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ABSTRACT

Linear Parameter-Varying Sliding Mode Control of
State Delayed Systems with Application to
Delta Wing Vortex Coupled Dynamics
Ming Yang
In this thesis a new linear parameter-varying sliding mode control (LPVSMC)
approach is developed for linear parameter-varying time-delayed systems (LPVTDS).
This approach combines sliding mode control (SMC), linear parameter-varying (LPV)
control theory, and time delay stability analysis to solve an LPVTDS control problem. A
new linear parameter-varying sliding surface is proposed to achieve the control objectives.
The time-varying parameters of the sliding surface are calculated according to a
parameter-dependent Lyapunov-Krasovskii functional analysis which ensures asymptotic
stability of the closed-loop system. It is anticipated that this method will lead to
significant improvement over existing SMC approaches in aerospace applications with

parameter variations.
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Subscripts:

h time-delayed vector

1 left vortex

q quasi-steady term

r right vortex

s static term

vb vortex breakdown

Notation:

nxm

IR denotes the set of real numbers and /i the set of nxm real matrices.
The transpose and inverse of the real matrix M are denoted by M'™ and M
respectively. A square matrix M is symmetric if M =M ", and a square matrix M is

skew-symmetric if M =-M".

I is used to represent an identity matrix of appropriate
dimensions. diag{- . } denotes a block-diagonal matrix. M(-) is used to denote a matrix
function. We use 8" to denote the set of nxnreal symmetric matrix. M eS8 " and
M>0 (M=0) means that M is a positive definite symmetric matrix (positive semi-
definite symmetric matrix), this is x ' M x>0 (x' M x> 0) for all nonzero vectors x .

Similarly, Me 8" and M <0 (M <0) means that M is a negative definite symmetric

matrix (negative semi-definite symmetric matrix), this is x' Mx<0 (x " Mx<0) for
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Chapter 1

Introduction

1.1. Motivation

The delta wing aircraft has become a favoured design for advanced fighters
because of two main advantages. The first advantage is that the delta wing leading edge
remains behind the shock wave generated by the nose of the aircraft when flying faster
than the speed of sound. If the shock wave hits the wings of the aircraft, the high-
pressure variation across a shock could cause structural fatigue. The second reason is
that the delta wing has a very high stall angle [54]. An increase in the angle of attack
results in an increase in the lift force. The angle of attack can continue to increase up to a
point where maximum lift is generated. This point is the so-caﬂéd stall angle. The delta
wing can also generate a vortex that remains attached to the upper surface of the wing,
even if the aircraft has a very high angle of attack. This large vortex can make the delta
wing have a larger stall angle than other kinds of aircraft configurations. The delta wing
has been used for the design of numerous fighter aircrafts such as the Mirage and MiG
aircraft. It has also been used for the design of unmanned aerial vehicles (UAVs) such as
the Stingray developed by Boeing in 2002, and the Cutlass a cruise missile used by
Israel’s military force since 1999.

Controller design for delta wing systems, when modelled using the nonlinear
indicial response and internal state-space (NIRISS) modelling approach, is difficult since
this description includes two highly nonlinear terms: the nonlinear static terms and the

unsteady convolution term involving delayed states [20], [21] and [22]. A control



problem for roll motion of delta wing systems can be characterized by time-varying
nonlinear terms and complex time-delayed components. To address the nonlinearity and
parameter variations of the model, a standard linear parameter-varying (LPV) controller
has been developed based on a linear parameter-varying approximation of the system
[54]. However, the standard LPV controller response to a fast changing input signal is
characterized by a large overshoot and long setting time. This is a result of the system
parameters varying too rapidly which results in conservative LPV control designs.

The sliding mode control (SMC) approach has been effectively used for systems
that are nonlinear with rapid parameter variations [8]. It is a powerful control method
with increasing applications in many areas of control engineering. The purpose of SMC
is to drive the plant’s state trajectory onto a pre-designed surface in the state space and to
maintain the plant’s state trajectory on this surface for all subsequent time. The pre-
designed surface is called a “sliding surface.” Many approaches have béeﬁ .proposed for
the design of the sliding surface. These include pole placement, eigen-structure
assignment and linear/optimal quadratic techniques, etc. Linear matrix inequality (LMI)
based methods have also been explored in [13], which proposes SMC strategies for
systems with time delays. However, these sliding mode control approaches are not well
suited for application to linear parameter-varying time delayed systems (LPVTDS) such
as the vortex-coupled delta wing system. In particular, they don’t include parameter
varying sliding surfaces or manifold stability analysis based on the LPVTDS description.

This thesis presents a new linear parameter-varying sliding mode control
(LPVSMC) design approach for an LPVTDS. The organization of the thesis is as

follows. In chapter 2, the background material is presented such as the quasi-LPV



modelling approach, LMI-based control and convex optimization, Lyapunov-Krasovskii
theorems for time-delayed systems, SMC design approach, and NIRISS model of delta
wing systems. In chapter 3, an LPVSMC is developed for an LPVIDS by means of
solving the stability equation of a parameter-dependent Lyapunov-Krasovskii functional.
The controller synthesis conditions are formulated in terms of LMI that can be solved via
LMI solvers. This result is then generalized to multiple time-delayed LPV systems.
Chapter 4 describes the quasi-LPV modelling and LPVSMC synthesis procedure for the

delta wing roll motion problem. Finally, chapter 5 presents conclusions and future work.

1.2. Previous Work

Three main topics of previous work relate to this thesis. They are LPV systems
and model development, time-delayed system analysis, and the SMC approach. Research
results from these areas are reviewed in the following paragraphs.

The LPV approach, which has received increasing attention since it was initially
studied in 1991 [41], is defined as a linear system whose dynamics depend on time-
varying parameters whose trajectories are unknown a priori but can be measured in real-
time. Since the controller is synthesized based on an LPV model, it is important to
carefully select the LPV representation to avoid conservative results. There are two main
approaches to the LPV modelling of nonlinear systems. Jacobian linearization approach
is presented in [12], [30], [40] and [S5]. This approach assumes the nonlinear system
behaves similarly to a linear system in a small range around certain points that are
defined as equilibrium points, so the deviations around equilibrium points will be small.
By setting the deviations equal to zero, a Jacobian Matrix can be obtained. An LPV

model arises from computing the Jacobian Matrix. The other approach is the quasi-LPV




linearization method, which is introduced in [1], [5], [29], [31], [42], [55] and [48]. The
quasi-LPV approach focuses on linearizing the nonlinear systems by defining nonlinear
terms as time-varying parameters. This approach can guarantee stability and
performance properties, but we may not always find the controller for the LPV plant
because of conservative nature of this approach.

Time delays are often encountered in control systems, so stability criteria for
time-delayed system have become a critical problem in controller design. The existing
criteria can be classified into two types: delay-independent and delay-dependent
stabilization, as in [32], [38], [51] and [52]. If the delay terms are unknown or
unbounded, the delay-independent stability criteria are used since the controller is
synthesized without considering the information of the delay. It has been studied in [23],
[26] and [35]. Recently, many studies focus on the delay-dependent stability criteria, for
example [7], [10], [16], [24], [33], [49]. [52] and [59]. The delay-dependent approaches
make use of the bound of delay terms, so it can give less conservative than the delay-
independent ones.

SMC is also called variable structure control (VSC), which is an effective robust
control approach for the nonlinear model, see [45] and [56]. The idea of SMC is based
on the use of discontinuous control laws. It breaks down into two steps. Firstly, the
sliding mode controller drives the state trajectory onto the pre-designed sliding surface.
Once on the surface, the state trajectory slides along the surface toward a designed point.
SMC has been applied to various systems. For example, [15], [17], [37] and [53] are
applied to flight control problems; [27] designs a sliding mode controller for brushless

direct drive servo motors; [43] introduces a SMC application of active magnetic bearings;



[9] and [58] are applied for rigid manipulators; and [36] is for an underwater vehicle
prototype. In addition, SMC research concepts have been extended to time-delayed
systems, see [14], [18], [28], [39], [44] and [46]. In [14], the authors introduce the SMC
of uncertain systems with single or multiple time delays, and use LMI for the
optimization procedure. There are very few papers discussing the parameter-varying
SMC approach. We only found one paper [43] that presents the approach for dealing
with sliding mode hyperplane for a single time-varying parameter second-order LPV

model.

