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Abstract

Antenna Selection for Space-Time Trellis Codes over Rayleigh Fading

Channels

Abdollah Sanei, Ph.D.

Concordia University, 2006

Employing multiple antennas in multiple-input multiple-output (MIMO) communi-
cation systems has many advantages over systems employing single-transmit and
single-receive antennas. The most important of these advantages is the tremendous
increase in channel capacity. However, employing multiple antennas results in a signif-
icant increase in the system complexity, and hence cost, since each employed antenna
requires a separate radio frequency (RF) chain. Antenna selection has been intro-
duced recently as a means to alleviate this complexity. The main idea behind antenna
selection is to select at the transmitter and/or receiver a good subset of the available
antennas. By this, the number of required RF chains reduces to as few as the number
of selected antennas, thereby reducing the system complexity and its cost. Antenna
selection has been considered for both space-time trellis codes (STTCs) and orthog-
onal space-time block codes (STBCs) with favorable results. However, all works in
this area considered a particular channel model, namely, quasi-static Rayleigh fading.

In this thesis, we consider receive antenna selection for STTCs for generalized
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Rayleigh fading channels. Specifically, we derive explicit upper and lower bounds on
the performance of STTCs with antenna selection over fast and block Rayleigh fading
channels. The latter channel model is a good model for most wireless communication
channels because it encompasses a wide range of mobility and data rates. For both
channel models, we show that the diversity order deteriorates with antenna selection
and it becomes proportional to the number of selected antennas and not the number
of available antennas. However, having more antennas available, while keeping the
number of selected antennas fixed, increases the coding gain, which naturally comes
as a result of an increased average SNR due to antenna selection. This is uniike
the case for quasi-static fading where the diversity order is maintained with antenna
selection provided that the underlying STTC is full rank.

As for STBCs, it appears that the channel model has no impact on the resulting
diversity order with antenna selection. It has been shown that the diversity order of
STBCs with antenna selection is the same as that of the full complexity system. In
light of the results of this thesis and existing results in this area, the conclusion is
that, when antenna selection is considered, it is recommended to use STBCs when
the channel is fast fading or block fading with high mobility (or low data rate). On
the other hand, it is recommended to use STTCs with antenna selection when the
channel is modeled by quasi-static fading or block fading with low mobility (or high

data rate).
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Chapter 1

Introduction

1.1 Literature Review

The challenge of achieving reliable data transmission over wireless links has drawn
much attention from the coding community in recent years. This challenge stems from
the fact that, in a wireless environment, unlike other applications, achieving reliable
communication becomes much more difficult due to the possibility that received sig-
nals from multipaths may add destructively, which, consequently, results in serious
performance degradation. It has been shown that a key technique for achieving re-
liable communication over wireless links is to introduce antenna diversity into the
system. Antenna diversity is achieved by employing spatially separated antennas at
the transmitter and/or receiver. The main advantage of using multiple antennas is
that they result in a drastic increase in the channel capacity, as shown by Telatar [1],

and Foschini and Gans [2].



Inspired by the promised increase in capacity, a large number of papers have been
published recently on the use of antenna diversity for achieving reliable communica-
tion over wireless links. These include the early work by Guey, et al. [3] in which
they consider signal design techniques that exploit the diversity provided by employ-
ing multiple antennas at the transmitter. Then Tarokh, et al. introduced in 1998
[4] the class of space-time trellis codes (STTCs), which are very efficient for systems
with multiple transmit and receive antennas. In [5], Alamouti introduced a very sim-
ple, and yet efficient, scheme which involves using two transmit antennas at the base
station (BS) and one receive antenna at the other end of the downlink. A simple
decoding algorithm based on a linear receiver was introduced for this scheme, which
can be extended for an arbitrary number of receive antennas.

Motivated by the simplicity of the Alamouti scheme, Tarokh, et al. [6] generalized
that scheme to an arbitrary number of transmit antennas, resulting in the so-called
space-time block codes (STBCs). Since the discovery of space-time codes, many papers
have appeared in the literature in which various space-time coding schemes were
considered in an effort to maximize the diversity order and coding gain that can be
achieved for a given number of transmit and receive antennas, see [7]—[11] and the
references therein.

One of the drawbacks of using multiple antennas is the associated complexity.
That is, the complexity from the fact that a separate Radio Frequency (RF) chain is
required for every employed antenna, resulting in a significant increase in the imple-

mentation cost. In addition, in some cases, it may be prohibitively complex to use



many RF chains, such as the case in mobile phones. With this motivation, antenna
selection has been introduced recently as a means to alleviate the complexity asso-
ciated with using multiple antennas, while exploiting the diversity provided by such
antennas [18]—[41].

The idea behind antenna selection centers around using only a subset of the avail-
able antennas in multiple-input multiple-output (MIMO) systems. The implication
of this selection is that the number of RF chains required is reduced to as few as the
number of selected antennas, thereby the deployment of MIMO systems would be-
come less expensive and more feasible. Antenna selection at the transmitter and the
receiver under certain channel conditions has been considered for STTCs and STBCs
extensively.

In [18], the authors consider the joint transmit and receive antenna selection based
on the second order channel statistics, which is assumed to be available to the trans-
mitter. The authors in [19] consider antenna selection for low rank matrix channels
where selection is performed only at the transmitter. In [20], antenna selection is
considered only at the transmitter with the assumption that the channel statistics
are available to the transmitter. In [21], the authors show that, for full-rank STTCs
over quasi-static fading channels, the diversity order is the same as that of the full-
complexity system. In [28], Molisch et al. study the effect of antenna selection from a
channel capacity perspective. It is shown that only a small loss in capacity is suffered
when the receiver uses a good subset of the available receive antennas. Other work

related to antenna selection for STTC codes can be found in [22]—[30].



In [31]—[37], the authors consider antenna selection for STBCs at the transmitter.
They show that the performance is improved by increasing the number of trans-
mit antennas while keeping the number of selected antennas fixed. In [38], antenna
selection is considered at the transmitter (with the full knowledge of the channel
statistics) or at the receiver for orthogonal STBCs with particular emphasis on the
Alamouti scheme [5]. The authors use outage probability analysis to argue that the
spatial diversity, when the underlying space-time code is orthogonal, is maintained
with antenna selection. In [39], explicit upper bounds on the bit error rate (BER)
performance of orthogonal STBCs with receive antenna selection are derived, and it
is shown that the diversity order is maintained. The performance bounds presented
in [39] were extended, with similar conclusions, to the case when the STBC is con-
catenated with an outer channel code, such as a convolutional code or a trellis-coded
modulation (TCM) code [40].

In all of the work done on antenna selection for STTCs, it is mistakenly assumed
that the underlying channel is quasi-static Rayleigh fading, i.e., the channel is fixed
for a very long time. This was the channel model initially assumed in [21]. The
main result for this channel model was that the diversity order with antenna selec-
tion remains the same as that of the full complexity system, whereas the performance
suffers some degradation due to a reduction in the average SNR resulting from an-
tenna selection. Given the fact that quasi-static fading models very limited wireless

applications, and preliminary simulation results showed that the diversity order of



STTCs with antenna selection is not maintained for fast fading channels, this moti-
vated us to thoroughly investigate the performance of STTCs with antenna selection

for generalized fading channels.

1.2 Contributions

The contributions of this thesis may be summarized as follows.

o We derive explicit, rigorous upper and lower bounds on the performance of
STTCs with antenna selection over fast fading channels. We show that the
diversity order deteriorates with antenna selection and becomes proportional to
the number of selected antennas and not the number of available antennas, as

was previously (intuitively) believed.

e We show that having more antennas at the receiver, while keeping the number
of selected antennas fixed, results in additional coding gains. This is justified
by the increase in the average SNR due to selecting the best antennas. How-
ever, such coding gains become marginal as the number of available antennas

increases.

o We derive explicit, rigorous upper and lower bounds on the performance of
STTCs with antenna selection over block fading channels. Block fading models
the vast majority of wireless channels, where fast and quasi-static fading are
special cases of block fading. We show that the diversity order with antenna
selection is not maintained, similar to the fast fading case. We also show that

5



some coding gains can be achieved by adding more antennas while keeping the

number of selected antennas fixed.

We show that the deterioration in the diversity order due to antenna selection
is attributed to the combined code structure and channel model. For example,
when the mobility in the channel is moderate to slow, the performance curves
suggest that the diversity order is maintained (or nearly maintained). As the
mobility increases and the channel model approaches fast fading, it becomes

apparent that, even at low SNR, the diversity order is not maintained.

In contrast, the diversity order with antenna selection for orthogonal STBCs
is maintained for all channels types. This is due to the code structure which
makes the resulting diversity order with antenna selection channel-independent.
However, although STBCs are very simple to design, they do not provide any
coding gains as compared to STTCs. To compensate for this, a STBC may be
concatenated with an outer channel code. But the consequence of adding an
outer code is a reduction in the transmission rate due to the overhead added,
which is not desirable. So the conclusion here is that, when antenna selection
is to be considered, one may use STTCs when the channel is quasi-static fading
or when the mobility is relatively slow. On the other hand, when the channel
is fast fading or the mobility is relatively fast, one should not use STTCs, and

should use STBCs concatenated with an outer channel code.



1.3 Organization

The remainder of the thesis is cutlined as follows.

e In Chapter 2, we review some preliminaries and definitions, including fading
channels, MIMO system model and a brief introduction to space-time coding

and antenna selection.

¢ In Chapter 3, we examine the performance of antenna selection over fast Rayleigh
fading channels. We first review the full-complexity system and then derive up-
per bounds on the system performance for the special case of selecting the best
antenna, and for the general case of selecting the best L out of M available
antennas. Several numerical examples and simulation results that support the

mathematical analysis are also presented.

o In Chapter 4, upper bounds on the pairwise error probability of STTCs with
antenna selection over block Rayleigh fading channel are derived. Several nu-

merical examples and simulation results are also given.

e In Chapter 5, we conclude the work and suggest some ideas as potential future

work.



Chapter 2

Background

2.1 Fading Channels

In a cellular mobile radio environment, the surrounding objects, such as houses,
buildings or trees, act as reflectors of radio waves. These obstacles produce reflected
waves with attenuated amplitude and phases. If a modulated signal is transmitted,
multiple reflected waves of the transmitted signal will arrive at the receiving antenna
from different directions with different propagation delays, which are called multipath
waves. Due to the different arrival angles and times, the multipath waves at the
receiver site have different phases. When they are collected by the receive antenna
at any point in space, they may combine either in a constructive or destructive way,
depending on the random phases. The sum of these multipath components forms a
spatially varying standing wave field.

The mobile unit moving through the multipath field will receive a signal which



Figure 2.1: Mutipath fading channel.

can vary widely in amplitude and phase. When the mobile unit is stationary, the am-
plitude variations in the received signal are due to the movements of the surrounding
objects in the radio channel. The amplitude fluctuation of the received signal is
called signal fading. It is caused by the time-variant multipath characteristics of the
channel.

In a narrowband system, the transmitted signals usually occupy a bandwidth
smaller than the channel coherence bandwidth, which is defined as the frequency
range over which the channel fading process is correlated. That is, all spectral com-
ponents of the transmitted signals are subject to the same fading attenuation. This
type of fading is referred to as frequency-nonselective (or flat). In a typical mobile
radio channel, we may assume that the direct wave is obstructed and the mobile

unit receives only reflected waves. Normally, Rayleigh fading model is used to model



the signal variations in narrowband multipath environment. When the number of
reflected waves is large, according to the central limit theorem, the two quadra-
ture components of the received signal are uncorrelated zero-mean Gaussian random
processes. As a result, the envelope of the received signal at any time instant under-
goes a Rayleigh probability distribution and its phase obeys a uniform distribution
between —7 and +m. Assuming that average signal power (E[|al’] ) is unity, the
normalized pdf for a Rayleigh distribution is written as p(e) = 20", for o > 0.

