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ABSTRACT
Pricing of Weather Derivatives
Shih-Ying Lee

Values of weather derivatives depend on weather outcomes, such as temperature
or precipitation. Academics have differed on how to value this type of financial
instrument, since weather 1s not tradeable and the No-Arbitrage Pricing Theory cannot be
applied. Cao and Wei (2004) propose a valuation model and I test its predicting accuracy
by comparing simulated futures prices to market prices, for cumulative Heating/Cooling
Degree Day futures for New York City for contracts offered by the Chicago Mercantile
Exchange.

The simulation of weather futures prices requires assumptions of values for the
risk aversion parameter. Following Cao and Wei, the values -2, -10 and -40 are used. The
simulation requires values for the speed of mean reversion of aggregate dividends.
Following Cao and Wei, the values of 0.8, 0.9 and 0.99 are used. Due to the lack of a
sufficiently long time series data to determine the daily correlation between temperature
and aggregate dividends, Cao and Wei assume that the aggregate dividends depend on
either the contemporaneous temperature or the 30 lagged temperatures. There are
consequently 18 simulation settings.

Results indicate that Cao and Wei’s (2004) model is useful in predicting weather
derivative prices, especially when the risk aversion parameter is -10. Forecast accuracy is
very sensitive to the risk aversion parameter, followed by the number of temperature lags
that aggregate dividends depend on. The speed of mean reversion of aggregate dividends

1s not found to be a crucial parameter.
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EXECUTIVE SUMMARY

A major risk of an economy comes from weather. Utility companies face the
risk of decreasing income when winters are warmer than expected. On a rainy day
entertainment resorts receive fewer tourists, yet, umbrella producers have more sales.
It is estimated that 14% to 20% of the US economy is susceptible to weather risks.'
Investors now can hedge them after the introduction of weather derivatives in the
1990s.

Unanticipated weather outcomes in 2005 have increased the industrial needs
for weather derivatives. Financial News of Yahoo!Finance reported on November 9,
2005 that the nominal value of weather contracts has doubled from $4.3 billion in
é004 to $8.4 billion in 2005°. Chicago Mercantile Exchange (CME) added three new
U.S. cities, Baltimore, Detroit and Salt Lake City, to the 15 existing U.S. cities to
which temperature derivatives are indexed. Products are also expanded to include
frost day derivatives. With their increasing demand, both academics and finance
practitioners need to understand more about weather derivatives.

Academics have not agreed on how to value this type of financial instrument.
Given that the underlying index of wéather derivatives is not tradeable, we can not

price weather derivatives by applying the No-Arbitrage Pricing Theory. Cao and Wei

! Challis (1999) and http://www.cme.com/trading/prd/env/abtwthder2766.html
? I extract information from http://biz.yahoo.com/prnews/05 1 109/phw011.html?.v=35



(2004) propose to price them by applying the Lucas (1978) asset-pricing model on the
forecasted temperature indexes.

The purpose of this thesis is to verify the accuracy of Cao and Wei’s (2004)
pricing model. This thesis is also the first one dedicated to examine the forecast
accuracy among weather derivatives pricing models. Given that cumulative
Heating/Cooling Degree Day futures are most frequently traded, this research will: (1)
address this type of derivative traded on the CME for New York City from June 18,
2002 to July 28, 2005, (2) forecast temperature outcomes as of the valuation date with
temperatures observed during the 20-year period preceding the valuation date, (3)
forecast the aggregate dividend rate as of the valuation date with aggregate dividend
rates observed during the 20-year period preceding the valuation date, (4) forecast
futures prices, and (5) verify the accuracy of the simulated prices with both parametric
and non-parametric tests.

Results indicate that Cao and Wei’s model is useful in simulating prices close
to the market prices of temperature futures. Because the previous literature does not
indicate a precise value for the public’s risk aversion parameter, Cao and Wei assume
it to take on the values -2, -10 or -40. Academics are unsure of the speed of mean
reversion of the aggregate dividends, and Cao and Wei assume that they can take on

the values of 0.8, 0.9 or 0.99. Due to lack of a sufficiently long time series data to
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determine the daily correlation between temperatures and aggregate dividends, CAO
AND WEI assume that aggregate dividends depend on either the contemporaneous
temperature or the 30 lagged temperatures. As a result, there are in total 18 simulation
settings. Simulated prices are found to be closest to the market prices when the risk
aversion parameter is -10. Forecast accuracy is found to be very sensitive to the risk
aversion parameter, followed by the number of lagged temperatures that aggregate
dividends depend on. The mean-reverting speed of the aggregate dividends is not a

critical parameter.



1. INTRODUCTION

1.1 Brief History

Both individuals and businesses are susceptible to weather risks. Severe
weather outcomes take lives and damage p‘roperties. For a long time the public could
hedge weather risks by buying insurance contracts. Insurers pay policyholders values
of the damaged properties or the amount of money needed to repair the damaged
properties when they are destroyed by various weather events.

As individuals can hedge catastrophic risks with insurance contracts, insurance
companies, which have acquired tremendous amounts of risk from their clients, can
only share risk with re-insurers. Given that there are only a few re-insurers in the
world and they have limited capital, they are unable to absorb all of the insurers’
risks. Hurricane Katrina in 2005 proved this point. It incurred $34.4 billion of insured
losses®, as estimated in October 2005, and made 11 companies insolvent?.
Catastrophes of this magnitude make re-insurers hesitate, in addition to being unabile,
to absorb risks. Insurers need to seek a secondary risk buffer.

In 1992 the Chicago Board of Trade (CBoT) launched the catastrophe

insurance derivative. Its payoffs depended on the ratio of a quarter’s insured

? http://katrinainformation.org/disaster2/facts/katrina_fag/
* http://www.informationweek.com/news/showArticle. jhtml2articleID=171203928



catastrophic loss over a quarter’s property premium. Although they functioned as
reinsurance contracts, state insurance departments did not recognize this. Instead,
catastrophe derivatives were viewed as risky assets and insurers had to maintain
additional capital to absorb risk inherent in them. Catastrophe derivatives had,
therefore, low trading volume and the CBoT ceased offering them in 1999°,

While insurance can help mitigate catastrophic risks, it is not useful to
companies subject to non-catastrophic weather risks. Enron Corp. and Koch Energy,
facing increased competition after the mid-1997 deregulation of the energy sector,
entered a custom-made swap in which Enron (Koch) agreed to pay Koch (Enron)
$10,000 per each degree the temperature fell (above) below normal in the winter 1997
— 1998°. The CME launched Heating/Cooling Degree Day derivatives to provide

industries a means to hedge non-catastrophic weather risks in September 1999.

1.2 Cumulative Heating/Cooling Degree Day Futures

Among non-catastrophic weather derivatives, cumulative Heating/Cooling
Degree Day futures are most frequently traded. They are thus the focus of this thesis.
Payoffs to this type of weather derivative depend on the cumulative sum of

Heating/Cooling Degree Day during the contract month. The CME defines

’ Catastrophe Exposures and Insurance Industry Catastrophe Management Practices, prepared by
American Academy of Actuaries, June 11, 2001
6 http://www bizjournals.com/houston/stories/1999/1 1/22/story7.html



Heating/Cooling Degree Day as the number of degrees Fahrenheit that a daily average
temperature is below/above 65°F in a one-day period.

HDD = Max(65°F — DailyAvgTemp,0)

CDD = Max(DailyAng emp —65°F ,O)
A daily average temperature is defined as the arithmetic average of the daily
maximum and the daily minimum temperatures. Temperature indexes which
Heating/Cooling Degree Day futures are settled at are

Settled index of a Heating Degree Day futures contract

#-of -daysin-a-contract-month

= ZMax(éS °F —Dai lyA vE T €MP contractMonth,t ,O)

t=1

Settled index of a Cooling Degree Day futures contract

#-of -daysin-a-contract-month

= > Max(DailyAVgTemp ¢ouycersonse — 65°F,0)
1
Traders taking long positions in the cumulaﬁve Heating Degree Day futures of, say,
January 2005 in New York City at a price of Fo are paid
Payoff = US$20x (iMax(65°F — DailyAvgTemp s 2005 .0) — F3) »
=
where Fyis the cumulative Heating Degree Days in January 2005 expected on the day
traders buy this futures contract. Similarly traders buying the cumulative Cooling

Degree Day futures of, say, July 2005 in New York City at a price of F are paid

31
Payoff =US$20x (O Max(DailyAvgTemp,,,,, ;s —65°F ,0) - F,),

t=1



where Fyis the cumulative Cooling Degree Days in July 2005 expected on the day
traders buy this futures contract. Tick size for temperature futures is set to US$20.00.
The CME specifies the locations where daily temperatures are measured for each
future contract. Table A-1 shows the specified stations for 18 American cities.

[Please insert Table A-1 about here.]

The Heating (Cooling) Degree Day futures merit their names because
consumers are observed to turn on the heat (the air conditioning) when temperatures
drop below (increase above) 65°F. Contract months of cumulative Heating Degree
Day Futures are January, February, March, April, October, November and December.
On the other hand, contract months of cumulative Cooling Degree Day futures range
from April to October. We call October and April shoulder months since temperatures
in these two months fluctuate around 65°F. Both Heating and Cooling Degree Day
derivatives are offered for these two contract months.

The CME specifies that the futures are to be settled in cash on the first
exchange business day that is at least two calendar days after the end of the contract
month. The minimum price change is set at one Degree Day Index point. Futures
contracts are traded on the electronic platform Globex, whereas prices of options on

futures are negotiated on the CME floor through the traditional outcry system.



1.3 Major Players

Weather derivatives offered by the CME are temperature indexed, and
companies subject to temperature risks are thus targeted hedgers. They include
energy-related businesses, agricultural firms, restaurants, companies involved in
tourism and travel, and OTC weather derivative traders’. These entities enter
temperature derivatives to hedge against risks that are either inherited in their business
or acquired from doing business. In the next paragraph how hedgers hedge with
Heating/Cooling Degree Day derivatives will be illustrated.

Suppose that a utility firm is concerned about a warm January 2006 in New
York City and its revenue will drop $50,000 in a day for each degree Fahrenheit
higher than 65° F . As Heating Degree Day decreases as temperatures increase, this
utility company can lock in revenues by selling 2,500 HDD futures indexed to New
York at, say, 10908, If the cumulative sum of Heating Degree Days in January 2006
turns out to be 1065, this firm will lose $1.25 million dollars from its own business
but receive $1.25 million dollars from its short derivative position.