1.3. Thesis Contributions

The main original contributions of this thesis are as follows:

1) A new LPVSMC synthesis procedure for LPVTDS

A linear parameter-varying sliding surface is proposed to achieve the requirement of
tracking or regulation. Using this surface a parameter-dependent Lyapunov-Krasovskii
functional analysis is used to guarantee asymptotic stability of the closed-loop system.
The time-varying controller parameters are calculated from a set of LMIs, which can be
readily solved using LMI solvers such as YALMIP, SeDuMi, or LMITool. Furthermore,
the results are extended to the more general case of multiple time delay systems. This
original contribution represents the first approach for LPV based SMC of time delay

Systems.

2) A new multiple time delay LPV model for vortex-coupled delta wing systems



This model is developed based on an approximation of an NIRISS representation of
vortex-coupled dynamics proposed in the literature. This model is characterized by time-
varying nonlinear terms and complex time-delayed components. Through curve fitting of
the various coefficients and delay terms a new LPV description is developed. It is shown
that the LPV model agrees closely with the full nonlinear model representation. This
new LPV model can be used to develop and test new LPV, LPVSMC, and other
nonlinear control methods. This work represents the first LPV based model for vortex

coupled delta wing systems.

3) Application of the LPVSMC method to vortex-coupled delta wing systems
The LPVSMC approach is applied to an LPV representation of vortex-coupled delta wing
system dynamics to demonstrate the validity of the approach. The approach presented is

one of the first applications of nonlinear control for vortex-coupled delta wing systems.




Chapter 2
Background Material

In this chapter, the background material, which associates to this study, is
introduced such as the quasi-LPV modelling approach, LMI-based control and convex
optimization, Lyapunov-Krasovskil theorems for time-delayed systems, SMC design

approach, and NIRISS model of delta wing systems.

2.1. Quasi-LPV Modelling Approach

A quasi-LPV modelling approach is used in this thesis to develop a control
oriented model for delta wing systems. This approached was used since it can directly
obtain an LPV model from the aerodynamic model of vortex-coupled delta wing systems
by using several simple approximations of the nonlinear terms. Before we develop the
LPV model for delta wing systems, the background of quasi-LPV modelling is
introduced in this section. Related references are given by [1], [5], [29], [31], [42], [55]
and [48]. Consider the nonlinear system

X = a (X,u,w,v) (D)

y=¢ (X,“,w, V)

where x € JR" is the state, ue /R ™ is the control input, and y € /R? is the measured
output. The symbol w represents the parameter-dependent external input, and the
symbol v represents the parameter-independent external input, such as reference

commands, disturbances and noises. Equations (1) are linearized by replacing the



nonlinear terms by the time-varying parameters o(t). The boundary of o(t) can be
determined according to the nonlinear terms, but the exact value of o(t) can only be

calculated on-line. Therefore, the open-loop LPV description for the nonlinear system
can be given as

x(H)=A(c®)x()+B(s() u(®) (2)
yO=Ce®)x(®)+D(c®)u(t)

The state-space matrix functions A()e/R ™" , B()elR"™ , C(elR" and
D()e/RP™ are assumed to be bounded continuous functions of a time-varying

parameter vector ¢(t) € ®. The constraints ® are defined as

®={0:6(t) IR |6, (t)]<v,i=12s,Vic/R} 3)

When it will not cause an ambiguity, we use ¢ to denote the vector of time-varying

parameter o(t) for the rest of the thesis. For the same reason, subscript 'h'is used to

denote the time-delayed vector, e.g., X, :=x(t—h) and 6, :=6(t~h).

Example 1. Consider a linear time-varying plant
X, 1 [0 06+02(2+sin(t)) |[x, N 0 “4)
= u
X, | |-2 -32+01(2+sint)) || x,| |1

SN



If the time-varying parameter o(t) is used to replace the time-varying component

(2 + sin (t)), the linear time-varying plant can be modelled using the LPV system
X, 0 06] [0 02] \[x,] [0 )
= + + |u
X, -2 =321 10 01| J|x,| |1

where the time-varying parameter is

o(t) =2+sin(t), 1<o(t)<3 (6)
’ c's(t)‘ :!cos (t)l <1

The quasi-LPV representation for a nonlinear system is not unique, so we should choose

a suitable quasi-LPV representation that can be implemented readily.

2.2. LMI based Control and Convex Optimization

Most of recent control theories usually lead to solve some LMIs. A LMI can be
represented as the following, as in [3] and [4]

Mx)=M,+x,M,;+---+x M, >0 )

where xe /JR" and M e S". The LMI is convex constraints, that is

AM(x) + (1 - A)M(y) 2 M(Ax+(1-1)y)> 0 (8)

if

M(ixx)>0 and M(y)>0 9)



for all A0, 1]. If x can be found for the given LMI M(x)>0, x is called the

feasible solution of the LMI, otherwise, the LMI is called infeasibile. Lyapunov
functional for a linear system is an example of LMI. Given the following linear system

x(t) = Ax(t) + Bu(t) (10)
y(t) = Cx(t) + Du(t)

we choose the following Lyapunov functional

V=x"(t)Px(t) >0 (11)

According to the definition of positive definite matrix, the above equation implies that

P>0 (12)

where P € 8" is symmetric positive definite matrix. Calculating the derivative of V

yields
% =x"()ATPx(t) +x" (OPAX(t) =x" () AP+ PAJx (1) (13)
If the following LMI is feasible, the system is stable.
ATP+PA<0 (14)

where A is given and P is the variable. If we study H _ in [60] or LPV control in [2], it

might lead to convex optimization problems [4], such as

-10-



minimize Yy (15)
A'X+XA XB C'
subject to *) -yI D' |<0
(*) () -vI

where vy is an induced H_ —norm of closed-loop system. In order to efficiently solve

the LMI and convex optimization problems, several conic programming solvers were
developed based on interior point methods [4], such as YALMIP, SeDuMi, SOSTools or
LMITool. YALMIP is a MATLAB toolbox for rapid solving of optimization problems
[59]. It focused on semi-definite programming, convex linear, quadratic, and second
order cone. We select YALMIP to solve a LMI, because it is not only easy to learn but
also easy to use. Now, we give an example to demonstrate how to solve Lyapunov

equation using YALMIP.

Example 2. Consider a second-order system

X, =—4x, (16)

X, =X, —2X,

The state space equation of the system is

F —q (17)
A=
1 -2

The system is stable, if there exist matrices P, Q > 0 with the LMI

ATP+PA-Q<0 (18)

<11 -



Let us take Q =1 and use YALMIP

TS 45t
Create natable
= [0 -4y 1 -2):

CoPreate syametzie Ravrrix (il gyntax])
= sdpvar(2,2,‘sysmecric’};

= eye(2);

Add FETs for stabilicy

= set{A'*P4+P*4-0<0);

= F + sec(P>eye(2));
> Firgl £pedible sclution, minimizs- traceil)
solution = solvesdp(F,trace{P}}:
P=double (P}

Figure 2-1 Interface of YALMIP to solve Lyapunov function

The solutions are

Commiand Window

i

Solver for linear ohjective minimization under LMI - constraints

Iterations H Bestiobjective walue so far

1

wEE new..lower-hound: 0.035371
2 2.743023
3 2.440681

wEE new lower:bound: 1.617842
4 2.409614

THE hew lower bound: 1.994189
5 2.391172

EE ney lower bound: 2.,280087
6 2.359018

RS new lower hound: 2.321387
7 2.357514

A new - lower bound: 2.350932
8 2.357421

wEE new lower bound: 2.355181

Result: feasible solution of required accuracy
best objective wvalue: 2.357421
guaranteed relative accuracy: %.50e-004
f-radius saturation: 0.000% of R = 1.00e+009

1.0140 -0.0632
-0.0692 1.3434

Figure 2-2 YALMIP results for Lyapunov function
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The LMI is feasible, so the system is stable.
The above solutions can be checked using an eigenvalue test method. We know
that any matrix M € /R ™" can be decomposed as the sum of a symmetric matrix and a

skew-symmetric matrix as the following equation [5] and [45]

M+M'" M-M' (19)
M= +
2 2
where the fist part is symmetric
M+M™)' M+M’ (20)
2 2

and the second part is skew-symmetric.

