interface(S))A

143



(I3 € Interface(S)). VOp; € Operation(I) = (Op; € Operation(I;))V (Op, € Operation(Iy)).

Name: Merge_interfaces

Description: takes two interfaces I; and I, of a subsystem S and combines the operations
of I; and I, together to a new interfaces I of the subsystem S

Parameters: I1; I;; I; S;

Preconditions: I ¢ INTame. (I3 € Interface(S)) A (Is € Interface(S)) = I €
Interface(.S). VOp; € (Operation(1;)) U (Operation(l3)) = Op, € Operation([).

The third set of refactorings redistribute the services provided by a subsystem or a
layer. Usually these are accompanied by a redistribution of interfaces and structure.
According to the architectural metamodel, a service is specified by operations. Thus,
we assume that a service can always be specified by an interface which includes all
operations that are required to provide the service. We use “#£” to specify the “not
equal to” relationship between two different interfaces. In the following refactor-
ings, a service is regarded as an interface, in order to simplify the description of the
refactorings:

Name: Move_service_to_sibling

Description: takes a service s of subsystem S; with sibling subsystem S5 in a hierarchical
client-supplier architecture and assigns it to Ss

Parameters: Sy; Sa; s;

Preconditions: (s ¢ Interface(S3)) A (s € Interface(S1)). (VI; € Interface(S))) A (I; #
s) = Operation(/;) C (Operation(Interface(S;)) \ Operation(s)). (Vc € Client(s))A(s €
Interface(S))) = (s € Interface(S3)) A (¢ € Client(s)).

Name: Delegate_service_to_supplier
Description: takes a service s of subsystem S; with a supplier subsystem S5 and assigns
the service to S,

Parameters: Si; S, s;
Preconditions: (s ¢ Interface(Ss)) A (s € Interface(S)). (VI € Interface(S;)) A (I #
s) = Operation(I;) C (Operation(Interface(S;)) \ Operation(s)).

Name: Promote_service_from_internal

144



Description: takes a service s provided by a nested subsystem S; of a subsystem S; and
makes it a service of S

Parameters: Si; Sa; 8;

Preconditions: assume InterClient(s) as the set of S;’s nested subsystems which are
clients of s; (s ¢ Interface(S1)) A (s € Interface(Ss)). (VI € Interface(Ss)) A (I; #
s) = Operation(I;) C (Operation(Interface(S:)) \ Operation(s)). InterClient(s) C {S,}.
(Ve € Client(s)) A (s € Interface(S2)) = (s € Interface(S;)) A (c € (Client(s) U {S3})).

Name: Demote_service_to_internal

Description: takes a service s provided by a subsystem S; with a nested subsystem S,
and makes s a service of S,

Parameters: Sy; Sa; s;

Preconditions: (s ¢ Interface(Ss)) A (s € Interface(S1)). (VI € Interface(S1)) A (I; #
s) = Operation(I;) C (Operation(Interface(S;)) \ Operation(s)). (Vc € Client(s))A(s €

Interface(S1)) = (s € Interface(Sy)) A (¢ € Client(s)).

It should be noted that the last precondition of Promote_service_from_internal
is different to that of Move_service_to_sibling. The reason is explained with the
following example. Assume there are two subsystems in architecture, S; and its
nested subsystem S5. The service s is provided by So and its clients are S; and Sy
(Self dependency). If s is promoted from S, to Si, then S, should not be a client of
s because Sy cannot request services from its outer subsystem ), according to the
architectural metamodel. Thus, S, should be added into the set of clients of s, to
ensure the correctness of the last precondition in Promote_service_from_internal.
The same rationale is behind the precondition InterClient(s) C {S>}, which means
that other than .55 itself, no nesting subsystems of S should be the clients of s.

Move_service_to_sibling and Delegate_service_to_supplier are applicable to
layers. However, issues arise when the other two refactorings are applied directly on
layers, because the different constraints between layers and subsystems, i.e. any enti-
ties inside a layer can only interact with other external entities through the layer inter-
face. The inclusion relationship of layers is merely a client-supplier structure. Thus,
Demote_service_to_internal is same as Delegate_service_to_supplier, in the

context of layers. Here, we give the description of Promote_service_from_internal

145



for layers:

Name: Promote_service_from_internal

Description: takes a service s provided by a nested layer Ly of a layer L; and makes it a
service of L

Parameters: Li; La; s;

Preconditions: assume InterClient(s) as the set of L;’s nested subsystems which are
clients of s; (s ¢ Interface(L1)) A (s € Interface(Ls)). (VI; € Interface(Lq)) A (I, #
s) = Operation(I;) C (Operation(Interface(Ls))\ Operation(s)). (Vc € Client(s))A(s €
Interface(Ls)) = (s € Interface(L;)) A (c € (Client(s) U InterClient(s))).

Let us choose Move_service_to_sibling as an example to illustrate the behav-
iour preservation of architectural model refactoring. According to the architectural
metamodel, a service is specified as operations. The set of services provided by the
pre-refactoring model can be divided into three parts: the services provided by Sy,
services provided by S,, and services provided by the rest of the architectural ele-
ments other than S; and S;. For the third part, only the clients that request s are
effected. In the post-refactoring model, S;’s services other than s are still available
as specified by the second precondition. S3’s services is “augmented” by s because
s does not collide with the interfaces of Sy prior to the refactoring, according to the
first precondition. Thus, the union of S;’s services and Sy’s services are as same as
that in the pre-refactoring model. The last statement of the precondition assures
that the change has been propagated to all clients of s, and their services will not be
effected. Thus, the total set of services of the pre-refactoring model is preserved by

the refactoring.

3.3.5 Conclusion

Refactoring of source code has long been used for Bottom-Up development and evo-
lution of object-oriented frameworks. The concept of refactoring is extended to the
feature model, the use case model, and the architectural model, of an object-oriented
framework. Refactoring of these models is the first step in framework evolution:
refactoring and extension.

In the cascaded refactoring methodology, a framework is described by a set of

models: a feature model organizing common and variable features; a use case model

146



of requirements; an architectural design; a design showing class collaborations; and
source code. The overall refactoring of the framework is a set of refactorings of the
models, and the constraints on how to refactor a particular model is determined or
impacted by the previous refactorings. Hence, the restructuring cascades from one
model to the next. The cascading of impacts of changes follows the trace maps be-
tween models. Overall, a refactoring of a framework is a set of model transformations
that maps a coherent set of aligned models to another coherent set of aligned models.

The methodology is unique in three ways:

1. To view refactoring as an issue-driven activity

2. To document the rationale of an application of a refactoring as a triple: intent

of restructuring, choice of refactoring(s), and impact of the restructuring

3. The notion of cascaded refactoring, where the restructuring of one model de-

termines constraints on the restructuring of other models (via the trace maps)

The three issues introduced at the beginning of this chapter have been addressed
by the methodology. Commonality and variability of a framework are identified and
captured into a feature model. The set of trace maps keep the horizontal traceability
and flexibility links from the feature model to the design model and source code. So,
the realization of required variability is achieved via aligning the models.

Framework evolution is regarded as framework refactoring followed by framework
extension. The methodology focuses on framework refactoring at the current stage.
Framework refactoring is achieved by applying a set of refactorings on the models of
a framework. In addition, requirement alteration is appropriately propagated to the
design and code with the trace maps. The precise definition of models, refactoring
rules, and refactoring document are beneficial to framework documentation.

While the working set of partial models is incomplete, and hence some mappings
for traceability or alignment are partial maps, a consistent, coherent, aligned set of
models and maps is desired. Our work is ongoing, particularly in terms of enumerat-
ing all the refactorings of the particular models, and in investigating whether there
is a need for architectural refactorings that preserve quality attributes other than

functionality.

147



Chapter 4

Know-1t-All Case Study

Be true to your work,
your word, and your friend.

~Henry David Thoreau

A case study is developed to validate the cascaded refactoring methodology. The
case study is a framework for relational Database Management System (DBMS),

called Know-It-All. The DBMS domain is chosen because:

1. The DBMS domain is mature with many available resources for feature oriented
domain analysis, such as open source DBMS applications, published papers,

books, and domain experts, etc.

2. The DBMS domain is stable without lots of rapid changes. It is a good candidate
for building frameworks [TALI95].

3. The need for DBMS applications, as well as their use, is still rapidly grow-
ing [RG00).

Our aim is not to provide a powerful relational DBMS with complex structures
for that will demand much more resources than we can afford. Know-It-All has only

a small subset of DBMS features as follows:

e Create and modify a relational database with a given schema

e Verify and load a relational database from files into the main memory

148



e Query data with a simple data manipulation language

Features such as transaction management and data updates are not considered.

The remainder of this chapter is organized as follows. Section 4.1 introduces
the case study. The Know-It-All models are presented in section 4.2. The trace
maps amongst the models are illustrated in section 4.3. Section 4.4 demonstrates
the cascaded refactoring methodology with two refactoring examples. Section 4.5

discusses what has been learnt from the case study.

4.1 Case Study

The research on software methodology in an academic setting needs a concrete case
study for the purpose of validation. Our case study, Know-It-All, is a RDBMS frame-

work to validate the cascaded refactoring methodology.

4.1.1 Introduction to the Domain

A database is a collection of data, which describes the activities of one or more re-
lated organizations [RG00]. A database management system (DBMS) is a software
system designed to manage and utilize large collections of data. The objective of us-
ing a DBMS is to provide a convenient and effective method of defining, storing, and
retrieving the data contained in its database. A data model is a collection of high-
level data description constructs that hide many low-level storage details. A DBMS
allows its users to define the stored data in terms of data models. The relational
data model is the dominant data model in DBMS community, and has been used in
many commercial database systems, such as Informix, Oracle, Sybase, and Microsoft
SQL Server [RG00]. There are also other existing data models, such as the hierarchi-
cal model, object model, object-relational model, and network model. A relational
database is a database in which the data is logically perceived as tables, which are
concrete instances of relations. A relational database management system (RDBMS)
manages tables of data and associated index structures that increase functionality
and performance of tables. A database schema is a description of data in terms of
a data model. The schema of a relation describes its name, the name of each field
(attribute), and the data type of each field. A data definition language (DDL) is used

to define the schema of a database.

149



The data in a DBMS can be viewed as three levels of abstraction: ezternal, con-
ceptual, and physical. The database description consists of a schema at each of them.
The conceptual schema specifies the stored data in terms of the data model of the
DBMS. The external schema also describes the data in terms of the data model, and
allows data access to be customized for individual users or user groups. A view is
conceptually a relation, but the records in a view are not stored in the DBMS; instead,
they are computed using a definition for the view in terms of relations stored in the
DBMS. An external schema is composed of a collection of views and relations from
the conceptual schema. The physical schema describes additional storage detail, such
as how to store the relations on secondary storage devices. Indezes are auxiliary data
structures created to speed up data retrieval operations. The schema information is

stored in the system catalogs.

S
show ‘ Plan Executor ) ’ Parser }
interaction
Relational Query
Operator Bvaluton
Engine
Transaction | [€%| File and Access Methods |
Manager
v | R
< ecovery
] Buffer Manager | Manager
Lock l
Manager l [
< Disk Space Manager
|
Concurrency
Control Physical Manager
DBMS |

Figure 27: A Simplified Relational DBMS Architecture

The usage of a DBMS does not only include data storage, but also data retrieval.
A query is a question involving the data stored in a DBMS. A data manipulation lan-
guage (DML) is used to create, modify, and query data in a DBMS. Query processing
is one of the most important features of a DBMS. The other features include trans-
action management, data integrity, and crash recovery.

A simplified relational DBMS structure (Figure 27 [RGO00]) can be divided into

150



three parts: Query Evaluation Engine, Concurrency Control, and Physical Manager.
When a DBMS user issues a query, the Parser translates the query to be a parsed
query and sends the parsed query to the Optimizer that uses the information of
the data storage to generate efficient execution plans for the query evaluation. An
execution plan usually consists of relational algebra expressions. The execution plan
is sent to the Plan Executor subsequently to get the query result.

A file in a DBMS is a collection of pages or a collection of records. The imple-
mentation of relational operators depends on the File and Access Methods layer. The
layer includes a variety of software to support files and indexes. The Buffer Manager
brings pages from secondary storage devices to main memory as needed in response
to read requests. It relies on the Disk Space Manager, which hides details of the
underlying operating system and hardware, and allows higher levels of the DBMS to
view the data as a collection of pages.

The DBMS supports concurrency and crash recovery by carefully scheduling user
requests and maintaining a log of all changes to the database. A transaction is any
one execution of a user program in a DBMS. The Transaction Manager ensures that
transactions request and release locks according to a suitable locking protocol and
schedules the transaction execution. A lock is a mechanism used to control access
to database objects. The Lock Manager keeps track of requests for locks and grants
locks on database objects when they become available. The Recovery Manager is
responsible for maintaining a log, and restoring the system to a consistent state after
a crash.

There are several groups of people associated with the creation and use of data-
bases. DBMS software is built by database implementers. The end users store and
use data in a DBMS. They often just simply use software applications that are made
by Database Application Developers to interact with the DBMS. Those applications
facilitate the DBMS usage by hiding the technical knowledge required to use the
DBMS. Enterprise-wide databases are typically important and complex enough to be
managed and maintained by professionals, called Database Administrators (DBA).
They are responsible for the design of conceptual and physical schemas, security and

authorization, data availability and failure recovery, and database tuning.

151



4.1.2 Introduction to the Framework

The aim of the Know-It-All framework is to support a variety of data models of
data and knowledge, different paradigms of integration, and heterogeneous data-
bases [BCC+02]. It will be used to customize advanced database applications in
bioinformatics. Know-It-All is designed with scientific databases in mind, and does
not provide transactions. Instead, it provides a data feed mechanism for bulk or incre-
mental data loads. The prime concern is querying the existing data. The framework
provides a generic infrastructure for DBMS and supports a range of data models (rela-
tional, object, object-relational, etc) where the data model itself, and its constituents
for query language, query optimizing, indexing, and storage have clearly defined roles.

A database in Know-It-All is seen as a series of layers, each of which provides
the same interface. The usual breakdown of responsibilities into physical, logical,
conceptual, and view layers is followed by Know-It-All. Each layer in Know-It-All is
basically a translator between its client layer and its supplier layer. A layer provides
a mechanism to decompose or translate queries, and a mechanism to reconstruct
answers (for example, an execution plan for relational algebra expressions). The
translation is done with the aid of the schema, and produces both the translated
query, and the mechanism to reconstruct answers. The layer architecture is adapted
from one for heterogeneous databases [MB96], while the reconstruction is done by
an iterator tree to get the result. Know-It-All will eventually incorporate composite
databases (such as integrated or heterogeneous databases) and make no distinction
between simple and composite databases.

Limited by resources, to date Know-It-All only implements relational DBMS, be-
cause the relational data model is mature, and many applications are available as
sources for the bottom-up refactoring work [BBG+89] [RAMA96] [MB96]. The first
version prototype has been implemented with GNU C+4-, with some Java for user
interface, and XML for communication of data between the C++ framework and the
Java tools. It supports query processing, data feed and schema definition. It also con-
tains two sub-frameworks: OPT++ for query optimization [KD99] and Gist for index
techniques [HKP97]. The prototype provides a generic infrastructure for relational
database management systems and components for query optimizing, indexing, and
storage management. ANSI SQL is chosen as the query language, for its popularity

in relational database domain. Flat text files are used as the storage medium.

152



4.2 Case Study Models

A framework is specified by its feature model, use case model, architectural model,
design model, and source code. Refactoring of a framework is achieved through a
series of cascaded refactorings performed on its models. The traceability of those
models is kept by the trace maps among them. This section presents the Know-It-

All models except its source code; the trace maps will be illustrated in the following

section.

4.2.1 Feature Model

The features (Figure 28) are collected from various sources in the DBMS domain such
as textbooks, papers, exemplar systems, and expert feedbacks [BBG+89] [DESA90]
[RAMA96] [MB96] [BP98] [RG00] [KWONO03]. The features of Know-It-All are orga-
nized into four categories: Capability, Operating Environment, Domain Technology,
and Implementation Technique.

In the Capability category, the Know-It-All framework supports mandatory fea-
tures Query, Administration, and DataFeed. The Query feature represents the mecha-
nism for retrieving information from a database with questions in a predefined format.
It has two mandatory sub-features: DBConnect, connecting to the specific database
to issue the query, and DBDisconnect, close the connection to the queried database.
The Administration feature stands for the management services such as schema de-
finition and database tuning. It is composed of five sub-features. The mandatory
features DBlnitialize and DefineSchema represent the function of database creation
and database schema definition. The Configure feature denotes the service of data-
base environment customization with given parameters. The Tune feature indicates
the service of modifying a database to ensure adequate performance as user require-
ments change. The Monitor feature specifies the service for a DBA to supervise the
DBMS related activities. The Configure, Tune, and Monitor feature are optional fea-
tures. The DataFeed feature specifies the service of loading data into the DBMS. It
has two child features: IncrementalUpdate and BulklLoad, which specify two different
ways of feeding data into the DBMS. The non-functional requirements Performance
and Scale are optional features. The Performance feature represents the DBMS effi-

ciency and the Scale feature indicates the availability of the DBMS to handle greater

153



Know-It-All

l Query H Performancel

Capability

e

Administration

1 tal
DB DB DB Define nerementa BulkLoad
Connect | ) Disconnect Initialize Schema Update
]
/ / Operating
Iy Hardware Environment
/ / Platform
! | Computer | ! Network ] OSInterface APl

[ Server | { LAN || WAN |

| Windows “ 082 i [ Unix ” LinuxJ

\ [ Relational || Object ]

[Optiminer |

\‘

!

/
~

(%L
:Q: \/\ — " -~

Answer
Representation

Relational
QOperator

/,7

Distributed
System

Domain Technology

<

Data
Structure

Dimensionality

| Hashing H B-Tree Il R-TreeJ LSingle || Multiple

SN -
I' - >< -~
Iterator STL

Figure 28: Know-It-All FORM Feature Model

154

Implementation
Technique



usage demands.

The Operating Environment features represent the environmental constraints and
both hardware and software interfaces of Know-It-All. The HardwarePlatform feature
represents the hardware environment with which Know-It-All interacts. It consists of
the mandatory Computer feature, and optional feature Network, which can be con-
figured to either LAN (Local Area Network) or WAN (Wide Area Network). The
Computer feature and its alternative sub-features indicate the different computer en-
vironments in which Know-It-All can operate: a standalone PC, a workstation or a
server in a client-server setup. The API feature stands for Application Programming
Interface, which lets other software applications interact with Know-It-All. The OSIn-
terface feature specifies the interface to operating systems. Its alternative sub-features
represent different operating systems: Windows, OS2, Unix, and Linux.

The Domain Technology features of Know-It-All include the DataModel, Storage,
Optimizer, Parser, and Schema feature. The DataModel feature represents the collec-
tion of high-level data descriptions supported by Know-It-All. It is composed of Type,
Language, and Theory features. The Type feature and its alternative sub-features
indicate two different kinds of data models, relational data model and object data
model. The RelationalOperator feature represents the abstraction of relational algebra
expressions. It supports the implementation of the Optimizer feature. The Language
feature indicates the language used for data manipulation (DML), data definition
(DDL), and the answer representation. The Query feature in the Capability category
is implemented by the collaboration of the Optimizer, Parser, and consequently the
Schema feature. There are many data definition languages (DDL) and data manip-
ulation languages (DML). However, SQL is chosen in the prototype as both of them
since SQL is the standard query language in the relational DBMS domain. The OQL
(Object Query Language) and XML (eXtensible Markup Language) features indicate
other query languages. The AnswerRepresentation feature specifies the format of the
query result. The Theory sub-feature represents the theory supported by the data
model, such as relational algebra. The Parser feature represents the component of
translating queries with the assistance of the Schema, which stores the DBMS meta-
information. The Schema is essential for most DBMS services. The Optimizer feature
stands for the component that evaluates the best execution plan. The process is

called “optimization”, which also needs the collaboration of the Schema. The Storage

155



feature characterizes physical storage issues. The Medium feature indicates the place
where the data is stored, either in the main memory, or in files, or in distributed
systems. The Index feature represents the indexing mechanism, which is important
to improve the efficiency and performance of DBMS applications. Two indexing is-
sues are considered: DataStructure and Dimensionality. The DataStructure feature
and its alternative sub-features represent different index structures: Hashing, B-Tree
(Balanced Tree), and R-Tree (Rectangle Tree). The Dimensionality feature and its
alternative sub-features specify the dimensionality of the index data structure, which
can be either single dimension, or multiple dimensions.

The Implementation Technique features are more generic than the Domain Tech-
nology features. For instance, the Iterator feature can also exist in other domains. In
Know-It-All, the implementation of answer representation and relational operator re-
lies on the iterator. The C++ Standard Template Library (STL) is heavily employed
in the prototype. They are the two most important features for Know-It-All in this
category. Other implementation features are not shown in the model.

There are three types of feature relationships in the model: Composed-of, Gener-
alization, and Implemented-by. For instance, the Configure feature has a Composed-of
relationship with the Administration feature; the relationship between the BulkLoad
and DataFeed is Generalization; and the Query feature has an Implemented-by rela-
tionship with the Parser feature.

It should be noted that a typical FORM model also includes feature composition
rules and feature selection decision records. Since we are mainly concerned with
alignment mapping and refactorings, they are not considered in order to simplify our
situation.

The features that have been implemented by the Know-It-All prototype are given

in the following list; the rest of them are left for future work.

e Capability: Query and its sub-features, Administration and its mandatory sub-

features, DataFeed and its mandatory child feature, Performance, and Scale.

e Operating Environment: HardwarePlatform, Computer, PC, OSlnterface, Unix,
and API.

e Domain Technology: DataModel, Type, Relational, Language, AnswerRepresenta-
tion, DDL, DML, SQL, Parser, Optimizer, RelationalOperator, Schema, Storage,

156



Medium, and File. To date the prototype has not incorporated the Gist index

framework.

e Implementation Technique: lterator and STL.

4.2.2 Use Case Model

The Know-It-All use case model categorizes the users to be DBA, Advanced User, and
End User, shown in Figure 29. The DBA actor represents database administrators

who perform management services. The Administration use case has two included use

cases:

1. InitializeDatabase: a database is created with a given schema

2. DefineSchema: a DBA can define the schema for a database

In addition, the Administration use case can be extended by three extending use cases:

1. Configure: a DBA can customize the environment of a database with given

parameters, such as how to backup files of a database

2. Tune: a DBA can modify the database to meet the expected performance, such

as modifying the physical schema of a database to improve the search efficiency
3. Monitor: a DBA can examine the activities of a database

The Advanced User is responsible for feeding data to the databases in Know-It-All.
The DataFeed use case can be specialized to IncrementalUpdate and BulkLoad, which

represents two ways of data loading.