Speculators also exist in this market. Consider that a meteorologist who wants
to take advantage of her professional knowledge. Assume that she observes that

frequent hurricanes in Mexican Bay often lead to cold winters in the New England

7 An Introduction to THE CME Weather Products published by Chicago Mercantile Exchange
¥ 1090 is the average cumulative Heating Degree Day in January observed in the LaGuardia Airport
during the period from 1986 to 2005.



region. She can buy a call on Seasonal Heating Degree Day futures indexed to New
York in 2005 - 2006. (She chooses New York because it is closest to New England
among the 18 cities to which temperature derivatives are indexed.) If the temperature
in New York City from November 2005 to March 2006 is lower, she will profit by
$20 for each HDD lower. If it is warmer, she will lose $20 for each HDD higher.
Arbitrageurs, the last category of derivative traders, in the weather derivative
market are investment banks, hedge funds, and traditional weather derivative market
makers. Exploiting price differences between contracts traded in the exchanges and

the OTC market, several cases of arbitrage were believed to have taken place’.

1.4 Market Structure

An investor who wants to trade temperature futures will start by calling her
broker, and this person will enter the desired price and the desired amount into the
electronic trading platform Globex. This platform connects to market makers all over
the world, and trades can be executed at the best price. Nevertheless, temperature
derivatives are very illiquid and traders pay high bid-asked spreads. Furthermore, the
mark-to-market mechanism is a black-box. The CME marks-to-market with an

econometric model with a pricing rule'®. Market makers for temperature derivatives

? http://www.envitonmental-finance.com/2000/featmar2 htm
1% hitp://www.astin2004 .no/papers/Roustant. pdf 9



are mostly utility companies and insurers, and they are led in the CME by Wolverine
Trading. Options on temperature futures, as discussed before, are traded with the
traditional outcry system, and their traders are as well subject to high transaction
costs.

Temperatures needed to calculate HDD/CDD indexes are collected by Earth
Satellite Corporation (EarthSat). Specializing in remote sensing, it collects data with
the so-called Automated Surface Observation System. Earth Satellite Corporation
provides extremely accurate data and there have been few discrepancies between their
temperatures and the official records posted by the National Climate Data Centre

(NCDC) of the U.S. government''.

1.5 Accounting, Regulation, and Taxes

Because weather derivatives derive their values from non-commodity weather
variables, they do not fall under the jurisdiction of Commodity Exchange Act and are
not regulated by the Commodity Futures Trading Commission (CFTC). In 2003 the
CFTC obtained regulatory jurisdiction for some weather derivatives, and their traders,
if they meet the hedging criteria, will be allowed by the Internal Revenue Service

(IRS) to use hedge accounting.

I http://www.finance wise.com/public/edit/energy/weather99/wthr99-exchangep.htm
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While derivatives regulated by the CFTC are treated as derivatives, other

weather derivatives are in the grey zone. State insurance commissions have argued

that weather derivatives are a disguised form of insurance and they should have

jurisdiction. Given that derivatives and insurance have very different accounting

treatments and tax consequences, traders of non-CFTC regulated weather derivatives

need to consult professionals on this point.
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2. LITERATURE REVIEW

Weather derivatives are traded in an incomplete market and the No-Arbitrage
pricing theory can not be applied to price them. Given that weather derivatives derive
their values from the underlying weather indexes, pricing them involves two stages:
forecasting the weather indexes and calculating derivative prices. These two stages
require researchers to develop the temperature model and the pricing model, which

will be reviewed in the next section.

2.1 Temperature Forecasting Models

The intuitive source of temperature forecasting models is meteorological
works. Models producing temperature forecasts which we see everyday on TV,
although acceptably accurate in three-dimensional space, are of a short-term nature.
They can mostly produce five-day forecasts. Meteorologists believe it is a mission
impossible to produce accurate long-term predictions.

Financial professionals and scholars, on the other hand, are determined to
conquer this challenging task. Lacking geo-science background, they believe that
weather comes in patterns and it can be predicted by inputting past observations into
models. Two groups of models are proposed: autoregressive models (AR) and

Brownian motion models (BM). AR models are suggested because they are applied to

12



predict future values with a variable’s past values, whereas BM models are suggested
because of temperatures’ randomness and their mean-reverting nature.

AR-type temperature models consist of four parts: the trend, the seasonality,
the autoregressive lag part, and the cyclical error variance. The trend part is designed
to capture the well-known observation that temperatures increase with time, in other
words the Green House Effect. As a result, this part is a function of time. Platen and
West (2004) and Campbell and Diebold (2005) start with a polynomial function and
find that only the linear term is significant. Cao and Wei and Roustant et al (2003), on
the other hand, aim to streamline the temperature forecast model and fit their data
with a linear specification.

The second part of AR-type temperature models is the seasonality, and it is
added to control the fact that temperatures are seasonal. They increase in spring, reach
the peak in summer, decrease in fall, and plunge in winter. Because Fourier series
provide smooth seasonal pattern and numerical stability in estimation, Campbell and
Diebold, and Platen and West fit their data with them. Fourier series are the sum of
series of sine and cosine functions which are designed to capture phenomena
repeating every one, two, three ...years. The adequate frequency of the Fourier series
represents the longest period that the statistically significant phenomena repeat. If the

adequate frequency is three, this means that phenomena repeating from every year to

13



every three years are statistically significant. Platen and West find that their
Australian temperatures have an adequate frequency of two, whereas Campbell and
Diebold assume it to be three. Cao and Wei, in contrast, want to deal with a simpler
model and control seasonality via daily average temperatures. Davis (2001) further
smoothes daily average temperatures to remove the fluctuating pattern.

The next item addressed in the AR-type temperature models is the
autoregressive lag part. It is used because warm/cold days are often observed to
follow warm/cold days. Temperatures observed in Atlanta, Chicago, Dallas, New
York and Philadelphia from 1979 to 1998 indicate to Cao and Wei that the optimal
lag is three for all five cities. Roustant et al reach the same result with their Chicago
and Paris temperatures. Campbell and Diebold, referencing Bloomfield’s (1992)
results, do not test the data but assume the lag to be 25. Neither does Davis attempt to
find the optimal lag but directly assumes it to be one.

Because temperatures are more volatile in winter than in summer, Campbell
and Diebold and Cao and Wei control for this fact by conditioning temperature errors.
Given that the error variance can be decomposed into the seasonal contribution and
the cyclical contribution, Campbell and Diebold use a Fourier series to capture the
first part and a generalized autoregressive conditional heteroscedasticity (GARCH)

model to capture the second one in their 2005 paper. Cao and Wet do this job with a

14



straightforward trigonometric sine function, whereas Roustant et al construct a model
using both sine and cosine functions.

Some researchers, on the other hand, propose BM models to model
temperatures. They include Alaton et al, Benth and Saltyte-Benth, Brody et al, and
Davis. Brownian motion is suggested to control temperatures’ randomness and their
mean-reverting nature. Interestingly, Brody et al (2002) simply propose a model and
do not test its appropriateness with their temperature dataset. Davis proposes a
BM-type temperature model but fits his data with an AR model. BM-type temperature
models can be decomposed into four parts: the long-term average, the mean-reverting
speed, the error variance, and the error process.

The first component of BM-type models is the long-term average, and its
significance is that temperatures return to their long-term means. Alaton et al propose
A+Bxt+Cx sin(%t + @) to capture it, where A is the minimum temperature in a
year, B is the trend, t is the time, C is the difference between the minimum and the
maximum temperatures in a year, and ¢ is to adjust the fact that the coldest day in a
year is often not January 1. Alaton et al find a small trend in Sweden. Benth and
Benth-Saltyte fit their Norwegian data with a cosine function and they also find an

insignificant trend. Brody et al portray how close simulated temperatures are to the
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real ones when long-term averages follow A +C x sin(%t + @) . Davis does not
discuss this term in detail.

The second element of the BM-type temperature models is the mean-reverting
speed which measures how fast temperatures will return to their long-term averages.
Alaton et al and Benth and Benth-Saltyte define it to be constant. Brody et al present
the closeness of their simulated temperatures to the actual ones when the
mean-reverting speed is 0.95. Davis suggests a Geometric Brownian Motion approach
so this term is absent in his function.

The next is the error variance, the third component of BM-type temperature
models. Because temperatures are stable in summer and volatile in winter, error
variance is conditional on time. Alaton et al observe that Swedish temperatures have
different variances in different months, and they do not vary much within each month.
They consequently recommend a step function to model error variances. Benth and
Benth-Saltyte do not like the fluctuating feature of the step function and come up with
the smoothed daily temperature variances. According to their model,
smoothed - temp - var-on- Jan -3 = exp{%[log(temp - var- on- Jan -1) + log(temp - var-
on-Jan-2)+log(temp - var-on-Jan-3)} . Brody et al, once again, present how
perfectly matched the simulated temperatures are to the actual ones when temperature

variances follow a sine-function. Davis does not discuss this term in detail.
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The final part of BM-type temperature models is the error process. This term
is crucial because temperatures are random. Davis and Alaton et al suggest that
temperatures follow a Brownian process. Brody et al later claim that temperatures
have a long-term dependency and should be modeled with fractional Brownian
process. Benth and Benth-Saltyte verify with their Norwegian temperatures and find
that errors are neither normal nor fractional Brownian. Instead the fat tail presented in
the histogram leads them to model temperatures with the Levy process'?.

Campbell and Diebold compare the out-of-sample forecast accuracy of their

model to two other models, using the criterion of u statistics. The u statistics is

defined as

rCD 2
Z(THh,t 7:+h) ~CD . .

0 —, where T, is the h-day ahead point forecast based
Z (TH-h'.t - Tt+h )

on the information known on day t and the Campbell and Diebold’s model, T,,, is

the actual temperature outcome, and T

., 1s the h-day ahead point forecast based on

the information known on day t and the i" contrasting model. Temperatures in the
first contrasting model are assumed to follow a normal distribution after removing the
trend and the daily average temperatures, whereas temperatures in the second model
are assumed to be their daily averages in the 20-year period preceding the

computation date. The authors find that their complicated model does an excellent

"2 Errors are specified to follow a generalized hyperbolic Levy process because Norwegian
temperatures possess semi-heavy tails and skewness. Furthermore, this class of Levy process is
selected because its density function is explicitly known and has the normal distribution as a limiting
case.



predicting job if the forecast horizon is within eight days. Beyond eight days, it is
possible to obtain accurate predictions as the Campbell and Diebold’s 2005 model
using instead the Climatological model.