M _MT T M _ MT (21)
2 )
Assuming x as an arbitrary nx1 vector, we have
S M-M" CM-MT ) (22)
X ———Xx=—-{ X ————X
2 2
Then, it leads to
_MT 23
gM-mM (23)
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The quadratic function of the skew-symmetric part is zero, so we obtain a quadratic

function of any matrix can be replaced by its symmetric term.

T M7 T 24
xTszxT(M+M +M M jx=xT———M+M X 4

+0
2 2 2

Therefore, a general matrix is positive definite if and only if its symmetric part has all

positive eigenvalues [5].

Example 3. Testing of the YALMIP results in Example 2. From that example we have

[ 1.0140  -0.0692 (25)
1 -0.0692  1.3434

where P is a symmetric matrix, so it is not necessary to decompose it as the sum of a
symmetric matrix and a skew-symmetric matrix. We can directly use the eigenvalues of
P to check the positive definiteness. The eigenvalues are given by

1.0140-2  -0.0692 | (26)

|P-2d| = =
~0.0692 1.3434 -2

From the above equation we can calculate the eigenvalues of P as

A,=1>0 and A, =1.3574>0 27

Therefore the solution P of the LMI is positive definite. The LMI solution can be

verified from
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ATP+PA-Q (28)

0 —41"71.0140 -0.0692] [ 1.0140 -0.06921[0 -4 [1 0©
:[1 —2} [—0.0692 1.3434 }{—0.0692 1.3434 }[1 —2]{0 1}
~1.1384 —2.5740
{—2.5740 5.82}

The eigenvalues of this expression are given by

A, =-69584<0 and A, =-0.00002<0 29)

The solution matrix P is positive definite and the LMI expression is negative definite.

Therefore the YALMIP solution is feasible and the system is asymptotically stable.

2.3. Lyapunov-Krasovskii Theorems for Time-Delayed Systems

Recently, the Lyapunov-Krasovskii approach has received increasing attention
for analysis of the delay-dependent stabilization of time-delayed systems. It was used to

analyze the LPVTDS in [47], [50] and [51], in which the stability, L, and L,-to-L,

gain performance for these systems are explored using quadratic single Lyapunov-
Krasovskil functional equations. The Lyapunov-Krasovskil functional is chosen as

V=x"Ple()x+ | x"(0)Q(s(0))x(8)d0 (30)

In [16], a new method for dealing with a time-delayed system is presented. In this
method, the derivative terms of the state, which is in the derivative of the Lyapunov
functional, are retained and some free weighting matrices are used to express the

relationships among the system variables, and among the terms in the Leibniz-Newton
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formula. In [7] and [10], the authors develop efficient delay-dependent conditions for the
stability of time-delayed systems. These conditions are parameter-dependent. Also,
these conditions improve the results that were derived using a single Lyapunov-

Krasovskii functional. The functional is chosen as

V=x"Pe®)x+ [ x"(O)Rx(0)d0+ [ [ x"(©)Qx(0)d6ds G

Now, we introduce the two most important Lyapunov-Krasovskii theorems

given in [25].

Lyapunov-Krasovskii Theorem 1. If there is a differential equation with time delay

£1d§ti_=fi(Xl(t—h),"',Xn(t—h),t) i=1,~~-,n (32)

for h > 0, there corresponds a functional V(x,t) which is positive definite for

[x®]<H, tefh o] (33)

and has an infinitely small upper bound, and if the value

(V(x(x0(~h),t0,t+At—h),t+At)—V(x(xo(—h),to,t—h),t)j (34)
At

( lim su —Ay—) =lim su
a0 P AL o

is negative definite along Equation (32), then the system of Equation (32) is

asymptotically stable.
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Lyapunov-Krasovskii Theorem 2. Suppose there is an upper-bounded functional
V(x(t),x(t—h),t) that satisfies the conditions [25]

V20 35)

. AV (36)
lim sup — | <0
At

Then, the following multiple time delay system is asymptotically stable

dx;

e o 3 () X, (B (0 X, O,0), E=Lons 0<hy () <h 37)

Next, we present the procedure of using the Lyapunov-Krasovskii approach to
analyze the stability of time-delayed systems. Consider the following time-delayed
system

% = Ax() + A ,x(t—h) (38)

Choosing the following Lyapunov-Krasovskil functional

V=x"OPx(®)+ [ x"(0)Qx(0)do (39

where P,Q € 8" are symmetric positive definite matrices. Calculating the derivative of

V along the trajectory of Equation (38) yields
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dv (40)

o =x" (HATPx(t) +x" (t—h)A Px(t) +x" () PAx(t)+x " ()PA, x(t—h)

+x T ()Qx(t)—x" (t—h)Qx(t—h)

:[ x(t) T{ATP+PA+Q PAh“: x(t) ]
x(t—h) *) —Q j{x(t—h)

If the following LMI is feasible, the system is stable.

l:ATP+PA+Q PAh]< 0 (41)
Q) -Q|

The Lyapunov-Krasovskil approach is illustrated using the following example.

Example 4. Consider the time-delayed system (38) with

—2 0 ~1 0 o (42)
A= LA, = and h=1.65
1.75 —025 ~0.1 -025

The results of YALMIP below in Figure 2-3 indicate the Lyapunov-Krasovskii LMI is

feasible. After 36 iterations, we obtain the positive definite matrices

0.1008 0.0134 _[02570 0.0141 (43)
(*)  0.0073 | 0.0018

Therefore the system is stable, which is confirmed by its regulation plot from the initial

values x,(0)=1and x,(0)=1 (see Figure 2-4).
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S5 % 5 ENAAD R %
A new lower hound 0.238842
28 0.376785
bkl new! lower ‘bound: 0.300098
29 0.376785
FEE new: lower hound: 0.332514
30 0366918
bk new lower Lound: 0.342267
31 0.366918
wER new. lowerbound: 0.35%483
32 0.366918
X new lower bound: 0.364515
33 0.366918
kA new lower bound: 0.355931
34 0366918
T new. lower:bound: 0.366338
35 0.366918
REL) new: lowexr bound: 0. 366340
36 0.366912
wEE new-lower bound: 0.366682
Result: feasible solution of required accuracy
best ohiective wvalue: 0.366912
guaranteed -absolute accuracy: 2.30e-004
f-radius saturation:’ ©0.000% of R = 1.00e+009
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0.2570 0.0141
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Figure 2-4 Regulation of a stable time-delayed system
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2.4. Sliding Mode Control

Consider the dynamic system

A An][zl} m (44)
= ~ ~ + A u

A21 f&n Z; B

where z, € IR"™,z,€/R™, A ,and A, are real matrices of appropriate dimensions,

Be/R™™is a full rank real matrix, and AZI, Azz can be any bounded nonlinear

matrices. A non-dynamic sliding surface can be defined by [21]

s=Lz,+z, (45)

When the state trajectory is on the sliding surface s =0, z, can be obtained as

z,=-Lz, o (46)

The system (44) can be reduced to

2,®=(A, A L)z, 47)

Stability of the linear time-invariant systems depends on the location of the position of
poles of (AH —AQL) in the complex plane. It has been proven that if the open-loop

system (A“, An) is completely controllable, any set of desire closed-loop poles can be

achieved using the constant matrix L [57]. Then using the known Equation for sliding
mode § =0, we have the representation of the system (44) around the equilibrium points

as
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=1z, +z,
:Lf\“z, —LAan] +£&2,z1 —Aan1 +1A3ueq

