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ABSTRACT

An Introduction To The Parallel Virtual Machine

Zhang Jie

This study is an introduction of the Parallel Algorithm and the software of the Parallel
Virtual Machine. The emphasis is placed on how to use the Parallel Virtual Machine
to solve some parallel algorithm problem. Some of the issues to be addressed are: the
feature and functionality of the PVM, how to programming by using the PVM, how to
install and setup the PVM.. | also many parallel algorithm examples and small project
are introduced. According to the PVM study, the software PVM is a very powerful
tool. It can handle the parallel program running on different machines as in one
machine. Also this study gives many programming algorithms to program a parallel
software. Conclusions are parallel algorithm and parallel tools can make a lot of

optimization on the computer’s future.
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Partl Introduction

1. What is PVM?

This paper is intended to introduce what is PVM (Parallel Virtual Machine) and how
to use PVM, which is a software package that allows a programmer to create and
access a concurrent computing system made from networks of loosely coupled
processing elements. This software package permits both homogeneous and
heterogeneous collection of Unix computers and PCs hooked together by a network to
be used as a single large parallel computer. The hardware collected into a user’s
virtual machine may be single processor workstations or PCs, vector machines or
parallel supercomputers. The network connection can be as small as LAN or as large
as WAN. Thus large computational problems can be solved more cost effectively by
using the aggregate power and memory of many computers. The software is very
portable. The source, which is available free from netlib, has been compiled on
everything from laptops to CRAYs. PVM enables users to exploit their existing

computer hardware to solve much larger problems at minimal additional cost.

2. A brief history for the PVM

The PVM project began in the summer of 1989 at Oak Ridge National Laboratory.
Vaidy Sunderam and Al Geist constructed the prototype system, PVM 1.0, this
version of the system was used intemnally at the Lab and was not released to the
outside. Version 2 of PVM was written at the University of Tennessee and released in
March 1991. During the following year, PVM began to be used in many scientific
applications. After user feedback and a number of changes (PVM 2.1 - 24), a
complete rewrite was undertaken, and version 3 was completed in February 1993. It is
PVM version 3.3. Now, what I introduced in this paper is PVM version 3.4 Beta 6
Release. The PVM software has been distributed freely and is being used in

computational applications around the world. To successfully use the PVM, the user



should be some familiar with common programming techniques (C or Fortran) and

understand some basic parallel processing concepts.
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Part I PVM Installing

1. Application and Environments for PVM

PVM is ideaily suited for concurrent application composed of many interrelated parts.
PVM is particularly effective for heterogeneous applications that exploit specific
strengths of individual machines on a network. As a loosely coupled concurrent
supercomputer environment PVM is a viable scientific computing platform. PVM
system used for number of applications such as molecular dynamics simulation,
superconductivity studies, distributed fractal computations, matrix algorithms, and in
the classroom as the basis for teaching concurrent computing. No special permission
is required to create and use PVM, which can be built and installed on machines by
anyone with a valid user id on those machines. The PVM has both the Unix version

and PC version. So it can be installed both on the Unix systems and PCs.

2. How to get the software

There are several ways to get the PVM software package: fip, WWW, xnetlib, or
email. The latest version of the PVM source code and documentation is always
available through netlib. Netlib is a software distribution service set up on the Internet

that contains a wide range of computer software.

1. FTP: PVM files can be obtained by anonymous fip to ftp.netlib.org. Look in
directory /pvm3. The file index describes the files in this directory and its

subdirectories.

2. WWW: Using a World Wide Web tool like Netscape or Internet Explore, the
PVM files are accessed by using the address
http://www.netlib.org/pvms/index.html Entering this site and download the files
through the instructions. It is the easiest way to get the software package.



3. Xunetlib is a X-Window interface that allows a user to browse or query netlib for
available software and to automatically transfer the selected software to the user's
computer. To get xnetlib send email to netlib@netlib.org with the message send
xnetlib.shar  from xnetlib or anonymous fip from fip.netlib.org

xnetlib/xnetlib.shar.

4. Also, the PVM software can be requested by email. To receive this software send
email to netlib@netlib.org with the message: send index from pvm3. An
automatic mail handler will return nine messages to you, each a portion of the
encoded and compressed set of PVM source files. The advantage of this method

is that anyone with email access to Intemet can obtain the software.

The PVM software is distributed as a uuencoded, compressed, tar file for Unix. Also
now the Install-shield version for win32 is available. After install it, the PVM
documentation will includes a User's Guide, reference manual, and quick reference

card.

3. How to install PVM on the Unix sytem

PVM's is simple to set up and use. That is one reason why the PVM is so popular
today. PVM does not require special privileges to be installed. Anyone with a valid
login on the hosts can do so. It can be both installed by the user in their SHOME
directory and by the root in ust/local directory for all the user. After we get the PVM
software, we should unzip it first. It maybe a .uu file or a .Z file. If it is a .uu format
file, we should do such steps:

>uudecode pvm3.4.6.tar.z.uu

Whichever method used above, uncompress the resultant file by executing the
command

> uncompress pvin3.4.6.tar.Z

then untar the file with



> tar -xvf pvin3.4.6.tar

Oritis a .Z format file. we should such steps:

> gunzip pvm3.4.6.1ar.Z

Whilever we get a pvm3.4.6.tar file, executing the command
> tar —xvf pvin3.4.6.tar

After untar the file, it will create a pvm3 directory with source code and makefiles for
many different machines included. These source files for PVM will take up about 7

Mbyte when uncompressed and unpacked.

PVM uses two environment variables when starting and running. Every user should
set these two variables to use PVM. The first variable is PVM_ROOT , which is set 1o
the location of the installed pvm3 directory. The second variable is PVM_ARCH ,
which tells PVM the architecture of this host and thus what executables to pick from
the PVM_ROOT directory.

In this paper, the installation is assumed to be under C Shell. The easiest method is to
set these two variables in your .cshre file. An example to set the PVM_ROOT in the
.cshre file is:

setenv PVM_ROOT $HOME/pvm3

It is recommended that the user set PVM_ARCH by concatenating to the file .cshrc,
the content of file $PVM_ROOT/lib/cshrc.stub. The stub should be placed after
PATH and PVM_ROOT are defined. This stub automatically determines the
PVM_ARCH for this host and is particularly useful when the user shares a common
file system (such as NFS) across several different architectures.

After setting the two environment variables, we can build the workstation
architecture. Building for each architecture type is done automatically by logging on
to a host, going into the pvm3 directory, and typing ‘make’ command. The makefile

will automatically determine which architecture it is being executed on, create
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appropriate subdirectories, and build pvm, pvmd3, libpvm3.a, and libfpvm3.a, pvmgs.
and libgpvm3.a. It places all these files in $SPVM_ROOT/1ib/PVM_ARCH, with the
exception of pvings which is placed in $PVM_ROOT/bin/PVM_ARCH. After make

the architecture, it will consume about 20M ~ 30M space.

4. How to install the PVM on the PCs

Because now the self-extracting executable available for Win95, NT is available, it is
more easy to install the PVM on the PCs. InstallShield wizard does all the work while
asking the user a series of questions about install options. We just need to put the
required environment variables in the registry. And now it is easy to add our ex-
friend’s desktop. The Win32 PVM version fully interpolates with Unix version of
PVM. Cluster can be a mix of Linux and NT hosts.

Unlike standardized compilers in the Unix world, different flags and libs are used for
WIN32. Currently the PVM only distinguish between Borland 5.0 or VC++ 4.0 or
higher. Thus, a dependency file in S(PVM_ROOT)/conf named WIN32.bat can be
modified to point to the installed Compiler. With PVM 3.4 beta$ this file is updated
and modified on the fly automatically. But when you add or change compilers, you
either have to reinstall PVM using the installation wizard or modify the win32.bat file
manually.

Former Environment variables like PVM_ROOT, PVM_ARCH, PVM_TMP, or
PVM_RSH are no longer required to run PVM. The program now uses registry keys
to locate required libraries or the installation directory. These registry keys have been
set upon your installation information. Furthermore, a rsh client and a rexec client

have been added to allow more control for adding additional resources.

PVM is built by invoking the console command "pvm" with an additional hostfile
argument (you need to specify the full path e.g. d:\myfiles\pvmhostfile) which

identifies potential resources. The machine on which "pvm" is run for the first time



(in a given session) is referred to as the "master daemon.” If this machine crashes,

your PVM virtual machine goes down (a single point of failure).

Manual adding of hosts is performed by the "add” command in the "pvm" console.
Add commands must specify the location of the daemon. e.g.

pvm> add "hostname dx=d:\pvm3\lib\win32\pvmd3.exe"
for adding a win32 machine. You need to specify the location, including the
executable. A Unix machine can simply be added by

pvm> add hostname
Now rshd or rexecd are still required for WinNT, rshd for WIN95. This is additional
(shareware) software that can be find on the WWW, as long as MS does not offer its
own solution. The better one that we recommend is: http://www.ataman.com. Please
note that the rshd is required to run remote processes under your account. If you find
pvm{d,l}.System in your PVM_TMP directory, then the rshd is NOT working

properly.

Before using PVM, you should test the functionality of the additional software, e.g.
"rsh remotehost -1 login dir | more"

This should show the directory listing of the remote host. Piping to "more"”

additionally checks for buffered std {io,err}.

Now the PVM are aware of Fortran problems using MS PowerFortran when calling
one of the pvm_pk* functions. Since MS has discontinued Fortran we don't know if

we will support it any longer.



Part II1 The PVM

1. PVM overview

PVM is a byproduct of ORNL’s Heterogeneous Distributed Computing research
project. With tens of thousands of users, PVM is the most popular software to
combine networked computers. The PVM software, as a parallel programming tools,
provides a unified framework within which parallel programs can be developed in an
efficient and straightforward manner using existing hardware. Because PVM enables
a collection of heterogeneous computer systems, so it provides the software
environment that makes a cluster appear like a single large parallel computer. Also
PVM continues to evolve based on changing computer and network technology and
user feedback. PVM transparently handles all message routing, data conversion, and

task scheduling across a network of incompatible computer architectures.

The PVM computing model is simple yet very general, and accommodates a wide
variety of application program structures. The programming interface is deliberately
straightforward, thus permitting simple program structures to be implemented in an
intuitive manner. The user writes his application as a collection of cooperating tasks.
Tasks access PVM resources through a library of standard interface routines. These
routines allow the initiation and termination of tasks across the network as well as
communication and synchronization between tasks. The PVM message-passing
primitives are oriented towards heterogeneous operation, involving strongly typed
constructs for buffering and transmission. Communication constructs include those
for sending and receiving data structures as well as high-level primitives such as

broadcast, barrier synchronization, and global sum.

PVM tasks may possess arbitrary control and dependency structures. In other words,
at any point in the execution of a concurrent application, any task in existence may
start or stop other tasks or add or delete computers from the virtual machine. Any

process may communicate and/or synchronize with any other. Any specific control



and dependency structure may be implemented under the PVM system by appropriate

use of PVM constructs and host language control-flow statements.

Owing to its ubiquitous nature (specifically, the virtual machine concept) and also
because of its simple but complete programming interface, the PVM system has
gained widespread acceptance in the high-performance scientific computing

community.

2. PVM system

The PVM system is composed of two parts. The first is daemon and the second is a
library of PVM interface routines. The daemon called pvmd3 and sometimes
abbreviated pvmd. It is include in the all computers that PVM package was installed.
The example of a daemon program is the e-mail system-controlling program that
handles all the incoming and outgoing electronic mail on a computer. Pvind3 is
designed so any user with a valid login can install this daemon on a machine. When a
user wishes to run a PVM application, he first should start the PVM console on the
host and create the virtual machine. Then the PVM application can be started from a
Unix prompt on any of the hosts. Multiple users can configure overlapping virtual

machines, and each user can execute several PVM applications simultaneously.

The library of PVM interface routines contains a functionally complete repertoire of
primitives that are needed for cooperation between tasks of an application. This
library contains user-callable routines for message passing, spawning processes,

coordinating tasks, and modifying the virtual machine.



The PVM computing model is based on the notion that an application consists of
several tasks. Each task is responsible for a part of the application's computational
workload. Sometimes an application is parallelized along its functions; that is, each
task performs a different function, for example, input, probiem setup, solution, output,
and display. This process is often called functional parallelism. A more common
method of parallelizing an application is called data parallelism. In this method all the
tasks are the same, but each one only knows and solves a small part of the data. This
is also referred to as the SPMD (single-program multiple-data) model of computing.
PVM supports either or a mixture of these methods. Depending on their functions.
tasks may execute in parallel and may need to synchronize or exchange data, although
this is not always the case. An exemplary diagram of the PVM computing model is
shown in Figure PVM system overview (a) and an architectural view of the PVM
system, highlighting the heterogeneity of the computing platforms supported by PVM,
is shown in Figure PVM system overview (b)

Figure: PVM system overview

The PVM system currently supports C, C++, and Fortran languages. This set of

language interfaces have been included based on the observation that the predominant
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majority of target applications are written in C and Fortran, with an emerging trend in

experimenting with object-based languages and methodologies.

3. PVM features

e Popular PVM uses

Hundreds of sites around the world are using PVM to solve important scientific,
industrial, and medical problems in addition to PVM's use as an educational tool to
teach parallel programming. With tens of thousands of users, PVM has become the de
facto standard for distributed computing worldwide. Some popular PVM Uses is: 1.
As Poor man’s Supercomputer: it is idle cycles from network of workstations & PCs.
2. As Metacomputer linking multiple Supercomputers to ultimate computing
performance 3. As Education Tool to teach parallel programming and academic

research

e Features supplied by PVM

a) Portable — Runs on nearly every Unix machine, plus many shared — and

distributed-memory multiprocessors

b) Heterogeneous Resource Management — Any types of machines can be

combined in a single virtual machine, so the user can add/delete hosts from a

virtual machine.

c) Scalable — Virtual machines can include hundreds of host computers, and run

thousands of tasks.
d) Dynamic configuration and Process Control — computers can be dynamically

added and deleted from the parallel virtual machine by the application or
manually, also the user can spawn/kill tasks dynamically

11



g)

h)

i),

k)

Signals — PVM tasks can send signals to other tasks.

Multiple messages buffers — Allows easier development of PVM math
libraries, graphical interface, etc.

Tracing — Call-level tracing built into PVM library.

Can be customized — User can write manager tasks to implement custom

scheduling policies.

Message Passing - blocking send, blocking and non-blocking receive,

collective

Dynamic Task Groups - task can join or leave a group at any time

Fault Tolerance - VM automatically detects faults and adjusts

The PVM new features and functions in Application capabilities on Ver. 3.4

Now what we are using the PVM version 3.4.6. There are some new features supplied

by the PVM new version. These features make the PVM more powerful and strength.

a)

Communication Context —~The communication context is a System-wide
unique context tag. It can spawn tasks inherit context of parent and can let the
existing PVM applications work be unchanged. It is now easy to add context
to applications in this way:

new_context = pvm_newcontext( ) // It can broadcast the new

context to all tasks or put in the persistent message.

old_context = pvim_setcontext( new_context) / This make the safe

communication for user’s application or library

12



info = pvm_freecontext( context )
context = pvm_getcontext( )safe messages
To this point, the messages in old context are buffered until their context is

reset.

b) Message Handlers - for extending features. Message Handlers are make the
user able to have their defined message handlers. The handles are triggered
when message of matching (context, msgtag, source) arrives. There is no
restrictions on the handler functions. Also, it allows users to define new

control features inside a virtual machine. The message handle is shown as

following:
Message Handlers
S;;ce,mg,cmtm s .

’,/ VM |control messages \\‘
{Incoming mesg, Iff;izl
 Dae -

; Control messages
: User |defined handlers

____ -

Figure Message handles
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c) Persistent Messages — is a tuple space model. It let the tasks can store and
retrieve messages by name. And it can distribut information database for
dynamic programs. It provides rendezvous, attachment, groups, and many
uses. Also multiple messages per “name” is possible within this feature. Like:

index = pvm_putinfo( name, msgbuf, flag)
pvm_recvinfo( name, index, flag)

pvm_delinfo( name, index, flag )

pvm_getmboxinfo( pattern, #names, array of struct ).