On the other hand, when the received signal is made up of multiple reflective rays
plus a significant nonfaded line-of-sight component, the received envelope amplitude
has a Ricean probability density function as p(a) = 20e™@*+K) [ (2aK) , for o, K >
0, where K is the ratio of the power in nonfaded signal to the power in multipath
signal and I is the modified Bessel function of the first kind and zero order.

The impact of Rayleigh fading on the BER performance of Binary Phase Shift
Keying (BPSK) is shown in Fig. 2.2. The figure compares the performance of the
Rayleigh fading and additive white Gaussian noise (AWNG). It is clear from the
figure that Rayleigh fading highly increases the bit error rate, which results in a huge
deterioration in system performance.

Rayleigh fading can be either fast, block or slow, depending on the time variation
of the channel, as well as the data rate. In fast fading, the channel fading coefficients
(see Fig. 2.3) change at the beginning of each symbol interval and remain fixed during
one symbol interval.

If the channel fading coefficients are constant during a fixed number of symbol

10
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Figure 2.2: BER Performance of AWGN and fading channels [42].

intervals, which is shorter than the total transmission duration, i.e., frame duration,
the channel is referred to as block fading. Finally, if the channel fading coefficients
are constant during a frame and change from one frame to another, the channel is
referred to as slow fading.

It has been shown that the most effective technique for combating fading is to

introduce diversity into the system, which will be addressed in the next section.

2.2 Diversity

In wireless mobile communication systems, diversity techniques are widely used

to reduce the effects of multipath fading and improve the reliability of transmission.
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Figure 2.3: Channel fading coefficient.

Ideally, this performance improvement should be obtained without increasing the
transmitted power or sacrificing the bandwidth. The diversity technique requires
multiple replicas of the transmitted signals at the receiver, all carrying the same
information but with small or no correlation in the fading statistics.

The basic idea of diversity is that, if two or more independent samples of the
signal are taken, these samples will fade in an uncorrelated manner. This means
that the probability of all the samples being simultaneously below a given level is
much lower than the probability of any individual sample being below that level.
Thus, a proper combination of the various samples results in great reduction of the
fading impact, and correspondingly, improved reliability of transmission. In most
wireless communication systems a number of diversity methods are used in order to
get the required performance. Among these diversity techniques are temporal and
spatial diversity, which are the two main diversity methods which are widely used in

communication systems.

12



2.2.1 Temporal Diversity

Temporal diversity can be achieved by transmitting identical messages in dif-
ferent time slots, which results in uncorrelated fading signals at the receiver. In
mobile communications, error control coding is combined with interleaving to achieve
temporal diversity. In this case, the replicas of the transmitted signals are usually
provided to the receiver in the form of redundancy in the time domain. The time
separation between the replicas of the transmitted signals is provided by time in-
terleaving to obtain independent fades. Since time interleaving results in decoding
delay, this technique is usually effective for fast fading (high mobility) environments.
For slow fading (low mobility) channels, a large interleaver can lead to a significant
delay which is intolerable for delay sensitive applications such as voice transmission.
One of the drawbacks of this scheme is that due to the redundancy introduced in the

time domain, there is a loss in bandwidth.

2.2.2 Spatial Diversity

Spatial diversity, also called antenna diversity, has been a popular technique
in wireless communications. This technique is typically implemented using multiple
antennas for transmission and/or reception. The multiple antennas are separated
physically by a (proper distance, typically a few wavelengths, so that the individual
signals are uncorrelated. In spatial diversity, the replicas of the transmitted signals
are provided to the receiver in the form of redundancy in the space domain. Un-

like temporal diversity, employing spatial diversity does not reduce the bandwidth

13
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Figure 2.4: Simple examples of transmit and receive diversity.

efficiency. Depending on whether multiple antennas are used at the transmitter or
receiver side, spatial diversity is classified into two categories: receive diversity and
transmit diversity. Simple examples of transmit and receive diversity are shown in
Fig. 2.4.

In receive diversity, multiple antennas are used at the receiver side to pick up
independent copies of the transmit signals. The replicas of the transmitted signals
are properly combined to increase the overall received SNR and mitigate the effect of
multipath fading. Thus, if several paths have channel coefficients that are statistically
independent, it is unlikely that they will fade together, so the probability of the signal
strengths being below a certain detection threshold is small. In transmit diversity,
multiple antennas are deployed at the transmitter side. Messages are processed at the
transmitter and then spread across multiple antennas. Using transmit and/or receive

diversity improves the system performance and reduces the system error rate. This
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enhancement increases the slope of the error rate curve and shifts it towards regions

of lower error rate. This can be explained, for example, by moving from the fading

channel error rate curve towards the AWGN channel error rate curve, shown in Fig.

2.2,

2.3 MIMO Systems

A multiple input-multiple output (MIMO) system is a transmission system em-

ploying more than one antenna at each of the transmit and receive sides. Fig. 2.5

shows a typical model of MIMO system that has /N transmit and M receive antennas.

In each time interval, N signals are transmitted and each receive antenna receives the

superposition of the faded transmitted signals. The channel is described by an M x N

complex matrix as

at) =

cm(t)

Qo1 (t)

(03741 (t)

Oé]g(t)

99 (t)

ane(t)

041N(t)

agN(t)

aMN(t)

where, o;;(t), for 1 < i < N, 1 < j < M, 1<t <, represent the channel

fading coefficient from the i'® transmit to the j** receive antenna. We assume that

the channel is independent Rayleigh fading channel. As such, a signal transmitted

from every individual transmit antenna appears uncorrelated at each of the receive
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Figure 2.5: MIMO system model.

antennas. As a result, the signal corresponding to every transmit antenna has a
distinct spatial signature at a receive antenna.

The assumption of independent Rayleigh fading results in uncorrelated Rayleigh
distribution entries for the channel transfer matrix. The reason that we select the
Rayleigh fading model is that Rayleigh models are realistic for environments with a
large number of scatters, which is true for the most non-line-of-sight radio propaga-
tions. On the other hand, the independent fading model can be approximated where
antenna elements spacing is considerably larger than the carrier wavelength, which is
satisfied in many cases.

The noise at the receiver is described by the M independent complex zero mean

16



Gaussian random variables, with equal independent variance for the real and imagi-
nary parts. Each of the M receive branches has identical noise power. The received
signals are represented by M complex numbers, where each of them refers to a receive

antenna.

2.4 Space-Time Coding

2.4.1 System Model

Space-time coding is a coding technique designed for use with multiple transmit
antennas and is an effective practical way to approach the capacity of MIMO wireless
channels. Coding is performed in both spatial and temporal domains to introduce
correlation between signals transmitted from various antennas at various time inter-
vals. Space-time coding can achieve transmit diversity as well as coding gain without
sacrificing the bandwidth. There are various approaches in coding structure such as
space-time trellis codes (STTCs) and space-time block codes (STBCs). Space-time
coding can be further combined with multiple receive antennas to minimize the effects
of multipath fading and to get closer to the capacity of MIMO systems.

Consider a wireless communication system equipped with N transmit and M
receive antennas, which is shown in Fig. 2.6. As shown in the figure, the transmitted
data is encoded by a space-time encoder. At each time instant ¢, a block of r binary
symbols is fed into the space-time encoder. The encoder maps the binary symbol

block into N modulation symbols from a signal set of 2" points. The coded data are
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Figure 2.6: Space-time coding system model.

applied to a serial-to-parallel converter producing a sequence of N parallel symbols
as

C:c:}cf...c‘]{vcécg...cév...cllc?...cilv_

The N parallel outputs are simultaneously transmitted by N different antennas,
whereby symbol ¢, 1 < ¢ < N, is transmitted by antenna 7. The fading channel
is described by a M x N channel transfer matrix, as expressed in (2.1). At the
receiver, the signal at each of the M receive antennas is a noisy superposition of the
N transmitted faded signals. At time ¢, the received signal at antenna j denoted by

7, is given by

N
ri = Z i ; (1) +wi, (2.2)
i=1
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where w{ is the noise component of receive antenna j at time ¢, which is an indepen-
dent sample of the zero-mean complex Gaussian random variable with variance Ny/2
per dimension.

At the receiver, the decision metric is computed based on the squared Euclidean

distance between the actual and hypothesized receive sequence as [4]

2

=z

»H3

t j=1

= ;)

=1

, (2.3)

where the decoder selects a codeword with the minimum decision metric as the de-

coded sequence.

2.4.2 Pairwise Error Probability

The pairwise error probability, P (c — e), is the probability that the decoder se-

lects an erroneous sequence e = ele? .- -eNele2 .. el .- -ele? .-y over the transmit-

ted sequence is c = clc? - el el -+ clc? - - . The pairwise error probability

conditioned on a(t) in (2.1), is given by [4]

Plc— e| alt)) = -;—erfc( :l%"iaﬁ (c, e)> , (2.4)

where
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The expression (2.4) can be easily simplified as

Plc— el a) < el~#(eo)E/aNo) (2.6)

which is an upper bound on the conditional pairwise error probability given by (2.4).

2.4.3 Diversity Gain and Coding (Gain

By definition, the diversity gain is an approximate measure of the power gain of
the system with space diversity over the system without diversity at the same error
rate probability. The coding gain measures the power gain of the coded system over
an uncoded system with the same diversity and the same error probability. As we
will see later the diversity gain determines the slope of an error rate curve plotted as
a function of SNR ratio, while the coding gain determines the horizontal shift of the
uncoded system error rate curve to the space-time coded error rate curve obtained
for the same diversity order. To explain more the idea of diversity gain and coding
gain, we bring here two examples. In both examples it is assumed that the MIMO
system has IV transmit and M receive antennas, respectively.

In the first example, the upper bound on the PEP for space-time coded system

working over slow Rayleigh fading channel is shown as [4]

Ple— o) < <I=11 )\i> B ( 5\;0)%. 2.7)

In (2.7), r and X are, respectively, the rank and eigenvalues of A(c, e) with entries
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Apy = TpTq, where x, = (] — €, —€h,...,df —¢€]) for 1 < p,qg < N. For this

1
r

system, the diversity and coding gain are defined as rM and (AA;--- Aq)*, respec-
tively. Another example is the upper bound on the PEP for space-time coded system

working over fast Rayleigh fading channel given as [4]

-M

Ple— &< | I] lo—ef (5\;0)—"M, (2.8)

tep(c,e)

where ¢(c, e) denotes the set of time instances 1 <t < [ such that |c, — e # 0 and

p = |p(c, e)| denote the size of p(c, e). Here, the diversity gain achieved is uM and
1

m
the coding gainis [ [] Je:—el® ) .
tep(c,e)
It is easy to see that in both cases, the variation of the diversity gain changes

the slope of the error rate curve, while for the change of coding gain we observe a

horizontal shift in the error rate curve.

2.5 Antenna Selection

In MIMO systems, the receiver sees several versions of the transmitted signal,
each experiencing a different complex-valued fading coefficient «; ;(t) and noise wl,
To exploit diversity, these signals must be combined in a gainful manner. Diversity
combining can be classified into three categories. Selection diversity chooses the path
with the highest SNR, and performs detection based on the signal from the selected
path. Maximal ratio combining (MRC) makes decisions based on an optimal linear

combination of the path signals. Equal gain combining (EGC) simply adds the path
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Figure 2.7: Antenna selection system.

signals after they have been cophased.

In this work, our concern is to evaluate the impact of employing antenna selection
based on the selection diversity technique at the receiver side. From now on in this
thesis, we use the short term of antenna selection to refer to the antenna selection
system based on selection diversity, as shown in Fig. 2.7.