The End User actor represents the common “naive” users who search and use
data in Know-It-All. The Query use case specifies the typical query-processing job

performed by them. It has two included use cases:

1. ConnectDatabase: a specific database is connected and made ready for opera-

tions

2. DisconnectDatabase: a specific database is disconnected and not available for

further activities

157



T <<extend>>

DataFeed

A

Advanced User

<<oxtend>> .

<<extend>>
i <<include>>

Connect <<include>> ",

<<include>> Initialize
Database
4 Define
Schema
<<jnclude>>

D ase

atab Know-it-All

Figure 29: Know-It-All Use Case Model

Administration

Incremental
Update BulkLoad

Query

Episode QE1: A user asks a query against a Database
Episode QE2: The DBMS passes the query to the Database
Episode QE3: The user gets back the query result

%*

End User

The Query use case is also decomposed into further detail. There are three inherent

episodes:
1. QE1: A user issues a query against a specific database in the DBMS

2. QE2: The query is sent to the database and processed

3. QE3: Once the process is done, the user can get the query result from the DBMS

4.2.3 Architectural Model

The Know-It-All architectural model is shown in Figure 30. The DBMS subsystem is
responsible for database administration, data loading, and database access. It pro-
vides the interface I_API and [I_KIAQuery for different kinds of users. The I_API
interface specifies the administration services. The operations included in the I_API
correspond to the included and extending use case of the Administration use case,
respectively. For instance, the Initialize DB operation can be used to create data-
bases. Three abstract classes Configure, Monitor, and Tune provide the corresponding
services in the I_API interface. The I KIAQuery interface specifies the query service.
The AskQuery operation is used to issue queries against a database in Know-It-All,

and the query result can be returned one by one with the GetNext operation. The

158



|_Datafeed
(}

1_Query

<<Interface>>

I_API <<Interface>>
I_KIAQuery
Define_schemaf);
Initialize_DB(); AskQuery();
Configure(); GetNext();
Tune(); Connect_DB();
Monitor(); Disconnect_DB();
—— 1
1 :
<<Subsystem>>
<<Class>>

eremental || <<C1855>>
Update BuilkLoad
<<Class>> <<Class>>
Configure Monitor
[
omiaeas | | <<Subsystem>>
<<Class>> N
Tune Virtual_OS
DBMS

O |_OSinterface

|
[ 1
<<Layer>> <<Subsystem>>
— View ]
Layer ; <<Interface>>
2; <<Layer>> |_Query
Conceptual
Layer AskQuery();
| Query GetNext();
| b
] <<Layer>> <<Class>>
Iterator
<<Subsystem>>
<<Class>> <<Class>> <<Class>>
Parsetree Visitor <<Class>> KIA_Error
Schema
<<Class>> <<Class>> <<Class>>
Scanner Builder Translate Relational
Operator
<<Class>> ¢
Parser Parser
|7<Class>> <<Class>>
Optimize Relation Attribute
1
<<Subsystem>>
Construct_Answer
<<Class>> <<Class>>
SearchStrategy SearchTree <<Class>>
AnswerConstructor
<<Class>>
DBAlgorithm Optimizer Logical
Layer
&I_Query
<<Layer>>
<<Subsystem>>
<<Class>> <<Subsystem>>
Index
<<Class>> <<Class>>
IndexManager Data Data
] Container Element
<<Subsystem>> FileManager
Buffer Page Physical
BufferManager Layer
Database

Figure 30: Know-It-All Architectural Model

159




Connect_DB and Disconnect_DB are used to open and close the connection to a spe-
cific database in order to perform queries.

The DataFeeder class hierarchy provides data feeding services with the I_Datafeed
interface. A hot spot is provided to support different feeding mechanisms: incremen-
tal load and bulk load. The variability can be achieved through class inheritance.
The hot spot contains the base class (DataFeeder), which defines a common inter-
face I_Datafeed; and concrete derived classes (IncrementalUpdate and BulkLoad), each
represents one of the different alternatives for the variable aspect. The DataFeed
operation (shown in Figure 34) is a hook method. When the DataFeed operation in
an object of the DataFeeder base class is called, the overridden DataFeed operation in
an object of the derived class will be executed through a polymorphic reference typed
with the base class. This is called “binding” the hot spot [SCHM97]. The Virtual_OS
subsystem is responsible for the interaction with operating systems on which Know-
It-All works. It provides the interface I_OSInterface, which includes the operations to
interact with operating systems. The subsystem possesses a hot spot to cope with
different operating systems. A base class with a set of hook methods which provide
the common operations to deal with operating systems, and concrete derived classes
which override those hook methods in order to be compatible with different operating
systems.

The Database subsystem is decomposed to be a series of layers: ViewLayer, Concep-
tualLayer, LogicalLayer and PhysicalLayer. There are dependency relationships between
these layers. Each of them is basically a translator between its client layer and its
supplier layer. A layer provides a mechanism to decompose or translate queries, and
a mechanism to reconstruct the answers. The translation is done with the aid of the
schema to produce both the translated query, and the information to reconstruct the
answers. Typically, a user is authorized to a view of a database. When he asks a
query against a database, the query is defined in terms of his view of the database.
The query is translated into a query in terms of real relations and attributes in the
ViewLayer, and passed to the ConceptuallLayer by calling the AskQuery method in the
I_Query interface of the ConceptuallLayer. Our initial design to have the Conceptual-
Layer is to deal with heterogeneous databases. In the Conceptuallayer, the query is
decomposed to be sub-queries which target to various databases. The query results

of the sub-queries will be reconstructed later to be the result of the original query.

160



To date we have not implemented the ViewlLayer and ConceptuallLayer in Know-It-All,
and there are only stub classes in those layers. The LogicallLayer is used to translate
the query into logical relational operators, and the PhysicalLayer addresses storage
related issues. They are presented in the architectural model in detail.

There are two subsystems in the LogicalLayer. The Parser subsystem is responsible
for translating a given query into a query tree and a reconstruction plan, if there is
no error within the query. The subsystem provides the Translate interface, which
can be called by its client. The class Parsetree is the intermediate representation of
parsed queries. The parsing job is performed by the collaboration of Scanner, Builder,
and Visitor. The Scanner class is responsible for interpreting a query into tokens,
which is used by the Parser class. The Builder class is responsible for the creation
of objects of the Parsetree class. The Builder and Visitor class adopts the Builder
and Visitor design pattern, respectively [GOF94]. The Optimizer subsystem has a hot
spot to support different optimization strategies. We integrate the OPT++- optimizer
framework into Know-It-All to provide the flexibility [KD99]. There are three main
classes in the Optimizer. The SearchStrategy class defines the common interface for all
search strategies that are used in query optimization. The SearchTree represents the
search tree that is used to explore the optimal plan. The DBAlgorithm class defines
the interfaces for all possible execution algorithms for the logical operators.

The AnswerConstructor class reconstructs query results according to reconstruc-
tion plans. Since we have not implemented the mechanism to support heteroge-
neous databases, there is no “actual” reconstruction from separate databases, simply
(re)constructed results from the tables using the execution plan. In the current pro-
totype, the plan is a tree of iterators. The lterator class provides overloaded operators
++ and * to fetch the next query result. The Schema class represents the data
model abstraction and stores meta-information of the database. Since Know-It-All is
a RDBMS framework, the Schema class mainly pertains to relations and attributes,
which are specified by the Relation and Attribute class. The Schema class allows its
clients to obtain meta-information for query processing and answer reconstruction.
It can be designed as a hot spot to support various data models for future extension.
The KIA _Error class provides exception handling services.

The PhysicallLayer includes three subsystems: BufferManager, IndexManager and

FileManager. The BufferManager subsystem manages the buffer used for data exchange

161



between the main memory and disk storage. The Buffer class is the abstraction of
the data buffer. To date we have not implemented the mechanism, and leave it for
future work. The IndexManager subsystem provides the indexing service to improve
the efficiency of database access. The FileManager subsystem is responsible for the
file access. The DataElement class is the abstraction of the data stored in a Know-
It-All database. A DataContainer object is a container of DataElement objects. The
container can be navigated by its iterator. Once a DataContainer object is created,
an iterator is bound to it, and any further activity associated to the container is
delegated to its iterator. The Page class represents the physical storage unit.

All four layers provide the common interface, I_Query, which allows its client to
ask queries and obtain the corresponding result. The interface has two important
operations: AskQuery and GetNext. The AskQuery operation returns an iterator,
which is a root of the iterator tree corresponding to the result of the query. The
GetNext operation sends back the result by calling the operator++ on the returned
iterator.

Know-It-All is a White-Box level framework. The customization is done by pro-
viding subclasses to the abstract classes in the framework. For some of the abstract
classes, we have designed the concrete subclasses and the application developers only
need to choose from them to meet their own specific purposes. The execution of Know-
[t-All is a single thread process running on a standalone PC with a single processor.
The process model and deployment model are trivial and not integrated into the

architectural model.

4.2.4 Design Model

The high level design is shown in Figure 31. To date we have only implemented
the LogicalLayer and Physicallayer in the Database subsystem. The DatabaseFacade
classes from the Viewlayer and ConceptuallLayer are two stub classes, which provide
the common interface I_Query. They are merely used to maintain the four-layer
architecture in the Database subsystem. Thus, the class diagrams of those two layers
are not given. The DatabaseFacade class in the LogicalLayer and PhysicalLayer are
described in the following paragraphs. All classes which have a name ending with
“Facade” are the application of the Facade design pattern. They are the clients of

the abstract class KIA_Error, which provides the exception handling services.

162



- I_KIAQuery ?

DBMSFacade I_API

(from DBMS)

I_Queryﬁé

I DatabaseFacade ‘

(from ViewLayer)

|_Query %

DatabaseFacade
(from ConceptualLayer)

1_Query éﬁ

DatabaseFacade T
(from LogicalLayer)

I_QueryéF \

DatabaseFacade
{from PhysicalLayer) >’ Kia_Error

Figure 31: Know-It-All Design Model: High Level View

Figure 32 shows the class diagram of the LogicalLayer in the Database subsystem.
The DatabaseFacade class represents the key concept, the database, and acts as a
mediator that distributes responsibilities to corresponding components within the
layer. It supports the interface I_Query, which is depended on the DatabaseFacade
class located at the Conceptuallayer. Two operations are included in the I_Query:
AskQuery operation takes a query as input and the result can be returned one by
one by the GetNext operation. The DatabaseFacade has Factory methods to create
objects of the Parser, the OptimizerFacade, and the AnswerConstructor class. The
factory method is an application of the Abstract Factory design pattern, which is
suitable for creating a family of related product objects. During query processing, the
DatabaseFacade uses the Parser to translate the given query from the DatabaseFacade
in the Conceptuallayer, and passes the parsed query to the OptimizerFacade to get the
optimized execution plan. The query result is reconstructed by the AnswerConstructor.

The abstract class DataModel is composed of the DataModelType class and the
Language class. The Theory class inherits the DataModel class to accommodate fu-
ture extension, such as relational calculus support. A DataModelType class can be

specialized to either a RelationalDataModel class or an ObjectDataModel class. The

163



0.n

Schema

Attribute

Answer
Constructor

Construct_Answer

N

! TypeChecking || RelationalAlgebra
Typej;heck Visitor Visitor
Visitor Oper_at_o rTree
Visitor
l Scanner [ Builder
Parsetree

1.

1.

Réfer

n n 1 _strategy
Aceeptd | Searchtree | ’
1.0 ! Searchiree |74 opimize Optimizer
Facade |-
1| Parser :
CL;?.T‘.?F? ____________ DatabaseFacade | Query
------- AskQuery(); ——0
GetNext();
Factory();
Use
DataModelType
L
Object Relational Answer
'DataModel DataModel Representation boL oML
{
Iterator t.n
Relational <oy
operator++(); - Operator | ™" [oaL |[ saL || xMmL |
operator*(); 7;
Access Projection Select Join
Operator Operator Operator Operator
. ¥

Figure 32: Know-It-All Design Model I: Logical Layer

164



former consists of RelationalOperators. The Language class encapsulates the language
related information: the language for answer representation, for data definition, and
for data manipulation. The SQL class inherits both DDL class and DML class because
the SQL language possesses both DDL and DML features.

The Parser class is composed of the Scanner class and the Builder class. A Scanner
object scans a query to produce a series of token. The Parser class relies on the Builder
class to build a Parsetree with the tokens. The Parsetree class is the abstraction of
the intermediate query representation. Each node of a Parsetree object associates to
two specific kind of Visitor objects. The TypeCheckingVisitor class is for type checking
with the information from the Schema class; and the RelationalAlgebraVisitor is used
to create a relational algebra tree out of the Parsetree object. Once a Parsetree is
produced, the two visiting processes are performed. Here, the Builder and Visitor
design patterns are applied.

The OptimizerFacade class takes a relational algebra tree as the input and produces
the optimal plan. It supports the Optimize interface. Different search strategies
can be chosen through the initialization of corresponding SearchStrategy subclasses.
During the query processing, an instance of a concrete subclass of the SearchStrategy
is created by the OptimizerFacade object. The default search strategy provided by
Know-It-All is the BottomUp strategy. However, advanced framework developers can
change the search strategy or mix it with other strategies. The SearchStrategy class
maintains a reference to the SearchTree class, which is also an abstract class. The
SearchTree class represents the search space that is used to explore the optimal plan.
The OperatorTree class is the abstraction of a logical query plan. It is an algebraic
expression that represents the particular operations to be performed on data in specific
orders. The OperatorTreeVisitor class is also a subclass of the Visitor class. The
DBAIlgorithm abstract class represents the physical algebra. It can be specialized to
provide concrete algorithms to create physical nodes.

The logical plan produced by the optimization is a tree of RelationalOperator ob-
jects. A reference to the RelationalOperator class is kept by the OptimizerFacade class.
The RelationalOperator class inherits from the Iterator abstract class, which is an ap-
plication of the Iterator design pattern. The RelationalOperator class provides the
common interface for its subclasses: AccessOperator, JoinOperator, PredicateOperator,

and SelectOperator. The plan tree is a Composite design pattern.

165



The AnswerConstructor class reconstructs the query results passed by the Data-
baseFacade class. Although the answer construction in the current prototype is per-
formed by the execution plan, the extensibility is available for future accommodation
of heterogeneous databases.

The Schema class is another key concept in the design. In the traditional database
design, a catalog class is used to store all database-wise information regarding the
relations, attributes, indexes and supplemental data such as statistics or cost. It is
easy to design but difficult to evolve. Know-It-All uses a Schema class hierarchy to
store the descriptive information of the databases. For each layer, there is a Schema
subclass that only maintains the data of the specific layer. Since Know-It-All focuses
on RDBMS at the current stage, the Schema consists of information of relations
and attributes, which are represented by the abstract class Relation and Attribute,
respectively. The Map class is a C++ standard template from the STL. It is used to
build up the mapping information of relations and attributes for the Schema subclasses
in different layers. In the Logicallayer, the Schema class is used by other components

during the query processing, such as the Parser class and the OptimizerFacade class.

I_Query
Schema
1.n Data
DatabaseFacade ‘_’— Container
1
_schema AskQuery(); 4 Iterator
getNext(); 0.n

Buffer Factory); Data |, 1| operator++(;

Manager 1 Element Y operator*();
f
_buffer 1

1
Storage , L0 Medium H Pagew

Mlz:]:ae;er [—index—]_Index Distributed | |
'K LMemory H File }

1

Data - - -
Dimensionality

Structure

J |
[ Hashing || B-Tree || R-Tree | [ Single_D |[ Multiple_D |

Figure 33: Know-It-All Design Model II: Physical Layer

166



The important property of database management systems is to persistently store
data. In the PhysicalLayer (Figure 33), the Storage abstract class encapsulates the
data store related information and services. It has a class composition relationship
to the Medium class. The Medium can be specialized to be either a DistributedSystem
class, or a Memory class, or a File class. Know-It-All use plain files as the default data
store medium. The DataElement class is the abstraction of the data stored in a Know-
It-All database. A DataContainer object is a container of DataElement objects. The
container can be navigated by its iterator. It is also the application of the Iterator
design pattern. The Page class represents the physical storage unit. The DataElement
and DataContainer classes hide the actual physical data information, and maintain a
clear mapping with the relational operators in the LogicalLayer.

The Storage class can be specialized to the Buffer and Index subclasses. The
BufferManager class is responsible for the data exchange between the main memory
and the secondary storage. There is no buffer mechanism available in the prototype.

Two properties of database indexes are dimensionality and data structure. The
DataStructure class can be specialized to concrete subclasses that represent different
index data structures: Hashing, B-Tree, and R-Tree. Limited by our DBMS experi-
ence, we have only implemented the single dimension index at the current stage. The
integration of Gist (Generalized Search Tree) index framework [HNP95] [HKP97] is
in progress [NIEO03].

The Schema class and DatabaseFacade class have the similar functions to their
counterparts in the LogicalLayer. The DatabaseFacade class has factory methods to
create the BufferManager and IndexManager objects according to the database schema.
It also provides the I_Query interface to supports its client, the DatabaseFacade class
in the LogicalLayer. The Schema class in the PhysicallLayer holds the descriptive infor-
mation about the physical data storage, such as size of buffer pool, page size, index
structure, etc.

The class diagram of the DBMS subsystem is shown in Figure 34. The DBMSFa-
cade class provides two interfaces, I KIAQuery, which provides the query functionality
to the external users of the DBMS; and I_API to support database administration
services. The AskQuery and GetNext operation in the [_ KIAQuery have the similar
responsibilities to those in the I_Query interface, which is provided by the Data-

baseFacade class. The Connect_DB and Disconnect_ DB operation opens and closes

167



Incremental <|< IE::ZZ?»
Update BulkLoad = b
DataFeed() DataFeed() Aé:tQN‘;i?(’)(.);
Connect_DBY);
Disconnect_DB(); <<Interface>>
A L API
DBMS Define_schema();
...... taF [, - ’
DataFeed() | DX@Feed Facade ™ Tinitialize_DB);
1 3 Configure();
I_OSinterface ; Tune();
Montrly
I__Queryié Create T i
DatabaseFacade l{ne
Monitof
Configure
Schema >

Figure 34: Know-It-All Design Model III: DBMS Subsystem

the connection to a database for query processing. The DBMSFacade class creates
databases with given schemas. Query processing is accomplished by forwarding the
query from the DBMSFacade class to the DatabaseFacade class in the ViewLayer. The
DataFeeder abstract class has two subclasses, IncrementalUpdate and BulkLoad. The
virtual function DataFeed is overridden in the two subclasses, to support different data
loading mechanisms. The Virtual_OS abstract class supports the I_.OSInterface to ac-
commodate flexibility for Know-It-All to operate on various operating systems. The
abstract classes Tune, Monitor, and Configure provide the Tune, Monitor, Configure
services, respectively. These classes can be specialized by the framework developers
to support those application-specific DBA services. By default these services are not
provided by Know-It-All.

One of the most important DBMS services is to effectively access the stored data
to get the information, i.e. query processing. Figure 35 shows the sequence diagram
of the main activities performed when a query is issued against a database. The Data-
base subsystem part of Figure 35 only shows the LogicallLayer. An End User uses the
AskQuery operation in the DBMSFacade to pose a query. The DBMSFacade passes

168



i DBMSFacade || DatabaseFacade Parser OptimizerFacade faswet Schema
/
; T T T T T
End User ! ! | | |
L AskQuery) : | i t |
— ! AskQuery() ! ! ! ! 1
i ———————>»  Translate() | ! ) i
| ! Typecheck() { :
T T 7
- | 1
: Parse() J {
i ] i
] 1 I
I I
Optimize() : |
: =l Refer:
T
i
)

|

!

]

|

:Z Cost_evaluation(
1

|
1
)
I
)
f
|
I
I
I
|
|
t
|
|
I
|
I
|
|
1
1

Construct_Answer()

I
I
1
i
1
i
I
I
t
|
I
|
|
I
I
|
I
1
i
1
|
i
i
I
b
|
{
i
(
I
(
i

t
|
|
I
I
I
t
I
I
|
I
I
|
i
1
1
i
|
|
i
)
|
I
(
I
!
I
i
i
i
b
!
I
1
i
|
|
|
|
|
|
|

JEE R SR AN

I
I
I
i
i
! ]
] i
1 i 1
I I i
: L -
f : : [ Check
I t I
I } I I
L . ! !
] | 1 i
t I 3 I
ré—'—*—‘—”w 1 1 |
i { 1 1
GetNext() | | i | |
{ I ] 1
| GefNext) | | | |
I ] I
I I ] ] ]
3 ) | i |
b ! | i i
i i | | I
e | | | 1
i I I t
1 i I |

Figure 35: The Sequence Diagram of Query Processing

the query to the DatabaseFacade in the Viewlayer in the Database subsystem. Al-
though not shown in the diagram, the query translation is performed in sequence by
the ViewLayer, the Conceptuallayer, the LogicalLayer, and the Physicallayer, based on
the four-layer architecture shown in the Know-It-All architectural model. The Data-
baseFacade in the Logicallayer translates the query by calling the Parser, then gets the
optimized execution plan from the OptimizerFacade. The DatabaseFacade reconstructs
the answer by calling the AnswerConstructor. The Schema assists the translation, op-
timization, and construction. The answer is returned in the reverse sequence of the
four-layer architecture, to the DBMSFacade. The answer is represented by the refer-
ence to the root of an iterator tree. Once the answer is given to the End User, he can
fetch the result by calling the GetNext operation in the DBMSFacade to return the
data one by one. The DBMSFacade passes the root reference to the DatabaseFacade in
the ViewLayer by calling the GetNext operation in the DatabaseFacade. The iterator
in a client layer is given a reference to the corresponding iterator in its supplier layer
during the AskQuery process. The GetNext operation of the DatabaseFacade in the

ConceptuallLayer is called by the DatabaseFacade in the ViewlLayer with the reference

169



to the iterator (in the ConceptualLayer). The course of action is similar to that of the
AskQuery operation. At the end, the Iterator (in the PhysicalLayer) points to the next

DataElement in the query result is returned to the user.

4.2.5 Source Code Model

The first version prototype has been implemented with GNU C++ on the Unix sys-
tem. The variability is mainly obtained by using the Standard Template Library
(STL) and design pattern realization. It is not practical to put the full implemen-
tation of Know-It-All in the dissertation. Moreover, the methodology has not defined

concrete map rules in source code related trace maps. Thus, source code related

alignment is not discussed.