These works can be shown as following Figure Persistent Messages:

Persistent Messages

Task can specify when and who can replace a message
ithas placed in the message box.

Message
box
Task stores information .
eg. How to contact application, Key: message
or Network load forecast, etc. ;
| E—
—
Later, another task can request Message bax storage is
this message and receive it normally coordinated across p ds

Figure Persistent Messages

d) User Defined Tracing - for specialized tools. PVM 3.4 uses standard SDDF
trace format. So the tracing can be buffered to reduce intrusion and it can be



turned on/off within application. The user can select which events to trace and
define their own trace events. eg. write a trace event everytime task computes

S&BSQ.

f) Windows 95/NT Port — Now the PVM allow to work with WIN95, NT 3.5, and
NT 4.0 very fast on multi-processor pentiums. And also it allows virtual machine
to contain both UNIX and Windows hosts. It is great for PC clusters. The PVM
InstallShield version makes adding PVM to a Windows host trivial.

e PVM Interface

In PVM 3 all PVM tasks are identified by an integer supplied by the local pvimd. This
task identifier is called TID. It is similar to the process ID (PID) used in the Unix
system and is assumed to be opaque to the user, in that the value of the TID has no
special significance to him. In fact, PVM encodes information into the TID for its

own internal use.

All the PVM routines are written in C. C++ applications can link to the PVM library.
Fortran applications can call these routines through a Fortran 77 interface supplied
with the PVM 3 source. This interface translates arguments, which are passed by
reference in Fortran, to their values if needed by the underlying C routines. The
interface also takes into account Fortran character strings representations and the

various naming conventions that different Fortran compilers use to call C functions.

The PVM communication model assumes that any task can send a message to any
other PVM task and that there is no limit to the size or number of such messages.
While all hosts have physical memory limitations that limits potential buffer space,
the communication model does not restrict itself to a particular machine's limitations

and assumes sufficient memory is available. The PVM communication model
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provides asynchronous blocking send, asynchronous blocking receive, and non-
blocking receive functions. In our terminology, a blocking send returns as soon as the
send buffer is free for reuse, and an asynchronous send does not depend on the
receiver calling a matching receive before the send can return. There are options in
PVM 3 that request that data be transferred directly from task to task. In this case, if
the message is large, the sender may block until the receiver has called a matching

receive.

A non-blocking receive immediately returns with either the data or a flag that the data
has not arrived, while a blocking receive returns only when the data is in the receive
buffer. In addition to these point-to-point communication functions, the model
supports multicast to a set of tasks and broadcast to a user-defined group of tasks.
There are also functions to perform global max, global sum, etc., across a user-
defined group of tasks. Wildcards can be specified in the receive for the source and
label, allowing either or both of these contexts to be ignored. A routine can be called

to return information about received messages.

The PVM model guarantees that message order is preserved. If task 1 sends message
A to task 2, then task 1 sends message B to task 2, message A will arrive at task 2
before message B. Moreover, if both messages arrive before task 2 does a receive,

then a wildcard receive will always return message A.

Message buffers are allocated dynamically. Therefore, the maximum message size
that can be sent or received is limited only by the amount of available memory on a
given host. There is only limited flow control built into PVM 3.3. PVM may give the
user a can't get memory error when the sum of incoming messages exceeds the

available memory, but PVM does not tell other tasks to stop sending to this host.
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4. How PVM works

We describe the implementation of the PVM software and the reasons behind the
basic design decisions. The most important goals for PVM 3 are fault tolerance,
scalability, heterogeneity, and portability. PVM is able to withstand host and network
failures. It doesn't automatically recover an application after a crash, but it does
provide polling and notification primitives to allow fault-tolerant applications to be
built. The virtual machine is dynamically reconfigurable. This property goes hand in
hand with fault tolerance: an application may need to acquire more resources in order
to continue running once a host has failed. Management is as decentralized and
localized as possible, so virtual machines should be able to scale to hundreds of hosts
and run thousands of tasks. PVM can connect computers of different types in a single
session. It runs with minimal modification on any flavor of Unix or an operating
system with comparable facilities (multitasking, networkable). The programming
interface is simple but complete, and any user can install the package without special

privileges.

To allow PVM to be highly portable, PVM avoids the use of operating system and
language features that would be be hard to retrofit if unavailable, such as
multithreaded processes and asynchronous I/O. These exist in many versions of Unix,
but they vary enough from product to product that different versions of PVM might
need to be maintained. The generic port is kept as simple as possible, though PVM

can always be optimized for any particular machine.

We assume that sockets are used for interprocess communication and that each host in
a virtual machine group can connect directly to every other host via TCP and UDP
protocols. The requirement of full IP Figure How PVM is designed connectivity could
be

removed by specifying message routes and using the pvimds to forward messages.
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Some multiprocessor machines don't make sockets available on the processing nodes,
but do have them on the front-end (where the pvind runs). The design and work

process are shown as figure: How PVM is designed.

How PVM is Desighed

pvmd - one PVM daemon perhost

libpvm - task linked toc PVM library

distributed memoary MPP shared memary multiprocessar

Figure How PVM is designed
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S. Basic Programming Techniques
e Write PVM Applications

PVM Programming Model is a dynamic collection of serial and parallel computers
appear as single distributed memory Virtual Machine. So all the tasks can be
dynamically spawned and killed by any other task and any PVM task can send a
message to any other. There is no limit to size or number of messages. The
programming model supports fault tolerance, resource control, process control,
heterogeneous networks and hosts. These sides are the most significant differences
with basic programming techniques. The basic techniques are similar both for the
logistical aspects of programming and for algorithm development, such as
programming distributed-memory multiprocessors such as the nCUBE or the Intel

family of multiprocessors.

PVM applications can be written in either C or Fortran 77. To execute a program
under PVM, the user adds calls to PVM library routines that spawn off tasks to other
machines within the user's virtual machine and allow tasks to send and receive data.
While PVM is implemented in C, Fortran applications call the library routines
through an interface that is included with the PVM source. This requires an additional
library be linked in at compilation, though. The default directory PVM looks into for
executables is SHOME/pvm3/bin/PVM_ARCH.

During execution, before any other PVM function can be called, a task must first
enroll into PVM. This assigns a unique task id number to the task. These task ids are
used when sending and receiving messages. Once a task has completed its work under
PVM, it must inform the PVM daemon that it is exiting from the virtual machine.
This does not terminate the process executing the task which can continue running,

however, it may not interact with any other PVM tasks.
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There are many examples are included in the PVM package that are illustrate the
PVM usage . These examples sever as template to build the user’s own application.

These examples include:
hello hello_other PVM equivalent to hello world

master slave Master/slave example
spmd SPMD example
gexample Group and collective ops.

timing timing slave Timing example - comm perf

hitc hitc_slave Dynamic load balance
inheritb Communication context
imbi gmbi Persistent messages template

mhf_server mhf tickle Message handlers
These can be found in the pvm3/examples directory.

e C Examples

1. Master —Slave Example

This example is from the pvm software package. At the first line of both programs
includes the PVM header file. This file gives definitions to PVM symbolic names and
functions. If PVM is available in a system directory, this header file will be installed
as well. Consult with the system administrator for the proper directory.

The first PVM call in the master] program informs the PVM daemon of its existence
by enrolling the task in the virtual machine. The function pvm_mytid() is used for this
purpose and assigns a task id to the calling task.

mytid = pvm_mytid()

The result returned is the assigned task id. There is no parameter to this function.
After the program is enrolled in the virtual machine, the master program initializes the
data that is to be summed up. Next, the worker processes are spawned. The function

to spawn worker processes is pvm_spawn().
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int numt = pvm_spawn( char *task, char **argv, int flag,

char *where, int ntask. int *tids)

The first parameter is a string containing the name of the executable file that is to be
used. Any arguments that must be sent to this program are in an array pointed to by
argv. If no arguments are required by the task, then the argv parameter is NULL. The
flag parameter is used to determine the specific machine or type of architecture the
spawned task is to be run on. Possible values for flag are:

e PvmTaskDefault - PVM chooses where this task is spawned to.

e PvmTaskHost - the where string argument specifies the particular machine.

e PvmTaskArch - the where string indicates the architecture type.

These symbolic names are defined in the PVM include file pvm3.h.

The fifth parameter, nproc, specifies the number of copies of the task to be spawned
and tids is a pointer to an integer array that returns the task ids of all tasks spawned.
The function returns the number of tasks that were successfully created. If some tasks
could not be started, we can add two parameters (ntask - numt) of tids at the last

positions which will contain error codes for the unsuccessful tasks.

In the example the master! program will spawn code five (NPROCS) copies of the
executable file worker. No arguments are to be sent and we are allowing PVM to
choose which machines will be used to execute the worker code. The task ids will be
placed in the array task_ids.

To send a message from one task to another, a send buffer is created to hold the data.
The function pvm_initsend() creates and clears the buffer and returns a buffer
identifier.

int bufid = pvm_initsend(int encoding)



If a single buffer is used, pvm_initsend() must be called each time a new message is
to be sent, otherwise the new message will be appended to the message already in the

send buffer.

The encoding parameter can be either PvmDataDefault or PvmDataRaw. The
former option will use XDR encoding of message data if the virtual machine
configuration is determined to be heterogeneous, else no encoding is done. The latter

option does no encoding of the message data.

Before issuing 2 send command, the buffer must be packed with data to be sent. The
functions to pack data into the active send buffer are pvm_pkint() where int indicates
the type of data being packed. The data types supported by PVM (and their int
function designation) are byte (byte), complex (cplx), double complex (dcplx), double
(double), float (float), integer (int), long (long) and short(short). The example code
packs integers and uses the function pvm_pkint(&nproc, 1, 1);pvm_pkint(tids, nproc,
1);

pvm_pkint(&n, 1, 1); Each of the functions outlined above has three parameters. The
first is a pointer to the first item to be packed into the message, the second is the total
number of items to be packed and the third is the stride to use when packing. There is
also a function to pack a NULL terminated string (str) that requires only a single

parameter which points to the first position of the string.

In the example code, within a loop, the master program clears the send buffer for each
new message and packs this buffer with two things: 1) the number of array elements
that follow in the message and 2) the array portion to be summed. Since each
consecutive item from the array a is to be sent, starting with the numn_data*i position,
the stride for the packing function is 1. The task_ids array that was retumed from the
pvm_spawn() call is used to address each different task that will receive a portion of
the array. The arbitrarily chosen value "4’ is the msgtag used to label the messages.



After the array portions have been distributed, the master program must receive a
partial sum from each of the worker processes. To receive a message, a task calls the
pvm_recv() function.

int bufid = pyvm_recv(int tid, int msgtag)

This will receive a message from task tid with label msgtag and place it into the
receive buffer with id bufid. If no message is waiting from the given task with the
expected label, the function waits until a message from the proper task and the correct
label arrives. Values of '-1' for the parameters will match with any task id and/or
label. In the example code, the master program is expecting a label value of “7' on
messages from the worker tasks. The messages are to be received from tasks in the

order that the send messages were issued.

Once a message has been received the data within must be unpacked. The unpacking
functions are pvm_upkint() where the int corresponds to the type of data that is to be
unpacked. The same int extensions used in the pvm_pkint() packing functions are
valid for pvm_upkint(). For example, since the master program is receiving an integer
from its worker processes, it calls the integer unpacking function

int info = pvm_upkint(int *np, int nitem, int stride)

The first parameter is a pointer to where the first item unpacked is to be stored. The
second and third give the number of items to be unpacked and the stride to be used.
Our example code unpacks each partial result received into a different element of the

results array and adds it to the running sum.

Afier the sum is computed and printed the master task informs the PVM daemon that
it is withdrawing from the virtual machine. This is done by executing the function

int info = pvm_exit()



As for the slavel program, after enrolling in the virtual machine, the worker tasks
wait to receive their portion of the array to be summed. Using the '-1' values in the
pvm_recv() call indicates that the task does not care what task the message was sent
from nor what label was used. Since the size of the array being sent may not be
known ahead of time, after unpacking the number of data items from the message. the
worker code allocates enough memory to hold the rest of the data contained in the
message. The array fragment is summed up and the total is sent back to the parent.
The task id of the task that spawned the current task is returned by the pvm_parent()
function.

int parent_id = pvm_parent()

Note that since the master program is expecting a msgtag of 7' from the slave tasks,

this value must be used in the pvm_send() call.

Helpful Hint: To run the Master-Slave C example under the Unix system can both
run under the shell environment and PVM console.
Source files:

masterl .c slavel .c

To compile:

% aimk masterl] slavel

To run from shell (C version):

% masterl

To Run from PVM console:

pvm> spawn -> masterl

Sample output:
Spawning 3 worker tasks ... SUCCESSFUL
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I got 100.000000 from 1; (expecting 100.000000)
I got 200.000000 from O; (expecting 200.000000)
I got 300.000000 from 2; (expecting 300.000000)

Notes:
If you desire to run the master examples from the shell, then you need to compile the
"masterlh"
% aimk masterlh
% masterlh
Complete details for all PVM library functions can be found in Appenbix B part.

Figure : Master1.C

#include <stdio.h>
#include "pvm3.h"
#define SLAVENAME "slavel”

main()
{
int mytid; /* my task id */
int tids[32]; /* slave task ids */
int n, nproc, numt, i, who, msgtype, nhost, narch;
float data[100], result[32];
struct pvmhostinfo *hostp;

/* enroll in pvm */

mytd = pvm_mytid();

/* Set number of slaves to start */

pvin_config( &nhost, &narch, &hostp );
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nproc = nhost * 3;
if( nproc > 32 ) nproc =32 ;

printf("Spawning %d worker tasks ... ", nproc);

/* start up slave tasks */
numt=pvm_spawn(SLAVENAME, (char**)0, 0, ", nproc, tids);
if( numt < nproc ){
printf("\n Trouble spawning slaves. Aborting. Error codes are:\n");
for( i=numt ; i<nproc ; i++) {
printf("TID %d %d\n",1,tids[i]);
h
for( 1=0 ; i<numt ; i++ ){
pvro_kill( uds[i] );
}
pvm_exit();
exat(1);
}
printf("SUCCESSFUL\n");

/* Begin User Program */
n=100;
/* initialize_data( data, n ); */
for(1=0 ; i<n ; i++ ){

data[i] = 1.0;
}

/* Broadcast initial data to slave tasks */
pvm_initsend(PvmDataDefault);
pvm_pkint(&nproc, 1, 1);



pvm_pkint(tids, nproc, 1);
pvm_pkint(&n, 1, 1);
pvm_pkfloat(data, n, 1);

pvm_mcast(tids, nproc, 0);

/* Wait for results from slaves */
msgtype = 5;
for( i=0 ; i<nproc ; i++ ){
pvin_recv( -1, msgtype );
pvm_upkint( &who, 1,1 );
pvm_upkfloat( &result{who], 1,1 );
printf("T got %f from %d; ",result{who],who);
if (who == 0)
printf( "(expecting %f)\n", (nproc - 1) * 100.0);
else
printf( "(expecting %f)\n", (2 * who - 1) * 100.0);

]
i

/* Program Finished exit PVM before stopping */

pvm_exit();}

Figure: Slavel.C

#include <stdio.h>

#include "pvm3.h"
main()

{
int mytid;  /* my task id */
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int uds[32]; /*taskids */
int n, me, i, nproc, master, msgtype;
float data[100], result;

float work();

/* enroll in pvm */

mytid = pvm_mytid();

/* Receive data from master */

msgtype = 0;

pvm_recv( -1, msgtype );
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&n, 1, 1);
pvm_upkfloat(data, n, 1);

/* Determine which slave I am (0 -- nproc-1) */
for( i=0; i<nproc ; i++ )
if( mytid == tids[i] ){ me = i; break; }

/* Do calculations with data */

result = work( me, n, data, tids, nproc );

/* Send result to master */
pvm_initsend( PvmDataDefault );
pvm_pkint( &me, 1, 1 );
pvm_pkfloat( &result, 1, 1 );
msgtype = §;

master = pvm_parent();

pvm_send( master, msgtype );
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/* Program finished. Exit PVM before stopping */

pvm_exit();

float

work(me, n, data, tids, nproc )
/* Simple example: slaves exchange data with left neighbor (wrapping) */
int me, n, *tids, nproc;

float *data;

int i, dest;
float psum = 0.0;
float sum = 0.0;
for(1=0 ; i<n ; i++ ){

sum += me * data[i];
}
/* illustrate node-to-node communication */
pvm_initsend( PvmDataDefault );
pvm_pkfloat( &sum, 1, 1 );
dest = me+1;
1f( dest = nproc ) dest = 0;
pvm_send( tids[dest], 22 );
pvm_recv( -1, 22);
pvm_upkfloat( &psum, 1, 1);

return( sum+psum );
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2. Fork-Join

The first example demonstrates how to spawn off PVM tasks and synchronize with
them. The program spawns several tasks, three by default. The children then
synchronize by sending a message to their parent task. The parent receives a message

from each of the spawned tasks and prints out information about the message from the
child tasks.