The main advantage of antenﬁa selection is a reduction in the cost and complexity
of the system. Ideally, a receive system with multiple antennas can improve the
reliability of wireless communication. However, the multiple RF chains associated
with multiple antennas are costly in terms of size, power, and hardware. Antenna
selection is a low-cost, low-complexity alternative to capture many of the advantages
of MIMO systems. As shown in Fig. 2.7, the selection block chooses only L out of
the available M receive antennas, where 1 < L < M. As a result, the number of RF
chains required is reduced from M to L, as shown in Fig. 2.8 (The same thing can

be done at the transmitter).
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Figure 2.8: Selecting the best L antennas.

On the other hand, there are some drawbacks for employing antenna selection. For
example, selection diversity techniques require knowledge of the channel conditions
at the receiver for receive selection. Therefore, the performance of selection diversity
will suffer if the channel state does not remain stationary, or if the estimate of channel
state is inaccurate. Very little work has been done in characterizing the performance
of antenna selection in the presence of time variations or noisy channel estimates [43].

Another example of the drawbacks for using antenna selection is the path inde-
pendence assumption. The basic calculations for diversity reception often assume
independent paths, but in practice the paths may be correlated, which reduces the
effectiveness of selection diversity.

In this work, we are focused on evaluating the system performance of MIMO
STTC antenna selection system. Some work has been accomplished to evaluate the

performance of the space-time trellis coded MIMO antenna selection system working
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over slow Rayleigh fading channel [21]. Based on this work, the diversity order of the
antenna selection system that chooses a subset of the antennas with the highest SNR
is the same as the diversity order of the full-complexity system, that is, using all of
the receive antennas. Moreover, for slow fading, it has been shown that although the
diversity order is maintained, the coding gain of the antenna selection system is less

than the coding gain of the similar full-complexity system.
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Chapter 3

Antenna Selection for Fast Fading

Channels

3.1 Introduction

In this chapter, we consider receive antenna selection for STTCs over fast fad-
ing channels, where the channel coefficients fade independently from one symbol to
the next. Such a model is suitable for a fully interleaved flat fading channel where
an interleaver of length longer than the coherence time of the channel is employed.
This may be done to make sure that the consecutive symbols transmitted see almost
independent fades in an attempt to improve the error rate performance. Another
scenario for this model is a frequency hopping system, where the consecutive symbols
are transmitted using different carriers. Therefore, performing antenna selection in

these scenarios is feasible since the selection is done at a rate lower than the symbol
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rate.

We derive explicit upper bounds on the pairwise error probability for STTCs with
receive antenna selection over fast Rayleigh fading channels. In performing antenna
selection, we adopt a selection criterion that is based on selecting L out of the available
M receive antennas that result in maximizing the instantaneous received SNR. We
provide numerical examples and simulation results that validate these theoretical
findings.

The rest of the chapter is outlined as follows. In Section 3.2, some results for the
full-complexity systems related to our work are reviewed. In Section 3.3, we derive
upper bounds on the PEP for STTCs with receive antenna selection. In Section
3.4 we provide numerical examples and simulation results that support our analysis.

Finally, we conclude the chapter in Section 3.5.

3.2 Preliminaries

3.2.1 System Model

Consider a wireless communication system that employs N antennas at the trans-
mitter side and M antennas at the receiver side (see Fig. 3.1). The incoming data
is encoded by the space-time encoder. The output of the encoder is then fed into
a serial-to-parallel converter that converts the input stream into N paralle] streams.
The resulting N streams are transmitted from the N transmit antennas simulta-

neously. At the receiver, after demodulation, matched-filtering, and sampling, the
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signal r{ received by antenna j at time ¢ is given by

where ¢t is the signal transmitted from antenna ¢ at time t; w! is modeled as in-
dependent samples of a zero-mean complex Gaussian random variable with variance
Ny/2 per dimension. The coefficients o j(t) fori =1,2,... N, 7=1,2,... ,M, and
t=1,2,...,1 model fading between the i*" transmit and j** receive antennas at time

t and are assumed to be complex Gaussian random variables with variance 0.5 per

! Fast .: .
! Fading ! Selecting Space-
. | Channel | . the Best L Time Data
. \ i . Out of M Decoder Sink
* A / ’ Antennas
\ /
N M
Figure 3.1: System model.
N
’I"g = E ai,j(t)cz + w{, (31)
i=1

dimension. The fading coefficients o ;(¢) change independently from one symbol to

the next, which can be accomplished by interleaving. Furthermore, the subchannels

are assumed to fade independently.
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Figure 3.2: Full-complexity system.

3.2.2 Diversity Order of the Full-Complexity System

An upper bound on the PEP for STTCs over fast flat fading channels is derived
in [4]. In this section, we review some definitions and highlight some of the main
results reported in [4] which are relevant to our work. Here, the term full-complexity

system, with a system model shown in Fig. 3.2, refers to a MIMO system that uses

all available antennas.

Assuming maximum-likelihood decoding and that the channel state information

(CSI) is perfectly known at the receiver, the conditional PEP that the receiver decides

erroneously on the codeword

28




given that the codeword

.12 N 1.2 N 1.2 N
C=CjC] "+ CL CCh " Cy - CjC] "+ C

has been transmitted conditioned on the channel gains is upper bounded by
Plc— e] a) < el~#(eeE/aNo) (3.2)
where a = {; j(t) : 1 <1< N, 1<j <M, 1<t<I[}and

, (3.3)

4

d* (c,e) =ZZ

t=1 j=

> () (d —€l)

i=1

fary

where [ denotes the length of the frame. After some simple manipulations, (3.3) can
be rewritten as
M
& (c,e) = > > Q()C(H)2;(), (3.4)

t=1 j=1

where 2,(t) = (a1,(), - ,q5(1)), ClO)pg = (¢ — D) =€) for pug =1,..., N.
Since the matrix C(t) is Hermitian; it can be factored as C(t) = V(¢t)D(t)V*(¢)
where V(t) is a unitary matrix and D(t) is a diagonal matrix with real-valued eigen-

values denoted by \;(t) for ¢ =1,2,...,N [44]. Now let
(B1,(8), Ba,(@), -+, B (1)) = )V (2), (3.5)
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then f; ;(t) for 1 <i < N, 1 <j< M, 1 <t <1, which can be put in a matrix form

as

Bu(t) Bu@) ... Biml(t)
Ba(t) Boat) ... Pam(t)

_51\/1(75) Bna(t) ... Bwwm(t)

are independent complex Gaussian random variables with zero mean and variance 0.5

per dimension [4]. Consequently, we have

QOO E) = D 18 OF Mi(2)- (3.7)

i=1

Thus, (3.4) can be expressed as

=) 3> 18, (t)] (3.8)

t=1 j=1 i=1

where |3; ;(t)| are Rayleigh distributed random variables with probability density

function

p (1B:;(0)]) = 218:5(t)] e85 @F), (3.9)

Averaging the expression in (3.2) with respect to the random variables |3; ;(¢)]
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yields

!
P(c— e)SH

t=1j

N
H / 218, ()] o (1815 01)

i=1

=N

Il
-

(BB OPNW) 4 18, ()], (3.10)

which, after some simple manipulations, yields

S T A o

t=1 i=1

By examining the matrix C(t), it is easy to see that the columns of this matrix
are all multiples of

(a1 N __N
co—e=(cg—e,...,cf —e).

Therefore, the rank of C(t) is 1 when |c; — e;| # 0 and 0 otherwise. When the rank is
1, it follows that, except for one of the eigenvalues, the rest are all zero. This occurs
when |c; — e, # 0. Let ¢(c, e) denote the set of time instances 1 < ¢ < { such that

|c; — e:| # 0 and let u = |p(c, e)| denote the size of ¢(c,e). Then (3.11) simplifies to

-M

Pc—e)<| [ lee—elf (5\;0)_“1%, (3.12)

tep(c,e)

which is an upper bound on the PEP and suggests that the diversity order of the full

complexity system is uM. We use this diversity order as a baseline for the diversity
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order achieved when antenna selection is employed. We remark that y represents the
minimum symbol-wise Hamming distance, which is directly related to the shortest

error event length in the code trellis.

3.3 Upper Bounds on the PEP with Antenna Se-

lection

In this section, we derive upper bounds on the PEP performance with antenna
selection at the receiver. That is, the case when the receiver uses only L out of the
available M receive antennas, where 1 < L < M. Clearly, there are (ﬁ,,) subsets to
choose from, but as mentioned above, we assume that the selected subset is the one
that results in the maximum instantaneous SNR at the receiver. We first start with

the case L = 1, i.e., when the receiver selects the best antenna, and then generalize

our analysis to an arbitrary number of selected antennas.

3.3.1 Selecting the Best Receive Antenna (L = 1)

Let us define Yj(t) as

}/J(t) = ”Qj(t)”27 J=12,... M,

where ||||* denotes the squared norm operator. Clearly, Y;(t) represents the amount of

energy picked up by the j** antenna at time instant ¢. Recall that when we select the
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Figure 3.3: Antenna selection system, selecting the best antenna.

best antenna, each time we observe the sequence Yi(t),Ya(t),..., Y (t) and select
the antenna corresponding to the largest term of this sequence. To simplify the
analysis, we introduce a sequence of M auxiliary random variables, that we denote
by Xi(t), Xa(t),... ,Xnm(t), such that X;(t) > Xo(t) > .-+ > Xp(t). This new
sequence is obtained by arranging the random sequence Y;(¢), Ya(t),... ,Ya(¢) in an
increasing order of magnitude. Furthermore, we may represent the random sequence
Qu(t), ..., um(t), after ordering, by the sequence ®(t),... , ®pr(t). Clearly, X;(t) =
|®;(t)||® for j = 1,2,..., M. When the best antenna is selected, expression (3.2)

reduces to

!
(— (@1(t>0(t)<1>;‘(t))4—’7;%>
Pc— e| ®1(t),te{1,2,...,1}) < e\ ™!

l
_ He(_(qn(tw(t)@?(t))ﬁv%). (3.13)

t=1

Note that ®,(t) is the vector of N complex Gaussian random variables

33



corresponding to the receive antenna with the largest instantaneous SNR at time £.
Also, the random variables ®,(t), t € {1,2,...,{} are independent and identically
distributed (iid). Now in order to find the average PEP, we average (3.13) with

respect to the distribution of ®;(t). That is,

(c— e <H/ ~(BC® ¢ )4No)f¢l(t (61(8)) debs (1), (3.14)

where CN denotes the N—dimensional complex space and fe, (1) (¢1(t)) is the pdf of

@, (t) given by [45]

M N e\ 2
fory (1) = — | 1 - el Z“O e el @I
(3.15)

Substituting (3.15) into (3.14) gives

l
P(c— e)< H M /e(—(¢1(t)0(t)¢;(t))§vsa>

t=1

3
=z

CN

2i M-1
( PG chm ||> e 10O gy, (1), (3.16)

By using the singular value decomposition of C(t) = V(t)D(t)V*(t) and the
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change of variable R(t) = ®1(t)V(¢), we can rewrite (3.16) as

N
Y (ﬁ(meMm))
C——> e H——ﬁ/ i=1

N-1 2 M-1
. <1 IR Ol Z ﬂ’l:?i) e—llr(t)ll2dr(t)_ (3.17)

1=0

Further simplification of (3.17) is possible by applying the change of variable r;(t) =

pi(t)e?%®  which yields

i
)
1
¢
N
—
g
[\
=
0\8
E |
B
N
™=
]
B
=
~———

To simplify this expression further we note that if y(z) =1 —¢e™® Zi]if,l %ﬁ, then

y(z) < ZCN" for z > 0 [11]. By using this result and defining z = S P3(t) and with

the help of the change of variable u;(t) = p2(t), we obtain

! % oo (~§u,~(t)( (t)+1))
e o< g [
N (M—1)N
(Zui(t)> duy(t) - - - dun(t), (3.19)
where
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N (M—1)N
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g=1

I
L
E
1
=
]
L

i
E
M=
—
u:;r

Il
i
B
L
z
i
I
&
i
i

WE

NIE
8
=
g

=

Bl
=

(3.20)

and k; represents the number of times the term u;(t) appears in the product

Uiy (t)uiz (t) C Wiy N (t)

Note that j € {1,2,...,N}, k; € {0,1,...,(M = 1)N}, and 31\, k; = (M — 1)N.