Because pricing temperature futures requires accurate forecasts, it is more
important to obtain correct out-of-sample predictions than controlling for well-known
temperature phenomena. In addition, since the algorithm used to calculate the
parameters of Cao and Wei’s model did not converge with the current dataset, it was
decided that futures would be priced with the Climatological Model.

To sum up, financial researchers have proposed autoregressive (AR) models
and Brownian motion (BM) to model ground temperatures. They add various parts
into models to control for well-known weather phenomena. Researchers have
proposed AR-type temperature models and have tried to fit their temperature datasets.
This is not the case for researchers who have proposed BM-type models. Furthermore,
Campbell and Diebold compare the forecast accuracy of three models. The
Climatological model in particular does an excellent prediction job when the forecast
horizon is beyond eight days. We will therefore apply this model to forecast

temperatures required in pricing cHDD/cCDD futures contracts.
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2.2 Valuation Methods

After coming up with temperature predictions, the second step in valuing
weather derivatives is to calculate the temperature derivative prices. Documented in
Roustant et al and Zeng, practitioners price them with the Actuarial Method. This is
because one group of market makers, insurers, use this to value their traditional
products. Prices of weather derivatives are the sum of the expected payoffs and a
cushion to absorb unusual deviations. Given that each insurer has a different cost of
capital and different risk considerations, they discount payoffs with different interest
rates. In addition, they do not compute the cushion amounts in the same way. As a
result, different practitioners will have different prices for the same weather
derivatives.

Scholars, on the other hand, argue that the equilibrium prices of weather
derivatives can be derived by discounting the expected payoffs. The question becomes:
how much risk do weather derivatives have and what are their risk-adjusted interest
rates?

Most traders enter the derivative market for one of two purposes: hedging or
speculating. Hedgers, holding a long position in the spot market, want to lock in the
price of their commodities in the future. Speculators wish to earn extra return by

taking risks. If hedgers do not sell derivative contracts, they face the risk of selling
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their commodities in the spot market at a lower price. On the other hand, it will do no
harm to speculators if they do not buy derivatives. They simply eam lower returns
with their less-risky portfolios. The derivative market is thus a buyer-dominated
market. Hedgers have to lower derivative prices so speculators can eamn a decent
profit. The amount that hedgers are willing to forgo depends on the protection
derivatives can offer. The more protection they can offer to hedgers, the higher the
risk premium is. Derivatives offer strong protection when their cash flows closely
correlate with the underlying commodities. If selling derivatives provides hedgers no
protection, hedgers will not want to lower derivative prices. Derivative sellers will
want to keep the price high so buyers will not get profits, and buyers will want to buy
them low so they can earn money. In other words, derivative prices will be equal to
the expected spot price of the underlying assets if there is no risk premium.

Because weather derivative prices observed in the market are in equilibrium,
one observes the market-wide average of the protection offered by weather
derivatives to hedgers. In other words, this protection can be quantified by the
correlation between weather derivative payoffs and the growth rate of the whole
economy. Platen and West find that weather derivative payoffs are not correlated with
the growth rate of the MSCI World, a proxy for the world economy, and therefore the

appropriate discount rates for weather derivative payoffs are the risk-free interest rates.
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Roustant et al reach the same conclusion after they assume that temperatures follow
an autoregressive model and that interest rates are deterministic. Zeng discounts
weather derivative payoffs with risk-free rates but does not provide his rationale for
this decision.

Another group of researchers, however, holds a different position on this issue.
These researchers include Brody et al, Alaton et al, Benth and Saltyte-Benth, Cao and
Wei, and Davis. Authors of the first three papers just propose the existence of a
weather risk premium but do not discuss them in detail. Conversely, Cao and Wei and
Davis price weather derivatives by maximizing utilities. The risk premium is thus the
difference between the price from the utility-maximizing model and the price derived
by discounting with the risk-less interest rate.

Most researchers suggest pricing weather derivatives with numerical
procedures. Brody et al are one exception to this practice. They develop a partial
differential equation (PDE) for a call whose cash flows are a combination of several
weather derivatives.

To sum up, weather derivatives can be evaluated with the Actuarial Method,
the Discounted Payoffs Method, and the Utility Maximization Method. The Actuarial
Method does not produce equilibrium prices, since each market maker uses it to

calculate his/her lowest profitable price. Pricing with the Discounted Payoffs Method,
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on the other hand, requires the ex-ante knowledge of the weather risk premium. Given

that the weather market is young and there is insufficient data, researchers can not

reliably obtain a weather risk premium based on past values. Cao and Wei’s (also

Davis’s) utility-maximizing pricing formula is the only approach that provides a

clearer testable model. Therefore we choose to test the prediction accuracy of this

model.
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3. METHODOLOGY

In this section we will explain how Cao and Wei evaluate weather derivatives,
followed by a discussion of the assumptions necessary to carry out the simulation.
Because the current pricing practice is to gauge futures prices based on 20 years of
historical data, both temperatures and aggregate dividend rates will be simulated with

20-year observations on these variables preceding the valuation dates.

3.1 The Basic Valuation Framework

Since the underlying index of weather derivatives is not tradeable, the
No-Arbitrage Pricing Theory can not be used. Cao and Wei price weather derivatives
by extending the pure-exchange economy of Lucas (1978). In this economy,
uncertainties come from two sources: the temperature Y, and the aggregate dividend
rate of the economy &, . Given that equilibrium in this economy occurs when the total

consumption is equal to the total output, a contingent claim with a payoff ¢, at a

future time T will have the equilibrium time-t price X (¢,7) given as:

E[U'(S,,T)xq,]

| | =
M XD===re

, Vre(0,T)
where U’(8;,T) is the first derivative of a representative investor’s utility function

with respect to the aggregate dividend rate. Following the standard in the utility
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literature, a typical agent is assumed to exhibit a constant relative risk aversion and
his/her utility function follows:
§ ot 5t7+1
2 U@, t)y=e""——,
@ @ =€
with the rate of time preference o >0 and the risk parameter y in the range of
(—00,0] . Weather derivative prices can be obtained using equation (1) after specifying

the temperature process, the aggregate dividend rate process, and the agent’s

preference.

3.2 The Temperature Model

Recall that the Climatological Model is a straightforward model which
produces good predictions beyond an eight-day horizon. Temperatures in this model
are assumed to follow

364
B) T=B+Bxt+Y CxD,+dx{, 1<t<20x365=7300 and 1<i<364
=1
dx &, ~ Normal(0,d”)
where 7, is the daily average temperature on day t and D, is a dummy variable
which takes on a value of 1 if 7, is on the i day of a year. The error term £, isthe
standardized temperature innovation. We omit temperatures on February 29 to keep
the forecasting process simple, and we will not simulate futures prices for any 29-day

Februaries. Given that the estimation window is 20-years long, t ranges from 1 to
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7300. Notice that there are 364 dummy variables, and temperatures for December 31

will have all dummy variables as zero.

3.3 The Aggregate Dividend Growth Rate Model

Cao and Wei employ Marsh and Merton’s (1987) result that the aggregate
dividend growth rates follow a mean-reverting process. Thus:
“) Ing, =a+uxnd,, +v, Vu<l
where 1-u measures the speed of mean reversion. The error term v, takes the

following form:

) v, =oxe,+ a[[T\/.f_?(ft + én@_i ﬂ 0 < m <+

where ¢, is a i.i.d. standard normal variable representing non-temperature-related

factors and £, ,,i=12,..,m, are standardized temperature innovations defined in

equation (3). As the whole economy can not vary without limit and it does not depend
m

entirely on temperatures, an is finite. Moreover, Cao and Wei construct equation
i=l

(5) such that the correlation between the contemporaneous temperature shock &, and

the aggregate dividend growth rate innovation v, is x.
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3.4 Valuing Cumulative Heating/Cooling Degree Day Futures

Denoting HDD(T}, T2) as the cumulative heating degree days between time T,
and T, the time-t price of a cHDD futures contract with a tick size of $1, a strike

temperature index of K, and an effective period from T, to T, will be:

U'(é,,T,)
——e—— X

(6) fHDD(t:TiaTbK):Et{ U'(é‘t,t)

[HDD(J;J;)—K]}

14
t

57
=e PR, {5—T x|[HDD(T,,T,) - K]}
The futures price will be the value of K which makes fupp = 0. That is:

E|[67, xHDD(1,, T)]
E(5r,)

(7 FHDD(I’];’TZ)z

Similar expressions can be derived for cumulative Cooling Degree Day futures.

3.5 The Simulation Design

To streamline the simulation process, Cao and Wei took advantage of results
from previous work by other researchers and make assumptions on some parameters
necessary in equations (2) through (7).

The first assumption they make is to set the rate of preference p to be 0.03.
This is to reflect the long-term average of real risk-free interest rates.

The second assumption is to set the mean reversion parameter of the dividend

process x to be 0.8, 0.9 and 0.99. Shiller’s (1983) empirical work shows it to be
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0.807, while Marsh and Merton (1987) find it to be 0.945. When x4 is 0.99,
aggregate dividend rates follow a random walk.

As the volatility of the stock market index is around 20%, Cao and Wei
assume that aggregate dividend growth rates should have similar variability. Thus the
standard deviation of v, is set to 20%. With equation (5) one can easily deduce o .

The fourth assumption of Cao and Wei is that the risk aversion parameter
is -2, -10 or -40. Most researchers find the public to have risk aversion between 0 and
-2. However, Mehra and Prescott (1985) find that the high equity premium observed
in the 20" century is only explainable when the public risk aversion is between -30
and -40. That is why Cao and Wei also postulate that ¥ should take on values -10
and -40.

Fifthly, Cao and Wei determine the average aggregate dividend growth rate

o and the initial dividend rate £, such that the long-term risk-free interest rate is

’
maintained at 6%, ie. e “* Y =F, g—,@—ﬁ =g D
U'@)

As the prevalent pricing practice is to have a 20-year estimation window, we
estimate parameters with all consumption and temperatures observed during the 20
years preceding the valuation dates. This implies that, for a cHDD December 2002
New York futures traded on June 18, 2002, we will perform an analysis on data

observed covering the period from June 18, 1982 to June 17, 2002. 97



3.6 The Simulation Process

The simulation process can be decomposed into six steps. First of all,
parameters in the temperature model (3), the temperature shocks &,, and their
standard deviation d are determined. Secondly, temperature shocks’ coefficients in
equation (5), i.e. ¥ and all 7, are assessed. The third step is to determine the
volatility parameter o in equation (5) and to simulate the future consumption shock
v, . In the next step a in equation (4) is located and the future consumption rate J,
is simulated. In the fifth step all information required in equation (7) is plugged in and
a futures price is calculated. Finally, the above five steps are repeated 5000 times and
the average of all simulated prices is calculated. This arithmetic average is the final
simulated price for a contract as of the valuation date.