The fork-join program contains the code for both the parent and the child tasks. Let's
examine it in more detail. The very first thing the program does is call pvm_mytid().
This function must be called before any other PVM call can be made. The result of
the pvm_mytid() call should always be a positive integer. If it is not, then something
is seriously wrong. In fork-join we check the value of mytid; if it indicates an error,
we call pvm_perror() and exit the program. The pvm_perror() call will print a
message indicating what went wrong with the last PVM call. In our example the last
call was pvm_mytid(), so pvm_perror() might print 2 message indicating that PVM
hasn't been started on this machine. The argument to pvm_perror() is a string that will
be pretended to any error message printed by pvm_perror(). In this case we pass
argv([0], which is the name of the program as it was typed on the command line. The
pvm_perror() function is modeled after the Unix perror() function.

Assuming we obtained a valid result for mytid, we now call pvm_parent(). The
pvm_parent() function will return the TID of the task that spawned the calling task.
Since we run the initial fork-join program from the Unix shell, this initial task will not
have a parent; it will not have been spawned by some other PVM task but will have
been started manually by the user. For the initial forkjoin task the result of
pvm_parent() will not be any particular task id but an error code, PvmNoParent. Thus
we can distinguish the parent forkjoin task from the children by checking whether the
result of the pvm_parent() call is equal to PvmNoParent. If this task is the parent, then
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it must spawn the children. If it is not the parent, then it must send a message to the
parent. .

Let's examine the code executed by the parent task. The number of tasks is taken from
the command line as argv[1]. If the number of tasks is not legal, then we exit the
program, calling pvm_exit(} and then returning. The call to pvm_exit() is important
because it tells PVM this program will no longer be using any of the PVM facilities.
(In this case the task exits and PVM will deduce that the dead task no longer needs its
services. Regardless, it 1s good style to exit cleanly.) Assuming the number of tasks is
valid, forkjoin will then attempt to spawn the children.

The pvm_spawn() call tells PVM to start ntask tasks named argv[0]. The second
parameter is the argument list given to the spawned tasks. In this case we don't care to
give the children any particular command line arguments, so this value is null. The
third parameter to spawn, PvmTaskDefault, is a flag telling PVM to spawn the tasks
in the default location. Had we been interested in placing the children on a specific
machine or a machine of a particular architecture, then we would have used
PvmTaskHost or PvmTaskArch for this flag and specified the host or architecture as
the fourth parameter. Since we don't care where the tasks execute, we use
PvmTaskDefault for the flag and null for the fourth parameter. Finally, ntask tells
spawn how many tasks to start; the integer array child will hold the task ids of the
newly spawned children. The return value of pvim_spawn() indicates how many tasks
were successfully spawned. If info is not equal to ntask, then some error occurred
during the spawn. In case of an error, the error code is placed in the task id array,
child, instead of the actual task id. The fork-join program loops over this array and

prints the task ids or any error codes. If no tasks were successfully spawned, then the

program exits.

For each child task, the parent receives a message and prints out information about
that message. The pvm_recv() call receives a message (with that JOINTAG) from any
task. The return value of pvm_recv() is an integer indicating a message buffer. This
integer can be used to find out information about message buffers. The subsequent
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call to pvm_bufinfo() does just this; it gets the length, tag, and task id of the sending
process for the message indicated by buf. In fork-join the messages sent by the
children contain a single integer value, the task id of the child task. The pvm_upkint()
call unpacks the integer from the message into the mydata variable. As a sanity check,
forkjoin tests the value of mydata and the task id returned by pvm_bufinfo(). If the
values differ, the program has a bug, and an error message is printed. Finally, the

information about the message is printed, and the parent program exits.

The last segment of code in forkjoin will be executed by the child tasks. Before
placing data in a message buffer, the buffer must be initialized by calling
pvm_initsend(). The parameter PvmDataDefault indicates that PVM should do
whatever data conversion is needed to ensure that the data arrives in the correct
format on the destination processor. In some cases this may result in unnecessary data
conversions. If the user is sure no data conversion will be needed since the destination
machine uses the same data format, then he can use PvmDataRaw as a parameter to
pvm_initsend(). The pvm_pkint() call places a single integer, mytid, into the message
buffer. It is important to make sure the corresponding unpack call exactly matches the
pack call. Packing an integer and unpacking it as a float will not work correctly.
Similarly, if the user packs two integers with a single call, he cannot unpack those
integers by calling pvm_upkint() twice, once for each integer. There must be a one to
one correspondence between pack and unpack calls. Finally, the message is sent to the

parent task using a message tag of JOINTAG.

Fork Join Example
/*

Fork Join Example
Demonstrates how to spawn processes and exchange messages

*/

/* defines and prototypes for the PVM library */
#include <pvm3.h>
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/* Maximum number of children this program will spawn */
#define MAXNCHILD 20
/* Tag 1o use for the joing message */
#define JOINTAG 11
int
main(int argc, char* argv(])
{
/* number of tasks to spawn, use 3 as the default */
int ntask = 3;
/* return code from pvm calls */
mnt info:
/* my task id */
int mytid;
/* my parents task id */
int myparent;
/* children task id array */
int child[MAXNCHILD];
int i, mydata, buf, len, tag, tid;
/* find out my task id number */
mytid = pvim_mytd();

/* check for error */

if (mytid <0) {
/* print out the error */
pvm_perror(argv([0]);
/* exit the program */
return -1;

}
/* find my parent's task id number */
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myparent = pvim_parent();

/* exit if there Is some error other than PvimNoParent */
if ((myparent < 0) && (myparent != PvmNoParent)) {
pvm_perror(argv{0]);
pvm_exit();
return -1;
}
/* if 1 don't have a parent then i am the parent */
if (myparent == PvinNoParent) {
/* find out how many tasks to spawn */
if (argc == 2) ntask = atoi(argv[1]);
/* make sure ntask is legal */
if ((ntask < 1) || (ntask > MAXNCHILD)) {
pvm_exit(); return 0; }

/* spawn the child tasks */
info= pvim_spawn(argv[0], (char**)0, PvinTaskDefault,
ntask, child);
/* print out the task ids */
for (i = 0; 1 < ntask; i++)
if (child[i] < 0)
/* print the error code in decimal*/
printf(" %d", child[i});
else /* print the task id in hex */
printf("t%x\t", child[i]);
putchar(\n');
/* make sure spawn succeeded */

if (info == 0) { pvm_exit(); return -1; }

34

(char*)0,



/* only expect responses from those spawned correctly */

ntask = info;

for (i = 0; i < ntask; i++) {
/* recv a message from any child process */
buf = pvm_recv(-1, JOINTAG);
if (buf < 0) pvm_perror("calling recv");
info = pvim_bufinfo(buf, &len, &tag, &tid);
if (info < 0)
pvm_perror("calling pvm_bufinfo");
info = pvm_upkint(&mydata, 1, 1);
if (info < 0) pvm_perror(“calling pvm_upkint");
if (mydata != tid)
printf("This should not happen!\n");
printf("Length %d, Tag %d, Tid t%x\n", len, tag,
tid);
h
pvm_exit();
return 0;
}
/* 'm a child */
info = pvm_initsend(PvmDataDefault);
if (info < 0) {
pvm_perror(“calling pvin_initsend"); pvm_exit(); return -1;
}
info = pvm_pkint(&mytd, 1, 1);
if (info < 0) {
pvm_perror(“calling pvm_pkint"); pvm_exit();
return -1;

}
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info = pvm_send(myparent, JOINTAG);
if (info < 0) §
pvm_perror(“calling pvm_send"); pvm_exit(); return -1;
}
pvimn_exit();

return 0;

Following part shows the output of running forkjoin. Notice that the order the
messages were received is non-deterministic. Since the main loop of the parent
processes messages on a first-come first-serve basis, the order of the prints are simply

determined by time it takes messages to travel from the child tasks to the parent.

% forkjoin

t10001c t40149 tc0037
Length 4, Tag 11, Tid 140149
Length 4, Tag 11, Tid tc0037
Length 4, Tag 11, Tid t10001c
% forkjoin 4

t10001e t10001d t4014b tc0038
Length 4, Tag 11, Tid t4014b
Length 4, Tag 11, Tid tc0038
Length 4, Tag 11, Tid t10001d
Length 4, Tag 11, Tid t10001e

Figure: Output of fork-join program
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2)

Running PVM Applications

Include header file: PVM applications written in C should include header
file pvm3.h, as follows: #include <pvm3.h>. It may need to specify the PVM
include directory in the compiler flags as follows:

cc ... -ISPVM_ROOT/include ...

A header file for Fortran (fpvm3.h) is also supplied. You can include it using a
statement like: INCLUDE 'fpvm3.h'. You may want to make a copy of
fpvm3.h in your source directory. A header file for Fortran (fpvm3.h) is also
supplied. Syntax for including files in Fortran is variable; the header file may
need to be pasted into your source. A statement commonly used is:

INCLUDE ‘usr/local/pvm/include/fpvm3.h’

Link: PVM applications written in C must be linked with at least the base
PVM library, libpvm3.a. Fortran applications must be linked with both
libfpvm3.a and libpvm3.a. Programs that use group functions must also be
linked with libgpvm3.a. On some operating systems, PVM programs must be
linked with still other libraries (for the socket or XDR functions).

Note that the order of libraries in the link command may be important. You
may also need to specify the PVM library directory in the link command. A
correct order is shown below (your compiler may be called something other

than cc or £77).

cc/f77 [ compiler flags ] [ source files ] [ loader flags ]
-LSPVM_ROOT/lib/SPVM_ARCH -lfpvm3 -Igpvm3 -lpvm3
[ libraries needed by PVM ] [ other libraries ]



3)

aimk automatically sets environment variable PVM_ARCH to the PYM
architecture name and ARCHLIB to the necessary system libraries. You can

use these variables to write a portable, shared makefile, called Makefile.aimk.

debug and tracing - PVM tasks can be started in a debugger on systems that
support X-Windows. If PvmTaskDebug is specified in pvm_spawn(), PVM
runs SPVM_ROOT/lib/debugger, which opens an xterm in which it runs the
task in a debugger defined in pvm3/lib/debugger2. The PvmTaskDebug flag is
not inherited, so you must modify each call to spawn. The DISPLAY
environment variable can be exported to a remote host so the xterm will
always be displayed on the local screen. Use the following command before
running the application:

setenv PVM_EXPORT DISPLAY

Make sure DISPLAY is set to the name of your host (not unix:0) and the host
name is fully qualified if your virtual machine includes hosts at more than one
administrative site. To spawn a task in a debugger from the console, use the
command:

spawn -? [ rest of spawn command ]

The console can spawn a task with tracing enabled (using the spawn -@),
collect the trace data and print it out. In this way, a whole job (group of tasks
related by parentage) can be traced. The console has a trace command to edit
the mask passed to tasks it spawns. Or, XPVM can be used to collect and

display trace data graphically.

It is difficult to start an application by hand and trace it, though. Tasks with no
parent (anonymous tasks) have a default trace mask and sink of NULL. Not
only must the first task call pvm_setopt() and pvm_settmask() to initialize the

tracing parameters, but it must collect and interpret the trace data. If you must
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start a traced application from 2 TTY, we suggest spawning an xterm from the

console:
spawn -@ /usr/local/X1I1R5/bin/xterm -n PVMTASK

The task context held open by the xterm has tracing enabled. If you now run a
PVM program in the xterm, it will reconnect to the task context and trace data
will be sent back to the PVM console. Once the PVM program exits, you must

spawn a new Xterm to run again, since the task context will be closed.
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PartIV. XPVM and JavaPVM

1. What is XPVM

ORNL is developing a software tool called XPVM. XPVM is a graphical tool to make
the running and tuning of PVM programs easier. It provides a graphical interface to
the PVM console commands and information, along with several animated views to
monitor the execution of PVM programs. Scientists with little knowledge of PVM can
click a few buttons to combine computers into a virtual machine and a few more
buttons to launch their applications. These views provide information about the
interactions among tasks in a parallel PVM program, to assist in debugging and
performance tuning.

XPVM provides real-time animations of network and host loads as well as
ParaGraph-like views to aid debugging and performance tuning. The first major
update to XPVM is scheduled for FY95 improving its speed and functionality.

To analyze a program using XPVM, a user need only compile their program using the
PVM library, version 3.3 or later (which has been instrumented to capture tracing
information at run-time). Then, any task spawned from XPVM will return trace event
information, for analysis in real time, or for post-mortem playback from saved trace
files.

2. What is JavaPVM?

JavaPVM is an interface written using the Java® native methods capability, which
allows Java applications to use the PVM software developed at Oak Ridge National
Laboratory.
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PVM is a software package that supports programs written in C, C++, and Fortran.
JavaPVM extends the capabilities of PVM to the new, exciting, hyvpe-filled world of
Java, SunSoft's architecture-independent programming language for the Intemet.
JavaPVM allows Java applications (and possibly applets, though we haven't tested it)
and existing C, C++, and Fortran applications to communicate with one another using

the PVM APL

This means you could build Java interfaces to existing C, C++, and Fortran programs
and use PVM to ship data from those programs to the Java interface. Or you could use
this as a communications package as you transition applications from C or C++ to
Java. Yeah, you could use the Java socket library, but PVM, and hence JavaPVM, is a

bit simpler, more robust, and a lot better documented!

JavaPVM is not an implementation of PVM written in Java. There used to be such a
package called JPVM, written by Adam Ferrari at U.Virginia, but we haven't seen it
lately.

3. Where to get these software?

These softwares, XPVM and JavaPVM, are also can be get free from the web site.
Here I have two recommended sites to get the XPVM and JavaPVM.

The place to get the XPVM is:
bttp://www.netlib.org/pvm3/xpvm/index.html

The place to get the JavaPVm is:
http://www.isye.gatech.edu/chmsr/jPVM/
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Part [ Where to get more information

Recommended paper, book and web site

PVM: Parallel Virtual Machine A Users' Guide and Tutorial for Networked Parallel
Computing

Reference:

PVM: Parallel Virtual Machine A Users' Guide and Tutorial for Networked Parallel
Computing

Advanced Tutorial on PVM 3.4 at site:
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Appendix A The PVM command table

add

alias

conf

delete

echo

halt

help

id

jobs

mstat

ps-a

pstat

quit

followed by one or more host names, adds these hosts to the virtual

machine.
defines or lists command aliases.

lists the configuration of the virtual machine including hostname,

pvid task ID, architecture type, and a relative speed rating.

followed by one or more host names, deletes these hosts from the

virtual machine. PVM processes still running on these hosts are lost.

echo arguments.

kills all PVM processes including console, and then shuts down PVM.

All daemons exit.

can be used to get information about any of the interactive commands.
Help may be followed by a command name that lists options and flags

available for this command.

prints the console task id.

lists running jobs.

can be used to terminate any PVM process.
shows the status of specified hosts.

lists all processes currently on the virtual machine, their locations, their

task id's, and their parents' task id's.
shows the status of a single PVM process.

exits the console, leaving daemons and PVM jobs running.
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reset kills all PVM processes except consoles, and resets all the internal

PVM tables and message queues. The daemons are left in an idle state.

setenv displays or sets environment variables.

sig followed by a signal number and TID, sends the signal to the task.
spawn starts a PVM application. Options include the following:
-count number of tasks; default is 1.