Substituting (3.20) into (3.19) yields

P(c— e) <

l
t=1

a7l Eeton)

0

Z ZHutdul

=1 ip-yn=1j=1

which can be rewritten as,

o dun(t), (3.21)

Pc— e)Sﬁ(TV]];—%—:fi"'. g: 1070"’0/006< Z%(t)( th))

i1=1 YM-1)N=

Jj=1
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By using [, z*e %"dz = -1, where a = Z%&g)‘i(t) +1, (3.22) can be expressed as

! M N N N k!
P(CHQ)SHWZ' Z H kj+1°

t=1 =l i-nyn=1J=1 (1 + (¢ )—?VL>
(3.23)
or equivalently,
N N
M k! kp!
P(C—’e)SH(_]-VT)T/I—:fZ Z N ki+1
t=1 . i1=1 UM-1)N= 1 H (1 + /\ 4N ) !
o (3.24)

Using the fact that, when t € ¢(c, e), the eigenvalues are all zero except for one,

which we denote by X (t), and for sufficiently large SNR, the term

T+ (050"

J:

will tend to oo except when k; = 0. As such, we can simplify (3.24) as

tELp(c,e i1=1 i(M—l)Nzl
(3.25)

L3 ki!- - ky!in (3.25) is independent of t.

im-1)n=1

Furthermore, the term S

111
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Therefore, we arrive at

-1

M o\ . 0 E,\7H
P(C—) e)_<_ (W) K (M,N,].) H |ct—et| (m—o) y
tep(e,e)
(3.26)

where K(M, N, 1) = zgzl e ZgM = kil-- - kn!. By comparing (3.26) and (3.12),
it is clear that the diversity order reduces from pyM to p when the receiver selects
the best antenna. However, since this result is only an upper bound on the PEP,
it only shows that the diversity order cannot be worse than x. In order to make a
stronger argument, we still need to find a lower bound on the PEP to conclude that
the diversity order indeed deteriorates as suggested by (3.26). To do this, we use
Craig’s expression for Q(z) [47], that is,

1 : -
Q) =+ [ l-5) ap, (3.27)
7r0/

in order to find the lower bound on the system performance. By using Craig’s formula,

(3.27), we can write the conditional PEP when the best antenna is selected as

l
Plc— e| ®i(t),te{1,2,...,1 /He ~(BOCOO) ) gp.

0 t=1

(3.28)

Averaging (3.28) with respect to ®;(¢) and following the change of variables that
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led to (3.18) yield

P(c— e)=

3 ( SNosm 9( pz(t)Ai(t))>
MZN/ /e
0

N M-1
N
SY e N (Z P?(ﬂ) ip2 (t)
l—e ™ ) S e = (sz )dm - dpy (t)df.

J=
o\wla

t=1

1

(3.29)

Expression (3.29) can be simplified further using the fact that if y(z) = 1 —

eme N ‘”, , then y(z) > “” 7 for 2 > 0 [11]. Using this result, (3.29) can be lower

bounded as

N 2
0 E N «' pi(t)
sin 2 p? (t))\l (t)) — 2 t i=1
P(C—)Q) /lIMQN// (SNO it e;l’z() e__—

N!

(=4
,_.
o

N N(M-1) , N
: <Z p?(ﬂ) (H pi(t)> dp1(t) -+ - dpn(t)dd, (3.30)

Using the change of variable u;(t) = p?(t), we can rewrite (3.30) as

1

!
P(c— e) > HN;];/.LII/

t=1

:]
S — o

7 ( Zul(t) )\z(t ETV‘O—;?;Q—Q-I-M))
€
0

N N(M-1)
(Zu, ) duy (t) - - - dun(t)d6. (3.31)

i=1
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Following similar steps that led to (3.24), we can simplify (3.31) as

1] Mo & al Kyl k!
P(C_}eDE/H(N!)M-lZ“' >

I
pol A 111_VI(M+)\(t) . )k-}-lde,
0 n= 9 M-1)N= : i
= J\"/ 8N sin* (332)
We can express (3.32) as
5 N N
1 M
0 = g1=1  gu-1n=1
l... !
= ~ fal ey do. (3.33)
e+ E kj+1
I I1 (1 +2(8) sy )
On the other hand, with the help of E;V:I kj = (M — 1)N we can write
N Zk +1
[ MRt = M =
=1
M- ((M-1)N+N)
= MMV (3.34)
Thus, we can write (3.33) as
= o) / e
N N Voo k!
S Y Mkl e (3.35)

I ki+1
1=l gm-yn=t I] (1 +/\j(t)ﬁm>
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At a relatively large SNR and since there is only one nonzero eigenvalue when

t € p(c,e), (3.35) can be expressed as

s
2

0 te€p(ce) \g1=1 gm-1yN=1

FE
M N({) == | d8, (3.
</\ ( )8N0 sin? 9) , (3:36)

which can be rewritten as

-1
M 1 Lo
P(c— e)?————7r (MNM—l(N!)M-l) K" (N,M,1) H 1ct——et|2

tep(c,e)

iy

EN*[( 1 \™*
.(4N0> / <_—2sin29) db. (3.37)
0

Since the expressions on the right hand sides of (3.26) and (3.37) both have the

same slope, we argue that the actual PEP has the same slope as well, which clearly
shows that the diversity order achieved is p. Therefore, the diversity order of the
system is reduced from puM to p when only the best antenna is selected at the receiver.

An intuitive explanation for this result is given later.

3.3.2 Selecting More Than One Antenna (L > 1)

In this section, we generalize the result of the previous section to a system that
selects the best L out of the total available M receive antennas, as shown in Fig.

3.4. When the receiver selects the best L antennas, the PEP defined by (3.2) can be
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Figure 3.4: Antenna selection system, when the best L antennas are selected.

expressed as

Plc— e| &i(t),... ), t€{1,2,...,1})

t=1 j=1

e(_ii( C(t)q)*(t))gv%)’ (3.38)

<

where it is assumed that [|®;(¢)]|* > -+ > ||®.(t)]|>. Now to find an expression

for the PEP, we need to average (3.38) with respect to the joint distribution of

D,(t),...,PL(t) as follows.

L
| ( Z(“’j‘”cwﬂt))ﬁvﬁ)
o=l [ [

t= 4’L(t) 21(t)

Jo1@),. 0. (P1(), ..., oL(t)) der(t) - - dor(t), (3.39)
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where ®;(t) is the vector of N complex Gaussian random variables corresponding to

the receive antenna with the 5 largest instantaneous SNR, and

for), on) ($1(2), ..., @r(t))

is the joint pdf of ®1(t),... ,®L(t) given by [44]

Iy Zu@ WP

for@), ) (B1(2), -, 9L(t)) = 7NL (M = L)lLlL -

| (Z { . Z o

l|2z

g=1

Is (¢1(2), ... ,qSL(t))) , (3.40)

where Ig, (¢1(2), 92(t), ... ,¢L(t)) = 1if ¢1(t), 2(t),. .., #L(t) € ¥, and 0 otherwise.

Therefore, (3.39) becomes

!
M
Ple— o <l wrmr—pmz

t=1
L
(_Z(¢j(t)0(t)<1>;(t) —’i%) Z!Idn(t)ll?
€

j=1 e j=1

oL(t) ®1(8)

(i{ —||¢qt>1|22“¢q ”1 )d¢1(t)...d¢L(t), (3.41)

q=1 =0
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which is possible to be rewritten as

!
M!
P(c— e) SIIWNL(M_L)ILILZ
t=

g=1

L
(—Z(%(tw(t)@;(t) z%’g) an ol
€

5=1

oLty 1Y)

[1_ —||¢,,(t>uzz 194(t) ”21] * dn(t) - dér(t). (3.42)

To simplify the analysis, we perform the integration over the entire space, which
results in a looser bound, but the diversity order remains unaffected. With this
simplification, the L—fold integration can be broken down into a product of L inte-
grations. This is possible due to the symmetry of the marginal pdfs of the random
variables ®;(t),... ,®L(t). Each term of Equl can be written as the multiplication

of two factors for k # q as

* =g —_— 2
n= (1] (- (@cOR @) ) NOF 4y 49

k=1¢‘k(t)

s 2 A oI\

— * s -— i

e( (<I>q(t)0(t)<1>q(t))4N0)e llsq(tl (1_e—|l¢q(t)ll § :_qz'__> dep,(t)
=

&q(t)
(.43)

Using similar change of variables introduced in the previous section and after some
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mathematical manipulations, we get

l M! N
Plc— e) < EWNL(M_L)!L! (ng <1+)\i(t)m> )

7TN N N k’llkN'
(N!)M-LZ'“ ) — |, (344)

which is possible to be rewritten as

! M!
(c— e S]:[(M L)ILI(NM- L)

t=1

-L+1 N

<1+A()£VO) > Z kl!"'kN!'v . (3.45)

ki+1
g1=1 IN(M-Ly=1 (1-—}—)\()41‘;7\,()J

==

1=

::12

1

i

J

Considering the fact that there is only one nonzero eigenvalue when ¢ € ¢(c,e), we

get

Ple= e)§<<M~L>%;<N!>M-L>l II (”X”ﬁvsoyw

kile- kN!.

(3.46)

Using similar argument that led to (3.25), it is possible to simplify the expression
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(3.46) at a relatively large SNR as

| !
Plc— e) < ( adk M—L) K*(M,N, L)
(M — L)IL! (NY)
-L
—ulL
[ le-ef] (%) . G
tew(ce) °

where K(M,N,L) = Zgzl e Z;\([M_L)Nﬂ k1!« ky!. By comparing (3.47) and (3.12)

it is clear that the diversity order resulting from selecting the best L antennas is
reduced from uM to pL. Similar to the L = 1 case, since the inequality in (3.47)
gives an upper bound on the PEP, we still need to find a lower bound on the PEP to
conclude that the diversity order is reduced to pL.

In order to find a lower bound for this case, we use (3.27) and write the conditional

PEP when the best L antennas are selected as

Plc— e| ®1(t),..., L)t € {1,2,...,1})

E}

=1 j=1

= 1L
17 (—ZZ(%(tw(t)@;(t))m%m)
-2 / e do. (3.48)
0

To find an expression for the PEP, we average (3.48) with respect to ®y(t),... , ®L(t)
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as

|
1
Plc— e —;/EWNL M — L'L'LZ/

Lo, () ¢>1(t>

L
( D (2:000%0) 5525 9) Zn«sj(t)n?
- €

Jj=1 e]l

[1 o~ lIBa®I? Z ||¢q “21] dey(t) - dor(t), (3.49)

which after implementing mathematical manipulations similar to what led to (3.45),

we obtain

| (Izll (1 + Ai(t)é-]%‘%m> _LH)

N N
3 DI Z fal - k! — | 49, (3.50)

~ R
gi=1  gu-pn=1[] (M L+ 1+ Mt )SNosin§9)
7=1
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It is possible to rewrite the expression (3.50) as

r
2

Plc— e) > -71; ((N!)M‘LJZ\!{ — L)!L!>l0/

f[ (ﬁ (1 + Ai(t)-m—b;;&-é) ~L+l>

N N
DS k! db.

g1=1 gm-1N=1 ij—i—l N kj+1 351
— E, .
(M —-L+1)= jl;[l (1 + X () st v 9) (3.51)

Using Z;\; 1kj = (M — L)N and considering the fact that in each time interval

there exists maximally one nonzero eigenvalue, we have

!
g MLy M!
P(c )= - <(N!)M——L (M—L)L(M—L+ 1)N(M——L+1)>

-L

KM(MvaL) H |Ct—et|2

tep(c,e)
—uL

E,N R
.(4N0> /0(28m29) do. (3.52)

This is a lower bound on the PEP when system selects the best L antennas. From

(3.47) and (3.52), we clearly see that the PEP is bounded between two curves that
have the same slope on a log-to-log scale, which is uL in this case. Therefore, the
diversity order resulting from selecting the best L antennas is reduced from uM to

wL. Moreover, the reduction of diversity order from pM to uL means that employing
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antenna selection makes the diversity order dependent on the number of selected
antennas. To further validate the upper bounds derived above, we now find values

for the constants K (M, N,1) and K (M, N, L) for specific values of N,

Table 3.1: Values of the Constant K(N,M,L) for Specific Values of N.