Substituting (46) into the above equation, it is necessary to calculate the equilibrium

control input as
u, =—B(LA, LA L+A, -A, L)z, (49)

€q

If the initial states do not lie on the sliding surface, we can prove that surface is

globally attractive [43]. From any initial condition out of the sliding surface, the square
of distance to the sliding surface is measured by (s—0)"(s—0). For simplicity, we
define the function

Vzé(s—O)T(s—0)=—;-sTs_>_O (50)

The state trajectory will reach the sliding surface in a finite time smaller than ||s||/ k,in

which k is a strictly positive constant [45]. Then, the derivative of V will be

V=s"s=s"(Lz,+2,)=s"B(u-u,)<-k|s|<0 (1)

and a unit vector sliding control law is proposed as the following [34]

n

T
u, +u, s B<0

_ b (52)
u(t)={ueq u s B>0
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(53)
R

"B

+&

where ¢ is a strictly positive constant vector. Form above equations, it is apparent that k
is in inverse proportion to the setting time and in direct proportion to the control input.
The coefficient & is called boundary layer width, which is used to achieve an optimal

trade-off between chattering frequency and tracking precision.

Example 5. Given a nonlinear system
: 0 1 (54)
z, 7, Z, 1

Now, supposing the desired pole of the closed-loop system is ‘~2°, we can select matrix

L =2. The reduced system becomes stable and can be written as

72,0 =(A, ~LA,)z, =-22, (55)

Then, we can obtain the sliding surface as

s=Lz +z,=2z,+z, (56)

and the equilibrium control input as

I, ~ (57)
u =—B"1(LA“—LA]2L+A21—A22L)21=(M+4jz,=sin(zl)+4zl

eq
Z,
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Supposing the initial values are z (0) = 1and z ,(0) = 1, the simulation results show that

the system is stable with k =10 and & = 0.001.

1.5
e State 21

e SlERE z,

.
T e s,

states
o]

time(s)

Figure 2-5 States of a controlled system
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A
e

Figure 2-6 Phase diagram of a controlled system
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From the simulation results, the SMC controller can stabilize this nonlinear

system by placing the poles of the closed-loop system at the desired points.

2.5. NIRISS Modelling of Delta Wing Systems

A NIRISS representation of rotation motion provides a realistic example of the
control problem in delta wing systems. An airplane has three rotations: roll, pitch and

yaw. In this thesis, only aecrodynamics of the roll motion is considered.

vortex breakdown location right vortex lift

roll moment

longitudinal axis

vortex breakdown location left vortex lift

Figure 2-7 Vortex-coupled model of delta wing systems

The different left and right vortex breakdown location produced two different lifts on the
left and right wings. Then, the roll moment is produced. Newton’s second law is applied
to the delta wing system of Figure 2-7, giving [20]

1D (1) = —f D(t)+qs ,bCI(X ,;,X )+ U(L) (58)

where the constants I, q, s, and b represent the moment of inertia, the dynamic air

pressure, the wing element area, and the wingspan, respectively. f is the bearing

friction coefficient produced by the support bearing of the experimental setup. In the real

system, f_ will be very small, and the roll damping of the real system will be less than
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experimental model. Under such condition, a low level PD controller can increase the roll

damping of the real system before LPV controller synthesis. The dependent field

variables ®(t) , @(t) , d(t) and CI(X,,,X.,) are the roll angle, the roll angular

velocity, the roll angular acceleration, and the roll moment coefficient, respectively.

U(t) is the input torque of vortex-coupled delta wing systems. In these systems, because
the air loads are dependent on the vortex breakdown locations, the roll moment

coefficient CI(X ,,,X ;) can be represented as a function of difference of the left and

right vortex breakdown locations. In [13], the relationship between the roll moment
coefficient and vortex breakdown locations is given as

Cl=ec +e (X —Xy) (59)

where e, and e are determined from the experimental data [19]. Also, the left and right

vortex breakdown locations X ,, and the right one X , can be obtained from the

following equations [20]

X 1 = X 00+ X @O)X 4 00)+ [ X, (t-D(r)de (60)

X e = X, OO)+ X (BOIX, GO) - [ X, (t-Db(e)dn (61)

From the equations above, we see that each vortex breakdown location is determined by
three terms: the first term represents the static value for the roll angle at t, and the second
and the third terms are the quasi-steady and the unsteady effects respectively.

Experimental results have shown that the quasi-steady terms are often negligible [19].
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Figure 2-8 Conceptual design of full wing experimental set-up
For simplicity, the quasi-steady terms are ignored. The equations can then be written as

X =X 0)+ [ X, (t-Dh()de (62)

X =X (9(1) J.:_T X, (t—1)d(r)dr (63)

The static term X _ can be obtained by solving a second-order equation in [20] given by

C,+BX, -AX? =T (64)

From Equation (64), the static term X, depends on the leading edge sweep angle I', and
the parameters A, and B,,. The formulation of A, and B, for the left and right
vortices is as follows [20]

A, =1.1sin(a(t))sin(A ), B, =4A, (65)

A, =Llsin(o(t)sin(A ), B, =4A (66)
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where o(t) is the angle of attack. The effective sweep back angles are given by
A, =), - atan(tan(@)sin(¢(t)) (67)

A, =\, +atan(tan(¢)sin($(t)) (68)

with A, and ¢ being the half apex angle and the structure angle respectively. Critical

circulation can be represented as

', =08cos[4(A, - A )] (69)

T, =0.8cos[4A, -~ A )] (70)

where A _ is obtained from experimental results. The non-dimensional circulation at

trailing edge (non-dimensional chord X =1 ) is used to determine the distributions of

circulation in chord wise in parabolic [20].

2.65 3.5 (71)
I', =5.11cos(A | + o—
: @Ay 57.3)( 57.3)
C,=T,-B,+A, (72)
I', =5.11cos(A |, + 2'65)((1 _35 ) (73)
57.3 57.3
CrO:r‘rﬁBr—l—Ar (74)

The solution of the static term X , is determined as follows. If B3 +4A C,, —4A ', is

greater than or equal to 0, then
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cl

B, -yBI+4A,C\,—4A T (75)

Xsl
2A,
otherwise,
. B ~J-(B+4a,Cc,,-4AT,,) (76)
sl = 2Al

If B2 +4A .C,,—4A T, is greater than or equal to 0, then

B,—4B2+4A ,C, —4A T (77)
X =
ST 2Ar
otherwise,
« _B,—y-(Bl+4a,C,-4AT,) (78)
sr 2Ar

Also the representation for the unsteady effects is

¢ o 165 L m(t—1), . (79)
_[_TX“('[ T)@(r)dr—tana(t) _[_Tsm( ()

where T is the time period of decay, and T is the release time. The experimental results

in [20] show that the time period of decay is equal to the release time.

T=T =0.16s (80)

Hence, we use T to represent both time periods of decay and release time.
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The NIRISS model that results from the aerodynamic characteristics of the roll
motion presents significant problems in the context of a real-time simulation and control.
Most of the existing analysis methods for time-varying nonlinear models require the
replacement of the time-varying parameter by a constant parameter and the linearization
of the nonlinear system around the equilibrium points. This replacement usually changes
the dynamic behaviour of the original system. Furthermore, the series expansion
linearization method to linearize the nonlinear system is only valid near the equilibrium
points. Sometimes, the approximation is not valid since it cannot guarantee the stability
of the closed-loop system. In chapter 4, a modelling approach based on LPV technology
is introduced to solve the nonlinear time-varying problem in a more systematic and

efficient manner.
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Chapter 3

Linear Parameter-Varying Sliding Mode Control

In this chapter, we synthesize a linear parameter-varying sliding mode controller
for an LPVTDS. The time-varying parameters of sliding surface are determined by the
means of solving a parameter-dependent Lyapunov-Krasovskil functional, which can
guarantee the asymptotic stability of the closed-loop system. This theorem is generalized
to multiple time delay systems. Finally, a typical time-delayed LPV example is presented

to demonstrate the controller synthesis procedure.