-host spawn on host; defauit is any.

-ARCH spawn of hosts of type ARCH.

-2 enable debugging.

-> redirect task output to console.

->file redirect task output to file.

->>file redirect task output append to file.

-@ trace job, display output on console

-@file trace job, output to file

trace sets or displays the trace event mask.

unalias undefines command alias.

version prints version of PVM being used.



Appendix B More PVM Examples

e Dot Product

Here we show a simple Fortran program, PSDOT, for computing a dot product. The
program computes the dot product of arrays, X and Y. First PSDOT -calls
PVMFMYTID() and PVMFPARENT(). The PVMFPARENT call will return
PVMNOPARENT if the task wasn't spawned by another PVM task. If this is the case,
then PSDOT is the master and must spawn the other worker copies of PSDOT.
PSDOT then asks the user for the number of processes to use and the length of
vectors to compute. Each spawned process will receive n/nproc elements of X and Y,
where 7 is the length of the vectors and nproc is the number of processes being used
in the computation. If nproc does not divide n evenly, then the master will compute
the dot product on extra the elements. The subroutine SGENMAT randomly generates
values for X and Y. PSDOT then spawns nproc - 1 copies of itself and sends each
new task a part of the X and Y arrays. The message contains the length of the
subarrays in the message and the subarrays themselves. After the master spawns the
worker processes and sends out the subvectors, the master then computes the dot
product on its portion of X and Y. The master process then receives the other local
dot products from the worker processes. Notice that the PVMFRECV call uses a
wildcard (-1) for the task id parameter. This indicates that a message from any task
will satisfy the receive. Using the wildcard in this manner results in a race condition.
In this case the race condition does not cause a problem since addition is
commutative. In other words, it doesn't matter in which order we add the partial sums
from the workers. Unless one is certain that the race will not have an adverse effect on

the program, race conditions should be avoided.

Once the master receives all the local dot products and sums them into a global dot
product, it then calculates the entire dot product locally. These two results are then
subtracted, and the difference between the two values is printed. A small difference

can be expected because of the variation in floating-point roundoff errors.
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If the PSDOT program is a worker then it receives a message from the master process
containing subarrays of X and Y. It calculates the dot product of these subarrays and
sends the result back to the master process. In the interests of brevity we do not

include the SGENMAT and SDOT subroutines.

Example program: PSDOT.F:

PROGRAM PSDOT

*

* PSDOT performs a parallel inner (or dot) product, where

*

the vectors X and Y start out on a master node, which
then sets up the virtual machine, farms out the data and

work, and sums up the local pieces to get a global inner product.

*

*

*

.. External Subroutines ..

* EXTERNAL PVMFMYTID, PVMFPARENT, PVMFSPAWN, PVMFEXIT,
* PVMFINITSEND EXTERNAL PVMFPACK, PVMFSEND, PVMFRECV,
* PVMFUNPACK, SGENMAT

*

.. External Functions ..
INTEGER ISAMAX

REAL SDOT

EXTERNAL ISAMAX, SDOT

* .. Intrinsic Functions ..
INTRINSIC MOD

* .. Parameters ..
INTEGER MAXN

46



*

*

PARAMETER ( MAXN = 8000 )
INCLUDE 'fpvm3.h’

.- Scalars ..

INTEGER N, LN, MYTID, NPROCS, IBUF, IERR
INTEGER L J, K
REAL LDOT, GDOT

.. Arrays ..
INTEGER TIDS(0:63)
REAL X(MAXN), Y(MAXN)

Enroll in PVM and get my and the master process’ task
ID number

CALL PVMFMYTID( MYTID )

CALL PVMFPARENT( TIDS(0) )

If I need to spawn other processes (I am master

process)

IF ( TIDS(0) .EQ. PVMNOPARENT ) THEN

Get starting information

WRITE(*,*) How many processes should participate (1-64)?
READ(*,*) NPROCS
WRITE(*,2000) MAXN
READ(*,*) N
TIDS(0) =MYTID
IF (N .GT. MAXN ) THEN

47



WRITE(*.*) N too large. Increase parameter MAXN to run'/
3 ‘this case.’
STOP
END IF

*

LN is the number of elements of the dot product to do

#*

locally. Everyone has the same number, with the master

* getting any left over elements. J stores the number of

*

elements rest of procs do.
J=N/NPROCS

LN =J+ MOD(N, NPROCS)
I=LN+1

* Randomly generate X and Y

CALL SGENMAT(N, 1, X, N, MYTID, NPROCS, MAXN, J)
CALL SGENMAT(N, 1, Y,N, I, N,LN, NPROCS )

* Loop over all worker processes

DG 10 K =1, NPROCS-1

*

Spawn process and check for error

CALL PVMFSPAWN( ‘psdot’, 0, 'anywhere', 1, TIDS(K), IERR )
IF (IERR .NE. 1) THEN
WRITE(*,*) ERROR, could not spawn process #',K,
$ " Dying...
CALL PVMFEXIT(IERR )

48



*

*

STOP
ENDIF

Send out startup info
CALL PVMFINITSEND( PVMDEFAULT, IBUF )
CALL PVMFPACK(INTEGER4,J, 1, 1,IERR )
CALL PVMFPACK(REAL4, X(1), J, 1,IERR )
CALL PVMFPACK(REAL4,Y(D),J, 1,IERR )
CALL PVMFSEND( TIDS(K), 0, IERR )
=[+]J
10 CONTINUE

Figure master's part of dot product

GDOT =SDOT(LN, X, 1,Y, 1)

Receive the local dot products, and

add to get the global dot product

DO 20 K = 1, NPROCS-1
CALL PVMFRECV(-1, 1, IBUF )
CALL PVMFUNPACK(REAL4, LDOT, 1, 1, IERR )
GDOT = GDOT + LDOT

20 CONTINUE

Print out result

WRITE(*,*)" '
WRITE(*,*) '<x,y> = ,GDOT
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* Do sequential dot product and subtract from
* distributed dot product to get desired error estimate
*
LDOT=SDOT(N,X,1,Y,1)
WRITE(*,*) '<x,y> : sequential dot product. <x,y>": '/
$ ‘distributed dot product.’
WRITE(*,*) | <x,y> - <x,y>* | =", ABS(GDOT - LDOT)
WRITE(*,*) Run completed.’

*

* If I am a worker process (i.e. spawned by master process)

*

ELSE

*

* Receive startup info

*
CALL PVMFRECV( TIDS(0), 0, IBUF )
CALL PVMFUNPACK(INTEGER4, LN, 1, 1,IERR)
CALL PVMFUNPACK(REAIL4, X, LN, 1, IERR )
CALL PVMFUNPACK(REAIL4, Y,LN, 1,IERR)

* Figure local dot product and send it in to master

LDOT =SDOT(LN, X, 1,Y, 1)
CALL PVMFINITSEND( PVMDEFAULT, IBUF )
CALL PVMFPACK(REAL4, LDOT, 1, 1, IERR )
CALL PVMFSEND( TIDS(0), 1, IERR )

END IF

CALL PVMFEXIT(O0)
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1000 FORMAT(110," Successfully spawned process #,12,", TID ='110)
2000 FORMAT(Enter the length of vectors to multiply (1 -',17,):")
STOP

*

*  End program PSDOT

*

END
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e Failure

The failure example demonstrates how one can kill tasks and how one can find out
when tasks exit or fail. For this example we spawn several tasks, just as we did in the
previous examples. One of these unlucky tasks gets killed by the parent. Since we are
interested in finding out when a task fails, we call pvm_notify() afier spawning the
tasks. The pvm_notify() call tells PVM to send the calling task a message when
certain tasks exit. Here we are interested in all the children. Note that the task calling
pvm_notify() will receive the notification, not the tasks given in the task id array. It
wouldn't make much sense to send a notification message to a task that has exited.
The notify call can also be used to notify a task when a new host has been added or
deleted from the virtual machine. This might be useful if a program wants to
dynamically adapt to the currently available machines.

After requesting notification, the parent task then kills one of the children; in this
case, one of the middle children is killed. The call to pvm_kill() simply kills the task
indicated by the task id parameter. After killing one of the spawned tasks, the parent
waits on a pvm_recv(-1, TASKDIED) for the message notifying it the task has died.
The task id of the task that has exited is stored as a single integer in the notify
message. The process unpacks the dead task's id and prints it out. For good measure it
also prints out the task id of the task it killed. These ids should be the same. The child

tasks simply wait for about a minute and then quietly exit.

Example program: failure.c
/*
Failure notification example

Demonstrates how to tell when a task exits
*/

/* defines and prototypes for the PVM library */
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#include <pvm3.h>

/* Maximum number of children this program will spawn */
#define MAXNCHILD 20

/* Tag to use for the task done message */

#define TASKDIED 11

int

main(int argc, char* argv(])

!
(8

/* number of tasks to spawn, use 3 as the default */
int ntask = 3;

/* return code from pvm calls */
int info;

/* my task id */

int mytd;

/* my parents task id */

int myparent;

/* children task id array */

int child[MAXNCHILD];

int i, deadtid;

int ud;

char *argv[5];

/* find out my task id number */
mytid = pvm_mytid();

/* check for error */
if (mytid < 0) {
/* print out the error */

pvm_perror(argv([0]);
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/* exit the program */
return -1;
f
/* find my parent's task id number */
myparent = pvin_parent();
/* exit if there is some error other than PvmNoParent */
if ((myparent < 0) && (myparent != PvmNoParent)) {
pvm_perror(argv([0]);
pvm_exit();
return -1;

§

/* if 1 don't have a parent then i am the parent */
if (myparent == PvmmNoParent) {
/* find out how many tasks to spawn */
if (argc == 2) ntask = atoi(argv[1]);
/* make sure ntask is legal */
if ((ntask < 1) || (ntask > MAXNCHILD)) { pvm_exit(); return 0; }

/* spawn the child tasks */
info = pvm_spawn(argv[0], (char**)0, PvmTaskDebug, (char*)0, ntask,
child);

/* make sure spawn succeeded */

if (info != ntask) { pvm_exit(); return -1; }

/* print the tids */
for (i = 0; i < ntask; i++) printf("t%x\t" child[i]); putchar(\n");

/* ask for notification when child exits */
info = pvm_notify(PvmTaskExit, TASKDIED, ntask, child);
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if (info < 0) { pvm_perror("notify"); pvm_exit();
return -1; }
/* reap the middle child */
info = pvm_kill(child[ntask/2]);
if (info < 0) { pvm_perror("kill"); pvm_exit();
return -1; }

/* wait for the notification */

info = pvm_recv(-1, TASKDIED):

if (info < 0) { pvm_perror("recv"); pvm_exit();
return -1; }

info = pvim__upkint(&deadtid, 1, 1);

if (info < 0) pvm_perror("calling pvm_upkint");

/* should be the middle child */
printf("Task t%x has exited.\n", deadtid);
printf("Task t%x is middle child.\n", child[ntask/2});
pvim_exit();
return 0;

}

/* 'm a child */
sleep(63);
pvm_exit();

return 0;
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e Matrix Multiply

In our next example we program a matrix-multiply algorithm described by Fox et al. The
mmult program can be found at the end of this section. The mmult program will
calculate C = AB, where C, A, and B are all square matrices. For simplicity we assume
that m x m tasks will be used to calculate the solution. Each task will calculate a subblock
of the resulting matrix C. The block size and the value of m is given as a command line
argument to the program. The matrices A and B are also stored as blocks distributed over
the tasks. Before delving into the details of the program, let us first describe the algorithm

at a high level.

Assume we have a grid of m x m tasks. Each task ( t ij where 0 < = i,j < m) initially
contains blocks C i, A ij, and B ij. In the first step of the algorithm the tasks on the
diagonal (t ij where { = j) send their block to all the other tasks in row i. After the
transmission of A ij, all tasks calculate A ij* B ij and add the result into C ij. In the next
step, the column blocks of B are rotated. That is, t ij sends its block of B to t ¢-1). (Task t o
sends its B block to t (m-1);. The tasks now return to the first step; A i+ is multicast to all
other tasks in row i, and the algorithm continues. After m iterations the C matrix contains

A x B, and the B matrix has been rotated back into place.

Lets now go over the matrix multiply as it is programmed in PVM. In PVM there
is no restriction on which tasks may communicate with which other tasks. However,
for this program we would like to think of the tasks as a two-dimensional conceptual
torus. In order to enumerate the tasks, each task joins the group mmult. Group ids
are used to map tasks to our torus. The first task to join a group is given the group id

of zero. In the mmult program, the task with group id zero spawns the other tasks and

56



sends the parameters for the matrix multiply to those tasks. The parameters are m and
bkIsize: the square root of the number of blocks and the size of a block, respectively.
Afier all the tasks have been spawned and the parameters transmitted, pvm_barrier()
is called to make sure all the tasks have joined the group. If the barrier is not
performed, later calls to pvm_gettid() might fail since a task may not have yet joined

the group.

After the barrier, we store the task ids for the other tasks in our “‘row" in the array
myrow. This is done by calculating the group ids for all the tasks in the row and
asking PVM for the task id for the corresponding group id. Next we allocate the
blocks for the matrices using malloc(). In an actual application program we would
expect that the matrices would already be allocated. Next the program calculates the
row and column of the block of C it will be computing. This is based on the value of
the group id. The group ids range from 0 to m - 1 inclusive. Thus the integer division
of (mygid/m) will give the task's row and (mygid mod m) will give the column, if we
assume a row major mapping of group ids to tasks. Using a similar mapping, we
calculate the group id of the task directly above and below in the torus and store their
task ids in up and down, respectively.

Next the blocks are initialized by calling InitBlock(). This function simply initializes
A to random values, B to the identity matrix, and C to zeros. This will allow us to

verify the computation at the end of the program by checking that 4 = C.

Finally we enter the main loop to calculate the matrix multiply. First the tasks on the
diagonal multicast their block of A to the other tasks in their row. Note that the array
myrow actually contains the task id of the task doing the multicast. Recall that
pvm_mcast() will send to all the tasks in the tasks array except the calling task. This
procedure works well in the case of mmult since we don't want to have to needlessly
handle the extra message coming into the multicasting task with an extra pvm_recv().
Both the multicasting task and the tasks receiving the block calculate the AB for the
diagonal block and the block of B residing in the task.
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After the subblocks have been multiplied and added into the C block, we now shift
the B blocks vertically. Specifically, we pack the block of B into a message, send it to

the up task id, and then receive a new B block from the down task id.

Note that we use different message tags for sending the 4 blocks and the B blocks as
well as for different iterations of the loop. We also fully specify the task ids when
doing a pvm_recv(). It's tempting to use wildcards for the fields of pvm_recv();
however, such a practice can be dangerous. For instance, had we incorrectly
calculated the value for up and used a wildcard for the pvm_recv() instead of down,
we might have sent messages to the wrong tasks without knowing it. In this example
we fully specify messages, thereby reducing the possibility of mistakes by receiving a

message from the wrong task or the wrong phase of the algorithm.

Once the computation is complete, we check to see that 4 = C, just to verify that the
matrix multiply correctly calculated the values of C. This check would not be done in

a matrix muitiply library routine, for example.