In the following paragraphs the first and the second steps in the simulation
process will be clarified. The remaining steps can be easily deduced based on the
previously-discussed assumptions.

The temperature model parameters are determined by applying the method of
least squares. Errors are further standardized to derive £,.

In the second step, we assess the correlation between temperatures and the
whole economy is assessed. As one quantifies the growth rate of the whole economy

with aggregate dividend growth rates, we can proxy them with GNP or aggregate
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consumption rates. Cao and Wei use the second choice and we follow their method.
Given that aggregate consumption rates of the United States are not available as
frequently as the ground temperatures, the most we can do is to assess their monthly
correlation. We estimate x4 with the least-squares method and obtain the innovations
of aggregate consumption rates v,. Next we obtain monthly temperature shocks. This
is done by inputting monthly temperature averages, i.e. the average of 7,’s in a
month, into equation (3). With a 20-year estimation window, one has 20x12 =240
monthly averages. With both temperature shocks and consumption innovations, « is
therefore the correlation between them. Because Cao and Wei find that only the
contemporaneous temperature shocks exert significant influences on consumption
innovations, we assume that the dataset would herein exhibit the same characteristic.
Our second reason to support this decision is that Cao and Wei’s dataset includes a
common test city, i.e. New York.

Since a month has mostly 31 days and it is impossible to determine when
lagged temperatures lose their influence on consumptions with a monthly dataset, Cao
and Wei assume the optimal lag in equation (5) to be either 0 or 30. When
consumption is assumed to depend on 30 lagged temperatures, Cao and Wei postulate

that lagged temperatures lose their influences by a constant q. Moreover, they design
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the last lagged temperature shock to have a constant correlation with consumption.
Namely:

8) n.=q xk, 0<g<l
I1750| = 0.0001

A point to notice is that the correlation between temperatures and consumption
is season-dependent. Consumers consume more while temperatures increase in
summer or decrease in winter. Stated differently, the correlation is positive in CDD
months and negative in HDD ones. The correlation magnitude is small when one does
not recognize this fact. This correlation underestimation will lead to pricing
temperature futures with smaller risk premia. Cao and Wei get around this issue by
computing the contemporaneous correlation x with only data from CDD months
when the settlement date is within a CDD month. (Cao and Wei assume the two
shoulder months April and October to be HDD months.) The lagged correlations will
take on the reverse sign if lagged temperature shocks are from HDD months. For
example, If we values a April cHDD futures settled on May 3 under the simulation
setting of m=30, x, 7, and 7, will be positive and 7,, 3<i<30 will be
negative. A similar rationale is applied when the futures contract is settled in October.

After simulating temperatures and determining the correlation between

temperatures and consumption, one is able to calculate all n,, o, «, v, and &,.
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Plugging them into equation (7), one obtains the price for a cHDD futures contract as

of one valuation date.

3.7 Examining Forecast Accuracy

After valuating futures prices with Cao and Wei model, one needs to
determine their accuracy. Both parametric and non-parametric tests are conducted to
assess the quality of these simulated prices.

Let S denote a simulated price and M a market price. Assume that there exists
a linear relationship between them.
® M=a,+a,xS+¢&

If forecasts are close to market prices, then «,=0 and & =1. These two
hypotheses can be tested with two t-statistics, 7, =—- and ¢, = ol )

24} ~
Y
% 2]

Insignificant t-statistics indicate that the simulated prices are statistically no different
from the market prices, and Cao and Wei’s model is useful. If we rewrite equation (9)
as

M-S=a,+(a,-D)xS+¢.
We can do an F test to confirm that ¢, =1. This test is parametric because one has to
assume that there exists a linear relationship between the two price sets and errors &

follow a normal distribution.
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The second parametric test that one can do to test whether simulated prices are
different from market prices is the z-test. Although the distribution which price
differences follow is not known, one can assume with the large dataset that the price
differences follow a Normal distribution. Because we assume that Cao and Wei model
is correct, we will test the hypothesis that the population has a zero mean. If the mean
of price differences is farther from zero, we reach the conclusion that Cao and Wei
model does not simulate accurately. This test is parametric because one has to assume
that price differences follow a normal distribution.

Since the price dataset is composed of prices of different temperature futures,
they have different means and different variations. For example, January is often
colder and has more volatile temperatures than February. Therefore, the cumulative
temperature index in January should be larger and less stable. This implies that we
can not assume a distribution that all prices follow. Non-parametric tests, requiring no
ex-ante distribution assumption, are therefore better to test forecast accuracy of
simulated prices. Three non-parametric tests are performed, including the Sign test,
the Signed-Rank test, and the Wilcoxon test.

Under the Sign test, one tests differences between simulated prices and market
prices. If these two price sets are close to each other, the number of negative

differences will be similar to the number of positive ones. Moreover, the number of
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positive differences will follow a Normal distribution with mean equal to 273 and
. 275 . . .
variance equal to R where 275 is the number of price differences. Insignificant
z-statistics indicate that Cao and Wei’s model produces accurate forecasts.
The Signed-Rank test is similar to the Sign test. After computing differences
between simulated prices and actual ones, differences are sorted in ascending order
and ranks are assigned. The smallest difference has rank 1 and the largest difference

has rank 275. The sum of ranks of positive differences will follow a Normal

275%(275+1)
4

distribution with mean and variance as

275x(275+1)x (2x 275 +1)
24

, provided that the simulated prices are close to the
market counterparts. Like the Sign test, insignificant z-statistics imply accurate
forecasts.

Under the Wilcoxon test, one mixes two price sets and sorts them in ascending
order. Ranks are later assigned. If there is no discrepancy between these two sets, the
sum of ranks of simulated prices should behave the same as the sum of ranks of actual

. T5%x(275
counterparts. In fact, after subtracting 275x(275+1) from these two sums, they

2
e e ) 2752 )
follow a Normal distribution with mean as and vanance as
2
275 x (21;( 275+1) . Once again, statistically insignificant results for z-statistics imply

accurate pricing.
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4. DATA

4.1 Market Prices of the Monthly Cumulative Heating/Cooling Degree Day
Futures for New York City Offered by the Chicago Mercantile Exchange

Daily closing prices of cHDD/cCDD futures indexed to New York City from

the product inception date to July 28, 2005 are obtained from Bloomberg. After

removing prices with zero trading volumes and the February 2004 cHDD contract, we

have totally 275 prices ranging from June 18, 2002 to July 28, 2005. Futures contracts

included in the dataset stretch from December 2002 cHDD futures to August 2005

c¢CDD futures. Table A-2 illustrates the exact price distribution among contracts.

[Please insert Table A-2 about here.]

4.2 Daily Temperatures of New York City

Given that my prices are for June 18, 2002 to July 28, 2005, we need daily
temperatures observed from the period of June 18, 1982 to July 27, 2005 are
necessary to fulfill the requirement of a 20-year estimation window. We purchased
these temperature data from the National Climate Data Centre (NCDC) of the

National Oceanic and Atmospheric Administration (NOAA) of the U.S. government.
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4.3 Monthly Consumption Rates for the United States of America

As discussed in a previous section, Cao and Wei approximate the aggregate

dividend growth rates with the aggregate consumption rates. Their practice is

followed here and the monthly personal consumption rates are downloaded from the

Federal Reserve Bank of St. Louis (http.//www.stls.fib.org/fred/). In order to estimate

parameters with a 20-year window, consumption rates for the period of July 1982 to

July 2005 were extracted.
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5. RESULTS

We explain in the sections of Simulation Design and Simulation Process that
Cao and Wei make assumptions about parameters on which either academics have
inconclusive opinions or the data indicates uncertain characters. These parameters
include, firstly, the number of lagged temperatures that consumption depends on
(m); secondly, the risk aversion parameter (y); and finally, the aggregate dividends’
mean-reverting speed (u). Table A-3 summarizes these 18 simulation settings.

{Please insert Table A-3 about here.]

{Please insert Table A-4 about here.]

Table A-4 shows the basic statistics of percentage errors, which are the price
differences divided by the corresponding actual prices and multiplied by 100%. If
simulated prices coincide with the market ones, one expects the mean, the variance,
the maximum, and the minimum of percentage errors to be zero. The numbers of
positive or negative percentage errors are anticipated to be around half of the sample
size, i.e. 137 or 138.

Inspecting the mean of percentage errors, we notice that the absolute value of the
mean of percentage errors of the simulation setting with (y,m, i) =(-10,0,0.99) is
the smallest, 0.54. This implies that simulated prices of this setting are only 0.54%

different from the market counterparts. Note that the means of percentage errors do

36



not vary much whether the parameter u takes on values 0.8, 0.9 or 0.99. This
insensitivity of forecast accuracy to the parameter x will also be observed in other
tests. When (y,m) equal to (—40,0) the means of percentage errors increase 58
times. When m is set to 30, this increment is more astonishing. Simulated prices are
118% more than the actual ones. This indicates that the weather futures market is not
so risk averse as ¥ =—40 or the economy does not depend on as much temperature
risk as m =30. Note that when y =-2 the means of percentage errors are of the
similar range. This makes intuitive sense. Given that investors are assumed to be less
risk conscious and the difference between m =0 and m =30 means little to them,
they value temperature futures in the same fashion.

Examining the standard deviation of percentage errors, the simulation setting
with (y, m, u) =(-2,0,0.99) produces the most accurate prices. The standard
deviation of percentage errors is 20.23%. However, given that the varances of
percentage errors for the simulation settings with (y,m, 1 )=(-2,0,0.8),
(y.m, (£)=(-2,0,0.9), (y,m, 1£)=(-10,0,0.8), (y,m, 1£)=(-10,0,0.9), and (y,m, 1 )=(-10,0,0.99)
are only slightly larger, these simulation settings are also good, in the sense of small
variance of percentage errors. This phenomenon may indicate that the variance of
percentage errors is not sensitive when p is greater than -10. When y takes on the

value -40, we see that the variance of percentage errors increases. The increment is
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especially pronounced when we set m to 30. We therefore have additional evidence
to support the argument that y =—40 is a poor simulation parameter. Please note
that the variance of percentage errors does not vary much whether 4 takes on the
value of 0.8, 0.9 or 0.99. The speed of mean reversion of consumption rate is not
crucial to the vaniance of percentage errors.