3.1. Problem Statement

We consider the following LPVTDS

X = A(6()x(t) + A, (o(t))x(t — h) + B(a(t))u(t) (81)
y =C(a(t))x(t)

x(t)=0, te[-h 0]

where x e JR" is the state, u € /R ™ is the control input, and y € JR? is the measured
output, and h>0 is the constant time delay. The state-space matrix functions
A elR™, A, (DelR™,B()e/R™™ and C(-) € /IR™" are assumed to be bounded
continuous functions of a time-varying parameter vector ¢(t)c® .

We first transform the original system into the so-called regular form by using a

linear state transformation approach of [8]. The regular form can be represented as
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[W}: A0 An [zm} Ay@) Au0) [zl(t—h)Ho]u woeo 2
7,0] |A,(0) AL@ |z, |A 0 A,0)|z,(-h] B
y=Cloz,(t)

z,()=0andz,(t)=0, te[-h 0]

where z, € /IR"™ ,z,€/R™, and l§(-) e /IR ™™ is full rank. Now, we introduce an

assumption that will be used in our proof.

Assumption 1. The sub-matrix Am(c) is zero, so that we can design a memoryless
time-varying sliding surface for an LPVTDS.

A,,(6)=0 (83)

The objective of this thesis is to develop a systemitic procedure to design a linear
parameter-varying sliding mode controller for (81) such that the closed-loop system is
asymptotically stable. Before moving on, we introduce two lemmas, which are essential

for the development of our results.

Lemma 1. Assume that a(:) € /R", b(:) € /JR™ and N(:) e IR™™ are defined on the
interval Q. Then for any bounded matrix functions X(-) e /IR™™, Y(-) € IR™™ and

Z() e IR , the following inequality holds [1]

a(s)}T[xa) Y(O-N(t)}{a(s)}ds (84)

-2 IQa(S)N(t)b(S)dSS Iﬂ[b(s) *) Z(s) |b(s)
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where

>0

{X(t) Y(t)} (85)
) Zs)

Lemma 2. Let x(t)€/R" be a vector-valued function with first-order continuous-
derivative entries. Then, the following integral inequality holds for any bounded matrix
functions Y,(),Y,()€/R™ and a symmetric positive definite matrix function

Z()e 8", and a scalar h>0

X(t) }T YI(O+Y,() -Y O+Y,0] x1 } (86)
x(t —h) *) -Y, (H-Y, () | x(t-h)

+h|: x(t) }T Y (1) ) Y1) T|: X0 ]
xt-h)| | Y, ® Y| [x(t-h)

- j:_th(s)Z(s)xT(s)dss[

Proof. See APPENDIX A.

3.2. Linear Parameter-Varying Sliding Mode Controller Design

Now, we begin to design a linear parameter-varying sliding surface for
regulation based on the regular form (82) and synthesize a sliding mode controller with

global attractivity. The error signal is defined by

e=r(t)-C(o)z,(t) (87)

where r(t) is the reference input signal. The linear parameter-varying sliding surface is

chosen as
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s(6)=S(0,z,)+z, (88)

where S(6,z ) is a linear parameter-varying operator of z,. The LPV operator S(o,z )
is similar to the function S(z,) of [57], but S(6,z ) adds time-varying parameters of the

plant. The parameter-varying controller can adjust to the variation of the system
parameters on-line. Therefore the LPVSMC approach can potentially obtain better
control performance and less conservative results than standard SMC with a constant
parameter sliding surface. The chosen switching function s will have some dynamics

compared to a conventional switching function in terms of the defined new variable z

z, =F(o)z, +G(o)r - G(6)C(o)z, (89)

S(0,2,) =H(0)z,, +L(o)r -L(c)((0)z,

If we combine the regular form (82) and the above switching function, we obtain the

composite system represented as

z,] [Fo) -GoCw) 0 [z, ][0 o 0 Jz,(t-h] [0] [G(o) (90)
z, = 0 A0 Az [HO A0 Ay z,(t-h)[+HO0u+y 0 |r
z, 0 Ay Ay |2, [0 Ap(0) A0 z,(t-h)| |B 0

s(o)=H(o)z, +L(6)I'—L(6)é(6)zl +z,

Assuming the sliding mode occurs on s(¢) =0 and solving for the vector z ,, we have

z, =—H(6)z, —1(6)r+L(6) C(0)z, €29
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Also using the known equation for sliding mode $(6)=0, we have the following

representation for the system around the equilibrium points

0=5(c) (92)

:a;f,")oz +Ho)z, +agi)6r+b(c)r(t) 2O 0162, ~Lio) a(;,c)ézl—l(vﬂo)iﬁiz

8[-61((, )cz + TH(0)F(0)z , ~H(0)G(6)((0)z, + H(6)G(o)r

61()

———=or+L(o)r(t)

_%&:’—) 6(16)11 —L(o) xa(cc) i’l] '—L(G)C(G)Al I(G)Zl _L(G)C(G)AU(G)Z 2

~L(0)CO)A,,,(0)z,(t—h) ~L(6)C(0)A,,, (0)z,(t—h)
+A,,(0)z, +A,,(0)2, +A,, (0)z,(t—h) + A, (6)z,(t—h) +Bu

Substituting (91) and using Assumption 1, the equilibrium control input is obtained as

| ) A A 93
1 [9}—1@6+H(c)F(o)+L<c)C<c>Au(o)H(c>—Azz(c)H(c)]zw -

+| -He)GE)C() - af,)cco L(o) ()c L(o)C(o)A (o)

- L(G)C(G)A 1n(6)L(6)C(0) + A 2(0)+ A 2 (G)L(G)C(G)]Z 1

+ [616‘:’) 6+ L(6)C(0)A ,,(6)L(6) — A, (6)L(6) + H(G)G(c)]r

+ [_L(G)C((’)A ni(6)+ A hZI(G)]z (t=h)
+A y(6)2,(t—h)

+L{o)r(t) }

In order to guarantee the global attractivity of the linear parameter-varying sliding

surface, the Lyapunov function is chosen as
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V==sTs G4

The derivative of V is

V=s"=s"(Lz,+2,)=s"Bu-u,)<-k|s|<0 (95)

where the state trajectory will reach the sliding surface in a finite time smaller than "s" / k.

Thus, the sliding mode controller is identical to the unit vector control law

u_-u s"B>0 (96)
wty=4 4 ° A
u, tu, s B<0
where
97
KM (i)

S
+&

"

3.3. Stability of the Reduced Form

The linear parameter-varying coefficients F(o), G(o), H(s) and L(e¢) in
Equation (93) are unknown, but it is clear that these linear parameter-varying coefficients
should be determined to guarantee the stability of the composite system (90). In this
section, we will calculate these linear parameter-varying coefficients from LMI-based
stability of an unforced reduced form of an LPVTDS.