It is not necessary to call pvm_lvgroup(), since PVM will realize the task has exited
and will remove it from the group. It is good form, however, to leave the group before
calling pvm_exit(). The reset command from the PVM console will reset all the PVM
groups. The pvin_gstat command will print the status of any groups that currently

exist.

e Example program: mmult.c

/ *
Matrix Multiply
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*/

/* defines and prototypes for the PVM library */
#include <pvm3.h>

#include <stdio.h>

/* Maximum number of children this program will spawn */
#define MAXNTIDS 100
#define MAXROW 10

/* Message tags */
#define ATAG 2
#define BTAG 3
#define DIMTAG 5
void
InitBlock(float *a, float *b, float *c, int blk, int row, int col)
{
int len, ind;

int i;

srand(pvm_mytid(});
len = blk*blk;
for (ind = 0; ind < len; ind++)
{ a[ind] = (float)(rand()%1000)/100.0; c[ind] = 0.0; }
for (1 =0; i < blk; i++) {
for j = 0; j <blk; j++) {
if (row == col)
b[j*blk+i] = (1==))? 1.0 : 0.0;
else
b[j*blk+i] = 0.0;
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}

void

BlockMult(float* c, float* a, float* b, int bik)
{

int i.jk;

for (1 = 0; i < blk; i++)
for (j = 0; j <blk; j ++)
for (k = 0; k <blk; k++)
c[i*blk+j] += (a[i*blk+k] * b[k*blk+j]);

}
it
main(int argc, char* argv{])
{

/* number of tasks to spawn, use 3 as the default */
int ntask = 2;

/* return code from pvm calls */
int info;

/* my task and group id */

int mytid, mygid;

/* children task id array */

int childfMAXNTIDS-1};

int i, m, blksize;

/* array of the tids in my row */
int myrow[MAXROWT;

float *a, *b, *c, *atmp;

int row, col, up, down;
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/* find out my task id number */
mytid = pvm_mytid();
pvm_advise(PvmRouteDirect);

/* check for error */
if (mytid < 0) {
/* print out the error */
pvm_perror(argv[0]);
/* exit the program */
return -1;
}
/* join the mmult group */
mygid = pvm_joingroup("mmuit");
if (mygid < 0) §
pvm_perror(argv[0]); pvm_exit(); return -1;

}

/* if my group id is 0 then I must spawn the other tasks */
if (mygid == 0) {

/* find out how many tasks to spawn */

if (argc == 3) {
m = atoi(argv([1]);
blksize = atoi(argv{2]);
}

if (arge < 3) {
fprintf(stderr, "usage: mmult m blk\n");
pvm_lvgroup("mmult"); pvm_exit(); return -1;

}
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/* make sure ntask is legal */
ntask = m*m;
if ((ntask < 1) || (ntask >= MAXNTIDS)) {
fprintf(stderr, "ntask = %d not valid.\n", ntask);
pvm_lvgroup("mmult"); pvm_exit(); return -1;
}
/* no need to spawn if there is only one task */

if (ntask == 1) goto barrier;

/* spawn the child tasks */
info = pvm_spawn("mmult", (char**)0, PvmTaskDefault, (char*)0,
ntask-1, child);

/* make sure spawn succeeded */
if (info != ntask-1) {
pvmn_lvgroup("mmult"); pvm_exit(); return -1;
h
/* send the matrix dimension */
pvm_initsend(PvmDataDefault);
pvm_pkint(&m, 1, 1);
pvm_pkint(&blksize, 1, 1);
pvm_mcast(child, ntask-1, DIMTAG);
}
else {
/* recv the matrix dimension */
pvm_recv(pvm_gettid("mmult”, 0), DIMTAG);
pvm_upkint(&m, 1, 1);
pvm_upkint(&blksize, 1, 1);
ntask = m*m;

}



/* make sure all tasks have joined the group */
barrier:

info = pvm_barrier("mmult" ntask);

if (info < 0) pvm_perror(argv[0]);

/* find the tids in my row */
for(1=0;1<m;i++)

myrow(i] = pvm_gettid("mmult", (mygid/m)*m + i);

/* allocate the memory for the local blocks */

a = (float*)malloc(sizeof(float)*blksize *blksize);

b = (float*)malloc(sizeof{float)*blksize *blksize);

¢ = (float*)malloc(sizeof(float)*blksize *blksize);

atmp = (float*)malloc(sizeof(float)*blksize*blksize);

/* check for valid pointers */

if ({(a && b && ¢ && atmp)) {
fprintf(stderr, "%s: out of memory'\n", argv{0]);
free(a); free(b); free(c); free(atmp);
pvm_lvgroup("mmult"); pvm_exit(); return -1;

3

/* find my block's row and column */

row = mygid/m; col = mygid % m;

/* calculate the neighbor's above and below */

up = pvin_getud("mmult”, ((row)?(row-1):(m-1))*m-+col);
down = pvm_gettid("mmult", ((row == (m- 1)) ?col:

(row+1)*m+col));

/* initialize the blocks */
InitBlock(a, b, c, blksize, row, col);
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/* do the matrix multiply */
for(i=0;1<m;i++) {
/* mcast the block of matrix A */
if (col == (row + 1)%m) {
pvm_initsend(PvmDataDefault);
pvm_pkfloat(a, blksize*blksize, 1);
pvm_mcast(myrow, m, (i+1)*ATAG);
BlockMult(c,a,b,blksize);
}
else {
pvm_recv(pvm_gettud("mmult”, row*m + (row
+1)%m), (1+1)*ATAG);
pvm_upkfloat(atmp, blksize*blksize, 1);
BlockMult(c,atmp,b,blksize);
}
/* rotate the columns of B */
pvm_initsend(PvmDataDefault);
pvm_pkfloat(b, blksize*blksize, 1);
pvm_send(up, (i+1)*BTAG);
pvm_recv(down, (i+1)*BTAG);
pvimm_upkfloat(b, blksize*blksize, 1);
}
/* check it */
for (1 = 0 ; i < blksize*blksize; i++)
if (a[i] = c[1])
printf("Error a[%d] (%g) != c[%d] (%g) \n", i,
afil.i,cfi]);

printf("Done.\n");
free(a); free(b); free(c); free(atmp);



pvm_lvgroup("mmult");
pvm_exit();

return O;
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e One-Dimensional Heat Equation

Here we present a PVM program that calculates heat diffusion through a substrate, in this

04 _ 84
8t =~ BHz32

case a wire. Consider the one-dimensional heat equation on a thin wire:

and a discretization of the form

Aing—Aiy A1 =245+ Ay
Ot - Az2

giving the explicit formula

At
A=A+ -A—z-,-(-‘ii,ju - 245+ Aij1)-
initial and boundary conditions:

At,0) =0, A(t,1)=0foc all t
A0, z) =sin(rz) for0<z <1

The pseudo code for this computation is as follows:

for i = 1:tsteps-1;
t = t+dt;
a(i+l,1)=0; a(i+1l,n+2)=0;

for j = 2:n+l1;

(6.5.1)

{6.5.2)

(6.5.3)

a(i+l,jy=a(i,j) + mu*(a(i,j+l)-2*a(i,j)y+a(i,j-1)):

end;

t;
a(i+l,1l:n+2);
plot(a(i,:))

end

For this example we will use a master-slave programming model. The master, heat.c,

spawns five copies of the program heatslv. The slaves compute the heat diffusion for

subsections of the wire in parallel. At each time step the slaves exchange boundary

information, in this case the temperature of the wire at the boundaries between

Processors.
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Let’s take a closer look at the code. In heat.c the array solution will hold the solution
for the heat diffusion equation at each time step. This array will be output at the end of

the program in xgraph format. (xgraph is a program for plotting data.) First the heatslv
tasks are spawned. Next, the initial data set is computed. Notice that the ends of the wires

are given initial temperature values of zero.

The main part of the program is then executed four times, each with a different value for
At. A timer is used to compute the elapsed time of each compute phase. The initial data
sets are sent to the heatslv tasks. The left and right neighbor task ids are sent along with

the initial data set. The heatslv tasks use these to communicate boundary information.

(Alternatively, we could have used the PVM group calls to map tasks to segments of the
wire. By using the group calls we would have avoided explicitly communicating the task

ids to the slave processes.)

After sending the initial data, the master process simply waits for results. When the
results arrive, they are integrated into the solution matrix, the elapsed time is calculated,
and the solution is written out to the xgraph file. Once the data for all four phases has
been computed and stored, the master program prints out the elapsed times and kills the

slave processes.

Example program: heat.c

/*
heat.c
Use PVM to solve a simple heat diffusion differential

equation, using 1 master program and 5 slaves.
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The master program sets up the data, communicates it to the slaves and waits for the
results to be sent from the slaves. Produces xgraph ready files of the results.
*/

#include "pvm3.h"

#include <stdio.h>

#include <math.h>

#include <time.h>

#define SLAVENAME "heatslv"
#define NPROC 5

#define TIMESTEP 100

#define PLOTINC 10

#define SIZE 1000

int num_data = SIZE/NPROC;

main()

{ int mytid, task_ids[NPROC], i, j;
int left, right, k, |;
int step = TIMESTEP;
int info;

double mit[SIZE], solution[ TIMESTEP]{SIZE];
double result{f TIMESTEP*SIZE/NPROC], deltax2;
FILE *filenum;

char *filename[4][7];

double deltat[4];

time_t t0;

int etime[4];
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filename[0]{0] = "graphl™;
filename[1][0] = "graph2";
filename[2][0] = "graph3";
filename[3][0] = "graph4”;

deltat[0] = 5.0e-1;
deltat[1] = 5.0e-3;
deltat[2] = 5.0e-6;
deltat[3] = 5.0e-9:

/* enroll in pvm */

mytid = pvm_mytid();

/* spawn the slave tasks */
info = pvm_spawn(SLAVENAME (char **)0, PvmTaskDefault, "",
NPROC, task_ids);

/* create the initial data set */
for (i = 0; i <SIZE; i++)
init[i] = sin(M_PI * ( (double)i / (double)(SIZE-1) ));
init[0] = 0.0;
init[SIZE-1] = 0.0;

/*run the problem 4 times for different values of delta t*/
for(1=0;1<4;++) {
deltax2 = (deltat{l}/pow(1.0/(double)SIZE,2.0));
/* start timing for this run */
time(&t0);
etime[l] = t0;
/* send the initial data to the slaves. */
/* include neighbor info for exchanging boundary data */
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for (i = 0; i < NPROC; i++) {
pvm_initsend(PvmDataDefault);
left=(i==0) ? 0 : task_ids[i-1];
pvm_pkint(&left, 1, 1);
right = (i == (NPROC-1)) ? 0 : task_ids[i+1];
pvm_pkint(&right, 1, 1);
pvm_pkint(&step, 1, 1);
pvm_pkdouble(&deltax2, 1, 1);
pvm_pkint(&num_data, 1, 1);
pvin_pkdouble(&init{num_data*i], num_data, 1);
pvm_send(task_ids(i], 4);
}

/* wait for the results */
for (i = 0; i < NPROC; i++) {

pvm_recv(task_ids[i], 7);

pvm_upkdouble(&result[0], num_data*TIMESTEP, 1);
/* update the solution */

for (j = 0; j < TIMESTEP; j++)

for (k = 0; k < num_data; k++)
solution[j][num_data*i+k] = result[wh(j,k)];

}

/* stop timing */
time(&t0);
etime[l] = t0 - etime[l];

/* produce the output */

filenum = fopen(filename[l][0], "w");
fprintf(filenum,"TitleText: Wire Heat over Delta
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Time: %e\n",
deltat[l1]);
fprintf(filenum,” XUnitText: Distance\nY UnitText:
Heat\n");
for (i=0; i <TIMESTEP; i=1i+ PLOTINC) |
fprintf(filenum,"\"Time index: %d\n",i);
for (j = 0; j <SIZE; j++)
fprintf(filenum,"%d %e\n"j,
solution[1][j1);
fprintf{filenum,\n");
}

fclose (filenum);

/* print the timing information */
printf("Problem size: %d\n",SIZE);
for (1 =0;1<4;i++)

printf("Time for run %d: %d sec\n",i,etime[i]);

/* kill the slave processes */
for (1 = 0; 1 <NPROC; i++) pvm_kill(task_ids[i]);

pvm_exit();

int wh(x, y)
nt X, y;

{

return(x*num_data+y);
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The heatslv programs do the actual computation of the heat diffusion through the
wire. The slave program consists of an infinite loop that receives an initial data set,
iteratively computes a solution based on this data set (exchanging boundary
information with neighbors on each iteration), and sends the resulting partial solution

back to the master process.

Rather than using an infinite loop in the slave tasks, we could send a special message
to the slave ordering it to exit. To avoid complicating the message passing, however,
we simply use the infinite loop in the slave tasks and kill them off from the master
program. A third option would be to have the slaves execute only once, exiting after
processing a single data set from the master. This would require placing the master’s
spawn call inside the main for loop of heat.c. While this option would work, it would

needlessly add overhead to the overall computation.

For each time step and before each compute phase, the boundary values of the
temperature matrix are exchanged. The left-hand boundary elements are first sent to
the left neighbor task and received from the right neighbor task. Symmetrically, the
right-hand boundary elements are sent to the right neighbor and then received from
the left neighbor. The task ids for the neighbors are checked to make sure no attempt

is made to send or receive messages to nonexistent tasks.

Example program: heatslv.c
/ %*

heatslv.c

The slaves receive the initial data from the host,
exchange boundary information with neighbors,
and calculate the heat change in the wire.

This is done for a number of iterations, sent by the

master.*/
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#include "pvm3.h"
#include <stdio.h>

int num_data;

main()
{
int mytid, left, right, i, j, master;

int timestep;

double *init, *A;

double leftdata, nghtdata, delta, leftside, rightside;

/* enroll in pvm */
mytid = pvm_mytd();

master = pvim_parent();

/* receive my data from the master program */
while(1) {
pvm_recv(master, 4);
pvm_upkint(&left, 1, 1);
pvm_upkint(&rnight, 1, 1);
pvm_upkint(&timestep, 1, 1);
pvm_upkdouble(&delta, 1, 1);
pvm_upkint(&num_data, 1, 1);
init = (double *) malloc(num_data*sizeof(double));

pvm_upkdouble(init, num_data, 1);

/* copy the initial data into my working array */
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A = (double *) malloc(num_data * timestep *
sizeof(double));

for (1 = 0; i < num_data; i++) A[i] = init[i];

/* perform the calculation */

for (1 = 0; 1 < timestep-1; i++) {

/* trade boundary info with my neighbors */

/* send left, receive right */

if (left 1= 0) {
pvim_initsend(PvimDataDefault);
pvm_pkdouble(&A[wh(1,0)],1,1);
pvm_send(left, 5);

}

if (right !=0) {
pvm_recv(right, 5);
pvm_upkdouble(&rightdata, 1, 1);

/* send right, receive left */
pvim_initsend(PvmDataDefault);
pvm_pkdouble(&A{wh(i,num_data-1)],1,1);
pvm_send(right, 6);

}

if (left 1= 0) {
pvm_recv(left, 6);
pvin_upkdouble(&leftdata,1,1);

}

/* do the calculations for this iteration */

for (j = 0; j < num_data; j++) {
leftside = (j == 0) ? lefidata : A[wh(i,j-1)];
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rightside = (j == (num_data-1)) ? rightdata :
A[wh(ij+D)];
if ((==0)&&(left==0))
A[wh(i+1,j)] = 0.0;
else if (j==(num_data-1))&&(right==0))
A[wh(i+1,j)] = 0.0;
else
A[wh(i+1,j)]=
A[wh(i,j)]+delta*(rightside-
2*A[wh(i,j)]+Heftside);

/* send the results back to the master program */

pvm_initsend(PvmDataDefault);
pvm_pkdouble(&A[0],num_data*timestep,1);
pvm_send(master,7);

}

/* just for good measure */
pvm_exit();

}

int wh(x, y)
int X, y;
{

return(x*num_data+y);
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Appendix C My Examples

1. 2D Heat Equation DESCRIPTION:

This project is based on a simplified two-dimensional heat equation domain
decomposition. The initial temperature is computed to be high in the middle of the
domain and zero at the boundaries. The boundaries are held at zero throughout the
simulation. During the time-stepping, an array containing two domains is used; these

domains alternate between old data and new data.
1) pvm_heat2D.c
#include <stdio.h>