Observing that the maxima of percentage errors for the first 15 simulation
settings are of similar magnitude, we trace that these maxima all correspond to the
cCDD May 2005 futures traded on May 17, 2005. Examining the cumulative Cooling
Degree Day (cCDD) index, the 20-year average of May ¢cCDD is 65.6 and its standard
deviation is 40.2. This implies that the cCDD index in May 2005 of 16.5 is 1.22
standard deviations below the mean. In other words, May 2005 was colder than
anticipated. However, is the cold May 2005 the sole reason to cause the 300%
overpricing? We suspect that temperatures in May are around 65°F and consumers
enjoy this comfortable month such that they do not need to turn on the heat or the
air-conditioning. The economy, therefore, may not depend on temperature risk. If this
suspicion is correct, the magnitude of overpricing when m=0 or y =-2 should be
smaller. Since this is not the case, the amount of temperature risk that the economy
depends on is not the cause. We then inspect temperatures observed in May 2005 and

find that cCDD index was zero from May 1, 2005 to May 14, 2005. Futures traders
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saw this pattern of the cCDD index and might have over-reacted. To conclude, the
colder than expected May 2005 and traders’ over-reaction might cause the 300%
over-pricing. On the other hand, the maxima of percentage errors of simulation
settings with (y,m) = (—40,30) correspond to the October 2003 cCDD contract. We
analyze this contract as we do for the May 2005 cCDD futures. We come to the same
conclusion that colder than anticipated October 2003 and traders’ over-reaction
caused the 600% over-pricing. The exact reasoning can not be deduced since
percentage errors of this extreme magnitude are few.

The minima of percentage errors do not correspond to the same contract
valued on the same day. Given that the under-pricing magnitude is not astonishing,
these minima should be natural in the simulation process.

When y=-10 we note that the distribution of percentage errors is most
symmetrical. 47% of the percentage errors are positive, while 53% of them are
negative. This implies that simulators face less under-(over-)pricing risk if they set y
to -10. Note that the distribution of percentage errors is not symmetrical around zero
when y =-2. Around 66% of percentage errors are negative and this implies that
simulated prices are less than their market counterparts. On the other hand, 87% of the
simulated prices are greater than the market prices when y =-40. We are likely to

over-price futures when we assume temperature futures traders to have a risk aversion
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parameter as -40. Inspecting numbers of positive and negative percentage errors, we
observe again the forecasts’ insensitivity to the speed of mean-reversion of
consumption rate, m.

To sum up, price forecasts from the settings with (y,m)=(-10,0) are most
accurate because these three settings have more statistics that met the expectations.
We can forecast accurate prices with Cao and Wei’s (2004) pricing model when we
assume the futures traders have the risk aversion parameter as -10 and the economy

depends on only the contemporaneous temperature.

5.1 Accuracy Checks with Parametric Tests

[Please insert Table A-5 about here.]

Table A-5 displays results of the parametric tests discussed previously. The
second column shows the t-statistics used to test whether ¢, in equation (9) is zero.
Listed in the third and the fourth columns are t-statistics and F-statistics that are used
to examine the null that @, in equation (9) is one. Finally, the z-statistics are
recorded in the last column of Table A-5.

Recall that statistically insignificant statistics signify that accurate futures prices
can be simulated with the Cao and Wei’s pricing model. Except for the simulation
settings with y =—-40, t-statistics of all the other settings are insignificant at 95%

confidence level. This evidence supports the argument that an int:rcept term is not
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not required in Cao and Wei’s model when the risk aversion parameter is moderate or
low.

We use statistics listed in the third and fourth columns of Table A-5 to test
whether «; equals to one in equation (9). Simulation settings with (y,m) = (-10,0)
produce better results. We can say, with 95% of confidence, that simulated prices are
equal to the actual ones. Forecasted prices of the other simulation settings, however,
have linear, but not diagonal, relationships with the market futures prices. The
assumption of «; =1 are rejected at both 95% and 99% levels. Another point of
interest is that there are no discrepancies between decisions made based on the
t-statistics and ones made based on the F-statistics. This is a good sign.

Based on the z-statistics listed in the last column in Table A-5, we find that the
simulation settings with (y,m)=(~10,30) produce more accurate prices. Their
z-statistics are around 2.55 and the null hypothesis can be accepted at the 99%
confidence level. This is to say that price simulations are the same as the market
prices. Although this result is consistent with our finding based on the t-statistics in
the second column, it contradicts with the discovery based on the two statistics in the
third and the fourth columns. Overall, one forecast futures prices precisely by setting
y to -10, and the settings with (y,m)=(~10,0) and the settings with

(7, m) = (— 10,30) are equally favoured.
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Forecast accuracy is sensitive to the risk aversion parameter y.As ¥ decreases
from -2, -10, to -40, we change our decision whether to reject the null hypothesis. The
dependence of forecast accuracy on m, the number of lagged temperatures that
consumption depends on, seems to depend on y. When y=-2, statistics are not
much different whether m =0 or m=30. As explained previously, this is intuitive
since less-risk-averse investors will not value futures too differently whether the
economy depends on no lagged temperatures or 30 lagged temperatures. They value
temperature futures in the samé fashion. However, when y=-10 or y=-40,
investors are more sensitive to risks and differences between two groups of statistics
show. The speed of mean reversion of consumption rate, , does not play a role in

statistics listed in Table A-5.

5.2 Accuracy Checks with Non-Parametric Tests

[Please insert Table A-6 about here.]

Recall that three non-parametric tests are conducted to check the validity of
simulated prices, including the Sign Test, the Signed-Rank Test, and the Wilcoxon
Test. Results appear in Table A-6.

The Sign Test indicates that the simulation settings with ¥ =—-10 produce more
accurate price forecasts. The null hypothesis that price forecasts and market prices are

the same is accepted with 95% of confidence. Given that we examine the number of
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number of positive price differences in the Sign Test, negative (positive) z-statistics
indicate an under- (over-) pricing issue. We therefore observe again the under-pricing
phenomenon when y is setto -2 and the over-pﬁcing effect when y is -40.

Results of the Signed-Rank Test are consistent with the previous Sign Test.
We forecast more accurately when y =-10. Though, this time the null hypothesis is
accepted at the 99% confidence level. We find that the simulated prices of the other
settings differ from their market counterparts at both 95% and 99% of confidence
levels. This signifies that the Signed-Rank test does not find forecasted prices of the
other simulation settings accurate.

The non-parametric Wilcoxon test shows the most support for Cao and Wei
model. As can be seen in Table A-6, the Wilcoxon test indicates that 12 settings
produce accurate prices, unlike the previous tests that only 3 or 6 settings. In addition,
they are all insignificant at the 95% confidence level.

With respect to the sensitivity of forecast accuracy to simulation parameters,
we find that the risk aversion parameter plays the most important role. Our acceptance
of the null hypothesis changes when y takes on different values. We notice that,
with aids of the three non-parametric tests, the sensitivity of forecast accuracy to m
depends on y . Different from the results of the parametric tests, m only impacts the

z-statistics when investors exhibit extreme risk aversion (i.e. y=-40). The
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mean-reverting speed of consumption rate seems to have a more critical role on the
z-statistics of the Sign Test when the risk aversion parameter is -10. The z-statistic of
the setting (y,m,u)=(~10,30,0.8) differs from the z-statistic of the simulation
setting (y, m, ,u): (—10,30,0.9) by 0.6. However, overall, the mean-reverting speed
of consumption rate is not a decisive parameter.

To summarize, we find simulation settings with y =-10 produce the most
promising outcomes. One can say with at least 99% of confidence that price forecasts
are the same as the market prices. However, one can not decide whether the
simulation settings with (y,m)=(-10,0) or the settings with (y,m)=(-10,30) are
better. They are equally favoured by the statistical tests. Forecast accuracy is most
sensitive to the risk aversion parameter, since with different y one either accepts or
rejects the null hypothesis. The sensitivity of forecast accuracy to the number of
lagged temperatures that consumption depends on seems to hinge on the risk aversion
parameter. When y =-2 statistics do not vary when one sets m = 0 or 30, but they
change substantially when y =—40. The mean-reverting speed of the consumption
rate does not have a significant influence on forecast accuracy. Different u values

do not lead to opposite conclusions regarding the null hypothesis.
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6. CONCLUSIONS AND FUTURE RESEARCH

A well-known fact is that weather has an impact upon the economy. Excessive
rain causes mudslides, and, yet, volcanic eruptions bring nourishing ash to plants.
With the 1999 inception of weather derivatives on the Chicago Mercantile Exchange,
investors can now hedge weather risks. However, given that the underlying index is
not a tradeable asset, one can not apply the No-Arbitrage Pricing Theory to value
them. Cao and Wei propose a pricing framework and its validity is tested in this
thesis.

Cao and Wei design their pricing simulation to be flexible enough to
accommodate parameters that either academics do not have consensus on or the data
fails to indicate a precise character. Prices are simulated under 18 different
combinations of parameters. When the risk aversion parameter is -10, Cao and Wei’s
pricing framework provides promising results. Its prediction accuracy is verified with
both parametric and non-parametric tests, and all tests indicate that simulated prices
are the same as the market ones. Forecast accuracy is found to be very sensitive to the
risk aversion parameter, followed by the number of lagged temperature shocks that
consumption innovations depend on. Consumption’s mean-reversion speed minimally
impacts prediction precision.

After confirming that Cao and Wei’s model is useful in pricing weather

derivatives, future researchers can examine weather derivatives’ risk premia. As
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discussed in the Literature Review section, many scholars agree that weather
derivative traders demand risk premia but no one knows how they behave. It is also
interesting to investigate whether the behaviour of the risk premia vary between cities.

Another appealing topic would be to investigate whether the parameters
producing the most accurate predictions are conditioned on time. We hypothesize that
the best risk aversion parameter will increase from -10 when the weather market
matures and traders pay smaller liquidity costs. Moreover, researchers can expand to
other cities to check whether the best set of parameters are the same in other cities.

Furthermore, we can compare the forecast accuracy of various proposed
pricing models. Which model provides the most accurate forecasts? Are their
accuracies drastically different? Is the most accurate model location-dependent, such
that they provide poor forecasts for some cities?