Domain Range

Entity Qualifier Entity Qualifier

Query Mandatory Query Use case

Performance Optional - -

Administration | Mandatory Administration Base use case

DataFeed Mandatory DataFeed Parent use case

Scale Optional - -

Configure Optional Configure Extending use case

DBConnect Mandatory ConnectDatabase | Included use case

DBDisconnect Mandatory Disconnect Included use case
Database

DBIlnitialize Mandatory Initialize Included use case
Database

DefineSchema Mandatory Define Included use case
Schema

Tune Optional Tune Extending use case

Monitor Optional Monitor Extending use case

Incremental Optional Incremental Child use case

Update Update

BulkLoad Mandatory BulkLoad Child use case

Table 7: Entity and Qualifier Map of Ty,

170




4.3 Model Alignment Maps

The previous section describes the Know-It-All models according to the metamodels
defined in chapter 3. Here, we will demonstrate how the trace maps are maintained

between these models.

| Domain

Range

Know-It-All : Query
Composed-of relationship

Know-It-All : Performance
Composed-of relationship

Know-It-All : Administration
Composed-of relationship

Know-It-All : DataFeed
Composed-of relationship

Know-It-All : Scale
Composed-of relationship

Administration : Configure
Composed-of relationship

Administration : Configure
Extension relationship

Query : DBConnect
Composed-of relationship

Query : ConnectDatabase
Inclusion relationship

Query : DBDisconnect
Composed-of relationship

Query : DisconnectDatabase
Inclusion relationship

Administration : DBlInitialize
Composed-of relationship

Administration : InitializeDatabase
Inclusion relationship

Administration : DefineSchema
Composed-of relationship

Administration : DefineSchema
Inclusion relationship

Administration : Tune
Composed-of relationship

Administration : Tune
Extension relationship

Administration : Monitor
Composed-of relationship

Administration : Monitor
Extension relationship

DataFeed : IncrementalUpdate
Generalization relationship

DataFeed : IncrementalUpdate
Generalization relationship

DataFeed : BulkLoad
Generalization relationship

DataFeed : BulkLoad
Generalization relationship

Table 8: Relationship Map of Ty,

171




4.3.1 Capability Feature Model to Use Case Model

The capability features can be divided into functional and non-functional (require-
ment) categories. At the current stage, the methodology does not consider the map
of non-functional requirement features to the use case model. Thus, there is no cor-
responding entity for the Performance and Scale feature. All functional features and
their relationships are mapped successfully into the use case model. The mandatory
features Query, Administration, and DataFeed are mapped to the three use cases as-
sociated with the different actors, respectively. The mandatory sub-features of the
Query feature are mapped to the included use case of the Query use case. The op-
tional sub-features of the Administration feature are mapped to the extending use
cases, while the mandatory sub-features are mapped to the included use cases of the

Administration use case.

Domain Range

Entity Qualifier Entity Qualifier
Computer Mandatory - -
Network Optional - -

PC Alternative - -
WorkStation Alternative - -

Server Alternative - -

LAN Alternative - -

WAN Alternative - -
OSlInterface Mandatory [_.OSInterface | Interface
API Mandatory I_API Interface
Windows Alternative - -

082 Alternative - -

Unix Alternative - -

Linux Alternative - -

Table 9: Entity and Qualifier Map of T,

The Generalization relationship between the DataFeed feature and its child fea-
tures is mapped to the Generalization relationship between the DataFeed use case and
its child use cases. The Composed-of relationship between the Administration feature
and its optional and mandatory sub-features is mapped to the Extension and Inclu-

sion relationship in the use case model, respectively. The Composed-of relationship

172



between the Query use case and its mandatory sub-features is mapped to the Inclusion
relationship. The maps conform to the map rules and satisfy the global constraints.

Please refer to Figure 28, Figure 29, Table 7, and Table 8 for the details.

4.3.2 Operating Environment Feature Model to Architec-
tural Model

The operating environment features fall into two categories: hardware interface and
software interface. As stated in Section 3.2.2.3, there is no map for the hardware
interface features. The software interface features and their relationships are mapped

into the architectural model.

Domain Range
HardwarePlatform: Computer -
Composed-of relationship
HardwarePlatform: Network -
Composed-of relationship
Computer: PC -
Composed-of relationship
Computer: WorkStation -
Composed-of relationship
Computer: Server -
Composed-of relationship
Network: LAN -
Composed-of relationship
Network: WAN -
Composed-of relationship
OSInterface: Windows -
Composed-of relationship
OSlInterface: OS2 -
Composed-of relationship
OSInterface: Unix -
Composed-of relationship
OSInterface: Linux -
Composed-of relationship

Table 10: Relationship Map of Ty,

173



The API feature is mapped to the I_API interface, which is required by the ex-
ternal software applications. The [_API is supported by the DBMS subsystem. The
OSlnterface is mapped to the [_OSInterface, which is provided by the hot spot subsys-
tem Virtual_OS. The hot spot supports the flexibility of choosing different operating
systems, in response to the alternative features of the OSInterface.

The Composed-of relationship between the OSInterface and its sub-features is not
mapped into the range, because those sub-features are variable features, according to
Rule 3 and Rule 4 of T,. Please refer to Figure 28, Figure 30, Table 9, and Table 10
for the details.

4.3.3 Domain Technology Feature Model to Design Model

The domain technology features of Know-It-All are a set of concepts, terminology, and
domain specific methods in the DBMS domain. According to the rules of Tyg, all
features are mapped to the classes in the design model. The optional and alternative
features are mapped to subclasses of abstract classes, which provide the common
interfaces that can be specialized according to different configurations. The cascaded
refactoring methodology focuses on White-Box frameworks at the current stage, so
the variability is mainly obtained through inheritance.

The mandatory features that have direct variable features are mapped to abstract
classes, such as the DataModel feature. Its optional sub-feature Theory indicates the
extensibility, which is maintained by the inheritance from the DataModel class to the
Theory subclass. The rest of the mandatory features are mapped into classes, such as
the Object, AnswerRepresentation, etc.

A Composed-of relationship is directly mapped to a class Composition relationship
if the sub-feature is not a variable feature, such as the Composed-of relationship be-
tween the Index and the DataStructure feature. Otherwise, the relationship is mapped
to an Inheritance relationship, such as the relationship between the Storage and Buffer
feature. There are many Implemented-by relationships associated with the domain
technology features. They are mapped into the Dependency relationships in the de-
sign model. For instance, the Parser feature is implemented by the Schema feature,
the relationship is accordingly mapped to the Dependency relationship between the
Parser and Schema class. Please refer to Figure 28, Figure 32, Table 11, and Table 12
for the details.

174



Domain Range

Entity Qualifier Entity Qualifier

DataModel Mandatory DataModel Abstract Class

Type Mandatory DataModelType Abstract Class

Language Mandatory Language Class

Theory Optional Theory Class

Relational Alternative Relational Class
DataModel

Object Alternative Object Class
DataModel

Answer Mandatory Answer Class

Representation Rpresentation

DDL Mandatory DDL Abstract Class

DML Mandatory DML Abstract Class

OQL Alternative OQL Class

SQL Alternative SQL Class

XML Alternative XML Class

Relational Mandatory Relational Class

Operator Operator

Schema Mandatory Schema Class

Parser Mandatory Parser Class

Optimizer Mandatory OptimizerFacade | Class

Storage Mandatory Storage Abstract Class

Buffer Optional Buffer Class

Index Optional Index Class

Medium Mandatory Medium Abstract Class

Data Mandatory Data Abstract Class

Structure Structure

Dimensionality | Mandatory Dimensionality Abstract Class

Distributed Alternative Distributed Class

System System

Memory Alternative Memory Class

File Alternative File Class

Hashing Alternative Hashing Class

B-Tree Alternative B-Tree Class

R-Tree Alternative R-Tree Class

Single Alternative Single_D Class

Multiple Alternative Multiple_D Class

175

Table 11: Entity and Qualifier Map of T4




Domain

Range

DataModel: Type
Composed-of relationship

DataModel: DataModelType
Composition relationship

DataModel: Language
Composed-of relationship

DataModel: Language
Composition relationship

DataModel: Theory
Composed-of relationship

DataModel: Theory
Inheritance relationship

Language: AnswerRepresentation
Composed-of relationship

Language: AnswerRepresentation
Composition relationship

Language: DDL
Composed-of relationship

Language: DDL
Composition relationship

Language: DML
Composed-of relationship

Language: DML
Composition relationship

Relational: RelationalOperator
Composed-of relationship

RelationalDataModel: Relational-
Operator Composition relationship

Storage: Buffer
Composed-of relationship

Storage: Buffer
Inheritance relationship

Storage: Index
Composed-of relationship

Storage: Index
Inheritance relationship

Storage: Medium
Composed-of relationship

Storage: Medium
Composition relationship

Index: DataStructure
Composed-of relationship

Index: DataStructure
Composition relationship

Index: Dimensionality
Composed-of relationship

Index: Dimensionality
Composition relationship

Parser: Schema Typecheck
Implemented-by relationship Dependency relationship
Optimizer: Schema Refer

Implemented-by relationship Dependency relationship
Optimizer: RelationalOperator Use

Implemented-by relationship

Dependency relationship

Table 12: Relationship Map of T4

176




4.3.4 Implementation Technique Feature Model to Source

Code

For simplicity, only two features are listed in the implementation technique category,
the lterator and STL. The STL represents the C++ Standard Template Library (STL),
which has played a very active role in Know-It-All implementation. Since the Iterator
mechanism is heavily used in various places in the design, it is selected as an individ-
ual feature. For example, the Iterator feature can be mapped to the following code

segment.

class Iterator{

public:

“Iterator();

virtual DataElement operator*() const =0;

virtual Iterator& operator++()=0;

+;

So far we have verified the trace maps between the feature model and other models.
Our experiences during the case study development have demonstrated that domain
analysis with feature modeling is a good starting point to develop other framework

models.

4.3.5 Use Case Model to Architectural Model

The use case model of Know-It-All classifies DBMS users into three categories: DBA,
Advanced User, and End User. The DBA associates with the Administration use
case, which describes the database management activities. The Advanced User is
responsible for loading data into databases, and the End User is mainly concerned
with data queries.

The Administration use case is mapped into the architectural model as the I_API
interface, which is provided by the DBMS subsystem. Its included use cases are
mapped to the operations within the [_LAPI interface: DefineSchema to Define_schema,
and InitializeDatabase to Initialize_DB. Each of those operations can be viewed as
a single operation interface in order to satisfy the Rule 1 of T,,, i.e. a use case is

mapped to an interface.

177



Domain Range
Entity Qualifier Entity Qualifier
Query Use case [_LKIAQuery Interface
Administration | Use case I_.API Interface
DataFeed Use case [ DataFeed Interface
(Operation)
Configure Extending Configure Hotspot
Use case (Virtual Operation)
Tune Extending Tune Hotspot
Use case (Virtual Operation)
Monitor Extending Monitor Hotspot
Use case (Virtual Operation)
Connect Included Connect_DB Interface
Database Use case (Operation)
Disconnect Included Disconnect_DB | Interface
Database Use case (Operation)
Define Included Define_schema | Interface
Schema Use case (Operation)
Initialize Included Initialize DB | Interface
Database Use case (Operation)
Incremental Child - (Overriden
Update Use case Operation)
BulkLoad Child - (Overriden
Use case Operation)
QE1 Episode AskQuery Interface
(Operation)
QE2 Episode AskQuery Interface
(Operation)
QE3 Episode GetNext Interface
(Operation)

Table 13: Entity and Qualifier Map of T,

178




The extending use cases of the Administration are mapped to operations within
the I_API interface. The extensibility is provided by the hot spots associated with the
corresponding classes that realize those operations. For example, the Configure service
is supported by the Configure class, which can be specified by its subclasses with
the overridden Configures operation. The DBMSFacade class forwards the Configure
requests to the Configure class. The DataFeed use case is mapped to the I_Datafeed
interface, which is realized by the DataFeeder class. It is specialized by two subclasses,
the IncrementalUpdate and BulkLoad. They can override the corresponding operation
to support the necessary flexibility. The overridden operation can be viewed as a
single operation interface, to satisfy Rule 1, and Rule 4 of T, i.e. the child use case

must be mapped to the interface of the subclass.

Domain Range
Configure: Administration -
Extension relationship
Tune: Administration -
Extension relationship
Monitor: Administration -
Extension relationship

ConnectDatabase: Query
Inclusion relationship

Connect_DB: I KIAQuery
Composition relationship

DisconnectDatabase: Query
Inclusion relationship

Disconnect_DB:
I_LKTIAQuery

Composition relationship

DefineSchema: Administration
Inclusion relationship

Define_schema: I_API
Composition relationship

InitializeDatabase: Administration
Inclusion relationship

Initialize_ DB: I_API
Composition relationship

IncrementalUpdate: DataFeed
Generalization relationship

IncrementalUpdate:
DataFeeder
Generalization relationship

BulkLoad: DataFeed
Generalization relationship

BulkLoad: DataFeeder
Generalization relationship

Table 14: Relationship Map of Ty,

The Query use case is mapped to the I_LKIAQuery, which is provided by the DBMS

subsystem. Its included use cases are mapped to the operations in the I KIAQuery

179



interface: ConnectDatabase to Connect_DB, and DisconnectDatabase to Discon-
nect_DB. The episodes in the Query use case are mapped to the operations in the

architectural model:

QE1: the AskQuery operation in the [ KIAQuery supported by the DBMS subsystem

QE2: the AskQuery operation in the I_Query supported by the ViewLayer in the

Database subsystem

QE3: the GetNext operation in the I KIAQuery supported by the DBMS subsystem

The relationships between those use cases are mapped into the architectural model
according to the rules of T,,. For instance, the Generalization relationship between
the DataFeed and its child use cases is mapped to the DataFeeder class inheritance
hierarchy. The Inclusion relationship between the Administration use case and its
included use cases are mapped to the Composition relationship between the I_API
and those corresponding operations. Please refer to Figure 29, Figure 30, Table 13,
and Table 14 for the details.

4.3.6 Use Case Model to Design Model

Similar to the maps between the use case model and the architectural model, the
main concept of T4 is to reflect the services specified by the use case model in the
design decisions encapsulated by the classes and their collaborations in the design
model.

It is worth noting that the DataFeed use case is mapped to the DataFeed operation,
which is overridden by the subclasses of the DataFeeder. The DataFeed operation can
be viewed as a single operation interface, to satisfy Rule 1 of T,;. The extending
use cases of the Administration use case are mapped to those abstract class hierarchy
that supports the extensibility, by providing the virtual operations, such as the Tune
operation in the Tune abstract class. The client of the Tune operation in the I_API
delegates any request to the Tune operation in the abstract class. The episodes in
the Query use case are mapped to operations: QEL is mapped to the AskQuery oper-
ation in the I_.KIAQuery of the DBMS subsystem; QE2 is mapped to the AskQuery
operation in the [_Query of the ViewLayer in the Database subsystem, and QE3 is
mapped to the GetNext operation in the I_ KIAQuery. The query processing inside the

180



Domain Range
Entity Qualifier Entity Qualifier
Query Use case I_LKTAQuery Interface
Administration | Use case I_API Interface
DataFeed Use case DataFeed Interface
(DataFeeder)
Incremental Child DataFeed Operation
Update Use case (IncrementalUpdate)
BulkLoad Child DataFeed Operation
Use case (BulkLoad)
Configure Extending Configure Abstract Class
Use case (Hotspot)
Tune Extending Tune Abstract Class
Use case (Hotspot)
Monitor Extending Monitor Abstract Class
Use case (Hotspot)
Connect Included Connect_DB Interface
Database Use case (Operation)
Disconnect Included Disconnect_DB Interface
Database Use case (Operation)
Define Included Define_schema Interface
Schema Use case (Operation)
Initialize Included Initialize. DB Interface
Database Use case (Operation)
QE1 Episode AskQuery Operation
QE2 Episode AskQuery Operation
QE3 Episode GetNext Operation

181

Table 15: Entity and Qualifier Map of T4




Database subsystem is mainly carried out by the interactions of those DatabaseFacade
classes in the four layers.

The relationship mapping is similar to that of T,,, which is explained in Sec-
tion 4.3.5. For example, the Inclusion relationship between the DefineSchema and
Administration, is mapped to the Composition relationship between the Define_schema
operation and I_API interface. Figure 29 and Figure 32 show that the services de-
scribed in the use case model are successfully mapped into the design model. Please

refer to Table 15, and Table 16 for the details.

Domain Range
Configure: Administration Configure Abstract Class
Extension relationship
Tune: Administration Tune Abstract Class
Extension relationship
Monitor: Administration Monitor Abstract Class
Extension relationship
DataFeed: IncrementalUpdate DataFeeder (DataFeed):
Generalization relationship IncrementalUpdate
(DataFeed)
Generalization relationship
DataFeed: BulkLoad DataFeeder (DataFeed):
Generalization relationship BulkLoad (DataFeed)
Generalization relationship
Connect Database: Query Connect_DB: [_LKIAQuery
Inclusion relationship Composition relationship
Disconnect Database: Query Disconnect_DB: I_KIAQuery
Inclusion relationship Composition relationship
Define Schema: Administration Define_schema: I_API
Inclusion relationship Composition relationship
Initialize Database: Administra- | Initialize DB: I_API
tion Composition relationship
Inclusion relationship

Table 16: Relationship Map of T4

182



4.3.7 Architectural Model to Design Model

The trace map T,4 tallies the architectural model and design model. Both models
focus on the solution of the framework, which is the most important aspect of frame-
work development [FSJ99]. In the cascaded refactoring methodology, we emphasize
maps from the layers, subsystems, and interfaces to classes and their relationships,
which bridge the high level architectural design, to the low level implementation with
object-oriented programming languages.

The map has to consider by far the most entities and relationships. Due to the
page length limitation, maps of the entities and qualifiers are divided into two tables.
Please refer to Table 17 and Table 18 for the details.

The I_Datafeed interface is mapped to the virtual operation Datafeed in the
DataFeeder class hierarchy. The Virtual_OS subsystem is mapped to the Virtual_OS
abstract class, which can be specialized to support the expected flexibility of dif-
ferent operating system portability. The Configure operation in the I_API interface
delegates requests to the Configure operation in the Configure abstract class, which
supports the variability by inheritance and overridden functions . The DBMS subsys-
tem itself is mapped to the DBMSFacade class, which defines the high level interfaces
to provide the services of the subsystem.

The I_Query interface in the architectural model has multiple corresponding enti-
ties in the design model. However, all entities have the same operations (interface),
which are provided by a set of DatabaseFacade classes from four different layers in
the Database subsystem, respectively. Although the KIA_Error is only presented in
the Logicallayer, it exists in all other layers of the Database subsystem and also in
the DBMS subsystem. For most classes in the domain, they are mapped to the corre-
sponding abstract classes to provide the necessary flexibility. For example, the Iterator
class is mapped to the abstract class lterator in the design model. The four layers
in the Database subsystem are mapped to the corresponding facade classes. Each
of them supports the same interface and acts as the mediator within its own layer.
All subsystems are mapped to the corresponding class hierarchies, which collaborate
together to provide the subsystem services.

A class Composition relationship in the architectural model is mapped to the

183



Domain Range
Entity Qualifier Entity Qualifier
I_KIAQuery Interface [ KIAQuery Interface
I_Datafeed Interface DataFeed Interface
(Operation)
[_API Interface I_API Interface
[_OSInterface Interface [_OSInterface Interface
DataFeeder Class DataFeeder Class
Incremental Class Incremental Class
Update Update
BulkLoad Class BulkLoad Class
Configure Class Configure (Abstract) Class
Tune Class Tune (Abstract) Class
Monitor Class Monitor (Abstract) Class
Virtual _OS Subsystem | Virtual_ OS Class
DBMS Subsystem | DBMSFacade Class
AskQuery Operation AskQuery Operation
GetNext Operation GetNext Operation
Connect_DB Operation Connect_DB Operation
Disconnect_DB Operation Disconnect_DB Operation
Define_schema Operation Define_schema Operation
Initialize DB Operation Initialize_ DB Operation
Configure Operation Configure Operation
Tune Operation Tune Operation
Monitor Operation Monitor Operation
[_Query Interface I_Query Interface
(DatabaseFacade)
Translate Interface Translate Interface
(Operation)
Optimize Interface Optimize Interface
(Operation)
Construct_Answer | Interface Construct_ Interface
Answer (Operation)

Table 17: Entity and Qualifier Map of To4: Part I

184




Domain Range
Entity Qualifier Entity Qualifier
Parser Class Parser Class
Visitor Class Visitor Abstract Class
Parsetree Class Parsetree Class
Scanner Class Scanner Class
Builder Class Builder Class
SearchStrategy Class SearchStrategy Abstract Class
SearchTree Class SearchTree Abstract Class
DBAlgorithm Class DBAlgorithm Abstract Class
Iterator Class [terator Abstract Class
KIA _Error Class KIA Error Abstract Class
Schema Class Schema, Class
Relation Class Relation Abstract Class
Attribute Class Attribute Abstract Class
Relational Class Relational Class
Operator Operator
Answer Class Answer Class
Constructor Constructor
Index Class Index Class
Bufter Class Buffer Class
DataContainer Class DataContainer Abstract Class
DataElement Class DataElement Abstract Class
Page Class Page Abstract Class
ViewLayer Layer DatabaseFacade Class

(from ViewLayer)
ConceptualLayer | Layer DatabaseFacade Class

(from ConceptualLayer)
LogicalLayer Layer DatabaseFacade Class

(from LogicalLayer)
PhysicalLayer Layer DatabaseFacade Class

(from PhysicalLayer)
Parser Subsystem | Parser Class (hierarchy)
Optimizer Subsystem | OptimizerFacade Class (hierarchy)
IndexManager Subsystem | IndexManager Class (hierarchy)
BufferManager Subsystem | BufferManager Class (hierarchy)
FileManager Subsystem | DataContainer Class (hierarchy)
AskQuery Operation AskQuery Operation
GetNext Operation GetNext Operation

Table 18: Entity and Qualifier Map of T,4: Part 11

185




Domain

Range

Schema: Relation
Composition relationship

Schema: Relation
Composition relationship

Schema: Attribute
Composition relationship

Schema: Attribute
Composition relationship

DataContainer: DataElement
Composition relationship

DataContainer: DataElement
Composition relationship

DBMS: Database
Dependency relationship

DBMSFacade: DatabaseFacade
Dependency relationship

ViewLayer: ConceptualLayer DatabaseFacade: DatabaseFa-
Dependency relationship cade

Dependency relationship
ConceptualLayer: LogicalLayer | DatabaseFacade: DatabaseFa-
Dependency relationship cade

Dependency relationship
LogicalLayer: PhysicalLayer DatabaseFacade: DatabaseFa-
Dependency relationship cade

Dependency relationship

DBMS: I_API
Realization relationship

DBMSFacade: 1_API
Realization relationship

DBMS: I KIAQuery

Realization relationship

DBMSFacade: . KIAQuery
Realization relationship

Virtual_OS: I_.OSInterface
Realization relationship

Virtual_OS: I_OSInterface
Realization relationship

Database: 1_Query
Realization relationship

DatabaseFacade: 1_Query
Realization relationship

Parser: Translate
Realization relationship

Parser: Translate
Realization relationship

Optimizer: Optimize
Realization relationship

OptimizerFacade: Optimize
Realization relationship

AnswerConstructor: Con- | AnswerConstructor: Con-
struct_Answer struct_Answer

Realization relationship Realization relationship
DatakFeeder: IncrementalUp- | DataFeeder: IncrementalUp-
date date

Generalization relationship

Generalization relationship

DataFeeder: BulkLoad
Generalization relationship

DataFeeder: BulkLoad
Generalization relationship

Table 19: Relationship Map of T4

186




same relationship in the design model. A Dependency relationship between the sub-
systems or layers is mapped to a Dependency relationship between classes. For ex-
ample, the Dependency between the DBMS subsystem and the Database subsystem
is mapped to the Dependency between the DBMSFacade and the DatabaseFacade
from the Viewlayer, because the Viewlayer is the direct supplier to the DBMS sub-
system. The rationale is also valid to the map of the Realization relationships, which
are mapped into the range as the Realization relationships between interfaces and

classes. Please refer to Table 19 for the details.