#include "pvm3.h" /* PVM version 3.0 include file */

extern void draw_heat(int, int); /* X routine to create graph */

#define NXPROB 20 /* x dimension of problem grid */
#define NYPROB 20 /* y dimension of problem grid */
#define STEPS 50 /* number of time steps */
#define AOUT “heat2D" /* name of PVM executable */
#define DONTCARE -1 /* accept message from anytask */
#define MAXCHILD 8 /* maximum number of children tasks */
#define MINCHILD 3 /* minimum number of children tasks */
#define BEGIN 1 /* message type */
#define NGHBOR1 2 /* message type */
#define NGHBOR2 3 /* message type */
#define NONE 0 /* indicates no neighbor */
#define DONE 4 /* message type */
struct Parms {

float cx;
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float cy;
} parms = {0.1, 0.1};

main() {

void inidat(}), prtdat(), update();

float u{2][NXPROB][NYPROB]; /* array for grid */

int taskid,parent,tidsf MAXCHILDY], /* PVM taskids */
nproc,narch, /* number of PVM machines & architect */
nchild, /* number of children processes */
averow rows,offset.extra, /* for sending rows of data */

neighborl,neighbor2, /* neighbor tasks */

rc,start.end, /* misc */
1,ix,1y,1Z,it; /* loop variables */

struct hostinfo { /* structure defined in pvm3.h */
int hi_tid; /* -needed for call to pvm_config */

char *hi_name;
char *hi_arch;
int hi_speed;

{ hostp;

/* First, enroll this process in PVM and find parent task id */
taskid = pvim_mytid();

parent = pvm_parent();

if (parent == PvinNoParent) {

/* Determine the number of machines in this configuration. Ther spawn one
child process for each processor excluding the parent. If number of
children exceed MAXCHILD, then just spawn the maximum. If less than

MINCHILD then just spawn MINCHILD child processes */

77



rc = pvm_config(&nproc.&narch,&hostp);
nchild = nproc-1;
if (nchild > MAXCHILD)
nchild = MAXCHILD;
else if (nchild < MINCHILD)
nchild = MINCHILD;
printf("Spawning %d children processes\n",nchild);
for (i=0; i<nchild; i++) {
rc = pvim_spawn(AOUT NULL,PvimTaskDefault,"", I, &tids[i]);
printf("...child task id= %d\n",tids[1]);

3
s

/* Initialize grid */

printf("Grid size: X=%d Y= %d Time steps= %d\n" . NXPROB,NYPROB,STEPS);
printf("Initializing grid and writing initial.dat file...\n");

inidat(NXPROB, NYPROB, u);

prtdat(INXPROB, NYPROB, u, "initial.dat");

/* Distribute work to children. Must first figure out how many rows to
/* send and what to do with extra rows. */
averow = NXPROB/nchild;
extra = NXPROB%nchild;
offset = 0;
for (1=0; i<nchild; i++) {
rows = (1 <extra) ? averow+1 : averow;
/* Tell each child which other children are its neighbors, since
/* they must exchange data with each other. */

if(i==0)
neighborl = NONE;
else

78



neighborl = tids[i-1];
if (i == nchild-1)
neighbor2 = NONE;
else
neighbor2 = tids[i+1];
/* Now send startup information to each child */
rc = pvm_initsend(PvmDataRawy);
rc = pvm_pkint(&offset, 1, 1);
rc = pvm_pkint(&rows, 1, 1);
rc = pvm_pkint(&neighborl, 1, 1);
rc = pvm_pkint(&neighbor2, 1, 1);
rc = pvm_pkfloat(&u[0][offset][0],rows*NYPROB, 1);
rc = pvm_send(tids{i], BEGIN);
printf{"Sent to= %d offset= %d rows= %d neighborl= %d neighbor2= %d\n",
tids[i],offset,rows,neighborl neighbor2);
offset = offset + rows;

}

/* Now wait for results from all children tasks */

for (i=0; i<nchild; i++) {
pvm_recv(DONTCARE,DONE);
rc = pvm_upkint(&offset, 1, 1);
rc = pvm_upkint(&rows, 1, 1);
rc = pvim_upkfloat(&u[0][offset][0],rows*NYPROB,1);
}

/* Exit PVM */

rc = pvi_exit();

/* Write final output and call X graph */
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printf("Writing final.dat file and generating graph._.\n");
pridat(NXPROB, NYPROB, &u[0]{0][0], "final.dat");
draw_heatNXPROB,NYPROB);

¢ /* End of parent code */

if (parent != PvmNoParent) {
/*******#tt**t*t********** Chﬂd code **t*#*t****t****##***#*ttt#t*t*/
/* Initialize everything - including the borders - to zero */
for (1z=0; iz<2; iz++)
for (ix=0; ix<NXPROB; ix++)
for (iy=0; iy<NYPROB; 1y++)
u[iz][ix][iy] = 0.0;

/* Now receive my offset, rows, neighbors and grid partition from parent */
rc = pvm_recv(parent, BEGIN);

rc = pvm_upkint(&offset,1,1);

rc = pvimn_upkint(&rows,1,1);

rc = pvm_upkint(&neighborl, 1, 1);

rc = pvm_upkint(&neighbor2, 1, 1);

rc = pvm_upkfloat(&u[0][offset][0],rows*NYPROB,1);

/* Determine border elements. Need to consider first and last columns.
/* Obviously, row 0 can't exchange with row 0-1. Likewise, the last
/* row can't exchange with last+1. */
if (offset==0)
start=1;
else

start=offset;
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if ((offset+rows)==NXPROB)
end=start+rows-2;
else

end = start+rows-1;

/* Begin doing STEPS iterations. Must communicate border rows with
neighbors. If I have the first or last grid row, then [ only need to
communicate with one neighbor */

1iz=0;

for (it = 1; it <= STEPS; it++) {

if (neighborl !'= NONE) {
rc = pvm_initsend(PvinDataRaw);
rc = pvm_pkfloat(&ufiz][offsei}{0], NYPROB,I);
rc = pvm_send(neighborl NGHBOR2);

rc = pvimn_recv(neighbor] NGHBOR1);
rc = pvim_upkfloat(&u[iz][offset-1][0], NYPROB,1);

h

if (neighbor2 !'= NONE) {
rc = pvm_initsend(PvmDataRaw);
rc = pvin_pkfloat(&u[iz][offset+rows-1][0], NYPROB,1);
rc = pvin_send(neighbor2, NGHBOR1);

rc = pvm_recv(neighbor2, NGHBOR?2);
rc = pvm_upkfloat(&ufiz][offset+rows][0], NYPROB,1);

}

/* Now call update to update the value of grid points */
update(start,end, NYPROB,&u[iz][0][0],&u[ !-iz][0][0]);
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iz=1-1iz;

(S

/* Finally, send my portion of final results back to parent */
rc = pvim_initsend(PvmDataRaw);

rc = pvm_pkint(&offset, 1, 1);

rc = pvimn_pkint(&rows, 1, 1);

rc = pvim_pkfloat(&u[iz][offset][0],rows*NYPROB,1);

rc = pvin_send(parent, DONE);

/* Exit PVM */

rc = pvm_exit();

} /* End of child code */
} /* End of program */

/********************** subrouu'ne update *kkkkkkkRKERKkkkkKk KX/

void update(int start, int end, int ny, float *ul, float *u2) {

int ix, 1y;

for (ix = start; ix <= end; ix++)
for (iy = 1; iy <= ny-2; iy++)
*(u2+ix*ny+iy) = *(ul +ix*ny+iy) +
parms.cx * (*(ul+(ix+1)*ny+1y) + *(ul+(ix-1)*ny+iy) -
2.0 * *(ul+ix*ny+iy)) +
parms.cy * (*(ul+ix*ny+iy+1) + *(ul+ix*ny+iy-1) -

2.0 * *(ul +ix*ny+iy));
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/ subroutine inidat /

void inidat(int nx, int ny, float *u) {

int ix, 1y;

for (ix = 0; ix <= nx-1; ix++)
for (iy = 0; iy <= ny-1; iy++)
*(utix*ny+iy) = (float)(ix * (nx - ix - 1) * iy * (ny - 1y - 1));

[

/************t*#****** subrou[ine pndat ***********************#/
void prtdat(int nx, int ny, float *ul, char *fnam) {
int ix, iy;

FILE *fp;

fp = fopen(fnam, "w");
for (iy =ny-1; iy >= 0; iy—) {
for (ix = 0; ix <= nx-1; ix++) {
fprintf(fp, "%6.1f", *(ul+ix*ny+iy));

if (ix != nx-1)

fprintf(fp, " *);
else
fprintf(fp, "\n");
h
¥
fclose(fp);

}
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2) The Makefile and the result:

PIPINTS

il
T

# FILE: Makefile.aimk
# USE: aimk

CC = cc

OBJ] =  heat2D

SRC = pvm_heat2D.c draw_heat.c

PVMDIR = /mnt/spark2/share/lixin/pvm/unixpvm/pvm3
INCLUDE=  -I${PVMDIR}/include

LIBS =  -L${PVMDIR}/1ib/SUN4SOL2 -lpvm3 -Isocket -Insl
XLIBS = /ust/lib/libXll.a

${OBJ}: ${SRC}
${CC} ${SRC} ${INCLUDE} ${LIBS} ${XLIBS} -o ${OBJ}

Result #HEE R

pvin

pvm> add lily.cs.concordia.ca
Console: exit handler called
1 successful

HOST DTID

lily.cs.concordia.ca 80000

pvm> add orchid.cs.concordia.ca
0 successful

HOST DTID

orchid.cs.concordia.ca Duplicate host

pvm> add spark.cs.concordia.ca



Console: exit handler called
1 successful
HOST DTID
spark.cs.concordia.ca ¢0000
pvm> halt

Terminated

orchid.zhang_j > heat2D

Spawning 3 children processes

...child task id= 262203

...child task id= 262204

...child task id= 262205

Grid size: X=20 Y=20 Time steps= 50

Initializing grid and writing initial.dat file...

Sent to= 262203 offset= 0 rows= 7 neighborl= 0 neighbor2= 262204

Sent to= 262204 offset= 7 rows= 7 neighborl= 262203 neighbor2= 262205
Sent to= 262205 offset= 14 rows= 6 neighborl= 262204 neighbor2=0

00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 0.0 0.0 00 00 0.0

0.0 324.0 612.0 864.0 1080.0 1260.0 1404.0 1512.0 1584.0 1620.0 1620.0 158
4.0 1512.0 1404.0 1260.0 1080.0 864.0 612.0 324.0 0.0

0.0 612.0 1156.0 1632.0 2040.0 2380.0 2652.0 2856.0 2992.0 3060.0 3060.0 299
2.0 2856.0 2652.0 2380.0 2040.0 1632.0 1156.0 612.0 0.0

0.0 864.0 1632.0 2304.0 2880.0 3360.0 3744.0 4032.0 4224.0 4320.0 4320.0 422
4.0 4032.0 3744.0 3360.0 2880.0 2304.0 1632.0 864.0 0.0

0.0 1080.0 2040.0 2880.0 3600.0 4200.0 4680.0 5040.0 5280.0 5400.0 5400.0 528
0.0 5040.0 4680.0 4200.0 3600.0 2880.0 2040.0 1080.0 0.0

0.0 1260.0 2380.0 3360.0 4200.0 4900.0 5460.0 5880.0 6160.0 6300.0 6300.0 616
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0.0 5880.0 5460.0 4900.0 4200.0 3360.0 2380.0 1260.0 0.0

0.0 1404.0 2652.0 3744.0 4680.0 5460.0 6084.0 6552.0 6864.0 7020.0 7020.0 686
4.0 6552.0 6084.0 5460.0 4680.0 3744.0 2652.0 1404.0 0.0

0.0 1512.0 2856.0 4032.0 5040.0 5880.0 6552.0 7056.0 7392.0 7560.0 7560.0 739
2.0 7056.0 6552.0 5880.0 5040.0 4032.0 2856.0 1512.0 0.0

0.0 1584.0 2992.0 4224.0 5280.0 6160.0 6864.0 7392.0 7744.0 7920.0 7920.0 774
4.0 7392.0 6864.0 6160.0 5280.0 4224.0 2992.0 1584.0 0.0

0.0 1620.0 3060.0 4320.0 5400.0 6300.0 7020.0 7560.0 7920.0 8100.0 8100.0 792
0.0 7560.0 7020.0 6300.0 5400.0 4320.0 3060.0 1620.0 0.0

0.0 1620.0 3060.0 4320.0 5400.0 6300.0 7020.0 7560.0 7920.0 8100.0 8100.0 792
0.0 7560.0 7020.0 6300.0 5400.0 4320.0 3060.0 1620.0 0.0

0.0 1584.0 2992.0 4224.0 5280.0 6160.0 6864.0 7392.0 7744.0 7920.0 7920.0 774
4.0 7392.0 6864.0 6160.0 5280.0 4224.0 2992.0 1584.0 0.0

0.0 1512.0 2856.0 4032.0 5040.0 5880.0 6552.0 7056.0 7392.0 7560.0 7560.0 739
2.0 7056.0 6552.0 5880.0 5040.0 4032.0 2856.0 1512.0 0.0

0.0 1404.0 2652.0 3744.0 4680.0 5460.0 6084.0 6552.0 6864.0 7020.0 7020.0 686
4.0 6552.0 6084.0 5460.0 4680.0 3744.0 2652.0 1404.0 0.0

0.0 1260.0 2380.0 3360.0 4200.0 4900.0 5460.0 5880.0 6160.0 6300.0 6300.0 616
0.0 5880.0 5460.0 4900.0 4200.0 3360.0 2380.0 1260.0 0.0

0.0 1080.0 2040.0 2880.0 3600.0 4200.0 4680.0 5040.0 5280.0 5400.0 5400.0 528
0.0 5040.0 4680.0 4200.0 3600.0 2880.0 2040.0 1080.0 0.0

0.0 864.0 1632.0 2304.0 2880.0 3360.0 3744.0 4032.0 4224.0 4320.0 4320.0 422
4.0 4032.0 3744.0 3360.0 2880.0 2304.0 1632.0 864.0 0.0

0.0 612.0 1156.0 1632.0 2040.0 2380.0 2652.0 2856.0 2992.0 3060.0 3060.0 299
2.0 2856.0 2652.0 2380.0 2040.0 1632.0 1156.0 612.0 0.0

0.0 324.0 612.0 864.0 1080.0 1260.0 1404.0 1512.0 1584.0 1620.0 1620.0 158
4.0 1512.0 1404.0 1260.0 1080.0 864.0 612.0 324.0 0.0

00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 0.0 0.0
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2 Matrix Multiply DESCRIPTION:

This project is a matrix multiply program. In this project, the data is distributed
among the worker tasks who perform the actual multiplication and send back their
respective results to the master task.