Finally, we can investigate the impact of generalizing the simple economy
used in Cao and Wei’s pricing model on the weather derivatives pricing. As discussed
before that the simple economy depends on only two variables. Will the price
forecasts become more accurate if we design the economy more like what we have

now?
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Table A-1 - Cities for which the CME Offers Temperature Futures and the

Stations at which Temperatures are Measured

City

Station

Atlanta, Georgia
Baltimore, Maryland
Boston, Maine

Chicago, 1llinois
Cincinnati, Ohio
Dallas, Texas

Des Moines, Iowa
Detroit, Michigan
Houston, Texas

Kansas City, Oklahoma
Las Vegas, Arizona
Minneapolis, Minnesota
New York, New York
Philadelphia, Pennsylvania
Portland, Oregon
Sacramento, California
Salt Lake City, Utah
Tucson, Arizona

Hartsfield International Air Port
Washington International Air Port
Logan International Air Port
O'Hare International Air Port
Northern Kentucky Air Port

Fort Worth Intemational Air Port
Des Moines International Air Port
Detroit Metropolitan Air Port
Bush Intercontinental Air Port
Kansas City International Air Port
McCarran International Air Port
St. Paul International Air Port
LaGuardia Air Port

Philadelphia International Air Port
Portland International Air Port
Sacramento Executive Air Port

Salt Lake City International Air Port

Tucson International Air Port

50



Table A-2 - Price Distribution of the Market Price Dataset among Contracts

Number of
Contract (Code) )
Prices
December 2002 cHDD (NFZ2) 7
January 2003 cHDD (NFF3) 11
February 2003 cHDD (NFG3) 10
March 2003 cHDD (NFH3) 11
April 2003 cHDD (NFJ3) 12
October 2003 cCDD (NAV3) 1
October 2003 cHDD (NFV3) 5
November 2003 cHDD (NFX3) 10
December 2003 cHDD (NFZ3) 15
January 2004 cHDD (NFF4) 15
March 2004 cHDD (NFH4) 19
April 2004 cHDD (NFJ4) 4
July 2004 ¢cCDD (NAN4) 13
August 2004 ¢cCDD (NAQ4) 12
October 2004 cHDD (NFV4) 7
November 2004 cHDD (NFX4) 11
December 2004 cHDD (NFZ4) 13
January 2005 cHDD (NFFS5) 14
February 2005 cHDD (NFG5) 25
March 2005 cHDD (NFHS) 27
April 2005 cHDD (NFJ5) 6
May 2005 ¢cCDD (NAKS) 1
July 2005 cCDD (NANS) 23
August 2005 cCDD (NAQS5) 3
Total 275
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Table A-3 - Varying Parameters in the Simulation Settings

Varying Parameter Symbol Values
Number of Lagged Temperatures that consumptions

m 0or30
depend on
Risk Aversion 4 2-,-10, or -40
Mean-Reverting Speed of Consumption Rates H 0.8,0.9,0r0.99
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Table A-4 — Basic Statistics of Percentage Errors

Percentage Errors
. Number of | Number of
Standard | Maxi- . .
Simulation | Mean L. Minimum Positive Negative
Setting (%) Deviation | mum (%) Percentage | Percentage
(%) (%)
Errors Errors
m=0
y=-2
u=038 -0.87 20.45 311.20 -16.44 94 181
u=09 -0.88 20.44 310.75 -16.41 91 184
u=099 -0.96 20.23 307.61 -16.41 91 184
y=-10
u=038 0.56 20.53 312.61 -15.65 130 145
1=09 0.55 20.38 309.86 -16.15 127 148
u=099 0.54 20.37 309.63 -15.97 128 147
y=-40
#=038 28.86 36.37 32135 -11.88 220 55
u=09 28.75 36.12 320.42 -11.98 218 57
u#=099 | 2894 36.25 318.17 -12.09 219 56
m=30
=-2
#=038 -0.82 2038 310.04 -16.10 95 180
u=09 -0.84 20.26 307.86 -16.14 94 181
u=099 -0.81 20.67 314.82 -16.15 94 181
y=-10
1=08 278 20.68 309.96 -14.61 147 128
#=09 278 20.64 308.27 -13.98 152 123
#=099 2.79 20.68 309.90 -14.71 147 128
y =—40
#=038 118.41 145.37 610.54 -8.91 260 15
u=09 118.55 146.21 663.63 -8.24 261 14
#=099 |11753 143.75 585.16 -9.55 261 14

* The percentage error is defined as the price difference divided by the cotresponding market price and multiplied by 100%. If

simulated prices are no different from market prices, the mean, the variance, the maximum and the minimum of percentage errors

are expected to be zero. The number of positive percentage errors and the number of negative ones are anticipated to be around

half of the data size, i.e. 137 or 138.
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Table A-S - Forecast Accuracy Check with the Parametric Tests

Simulation Setting H,:a,=0 H,:a =1 Hy: Diff = 0
t-statistics | F Statistics | t-statistics | z-statistics

m=0
(7, 1) = (-2,0.8) -1.65 20.18™ 447" 27307
(7, 1) = (-2,0.9) -1.63 1997" 447" 7317
(7, 1) = (-2,0.99) -1.64 20.23% 450" 734"
(7, 1) = (-10,0.8) -0.51 3.13 1.77 3337
(7, 1) = (-10,0.9) -0.52 3.19 1.78 334"
(7, 1) = (-10,0.99) -0.45 2.93 1.71 334"
(7, 1) = (-40,0.8) 13617 758.44" 27.54" 12.66"
(7, 1) = (—40,0.9) 13.44™ 741.50"™ 27.23" 12.73"
(7, 1) = (-40,0.8) 13.49™ 750.39™ 2739" 12.75"

m=30
(7, 1) = (-2,0.8) -1.62 19.44” 441 717"
(7, 1) = (-2,0.9) -1.65 19.84" 445" -7.20™
(7, 1) = (~2,0.99) -1.60 19177 438" 715
(7, 1) = (-10,0.8) 1.61 7.16™ 2.68" 254"
(7, 1) = (~10,0.9) 1.63 738" 2.727 257
(7, 1) = (-10,0.99) 1.61 716" 2.68" 253
(7, 1) = (—40,0.8) 26.88" 9906.47" 99.53" 12.10”
(7, ) = (—40,0.9) 2696 10003.9™ | -100.02" 12.07"
(7, 1) = (—40,0.8) 26.98™" 10004.5™ | -100.02" 12.08™

1. Denote S and M as the simulated price and the market price, respectively. Assume that there exists a linear relationship

between S and M such that M = oo +01°S +¢. If S and M are the same, one expects that oo =0 and a; = 1. The first hypothesis

is tested with the t-statistics listed in the second column, while the second hypothesis is tested with the t-statistics in the third

column and the F-statistics in the fourth column. Insignificant statistics indicate that one forecast precise futures prices with

Cao and Wei’s model.

2. If S and M are the same and the central limit theorem applies, (S-M) follows a normal distribution with mean as zero.

z-statistics is used to test whether the sample does have a zero mean. Once again, insignificant-statistics imply accuracy of

Cao and Wei’s pricing model.

3. * and ** indicate that statistics are 5% and 1% significant, respectively.
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Table A-6 - Forecast Accuracy Check with the Non-Parametric Tests

. . . The Sign The Sign-Rank | The Wilcoxon
Simulation Setting 1 3
Test Test® Test
m=0
(7,1)=(-2,0.8) -5.25" 6.45" 1.43
(7, 4)=(-2,09) 5617 647" 1.44
(7, 1) = (~2,0.99) 5617 -6.50" 1.44
(7, 1) = (~10,0.8) -0.90 239" 0.47
(7, 1) = (~10,0.9) -1.27 -2.40° 0.47
(7, 1) = (~10,0.99) -1.15 2417 0.49
(7, 1) = (—40,0.8) 995" 11.69" 523"
(7, 1) = (-40,0.9) 971" 1166~ 525"
(7, 1) = (-40,0.8) 983" 11.68" 532"
m=30
(7, 1) = (-2,0.8) 513" 632" 142
(7, ) =(-2,09) 525" 636" 1.43
(7, 1) = (-2,0.99) 525" 631" 1.41
(7, 4) = (-10,0.8) 1.15 213 -0.30
(7, 1) = (-10,0.9) 1.75 2217 -0.29
(7, 1) = (~10,0.99) 1.15 2.09° 0.28
(7, 1) = (40,0 .8) 14777 14.06" 927"
(7, 1) = (-40,0.9) 14.89™ 14.09" 935"
(7, 1) = (-40,0.8) 14.89™ 14.07” 926"

1. To test whether the simulated prices are the same to the market counterparts, one tests their differences under the Sign Test. If these two price

sets are the same, the number of positive differences will behave the same as the number of negative differences. In fact, these two numbers will

follow a normal distribution with mean as 275/2 and variance as 275/4. 275 is the sample size of the price dataset. The standardized z-statistics of

the Sign Test are shown in the second column. Insignificant statistics imply that the Cao and Wei’s pricing model produces correct price forecasts.

2. The Signed-Rank Test is similar to the Sign Test. Price differences are sorted in ascending order and assigned ranks. If simulated prices are no

different from the market counterparts, the sum of the ranks of positive price differences will follow a normal distribution with mean as

275+(275+1)/4 and variance as 275%(275+1) +(2+275+1)/24. The z-statistics of the Signed-Rank Test are shown in the third column. Again,

insignificant statistics indicate the validity of Cao and Wei’s model.

3. Under the Wilcoxon Test simulated prices are mixed with the market ones. They are further sorted in ascending order and assigned ranks.

275¢(275+1)/2 is subtracted from the sum of the ranks of si

lated prices. If si

lated prices behave in the same fashion as the market

counterparts, this variable will follow a normal distribution with mean as 275%2 and variance as 275" +(2:275+1)/12. The z-statistics of the

Wilcoxon Test are shown in the fourth column and insignificant statistics serve as supporting evidences for Cao and Wei’s pricing model.