K(N,M,L) [ L=1 L>1
N=2 [PM-DI'| [2 (M )
N=3 | BM—2] | B(M =Ly +1]
N=4 |L@M =2l [la(M L)+ 2]

3.4 Numerical Examples and Simulation Results

In this section, we illustrate the results of this part of the work by considering
two STTC coding examples: the four-phase-shift-keying (4-PSK), 4-state code, and
the 8-PSK, 8-state code given in [4]. The number of transmit antennas in all cases
considered is N = 2. A fast flat fading channel with zero-mean channel coefficients
is assumed. The length of a frame coming out of each transmit antenna is [ = 130.
In all cases, where applicable, antenna selection is done based on maximizing the
received SNR.

Figs. 3.5 and 3.6 show the trellis diagrams of the 4-PSK, 4-state and 8-PSK 8-state
codes, respectively. Tables 3.2 and 3.3 show the output symbol pairs of these trellis
diagrams for each state transition [4]. The constellation diagrams of these signals are

shown in Fig. 3.7.
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Figure 3.5: 4-PSK, 4-state.
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Figure 3.6: 8-PSK, 8-state.

3.4.1 Numerical Results

In this section, we present some numerical examples to validate the upper bounds
on the PEP with antenna selection that were derived above. Evaluating the average

PEP is possible by averaging (3.2) over a large number of channel realizations while
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Table 3.2: Output symbol pairs, 4-PSK.

[o [1 ]2 [8 |
0 00]0L]02]08
1]10]11]12 |13
2202122 | B
330313233

Table 3.3: Output symbol pairs, 8-PSK.

o |t 2|3 |4 |5 ]6]7 |
00101 |02(03[04]05]06]|07
50 | 51 | 52 | 53 | 54 | 55 | 56 | 57
20121122 (123|24|25|26|27
7017172 | 73|74 |75|76|77
40 | 41 {42 143 | 44| 45| 46 | 47
10 (1111213114 115|16] 17
60| 61|62 63|64 |6566]|67
3013132133134 |35]36]|37

~N| OO W N O

assuming a particular error event length, and then repeating the averaging over all
possible error events of the same length. We consider MIMO systems with two and
three receive antennas, and two transmit antennas. The STTC used for the numerical
examples is the 4-PSK presented in [4]. We consider error event lengths two and three
because they are the ones that dominate the performance at high SNR. The length
of an error event is the number of consecutive symbols which have been erroneously
decoded.

In Figs. 3.8 and 3.9, examples of length-2 and 3 error events are shown. In these
figures, the solid lines show the correct path, while the dotted ones are the incorrect
paths. Considering the graph in Figs. 3.8, for each correct path, there exist 3 incorrect

paths in the case of length-2 error event. For the situation shown in Fig. 3.9, there
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Figure 3.7: Constellation diagrams for 4-PSK (left) and 8-PSK (right) codes.

Figure 3.8: length-2 error event.
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exist 15 incorrect paths, where we showed only 9 of them which are considered as

length-3 error event,

A 4 +1 1+2

Figure 3.9: length-3 error event.

Assuming only one antenna gets selected at a time, (3.4) can be rewritten as

& (c,e) =D & (1)C(1)21(1), (3.53)

where C(t)p, = (& — €7) (¢ — ef) and ®;(k) has the largest norm in time duration ¢,
as defined in (3.13). For the case of selecting more than one antenna, say L, we can

rewrite (3.4) as

l L

d(c,e) =D > 2;()C(1)®;(1), (3.54)

=1 j=1
where ®,(k),...,®(k) are defined in (3.38). Assuming a particular error event
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length, evaluating the average PEP is possible by averaging on (3.2) with the help of
(3.53) or (3.54) over a large number of channel realizataions, and then repeating the
averaging over all possible error sequences of the same length.

Considering the above discussion, we evaluated the average PEP for various se-
lection scenarios, shown in Figs. 3.10 and 3.11. For all cases shown in these figures,
the number of transmit antennas is N = 2. Moreover, the number of receive antennas
for the system corresponding to Fig. 3.10 and 3.11 is M = 2 and 3, respectively.

In Fig. 3.10 the results are shown for the case of systems with length-2 and 3
error events with N = 2 and M = 2. The number of antennas in both of receive and
transmit sides are 2. As shown in the figure, the slope of the curves before and after
antenna selection, are not the same, which is unlike the case of slow fading channel
and in agreement with analytical results.

Moreover, it is possible to compare the slope of the curves for different error event
lengths. The curves in this figure show that the diversity order of the antenna selection
system, for two different error events of length 2 and 3, and for a fixed number of
selected antennas, are the same. Based on the result in Fig. 3.10, and for a system
with the fixed number of total available antennas, the diversity order of the antenna
selection system is a function of the number of selected antennas.

Fig. 3.11 presents the results for systems with M = 3 receive antennas. The error
event lengths considered are 2 and 3. As the curves of the figure show, the slope of
the curves are different before and after employing antenna selection. This confirms

that the diversity order is not preserved with antenna selection.
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Average Pairwise Error Probability

N=2, M=2, Error Event Length 2 and 3
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Figure 3.10: Average PEP for M = 2 and length-2 and 3 error events.
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Average Pairwise Error Probability

N=2, M=3, Error Event Length 2 and 3
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Figure 3.11: Average PEP for M = 3 and length-2 and 3 error events.
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The results for various selection scenarios and different error event lengths shown
in Fig. 3.11 confirm that the diversity order of an antenna selection system is a
function of the number of the selected antennas, and not the number of total available
antennas. Based on these results, when the number of selected antennas is fixed, the
diversity order does not change, regardless of the number of available receive antennas.
Therefore, for a fixed number of selected antennas, increasing the number of receive

antennas only increases the coding gain of the system.

3.4.2 Simulation Results

In Figs. 3.12 — 3.15, we plot the frame error rate (FER) against the SNR in dB
for various cases of antenna selection for the 4-PSK, 4-state and 8-PSK, 8-state codes.
We examine the following cases: M =3 with L =1,2,3; M =2 with L = 1,2 and
M =1 with L = 1. The results in Fig. 3.12, which are for a code system of 4-PSK,
4-state, show that the slopes of the performance curves corresponding to a specific
L, for all M, are the same, suggesting that their diversity order is the same, which
agrees with the analytical results derived in this chapter. However, this additional
coding gain becomes smaller as M increases. For instance, at FER = 1073, the case
M =2, L = 1 achieves a gain of bout 3.0 dB over the case M = 1, L = 1, whereas
only an additional 0.5 dB is achieved in the case M =3, L = 1.

In Fig. 3.13, we plot the FER against the SNR in dB for the 8-PSK case for
the same antenna selection scenarios considered in Fig. 3.12. It is clear from the

figure that the diversity order deteriorates with antenna selection. It is also evident
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Figure 3.12: FER performance comparison between various antenna selection scenar-
ios in fast fading for 4-PSK, 4-state code.
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Figure 3.13: FER performance comparison between various antenna selection scenar-
ios in fast fading for 8-PSK, 8-state code.
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from the figure that the additional coding gain achieved due to using larger M, while

keeping L fixed, becomes marginal as M increases.

Fig. 3.14 shows simulation results for the case M = 1,2,3 and L = 1. The results
are for the 4-PSK and 8-PSK cases. From the figure, it is clear that the slopes of
the curves are the same, regardless of the number of total available receive antennas.
Fig. 3.15 shows the results for the cases M = 2,3 and L = 2. This plot also confirms
that the diversity order in a fast fading channel depends on the number of selected
antennas and not on the total available receive antennas.

For comparison purposes, we include here some simulation results for the quasi-
static fading case for the 4-PSK, 4-state space-time code presented in [4]. These
results are shown in Fig. 3.16 [21]. The antenna selection scenarios considered here
are the same as those considered for fast fading. We observe from the figure that all
of the performance curves corresponding to a specific M, for all L, have the same
slope, suggesting that antenna diversity is preserved with antenna selection. However,
as observed from the figure, the penalty for antenna selection is a reduction in the

coding gain, which is expected as well.
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Figure 3.14: FER performance results for L = 1 and for the 4-PSK 4-state, 8-PSK
8-state codes.
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Figure 3.15: FER performance results for L = 2 and for the 4-PSK 4-state, 8-PSK
8-state codes.

62



L=1,2, N=2, M=1-3
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Figure 3.16: FER performance comparison between various antenna selection scenar-
ios in slow fading for 4-PSK, 4-state code [21].
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3.5 Conclusion

In this chapter, we have examined the performance of space-time trellis codes
over fast fading channels with antenna selection at the receiver. We have adopted a
selection criterion that is maximizing the received SNR. We have demonstrated that
the diversity order deteriorates with antenna selection, and the resulting diversity
order is a linear function of the number of selected antennas. Therefore, adding more
receive antennas while keeping the number of selected antennas unchanged does not
increase the diversity order. The only effect of doing so is an increase in the coding
gain. This result is unlike the case for quasi-static fading where the diversity order
is maintained with antenna selection as long as the underlying space-time code is
full rank. A thorough mathematical analysis has been developed to understand the
phenomenon, which was strongly supported by numerical examples and simulation

results.
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Chapter 4

Antenna Selection for Block Fading

Channels

4.1 Introduction

In this chapter, we consider receive antenna selection for STTCs over block fading
channels, where the channel coefficients fade independently from one block of sym-
bols to another. A block is defined to be a set of several consecutive symbols within
a data frame. The block fading model is used to model a wide range of practical
communication channels because it encompasses a wide range of mobility and data
rates. Fast and slow fading channels are two extreme cases of block fading. There-
fore, understanding the impact of antenna selection over block fading channels helps
understand the results for slow fading ([21], [22]) and fast fading ([?]—[?]) channels .

For a given number of receive antennas M, we assume that the receiver uses
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L out of the available M antennas where the selected antennas are those whose
instantaneous SNRs are largest. This is achieved by comparing the sums of the
magnitude squares of the fading coefficients at each receive antenna and selecting
those (L of them) corresponding to the largest sums. We assume that the receiver
has full knowledge of the CSI. We derive explicit upper bounds on the pairwise error
probability for the above system. We show that the diversity order with antenna
selection is dictated by the number of selected antennas and not by the number of
the available antennas. This is unlike the case for quasi-static fading channels [21],
but is similar to the case of fast fading channel. However, using more antennas results
in an improvement in the coding gain due to the increase in the average received SNR
after selection. We present several numerical examples that validate the results.
The rest of the chapter is outlined as follows. In Section 4.2, we introduce the
system model and some preliminaries. In Section 4.3 we present some results for the
full-complexity system. Then, in Section 4.4, we derive explicit upper bounds on the
PEP with receive antenna selection. In Section 4.5, we provide numerical examples
and simulation results that support our analysis. Finally, we conclude the chapter in

Section 4.6.