The code:

1) pvimm_mm_master.c:

#include <stdio.h>

#include "pvm3.h" /* PVM version 3.0 include file */
#define NPROC 4 /* number of PVM worker tasks to spawn */
#define NRA 62 /* number of rows in matrix A */
#define NCA 15 /* number of columns in matrix A */
#define NCB 7 /* number of columns in matrix B */
main() {
int mtid, /* PVM task id of master task */
wtids[NPROC], /* array of PVM task ids for worker tasks */
mtype, /* PVM message type */
rOws, /* rows of matrix A sent to each worker */

averow, extra, offset,  /* used to determine rows sent to each worker */

rcode, 1, j; /* misc */
double alNRA]J[NCA], /* matrix A to be multiplied */
b[NCA][NCB], /* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */
char thishost[35]; /* name of selected master */
/* enroll this task in PVM */

mtid = pvim_mytid();
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/* The master task now spawns worker tasks by calling pvm_spawn. The unique
worker task ids are stored in the wtids array. The first worker task is
spawned on a specific machine. The return code tells the number of tasks
successfully spawned, and in this example, is not checked for errors. */

for (1=0; 1I<NPROC; i++) {

if (i==0) {

printf ("Enter selected hostname - must match PVM config: ");
scanf("%s", thishost);
rcode = pvm_spawn("mm.worker", NULL, PvimTaskHost, thishost, 1, &wtids[0]);
H

else
rcode = pvm_spawn("mm.worker”, NULL, PvmTaskDefault, "", 1, &wtids[i]);
H

/* mnitialize A and B */
for (i=0; i<NRA; 1++)
for (j=0; j<NCA; j++)
afi][j]= i+j;

for (i=0; i<NCA; i++)
for (j=0; j<NCB; j++)
b[i]h]= 1*;
averow = NRA/NPROC;
extra = NRA%NPROC;

offset = 0;

mtype = 1;

/* send data to the worker tasks */
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for (i=0; i<NPROC; i++) { /* for each worker task */

rows = (i < extra) ? averow+1 : averow;  /* Find #rows to send from A */
/* next call initializes send buffer and specifies to do XDR data format */
/* conversion only in heterogenous environment */

rcode = pvm_jnitsend(PvmDataDefault);

/* next four calls pack values into the send buffer */

rcode = pvm_pkint(&offset, 1, 1); /* starting pos. in matrix */

rcode = pvin_pkint(&rows, 1, 1); /* #rows of A to send */

rcode = pvm_pkdouble(&a[offset][0], rows*NCA, 1); /* some rows from A */
rcode = pvm_pkdouble(b, NCA*NCB, 1); /* all of B */

/* send contents of send buffer to worker task */

rcode = pvm_send(wtids[i], mtype);

offset = offset + rows;

;

/* watit for results from all worker tasks */

mtype = 2; /* set message type */
for (i=0; i<NPROC; i++) { /* do once for each worker */
rcode = pvm_recv(-1, mtype); /* receive message from
worker*/
rcode = pvm_upkint(&offset, 1, 1); /* starting pos. in matrix */
rcode = pvm_upkint(&rows, 1, 1); /* #rows sent */

rcode = pvm_upkdouble(&cfoffset][0], rows*NCB, 1); /* rows for matrix C */
}

/* print results */
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for (i=0: iI<NRA; i++) {
printf(*\n");
for (j=0; j<NCB; j++)
printf("%6.2f ", c[i]i]);
f

printf ("\n");

/* task now exits from PVM */
rcode = pvm_exit();

1
f

2) pvm_mm_worker:
#include <stdio.h>
#include <malloc.h>

#include "pvm3.h"  /* PVM version 3.0 include file */

#define NRA 62 /* number of rows in matrix A */

#define NCA 15 /* number of columns in matrix A */

#define NCB 7 /* number of columns in matrix B */

main() {

int wtid, /* PVM task id of this worker program */
mtid, /* PVM task id of parent master program */
mtype, /* PVM message type */
TOWS, /* number of rows in matrix a sent to worker */
offset, /* starting position in matrix */

rcode, i,j, k; /* misc */
double a[NRA][NCA], /* matrix A to be multiplied */
b[NCA][NCB], /* matrix B to be multiplied */
c[NRA]J[NCB]; /* result matrix C */
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/* enroll worker task */

wtid = pvm_mytid();

/* Receive message from master */

mtype = I; /* set message type */
mtid = pvm_parent(); /* get task id for master process */
rcode = pvm_recv(mtid, mtype); /* wait to receive message from master*/

rcode = pvm_upkint(&offset, 1, 1);  /* start pos. in A and C matrices */
rcode = pvin_upkint(&rows, 1, 1); /* #rows in matrix A sent */
rcode = pvim_upkdouble(a, rows*NCA, 1); /* our share of matrix A */
rcode = pvm_upkdouble(b, NCA*NCB, 1); /* contents of matrix B */

printf("worker task id = %d received %d rows from A\n", wtid, rows);

/* do matrix multiply */
for (k=0; k<NCB; k++)
for (i=0; i<rows; 1++) {
c[i]{k] = 0.0;
for (j=0; j<NCA; j++)
c[i](k] = c[i][k] + a[i}[j] * b[1[k];

/* Set up send message to master. */

mtype = 2; /* set message type */

rcode = pvm_initsend(PvmDataDefault); /* initialize send buffer */
rcode = pvin_pkint(&offset, 1, 1);  /* pos. in result matrix */

rcode = pvmn_pkint(&rows, 1, 1); /* number of rows being sent */
rcode = pvin_pkdouble(c, rows*NCB, 1); /* our part of result matrix C */
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/* send 10 master */

rcode = pvm_send(mtid, mtype);

/* exit PVM */
rcode = pvm_exit();

}

3) The Makefile and result:

# PVM Matrix Multiply Makefile
# USE: aimk

FIZYNIZIRIZIBISININII

G D e et g e e e e e T g L g S e et I S T

cCc = cc

PVMDIR = /mnt/spark2/share/lixin/pvm/unixpvm/pvm3
INCLUDE = -I${PVMDIR}/include

LIBS = -L${PVMDIR}/lib/SUN4SOL2 -lpvm3 -Isocket -Insl

mm: mm.master mm.worker

mm.master: pvim_mm_master.c

${CC} pvmm_mm_master.c ${INCLUDE} ${LIBS} -o mm.master

mm.worker: pvm_mm_worker.c
${CC} pvin_mm_worker.c ${INCLUDE} ${LIBS} -o mm.worker

orchid.zhang j > mm.master
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Enter selected hostname - must match PVM config: orchid

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

1015.00
1120.00
1225.00
1330.00
1435.00
1540.00
1645.00
1750.00
1855.00
1960.00
2065.00
2170.00
2275.00
2380.00
2485.00
2590.00
2695.00
2800.00
2905.00
3010.00
3115.00
3220.00
3325.00
3430.00
3535.00
3640.00
3745.00
3850.00

2030.00
2240.00
2450.00
2660.00
2870.00
3080.00
3290.00
3500.00
3710.00
3920.00
4130.00
4340.00
4550.00
4760.00
4970.00
5180.00
5390.00
5600.00
5810.00
6020.00
6230.00
6440.00
6650.00
6860.00
7070.00
7280.00
7490.00
7700.00

3045.00
3360.00
3675.00
3990.00
4305.00
4620.00
4935.00
5250.00
5565.00
5880.00
6195.00
6510.00
6825.00
7140.00
7455.00
7770.00
8085.00
8400.00
8715.00
9030.00
9345.00
9660.00
9975.00
10290.00
10605.00
10920.00
11235.00
11550.00

4060.00
4480.00
4900.00
5320.00
5740.00
6160.00
6580.00
7000.00
7420.00
7840.00
8260.00
8680.00
9100.00
9520.00
9940.00
10360.00
10780.00
11200.00
11620.00
12040.00
12460.00
12880.00
13300.00
13720.00
14140.00
14560.00
14980.00
15400.00
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5075.00
5600.00
6125.00
6650.00
7175.00
7700.00
8225.00
8750.00
9275.00
9800.00
10325.00
10850.00
11375.00
11900.00
12425.00

6090.00
6720.00
7350.00
7980.00
8610.00
9240.00
9870.00
10500.00
11130.00
11760.00
12390.00
13020.00
13650.00
14280.00
14910.00

12950.00
13475.00
14000.00
14525.00
15050.00
15575.00
16100.00
16625.00
17150.00
17675.00
18200.00
18725.00
19250.00

15540.00
16170.00
16800.00
17430.00
18060.00
18690.00
19320.00
19950.00
20580.00
21210.00
21840.00
22470.00
23100.00



0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

3955.00
4060.00
4165.00
4270.00
4375.00
4480.00
4585.00
4690.00
4795.00
4900.00
5005.00
5110.00
5215.00
5320.00
5425.00
5530.00
5635.00
5740.00
5845.00
5950.00
6055.00
6160.00
6265.00
6370.00
6475.00
6580.00
6685.00
6790.00
6895.00
7000.00

7910.00
8120.00
8330.00
8540.00
8750.00
8960.00
9170.00
9380.00
9590.00
9800.00
10010.00
10220.00
10430.00
10640.00
10850.00
11060.00
11270.00
11480.00
11690.00
11900.00
12110.00
12320.00
12530.00
12740.00
12950.00
13160.00
13370.00
13580.00
13790.00
14000.00

11865.00
12180.00
12495.00
12810.00
13125.00
13440.00
13755.00
14070.00
14385.00
14700.00
15015.00
15330.00
15645.00
15960.00
16275.00
16590.00
16905.00
17220.00
17535.00
17850.00
18165.00
18480.00
18795.00
19110.00
19425.00
19740.00
20055.00
20370.00
20685.00
21000.00

15820.00
16240.00
16660.00
17080.00
17500.00
17920.00
18340.00
18760.00
19180.00
19600.00
20020.00
20440.00
20860.00
21280.00
21700.00
22120.00
22540.00
22960.00
23380.00
23800.00
24220.00
24640.00
25060.00
25480.00
25900.00
26320.00
26740.00
27160.00
27580.00
28000.00

19775.00
20300.00
20825.00
21350.00
21875.00
22400.00
22925.00
23450.00
23975.00
24500.00
25025.00
25550.00
26075.00
26600.00
27125.00
27650.00
28175.00
28700.00
29225.00
29750.00
30275.00
30800.00
31325.00
31850.00
32375.00
32900.00
33425.00
33950.00
34475.00
35000.00

23730.00
24360.00
24990.00
25620.00
26250.00
26880.00
27510.00
28140.00
28770.00
29400.00
30030.00
30660.00
31290.00
31920.00
32550.00
33180.00
33810.00
34440.00
35070.00
35700.00
36330.00
36960.00
37590.00
38220.00
38850.00
39480.00
40110.00
40740.00
41370.00
42000.00



0.00 7105.00 14210.00 21315.00 28420.00 35525.00 42630.00
0.00 7210.00 14420.00 21630.00 28840.00 36050.00 43260.00
0.00 7315.00 14630.00 21945.00 29260.00 36575.00 43890.00
0.00 7420.00 14840.00 22260.00 29680.00 37100.00 44520.00

95



3.

This project is an array assignment used to demonstrate the distribution of data among
multiple tasks and the communications required to accomplish it. The master task
distributes an equal portion of the array to each worker task. Each worker task
receives its portion of the array and performs a simple value assignment to each of its
elements. Each worker then sends its portion of the array back to the master. As the

master receives back each portion of the array selected elements are displayed.

Simple Array DESCRIPTION:

1) pvm_arrary_master.c:

#include <stdio.h>

#include "pvm3.h"

#define NTASKS 6
#define ARRAYSIZE 600000

#define FROMMASTER_MSG 1
#define FROMWORKER_MSG 2

#define WORKERTASK "array.worker"

main() {
int tidsNTASKS],
Ic, /* for catching PVM return codes */
i, /* loop variable */
index, /* index into the array */
tid, /* PVM task id */

bufid, /* PVM message buffer id */
bytes, /* number bytes recv'd in PVM message buffer */
msgtype, /* PVM message type */
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chunksize; /* for partitioning the array */
float datal ARRAYSIZE], /* the intial array */
resultf ARRAYSIZE]; /* for holding results of array operations */

[RERERE RN KRR EEEEEEREEEEE onro]] this task in PVM #**eEskssssrenserehhs

* pvm_mytid will enroll this process in your PVM virtual machine. A unique
* task id will be assigned if call is successful. The pvimds keep track of
* processes and communications via task ids. Return codes less than zero
* indicate an error in the enroll process and will terminate this program.
L 2 T T T PR ey
printf{"\n*********** Startins PVM Example ******#**+s*s\g").
rc = pvm_mytid();
if (rc <0) {

printf("MASTER: Unable to enroll this task.\n");

printf(" Enroll return code= %d. Quitting.\n", rc);

exit(0);

H

else

printf("MASTER: Enrolled as task id = %d\n", rc);

[k R AR R K spawn WOTKET tasks ******drkhhmhkhbth ki kkkxnis

* The master task now spawns the worker tasks by calling pvm_spawn. The unique
* task ids for workers are stored in the tids array. The return code tells
* the number of tasks successfully spawned. In this example, it must equal
* NTASKS, otherwise the program terminates.
*************#*****#*********t*t#*#**********#***********#**t**#****/
pnntf("MASTER: Spawning worker tasks...\n");
rc = pvin_spawn(WORKERTASK, NULL, PvinTaskDefault, "", NTASKS, tids);
if (rc == NTASKS)
printf("MASTER: Successfully spawned %d worker tasks.\n", rc);
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else {
printf("MASTER: Not able to spawn requested number of tasks'\n");
printf("MASTER: Tasks actually spawned: %d. Quitting.\n" rc);
exit(0);

}

/********#***t*#**ttt##* initializations 222 2222222233233 233222322232 223

* Define the partition size as chunksize and then initialize the array to 0
T e Y.
chunksize = (ARRAYSIZE / NTASKS);
for(i=0; i<ARRAYSIZE; i++)

data[i] = 0.0;

[E*xxrrerrekreerss® send array chunks to each worker tagk ¥***** ¥ xxrsxks
* Data passing from master task to each worker task begins by initializing the

* send buffer with a call to pvm_initsend. Its argument tells PVM that XDR

* data conversion should be performed only if the virtual machine is hetero

* genous. Data is packed sequentially into the buffer with the calls to

* pvin_pkint and pvm_pkfloat. The arguments to these calls specify the data

* address, number of values and stride. Each worker is sent the following:

* index = the starting index for this worker's partition of the array;

* one value is sent with a stride on one.

* chunksize = the partition size of the array, one value is sent with a

* stride of one.
* data[] = the actual data for this worker’s array partition; chunksize
* number of values are sent with a stride of one.

* Finally, the data is sent to each worker task by calling pvm_send. Its

* arguments specify each task id that is to receive the data and which

* message type should be set. Index is incremented by chunksize for the

* next workers partition of the array. Note that PVM routine calls provide
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* return codes even if they are not always used in this program.
*********##**##*t*#*t#***t##*tt*t**tt#t*‘t###tttt***t**t#*ttttt##t‘t/
printf("MASTER: Sending data to worker tasks...\n");
index = 0;
msgtype = FROMMASTER_MSG;
for (i=0; i<NTASKS; i++) {

rc = pvm_initsend(PvmDataDefault);

rc = pvm_pkint(&index, 1, 1);

rc = pvin_pkint{(&chunksize, 1, 1);

rc = pvin_pkfloat(&data[index], chunksize, 1);

rc = pvm_send(tids[1], msgtype);

index = index + chunksize; }

JEFERkkkk Rk kkkEkEE wait for results ﬁom all worker tasks ¥¥FEExkEEREkEr kR Sk E
* The master task now waits in a loop to receive each worker's partition of

* the array. pvm_recv blocks until it receives a message of type "msgtype"”

* from task id = -1, which means, "any task id". pvm_recv returns the PVM

* message buffer id of the awaited message as bufid. Bufid is then used to

* find out additional information about the message by calling pvm_bufinfo.

* The data in the message buffer is unpacked sequentially with calls to

* pvin_upkint and pvim_upkfloat. The arguments to pvm_upk* calls specify the
* address of the data, number of values and stride. The master knows which

* part of the result array it is receiving by the value of index. As above

* the size of the array partition is determined by chunksize. Note that it

* is the programmer’s responsibility to insure that message types and data

* sequences match between data sends/receives. Finally, the master task

* prints a sample of the returned result partition and also tells which

* task id it came from by the value of tid, as returned from the call to

* pvm_bufinfo.