4. * and ** indicate that statistics are 5% and 1% significant, respectively.
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8.2 APPENDIX B

56



Appendix B-1: SAS Code for Correlation Calculation

*kkk**CODE OF MACRO QKSigma*****************************************

1. k = Contemporaneous Correlation b/w Standardized Tmp Residuals and

Standardized Consumption Residuals

2. q = Geometric Decay Factor
3. sigma = Variance of Non-temperature Related Part of Consumption
Residuals;

$Macro QKSigma(ValIdx,StartIdx,LastIdx,Setle_M,Setle_D,SetleIdx);

Data ConsReg;

Set OrigCons;

If tIndex 1t (&VallIdx-7300) or tIndex ge &Valldx then Delete;
InConsL = lagl{(1lnCons);

If 1nConsL='.' then delete;

Keep Year Month Day lnConsL l1lnCons tIndex;

Run;

Proc Reg Data=ConsReg noprint;

model 1lnCons = lnConsL;
output out=ConsReg student=vt;

Run;

Data MthlyTmpReg;

Set Mthly NY;
If tIndex lt (&VallIdx-7300) or tIndex ge &ValIdx then Delete;

Run;

Proc Reg data=MthlyTmpReg noprint;

model MthTmp = tIndex D1-D11;
output out=MthlyTmpReg student=xi t;
Run;
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Data Correlation;

Merge MthlyTmpReg ConsReg;
By tIndex;
Drop D1-D11;
If vt=',' or xi_t='.' then delete;
If &Setle M le 4 or &Setle M ge 10. then Do;
If Month ge 5 and Month le 9 then delete;
End;
Else Do;
If Month le 4 or Month ge 10 then delete;
End;

Run;

Data Correlation;

Set Correlation End=Last;

sum vt + vt;

sum xit + xi t;

If Last then call symput('nobs', n );
Run;

gput ***nobs = &nobs ***;

Data Correlation;
Set Correlation End=Last;
avg_vt = sum vt / &nbbs;
avg_xit = sum xit / &nobs;
If Last then call symput('avg_vt',avg vt);
If Last then call symput('avg xit',avg xit);
Run;
gput ***avg vt = &avg_ vt ***;

gput ***avg xit = gavg_xit ***;

Data Correlation;
Set Correlation End=Last;
var_ vt + (vt - &avg vt)**2.;

var xit + (xi_t - &avg xit)**2.;
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Numerator + (vt-&avg vt)*(xi_ t-&avg xit);

k

Numerator / ((var_vt*var xit)**.5);
q = (0.0001/abs (k))**(1./30.);
sigma = (0.04 / ( 1+ k**2./(1-k**2.) +
q**2.*k**2.%* (1-g**60.) / (1-g**2.) ))**.5;
If Last then call symput('k’',k);

If Last then call symput('q',q):;

If Last then call symput('sigma',sigma);
Run;
FPut *FFrk = gkr*rr;
SPUL *Rrkg = EQEEF;

gPut ****sigma = &sigma***;

Data Coefficient;

Set New York;
If tIndex 1t (&setleIdx-30.) or tIndex gt &SetleIdx then Delete;
Do i=1 to 30;

If &SetlelIdx - tIndex =i then Coefficient = &g**i*gk;
End;
If tIndex = &Setleldx then Coefficient = &k * ((1-&k**2.)**-.5);
If &Setle M=5 or &Setle M=10 then Do;

If tIndex le &Setleldx-&Setle D then Coefficient = -Coefficient;
End;
Keep tIndex Coefficient;

Run;

%If &Valldx gt 3Eval (&SetleIdx-30) %then

3Do;
Proc Reg data=ParaFEsti noprint;
model tAvg = tIndex D1-D364;
output out=TmpRsdlM30 student=student;

Run;

Data TmpRsdlM30;
Set TmpRsd1lM30;
Keep tIndex student;
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If tIndex 1t (&SetlelIdx-30.) then Delete;

Run;

Data TmpRsdlM30_1;
Set New York;
If tIndex 1t &Valldx or tIndex gt &Setleldx then delete;
Array xi{&NumSimul} X1-X&NumSimul;
Do i=1 to &NumSimul;
xi{i} = Rand{'Normal');
End;
Keep tIndex X1-X&NumSimul;

Run;

Data TmpRsd1M30;

Merge TmpRsdlM30 TmpRsdIlM30_ 1 Coefficient;

By tIndex;

Array xi{&NumSimul} X1-X&NumSimul;

Array v{&NumSimul} vl-v&NumSimul;

Array Pre v{&NumSimul} Pre vl-Pre v&NumSimul;

Array TRF_v{&NumSimul} TRF v1-TRF_ v&NumSimul;

Do i=1 to &NumSimul;
If tIndex 1t &Valldx then Pre v{i} + Coefficient * student;
Else Pre v{i} + Coefficient * xi{i};
TRF v{i} = &sigma*Rand('Normal');
v{i} = TRF v{i} + &sigma*Pre_v{i};
End;
If tIndex 1t &Setleldx then Delete; *Need the last sum;
Drop tIndex X1-X&NumSimul Pre vl-Pre v&NumSimul Coefficient 1i;

Run;

$End;
%Else %Do;

Data TmpRsdlM30;
Set New_York;
If tIndex 1t (&SetleIdx-30.} or tIndex gt &SetleIdx then Delete;
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Array xi{&NumSimul} X1-X&NumSimul;
Do i=1 to &NumSimul;
xi{i} = Rand({'Noxrmal'):;
End;
Keep tIndex X1-X&NumSimul;

Run;

Data TmpRsdlM30;
Merge TmpRsdlM30 Coefficient;
By tIndex;
Array xi{&NumSimul} X1-X&NumSimul;
Array v{&NumSimul} vl1-v&NumSimul;
Array Pre v{&NumSimul} Pre vl-Pre v&NumSimul;

Array TRF_v{&NumSimul} TRF v1-TRF v&NumSimul;

Do i=1 to &NumSimul;
TRF v{i} = &sigma*Rand('Normal');
Pre v{i} + Coefficient * xi{i};
v{i} = TRF_v{i} + &sigma*Pre v{i};
End;
If tIndex 1t &SetlelIdx then Delete; *Need the last sum;
Drop tIndex X1-X&NumSimul Pre vl-Pre v&NumSimul Coefficient i;
Run;

3End;
Proc Datasets Library=Work;
Delete ConsReg MthlyTmpReg Correlation TmpRsdlM30 1 Coefficient;

Run;

$Mend QKSigma;



Appendix B-2: SAS Code to Simulate a cHDD Futures Price
*d kA% %k *¥MACRO STATEMENT PRICEHDD*** %%k x4+
$Macro

PriceHDD(Val M,Val D,Valldx,StartIdx,LastIdx,Setle M,Setle D, Setleldx

/) ;

Data ParaEsti Priceé&n;

Set New York;
If &Valldx < &StartIdx then
Do;
If tIndex < (&ValIdx-7300) then Delete;
Else If tIndex < &ValIdx then Output ParaEsti;
Else If tIndex < &StartlIdx then delete;
Else if tIndex <= &LastIdx then Output Priceé&n;
Else Delete;
End;
Else If &Valldx = &StartIdx then
Do;
If tIndex < (&Valldx-7300) then Delete;
Else If tIndex < &Valldx then Output ParaEsti;

Else if tIndex <= &LastIdx then Output Priceé&n;
Else Delete;

End;
Else If &Valldx < &LastIdx then
Do;
It tindex < (&ValIdx-7300) then Delete;
Else If tIndex < &StartIdx then Output ParaEsti;
Else if tIndex < &ValIdx then output ParaEsti Priceé&n;
Else if tIndex <= &Lastldx then output Priceé&n;
Else delete;
End;
Else If &ValIldx = &LastIdx then
Do:;
If tIndex < (&VallIdx-7300) then Delete;
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Else If tIndex < &StartIdx then Output ParaEsti;
Else if tIndex < &ValIldx then output ParaEsti Priceé&n;
Else if tIndex = &Valldx then output Priceén;
Else delete;
End;
Else
Do;
If tIndex <= {&LastIdx-7300) then Delete;
Else If tIndex < &StartIdx then output ParaEsti;
Else If tIndex <= gLastldx then output ParaEsti Priceé&n;
Else If tIndex < &ValIldx then output ParaEsti;
Else delete;
End;

Run;

Proc Model noprint;

Parms b0 bl cl-c364;
Array Coeffict{364} Cl-C364;
Array DummyVar{364} D1-D364;

tAvg = b0 + bl*tIndex + C1*D1 + C2*D2 + C3*D3 + C4*D4 + C5*D5 + C6*D6
+ C7*D7 + C8*D8 + C9*D9 + C1l0*D10 + C1l1*D1l1l + C12*D12 + C13*D13 + C14*D14
+ C15*D1l5 + Cl6*D16 + C17*D17 + C18*D18 + C19*D19 + C20*D20 + C21*D21 +
C22*D22 + C23*D23 + C24*D24 + C25*D25 + C26*D26 + C27*D27 + C28*D28 + C29*D29
+ C30*D30 + C31*D31 + C32*D32 + C33*D33 + C34*D34 + C35*D35 + C36*D36 +
C37*D37 + C38*D38 + C39*D39 + C40*D40 + C41*D41 + C42*D42 + C43*D43 + C44*D44
+ C45*D45 + C46*D46 + C47*D47 + C48*D48 + C49*D49 + C50*D50 + C51*D51 +
C52*D52 + C53*D53 + C54*D54 + C55*D55 + C56*D56 + C57*D57 + C58*D58 + C59*D59
+ C60*D60 + C61*D61 + C62*D62 + C63*D63 + C64*D64 + C65*D65 + C66*D66 +
C67*D67 + C68*D68 + C69*D69 + C70*D70 + C71*D71 + C72*D72 + C73*D73 + C74*D74
+ C75*D75 + C76*D76 + C77*D77 + C78*D78 + C79*D79 + C80*D80 + C81*D81 +
C82*D82 + C83*D83 + C84*D84 + C85*D85 + C86*D86 + CB87*D87 + C88*D8B8B + C89*D8Y
+ C90*DS0 + C91*DY91 + C92*D92 + CO93*DO93 + C94*D%4 + C95*D95 + C96*D96 +
C97*D97 + C98*D98 + C99*D99 + C100*D100 + C101*D101 + C102*D102 + C103*D103
+ C104*D104 + C105*D105 + Cl106*D106 + Cl07*D107 + C108*D108 + Cl09*D109
4+ €110*D110 + C111*p111 + C112*D112 + C113*D113 + C114*D114 + C115%D115

+ C116*D116 + C117*D117 + C118*D118 + C119*D119 + C120*D120 + C121*D121
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+ 4+ + o+ o+ o+ F o+ F o+ o+ F o+ + o+ 4+ o+ 4+ o+ 4+ + o+ o+ + o+ + o+ o+

Cl22*D122
c128*D128
C134*D134
C140*D140
C146*D146
C152*D152
C158*D158
C164*D164
C170*D170
C176*D176
C182+*D182
C188*D188
c194*D194
C200*D200
C206*D206
€212%D212
C218*D218
C224*D224
€230*D230
C236*D236
C242%D242
C248*D248
€254*D254
C260*D260
C266*D266
C272*D272
C278+D278
C284*D284
C290*D290
C296*D296
C302+*D302
C308+*D308
C314*D314
C320*D320
C326*D326
C332%D332
C338+*D338
C344*D344

+ + + + + F + + + + F o+ 4+ o+ A+ + A F o+ + A+ o+ o+ o+ o+ o+ o+ o+ o+ + o+ o+ o+ o+