4.2 System Model

The system under consideration, shown in Fig. 4.1, models a wireless commu-

nication system equipped with N antennas at the transmitter and M antennas at
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Figure 4.1: System model.

the receiver side. The space-time encoder encodes the data and then feeds it into a
serial-to-parallel converter, to provide N parallel streams which are transmitted from
N transmit antennas simultaneously. Blocks that involve modulation, demodulation,
etc., have been suppressed from the figure due to their irrelevance in the analysis.
At the receiver, after demodulation, matched-filtering, and sampling, the signal

rZ received by antenna j at time ¢ is given by

N
rl =" a;;(t)c + i, (4.1)

i=1

where ¢t is the signal transmitted from antenna ¢ at time ¢, and the noise terms
w! are zero-mean independent complex Gaussian random variables with variance
No/2 per dimension. The coefficients ¢ ;(t) for s = 1,2,... N, j = 1,2,... , M,
and t =1,2,...,l model the fading for the channel between the i** transmit and j**
receive antennas at time ¢, and are assumed to be complex Gaussian random variables.

In this study, we assume block flat fading channel, i.e., the fading coeflicients «; ;(¢)
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Figure 4.2: Full-complexity system.

change independently from one block of symbols to another. Let [ denote the length
of the data frame transmitted from each transmit antenna, and let § denote the length
of the faded block, i.e., 1 < § <! . Note that when § = [ the channel becomes quassi-
static fading (slow fading), whereas when § = 1, the channel becomes fast fading.

Furthermore, the subchannels are assumed to fade independently.

4.3 Full-Complexity System

4.3.1 Diversity Order

A MIMO system that is using all of the available antennas is referred to as a
full-complexity system (see Fig. 4.2). Assuming maximum-likelihood decoding and

prefect knowledge of the CSI at the receiver, the conditional PEP that the receiver

68




decides erroneously on the codeword

1.2 N_1.2 1.2
e=e¢ee] € ey ey " €€l e,

1.2 N 1.2 N

CzC%C%"’C?CQCz"'CZ ...clcl ...Cl

has been transmitted is upper bounded by

Plc— ela)< e(~ (o) /aNo) (4.2)

where o = {; j(t): 1<i< N, 1<j< M, 1<t<1}and

M 2
d(c,e) =D Y > ai(t) (d—e) (4.3)
t=1 j=1 | i=1
After some simple manipulations, (4.3) can be rewritten as
2 (ee) = 3D T OCOV;0), (4.4
t=1 j=1
where U;(t) = (a1;(t), ... ,an;(t)) and C(t) is a matrix whose (pg)™ entry is

Clt)p, = (& —€b)(cf —¢€f) for p,g = 1,... ,N. Without loss of generality, let us

assume that each frame (of length [) consists of K blocks, each of length 9, i.e.,
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[ = K. As such, (4.4) can be rewritten as

M 8
=Y "> y()C() Z\I/ ()C(E)T;(t) +

=1 t=1 t=4+1

.

K¢

+ ) THCHT;E). (45)

t=(K—-1)6+1

Since the elements of ¥;(t) are fixed in a block, we can rewrite (4.5) as

d%c,e)zi% (Zc ) (Zo) W6+ 1)+

j=1 t=1 t=§+1

+\1:]((K—15+1( Z 0()) (K =-1)6+1). (4.6)

t=(K—1)+1

By defining

ARy > C), (4.7)

and using the change of variable Q;(k) = ¥;((k — 1) § + 1), we can express (4.6) as

e) =Y > (k) A(k); (k). (4.8)

k=1 j=1

Since the matrix A(k) is Hermitian, there exists a unitary matrix V (k) such that
D(k) = V(k)A(k)V*(k), where D(k) is a real diagonal matrix with eigenvalues A;(k)
fori=1,...,N. The rows of V(k) are a complete orthonormal basis of CN given by

eigenvectors of A(k). Moreover, the diagonal elements of D(k) are the eigenvalues of
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A(k). Now let (B1,;(k), Baj(k), ... ,Bn;(k)) = Q;(k)V*(k). Considering the fact that
the fading coefficients are complex Gaussian random variables with zero mean and
variance 0.5 per dimension, the coefficients §;;(k), for 1 <i < N, 1 <j <M, 1<
k < K, are independent complex Gaussian random variables with zero mean and

variance 0.5 per dimension [4]. As such, (4.8) can be re-written as

K M N
d(c,e)=>_ > > 16:;(k) (4.9)

k=1 j=1 i=1

where | ;(k)| are Rayleigh distributed random variables. Averaging (4.2) with re-

spect to the random variables |5; ;(t)| yields

K M N %
(c— e) SHHH/QW”JUC lﬁi,j(k)|2)
0

k=1 j=1 i=1

6( 4N0|ﬁu(k)| Ai(k )dlﬁm( k)|, (4.10)

which can be expressed in a compact form as

K [r) M
P(c— e) < H H (m) ) (4.11)

k=1 \i=1

where (k) denotes the rank of A(k). To simplify the above expression further, let

(c,e) denote the set of block indices over which an error event extends. As such,
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when SNR is sufficiently large, (4.11) can be expressed as

b

(k) M B\ >
re- o< | I (ID0) ) (5) =

kev(ee) \i=1
(4.12)
which is an upper bound on the PEP for the full-complexity system over block fading.
Note that setting K = 1 or K = [ converts (4.12) to the PEP upper bound of
the full-complexity system over slow and fast fading channels, respectively, suggested
by Tarokh, et al. in [4]. For example, for the slow fading case, there exists only one
block in a frame and as a result, we have only one value for r(k) for a frame, which
can be written as r(k) = r. Therefore, we have 3 ;. o (k) = 7, and (4.12) converts

to

Plc— e) < (1;[1 /\i) N ( 4%())_%, (4.13)

which is an upper bound for the slow fading case as shown in [4].

On the other hand, for fast fading case (K = [), the length of the block is 1. By
defining ¢(c,e) and p = |p(c,e)| as the set of time instances 1 < ¢ < [ such that
|ct — €] # 0 and the size of ¢(c,e), respectively, expression (4.12) converts to the

bound for fast fading, which is

Pic— e < | JI lec—ef <£;0>_“M. (4.14)

tep(c,e)
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We note that in the above analysis, it is assumed that the length of the block is
greater than the number of transmitters, i.e., § > NN, which is a reasonable assump-
tion. It is easy to show that for the rank deficient system, the upper bound on the
PEP for both cases of § > N and § < N are the same. However, it is possible to show
that the diversity order of the full rank system with § > N and § < N, are nM N and

ndM, respectively, where n = |¢)(c, e)| denotes the size of ¥(c,e).

4.3.2 Rank Of A(k)

Considering the structure of the A(k), it is important to note that the rank of
A(k) depends on the location of the error events in a frame. This has a key role in our
mathematical analysis in the next section. In the following we give some examples to
explain this phenomenon. In these examples we consider a system with two transmit

and two receive antennas.
Example 1 Length-2 Error Event

In the first example, we consider the case of error events of length-2. In Figs. 4.3
and 4.4, two different cases of the length-2 error events are shown. Based on (4.7)
the general form of A(k) for a length-2 error event that starts at the arbitrary time
t1, occurring in one block (Fig. 4.3), is written as

1 1 )2
|Ct1+1 - et1+1| 0

A(k) = , (4.15)

2 212
0 1ct1 -
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which is a full rank matrix.

Figure 4.3: Length-2 error event, occurring within one block.

On the other hand, if this length-2 error event starts in one block and ends in

the next block (see Fig. 4.4), the general form of the block matrices for this case are

written as

A(k) = , (4.16)

and

‘C%1+1 - et11+1|2 0

Alk+1) = . (4.17)
0 0

Consequently, both block matrices are rank deficient.
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oy htl

Figure 4.4: Length-2 error event, extending over two consecutive blocks.

Example 2 Length-3 Error Event

Now, let us consider error events length-3, that start at {;and extend to ¢; + 2.
Fig. 4.5 shows an error event of length-3 occurring within the same block. As such,

the corresponding codeword difference matrix can be written as

2 2 %
1 1 1 1 1 .1 2 _ 2
Alk) Ict1+1 6t1+1| + !Ct1+2 €t1+2l (Ct1+1 6t1+1) (Ct1+1 et1+1)
= b

Cror ) (o —h) 1=l 4l

which is a full rank matrix.
In Fig. 4.6, the error event starts in block k£ and extends to block k + 1. The

corresponding codeword difference matrices will be
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k k+1

Figure 4.5: Length-3 error event, occurring within one block.

Figure 4.6: Length-3 error event, extending over two consecutive blocks.
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2 ——
A(k‘) — |C%1+1 - et11+1| (Ctll+1 - 6t11+1) (C%1+1 —_ 6?14-1) |

o= eho) (o =) et =P+l —ehnl® |

and

1 1 2
Ict1+2 - et1+2' 0

Ak+1) = . (4.20)

0 0
It is clear that A(k) is full rank, whereas A(k + 1) is rank deficient. Therefore,
for any error event that starts in a block and ends in a different block, some of
the corresponding block matrices are likely to be rank deficient. Since error occurs
randomly, there is no guarantee that the block matrices are all full rank. Thus, in
the following analysis, we consider the worst case scenario, that is, some of the block

matrices are rank deficient.

4.4 Antenna Selection System

In this section, we derive upper bounds on the PEP with antenna selection at
the receiver. That is, the case when the receiver uses only L out of the available
M receive antennas, where 1 < L < M. Note that there are (AL/I ) subsets to choose

from, but we assume that the selected subset is the one that results in the maximum

. instantaneous SNR at the receiver. We first derive upper bounds for the case L = 1,
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i.e., when the receiver selects the best antenna.

4.4.1 Selecting the Best Receive Antenna (L = 1)

o ~, a 1
', '\.
/ \
i (S Select
i Block i l the
i Fading i 3 Best
i  Channel : Receive —) Decoder
i ] * Antenn
\ i —_— cnna
N y
N P
e —>

Figure 4.7: Antenna selection system, selecting the best antenna.

Fig. 4.7 shows the model of the antenna selection system that selects the best an-
tenna. The amount of energy picked up by the j** antenna during block k can be rep-
resented by Y;(k) = || (k)|1?, 5 = 1,2,... , M, where ||-||* denotes the squared norm
operator. At the beginning of each block k, the receiver selects the antenna which has
the largest term of this Y;(k) sequence. In order to simplify the analysis we introduce
another sequence of M auxiliary random variables such that X; (k) > X(k) > --- >
Xm(k) which is obtained by rearranging the random sequence Y (k), Y2(k), ... , Yar (k)
in an increasing order of magnitude. Furthermore, we represent the random se-
quence ®,(k),..., Py (k) as the ordered sequence of Q;(k),...,Qu(k). It is clear

that X;(k) = ||®;(k)||* for 5 = 1,2,... , M. When the best antenna is selected, the
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conditional PEP can be expressed as

K
( > (B1(k)Ak @*(k))%)
P(c— e| ®(k),ke{l,2,... , K})<e\ *

?