4.4 Model Refactorings

The cascaded refactoring methodology views framework evolution as framework refac-
toring followed by framework extension. The methodology focuses on framework
refactoring at the current stage. It addresses the issue of identification and preserva-
tion of consistency through the refactorings, i.e. how the impact of changes on the
design and implementation due to the alteration of requirements is illustrated and
managed with the trace maps. The solution proposed by the methodology is demon-
strated in this section with two example refactorings on the Know-It-All models. The
first example changes the Configure service to be a common property of Know-It-All.

The second example alters the database creation service from a frozen spot to a hot

spot.

4.4.1 Example 1

The Configure service for DBAs is responsible for database configuration. It is a
variable feature in the original Know-It-All feature model. It is possible to change it
to be a mandatory property, i.e. common to all Know-It-All applications. Furthermore,
the change should be propagated to all other models. The cascade of refactorings is
summarized in Figure 36. The following subsections will treat each model in turn.

Problem: Change the Configure feature from an optional feature to a mandatory
feature of the Know-It-All feature model, and cascade the refactoring to other models.

Solution: The refactoring starts at the capability feature category. So the fol-
lowing refactoring path should be followed (see Section 3.3.1):

Capability Feature refactoring path:

187



Purpose: the Configure service is changed from an optional feature to be a mandatory feature of
Know-It-All

A) Feature Model Refactoring: a change from optional to mandatory is a modification of feature
variability. The corresponding refactoring fits the purpose.

Change_optional_to_mandatory: the optional Configure sub-feature is changed to be a mandatory
sub-feature.

B) Use Case Model Refactoring: the change in the capability category feature is mapped to the use
case model. In the original model, the Configure service is mapped to be an extending use case. It should
be changed to an included use case. There is no corresponding refactoring , which can change an
extending use case to an included use case straightforwardly. The change is accomplished with two
consecutive steps.

Stepl: Merge_behaviours: the behaviours of the Configure use case are merged into the
Administration use case as a new episode "Configure_E".

Step2: Make_episode_usecase: extracts the "Configure_E" episode from the newly combined
Administration use case, to create a new included use case "Configure"

C) Architectural Model Refactoring: the original architecture has already provided the flexibility to
[cope with the change. There is no necessary refactoring on the architectural model.

None

D) Design Model Refactoring: In the original model, the Configure class is an abstract class without
concrete implementation. After the change, the service is a core property. There are two options to
accommodate the change. Either the class is changed to be a concrete class, or a concrete subclass is
provided for the abstract class. The second option is chosen for its flexibility.

Stepl: Create_class: A new class is created to encapsulate the implementation of the Configure service.
Step2: Inherit: The new class is linked to be the Configure service with the generalization relationship.

Figure 36: Roadmap of Refactorings in Example One

188



1 Mf =M,: Tfu
2 M, =M,: T,.
3 Ma #Mdi T od

4 My =M;: Tu

Roadmap: See Figure 36.

4.4.1.1 Feature Model Refactoring

A change from optional to mandatory is a modification of feature variability. It is
sensible to choose the Change_optional_to_mandatory. Next, we need to prove
that the refactoring preserves the “behaviour”.

According to the cascaded refactoring methodology, the preserved “behaviour”
of feature model refactorings is the collection of valid feature sets, each of which
specifies an existing application that has been created from the product line. Prior
to the refactoring, the Configure feature is an optional feature, which may or may not
be present in a feature set of the Know-It-All feature model. However, the Configure
feature must belong to all feature sets of the existing applications in order to satisfy
the precondition of the refactoring. After the change, the feature is mandatory in
the post-refactoring feature model, that is, all feature sets of the model should have
the Configure feature. Thus, all legacy code of the existing applications before the
refactoring still conforms to the feature model. Since the Configure feature is the only
argument taken by the refactoring, and its change does not invalidate any feature set

of existing applications, the “behaviour” is preserved. The decision record is shown

in Figure 37.

Decision Record 1:

Intent: The Configure service is changed to be a mandatory feature.

Choice: Change_optional_to_mandatory

Arguments: Configure feature

Validation: The Configure feature becomes a mandatory feature. To satisfy the
pre-condition of the refactoring, any feature set that specifies an existing
application built from the Know-It-All framework must have the Configure feature
before the refactoring. Thus, the change does not invalidate any existing feature
set prior to the refactoring. The behaviour is preserved.

Figure 37: Feature Model Refactoring: Decision Record 1

189



The new feature model is shown in Figure 38. The Configure feature is changed

to be a mandatory feature.

4.4.1.2 Use Case Model Refactoring

The refactoring of the feature model has changed the Configure feature from an op-
tional feature to a mandatory feature. The impact of the feature model refactorings
should be translated via the trace map Ty, to determine the constraints on the use
case model. In the original use case model, the Configure use case is an extend-
ing use case of the Administration use case, it has to be an included use case of the
Administration after the change, according to Rule 4 of Ty,.

There is no use case refactoring that can directly change an extending use case
to an included use case. Thus, the task has to be accomplished by multiple refac-
torings. We view the change as “elimination of the extending use case” followed
by “creation of the included use case”. Two refactorings: Merge_behaviours and
Make_episode_usecase are chosen based upon this idea.

The methodology defines the episode set as the preserved “behaviour” of the use
case model refactoring. The post-refactoring use case model should preserve the
set of episodes of the pre-refactoring use case model. An Extension relationship
in a use case model indicates that the behaviours defined in the base use case can
be extended by the behaviour defined in the extending use case, once the extension
condition is satisfied. Since the Configure feature has become a mandatory sub-feature
of the Administration feature in the feature model, the Configure service should be a
persistent part of the Administration service. Also, the set of episodes contained in the
Configure and Administration use cases must be able to be combined without violating
their coherence, in order to satisfy the preconditions of Merge_behaviours. Thus,
we conclude that the extension condition is always satisfied in the pre-refactoring use
case model. Since the only difference between the pre- and post-refactoring models is
the relationship between the Configure and Administration use case, the “behaviour”
is preserved during the refactorings. The decision records are given in Figure 39 and
Figure 40.

The first refactoring merged the behaviours in the Configure use case as a new
episode Configure_E into the (new) Administration use case, and the Configure use case

disappeared. Since the (new) Administration use case was created by the combination

190



Know-It-All

Query } Performance ’

/N

DB

Connect

DB
Disconnect

Administration

Capability

DataFeed Scale

DB

Initialize

Define
Schema

Incremental
Update BulkLoad

Hardware
Platform

Operating
Environment

OSlInterface M_J

[ Windows || 082 | [ Unix || Linux ]

\ | Relational || Object |

[Languagel I Theory

|

\ DDL || DML
\ Answer
\ Representation
"/ N\ / 0QL
SQL
Relational / XML
Operator XML /
r'd

\/\

//

O

Domain Technology

<D

Distributed
System

-
d

Structure

Data

Dimensionality

/
| Hashing || B-Tree || R-Tree |

Multiple

><
Iterator

Implementation
Technique

Figure 38: Modified Know-It-All Feature Model

191



Decision Record 1:

Intent: Merge the behaviours of the Configure use case and Administration use case.
Choice: Merge_behaviours

Arguments: Configure use case, Administration use case, Administration_1 use case
Validation: The behaviours of the two use cases are merged into a new use case
Administration_1. The behaviours of the Configure use case are described by the
Configure_E episode. The Configure and Administration use case disappear. To
simplify the situation, the Administration_1 use case is renamed to Administration
after the merge. This does not cause any name clash.

Figure 39: Use Case Model Refactoring: Decision Record 1

Decision Record 2:

Intent: Make the Configure_E episode to be an included use case, called Configure.
Choice: Make_episode_usecase

Arguments: Configure_E episode, Administration use case, Configure use case.
Validation: A new use case, called Configure, is created with the behaviour specified
by the Configure_E episode. An inclusion link is added between the Configure and
Administration use cases. There will be no name clash because the Configure use
case does not exist before the refactoring.

Figure 40: Use Case Model Refactoring: Decision Record 2

A

Advanced User

%_

End User

DataFeed

<<jnclude>>

<<extend>>

<<gxtend>>
Connect <<include>> ",

<<include>> Initialize
; Database
Define
o Schema
<<include>>

./ Disconnect
Database Know-It-All

Administration
i <<include>>

Incremental
Update BulkLoad

Query

Episode QE1: A user asks a query against a Database
Episode QE2: The DBMS passes the query to the Database
Episode QE3: The user gets back the query result

Figure 41: Modified Know-It-All Use Case Model

192



of the episodes from the (old) Administration and (old) Configure use case. The removal
of the Configure_E should not cause any problem because other episodes in the (new)
Administration use case are independent to Configure_E. Furthermore, the action does
not make any name clash because the Configure use case was deleted by the first
refactoring. Thus, the precondition of the second refactoring is satisfied and the
Make_episode_usecase can be performed. The Configure_E episode is taken out
from the Administration use case and a new use case with the name of “Configure”
is created. The only thing affected by the second refactoring is the Administration
and Configure use case. The set of episodes of these two use cases are preserved.
Figure 41 shows the modified use case model. The Configure use case is changed to

be an included use case of the Administration use case.

4.4.1.3 Architectural Model Refactoring

The refactoring on the use case model has changed the Configure use case from an
extending use case to an included use case of the Administration use case, i.e. the
variability of the Configure use case is changed from the Extension to the Inclusion
relationship. The task on the architectural model refactoring is to change the original
model to satisfy the constraints that is translated via T\,.

In the pre-refactoring model, there is a hot spot associated with the Configure
operation. The hot spot is achieved through the Configure class (hierarchy). Applica-
tions customized from Know-It-All can decide whether to have the Configure service by
altering the Configure class specialization, i.e. whether to supply the actual Configure
service. Inspection on the architecture model shown in Figure 30 has found that the
Configure operation is included in the I_APT interface. It conforms to the Inclusion
relationship map rule of T,,. Therefore, the pre-refactoring architectural model has
already provided the flexibility to accommodate the change. It is not necessary to

change the architectural model.

4.4.1.4 Design Model Refactoring

There is no explicit constraint on the design model refactoring since no change has
been made on the architectural model. However, the Configure class is an abstract
class without concrete implementation in the original design model. The service be-

comes to a common property according to the requirement. Two options are available

193



to deal with the change: make the Configure abstract class to be a concrete class, or
provide a concrete subclass for the Configure abstract class. The second option is

chosen for its flexibility.

Decision Record 1:

Intent: Create a new class.

Choice: Create_class

Arguments: Configurelmp class

Validation: A Configurelmp class is created. It has no relationship with any other
class, and has no operation either. A new name is picked up so there is no name
clash. The precondition of the refactoring is satisfied.

Figure 42: Design Model Refactoring: Decision Record 1

The task cannot be accomplished by a single design model refactoring since such
a refactoring is not available. However, we can view the task as “create a new class”
followed by “make the new class a subclass of the Configure class”. Thus, two refac-

torings are chosen: Create_class and Inherit. The decision records are given in

Figure 42 and Figure 43.

Decision Record 2:

Intent; Make the Configurelmp a subclass of the Configure abstract class.

Choice: Inherit

Arguments: Configurelmp class, Configure class

Validation: The Configurelmp class becomes a subclass of the Configure class.
Since the Configurelmp class has neither parent class nor subclass before the
refactoring, as stated in Decision Record 1, the precondition of the refactoring is
satisfied. The Configures virtual function in the Configure class must be overridden
by the Configurelmp class to provide the default Configure service,

Figure 43: Design Model Refactoring: Decision Record 2

The first refactoring creates a new class Configurelmp. The second refactoring
adds a Generalization relationship between the Configurelmp and Configure class. The
variability is achieved through the class hierarchy.

Since the change is localized in the DBMS subsystem, we only show this part of
the modified design model in Figure 44. The Configurelmp class is created to be a
subclass of the Configure abstract class.

In the post-refactoring design model, the Configure operation within the I_API
interface is provided by the DBMSFacade class, which depends on the Configure class

hierarchy. This conforms to Rule 3 of T,4, i.e. the Inclusion relationship in the

194



<<Interface>>

Incremental I_KiAQuery
Update BulkLoad
AskQuery();
DataFeed() DataFeed() GetNext();
Connect_DB();
Disconnect_DB();
<<Interface>>
] I_API
DataFeeder DBMS Define_schema();
DataFeed() |- DataFff‘_j_,_,..‘ Facade | T Initiaﬁze_DB();()
5 Configure();
I_OSlnterface | Tune();
Monitor();

LQ”e"Yé Create

i Tune
DatabaseFacade ;

Monitor
Tune

Configure

Configurelmp
[of

onfigure()

Figure 44: Modified Design Model

use case model is mapped to the Dependency relationship in the design model. The

change from the requirements is successfully cascaded to the design of the framework.

4.4.2 Example 2

The Know-It-All applications support database creation service by the DBMS subsys-
tem. Multiple database creation is a desirable property, i.e. Know-It-All leaves the
decision of which database to create to be made by the application developers, in-
stead of the framework developers. Changes due to the requirement alteration should
be propagated to all affected models. The cascade of refactorings is summarized in
Figure 45. The following subsections will treat each model in turn.

Problem: Modify Know-It-All to make it able to create different databases.

Solution: The refactoring starts at the capability feature category. So the fol-
lowing refactoring path should be followed (see Section 3.3.1):

Capability Feature refactoring path:

1 Mf =M, Tfu
2 M, =M, Ty,

195



3 Ma =>Mdi Tad

4 My ?Mii Ty

Purpose: Modify the Know-It-All framework to make it be able to create different databases.
A) Feature Model Refactoring: no refactoring is necessary for the original feature model.

None

B) Use Case Model Refactoring: no refactoring is cascaded from the feature model, and the use
case model is not affected by the changed requirement, either.

None

C) Architectural Model Refactoring: in the original architectural model, the Initialize_DB
operation in the I_API interface has no associated hot spot to provide the variability required by the
change. The solution is decomposed into two parts: localize the change, and modify the affected part of
the architecture. The following refactorings are performed.

Stepl1: Split_interface: The I_API interface is split to be two interfaces: I_API_new, and I_DB_Create.
Step2: Create_subsystem: A new subsystem Database_Factory is created, within the DBMS subsystem.
Step3: Demote_service_to_internal: Distributes the I_DB_Create interface to the Database_Factory
subsystem.

D) Design Model Refactoring: the refactoring on the architectural model is cascaded to the design
model as the constraints. The main issue is to map the Database Factory subsystem in the architectural
model into the design model. The change is done with two steps.

Stepl: Create_class: A new class Database_Factory is created.
Step2: Add_factory_method: A factory method is added into the Database_Factory class, to realize the
hot spot in the Database_Factory subsystem.

Figure 45: Roadmap of Refactorings in Example Two

Roadmap: See Figure 45.

The requirements of Know-It-All are changed, so, refactorings should begin with
the capability feature model and follow its refactoring path. However, the only feature
related to the database creation is the DBlnitialize mandatory sub-feature. Neither
the variability nor the relationships to other features of the DBInitialize feature has to
be changed due to the new requirement. Therefore, no refactoring is necessary for the
feature model. The database creation service is represented by the InitializeDatabase
use case in the use case model. It is an included use case of the Administration use
case (Figure 29). The new requirement has no impact on the use case model either.

Thus, the refactorings start with the architectural model.

196



4.4.2.1 Architectural Model Refactoring

The main issue addressed by the refactorings is to provide the required variability
of object creation. The framework provides the database creation interface, but
lets the subclasses in the applications decide which database to instantiate. The
cascaded refactoring methodology handles the variability in the architectural model
by hot spots and design patterns (Section 3.2). As stated in the design pattern
book [GOF94], the Factory Method design pattern is applicable for this context.
The intuitive idea is to change the Initialize_DB operation to be a factory method.
However, such an architectural refactoring is not available. Inspired by the Hot Spot
Generalization Approach [SCHM97], we want to create a new subsystem to host the
Factory Method design pattern and associate the subsystem to the identified hot spot.

The following steps are carried out:

Decision Record 1:

Intent: Split the I_API interface to be two new interfaces: I_API_New, and
|_DB_Create.

Choice: Split_interface

Arguments: |I_API interface, | DB_Create interface, I_API_New interface, DBMS
subsystem

Validation: The |_API interface is split into two new interfaces: |_DB_Create and
I_API_New. The operations in the I_APIl interface are distributed to the new
interfaces. The Initialize_DB operation is assigned to the |_DB_Create, the rest of the
operations are put into the I_API_New. All services provided by the I_API are
supported by either the I_DB_Create, or the I_API_New interface. There is no name
clash. The precondition is satisfied.

Figure 46: Architectural Model Refactoring: Decision Record 1

1. Split the I_APT interface to be two interfaces: I_DB_Create and I_API_New.
2. Create a hot spot subsystem Database_Factory inside the DBMS subsystem

3. Redistribute the _ DB_Create from the DBMS to the Database_Factory subsys-

tem.

Based upon the above idea, three refactorings are chosen: Split_interface, Cre-
ate_subsystem, and Demote_service_to_internal. The decision records of each
of them are given in Figure 46, Figure 48, and Figure 50.

After the first refactoring, the DBMS subsystem in the modified architectural
model is given in Figure 47. The Initialize_ DB operation is put into the I_.DB_Create

interface. Any possible change related to the operation is localized into the interface.

197



The second refactoring creates a new subsystem, called Database Factory, which

does not clash with existing names inside the DBMS subsystem. It does not associate

with any interface or operation.

<<Interface>> <<Interface>>
I_API_New I_KIAQuery
Define_schema(); AskQuery();
Configure(); GetNext();
Tune(); Connect_DB();
Monitor(); Disconnect_DB();
T : <<Interface>>
<<Subsystem>> 1.DB_Create
|_Datafeed <<Class>> Initialize_DB()
& DataFeeder A
|r<1:$el:15esn>t:| <<Class>>
Update BulkLoad | = e
<<Class>> <<Class>>
Configure Monitor
<<Subsystem>>
une
DBMS
O |_OSinterface

Figure 47: Architectural Refactoring I

Figure 49 presents the modified DBMS subsystem after the second refactoring.
The Database_Factory subsystem is created inside the DBMS subsystem.

Decision Record 2:

Intent: Create a new subsystem Database_Factory, and put it inside the DBMS.
Choice: Create_subsystem

Arguments: Database_Factory subsystem

Validation: A new subsystem is created inside the DBMS subsystem. The name does
not cause any name clash, so the precondition is satisfied. Furthermore, a hot spot
should exist inside the new subsystem to provide the flexibility of various database
creations. Since there is no specific notion for hot spots in the architectural model,
annotations are recommended to record the design decision.

Figure 48: Architectural Model Refactoring: Decision Record 2

After the third refactoring, the flexibility required by the changed requirement
is provided by the Database_Factory hot spot subsystem with the I_ DB_Create inter-
face(shown in Figure 51).

The cascaded refactoring methodology takes the set of services provided by the

framework as the preserved “behaviour” of architectural model refactoring. We need

198



<<nterface>> <<Interface>>
I_API_New I_KIAQuery
Define_schema(); AskQuery();
Configure(); GetNext();
Tune(); Connect_DB();
Monitor(); Disconnect_DB();
—— ; <<Interface>>
<<Subsystem>> 1_DB_Create
tafeed
b o <<Class>> Initialize_DB()
DataFeeder <<Subsystem>>
Database ZX:
_Factory !
<<Class>>
Incremental ;ﬁ:f;:; _______________ i
Update
<<Class>> <<Class>>
Configure Monitor

<<Subsystem>>
<<Class>> .
Tune Virtual_OS

O I_OSInterface

DBMS

Figure 49: Architectural Refactoring I1

to prove that the post-refactoring architectural model provides all the services of the

pre-refactoring model.

Decision Record 3:

Intent: Migrate the 1_DB_Create interface from the DBMS subsystem to its inner
subsystem Database_Factory

Choice: Demote_service_to_internal

Arguments: DBMS subsystem, Database_Factory subsystem, |_DB_Create Interface
Validation: The I_DB_Create interface is demoted from the DBMS subsystem, to the
Database_Factory subsystem. Since the Database_Factory does not associate with
any interface/operation before the refactoring, there is no name clash during the
migration. Other services provided by the DBMS subsystem is not affected by the
change. The precondition of the refactoring is satisfied.

Figure 50: Architectural Model Refactoring: Decision Record 3

In this example, the only difference between the pre- and post-refactoring architec-
tural model is the variability of the database creation service. The hot spot brought
by the refactorings “augments” the original service with better flexibility. In fact, the
set of services of the post-refactoring model is a superset of that of the pre-refactoring
model. Any service of the pre-refactoring model is provided by the post-refactoring

model. So, the “behaviour” is preserved by the refactorings.

199



We want to verify whether the architecture related trace maps are still maintained
after the changes on the architecture. The trace map Ty, is concerned with the Op-
erating Environment features and the interfaces in the architectural model. Prior to
the architectural refactorings, the API feature was mapped to the I_API interface(see
Table 9). Refactorings on the architectural model split the I_API interface into the
[. DB _Create and I_API New interfaces. Thus, the AP| feature should be mapped to
the I_ API_New interface. The I.DB_Create interface does not affect Ty, because trace

maps are not symmetric(page 116).