From Equation (90), the unforced composite system is represented as
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z,] [F6) -G} 0 |z, ][0 0 0 |[z,(t-h) (98)
z, | 0 A0 A0 |z [HO Ay(0) A0 z,(t-h)
Z, 0 A0 A,z |0 Ap(0) Ayl 2,(t-h)

Substituting Equation (91) into Equation (98), the reduced system becomes

rw}_[ F(o) —-G(0)C(o) }I:zw} (99)
z,| |-ApEH@E) A (0)+A,,(0)L(0)C(0) || Z,
J{ ) 0 ) ) 0 }[ (t h)]
—Ap@H(e(t-h) A, (0)+A,,(L(c(t-h)C(ot-h)] z,(t-h)

"w}(xm+xmx”)[zw“‘h)]

-, J“X";‘F)Ll o,

where
X R)
11(0') 0 A0
O WA I W
A, = R
0 Ahn((‘) 0 A0

% { Fo) —G(o)C(o)} [F(«sh) —G(chgé«sh)}
"|-He) LECe [ " |-HE,) Le,)C6,)

Based on the Assumption 1, we set A w12(6) = 0. The reduced system now becomes
2| (v v ~ t-h (101)
N L N
Z, z z,(t-h)

where
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L (102)
"o A12(")

i :[ F(o) —G(c)ﬁ(o)}
" [FH@ LECO)

- {0 0 }
A= -
0 A0

- 0 0
*"lo A1111(6)

Using a parameter-dependent Lyapunov-Krasovskii approach for the stability analysis of

the system, we have the following theorem:

Theorem 1. Consider the unforced LPVTDS

()= AG(t)e(t)+ A, (6Ot -h) o(t)c® (103)

The constraints ® have the form as

O={6:6()eR% |6 (1) <v,,i=12, s VteR) (104)

If there exist symmetric positive definite matrix functions P(-),Q(),R()e 8" with
P()>0, Q()>0, R() >0, and any bounded matrices Y,;,Y, € /R™" and a positive
scalar h >0 such that

Z, E, hY'(e) (105)
(*) Ey hYzT (6) |<0
®» * -hQ(o)

where
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- - s 106
5, = AT(G)P(0)+P(6)A(G)+(Zéi %}R(«HYE (6)+Y,(0) (199

i=l i

I}

1 =P(©)A,(6)- Y/ (6)+Y, (o)

En ZR(Gh)*YzT(G)—Yz(“)

for all independent parameter vectors o¢,6, €® then the unforced system is

asymptotically stable.

Proof. Choose a parameter-dependent Lyapunov-Krasovskii functional candidate as

V=V, (a(1)) + V,(6(1) + V;(6()) (107)

where

Vi(s(t),t) =z (HP(s(t))z(t) (108)
V,(6(t), t) = jt ‘_h 2" (0)R(c(0))z(0)d0

V(o)) = [ [2"(©)Q(e(0)2(6)dods

And P(),Q(),R() € 8" are symmetric positive definite matrix functions with P(-)>0,
Q()>0 and R() > 0. This parameter-dependent Lyapunov-Krasovskil functional is less
conservative than one with constant parameters [38], since it considers the variation of
the system parameters. Three Lyapunov functional components V,, V,, and V, are used
to allow more variables and flexibility for the LMI equations. This makes it easier to find
a feasible and less conservative solution compared to a one or two component Lyapunov

functional.
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Calculating the derivative of V, along the trajectory of Equation (103) yields

v
dt

%\%— is represented as follows

and

&,
dt

dv,

dt

T T
=z Rz-z,R,z,

=2"hQz~ [, 2" ()Qals)a(s)ds

=z TZTPZ-FZEKgPZ-FZ "PAz+2 TPXhzh +z T(Z(,i al;f:i )],
i=1 i

By approximation the integral in the above equation and using Lemma 2,

Zz

- L‘_hf(s)o(o(s))z(sﬁss[

Z,

TYr+y, -Y'+Y,
_YzT _Yz

(*)

we obtain the following inequality

d

Z

functional can be written as

T
% v |

*)

Y/ +Y,
_YzT _Yz

-39-
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z,

]|

Z,

[HEN

Y]
Y,

Sl

4 YIT
}Q [Y;

The quadratic form of the derivative of this parameter-dependent Lyapunov-Krasovskii

Y,
Y,

Il

z,

|

Il

|

(109)

(110)

(111)

(112)
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%qkﬁ o

T
av S{z} ATP+PA+[ZG

dt |z, =l i
h
YI4Y, —YT+Y, JY =
+
* _YT YzT Z,
Thus we have

T
ATP+PA+[Z]:G ~ )j+R PA, J{YMYI —Y,T+Y2}+{YIT}Q.{Y1T} <0

(115)

Now using the Schur complement (see APPENDIX B) for the above inequality, the

above equation can be rewritten as

(116)

[~ .. oP(s,)
A (")P(")J“P(“)A(“”(; o, j P(0)A, (0)~ Y'(6)+ Y,(6) hY(0)

+R(0) + Y, (6) + Y, (o)

*) ~R(e,)-Y;(9)-Y,(6) Y, (o) |<0

(*) *) —hQ(o)

This completes the proof. 0
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Remark 1. According to Theorem 1, the reduced system (101) is asymptotically stable

if there exist symmetric positive definite matrix functions P(),Q(),R()e 8" with

P()>0, Q()>0, R(:) >0, any bounded matrices Y,,Y, € JR™™ and a positive scalar

h > 0 such that

(&, +AA,Jp+p&, +A,X,)
+(i6iMJ+R+Y1 +Y/

i

*)

*)

Theorem 2. If there exist

PA,,-Y'+Y, hY/
-R(6,)-Y,-Y, hY,

*) —-hQ

symmetric positive definite matrix

(117)

functions

P(),Q(),R()e8" with P()>0 , Q()>0 , R(\)>0 , any bounded matrices

Y,,Y, € /R™ and scalar a positive h >0 such that

PAI +AP+FTAT+AF
S P06)) & o o
+[Z<’ri ———(6‘))+R+Yl +Y/

i=1 6Gi

*)

*)

~ ~

A, P-Y'+Y, hY/
R-Y,-V!

hY,

*)

-41 -
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~G(6)C(0)
L(s)C(o)

F(o)

=FP" is asymptotically stable.
_H(o) } ymp y

The system with A P = {

Proof. Pre- and post-multiplying Equation (117) with diag(P",P",P "), we have

(P77 + A2 +(A,P AT+ &,(&,P) 1 (119

s hP'Y, P!
+P'1[Z¢i —aPaE:"')jP'l +P'RP" +2PY,P" :

A P'-P'Y P! +P'Y,P!

i=1

(*) ~P'Ro(t—h)P" —2P'Y,P" hP'Y,P |-

() *) ~hP"'QP’

It is apparent that the parameter box of R(e(t)) is identical to the parameter box of

R(a(t—h)), when we convert the affine linear parameter-varying systems to polytopic
parameters, then we can set P "R(s(t—h))P ' =P "R(6(t))P ' =R. Defining P=P",

we have

(120)

Also, defining F=A P?, Y, =P'Y,P", Y,=P"'Y,P" and Q=P'QP"' <0, we

have
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[ PAI+A P+F"AT+AF | (121)

aP(G")j+l~(+ Y, +Y/
0o

©) ~R-Y,-Y] nY]|<o0

™ Q) —-hQ

This completes the proof. O

Remark 2. Using the similar approach, for the multiple time delay LPV system

' o~ o~ n -h. (122)
[;v;}(Ao +AIAF>[§j+z<Am)[zjgf_h;;}

i1
, the LMI-based asymptotic stability analysis results in the following
PA!+A P+F AT +A F i | (123)
(Z“ (o, )]+n(R+Y ) AP-YI+Y, o AP-YTHY, YN,
*) —lN{——\NQ -Y, 0 h,\?zT <0
(;) 0. -R-Y,-Y] hn.SN{zT
® I A )

where
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~ {0 0} ~ [I 0} (124)
A= ., A=l .
0 A0 0 A0
L [0 o } + _| F© -G(©)Co)
"0 A, 0] " |-H©) L@©Co) |
i=1,2,-.n

Proof. See APPENDIX C.

3.4. Numerical Example

To conclude this chapter we present an example, in which apply the LPVSMC

synthesis technique is applied to an LPVTDS.