**********#*#****####*####*##*#*#t****#t**#t#t*#****t*#t**#*#t*##t*/

929



printf("MASTER: Waiting for results from worker tasks...\n");
msgtype = FROMWORKER_MSG;
for(i=0; i<NTASKS; i++){
bufid = pvm_recv(-1, msgtype);
rc = pvm_bufinfo(bufid, &bytes, &msgtype, &tid);
rc = pvm_upkint(&index, 1, 1);
rc = pvm_upkfloat(&result[index], chunksize, 1);
printf(" \n");
printf("MASTER: Sample results from worker task = %d\n",tid);
printf(" result[%d]=%f\n", index, result[index]);
printf(" result{%d]}=%f\n", index+100, result[index+100]);
printf(" result{%d]=%f\n\n", index+1000, result[index+1000]);

}

/***************#*t***#**# exit &Om PVM P2 3223222322232 3223223322322 22332 % 2 4
* Leave PVM before program finishes. This is "good programming practice"

* since it allows all of the pvimds in your virtual machine to keep track of

* which tasks are active and which are not. A return code less than zero

* from pvm_exit indicates an error which is ignored by this program.
***************##**#**###*###***t****#*********#*******************/
printf("MASTER: All Done! \n");

rc = pvm_exit();

2) pvm_array_worker.c

#include <stdio.h>
#include "pvm3.h" /* PVM version 3.0 include file */
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#define ARRAYSIZE 600000
#define FROMMASTER_MSG |
#define FROMWORKER_MSG 2

main() {
int  mastend, /* PVM task id for master process */
Ic, /* for catching PVM return codes */
i, /* loop variable */
index, /* index into the array */
msgtype, /* PVM message type */
chunksize; /* for partitioning the array */

float resultf ARRAYSIZE]; /* for holding results of array operations */

[EEEEREEREREREEREEREX anrn)] this task in PVM ¥ %kkxkkkskbrstrssbbbereets

* pvm_mytid will enroll this process in your PVM virtual machine. A unique
* task id will be assigned if call is successful. The pvids keep track of
* processes and communications via task ids. Return codes less than zero
* indicate an error in the enroll process and will terminate this program.
* Note that worker programs, though spawned from the master, must still enroll.
L T T ey
rc = pvin_mytid();
if (rc <0) {
printf("WORKER: Unable to enroll this task.\n");
printf(" Enroll return code= %d. Quitting.\n", rc);
exit(0);
}
else {
printf("WORKER: Enrolled as task id = %d\n", rc);

}
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/*********#t*####‘** receive data ﬁ»om master taSk L2222 2222222222232 242220

* The worker task waits/blocks here until it receives a message from its

* parent - the master task - of the correct message type. It knows the task

* id of its parent from the call to pvm_parent. When the correct message

* is recieved, the data is unpacked by calls to pvm_upkint and pvm_upkfloat
* in the identical sequential order that it was originally sent from the

* master. Note that it is the programmer’s responsibility to insure that

* message types and data sequences match between data sends/receives.
********t**#ttt*#tt*******#*****t*t**t#t*****t*****t*********t*#*t#*/
msgtype = FROMMASTER_MSG;

masterid = pvm_parent();

rc = pvimn_recv(masterid, msgtype);

rc = pvim_upkint(&index, 1, 1);

rc = pvin_upkint(&chunksize, 1, 1);

rc = pvm_upkfloat(&result[index], chunksize, 1);

[rERERRREELeLLt+ modify the array before sending it back to master ******+***x*
* Real complex operation going on here - the worker just adds one to the

* index value of the array location.

************#*#**********************t*t*t*#t*******#****#*****#****/
for(i=index; i < index + chunksize; i++)

result[i] =i+ 1;

/***********t****** Send reSUItS baCk to master task kkkikkkkkkkkkkkkkkkkkkxk

* Data passing from this worker task to master task begins by initializing the
* send buffer with a call to pvimn_initsend. Its argument tells PVM that XDR
* data conversion should be performed only if the virtual machine is hetero
* genous. Data is packed sequentially into the buffer with the calls to
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* pvm_pkint and pvin_pkfloat. The arguments to these calls specify the data
* address, number of values and stride. Each worker sends the following:

* index = the starting index for this worker’s partition of the array;

* one value is sent with a stride on one.

* result[] = the actual data for this worker’s array partition; chunksize

* number of values are sent with a stride of one.

* Finally, the data is sent by the worker task by calling pvin_send. Its

* arguments specify the task id of the task which should receive the data -

* in this case the master task id which it obtained previously - and which

* message type should be set. Note that PVM routine calls provide return

* codes even if they are not always used in this program.
kkkkRREREEEEEEREEE SRRk ERE kAR kkRkkRRERER KRR RERkEk kR ek Rk kkk kR Rk EkEEEK/
msgtype = FROMWORKER_MSG;

rc = pvm_initsend(PvmDataDefault);

rc = pvm_pkint(&index, 1, 1);

rc = pvin_pkfloat(&result[index], chunksize, 1);

rc = pvin_send(masterid, msgtype);

/*********#*************#* ex.it ﬁ-om PVM L2322 2323232332232 2322232322232 2232 222 23
* Leave PVM before program finishes. This is "good programming practice"

* since it allows all of the pvmds in your virtual machine to keep track of

* which tasks are active and which are not. A return code less than zero

* from pvm_exit indicates an error which is ignored by this program.

*********************#******t***************#**#********#*#*********/

rc =pvm_exit(); }
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3) Makefile and results:

# PVM Makefile - Array Example
# USE: aimk

CcC = cc

MASTER = array.master
MASTERSRC = pvm_array_master.c
WORKER = array.worker

WORKERSRC = pvimn_array_worker.c

PVMDIR = /mnt/spark2/share/lixin/pvm/unixpvm/pvm3
INCLUDE = -I${PVMDIR}/include

LIBS = -L${PVMDIR}/1ib/SUN4SOL2 -lpvm3 -Isocket -Insl

all:  S{MASTER} ${WORKER}

${MASTER}: ${MASTERSRC}
${CC} $ {MASTERSRC} ${INCLUDE} ${LIBS} -0 ${MASTER}

${WORKER}: $ {WORKERSRC}
${CC} ${WORKERSRC} ${INCLUDE} ${LIBS} -0 ${WORKER}

orchid.zhang_j > array.master

L2 22222 22 2 2 4 Starting PVM Example L3 3 222 2 3222 2 2 4
MASTER: Enrolled as task id = 262195
MASTER: Spawning worker tasks...
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MASTER: Successfully spawned 2 worker tasks.
MASTER: Sending data to worker tasks...
MASTER: Waiting for results from worker tasks...

MASTER: Sample results from worker task = 262196
result[0]=1.000000
result[100]=101.000000
result[1000]=1001.000000

MASTER: Sample results from worker task = 262197
result[100000]=100001.000000
result{100100]=100101.000000
result[101000}=101001.000000

MASTER: All Done!
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4. Timing DESCRIPTION:

This project is a PVM communication timing test. The master program will send
"reps" number of messages to the worker task, waiting for a reply between each rep.
Before and after timings are made for each rep and an average calculated when

completed.

1) timing.c

#include <stdio.h>
#include <sys/time.h>
#include <time.h>

#include "pvm3.h" /* PVM version 3.0 include file */

#define WORKERNAME "timing.worker” /* name of PVM worker executable */

main() {
int mytid; /* PVM task id for master */
int wtid; /* PVM task id for worker */
int rcode; /* PVM return code */
int reps = 20; /* number of samples per test */
struct timeval tvl, tv2; /* for timing */
int dtl, dt2; /* time for one iter */
int atl, at2; /* accum. time */
int n;
int onevalue = 0; /* minimal message to send */

/* attempt to enroll this task in PVM - quit if enroll fails */

mytid = pvm_mytid(;
if (mytid <0) {
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fputs("can't enrolhn”, stderr);

exit(0);

/* attempt to spawn worker task - quit if spawn fails */
rcode = pvm_spawn(WORKERNAME, NULL, PvmTaskDefault, ", 1,
&wtid);
if (rcode < 0) {
fprintf(stderr, "Can't spawn %s. Quitting.\n", WORKERNAME);

goto bail;

/* round-trip timing test */
printf("Doing round trip test, minimal message size, %d reps.\n" reps);

at]l =0;

/* next call initializes the PVM send buffer */
rcode = pvm_initsend(PvmDataDefault);

/* pack a single dummy value into the send message buffer */

rcode = pvm_pkint(&onevalue, 1, 1);

for (n = 1; n <=reps; n++) {
gettimeofday(&tvl, (struct timeval*)0); /* before time */
/* send message to worker - message type setto 1. If */
/* return code is less than zero quit */

rcode = pvm_send(wtid, 1);
if (rcode <0) {
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kbail:

bail:

b

fprintf(stderr, "Can't send to %s\n", WORKERNAME);
goto kbail;

/* Now wait to receive the echo reply from the worker */

/* This message type is set to 2. Quit if return code */

/* is less than zero */

rcode = pvm_recv(wtid, 2);

if (rcode < 0) ¢
fprintf(stderr, "Recv error from %s\n", WORKERNAME);
goto kbail;

gettimeofday(&tv2, (struct timeval*)0); /* after time */

/* calculate round trip time and print */

dtl = (tv2.tv_sec - tvl.tv_sec) * 1000000 + tv2.tv_usec
- tvl.tv_usec;

printf("round trip# %2d uSec = %8d\n", n, dtl);

atl +=dtl;

printf("\n*** Round Trip Avg uSec = %d\n", atl / reps);

/* need to explicitly kill worker process because it operates in */
/* an infinite loop */
rcode = pvm_kill(wtid);

/* now exit from PVM cleanly before quitting */

rcode = pvm_exit();
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exit(0);

-

2) tming_worker.c:

#include <stdio.h>

#include "pvm3.h" /* PVM version 3.0 include file */
main() {
int mytid; /* PVM process task id */
int parent; /* PVM process task id for parent */
int rcode; /* PVM return code */
intn=0;
int onevalue = 0; /* minimal message to send */

mytid = pvin_mytid();/* enroll worker task in PVM virtual machine */
parent = pvm_parent(); /* get PVM task id of parent/master process */

/* next call initializes the PVM send buffer */
rcode = pvim_initsend(PvmDataDefault);

/* pack a single dummy value into the send message buffer */

rcode = pvm_pkint(&onevalue, 1, 1);

/* infinite loop - this task must be explicitly killed by parent */
while (1) {
/* wait for message of type 1 from parent/master task */

rcode = pvm_recv(parent, 1);

/* immediately reply back to parent/master after receive */

rcode = pvm_send(parent, 2);
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printf(" worker task echo %d\n", ++n);

fflush(stdout);

-y

3) results:

orchid.zhang_j > timing
i'm t4005f
slave is task 140060

Doing Round Trip test, minimal message size

N uSec
1 641
2 557
3 493
4 490
5 490
6 491
7 494
8§ 491
9 762
10 519
11 493
12 491
13 490
14 488
15 488
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17 488
18 489
19 489
20 489
RTT AvguSec 516

Doing Bandwidth tests

Message size 100

N Pack uSec Send uSec
1 38 515

2 36 702
3 46 599
4 39 536
5 45 538
6 35 517
7 36 510
8 36 511
9 36 507

10 36 510
11 36 505
12 36 504
13 37 506
14 37 506
15 36 510
16 37 512
17 35 509
18 36 508
19 36 508



20

37

Avg uSec

37

800

540

Avg Byte/uSec

2.702703 0.185185

Message size 1000

N Pack uSec Send uSec

1 50
2 46
3 43
4 44
5 42
6 43
7 42
8 44
9 42
10 43
11 42
12 43
13 43
14 45
15 43
16 44
17 43
18 45
19 44
20 44
Avg uSec

43

617
587
523
530
525
528
527
527
526
527
525
525
900
541
522
524
523
523
525
525

552
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Avg Byte/uSec

23.255814 1.811594

Message size 10000
N Pack uSec Send uSec
1 318 1339
2 121 1088
3 120 1437
4 123 1100
5 121 1362
6 145 1193
7 120 1073
8 117 1076
9 118 1064
10 118 1075
11 223 1157
12 120 1082
13 120 1066
14 120 1071
15 120 1073
16 118 1072
17 119 1067
18 119 1162
19 120 1071
20 117 1073
Avg uSec
135 1135

Avg Byte/uSec

74.074074 8.810573
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Message size 100000
N Pack uSec Send uSec

| 4038 10174
2 897 7123
3 967 7487
4 886 7650
5 892 7464
6 1016 7245
7 917 7888
8 1080 7714
9 887 8262
10 890 7555
11 900 7597
12 983 8041
13 906 7252
14 886 7154
15 1054 6910
16 880 7377
17 891 7655
18 889 7531
19 888 7752
20 886 7808
Avg uSec

1081 7681
Avg Byte/uSec

92.506938 13.019138

Message size 1000000
N Pack uSec Send uSec

1

44960

92243
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2 8888 151336
3 9104 69529
4 9272 74426
5 9283 74869
6 11311 73559
7 8852 66958
8 8839 144735
9 8885 73547
10 8956 74026
11 8834 73511
12 8757 73391
13 8872 74216
14 8880 73133
15 8744 74337
16 8831 74710
17 9200 74971
18 8838 75309
19 9126 75072
20 9151 70390
Avg uSec
10879 81713
Avg Byte/uSec
91.920213 12.237955

done

orchid.zhang j >
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S. Master-Slave DESCRIPTION:

This is a Master-Slave program. Its first PVM action is to obtain the task id of the
"“master” using the pvm_parent call. This program then obtains its num_data and
calculating it first. Then it will transmit it to the master using the three-call sequence -
pvm_initsend to initialize the send buffer; pvm_pkint to place an integer, in a strongly
typed and architecture-independent manner, into the send buffer; and pvm_send to
transmit it to the destination process specified by master, "tagging" the message with
the number 7.

1) master.c:
2)

/********#**#*#*#******t**t***t*‘*t*****##*#/
/********* Leamer's Master.c **#*#***t*###****/

/*******************#**#t**#*t*t#**#**#****/

# include "/mnt/spark2/share/lixin/pvm/unixpvm/pvm3/include/pvm3.h"
#include <stdio.h>

#define SIZE 1000

#define Nprocs 5

main()

{

int mytID task_ids[Nprocs];

int a[ SIZE], result[Nprocs], sum=0;

int i, msgType, num_data=SIZE/Nprocs;

/*enroll in PVM*/

mytUD=pvm_mytid();
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for(i=o0; i< SIZE; i++)
a[i]=1%25;
/*spawn worker tasker*/
pvin_spawn("worker"”, (char**)0, PvmTaskDefault, "", Nprocs, task_ids);
/*send data to worker tasks */

for(i=0;i<Nprocs; i++)

{
pvm_initsend(PvmDataDefault);
pvm_pkint(&num_data, 1, 1);
pvm_pkint(&a[num_data*i], num_data, 1);
pvm_send(task_ids[i], 4);

}

/*wait and gather results */

msglype =7;

for (i=0; i<Nprocs; i++)

pvm_recv(task _ids[1], msgType);
pvm_upkint(&results{i], 1, 1);

sum+=results[i]; }

printf("The sum is %d\n", sum);

pvm_exit();

}
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2) slave.c:

# include "/mnt/spark2/share/lixin/pvm/unixpvm/pvm3/include/pvm3.h"
#include <stdio.h>

main()

{

int mytID;

int 1, sum, *n;

int master, num_ data;
/*enroll in PVM*/
mytID=pvm_mytid();

/*receive data from host */

pvm_recv(-1, -1);

pvm_upkint(&num_data, I, 1);

a=(int*)malloc(num_data*sizeof(int));

pvm_pkint(a, num_data, 1);

sum=0;

for(i=o; i< num_data; i++)
sum+=a[il];

/* send computed sum back to host*/

master=pvm_parent();

pvm_initsend(PvmDataRaw);

pvm_pkint(&sum, 1, 1);

pvm_send(master, 7);
pvm_exit();

}
Appendix D PVM Supported Architectures/Oss
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PVM (Parallel Virtual Machine) is a software package that permits a heterogeneous
collection of Unix and NT computers hooked together by a network to be used as a
single large parallel computer. Thus large computational problems can be solved
more cost effectively by using the aggregate power and memory of many computers.
With thousands of users, PVM has become the de facto standard for heterogeneous
cluster computing world-wide. The source is available free thru netlib and has been

compiled on everything from laptops to CRAYs.

Targeted Platforms:

PVM software is very portable. It has been used on all the follow systems. A virtual
computer can be composed of a mixture of any of the these computers.

PCs

Pentium [I, Pentium Pro, Pentium, Duals and QuadsjWin95, NT 3.5.1, NT 4.0
inux, Solaris, SCO, NetBSD, BSDI,

reeBSD
MAC NetBSD
Next
Amiga NetBSD
Workstations and Shared-memory Servers
SUNS3, SUN4, SPARC, UltraSPARC SunOS, Solaris 2.x
TBM RS6000, J30 ATX 3.x, AIX 4.x
HP 9000 {HPux
DEC Alpha, Pmax, microvax OSF, NT-Alpha
SGI }IRIS 5x,IRIS 6.x

Parallel Computers
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Cray YMP, T3D, T3E, Cray2
Convex Exemplar

IBM SP2, 3090

INEC SX-3

Fujitsu

lAmdahl

TMC CM5

Intel Paragon

Sequent Symmetry, Balance

XPVM was designed to simplify running and debugging parallel applications
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