<<Interface>> <<Interface>>
i_APi_New I_KiAQuery
Define_schema(); AskQuery();
Configure(); GetNext();
Tune(); Connect_DB();
Monitor(); Disconnect_DB();
R '.; 1‘ <<Interface>>
<<Subsystem>> |_DB_Create
Dt 5_ <<Class>> Initialize_DB()
DataFeeder <<Subsystem>> A
Database ;
_Factory b ;
ncromental || <<Class>>
Update BulkLoad

<<Class>> <<Class>>
Configure Monitor
<<Subsystem>>
<<Class>> .
V"'tual_.os

O |_OSinterface

DBMS

Figure 51: Architectural Refactoring III

The trace map T, is concerned with the use cases and the interfaces in the ar-
chitectural model. Previously, the Administration use case was mapped to the [_API
interface, its included use case InitializeDatabase was mapped to the Initialize DB op-
eration (see Table 13), and the Inclusion relationship was mapped to the Composition
relationship between the Initialize DB operation and I_API interface (see Table 14).
To maintain the trace map after the architectural refactorings, the Administration
use case is mapped to the I_API_New interface. The InitializeDatabase use case is
mapped to the I.DB_Create interface. The Inclusion relationship is mapped to the
Dependency relationship from the I API_New to I DB_Create. This does not violate

either Rule 5 of T,, nor the architectural metamodel, because the Database_Factory

200



subsystem is included in the DBMS subsystem.
Since there is no change in the use case model, the trace map Ty, is not affected

and no issue arises in the Capability feature category.

4.4.2.2 Design Model Refactoring

According to the trace map T4, the design decisions encapsulated in the architectural
model must exist in the design model. Impact of refactorings on the architectural

model becomes the constraints of the refactorings for the design model.

Decision Record 1:

Intent: Create a new class DB_Factory

Choice: Create_class

Arguments: DB_Factory class

Validation: A DB_Factory class is created. A name check should be done before
the creation to prevent name clash. The DB_Factory class does not have any
operation, nor any relationship to any other class.

Figure 52: Design Model Refactoring: Decision Record 1

Two issues are taken into consideration during the design model refactorings: 1)
the new subsystem Database_Factory; 2) the variability provided by the hot spot. The
first issue is addressed by adding a class (hierarchy) to support the services of the
Database_Factory subsystem. Since the hot spot is realized by the Factory Method
design pattern in the architectural model, the same idea is also used in the design
model. Two refactorings are chosen from Tokuda’s design refactorings [TOKU99]:
Create_class and Add_factory_method. The decision records are given in Fig-
ure 52 and Figure 54.

After the first refactoring, a new class, called DB_Factory, is created. However, it
has no operation and does not provide any interface. The modified part of the design
model is shown in Figure 53.

The Add_factory_method has four arguments [TOKU99:

1. Factory: the class into which the factory method is added
2. Product: the class of the object which is created by the factory
3. Ptype: the return type of the factory method. Ptype must be either the Product

or a superclass of the Product

201



<<Interface>>

Incremental I_KIAQuery
Update BulkLoad
P . AskQuery();
DataFeed() || DataFeed() GetNext();

Connect_DB();

Disconnect_DB();
<<Interface>>
: I_API
V | R
m pBMs | = Define_schema();
DataFeed() Facade Initialize_DB();
} Configure();
|_OSInterface : Tune();
Montery
LQUWYE Create - ‘
DatabaseFacade une
Monitoé
Configure

DB_Factory Schema >
"""""""""""""""""" > configure |

Figure 53: Design Model Refactoring I

4. method: the name of the method which is added

A method is a virtual member function [STRO97]. An operation is a service that
is described as a signature with a name and parameters [OMGO03]. We view a service
in terms of interface and operations in the design model. An operation can be a
concrete operation or a virtual operation. The difference between a method and an

operation is not distinguished in the methodology.

Decision Record 2:

Intent: Create a factory method in the DB_Factory class

Choice: Add_factory_method

Arguments: DB_Factory class, Initialize_DB() method, DatabaseFacade class,
DatabaseFacade* type

Validation: A factory method Initialize_DB() is created inside the DB_Factory class. A
dependency relationship is added from the DB_Factory class to the DatabaseFacade
class, because the Product of the factory method is a DatabaseFagade object. The return
type of the factory method is DatabaseFacgade*. The factory is the DB_Factory class. The
variability is realized by the Factory design pattern. Since there is no operation inside the
DB_Factory class before the refactoring, the Initialize_DB method should not cause any
name clash. The precondition is satisfied.

Figure 54: Design Model Refactoring: Decision Record 2

The DB_Factory class provides the flexibility with the added factory method after

202



the second refactoring. It realizes the Database_Factory subsystem in the architectural
model. Figure 55 presents the modified part of the design model after the second
refactoring.

The comparison on the pre- and post-refactoring architectural model brings out
another issue: the I_API interface is decomposed to be two new interface I_.DB_Create,
and I_API_New. The I_DB_Create interface is provided by the new subsystem Data-
base_Factory. The elements I_DB_Create interface, _API_New interface, and the Data-
base_Factory subsystem should be mapped to the corresponding entities in the design
model. In addition, the Inclusion relationships between the DBMS to Database_Factory
subsystem has to be mapped to a Dependency relationship. To maintain the trace
maps between the architectural model and the design model, more changes have to

be made on the design model.

<<interface>>
I_KIAQuery
Incremental
Update BulkLoad AskQuery();
GetNext();
DataFeed() DataFeed() Connect_DB();
Disconnect_DB();
: <<Interface>>
: I_API
777777 DBMS Define_schema();
DataFeed() |~ DotoFeed- Facade ™ initialize_DBY();
i 3 Configure();
I_OSinterface | Tune();
Monkorl
I_Query§ Create :
; i
------ DatabaseFacade P& uine
Monito;
Configure

""""""""""""""""" >[ contigure |

DB_Factory
DatabaseFacade* Initialize_DB( ); return new DatabaseFacade;Bl

Figure 55: Design Model Refactoring 11

Figure 56 shows the modified part of the final design model. The [_.API New
and I_.DB_Create interfaces are created and associated to the corresponding classes.

The Database_Factory subsystem is mapped to the DB_Factory class. The Inclusion

203



relationship between the DBMS and Database_Factory subsystem is mapped to the
Dependency relationship from the DBMSFacade to DB_Factory class. The Realization
relationship between the Database_Factory subsystem and I_DB_Create interface is
mapped to the Realization relationship between the DB_Factory class and I_DB_Create
interface. However, there are no design model refactorings available for those changes,

to our best knowledge.

<<Interface>>
_— I_KIAQuery
Incremental
Update BulkLoad AskQuery();
GetNext();
DataFeed() DataFeed() Connect_DB();
Disconnect_DB();
<<Interface>>
e I_API_New
DBMS Defi h .
l<-DataFeed-~—{  _ _~  |feeeeeeeeeeeees r>{ Define_schema();
DataFeed() J— Facade | Initialize_DB();
: : Configure();
I_OSinterface | Tune();
| e
l_Query§ Create N
i Tune
------
Moniton;
-
Configure
<<Interf: >> ii
e | e | e[ ]
Initialize_DB();

DB_Factory

DatabaseFacade* initialize_DB( ); - return new DatabaseFacade;ﬁ

Figure 56: Design Model Refactoring III

Another solution for this issue, is to perform more refactorings on the architectural
model shown in Figure 51. The rules of T4 are still the constraints, though they are

used in a “reverse” way. The process is illustrated as follows:

1. The I_API_New interface has to be renamed to the I_API interface, which is
provided by the DBMS subsystem. The DBMS subsystem corresponds to the
DBMSFacade class in the design model. This change can be done with the

Change_interface_name architectural model refactoring. Since there is no

204



[_API interface before the refactoring, there will be no name clash. Furthermore,
the I_API_New interface does not have any client. Thus, the preconditions are
satisfied, the argument I_API_New interface is renamed to the I_API interface

after the refactoring.

2. The DB_Factory class in the design model (Figure 55) has the Initialize_ DB
operation, which can be viewed as a single operation interface, to match the
[.DB_Create interface provided by the Database_Factory subsystem. The sub-

system corresponds to the DB_Factory class.

3. The I_API interface in the design model (Figure 55) includes the Initialize DB
operation, which is not in the I_APT interface in the architectural model. How-
ever, this does not violate Rule 1 of T4, because the [_API interface in the
design model provides all services specified by the I_API interface in the archi-

tectural model.

The rationale of the process is Rule 1 and Rule 4 of T4, i.e. interface mapping
and subsystem mapping. The only refactoring performed during the whole process
renamed an interface. Thus, we conclude that services of the architectural model are

not changed during the refactoring. The “behaviour” is preserved.

4.5 Discussion

We present the feature model, use case model, architectural model, and design model
of Know-It-All. The concrete entity and relationship mapping of each trace map is
described. The example refactorings demonstrate how the refactorings are cascaded
on the models via the trace maps to achieve refactoring of a framework.

Issues related to the methodology have been validated with the Know-It-All case
study:

1. Whether the chosen notion of behaviour is appropriate for each kind of model.

Refactoring is a behaviour-preserving process. Design and source code refactor-
ings take functionality as the preserved behaviour. After we extend the concept

to the feature model, use case model, and architectural model, it is important to

205



define the notion of behaviour for those models as the invariants during refactor-
ings. The concrete trace maps and cascaded refactoring examples demonstrate
the chosen model behaviour meets our initial expectation, that is, specify the
main property that must be preserved during the transformation of each of
the model. For example, a feature set is composed of features that are chosen
from a feature model. An application of a product line is specified by a feature
set that is derived from the feature model of the product line. Thus, feature
sets of all existing applications should conform to the post-refactoring feature
model. It is appropriate to use the collection of feature sets to be the notion
of behaviour for a feature model, as demonstrated in example 1. On the other
hand, we are only concerned with “functionality” as the default invariants for
the use case model and the architectural model. Other quality attributes such

as performance and variability should be considered in future work.

. Whether the chosen architectural notion is appropriate for framework specifi-

cation.

Limited by our experiences on software architecture, we only focus on the logi-
cal view and define the metamodel in terms of layers, subsystems, classes, and
interfaces, to follow the convention in the literature. The metamodel is closely
related to the UML design models, in order to facilitate the alignment map-
pings. For example, a generalization relationship in an architectural model is
always mapped to a generalization relationship in a design model. The entity
and relationship mappings of trace map Tyy (see Table 17, Table 18, and Ta-
ble 19) demonstrates the ease of mappings between the architectural model and
design model. Furthermore, the metamodel stresses on a hierarchical view of
architecture to reduce complexity and improve flexibility, as shown in the Know-
It-All architectural model (see Figure 30). On the other hand, runtime entity
and physical deployment information should be added to increase applicability
of the metamodel. We also feel it beneficial to have special notion of hot spots
in architectural models to specify variability, to facilitate description of trace

maps, and to assist framework documentation.

. Will the refactorings maintain the internal traceability and alignment for each

kind of model.

206



The traceability amongst the models is described using trace maps, which are
concerned with not only the horizontal traceability, but also correspondence of
commonality and variability of the set of models. The methodology views refac-
toring of framework as two stages in terms of granularity (see Section 3.3.1).
The internal traceability (vertical) of each model is specified by its metamodel,
and kept by the refactorings of that individual model. For example, the set of
episodes is chosen as the preserved behaviour for use case model refactorings,
as described in example 1. The alignment between the models is obtained by
the cascaded refactorings via trace maps. Furthermore, although the use case
model and architectural model only treat functionality as the preserved behav-
iour, commonality and variability are stressed with the trace map rules, and
considered during the refactorings. It is worth noting that name tracing is also
useful as implicit traceability to assist the mappings, such as the Administration
feature and the Administration use case. On the other hand, the map rules are
only applicable on subsets of those models. The lists of refactorings of each

model are also limited. Future work on them is expected.

4. Whether the document template is appropriate to record the refactoring for

each kind of model.

Refactoring is viewed as an issue-driven activity in the methodology. The issues
are represented as a collection of decisions, each of which is described by a
decision record. The refactoring examples demonstrate that a set of decision
records specify the road map of refactoring of a framework. The template is
appropriate to record the refactoring for the models in terms of the notion of
behaviour. However, it may need modification once other quality attributes are

considered during refactoring of those models.
As a conclusion, the cascaded refactoring methodology is able to:

e Specify frameworks with a set of models across the analysis, design, and imple-
mentation
The requirements are captured in a feature model and a use case model, design

in architectural and design models, and implementation in source code. The

feature model is used as the starting point for cascaded refactorings for its

207



different categories correspond to other models. The set of models provide the
foundation to specify and maintain traceability from the requirements to design

“and implementation of a framework.

Propose a solution to identify and realize the variability of frameworks

Commonality and variability are identified and organized in the feature model.
Their traceable information is specified by the trace maps between the set of
models. Thus, traceability links of variability can be followed from the re-
quirements, to design and implementation, in order to ensure and verify the

realization of variability.

Perform refactorings on a framework with a set of refactorings on the models

Refactoring of a framework is obtained through cascaded refactorings on the
models. A trace map is used to discover the constraints and motivation of
refactorings of range model from the refactorings of the domain model. Refac-
torings of different models are cascaded due to updating trace maps in order to
maintain traceability. The “behaviour” of a framework is specified with differ-
ent notions for each kind of models. The definition of refactorings of each model

and the trace maps ensure the behaviour preservation of framework refactoring.

Define a template to document refactoring decisions as part of the framework

documentation

A decision record describes a refactoring of one model in terms of intent, pre-
conditions, arguments, and impact. The intent specifies the motivation of the
change; the arguments indicate the effected model elements; the preconditions
capture the “snapshot” of the context before the refactoring; and the impact
illustrates the consequence of the refactoring in the model, and is often consid-
ered as the preconditions of the consecutive refactoring. The content of decision
records can be used as the rationale of framework refactoring, to aid the develop-

ment and maintenance of framework, as part of the framework documentation.

208



Chapter 5
Conclusion

To accomplish great things, we must not only act,
but also dream; not only plan, but also believe.

~Anatole France

5.1 Overview

Software systems are becoming progressively more complex and expensive to build.
Coding systems from scratch, with minimal leverage from one system to the next,
clearly is not cost effective and is not a scalable means of construction [PRIE89]. Find-
ing more economical ways of building software is a basic goal of software engineering.
Software reuse is believed to be a key in achieving this goal [JGJ97].

Object-oriented application frameworks are a practical way to express reusable de-
sign across a domain [FSJ99]. A framework provides a generic design and the reusable
implementation for a family of applications through a set of abstract classes and their
collaborations [JF88]. The reuse is achieved through framework customization, which
is typically done by subclassing the abstract classes and overriding a small number
of methods.

Frameworks are more difficult to design and develop than individual applica-
tions [JOHNO93] [SCHMO97]. The framework design “must be simple enough to be
learned, yet must provide enough features that it can be used quickly and enough
hooks for features that are likely to change” [RJ97]. Existing framework development

methodologies have suggested use domain analysis, software evolution, and design

209



patterns [FHLS99]. However, identifying the required variability for the family of
applications and the designing mechanisms that provide the variability is a prob-
lem [BMMBO00]. Furthermore, the evolution of the framework must be considered,
especially as all frameworks seem to mature from initial versions through to a stable
platform [SB99] [FSJ99).

The thesis introduces the cascaded refactoring methodology for framework de-
velopment and evolution. The methodology is a hybrid approach that combines the
modeling aspects of top-down domain engineering approaches, and the iterative refac-
toring process from the bottom-up approaches. It views framework development as
framework evolution, which is achieved by framework refactoring followed by frame-
work extension. The methodology focuses on framework refactoring, and extends the
notion of refactoring that has been applied to source code, and to design in the form
of class diagrams, to other models of frameworks. It specifies a framework with a
set of models: the feature model, the use case model, the architectural model, the
design model, and the source code; and relates the set of refactorings across those
models through change impact analysis using the alignment maps. A trace map of two
models specifies horizontal traceability links between the elements and relationships
in the two models. An alignment map is a trace map that preserves commonality
and variability. In our methodology, we assume that the trace maps used are indeed
alignment maps, so the term trace map is used throughout. The framework refactor-
ing is a set of refactorings of the models, and the constraints on how to refactor a
particular model is determined or impacted by the previous refactorings via the trace
maps between the models. Hence, the restructuring cascades from one model to the
next. Overall, the refactoring of a framework is a set of model transformations that
maps a coherent set of aligned models to another coherent set of aligned models. The
methodology is validated by a case study, the Know-It-All framework for relational
database management systems.

The remainder of this chapter is organized as follows. We will summarize the con-
tributions and the limitations in section 5.2 and 5.3. The related work and validation
issues are discussed in section 5.4 and 5.5. The future work is presented in the last

section.

210



5.2 Contributions

Our work makes the following contributions:

1. Cascaded refactoring is proposed as a methodology.

As a common observation, framework design takes iteration [JF88]. The first
version of a framework is usually a White-Box framework [RJ97]. Applications
are built from the framework to validate its functionality, flexibility, etc. Thus,
framework development is framework evolution, which can be viewed as frame-
work refactoring followed by framework extension. A framework is specified
with a set of models. The process of cascaded refactoring is a series of refactor-
ings of the models. The impact of the refactorings on a model M; to a model
M;, is translated via the trace maps that have M; as the domain and M; as
the range. A refactoring on one model is not an isolated activity because the
consequence of the refactoring can be the constraints to initiate refactorings
on other models to preserve the traceability. A refactoring is always a part of
the cascaded refactoring. Framework refactoring is achieved through a set of

cascaded refactorings on the models of the framework.

2. A set of models are chosen for the framework specification.

Clear guidelines to document a framework with a set of coherent models are
not given by the existing methodologies [FSJ99] [BMMBO00]. We have carefully
reviewed many software models and chosen the appropriate ones to specify a
framework across the analysis, design, and implementation. Research in domain
engineering has proved that the feature modeling is effective to identify and or-
ganize commonality and variability of a software product line [ KCH+90] [KLL+02].
So, a feature model is chosen for the domain analysis. We select a use case
model to capture the functionality, an architectural model to express the high
level design in terms of layers and subsystems, a design model to specify the
collaboration of classes and objects, and source code. Metamodels, as a precise
definition of the constructs and rules needed to create models, are defined for
the feature model and the architectural model. We also adopted Rui’s use case
metamodel [RB03]. Metamodels are defined to exactly specify the models, to
clearly describe the refactorings and trace maps, and to allow the behaviour

preservation of refactorings to be justified.

211



3. Trace maps between models are defined to aid traceability.

A framework has to not only encompass commonality of all applications that
might be built from the framework, but also account for the variation that
exists between those applications [FHLS99]. The existing methodologies have
had little work on the identification and realization of the required variabil-
ity of frameworks. The cascaded refactoring methodology stresses the model
traceability to address this issue via alignment maps. A set of trace maps —
actually alignment maps — are defined to specify and maintain the traceabil-
ity links between the models. Commonality and variability of a framework are
captured into the feature model. The consistency between the feature model
and other models are maintained by using the trace maps. These maps cover
the analysis, design, and implementation of the framework. The realization of
the required variability is managed by mapping the requirements to the design
and implementation. Furthermore, the impact of changes on the design and
implementation due to the alteration on requirements of the framework is also
handled by the trace maps. They deliver a solid foundation for the cascaded

refactorings.

4. Partial set of refactorings on different models are defined.

Refactoring is a process of changing a software system in such a way that it
does not alter the visible behaviour of the code, yet improves its internal struc-
ture [FOWL99]. Refactoring research has been mainly focused on source code
and design level refactoring [OPDY92] [RBJ97] [TB99] [ROBE99] [MT04]. Our
methodology extends the notion of refactoring to the feature model, the use case
model, and the architecture. The invariants of refactoring of those models are
clarified. A partial set of refactorings is defined for each of those models. The
refactorings have been validated in the Know-It-All case study. The set of refac-
torings is by no means a complete list but the refactorings are sufficient for the

case study.

5. A document template is defined to record the refactoring of models.

The cascaded refactoring methodology incorporates the issue-driven approach
and views refactoring as an issue-driven activity, to maintain the traceability of

the models via the trace maps. The choices of appropriate refactorings are based

212



upon the combination of constraints from the previous model refactorings, and
the issue addressed by the present model refactoring. The preconditions of a
refactoring must be satisfied to perform the refactoring. The overall refactoring
rationale is a collection of decisions. Each decision records the intent, choice,
arguments, and the consequences of a refactoring. Since a framework is always
refactored until it reaches a mature platform, the refactoring document as part
of the framework documentation benefits to the design and maintenance of the

framework.

6. An academic setting framework for relational database management
systems, called Know-It-All, is developed as the case study to validate

the methodology.

Know-It-All provides a generic infrastructure for relational database manage-
ment systems. The methodology has been validated with the development of
Know-It-All. The trace maps of the Know-It-All models are specified and vali-
dated. Cascaded refactoring examples are demonstrated. The case study ex-
plores and validates key issues of the methodology: the notion of behaviour
for the models, the notion of architectural model for framework architecture,
the impact on traceability preservation by the trace maps, and the document
template to record refactorings. The initial work focuses on refactorings of the
feature model, use case model, and architectural model, since refactoring of
source code and design have already been addressed by the refactoring commu-
nity. Our publications have validated the refactoring concepts of the feature
model, use case model, and architectural model [BX01] [BCC+02] [RBO03].

5.3 Limitations

Weak points exist in our work due to the limited time and resources. They are

summarized as follows:

1. Cascaded refactoring approach is not a complete methodology.

The methodology aims to cover framework evolution. However, our work only

focuses on framework refactoring at current stage. Further study on framework

213



extension remains to be done. The metamodels are not defined in formal lan-
guages. We only have initial treatment of variability within framework models.
The methodology lacks a thorough definition for variability in each of the mod-
els. The variability mappings are still not clearly specified. The trace maps
are not full maps and are only defined on the subset of each model. Source
code related trace maps are not defined. The invariants of different models
during the cascaded refactorings are mainly concerned with the functionality.
More quality attributes should be considered in the context of a framework.
We have only defined a small subset of refactorings for the models. More refac-
torings are expected and the formal justification of behaviour-preservation for
each refactoring is expected. The methodology only deals with White-Box level
frameworks. It is possible that different documents and models are needed for
other maturity level frameworks. However, we cannot draw any conclusion on

this point at the current stage.

. The architectural modeling is rather limited.