Example 6. An LPVTDS adopted from [50] and [S1] with constant time delay 2.5

second
%, | [0 1+02sin(t) |[x,(t) . 0.2sin(t) 0 |[x,(t-2.5) +o (125)
X, | |=2 -3+01sin(®) || x,(t)| |-02+0.1sin(t) —03]|x,(t-2.5) 1"
B X;(®
y=[1 O]Lm}
By slightly modifying the previous model, we have
%] (To 067 [0 02] \x® (126)
72 =32/M0 017 %0
2 . -1 ] 2
[[—0.4 0 } 02 o} ][x](t—zﬂ m
+ + o(t) + |u
~04 -03] {01 0 X,(t-25] |1
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where the time-varying parameter is

o) =2+sin (1), 1<o(t) <3 (127)
|6t} =|cos (t] <1

In order to find a parameter-dependent controller, we set the positive definite matrix

functions as

PO)=P,+P m(x,)>0 (128)
QV)=Q,+Qm(x,)>0
RO)=R,+Rm(x,)>0

In order to make it easy to calculate the inverse of P, we choose

B :[1 0} (129)

After solving the Equation (118) on each vertex of the parameter box, we have

-~ [o5 o (130)
P,= i
0 05
o —-0.75 0.003
1-0.015 -1.84

Then, the controller parameters are

[F(c) —G(G)Aé(c)}zx 55,45 (131)
-H(©) Lo | =

So, we obtain
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All the controller parameters can be calculated on-line.

Flo)=—15—075 —

o(v)

G6)=-0006-0003—
Of

Hi6)=003+0015—-
o(t)

1
L6)=-368-184 s

Firstly, we compare this

LPVSMC approach with the standard SMC in [14] by letting the maximum of control

input be equal and choosing k =3 and € = 0.01.

outputs y(t)

—— LPVSMC output
-~ F_Gouaisbaut SMC output

o,
-
B T

10 15 20

Figure 3-1 Outputs of LPVSMC and parameter-independent SMC
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N - | PVSMC control input
- . Gouaisbaut SMC control input
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-

control inputs u(l)
o

—
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e
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S i,
orse,
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P 0 v 350

]
sacnli
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2f ]
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time(s)

Figure 3-2 Control inputs of LPVSMC and. parameter-independent SMC

— LPVSMC sliding surface
- F_Gouaisbaut SMC sliding surface

N
o

—
- o )
’/“
i i 1

sliding surfaces s(t)

o
(5
i

"0 5 10 15 20
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Figure 3-3 Sliding surfaces of LPVSMC and parameter-independent SMC

The simulation results show that the LPV sliding mode controller can improve the

regulation of output with smaller overshoot and less setting time. The LPVSMC can

achieve better performances than the F. Gouaisbaut Theorem 1 of [14].
Secondly, we have the following simulation results for the output, output error,

states, sliding surface and the sliding surface parameters response to a unit-step input are

shown as
1.4 : §
— reference signal r(f)
gol LPVSMC output y{)
1 1
o {
=08 |
5 !
506 | ]
o ;
04} | "’
{
0.2}/
i
5
03 3 i ‘ 8 10
time(s)

Figure 3-4 Output of LPVTDS response to a unit-step input
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error r{ty-y(t)

states

1.2

o
o

©
o

o
B

o
o)

o

i

b3

)
nﬂdU

2

6
time(s)

8

10

Figure 3-5 Output error of LPVTDS response to a unit-step input

1.4

120 /)

SNCRDR -4 £ 11 z,

mememememe state Z,

1
0.8 |
0.6
0.4]

.
a4, #
i #
e, ™
R o e 5

Figure 3-6 States of LPVTDS response to a unit-step input
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i{) i
¥

o
o

&
2

-
o

i 3 i L

8 10

time(s)

Figure 3-7 Sliding surface of LPVTDS response to a unit-step input

- sliding surface parameter F
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Figure 3-8 Sliding surface parameters F and L of LPVTDS

-50-




0.6

— gliding surface parameter G
0.5- ------gliding surface parameter H
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Figure 3-9 Sliding surface parameters G and H of LPVTDS

The following are the simulation results response to a sinusoidal input.

1.6
— reference signal r(t)

mmmmmm LPVSMC output y(1)

output y(t)
L]

1% 2 4 6 8 10

time(s)

Figure 3-10 Output of LPVTDS response to a sinusoidal input
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~D.040
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time(s)
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Figure 3-11 Output error of LPVTDS response to a sinusoidal input

1.5

states

— State z
state z

1

2

«3.50

time(s)

10

Figure 3-12 States of LPVTDS response to a sinusoidal input

-52-



0.5

i
i o
- o

1
P
o
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time(s)

Figure 3-13 Sliding surface of LPVTDS response to a sinusoidal input

The simulation results show that the LPVSMC can track a unit-step input and a sinusoid
input accurately. From the Equation (132), the sliding surface parameters are
independent on the reference input, so the sliding surface parameters response to a
sinusoid are identical to them response to a unit-step input as show in Figure 3-8 and
Figure 3-9.

In summary, Theorem 1 gives a novel method to check out the stability of an
LPVTDS, and Theorem 2 presents a systemitic procedure to synthesize an LPV sliding
mode controller for an LPVTDS. At the end, the example is used to show that the

LPVSMC can accomplish a high performance for regulation and tracking problems.
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Chapter 4
Application of LPVSMC to Vortex-Coupled Delta Wing Dynamics

In the chapter, a LPV multiple time-delay model is built based on the
aerodynamic model of vortex-coupled delta wing systems. Then, an LPV sliding mode
controller is synthesized for the vortex-coupled delta wing system. Finally, we simulate

the closed-loop system and make comparison with other control methods.

4.1. Quasi-LPV Modelling for Delta Wing Systems

At first, the integral of sinusoid in Equation (79) is approximated as a constant
in several short intervals. Then, the integral is replaced by the sum of three time-delayed
components. Next, a state equation is constructed. In addition, the time-varying
parameters are defined and the LPV state equations of the delta wing systems are
obtained.

In order to approximate the integral in Equation (79), the whole integral range,

t-T<t<t, is divided into four equal intervals, i.e. |:t t-}} , [t-} t-%J ,

[t——;— t—%} and [t-% t-T} . Since the size of each interval is very small (0.04sec), it

(t—1)

is reasonable to consider the sin( T ) term as a constant. Now, we can approximate

the whole integral as
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f_T Sin(n(tT? 2 )D(t)d (133)

Sil’l( Tt(t - t)) + sin( T[(t B (t — %))) t
~ 5 T .[_l(i)(t)d'c
LCC I E I
+ : .[ S d(ryde
sin(FU= (D) | g = (W=D), B
" T > T ‘[;T d(t)dr
sin( T[(t - (t - %))) + sin( TC(t - (t — T))) -
+ T 5 J; _T" d(t)dr

From the Leibniz-Newton formula

¢ (134)
jt | X(s)ds=x(t) ~x(t—h)

, we can obtain the approximation of the integral terms

(=1, s (135)

L_T sinf T YD(t)dt = 0.354D(t) +0.5D(t—-T/4)—0.5D(t —3T/4)—-0.354D(t - T)
For simplification, we define a new variable to represent the sum of these three time
delays
—;—8 = [0.50(t—T/4)—0.50(t —3T/4) - 0.354D(t — )] (136)

After replacing the integral terms by time-delayed representation, the vortex breakdown

location can be represented as
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val(t):Xsl +

137)
165 (0.354(D(t)+%6) (

tanou(t)

{ (138)

1.65
X, (H)=X_- 0.354D(t)+—9
Vbr( ) st tana(t)( ( ) 2 )

By substituting Equations (137) and (138) into Equation (59), the roll moment coefficient

Cl(X X)) can be represented as

1.65 (139)

c1=e0+e1-{(xs,—xsr)+ (0.708 D (t) + 8 )}
tan o (t)

The LPV modelling approach focuses on linearizing the nonlinear systems by
hiding the nonlinear terms via defining them as time-varying parameters. Before we
construct fhé LPV model for the roll motion of delta wing systems, the roll angle of delta
wing is defined as

x, = (1) (140)

and the roll angular velocity of delta wing as

x, = d(1) (141)

It is hard to analyze the systems and to synthesize the controller for the steady

terms X, and X_, since they are the solutions of the second-order Equation (64).
Therefore, precise mathematical expressions do not exist for the terms X, and X .