C123*D123
C129*D129
C135*D135
C141*D141
Cl47*D147
Cl153*D153
C159*D159
Cl165*%D165
C171*p171
C177*D177
C183*D183
C189*D189
C195*D195
C201*p201
C207*D207
C213*D213
C219+D219
C225*D225
C231*D231
C237*D237
C243*D243
C249*D249
C255*D255
C261*D261
C267*D267
C273*D273
C279*D279
C285*D285
C291*D291
C297*D297
C303*D303
C309*D309
C315*D315
C321*D321
C327*D327
C333*D333
C339*D339
C345*D345

+ + 4+ 4+ + F + + + + o+ + + + + + o+ 4+ + + + + 4+ 4+ 4+ + + + + + + + + + + o+ A+ A+

Cl24*D124
C130*D130
C136*D136
Cl142*D142
C148+*D148
C154*D154
€160*D160
Cl166*D166
Cl172*D172
Cc178*D178
C184*D184
C190*%D1S0
C196*D196
c202*D202
c208*D208
C214*D214
c220*D220
C226*D226
c232*D232
C238*D238
C244*D244
C250*D250
C256*D256
C262*D262
C268*D268
C274*D274
C280*D280
C286*D286
C292*D292
c298+*D298
C304*D304
C310*D310
C316*D316
C322*D322
C328*D328
C334*D334
C340*D340
C346*D346

+ + + + + + + + + + + + o+ + + A+ + + 4+ A+ 4+ o+ 4+ o+ 4+ + o+ o+ + + + o+ o+ o+ o+ A+

C125*D125
C131*D131
C137*D137
C143*D143
C149*D149
Cl55*D155
Cleéel*Dlel
Clé67*D167
Cl73*D173
C179*D179
C185*D185
C191*D191
Cl197+D197
C203*D203
c209*D209
C215*D215
cz221*p221
Cc227*D227
C233*D233
C239*D239
C245*D245
C251*D251
c257*D257
C263*D263
C269*D269
C275*D275
c281*D281
C287*D287
C293*D293
C299*D299
C305*D305
C311+*D311
C317%D317
C323*D323
C329*D329
C335*D335
C341*D341
C347*D347

+ + + 4+ + + + + + + + + + 4+ + 4+ + + + + + + 4+ + + 4+ + + + + + F o+ + o+

C126*D126
C132*D132
C138*D138
Cl44*D144
C150+*D150
Cl56*D156
Cl62*D162
C168*D168
C174*D174
C180*D180
C186*D186
C192*D192
€198*D198
C204*D204
€210*D210
C216*D216
€222*D222
c228*D228
C234*D234
C240*D240
C246*D246
C252*D252
C258*D258
C264*D264
C270*D270
C276*D276
c282*D282
C288*D288
C294+*D294
C300*D300
C306*D306
C312*D312
C318*D318
C324*D324
C330*D330
C336*D336
C342*D342
C348*D348

+ O+ 4+ + 4+ + + 4+ o+ F o+ F F + 4+ + + 4+ 4+ + o+t + o+ o+ o+ + + o+ o+ + o+ o+ 4+

C127*D127
C133*D133
C139%D139
C145*D145
C151+*D151
C157*D157
C163*D163
C169*D169%
C175*D175
C181*D181
C187*D187
C193*D193
C199*D199%
C205*D205
c211*p211
C217*D217
C223*D223
C229*D229
C235*D235
C241+*D241
C247*D247
C253*D253
C259*D259
C265*D265
Cc271*D271
c277*D277
c283*D283
C289*D289
C295*D295
C301*D301
C307*D307
C313*D313
C319+*D319
C325*D325
C331%D331
C337*D337
C343*D343
C349*D349

64



+ C350*D350 + C351*D351 + C352*D352 + C353*D353 + C354*D354 + C355*D355
+ C356*D356 + C357*D357 + C358*D358 + C359*D359 + C360*D360 + C361*D361
+ C362*D362 + C363*D363 + C364*D364;

Fit tAvg / data=ParaEsti outest=Tmp Parm out=Resid outall;

Run;

Data Resid;

Set Resid;
If mod(_n ,3) = 0 then Sum Rsdl_Sqg + tAvg**2.;
*each record has 3 data lines: _type =ACTUAL, PREDICTED, RESIDUAL;
sigma_t = (Sum Rsdl Sq/7300)**.5;
If n < 21900. then delete;
Do tIndex=&StartIdx to &LastIdx;
output Resid;
End;
Keep tIndex sigma t:

Run;

Data Tmp Parm;
Set Tmp Parm;
if n_ gt 1 then delete;
Do tIndex=&Startldx to &LastIdx;
output;
End;

Run;

Data Priceé&n;

Merge Tmp_Parm Price&n Resid;

By tIndex;

Array Coeffict{364} C1-C364;
Array DummyVar{364} D1-D364;
Array S8im Tmp{&NumSimul} ST1-3T&NumSimul;
Array Sim DD{&NumSimul} SH1-SH&NumSimul;

Array cumTmpID{&NumSimul} CTI1-CTI&NumSimul;
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Act _Tmp = tAvg;
Act_DD = max (0., 65.-Act Tmp); * HDD contract;
Sum_ActDD + Act_DD;

Do i=1 to &NumSimul;
Do j=1 to 364;
SumbDummy + Coeffict{j}*DummyVar{j}:
End;
Sim Tmp{i} = b0+bl*tIndex+SumDummy+sigma t*Rand('Normal');

SumDurmmy=0. ;

Sim DD{i} = max(0., 65.-Sim Tmp{i}): * HDD contract;
If tIndex 1t &ValIdx then cumTmpID{i} + Act DD;
Else cumTmpID{i} + Sim DD{i};
End;

Format CTI1-CTI&NumSimul Sum ActDD 10.5;
If n 1t (&LastIdx-&StartIdx+l.) then delete;*need the final sum;
Keep CTI1-CTI&NumSimul Sum ActDD;

Run;

Data Consmptn;

Set OrigCons;

If &val D eq 1 then Do;
If &val M eq 1 then Do;
If Month eq 12 and tIndex ge (&ValIdx-365) and tIndex 1t &ValIldx
then output;
Else delete;
End;
Else If &Val M gt 1 then Do;
If Month eq (&Val _M-1) and tIndex ge (&ValIdx-365) and tindex
1t &ValIdx then output;
Else delete;
End;
End;
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Else If &Val D gt 1 then Do;
If Month eq &Val M and tIndex ge (&Valldx-365) and tindex 1t
&Valldx then output;
Else delete;
End;

Drop Cons;

Run;

%QKSigma(&ValIdx,&StartIdx,&LastIdx,&Setle_M,&Setle_D,&SetleIdx)

Data Consmptn;

Merge Consmptn TmpRsdlM30;

Array v{&NumSimul} vl-v&NumSimul;

Array TRF _v{&NumSimul} TRF_v1-TRF_v&NumSimul;

Array In Cons{&NumSimul} lcl - lc&NumSimul;

Array Cons{&NumSimul} cl - c&NumSimul;

Array ln Cons_TRF{&NumSimul} 1cTRFl - 1cTRF&NumSimul;
Array Cons_TRF{&NumSimul} cTRFl - cTRF&NumSimul;

a = —&Rho* (&SetleIdx-&Valldx)/ (&Gamma*365.) - (&Mu-1.)*1nCons;

Do i=1 to &NumSimul;
In Cons{i} = a + &Mu*1lnCons + v{i};
Cons{i}l = exp(ln Cons{i});
In Cons TRF{i} = a + &Mu*lnCons + TRF_v{i};
Cons_TRF{i} = exp(ln_Cons_TRF{i});
End;
Keep cl ~ c&NumSimul cTRFl1 - cTRF&NumSimul;

Run;

Data Priceé&n;

Merge Price&n Consmptn;
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Array cumTmpID{&NumSimul} CTI1 - CTI&NumSimul;
Array Cons{&NumSimul} cl - c&NumSimul;

Array Cons~TRF{&NumSimul} cTRF1l - cTRF&NumSimul;
Array PremPrice{&NumSimul} Pricel -~ Price&NumSimul;

Array PremPrice ActDD{&NumSimul} P_ActDDl - P_ActDD&NumSimul;

Do i=1 to &NumSimul;
PremPrice{i} = ((Cons{i}**&Gamma)*cumTmpID{i}) /
((Cons TRF{i}**&Gamma)*1.);

SumPrice + PremPrice{i};

PremPrice ActDD{i} = ((Cons{i}**&Gamma)*Sum ActDD) /
((Cons_TRF{i}**&Gamma}*1.);
sumPrice ActDD + PremPrice ActDD{i};

End;

Price SimDD = SumPrice/&NumSimul; *Price w Simulated Temps;

Price ActDD = SumPrice ActDD/&NumSimul; *Price w Actual Temps;

Format Price SimDD Price ActDD 11.5;
OBS = &n; *To merge w Thesis.Set i;
Keep Price SimDD Price ActDD OBS;

Run;

Proc Datasets library=Work;
Delete ParaEsti Tmp Parm Consmptn Resid TmpRsdIM30;
Run;

$Mend PriceHDD;
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Appendix B-3: SAS Code to Invoke the Pricing Macro

$let NumSimul = 5000; * # of Simulation per price;
%let Rho = 0.03; * Rate of Preference;
%Global k sigma Pr3imDD PriceActDD SumActDD;

$let avg vt=;

%let avg xit=;

%$let nobs;

%let avg vt=;

$Macro Contract (Gamma, Mu);

Data null ;
Set MktPrice End=Last;
If Last then call symput('n', n );

Run;

%$Do i=1 %To &n;

Data null ; *to solve the timing issue of call execute;
Set MktPrice;

If n =&i then Do;

If Indicator='F' then call Execute('%PriceHDD("' || Val ID || ',"
[{ start ID || '," || Last_ID || '," || Setle_ID [} '}");
Else call Execute('%PriceCDD(' || Val ID [| *," || Start ID ||
w0l Last_ID || ',' || Setle ID [{| '}');
End;
Run;

Data Thesis.Set_ 9 MktPrice;
Set MktPrice;
If n =&i then Do;
Price SimDD = &Pr3imDD;

Price_ActDD = &PriceActDD;
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Sum ActDD = &SumActDD;

k = &k;
sigma = &sigma;
End;
Run;

%End;

Data Thesis.Set 9 MktPrice;

Set Thesis.Set 9 MktPrice;
Price SimDD -~ ActPrice;

PriceDiff =
PriceDiff / ActPrice;

DiffPcnt =
Format DiffPcnt percent77.2;

Format PriceDiff 10.5;

Run;
Proc Print data=Thesis.Set 9 MktPrice;

Run;

$Mend Contract;
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