We had difficulty to choose an appropriate architectural model for a framework.
Even UML does not provide specific mechanisms for architecture modeling. We
took the traditional way of subsystem and interfaces to present the high-level
framework architecture. Other views of architecture such as the process, and
deployment views are not covered in the metamodel. The architectural model
does not provide specific notion to represent hot spots, which are often used in
framework design. The invariant of refactoring of architecture only takes the
functionality into consideration. We have not decided which quality attributes
should be preserved by framework architecture transformations. Our guess is

to have a set of quality-preserving refactorings for each quality attribute.

. The case study is not big enough.

Know-It-All only supports a small set of DBMS features. There are not many
hot spots available to support enough variability, such as different data models,
query languages, etc. The indexing techniques are quite limited. More work is
needed on the physical layer. We only did a small number of refactorings on
the framework. The framework has not been validated with the reuse “rule of

thumb”, i.e. a framework should be verified a number of applications from the

214



framework in different contexts [RJ97].

5.4 Related Work

The work most closely related to the content of the thesis is the work on framework

development and refactoring.

5.4.1 Framework Development

The existing framework development methodologies can be classified into Bottom-Up,
Top-Down, Hot Spot Generalization, and Use Case Driven approaches [FSJ99].

The classic bottom-up approaches suggest an incremental, iterative way to build a
framework [JF'88] [JOHNO93] [RJ97]. The framework development begins with devel-
oping several applications within different contexts in the framework domain. These
applications are generalized to construct the White-Box framework. The framework is
validated by re-developing those applications with the framework. More applications
are developed and the framework is refactored to accommodate the necessary changes
in order to handle the new applications. The iteration continues until all applications
within the framework domain can be instantiated from the framework [WW93]. The
bottom-up approaches do not specify the way in which the domain knowledge is ob-
tained [FSJ99]. It is difficult and expensive to design the framework architecture by
generalizing existing applications [JOHN93]. The approaches also emphasize refac-
torings in framework development but do not address the traceability issue between
the different framework artefacts during refactorings [MENS05].

Top-Down approaches start with domain analysis to organize commonality and
variability within the framework domain into analysis models [CHW98] [CN02]. The
analysis result is used to design the Domain Specific Software Architecture (DSSA)
and appropriate reusable components that can be instantiated during the applica-
tion development. Organizational Domain Modeling (ODM) [STAR96] is a detailed
domain analysis process with a set of work products and dossiers. Feature-Oriented
Reuse Method (FORM) [KKL+98] proposes a layered feature model to categorize
features and derives the architecture and class models with a general guideline. Lu-
cent [WL99] proposes the FAST (Family-Oriented Abstraction, Specification, and

Translation) methodology for product lines. FAST promotes very small product lines

215



which are well understood, so development is a one-increment activity. Software En-
gineering Institute (SEI) [CNOO] initiates a program that integrates various practices
into a framework for Product Line Practice. As Robert and Johnson [RJ97] point
out, designing a generic architecture based upon the primary abstraction of the ap-
plication requirements is very difficult. Furthermore, the top-down approaches do
not provide adequate support to framework evolution since the approaches rely on
a rather stable DSSA [WL99]. However, empirical studies have shown that software
developers can only identify and predict a subset of future changes [LS98]. Coplien
et al. [CHW98] also recognize that changes on a DSSA cannot be avoided due to the
emergence of new applications with novel requirements. It is more practical to have
an initial version framework based upon the partial domain analysis, then evolve the
framework to meet new requirements.

Hot spot generalization approaches start with an object model which is intended
to meet the domain-specific requirements of all applications of the framework do-
main [PG94] [SCHM97] [PREE99]. The object model is usually developed by domain
experts and experienced software engineers with CRC cards [BC89] or use cases and
scenarios [PREE99]. An iteration process is performed to identify the hotspots with
variability classification, and to associate each one with a hot spot subsystem, which
is usually realized by design patterns [GOF94]. Demeyer et al. [DRMG99] suggest a
variation to the approaches that introduces a separate abstract class for each dimen-
sion of variability of a hot spot, i.e. put the hook methods called by a template method
into different classes to increase flexibility. Hot spot generalization approaches rely on
“perfect” domain experts since it is very challenging to design a good domain specific
object model. They do not integrate domain analysis techniques and have no precise
guidelines to organize the requirements in terms of commonality and variability into
object models [FHLS99]. Moreover, the traceability from requirements to the design
is not well addressed [HIMO1].

Use case driven approaches plan all applications of the framework domain at once,
and capture the requirements of those applications within use cases [JCJO92] [JGJ97].
The commonality and variability are specified with generalization and variation points
in use cases. After the analysis, the approaches may then proceed with either the
hot spot generalization or top-down approaches. RSEB [JGJ97] encompasses sepa-

rated processes for Domain Engineering and Application Engineering. The approach

216



integrates the “4+1 View” [KRUC95] to model architectures. RSEB places an empha-
sis on modeling variability and keeping the traceability links from the requirements
to design and implementation models. However, empirical studies have shown that
use case models are sometimes not appropriate to model variability in complex sys-
tems [GFA98] [VAM+98]. Thus, Griss et al. [GFA98] extends RSEB to FeatuRSEB
by incorporating feature modeling as the domain analysis technique. The analysis
model in the Catalysis approach [DW98] is based on three modeling concepts: type,
the external behaviour of an object; collaboration, the interaction between objects;
and refinement, the abstraction process to generalize type and collaborations. Archi-
tecture is developed and composed from the abstract concepts in the analysis model.
Use case assortment [MMM99] combines a set of modeling heuristics with an analysis
technique that identifies abstractions in the use cases from the application viewpoint,
to construct abstract use cases and actors for framework development. The use case
driven approaches are intended to use a set of models to specify the reusable architec-
ture and components, and precise guidelines to map the requirements to design and
implementation [JGJ97]. However, they have not precisely defined the traceability
links between the entities and relationships of different models. Furthermore, they

do not address the issues of framework evolution [BMMBO0O].

5.4.2 Refactoring

Refactoring is a behaviour-preserving program transformation that automatically up-
dates an application’s design and underlying source code [FOWL99]. Opdyke [OPDY92]
introduces the term “refactoring” and defines the concept of preconditions as the en-
abling conditions for a refactoring. He also defines a set of low-level and high-level
refactorings for C+4 programs. Many of them were implemented by Roberts in
his Smalltalk refactoring browser [ROBE99]. Roberts extends Opdyke’s definition
of refactoring by adding postconditions, which are assertions that a program must
satisfy after the refactoring is applied. The idea comes from the observation that
refactorings are typically applied in sequences intended to set up preconditions for
later refactorings. Tokuda [TB95] [TOKU99] implements the refactorings proposed
by Opdyke for C++, and proposes additional refactorings to support design patterns
as target states for software restructuring efforts. Martin Fowler [FOWL99] explains

the principles and best practices of refactorings, and gives a comprehensive catalogue

217



of refactorings. Each refactoring is given a name, a short summary, a motivation de-
scribes why the refactoring should be done, a step-by-step description of how to apply
the refactoring, and an example. Refactoring is a key practice in eXtreme Program-
ming (XP) [BECK99]. Software developers evolve the design incrementally upon
new requirements from the clients. Two key aspects of XP are continual refactor-
ing of the source code and unit testing for the justification of behaviour-preservation.
Pipka [PIPK02] suggests only use behaviour-oriented testing since tests relying on the
program structure may show different results due to the alteration of the structure
by the refactorings.

Refactoring can be represented as graph transformations [HECK95]. A software
artefact is represented as a graph, refactorings as graph production rules, and the
application of a refactoring as a graph transformation. The research area of object-
oriented software refactoring originates in the research on how to restructure object-
oriented database schemas [BKKK87], since the schemas can be seen as the prede-
cessor of the UML class diagrams. The approach is adopted by Opdyke [OPDY92]
into object-oriented program refactoring. Heckel [HECK95] uses graph transforma-
tions to formally prove that any set of refactoring postconditions can be translated
into an equivalent set of preconditions. Mens et al. [MDJ02] present the formal-
isation of refactoring using graph rewriting, a transformation that takes an initial
graph as input and transforms it into a result graph. The preserved “behaviour”
emphasizes on the implementation of each method that is involved in the refactoring.
Philipps and Rumpe [PR97] propose a calculus for stepwise refinement of abstract
data flow architecture style in terms of components and connectors. The calculus is
composed of a set of graph transformation rules, which are justified by the refinement
relations on a black-box view of the architecture. The Design Maintenance System
(DMS) [BAXT92] is a rule-based transformation system that is applicable with a
hierarchy of domains, each of which is specified by syntax, semantics, and mappings
to the same or other domains. DMS can implement source code transformations such
as COBOL programs. However, DMS transformations do not guarantee behaviour-
preservation. It is feasible within DMS to define a domain corresponding to each of
our models, to define a set of transformations for the models, and to define the trace
maps between models. Thus, cascaded refactoring could be realized within DMS.

Mens and D’Hondt [MDO0] introduce an evolution contract formalism to manage

218



UML model transformation. The UML metamodel is extended to incorporate the
concept of evolution contract, which is used to specify model transformations and
to justify the behaviour-preservation. They claim that the formalism can handle the
evolution of all kinds of UML models since it is defined at the metamodel level. It is
sensible to use graph transformation as the formalism of refactoring because graphs
are a language-independent representation of implementation. Moreover, transfor-
mation rules can be precisely defined, and the formalism allows the justification of
behaviour-preservation [HECK95]. On the other hand, it is extremely complicated
to deal with large nested structure with graph transformations, and the behaviour
preservation still cannot be guaranteed [MT04].

While many techniques are available for program refactoring, some researchers
shift their focus to other software artefacts. Steyaert et al. [SLMD96] propose the
concept of reuse contract to handle change propagation between inheritance class hi-
erarchy during software evolution. Evolution is specified with reuse operators, which
define the transformation rules on class hierarchies. Mens [MENSO01] extends their
work to allow arbitrarily complex reuse contracts, in order to handle UML collabo-
ration with graph rewriting rules. Judson et al. [JCF03] introduce a pattern-based
metamodeling approach to evolve the UML design models by incorporating appro-
priate design patterns [GOF94| into the models. Transformations are described with
transformation patterns, each of which specifies the created and deleted model ele-
ments by the transformation, and the preserved relationships between the target and
source model elements. Garg et al. [GCC+03] present the Ménage graphical environ-
ment to manage the evolution of software product line architectures. Ménage uses
a XML-based Architecture Description Language (xADL2.0) [WHO02] to describe the
architectures in terms of components, connectors, and their interfaces with schemas.
Optional and variation points are expressed with Boolean expressions. Critchlow et
al. [CDCHO03| enhance the Ménage environment to automate a set of predefined ar-
chitecture refactorings with two metrics tools. Their work emphasizes configuration
management and automation support of the evolution of product line architectures.
However, they neither specify the invariant of the architecture refactorings, nor the
justification of behaviour-preservation. Back [BACKO02] introduces an incremental

refinement approach to evolve software architecture, which is viewed as a hierarchy

219



of layers. Behaviour preservation is justified with correctness conditions in the re-
finement calculus. However, the restructuring still focuses on the class level with the
invariants of the attributes and methods of classes. Russo et al. [RB98| recommend to
restructure natural language requirement specifications by decomposing them into a
structure of viewpoints, each of which represents partial requirements of system com-
ponents. They claim that refactorings increase the comprehension of requirements
and detect inconsistencies.

Little work has been done on the evolution techniques of software artefacts other
than source code [MENS05], and the traceability management between different arte-
facts during refactoring [MDO03]. The cascaded refactoring methodology addresses the

two issues with the extended refactoring concept and trace maps.

5.5 Validation Issue

The first part describes the validation of three seminal work on program refactoring in
academic settings. The second part discusses how to validate the cascaded refactoring

methodology in an ideal industry environment.

5.5.1 Validation in Academic Refactoring Community

Opdyke [OPDY92] identifies a set of C++ program restructurings from the survey of
related work in his Ph.D. thesis. He introduces the term "refactoring” and suggests us-
ing pre-conditions to preserve the program behaviour during refactorings. He defines
23 low-level primitive refactorings and 3 composite refactorings which are composed
by the primitive refactorings. For each of the low-level refactorings, Opdyke elabo-
rates its preconditions and explains why it is behaviour preserving. He defines seven
program properties as the invariants that the refactorings must hold. He also proposes
three high-level complex refactorings and discusses their behaviour-preservation. He
uses two simple C++ program segments to demonstrate how the refactorings work,
and how those refactorings improve the quality of design and code. Opdyke also
discusses the tool support for refactoring and mentions his research prototype that
translates C+- source programs to Lisp forms for refactoring. However, he does not
give any detail of the prototype nor explain how to use the prototype to validate his

refactorings. He also admits that the practical utility of his work is not known for

220



the refactorings have not been validated in large program settings.

Roberts [ROBE99] takes the same view with Opdyke in that a high-level refac-
toring will be correct if the low-level refactorings which compose of the high-level
refactoring are implemented correctly. However, he argues that it is often not prac-
tical to prove the exact “behaviour-preservation” due to the fact that many quality
attributes can be interpreted as the “behaviour”. He defines several common refac-
torings by adding post-conditions into the refactoring definition, which is specified in
the first order predicate logic. He claims that the definition of post-conditions allows
the elimination of program analysis that is required within a chain of refactorings. He
also proposes the dependency concept between refactorings based on commutativity
and an approach to calculate the conditions under which any two refactorings may
commute. He defines a method of calculating the preconditions for composite refac-
torings. Roberts [RBJ97] and his colleague have developed a Smalitalk refactoring
tool, called the Refactoring Browser, to validate the refactoring ideas he proposed.
He argues that the tool implements a subset of Opdyke’s primitive refactorings with
run-time analysis and has been used by a number of software developers for refac-
toring work. He uses a simple refactoring to illustrate the design and usage of the
tool.

Tokuda [TOKU99] views a refactoring as a parameterized behaviour-preserving
program transformation. He implements Opdyke’s refactorings in C++, and con-
tributes more refactorings which are defined by himself. He does not use post-
conditions, and names ”pre-condition” as "enabling condition” in refactoring defini-
tions. The behaviour-preservation of each of the refactorings is discussed informally.
He identifies three complex refactorings for object oriented design evolution. Tokuda
uses a small C++ program as the example to illustrate how to evolve design with
refactorings. He also presents experiment results of using refactorings to replicate the
design evolution of two non-trivial C++ applications, by incorporating the Saga++
toolkit [BODI94]. The toolkit provides a semantic analyzer and an object-oriented
programmer’s interface for modifying programs. Tokuda demonstrates the evolution
of the applications with two refactoring examples. He proposes additional program
invariants because his experiments and analysis show that the invariants proposed by

Opdyke are not sufficient to preserve behaviour.

221



5.5.2 Ideal Industry Validation

The ideal industrial evaluation would occur in a software organisation that already
had several frameworks in existence. These were being actively applied to produce
applications and undergoing evolution as a consequence. [t would be even better if
the frameworks were at different levels of maturity.

It is essential that the software organisation have a system for measurement in
place that was actively used. The basic tracking of test results, bug reports (i.e. defect
tracking) could provide quantitative information about the quality of the framework.
Measurement of the effort required for developing an application is necessary to evalu-
ate productivity and productivity changes. These measurements must be normalized
somehow by reliable estimates of application size.

The system for measurement must have been in place for several years so that a
reliable benchmark (norm) has been established for the existing practices of appli-
cation development and framework evolution. The effect of the cascaded refactoring
methodology on improvements in productivity or framework quality could be evalu-
ated against this norm.

To ouf best knowledge, there is no consensus on an effective and accurate metric
system for framework measurements [FSJ99] [BOSC02]. Alshayeb and Li [ALO3]
have conducted an empirical study and claimed that the existing object oriented
metrics are considerably ineffective in the framework context due to the long cycled
framework evolution process as the nature of the development. Bosch [BOSC9§]
argues that it is extremely difficult to estimate the development cost of application
frameworks because of the abstract structure, high-level variability, and continuous
iterative process in framework development. He also observes the fact that estimation
techniques typically do not consider variability in general. Boehm et al. [BBMY04]
propose a software product line life cycle economics model, the Constructive Product
Line Investment Model (COPLIMO) that focuses on the implementation level in terms
of line of code, which does not fit well in our context. Zubrow and Chastek [ZCO03]
define a small set of measures to estimate the development of software product lines.
We would suggest three metrics from their set since the set are recommended by the

Software Engineering Institute (SEI) Software Product Line Initiative [CNOO].

222



1. Total framework development cost: It is composed of the cost of initial frame-
work development, and the cost of evolution and maintenance. The measure-

ment unit is man-hour.

2. Customer satisfaction: The data is collected by doing survey with the customers
about framework quality, including the realization of required variability, flexi-

bility, and the productivity of building applications from the framework.

3. Market feature coverage: The metric captures the extent to which the features
are available in the framework cover those related to the target market in terms

of percentage.

A pilot study of the cascaded refactoring methodology would involve at least
one framework over the course of 3 to 5 iterations of applications development and
the associated evolution of the framework. The measurement system would track
productivity and framework quality. Each iteration would take about 6 weeks.

Before the pilot study could commence, there would need to be tool support for
the cascaded refactoring methodology. Three kinds of tools are desirable: model-
ing tools, which are capable of creating and editing the models in the methodology;
mapping tools, which facilitate the definition of the alignment maps and their use in
the tracing dependencies both horizontally and vertically through the models; and
refactoring tools, such as plug-ins for the Eclipse Integrated Development Environ-
ment (IDE) [DFKO04] which allow the refactorings of each of the models and have a
catalogue of refactorings implemented already.

An initial period of maybe 10 to 20 weeks would be required for the development
team to construct the set of aligned models for the framework that the cascaded refac-
toring methodology requires. The development team would already be familiar with
the framework and its domain. Hence, the overall time for an industrial trial would
be approximately one year and involve a small number of experienced developers.

This would be a minimal industrial pilot study. It would be preferable to perform
the trial with several frameworks at differing stages of maturity, and also to carry out
more than the minimal number of iterations of application development and evolution

per framework. Economic factors would probably rule this out in an industrial setting.

223



5.6 Future work

The methodology is still in its infancy stage. We want to have a set of solid metamodel
for each model used in the methodology. The semantics of the metamodels should be
verified with formal reasoning processes. A specific refactoring rule for each concept
in every metamodel has to be defined. More refactorings should be defined for the
feature model, the use case model, and the architectural model. The trace maps
should cover the full set of the models. We still desire a consistent, coherent, aligned
set of models and maps.

We need a better architectural modeling technique. Other views should be in-
cluded in the architecture. We may be able to incorporate the whole Siemens ap-
proach into the architectural model.

A subproject to develop modeling and refactoring tools for the use case models is
underway, and we hope to initiate a similar subproject for the architectural models
soon. These should shed much light on the gaps in the methodology.

The Know-It-All framework case study has completed a partial domain analysis and
prototyped its architectural design in C++ for the relational database management
systems. The query optimization subframework has been completed, resulting in an
implementation, models, and documentation on its use. The Gist framework for index
techniques is going to be completed soon. Potential future work on Know-It-All also
includes a subframework for physical storage, a subframework for hash indexes, and
a subframework for inverted file indexes. The range of data models included in the
framework will also be extended.

We expect more applications populated with the customization of Know-It-All.
This will not only validate the framework itself, but also can testify the complete-
ness and correctness of the cascaded refactoring approach. GraphLog [CEH+94] is a
graph query language extending Datalog and negation. The language has recursion,
usually as transitive closure, and has path expressions, which are similar to regular
expressions. The GraphLog interface, as a standalone system exists [BWWZ05], and
over the longer term both Coral [RSSS94] and GraphLog will be incorporated as data

models in the Know-It-All framework.

224



Bibliography

[AB97] M. Andersson and J. Bergstrand. Formalizing Use Cases with Mes-
sage Sequence Charts. Master thesis, Department of Communica-
tion Systems at Lund Institute of Technology, 1997. Available at:
http://www.efd.lth.se/~d87man/EXJOBB/PS/ExBook.ps.Z.uu

[ACKE96] P. Ackermann. Developing Object-Oriented Multimedia Software - Based
on the MET Application Framework. dpunkt Verlag, Heidelberg, Germany,
1996.

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Language. Oxford Uni-
versity Press, New York, 1977. ISBN: 0195019199

[ALO3] M. Alshayeb, W. Li. An empirical validation of object-oriented metrics in two
different iterative software processes. IEEE Transactions on Software Engineer-

ing, 29, 11, 1043 - 1049, November 2003.

[ARANO94] G. Arango. Domain Analysis Methods. In Masao Matsumoto, Ruben
Prieto-Diaz, Wilhelm Schafer. Software Reusability. Prentice Hall, UK, 1994.
ISBN: 0130639184

[ASTE02] D. Astels. Refactoring with UML. In Proceedings of 3" Internaltional Con-
ference on eXtreme Programming and Flexible Processes in Software Engineer-

ing, 67-70, Alghero, Sardinia, Italy, 2002.

[BACKO02] R. J. Back. Software construction by stepwise feature introduction. In Pro-
ceedings of 2™¢ International Conference of B and Z Users on Formal Specifica-

tion and Development in Z and B, 162-183, Grenoble, France, January 2002.

[BANSQ0] J. Bansiya. Fvaluating framework architecture structural stability. ACM
Computing Surveys, 32, 1, No. 18, March 2000.

225



[BAXT92] I. Baxter. Design Maintenance Systems. Communications of the ACM,
35,4, 73-89,1992.

[BBG+89] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C.
Twichell, and T. E. Wise. Genesis: an extensible database management system.
IEEE Transactions on Software Engineering 14, 11, 500-518, 1989.

[BBG+00] G. Butler, E. Bornberg-Bauer, G. Grahne, F. Kurfess, C. Lam, J. Pa-
quet, I. Rojas, R. Shinghal, L. Tao, A. Tsang. The BiolT projects: In-
ternet, database and software technology applied to bioinformatics. In SS-
GRR’2000, Suola Superiore, G. Reiss Romoli SpA, Coppoto, Italy, July 2000.
At: http://www.ssgrr.it/en/ssgrr2000/proceedings.htm

[BBMY04] B.Boehm, A. Brown, R. Madachy, Y. Yang. A software product line life
cycle cost estimation model. In Proceedings of 2004 International Symposium on
Empirical Software Engineering (ISESE’04), 156-164, Los Angeles, USA, Aug.
2004.

[BC87] K. Beck, W. Cunningham. Using pattern langugages for object-oriented pro-
grams Position Paper for the Specification and Design for Object-Oriented Pro-
gramming Workshop, 3™ Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA’87), Orlando, Florida, USA, Oc-
tober 1987.

[BC89] K. Beck, W. Cunningham.A laboratory for teaching object oriented think-
ing. In Proceedings of Conference on Object Oriented Programming Systems
Languages and Applications(OOPSLA’89), 1-6, New Orleans, Louisiana, USA,
October 1989.