(4.21)

where &, (k) is the vector of N complex Gaussian random variables, corresponding to
the receive antenna with the largest instantaneous SNR for the k** block, which are
independent and identically distributed (iid). To find the average PEP, we average

(4.21) with respect to the distribution of ®;(k). That is,

K

C — e H/ tI>1 (R)A(K)®3 (k) )4N0 fq, (k) (¢1( )) d¢1(k), (4.22)

k=1

where CN denotes the N —dimensional complex space and fo,x) (¢1(k)) is the pdf of

@, (k) given by [45]

e R H¢1 )II2’ o o1 (R)]2
fore (B1(R)) = =5 [ 1—e Z -

(4.23)

By substituting (4.23) into (4.22), using the singular value decomposition of

D(k) = V*(k)A(k)V (k), and applying the change of variables r(k) = ®,(k)V (k) =
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[ri(k),... ,rn(k)] and r4(t) = p;(t)e?%®) | we obtain

k=1

K 00 o0 ( 4Nozpl<k)xu k))
(c— e) HMQN// /
0 0

To simplify the evaluation of the upper bound in (4.24), we note that if g(v) =
1—ev 0 1’—,, then g(v) < %7 for v > 0 [11]. With the help of this result, defining
v = SN p2(t) and applying the change of variable u;(t) = p2(t), we can rewrite

(4.24) as

0 0

k=1

i=1

N (M-1)
: (z ui(k)) duy (k) - - dun (k). (4.25)

Carrying out the integration in (4.25) with the assumption that each A(k) for
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k=1, -, K has r(k) non-zero eigenvalues, yields

K M N N
Ple— e) < H (NDM-T Z Z
k=1 =1 YM~1)N=
lgo! -+ gn!
: @ qu qzzil PRV (4.26)
(1+umE)" (1+xk)E) (1+ Moo (W)
where ¢;, ¢ = 1,..., N represents the number of times the term u;(k) appears in the
product
Uiy (k)ulz (k) T Wi N (k)
and ¢}, ¢ = 1,...,7(k) denotes those values of ¢; that appear in the denominator.

For a sufficiently large SNR, (4.26) can be written as

M K
)

P(c— e) < (W—:—

N
g!

H i o i r(k)i=1

key(ce) | 11=1 im—1yN=1 H )\q;-—*—l(k;)
J

j=1

II

=1

1

ki(c.e)

(

N (M-1)N
Considering the expansion of (Zz’:l u,(k))
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) (&) =
key(e,e)
r(k)

in (4.25), it is clear that Z g <

i=1

E, r(k)

™ (4.27)
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N
Z ¢ = (M — 1)N and we can easily show that
i=1

e o< (i)’

r(k) (M—1)N

I (Iv'e Y ek ()
key(c,e) \7=1 pord -
N Es - Z r(k)
.kJ/);[e) (g Qi!) (Z]—\?(;) k€Y (c,e) . (4.28)

where z = Z;Q? q;-, and o (k, z) is the summation of the multiplicators of the same

exponent terms of SNR. For a sufficiently high SNR (4.28) can be simplified as

P(c— e) < <(7V")A%>K 11 <IN] q,!)

kgy(ee) \i=1

(k)

r(k) -
I ({70 ]ewo) (5) == - @)

key(c,e) Jj=1

The upper bound on the PEP given by (4.29) shows that, in a block fading chan-
nel, the diversity order when the receiver selects the best antenna is 3 ¢ o) 7(k)-
This result is different from the diversity degree of a full-complexity system which is
M Y ke T(K), given by (4.12). However, considering the fact that (4.29) gives an
upper bound on the PEP, we need to find a lower bound on the PEP to conclude that
the diversity order indeed deteriorates as suggested by (4.29). In order to find this

lower bound, we use (3.27) to evaluate the conditional PEP when the best antenna
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is selected as

P(c— e| ®(k),ke{1,2,...,K})

7 g
/ He (214021 (0) 572575) g9 (4.30)
o k=1

=\|H

Averaging (4.30) with respect to ®;(k) and repeating steps similar to what lead
o (4.24) gives

P(c— €)=

[
o\,.wl:a
—
<
[\\]
=2
0\8
O"\g
E t
:2}
o |
=}
/QR
i
>
z
=
~
~——

1
- pr(k)

e i=1

- (fjl m(k)) dor(k) - dpx(K)d8 - (4.31)

To simplify (4.31), we use the fact that if g(v) =1 —e™ Ei]i?)l %, then g(v) >

UW [11]. This yields,
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:Hb—\

" N
3k oo 0 —‘—E;ii;f— Zp?(k)Aﬂ(k))
o /HW/---/e(
0 0

k=1
N I

S 2 e =1 N(M-1)
e ; (k) N (lé\]:lpf(k))
N
. (gl pi(k)> dpr(k) -+~ dpy (K)dB.  (4.32)

With the help of the change of variable u;(k) = p?(k) and implementing some

mathematical manipulations, we can simplify (4.32) as

us

Plc— 6)2%]<m%j>x

P N Hqi!
NI —{ds. (4.33)

k=1 | i1= 1 X (k) \ %
ol e L H M + s

j=1

Given that A(k) has r(k) non-zero eigenvalues, it is possible to express (4.33) as
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P(c— e)>

1
™

E (k)

M’EEﬂb(c,e) 1 K
MMN—-l(N!)M——l

e
/2
0

r(k)

H i i =1 . ( E, > - ,Z; 9
o r(k ’ .2 -
ked(ce) | in=1  iggonn=1 I(—[) A§j+1(k) 8M Ny sin® 6
j=1
I <ﬂ > E SDIRC
. qz! <——_-f—§—_> k€Y(c,e) d97 (434)
kgw(ce) \i=l 8 Ny sin® 6
which in turn, at a sufficiently large SNR, can be written as
(k)
Mk:Gi/)(c,e) 1 K N
Plc— e)> ( MN-1 ) IT (IT «
~1(NT)M-1
" M (V) k(ce) \i=1
r(k)
7 D - (k)
2 (k) 1 G=1 ) hedloe)
. )\'—1 k / 70 1 de
/ H H R )<Sin29) <28in20>
0

keip(c.e)

(4.35)

- (k)
. & ke%e)
4Ny ’

where o] (k, z) is the summation of the SNR terms with the same exponent. The

upper bound in (4.29) and the lower bound in (4.35) suggest that the PEP is bounded

between two curves that have the same slope. Based on this result, we argue that the

actual pairwise error probability has the same slope as well, which is Ekew(c,e) r(k).
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Therefore, employing antenna selection reduces the diversity order of the system from

MZke«p(c,e) r(k) to Zked)(c,e) r(k).

4.4.2 Selecting the Best Receive Antenna (L > 1)

1 1

o N, %

./' ‘\.
i \ Select
i Block i | the .
| Fading iy Best  [OLRECHN [ e
i Channel | L .
: / —_— Receive .
\\_ _/"l Antennas ——>

N g l

e —_—>

Figure 4.8: Antenna selection system, selecting the best L antennas.

For a system that selects the best L antennas (see Fig. 4.8), we can express

the conditioned PEP defined by (4.2) as

P(c— e| ®1(k), - ,PL(k),ke{1,2,... ,K})

K L
(— > :l(%(k)A(kw;(k))fN%)

<e\ Y , (4.36)

where it is assumed that [|®;(k)|> > --- > [|®4(k)|?, and ®,(k) is the vector of N
complex Gaussian random variables corresponding to the receive antenna with the

j* largest instantaneous SNR. To find an expression for the PEP, we average (4.36)
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with respect to ®1(k),...,®.(k) whose joint pdf is given as [45]

fork),... 20k (D1(K), ..., oL (K))

M! - Zum(k)nz
= 7NL(M - L)ILIL®

L 2 M~L
. (Z (1 o202 Z ”(/’L( Nl (k)™ ) Lo, ($1(E), . ,ngL(k))), (4.37)

g=1

where Ip, (¢1(t),...,d.(t)) = 1if ¢1(t),... ,dL(t) € P4 and 0 otherwise. Due to the
fact that for this case the derivation follows the case L = 1, to avoid repetition, we

just give the main results. Using similar arguments that led to (4.26), we obtain

s M!
Ple— e g (W = L) LI (N E

N N

ga! -+ .qu!
SN

q Ty 1
i1=1 i(M—L)Nzl (]_ + )\]_(k) 45‘\-;0) ! (]_ + )\2(13)4%0) 2 . (1 """ )\ 4?\‘790) (k)
1

L-1
'((ml(@ E) (L nli ) (1+Ar(k)<k>4No)) -

At a sufficiently high SNR, (4.38) can be expressed as

M! K
(M= L)!L!(N!)M—L)

r(k) L-1
key(c,e)

kgy(c.e)

Pweas(
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where oy, (k, z) has a similar definition as that given in (4.28). The expression (4.39)
suggests that the diversity order of the system is sz@(c,e)r(k:). By comparing
this diversity order with that of the full-complexity system (see (4.12)), it is clear
that employing antenna selection deteriorates the diversity order and reduces it from
M} ey (k) t0 L) ycpee T(K). Similar to the L =1 case, we still need a lower
bound to confirm the diversity order suggested by the upper bound in (4.39). Again,
to avoid repetition, we bring here just the main results. After some mathematical

implementation, similar to what we did in Chapter 3 for the case L > 1, we obtain

Z K
P(c— €)= /I;IIM L'L'N')

N N ﬂQi!
Sy

._ , _ i+1
e TT (M = (L= 1) + MR )

i=1

N E ~(L—1)
1] (1 + )\i(k)m> df. (4.40)

i=1

Given that the SNR is high enough, the expression in (4.40) can be simplified as
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1/ M! “
C — e -
™) \(M-L+1) NMM=L¥Y) (pf — L)ILI(ND)M-

(I >H(H>

kg key

N . ];!qﬂ o "ji:q;
JIADBEED'S r(k) ((M-(L~1))8Nosin29>

key | i1=1 Y M-L)N=1 H )\i(k)qg_'_l

: - k) e DY k)
) (swae)

. ke s Y=
((M - (L - 1))8No Sin2 6 8N0 sin2 i de. (4.41)

Finally, after some more simplifications, we get

Z r(k)

(M — (L~ 1)<

P(C — e) > -
M! N

r(k)

r(k) _;i;q;
. (.w-L) (e

key(c,e) i=1

—L E r(k)
k€y(e,e)

key(c,e)
it . (4.42)

~L (k)
o[ (2) 2

(1
2sin? 6
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where o (k, z) and z have the same definitions as those given in (4.39). The diver-
sity order suggested by (4.42) confirms the diversity order suggested by (4.39). For
comparison purposes, we list in Table 4.1 the diversity order for fast, block and slow
fading channels for various scenarios. The results are given for both cases of the

full-complexity and antenna selection systems.

Table 4.1: Diversity Order for Various Fading Channel.

Fading || Block Length | Full — Complexity L=1 | L>1
Fast 1 uM 7 uL
Block 1<d<l M kewee)™F) | Dokeniee)"F) | LD keyee) ()
Slow { MN MN MN

4.5 Numerical Examples and Simulation Results

In this section, we present some numerical examples and simulation results to
illustrate the results of this part of the work by using two STTCs, namely, the 4-PSK,
4-state and the 8-PSK, 8-state codes, given in [4]. The trellis diagrams of these codes
are given Chapter 3. The number of transmit antennas in all cases is N = 2. The
length of a frame coming out of each transmit antenna is [ = 130. In all cases, where

applicable, antenna selection is done based on maximizing the received SNR.

4.5.1 Numerical Examples

As it has been discussed in Chapter 3, evaluating the average PEP is possible by
averaging (4.2) over a large number of channel realizataions, assuming a particular
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error event of a certain length, and then repeating the averaging over all possible error
events of the same length. We consider systems with two transmit and two or three
receive antennas. The STTC used for the numerical examples is the 4-PSK, 4-state
code, presented in [4]. We consider error event lengths two and three because they
are the ones that dominate the performance at high SNR. We also consider block
length § = 5. In averaging (4.2), when the best L antennas are selected, d? (c, e) is

calculated as

K L
mac(c@) =% > O(R)C()P;(R), (4.43)

k=1 j=1 t=(k—1)5+1

where C(t)p, = (& — €) (7 — €]), and ®,(k), ..., P (k) were defined earlier in Sec-
tion 4.4.2. The relationship between A(k) and C(t) is given by(4.7), where A(k) =
fi(k—l)é +1 C(t) and § is the length of a faded block. Note that the values of j and
entries of ®;(k) of different blocks are independent of each other and may change
from one block to another. Therefore, if an error event starts in a block and ends in
a different block, the values of channel gains, i.e., the entries of ®;(k), are different.
In Figs. 4.9 and 4.10, numerical results for the average PEP with different selection
scenarios are given. In Fig. 4.9 the PEP results are shown for the case of N = M = 2
and error event lengths 2 and 3. Fig. 4.10 shows the average PEP results for error
event lengths 2 and 3. and for the case of N = 2, M = 3. It is clear from the figures

that the slopes of the curves are not the same before and after antenna selection. As

the result, diversity order degrades with antenna selection.
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Figure 4.9: Average PEP for M = 2 and error event length 2 and 3, block length 5.
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Figure 4.10: Average PEP for M = 3 and error event length 2 and 3, block length 3.
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4.5.2 Simulation Results

In our simulations, we use the 8-PSK, 8-state code given in [4]. The number
of transmit antennas for all cases is N = 2 and the number of receive antennas is
2 and 3. The fading channel considered is block Rayleigh fading with block lengths
6 =5 and 13. The length of the frame is [ = 130. In all cases, where applicable, the
antenna selection is done based on maximizing the received SNR.