[BCC+02] G. Butler, L. Chen, X. Chen, A. Gaffar, J. Li, L. Xu. The Know-It-All
Project: A Case Study in Framework Development and Evolution, Domain Ori-
ented Systems Development: Perspectives and Practices. K. Ttoh, S. Kumagai,
T. Hirota (eds), 101-118, Taylor&Francis, UK, 2002. ISBN: 0415304504

[BCK97] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 1997. ISBN: 0201199300

226



[BCKR97] G. Butler, A. Cretu, F. Khendek. Reconciling Use Cases and Operational
Profiles. 1997. At: http://citeseer.ist.psu.edu/148512.html

[BD99] G. Butler and P. Dénommée. Documenting frameworks, Building Application
Frameworks: Object-Oriented Foundations of Framework Design. M. E. Fayad,
D. C. Schmidt, R. E. Johnson (eds), 495-504, John Wiley & Sons, NY, 1999.
ISBN: 0471248754

[BECK99] K. Beck. Extreme Programming FEzplained: Embrace Change. Addison-
Wesley, Reading, MA, 1999. ISBN: 0201616416

[BERA93] E. Berard. Essays on Object-Oriented Software Engineering. Prentice Hall,
UK, 1993. ISBN: 0132888955

[BGK98] G. Butler, P. Grogono and F. Khendek, A reuse case perspective on docu-
menting frameworks. In Proceedings of the 5t Asia-Pacific Software Engineering

Conference, 94-101, Taiwan, December 1998.

[BJ94] K. Beck, and R. Johnson. Patterns generate architectures. In Proceedings of
ECOOP’94, 139-149, Springer-Verlag, Berlin, German, 1994.

[BK96] D. Binkley and K. Gallagher. Program slicing. Advances of Computing, 43,
1-50, 1996.

[BKKKS87] J. Banerjee, W. Kim, H. Kim, H.F. Korth. Semantics and implementation
of schema evolution in object-oriented databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 311-322, 1987.

[BL76] R. A. Belady and M. M. Lehman. A model of large program development.
IBM Systems Journal 15,1, 225-252, 1976.

[BMMBO00] J. Bosch, P. Molin, M. Mattsson, P. Bengtsson. Object-oriented
framework-based software development: problems and ezperiences. ACM Com-

puting Surveys, 32, 1, No.3, March 2000.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture: A System of Patterns. John Wiley &
Sons, NY, 1996. ISBN: 0471958697

227



[BODI94| F. Bodin. Sage++: an object-oriented toolkit and class library for building
fortran and C++ restructuring tools. In Proceedings of the 2"¢ Object-Oriented

Numerics Conference, Sunriver, Oregon, April 1994.

[BOEHS88] B.W. Boehm. A spiral model of software development and enhancement.
IEEE Computer, 21,5, 61-72, May 1988.

[BOOCY94] G. Booch. Designing an application framework. Dr. Dobb’s Journal 19, 2,
24-32, February 1994.

[BOSC98] J. Bosch. Product-line architectures in industry: a case study. In Proceed-
ings of the 21 International Conference on Software Engineering, Los Angeles,

California, USA, 544-554, November 1998.

[BOSCO00] J. Bosch. Design and Use of Software Architectures - Adopting and Evolv-
ing a Product Line Approach. Addison-Wesley, Reading, MA, 2000. ISBN:
0201674947

[BOSCO02] J. Bosch. Maturity and evolution in software product lines: approaches,
artefacts and organization. In Proceedings of the 27¢ International Conference
on Software Product Line (SPL02), 257-271, San Diego, CA, August 2002.

[BP98] M. Blaha, W. Premerlani. Object-Oriented Modeling and Design for Database
Applications. Prentice-Hall, NJ, 1998. ISBN: 0131238299

[BRJ99] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, MA, 1999. ISBN: (0201571684

[BRYA94] A. D. Bryant. Creating Successful Bulletin Board Systems. Addison-
Wesley, Reading, MA, 1994. ISBN: 0201626683

[BSF02] P. Boger, T. Sturm, P. Fragemann. Refactoring browser for UML. In Pro-
ceedings of 3" International Conference on eXtreme Programming and Flexible
Processes in Software Engineering (XP2002), 77-81, Sardinia, Italy, May 2002.

[BSX03] G. Butler, X. Shen, L. Xu. Issues in architectural modeling and evolution
in the Know-It-All case study. In Proceedings of 10* IEEE Symposium and
Workshops on Engineering of Computer-Based Systems (ECBS’03), 321-330,
Huntsville, AL, USA, April 2003.

228



[BUHR98] R. Buhr. Use case maps as architectural entities for complex systems.
IEEE Transactions on Software Engineering 24, 12, 1131-1155,1998.

[BUTB99| G. Butler. Database technology for pathways. In Workshop on Computa-
tion of Biochemical Pathways and Genetic Networks, E. Bornberg-Bauer, A.
deBeuckelaer, U. Kummer, U. Rost (eds), 89-95, Logos Verlag, Berlin, 1999.
ISBN: 3897220938

[BUTLY99] G. Butler. Developing frameworks by aligning requirements, design, and
code. In Proceedings of 9%* Workshop on Software Reuse (WISR-9), Austin,

Texas, January 1999.

[BUTL02] G. Butler. Architectural refactoring in framework evolution: A case study,
Generative Programming and Component Engineering, LNCS 2487, 128-139,
ACM Press, 2002.

[BWWZ05] G. Butler, G. Wang, Y. Wang, L. Zou. A graph database with visual
queries for genomics. In Proceedings of 3™ Asia-Pacific Bioinformatics Confer-

ence(APBC’05), 31-40, Singapore, January 2005.

[BX01] G. Butler and L. Xu. Cascaded refactoring for framework evolution. ACM
SIGSOFT Software Engineering Notes, Proceedings of 2001 Symposium on
Software Reusability 26,3, 51-57. 2001.

[CDCHO03] M. Critchlow, K. Dodd, J. Chou, A. V. Hoek. Refactoring prod-
uct line architectures. In Proceedings of 1% International Workshop
on Refactoring: Achievements, Challenges, Effects (REFACE(03). Victo-
ria, BC, Canada, November 2003. At: http://www.ics.uci.edu/simandre/
research/papers/REFACE2003.pdf

[CE00] K. Czarnecki, U. W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison Wesley, Reading, MA, 2000. ISBN: 0201309777

[CEH+94] M.P. Consens, F.C. Eigler, M.Z. Hasan, A.O. Mendelzon, E.G. Noik, A.G.
Ryman, and D. Vista. Architecture and applications of the Hy+ visualization
system. IBM Systems Journal 33,3, 458-476,1994.

229



[CHOT99] S. Clarke, W. Harrison, H. Ossher, P. Tarr. Subject-oriented design: to-
wards improved alignment of requirements, design and code. In Proceedings of
Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), Denver, Colorado, U.S., November 1999.

[CHW98] J. Coplien, D. Hoffman, D.Weiss. Commonality and variability in software
engineering. IEEE Software, 15,6, 37-45, November 1998.

[CJHO00] S. Cook, H. Ji, R. Harrison. Software evolution and software evolvability.
Unpublished manuscript, University of Reading, UK, 2000.

[CNOO] P. Clements, L. Northrop. A framework for software product line practice.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh. The
Product Line Practice (PLP) Initiative. At: http://www.sei.cmu.edu/plp/2000.

[CNO2] P. Clements, L.Northrop. Software Product Lines : Practices and Patterns.
Addison-Wesley, Reading, MA, 2002. [SBN:0201703327

[COCKOI7] A. Cockburn. Structuring use cases with goals. Journal of Object-Oriented
Programming, ROAD, 10,5, 35-40 and 10,7,56-62,1997.

[CODDT0] E. F. Codd. A relational model of data for large shared data banks. Com-
munications of the ACM 13,6,377-387,June 1970.

[CONKS9] J. Conklin. Design rationale and maintainability. In Proceedings of 2274
Annual Hawaii International Conference on System Science, 2, 533539. Hawaii,

January 1989.

[CP95] S. Cotter and M. Potel. Inside Taligent Technology. Addison-Wesley, Reading,
MA, 1995. ISBN: 0201409704

[CHSV97] W. Codenie, K. Hondt, P. Steyaert, A. Vercammen. From custom appli-

cations to domain-specific frameworks. Communications of the ACM, 40, 10,

71-77, October 1997.

[DESA90] B.C. Desai. An Introduction to Database Systems. West Publishing Com-
pany, St. Paul, MN, 1990. ISBN:0314667717

230



[DEUTS9] L. P. Deutsch. Design reuse and frameworks in the Smalltalk-80 system.
Software Reusability, 2, Applications and Experience, 57-71, 1989.

[DFKO04] J. D’Anjou, S. Fairbrother, D. Kehn. The Java Developer’s Guide to Eclipse.
Addison-Wesley, Reading, MA, 2004. ISBN: 0321305027

[DKO+97] D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson. Applying software
product-line architecture. Computer 30,8, 49-55,August 1997.

[DRMG99] S. Demeyer, M. Rieger, T. D. Meijler and E. Gelsema. Class composi-
tion for specifying framework design. Theory and Practice of Object Systems
(TAPOS) 5,2,73-81,April 1999.

[DW98] D. F. D’Souza, A. C. Wills. Objects, Components, and Frameworks with
UML-The Catalysis Approach. Addison Wesley, Reading, MA, 1998. ISBN:
0201310120

[DW99] D. F. D’Souza, A. C. Wills. Composing modeling frameworks in Catalysis,
Building Application Frameworks: Object-Oriented Foundations of Framework
Design. M. E. Fayad, D. C. Schmidt, R. E. Johnson (eds), 441-460, John Wiley
& Sons, NY, 1999. ISBN: 0471248754

[EGYEO1] A. Egyed. A scenario-driven approach to traceability. In Proceedings of
23 International Conference on Software Engineering (ICSE01), 123-132,
Toronto, Canada, May 2001.

[FHGI98] D.G. Firesmith, B. Henderson-Sellers, I. Graham. OPEN Modeling Lan-
guage (OML)Reference Manual. Cambridge University Press, NY, 1998. ISBN:
0521648238

[FHLS97] G. Froehlich, H. J. Hoover, L. Liu and P. Sorenson. Hooking into object-
oriented application frameworks. In Proceedings of 19'* International Confer-

ence on Software Engineering, 491-501,1997.

[FHLS99] G. Froehlich, H. J. Hoover, L. Liu and P. Sorenson.Designing object-
oriented frameworks, Handbook of object technology. S. Zamir(ed), 25-1-25-22,
CRC Press LLC, FL, 1999. ISBN: 0849331358

231



[FINK91] A. C. Finkelstein. Tracing back from requirements. IEEE Colloquium on
Tools and Techniques for Maintaining Traceability During Design, 7/1 - 7/2,
London, 1991.

[FOWL99] M. Fowler. Refactoring: Improving the Design of Ezisting Code. Addison-
Wesley, Reading, MA, 1999. ISBN: 0201485672

[FREES3] P. Freeman, editors. Reusable software engineering: concepts and research
directions. In Proceedings of the I'TT Workshop on Reusability in Programming,
IEEE Computer Society Press, 129-137, September 1983.

[FSJ99] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, editors. Building Application
Frameworks: Object-Oriented Foundations of Framework Design. John Wiley
& Sons, NY, 1999. ISBN: 0471248754

[GARLOO] D. Garlan. Software architecture: a roadmap. In Proceedings of the Con-
ference on The Future of Software Engineering, ACM Press, 91-101, 2000.

[GBSO01] J. V. Gurp, J. Bosch, M. Svahnberg. On the notion of variability in software
product lines. In Proceedings of 158 Working IEEE Conference on the Software
Architecture, (WICSA), IEEE Computer Society, 2001.

[GCC+03] A. Garg, M. Critchlow, P. Chen, C. V. Westhuizen, A. V. Hoek. An
environment for managing evolving product line architectures. In Proceedings
of 19%" International Conference on Software Maintenance, (ICSM’03), 358-368,
Amsterdam, Netherlands. September 2003.

[GF94] O. C. Gotel and A. C. Finkelstein. An analysis of the requirements traceabil-
ity problem. In Proceedings of 1% International Conference on Requirements

Engineering, (ICRE’94), 94-101, Colorado Springs, Colorado, USA, 1994.

[GFA98] M. L. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling
with the RSEB. In Proceedings of 5" International Conference on Software
Reuse, 76-85, IEEE Computer Society, 1998.

[GHM98] J. Grundy, J. Hosking, W. B. Mugridge. Inconsistency management for
multiple- View software development environments. IEEE Transactions on Soft-

ware Engineering, 24, 11, 960-981, November 1998.

232



[GIBS97] J. P. Gibson. Feature requirements models: understanding interactions. In

Feature Interactions In Telecommunications IV, 46-60, IOS Press, June 1997.

[GJKT97] H. Gall, M. Jazayeri, R. R. Klosch, G. Trausmuth. Software evolution ob-
servations based on product release history. In Proceedings of 13" International
Conference on Software Maintenance (ICSM’97), 160-168, Bari, Italy, October
1997.

[GOF94] E. Gamma, R. Helm, R. Johnson, J.Vlissides. Design Patterns: Flements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1994. ISBN:
0201633612

[GRAE96] G. Graefe. Iterators, schedulers, and distributed-memory parallelism. Soft-
ware - Practice and Experience 26,4,427-452, 1996.

[GRIS91] W. G. Griswold. Program Restructuring as an Aid to Software Mainte-
nance. PhD thesis, University of Washington, 1991.

[HE90] B. Henderson-Sellers, J.M. Edwards. Object-oriented software system life cy-
cle. Communication of ACM 33,9, 142-159,1990.

[HECK95] R. Heckel. Algebraic Graph Transformations with Application Conditions.
Master thesis, TU Berlin, 1995.

[HF97] B. Henderson-Sellers, D. G. Firesmith. Choosing between UML and OPEN.
American Programmer 10,3,15-23, 1997.

[HFG97] B. Henderson-Sellers, D.G. Firesmith, I. Graham. OML metamodel: re-
lationships and state modeling. Journal of Object Oriented Programming
10,1,March/April, 1997.

[HIMO1] T. Hayase, N. Ikeda, K. Matsumoto. A three-view model for developing
object-oriented frameworks. In Proceedings of 39" International Conference
And Exhibition On Technology Of Object-oriented Languages And Systems,
108-119, Santa Barbara, California, July 2001.

233



[HKP97] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. Towards an
analysis of indexing schemes. In Proceedings of 16** ACM SIGACT-SIGMOD-
SIGART Symposiums on Principles of Database Systems, 249-256, Tucson, AZ,
May 1997.

[HNP95] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search trees
for database systems, In Proceedings of International Conference on Very Large
Data Bases, VLDB’1995, 562-573, Zurich, Switzerland, September 1995.

[HNS99] C. Hofmeister, R. Nord, D. Soni. Applied Software Architecture. Addison-
Wesley, Reading, MA, 1999. ISBN: 0201325713

[HP94] Heweltt Packard, Matra Marconi Space, CAP Gemini Innovation. Domain
Analysis Method. Deliverable D3.2B, PROTEUS ESPRIT project 6086, 1994.

[IEEE93] IEEE. Report on the IEEE STD 1219-1993-standard for software mainte-
nan. ACM SIGSOFT Software Engineering Notes, 18, 4, 94-95, 1993.

[JACOS87] 1. Jacobson. Object-oriented development in an industrial environment.
In Proceedings of Conference on Object Oriented Programming Systems Lan-
guages and Applications, (OOPSLA’87), 183191. Orlando, Florida, USA. Oc-
tober 1987.

[JB02] M. Jaring and J. Bosch. Representing variability in software product lines: a
case study. In Proceedings of SPLC 2002,15-36, San Diego, CA, USA, August
2002.

[JBR99] 1. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, Reading, MA, 1999. ISBN: 0201571692

[JCF03] S. R. Judson, D. L. Carver, R. France. A metamodeling approach
to model refactoring. At: http://www.cs.colostate.edu/~france/publications

/Judson_UML2003.pdf

[JCJO92] I. Jacobson, M. Christenson, P. Jonsson, G. Overgaard. Object-Oriented
Software Engineering: A Use-Case Driven Approach. Addison-Wesley, Reading,
MA, 1992. ISBN: 0201544350

234



[JEJ95] I. Jacobson, M. Ericsson, A. Jacobson. The Object Advantage: Business
Process Reengineering with Object Technology. Addison-Wesley, Reading, MA,
1995. ISBN: 0201422891

[JE88] R. E. Johnson and B. Foote. Designing reusable classes. Journal of Object-
Oriented Programming, 2, 1, 22-35, July 1988.

[JGJ97] 1. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. Addison-Wesley, Reading, MA, 1997.
ISBN: 0201924765

[JOHN92] R. E. Johnson. Documenting frameworks using patterns. In Proceedings of
Conference on Object Oriented Programming Systems Languages and Applica-
tions (OOPSLA’92), 63-76, Vancouver, Canada. October 1992.

[JOHN93] R. E. Johnson. How to design frameworks. Tutorial Notes, OOPSLA’93,
Washington, D.C. October 1993.

[JOHN97] R. E. Johnson. Frameworks = (components + patterns). Communications

of the ACM, 40, 10, 39-42, October 1997.

[JRI1] R. E. Johnson, V. F. Russo. Reusing Object-Oriented Design. Technical Report
UIUCDCS-R-91-1696, University of Illinois, 1991.

[KARL95] E. A. Karlsson. Software Reuse: A Holistic Approach. John Wiley & Sons,
NY, 1995. ISBN: 0471958190

[KCH+90] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA. 1990.

[KD98] N. Kabra, D. J. DeWitt. Efficient re-optimization of sub-optimal query ez-
ecution plans. In Proceedings of 1998 SIGMOD Conference, 106-117,Seattle,
Washington, USA, June 1998.

[KD99] N. Kabra and D. J. DeWitt. OPT++: an object-oriented implementation for
extensible database query optimization. The VLDB Journal 8,1,55-78, January

1999.

235



[KELL90] C. Kelley. Does it fit the bill?. International Journal of General Systems,
18, 6, 3234, 1990.

[KEAN97] L. Kean. Feature-Based design rationale capture method for requirements
tracing. Software Engineering Institute (SEI), Carnegie Mellon University. 1997.
At: http://www.sei.cmu.edu/str/descriptions/featbased body.html

[KKO03] P. Kroll, P. Kruchten. The Rational Unified Process Made Easy: A Prac-
titioner’s Guide to the RUP. Addison-Wesley, Reading, MA, 2003. ISBN:

0321166094

+ . U, Kang, 5. Kim, J. Lee, K. Kim, L. 1, an . Hduh. ca
KKL+98] K. C. K S. Kim, J. Lee, K. Kim, E. Shi d M. Huh. FORM
feature-oriented reuse method with domain-specific reference architectures. An-

nals of Software Engineering, 5, 143-168, 1998.

[KKLL99] K. C. Kang, S. Kim, J. Lee, K. Lee. Feature-oriented engineering of PBX
software for adaptability and reusability. Software- Practice and Experience

29,10,875-896, 1999.

[KLL+02) K.C. Kang, K. Lee, J. Lee, S. Kim. Feature oriented product line software
engineering: principles and guidelines, Domain Oriented Systems Development:
Perspectives and Practices. K. Itoh, S. Kumagai and T. Hirota (eds) 29-46,
Taylor&Francis, UK, 2002. ISBN: 0415304504

[KMH97] M. Kornacker, C. Mohan, and J. M. Hellerstein. Concurrency and recov-
ery in generalized search trees. In Proceedings of ACM-SIGMOD International
Conference on Management of Data, 62-72, Tucson, AZ, May 1997.

[KNET02] A. von Knethen. Change-oriented requirements traceability: support for
evolution of embedded systems. In Proceedings of 18" International Confer-

ence on Software Maintenance, (ICSM'02), 482-485, Montreal, Canada, October
2002.

[KR87] D. Kafura and G. R. Reddy. The use of software complexity metrics in soft-
ware maintenance. IEEE Transactions on Software Engineering, 13, 3, 335-343,
March 1987.

236



[KRASS88] G. E. Krasner and S. T. Pope.A cookbook for using the model-view con-
troller user interface paradigm in Smalltalk-80. Journal of Object-Oriented Pro-
gramming, 1,3,26-49, 1988.

[KRUCY95] P. Kruchten. The 4+1 view model of architecture. IEEE Software 12,6,42-
50, November 1995.

[KS96] C. D. Klingler and J. Solderitsch. DAGAR: A process for domain architecture
definition and asset implementation. In Proceedings of ACM Conference on
TRI-Ada’96: disciplined software development with Ada, 231-245, Philadelphia,
PA, December 1996.

[KS00] J. Kuusela, J. Savolainen. Requirements engineering for product families. In
Proceedings of 22" International Conference on Software Engineering, 61-69,

Limerick, Ireland, June 2000.

[KWONO03] J.H. Kwon. A Feature Model of The Oracle 9i Database Server. Master
thesis, Concordia University, 2003.

[LB85] M. M. Lehman, L. A. Belady. Program Ewvolution: Processes of Software
Change. Academic Press, London, 1985. 0124424406

[LEHM96] M. M. Lehman. Laws of software evolution revisited. In Proceedings of 5t
European Workshop on Software Process Technology, 108-124, October 1996.

[LH89] K. Lieberherr and I. Holland. Assuring good style for object-oriented programs.
IEEE Software, 6, 5, 38-48, September 1989.

[LHRS88] K. J. Lieberherr, I. Holland, A. J. Riel. Object-oriented programming: an
objective sense of style. SIGPLAN Notices, 11, 323-334, September 1988.

[L193] H. Li. Reuse-in-the-large: modeling, specification and management. Advances
in Software Reuse, 2" International Workshop on Software Reusability, 56-65,
Lucca, Italy, March 1993.

[LIM96] W.C. Lim. Reuse economics: a comparison of seventeen models and direc-
tions for future research. In Proceedings of 4" International Conference on

Software Reuse, 41-50, April 1996.

237



[LIND94] M. Lindvall. A Study of Traceability in Object-Oriented Systems Develop-
ment. PhD thesis, Linkdping University, 1994.

[LKCCO0] K. Lee, K. C. Kang, W. Chae, and B. W. Choi. Feature-based approach
to object-oriented engineering of applications for reuse. Software— Practice and
Experience 30, 9, 1025-1046, 2000.

[LLO1] T. C. Lethbridge and R. Laganiere. Object-Oriented Software Engineering,
Practical Software Development Using UML and Java. The McGraw-Hill Edu-
cation, UK, 2001. ISBN: 0072834951

[LN97] D. B. Lange, Y. Nakamura. Object-oriented program tracing and visualization.
Computer 30, 5, 63-70, May 1997.