The results in Fig. 4.11 show the FER against the SNR in dB for various cases
of antenna selection for § = 5 . We observe from the figure that the slopes of
the performance curves corresponding to different values of L, for a specific M, are
different. This confirms that the diversity order deteriorates as a result of employing
antenna selection. Moreover, the slopes of the performance curves corresponding to a
specific L, for different values of M, are the same. In other words, the diversity order
appears to be linearly proportional to L and it does not depend on M, which agrees
with the analytical results derived in this work. On the other hand, as expected,
increasing the number of receivers, for a specific L, provides additional coding gain.
However, this additional coding gain becomes smaller as M increases.

In Fig. 4.12, we plot the FER for § = 13. As expected, increasing 4, for a specific
M and different values of L, decreases the difference between the slopes of the FER
curves. This can be explained as follows. First, increasing § makes the channel

behavior closer to that of a slow fading one. We know that employing antenna
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selection over a slow fading channel does not degrade the diversity order. Thus, we
expect that the slopes of the FER curves when ¢ is large to be closer to each other.
Second, increasing § decreases the number of blocks per frame and this decreases the
probability of having error events extending over more than one block. Therefore,
there will be fewer rank deficient block matrices, as compared to a channel with small
J.

In Fig. 4.13 and 4.14, the performance results for different block lengths and
different selection scenarios are shown. In both figures, the number of selected an-
tenna(s) remains the same, while the number of available antennas changes. In Fig.
4.13, system selects only the best antenna, while in Fig. 4.14, antenna selection sys-
tem usés the two best antennas, for each block time duration. Results in these figures
confirm that the diversity order of the STTC antenna selection system is a function
of the number of selected antennas, which is in agreement with the mathematical

results presented in this chapter.
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Figure 4.11: FER performance comparison between various antenna selection scenar-
ios in block fading for block length 5 (8-PSK, 8-state).
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Figure 4.12: FER performance comparison between various antenna selection scenar-
ios in block fading for block length 13 (8-PSK, 8-state).
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Figure 4.13: FER performance for different block length and for selecting the best
antenna, block lengths 2, 5 and 13 (8-PSK, 8-state).

98



10°

10°

10°

10°

Figure 4.14: FER performance for different block length and for selecting two best

N=2, M=2.3, L=2, Block length=2,5,13, 8-PSK, 8-State

O L=2,M=2,B=2

vV L=2,M=2,B=5 [ ;

x  L=2,M=2,B=13 | :

A L=2,M=3,B=2 | ‘

O L=2,M=3B=5 | :

0 L=2,M=3, B=13 | :

] | 1 H 1
6 8 10 12 14 16 18 20 22

EJ/N, (dB)

antennas, block length 2, 5 and 13 (8-PSK, 8-state).
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4.6 Conclusion

A thorough mathematical analysis was done to examine the performance of
STTCs over block fading channels with antenna selection at the receiver side. Specif-
ically, we derived explicit upper bounds on the PEP. Our analysis showed that em-
ploying antenna selection over block fading channels deteriorates the diversity order
of the MIMO system and makes it linearly proportional to the number of selected
antennas. As a result, increasing the total number of receive antennas in such sys-
tems increases the coding gain, but does not enhance the diversity order of the system.
Our numerical examples and simulations results strongly supported the mathematical
analysis.

The results for block fading channels are similar to those for fast fading channels
and to slow fading channels when the underlying STTC is rank deficient. However,
antenna selection does not affect the diversity order for orthogonal space-time block
codes (STBCs) for all types of fading channels [39]. The same is true when a STBC
is concatenated with an outer channel code, including TCM, convolutional and turbo
codes [40]. These findings suggest that it may be more feasible to employ STBCs

when antenna selection is considered, as opposed to STTCs.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

5.1.1 Main Results

We have examined the performance of space-time trellis coded MIMO systems
over fast Rayleigh fading channels with antenna selection at the receiver. We have
adopted a selection criterion that is optimal in the sense of maximizing the received
SNR. We have demonstrated that the diversity order degrades with antenna selection,
and the resulting diversity order is linearly dependent on the number of selected
antennas. This result is unlike the case of quasi-static fading where the diversity
order is maintained with antenna selection. Our thorough mathematical analysis was
supported through numerical examples and computer simulations.

In the second part of the thesis, a thorough mathematical analysis has been done

to examine the performance of space-time trellis codes over block fading channels
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with antenna selection at the receiver side. Our mathematical results are in full
agreement with previous works, which are the two extreme cases of fast and slow
fading channels. Moreover, our mathematical analysis, numerical examples and sim-
ulation results support each other. These results show that the impact of antenna
selection on the diversity order depends upon the error event location. If some of the
error events are extended over more than one block, some of the corresponding block
matrices are likely to be rank deficient. Since error events occur randomly, there is
no guarantee that the block matrices are all full rank and the system can be consid-
ered rank deficient. Based on this fact and through exact mathematical analysis, we
showed that the diversity order of an antenna selection over block fading channel is
not preserved and is linearly dependent on the number of selected antennas. Also,
increasing the total number of available receiver antennas, while increases the coding

gain of the system, does not enhance the diversity order of the MIMO system.

5.1.2 Intuitive Explanation

Although the degradation in diversity order due to antenna selection is counter-
intuitive, in the following, we shall give an explanation as to why this result makes
sense. A STTC is said to be full rank when the codeword difference matrix, or equiv-
alently the matrix C(t) in fast fading (or A(k) for block fading) is full rank, where
this rank normally equals the number of transmit antennas, N. Otherwise, the STTC
is said to be rank deficient. Recall that when t € ¢(c, e) the matrix C(¢t) always has

rank 1 regardless of the number of transmit antennas, and thus the underlying STTC
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code can be viewed as rank deficient. This implies that N —1 of the available transmit
antennas do not provide any useful information to the receiver in terms of diversity
gain.

As such, when antenna selection is performed, it is possible that the channel
gains corresponding to these N — 1 transmit antennas may lead to the selection of a
‘bad’ subset of the receive antennas. In such cases, although the selected antennas
maximize the received SNR, in terms of diversity gain, it would be equivalent if these
antennas were selected at random without any regard to SNR. Consequently, the
resulting diversity order will depend on the number of selected antennas and not on
the number of available antennas. Such events are those that dominate the asymptotic
behavior of the PEP as they represent the worst case scenario. This argument holds

for both fast and block fading channels.

5.1.3 STTCs Versus STBCs with Antenna Selection

In comparison with STTCs, STBCs have a low complexity advantage, but they
do not provide any coding gain [6]. Therefore, a STBC, if considered, may need to
be combined with an outer channel coding scheme in order to provide such coding
gains [16], [17] and [51]. In some cases, it was demonstrated that a STBC used in
conjunction with an outer channel code can be superior, in terms of performance, to a
STTC at even a lower complexity [12]. In light of the results of this thesis and existing
results in this area the conclusion is that, when antenna selection is considered, it

is recommended to use STBCs when the channel is modeled as fast fading or block
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fading with high mobility (or low data rate). On the other hand, it is recommended
to use STTCs with antenna selection when the channel is modeled by quasi-static

fading or block fading with low mobility (or high data rate).

5.2 Future Work

The following topics are deemed to be immediate extensions to our work.

5.2.1 Frequency Selective Fading

We only investigated the antenna selection over flat fading channels in our work.
However, for high data rate wireless communication systems, the signal duration may
be small compared to the multipath spread of the channel, resulting in a frequency-
selective fading channel. It has been shown that for quasi-static frequency-selective
fading, the maximum diversity gain is equal to DNM, where D is the number of
resolvable multipath components and N, M are the number of transmit and receive
antennas, respectively [50]. Recall that the diversity order for flat slow fading channel
is NM. The authors in [49] used the idea of virtual antennas and considered frequency-
selective slow fading as flat fading one, but with more antennas. As a result, it has
been shown that, in a frequency-selective slow fading with antenna selection, one can
still achieve full diversity provided that the underlying code is full-rank. Otherwise,
the diversity order is reduced and it becomes a function of the number of selected

antennas. The impact of antenna selection on frequency-selective block fading channel
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(and fast fading channel, as a special case of block fading) has not been investigated
yet and can be considered as future work. However, we believe that our results for

flat fading extends in a straightforward manner to frequency selective fading.

5.2.2 Correlated Fading Channels

In most of the work on antenna selection, it has been assumed that the sub-
channels fade independently. The implication of this assumption is that the adjacent
antenna elements are placed far enough from each other so that they experience
completely different fading. However, it may be difficult to satisfy this condition in
practice, particularly when the wireless device is relatively small such that it is not
possible to keep enough distance between adjacent antennas. Also, the assumption
of independent fading no longer holds in an environment where scattering is not rich.
It has been shown that for correlated quassi-static fading channel, the diversity order
of the full-rank STTCs with antenna selection is the same as that of full-complexity
one [23], whereas for the rank-deficient case the diversity order is not preserved and
in fact it degrades.

The impact of antenna selection on correlated fast and block fading channels has
not been investigated yet. However, considering the phenomenon investigated in
Section 4.3.2, one can intuitively say that the diversity order of the STTC system
with antenna selection system over block fading channel is not maintained, even if
the code is full-rank. To investigate the accuracy of this intuition, we can extend this

work and quantify the effect of channel correlation with antenna selection for various
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cases of correlated fading channels.

5.2.3 Impact of Channel Estimation Error

In the analysis, it was assumed that the channel fading coefficients are perfectly
known at the receiver. However, in real-world applications, such fading coefficients are
estimated at the receiver. The impact of channel estimation error on the performance
of space-time codes is still under investigation. So far, for example, it has been
shown that with the increase of receive diversity, all STCs become more robust to
channel estimation errors [52]. Moreover, for STTCs, as the number of trellis states
increases, the codes become less robust to the channel estimation errors. For the
case of antenna selection systems, the impact of channel estimation error on the
performance of STTCs has not been investigated yet.

However, based on the fact that the estimation error can be modeled as a zero
mean complex Gaussian random variable, we can intuitively say that the impact of
channel estimation error may be considered as an increase in channel noise, which
may result in a reduction in the system performance. This will be an interesting

research topic to pursue.

5.2.4 Hardware Implementation

Employing antenna selection reduces the cost and complexity of MIMO systems.

For example, the number of RF chains, as one of the most expensive part of the
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system, reduces from M to L. However, the number of antennas and low-noise am-
plifiers (LNA), which come immediately after antennas, are the same as that of the
full-complexity system. On the other hand, employing antenna selection requires us-
ing an RF switch. The RF switches available with current technologies are far from
ideal, a fact that may offset some of the advantages of antenna selection. The most
important shortcoming of the practical switches is their transfer attenuation, which
must be compensated by more power from the output stage amplifier of the trans-
mitter and by a more sensitive LNA at the receiver [43]. Therefore, investigating the
saving that can be achieved with antenna selection in practice is an interesting topic

to pursue.
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