[LRO8] M. M. Lehman and J. F. Ramil. Implications of laws of software evolution on
continuing successful use of COTS software. Department of Computing Tech-

nical Report 98/8, Imperial College, London, June 1998.

[LRO1] M. M. Lehman and J. F. Ramil. Fvolution in software and related areas. In
Proceedings of 4" International Workshop on Principles of Software Evolution,

1-16, Vienna, Austria, September 2001.

[LRO2] M. M. Lehman and J. F. Ramil. Software uncertainty. 1°* International Con-
ference on Computing in an Imperfect World, 8-10, Belfast, North Ireland, April
2002.

[LRO3] M. M. Lehman and J. F. Ramil.Software evolution: background, theory, prac-
tice. Information Processing Letters 88, 1-2, 33-44, October 2003.

[LS96] M. Lindvall and K. Sandahl. Practical implications of traceability. Software
Practice and Experience, 26, 10, 1161-1180. 1996.

[LS98] M. Lindvall and K. Sandahl. How well do experienced software developers
predict software change?. Journal of Systems and Software 43, 1, 19-27, 1998.

[MB96] K. U. Métzel, W.R. Bischofberger. The any framework: a pragmatic approach
to flexibility. In Proceedings of 274 USENIX Conference on Object-Oriented
Technologies and Systems,179-190, Toronto, Canada, June 1996.

238



[MB97] K. U. Maétzel, W.R. Bischofberger. Designing object systems for evolution.
Theory and Practice of Object Systems 3,4,265-283, 1997.

[MB99] M. Mattsson, J. Bosch.Observations on the evolution of an industrial OO
framework. In Proceedings of IEEE International Conference on Software Main-

tenance (ICSM’99), 139-145, August 1999.

[MBZRO03] T. Mens, J. Buckley, M. Zenger, A. Rashid. Towards a tazon-
omy of software evolution. In Proceedings of 2"¢ Workshop on Unan-
ticipated Software Evolution. Warsaw, Poland, April 2003. Available at:
http://www.cs.uni-bonn.de/~gk /use/2003 /Papers/18500066.pdf

[MCRLS89] P. Madany, R. Campbell, V. Russo, and D. Leyens. A class hierarchy for
building stream-oriented file systems. In Proceedings of ECOOP’89, 311-328,

Nottingham, UK, July 1989.

[MDO00] T. Mens, T. D’Hondt. Automating support for software evolution in UML.
Automated Software Engineering, 7, 1, 39-59, March 2000.

[MD03] T. Mens, A. V. Deursen. Refactoring: emerging trends and open problems.
In Proceedings of 1% International Workshop on Refactoring: Achievements,
Challenges, Effects (REFACEO03). Victoria, BC, Canada, November 2003. At:
http://homepages.cwi.nl/~arie/papers/refactoring/reface03.pdf

[MDJ02] T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserving

program transformations. Graph Transformations, volume 2505 of Lecture Notes

in Computer Science, 286-301, 2002.

[MEJDO4] T. Mens, N. V. Eetvelde, D. Janssens, S. Demeyer. For-
malising refactorings with graph transformations. Journal of Soft-
ware Maintenance and Evolution, (Submitted March 9, 2004). At:
http://www .fots.ua.ac.be/graphtransfo_refactoring /FI-refactoring.pdf

[MENSO01] T. Mens. A formal foundation for object-oriented software evolution.

In Proceedings of 17" International Conference on Software Maintenance

(ICSM’01), 549-552, Florence, Italy, November 2001.

239



[MENSO05] T. Mens. Challenges in software evolution. Position paper in the joint
ECRIM-ESF workshop ChaSE 2005, Berne, Switzerland, April, 2005.

[MMM99] G. Miller, J. McGregor, and M. Major. Capturing Framework Require-
ments, Building Application Frameworks: Object-Oriented Foundations of
Framework Design. M. E. Fayad, D. C. Schmidt, and R. E. Johnson (eds).
309-324, John Wiley & Sons, NY, 1999. ISBN: 0471248754

MMW98] L. M. Mackinnon, D.H. Marwick and M.H. Williams. A model for query
decomposition and answer construction in heterogeneous distributed database

systems. Journal of Intelligent Information Systems, 11, 69-87, 1998.

[MRB97] R. C. Martin, D. Riehle, and F. Buschmann. Pattern Languages of Program
Design 3. Addison-Wesley, Reading, MA, 1997. ISBN: 0201310112

[MTO00] N. Medvidovic, R.N. Taylor. A classification and comparison framework for

software architecture description languages. IEEE Transactions on Software En-

gineering, 26, 1, 70-93, 2000.

[MT04] T.Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30, 2, 126-139, 2004.

[NIEO3] B.NIE. A Tree Index Framework For Databases. Master thesis, Concordia
University, 2003.

[NR68] P. Naur, B. Randell. Software engineering: report on a conference spon-
sored by the NATO science committee. Garmisch, Germany, October 1968. At:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO /nato1968.PDF

[0G02] T. Olsson and J. Grundy. Supporting traceability and inconsistency manage-
ment between software artifacts. In Proceedings of 6* TASTED International
Conference on Software Engineering and Applications. Cambridge, MA, USA,
November 2002.

[OMGO1] Object Management Group (OMG). Unified Modeling Language Specifica-
tion, v1.4, 2001. At: http://www.omg.org

[OMGO03] Object Management Group (OMG). Unified Modeling Language Specifica-
tion, v1.5, 2003. At: http://www.omg.org

240



[0J93] W. Opdyke and R. E. Johnson. Creating abstract superclasses by refactoring.
In Proceedings of the 1993 ACM Conference on Computer Science(CSC’93),
66-73, Indianapolis, Indiana, USA, February 1993.

[OPDY92] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois, 1992.

[PARN94] D. L. Parnas.Software aging. In Proceedings of 16" international confer-
ence on Software engineering (ICSE’94), 279-287, Sorento, [taly, May 1994.

[PB90] S. L. Pfleeger and S. A. Bohner. A framework for software maintenance met-
rics. In Proceedings of IEEE Conference on Software Maintenance, (CSM90),
320-327, 1990.

[PERR94] D. E. Perry. Dimensions of software evolution. In Proceedings of the In-
ternational Conference on Software Maintenance (ICSM’94), 296-303, Victoria,
BC, Canada, September 1994.

[PERR98] D.E. Perry. Generic descriptions for product line architectures. In Pro-
ceedings of 2™ International ESPRIT ARES Workshop on Development and
Evolution of Software Architectures for Product Families, 51-56, Las Palmas de

Gran Canaria, Spain, February 1998.

[PG94] W. Pree, E. Gamma. Design Patterns for Object-Oriented Software Develop-
ment. Addison-Wesley, Reading, MA, 1994. ISBN: 0201422948

[PIPKO02] J. U. Pipka. Refactoring in a “Test First”-World. In Pro-
ceedings of 3"¢ International Conference on eXtreme Programming
and Flexible Processes in Software Engineering (XP2002), Sardinia,
Italy, May 2002. At: http://www.agilealliance.org/articles/articles
/JensUwePipka—RefactoringinaTestFirst World.pdf

[POSTO1] PostgreSQL Global Development Group. PostgreSQL 7.2 Manuals. 2001.
Available at: http://www.postgresql.org/docs/manuals/

[PR97] J. Philipps, B. Rumpe. Refinement of information flow architectures. In Pro-
ceedings of 1% IEEE International Conference on Formal Engineering Meth-

ods(ICFEM), 203-212, Hiroshima, Japan, November 1997.

241



[PRO1] 1. Philippow, M. Riebisch. Systematic definition of reusable architectures. In
Proceedings of 8" IEEE International Conference and Workshop on the En-
gineering of Computer Based Systems (ECBS’01), 128-135, Washington, DC,
USA, April 2001.

[PRO4] 1. Pashov, M. Riebisch. Using feature modeling for program comprehension
and software architecture recovery. In Proceedings of 11** IEEE Symposium
and Workshops on Engineering of Computer-Based Systems (ECBS’04), 406-
418, Brno, Czech Republic, May 2004.

[PREE92] R. Pressman. Software Engineering A Practitioners Approach. McGraw
Hill. New York. 1992. ISBN:0070508143

[PREEY4] W. Pree. Meta patterns — a means for capturing the essential of reusable
object-oriented design. In Proceedings of 8" European Conference on Object-
Oriented Programming (ECOOP’94), 150-162, Bologna, Italy, July 1994.

[PREE99] W. Pree. Hot-Spot-Driven Development, Building Application Frame-
works: Object-Oriented Foundations of Framework Design. M. E Fayad, D. C.
Schmidt, R. E. Johnson (eds), 379-393, John Wiley & Sons, NY, 1999. ISBN:
0471248754

[PRIE89] R. Prieto-Diaz. Classification of reusable modules. In Software Reusability:
Concepts and Models, J. B. Ted and J. P. Alan,(eds), 99-123, Addison-Wesley,
Reading, MA, 1989. ISBN: 0201080176

[PROS99] J. Prosise. Programming Windows with MFC. 2" Edition. Microsoft Press,
1999. ISBN: 1572316950

[PTA94] C. Potts, K. Takahashi, and A. Anton. Inquiry-based requirements analysis.
IEEE Software 11,2, 21-32, 1994.

[PW92] D. E. Perry, A. L. Wolf. Foundations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes 17,4,40-52, 1992.

[PYK+97] J.M. Patel, J. Yu, N. Kabra, et al. Building a scalable Geo-Spatial data-
base system: technology, implementation and evaluation. In Proceedings of 1997
SIGMOD Conference, 336-347, Tucson, Arizona, AZ, May 1997.

242



[(RAB96] B. Regnell, M. Andersson, and J. Bergstrand. A hierarchical use case model
with graphical representation. In Proceedings of 2" International Symposium
on Engineering of Computer-Based Systems, 270-277, IEEE Computer Society
Press, 1996.

[RAMA96] R. Ramakrishnan. The Minibase Home Page. 1996. At:

http://www.cs.wisc.edu/coral/minibase/minibase.html

[RATOO03] Rational Software Corporation. The Object Constraint Language (OCL).
2003. At: http://www.rational.com/uml/documentation.html

[RATUO03] Rational Software Corporation. Unified Modeling Language (UML), v1.5,
2003. At: http://www.rational.com/uml/documentation.html

[RB98] A. Russo, B. Nuseibeh, J. Kramer. Restructuring requirements specifications
for managing inconsistency and change: A case study. In Proceedings of 3"
International Conference on Requirements Engineering (ICRE’98), 51-61, Col-
orado Springs, CO, USA, April 1998.

[RB00] V.T. Rajlich, K.H. Bennett. A staged model for the software life cycle. IEEE
Computer, 33, 7, 66-71, July 2000.

[RB03] K. Rui and G. Butler. Refactoring use case models: the metamodel. In Pro-
ceedings of 25" Australasian Computer Science Conference (ACSC2003), 301-
308, Adelaide, Australia, February 2003.

[RBCM91] D. J. Robson, K. H. Bennett, B. J. Cornelius, and M. Munro. Approaches
to program comprehension. The Journal of Systems and Software 14,2,79-84,
February 1991.

[RBGMO00] D. Riehle, R. Brudermann, T. Gross, K. Métzel. Pattern density and role
modeling of an object transport servicee ACM Computing Surveys, 32, 1, No.
10, March 2000.

[RBJ97] D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool for smalltalk.
Theory and Practice of Object Systems 3,4,253-263, 1997.

[RBSF00] M. Riebisch, K. Bollert, D. Streitferdt, B. Franczyk. Eztending the

UML to Model System Families. 5 International Conference on Integrated

243



Design and Process Technology (IDPT), Dallas, Texas, USA, June 2000. At:
http://www.theoinf.tu-ilmenau.de/~streitdf/TheHome/own /data/idpt2000-

paper.pdf

[RBSP02] M. Riebisch, K. Bollert, D. Streitferdt, I. Philippow. Eztending feature
diagrams with UML multiplicities. 6t* International Conference on Integrated
Design and Process Technology (IDPT), Pasadena, California, USA. June 2002.
At: http://www.theoinf.tu-ilmenau.de/ riebisch/publ/IDPT2002-paper.pdf

[RE93] B. Ramesh and M. Edwards. Issues in the development of a requirements
traceability model. Proceedings of IEEE International Symposium on Require-
ments Engineering, (RE’93), 256-259. San Diego, CA, USA, Janurary 1993.

[REGN99] B. Regnell. Requirements Engineering with Use Cases: a Basis for Soft-
ware Development. PhD thesis, Lund University, 1999.

[RG93] K. S. Rubin and A. Goldberg. Getting to why. Journal of Object-Oriented
Programming 6, 4, 513, 1993.

[RG98] D. Riehle and T. Gross. Role model based framework design and integration.
In Proceedings of the Conference on Object-Oriented Programming Systems,

Languages, and Applications, 117-133. Vancouver, Canada, October 1998.

[RG0O0] R. Ramakrishnan, J. Gehrke. Database Management Systems 2 edition.
McGraw Hill, UK, 2000. ISBN: 0072465352

[RJ97] D. Roberts and R. Johnson. Patterns for Evolving Frameworks, Pattern Lan-
guages of Program Design 3, R. C. Martin, D. Riehle, and F. Buschmann (eds),
471-486. Addison-Wesley, Reading, MA, 1997. ISBN: 0201310112

[RJO1] B. Ramesh, M. Jarke. Toward reference models for requirements traceability.

IEEE Transactions on Software Engineering, 27, 1, 58-93, January 2001.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, Reading, MA, 1999. ISBN: 020130998X

[ROBE99] D. B. Roberts. Practical Analysis for Refactoring. PhD thesis, University
of Mlinois, 1999.

244



[ROYC70] W. W. Royce. Managing the development of large software systems: con-
cepts and techniques. In Proceedings of IEEE Western Electronic Show and
Convention (WESCON’70), 1-9, Los Angeles, CA, USA, August 1970.

[RRB03] K. Rui, S. Ren, G. Butler. Refactoring use case models: a case study. In
Proceedings of 5 International Conference on Enterprise Information Systems

(ICEIS 2003), 239-244, Angers, France, April 2003.

[RSSS94] R. Ramakrishnan, D. Srivastava, S. Sudarshan, P. Seshadri. The CORAL
deductive system. The VLDB Journal 3,2,161-210, 1994.

[RUSS91] V. F. Russo. An Object-Oriented Operating System. PhD thesis, University
of Illinois at Urbana-Champaign, 1990.

[SAF03] S. A. Sherba, K. M. Anderson, M. Faisal. A framework for mapping traceabil-
ity relationships. In Proceedings of 3™ International Workshop on Traceability
in Emerging Forms ofSoftware Engineering (TEFSE’03), 32-39, Montreal, Que-
bec, Canada, October 2003.

[SB99] M. Svahnberg, J. Bosch. Evolution in software product lines: two cases. Jour-

nal of Software Maintenance, 11, 6, 391-422, 1999.

[SB00] M. Svahnberg and J. Bosch. Issues concerning variability in software product
lines. In Proceedings of 3™ International Workshop on Software Architectures
for Product Families, (IW-SAPF-3), 146-157, Berlin, German, March 2000.

[SCHM97] H. A. Schmid. Systematic framework design by generalization. Communi-
cations of the ACM, 40, 10, 48-51, 1997.

[SCHE98] A. W. Scheer. Business Process Engineering: Reference Models for Indus-
trial Enterprises. Study Edition, Springer-Verlag, NY, 1998. ISBN: 3540638679

[SCHMO0] K. Schmid. Scoping software product lines, Software Product Lines, Ex-
perience and Research Directions. P. Donohoe (ed), 513532, Kluwer Academic
Publisher, AH, Netherlands, 2000. ISBN: 0792379403

[SDKDO03] M. J. Smith, R. G. Dewar, K. Kowalczykiewicz, D. Weiss. To-

wards automated change propagation: the wvalue of traceability. Technical

245



Report HW-MACS-TR-0002, Heriot-Watt University, 2003. Available at:
http://www.macs.hw.ac.uk:8080/techreps/docs/files/ HW-MACS-TR-0002.pdf

[SEI94] Software Engineering Institute. Software Process Maturity Questionnaire,

Capability Maturity Model, v1.1.0. Pittsburgh. 1994.

[SEI02] Software Engineering Institute. Capability Maturity Model Integration
(CMMI), V1.1. Pittsburgh. 2002.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on An Emerging
Discipline. Prentice Hall, NJ, 1996. ISBN: 0131829572

[SIMO97] M. Simos. Organization domain modeling and OO analysis and design:
distinctions, integration, new directions. In Proceedings of 3¢ Conference on
SmallTalk and Java in Industry and Education (STJA’97), 126132, Erfurt, Ger-
many, September 1997.

[SLMDY6] P. Steyaert, C. Lucas, K. Mens, T. D’Hondt. Reuse contracts: managing
the evolution of reusable assets. In Proceedings of the ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages & Applications

(OOPSLA96), 268-285, San Jose, California, USA, October 1996.

[STAR96] STARS. Organization Domain Modeling (ODM) Guidebook, v2.0. Techni-
cal report, Lockheed Martin Tactical Defense Systems, 1996.

[STOR02] S.  Storkel. An  idntroduction to the Eclipse IDE.  At:
http://www.onjava.com/pub/a/onjava,/2002/12/11/eclipse.html

[STRO97] B. Stroustrup. The C++ Programming Language. 3 Edition. Addison-
Wesley, Reading, MA, 1997. ISBN: 201889544

[SUMMO0] I. Summervile. Software Engineering. 6" Edition, Addison-Wesley, Read-
ing, MA, 2000. ISBN: 020139815X

[SWANT6] E. B. Swanson. The dimensions of software maintenance. In Proceedings
of 2" IEEE International Conference on Software Engineering, 492-497, San

Francisco, California, USA, October 1976.

246



[TALI95] The Taligent Reference Library. The Power of Frameworks: For Windows
and OS/2 Developers. Addison-Wesley, Reading, MA, 1995. ISBN: 0201483483

[TB95] L. Tokuda and D. Batory. Automating software evolution via design pattern
transformations. In Proceedings of 3™ International Symposium on Applied

Corporate Computing, Monterrey, Mexico, October 1995.

[TB99] L. Tokuda and D. Batory. Automating three modes of evolution for object-
oriented software architectures. In Proceedings of 5** USENIX Conference on
Object-Oriented Technologies (COOTS’99), 189-202, San Diego, California,
USA, May 1999.

[TBO1] L. Tokuda, D. Batory. Ewolving object-oriented designs with refactorings.
Journal of Automated Software Engineering, 8,89-120, 2001.

[TILB89] A. J. Tilbury. Enabling software traceability. IEEE Colloquium on the Ap-
plication of Computer Aided Software Engineering Tools, 7/17/4, London, UK,
1989.

[THOMO4] D. Thomas. MDA: Revenge of the Modelers or UML Utopia? IEEE Soft-
ware 21,3,15-17, 2004.

[TM87] W. M. Turski, T. S. E. Maibaum. The Specification of Computer Programs.
Addison-Wesley. Reading, MA, 1987. ISBN: 0201142260

[TMO3] T. Tourwé and T. Mens. Identifying refactoring opportunities using logic
meta programming. In Proceedings of 7t* European Conference on Software

Maintenance and Reengineering, 91-100, Benevento, Italy, May 2003.

[TOK99] L. Tokuda. Evolving object-oriented architectures with refactorings. In Pro-
ceedings of ASE-99, The 14" Conference on Automated Software Engineering.
174-182, Cocoa Beach, Florida, USA, October 1999.

[TOKU99] L. Tokuda. Design Evolution with Refactorings. PhD thesis, University of
Texas at Austin, 1999.

[TRACS88] W, Tracz. Software Reuse: Emerging Technology. IEEE Computer Society
Press, CA, USA, 1988. ISBN:0818608463

247



[TRAC94] W. Tracz. Domain-specific software architecture (DSSA) frequently asked
questions (FAQ). SIGSOFT Software Engineering Notes 19,2,5256, April 1994.

[TRAC95] W. Tracz. DSSA (domain-specific software architecture): pedagogical ex-
ample. SIGSOFT Software Engineering Notes 20,3,49-62, July 1995.

[TRUS99] L. Trussell. Essential software development methodology. IEEE Winter
Meeting, January 1999.

[TURS00] W. M. Turski. Fssay on software engineering at the turn of century. Fun-
damental Approaches to Software Engineering, 3"¢ International Conference, T.

S. E. Maibaum (ed). 1-20, Springer-Verlag, Berlin, German, March 2000.

[VAM+98] A. D. Vici, N. Argentieri, A. Mansour, M. d’Alessandro, J. Favaro. FO-
DAcom: an experience with domain analysis in the Italian telecom industry. In
Proceedings of 5" International Conference on Software Reuse, 166-175, Victo-

ria, BC, Canada, June 1998,

[VSF97] A. Valerio, G. Succi, M. Fenaroli. Domain analysis and framework-based
software development. ACM Special Issue on Frameworks and Patterns in Soft-

ware Reuse, 5, 2, 4-15, September 1997.

[WEI04] Y. Wei. Refactoring Use Case Models on Episodes. Master Thesis, Concordia
University, 2004.

[WGMS8S8] A. Weinand, E. Gamma, and R. Marty. ET++ ~ an object-oriented ap-
plication framework in C++. In Proceedings of Object-Oriented Programming
Systems, Languages, and Applications Conference (OOPLSA’88), 46-57, San
Diego, California, September 1988.

[WHO02] C. V. Westhuizen, A. V. Hoek. Understanding and propagating architec-
tural changes. In Proceedings of IFIP 17¢* World Computer Congress - TC2
Stream /3™ IEEE/IFIP Conference on Software Architecture (WICAS3), 95-
109, Deventer, The Netherlands, August 2002.

[WL99] D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A Family-
Based Software Development Process. Addison-Wesley, Reading, MA, 1999.
ISBN: 0201694387

248



'WW93] D. A. Wilson, S.D. Wilson. Writing frameworks — capturing your ezpertise
about a problem domain. In tutorial notes, 8t* Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPLSA’93), Washing-
ton, DC, USA, September 1993.

[ZC03] D. Zubrow, G. Chastek. Measures for software product lines. Software Engi-
neering Measurement and Analysis Initiative, Software Engineering Institute,
CMU/SEI-2003-TN-031, October 2003.

[ZSPKO03] A. Zisman, G. Spanoudakis, E. Pérez-Mifana, P. Krause. Tracing soft-
ware requirements artefacts. In Proceedings of 2003 International Conference
on Software Engineering Research and Practice (SERP’03), 448-455, Las Ve-
gas, Nevada, USA, June 2003.

249