However, (X, —X_) can be written as an LPV representation
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Xsl - Xsr = p(Xl)Xl (142)

because this term is function of roll anglex,. Moreover, the angle of attack a(t) is a
function of the roll angle x,. This term can be written as an LPV representation m(x,)

defined as another time-varying parameter

165 _ m(x,) (143)
tan ou(t)

The functions p(x,(t)) and m(x,(t)) can be obtained by curve fitting to the experimental

results of [19] (see Figure 4-1 and Figure 4-2).

15 , , | |

— experimental results
job L curve fitting results

-1 ' = s : r

30 20 -10 0 10 20 30
¢(deg)

Figure 4-1 Curve fitting X, — X, versus the roll angle ¢
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4.3 , , : : :
—— experimental results
~~~~~~~ curve fitting results

=
N

*40 20 0 0 10 20 30
¢(deg)
Figure 4-2 Curve fitting 1651 versus the roll angle ¢
2 -tan(a)

m(X,) is a time-varying parameter that can be defined as

m(x,) = 3.5603 +1.9760x (144)

and p(x,(t))is approximated as a constant

p =22.0825 (145)

Now, we only require to consider one time-varying parameter m(x,). The parameter box

of m(x,) is

m(x,) € [3.5603, 4.1049] (146)
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Then, the roll moment coefficient Clis expressed as

Cl=e, +e [p(x,)x, +m(x,)(0.708x, +8 )] (147)

=¢, +¢, [p(x,)+0.708m(x,) |k, +e, -m(x,)8

The LPV representation of the dynamic for the roll motion of delta wing systems can be

written as
i T 3T (148)
X, ] [an ap[XM®] |apxy O X, t—I) CIPSIRY X, t_3_T)
| 4 4
0 0| x (- 0] 0
ayy Of[x,t=-D] [1] Ca
where
a, = qSIabel[p+0.708m(x ol (149)
fC
azzz_Ts
s.b
ahm:qla e,m(x,),

gs,b
Ao :_Telm(xl)b

qs,b

0.708¢, -m(x,),

Ay =
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Figure 4-3 shows the comparison between experimental results of the delta wing systems
and the LPV model. Figure 4-4 and Figure 4-5 show the states phase plot of the open-
loop LPV model response to the initial condition of

x,(0)=573 deg (150)
x,(0)=0 deg/sec

I experiméntal results
LPV model

9 s

i
=%
=]

B 0.5 1 15 2
time(s)

Figure 4-3 Open-loop response of the LPV model vs. experimental results
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Figure 4-5 Phase diagram of the open-loop LPV model
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Note that the quasi-LPV model developed in this section (148) is already in a
regular form and satisfies Assumption 1. Thus we can use the LPVSMC synthesis
procedure discussed in Chapter 3 to calculate the controller for this LPV model directly.
The following section will present the LPVSMC synthesis procedure for the LPV delta

wing system model.

4.2. LPVSMUC for Delta Wing Systems

Given an LPVTDS, our sliding mode controller synthesis procedure is divided
into three phases. The first phase is to transform the LPVTDS into the reduced form as
Equation (101). Based on The reduced form of the roll motion of the delta wing systems

(148) can be obtained as:

KRR e e (50

z, 1 z,(t-h)

where

|-H(®) L(9)C(o)

- 0 0] ~ 00/~ JOooO
Amo:O 0 Ahmzo 0 Ahao:_o 0

:«0{0 0} A, =[l 0} i FO —G(c)é(o)} (152)

The second phase is to use Theorem 2 to calculate the time-varying controller

A > Which guarantees the asymptotic stability of the closed-loop systems. We have one

time-varying parameter

m(z,) =3.5603+1.9760z (153)
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oMY e

Z

where the parameter boxes of m(z,) and

om(z,) (154)

Z,

m(z,) €[3.5603, 4.1049] and =[1.9760x2z,| <2.0691

In order to find a parameter-dependent controller, we set the positive definite matrix

functions as

P()=P,+P m(z,)>0 (155)
Q\=Q,+Qm(z,)>0
RO=R,+Rm(z))>0

After solving the Equation (123) on each vertex of the parameter box (146), we have

0 40.5166

< 1o
P, =
01

_ [— 13.572 - 0.00415}
F=

- [40.5166 0 } (156)
P,=

0.01759 -61.892

Then, the controller parameters are

(157)

[ F(6) -G(o)C(o =

YRR
“ON_X, =HP,+Pm(z)) =FP;
“H(o) L(c)%)} =P Pmc) ")

The final phase is to synthesize the sliding mode controller based on the

equilibrium input u_ . According to Equation (91), we can derivate the equilibrium input
q put u,, q p

for the LPV delta wing model
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n R n 158
u, =B { [%<'s+H(o)F(o)+uc)c<c)A,2<o)H(o>—An(o)H(o)]zw (o9

| -He)6@a0) - a‘;") 6C(o) —uo)%
~L(©)C(0)A ,(6)L(s)C(6) + A ,,(0) + A zz(c)L(c)C(c)]z "

+[alff:)c+L<a)<:(s>An<o>L(o>—A22(6>L<6)+H<6>G<°>]‘

6-L(6)C(6)A (o)

n

+ Z:JL[_L(“)C(")A in1(6) + A hi21(6)]z (t=h; )}

i=l

+ i{A wi2a(0)Z,(t—h; )}

i=1

+L(0)i(t) }

where n =3. Thus, the sliding mode controller is Equation (96).

4.3. Simulation Results

Firstly, the resulting LPV controller is tested through time domain simulation by

using two kinds of typical inputs: step and sinusoid. First, we choose a step input

r(t)=0 t<0 (159)
r(t)=30 t>0

A compromise between the output performance and the chattering frequency gives us
k =300 and € =0.05. Using these coefficients, we have the following simulation results
for the output, output error, states sliding surface and control input of closed-loop system

for the step input as the reference signal.
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-~ closed-loop LPV model output y
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Figure 4-6 Output of LPV delta wing model response to a step input

0 0.5 1 15 2
time(s)

Figure 4-7 Output error of LPV delta wing model response to a step input
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Figure 4-8 States of LPV delta wing model response to a step input
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Figure 4-9 Sliding surface of LPV delta wing model response to a step input
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Figure 4-10 Control input of LPV delta wing model response to a step input

The simulation results show that the controller can track the step input very fast and the

steady state error is zero. Then, we choose a sinusoid input

r(t) = 30sin(t) (160)

The following are the simulation results for the output, output error, states, sliding surface

and control input of closed-loop system for the sinusoidal reference signal.
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Figure 4-12 Output error of LPV delta wing model response to a sinusoidal input
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Figure 4-15 Control input of LPV delta wing model response to a sinusoidal input

The response to a sinusoidal input proves that the controller can track different reference
input and achieve a good performance.
Secondly, we use the LPVSMC design procedure, and we implement it with a

fixed parameter (the average parameter value).

— 1’nmax +mmin (161)
maverage _’_——2_——

Then, we compare between the LPVSMC and fixed parameter SMC with the initial

values of roll angle and angular velocity of delta wing systems as

z, =26deg (162)
z, =0 deg/sec
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Supposing the maximum of control input to be equal and choosing k =300 and
e =10.05, the following simulation results can prove our approach can achieve better

performances than the SMC with the fixed parameters.

25
e | PVSMC output v
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%}3 201 e
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e § %
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|
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Figure 4-16 Outputs of LPVSMC and fixed parameter SMC
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Figure 4-18 Sliding surfaces of LPVSMC and fixed parameter SMC
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The simulation results show that the LPV sliding mode controller can get a better
regulation than the SMC with the fixed parameters. It provides evidence that an
LPVSMC, which consider the system time-varying parameters, is a suitable method for
an LPVTDS control. By choosing different initial values of roll angles, we find out that
the system with linear parameter-varying sliding mode controller is stable in the range of

-35~32deg (163)

when the initial roll angular velocity is zero. Moreover, the range of fixed parameter
SMC system is

-24 ~ 22 deg (164)

which is less than the stable range of LPVSMC approach.

A comparison was also attempted between the LPVSMC approach and the SMC
approach in [14]. However, the LMI of Gouaisbaut’s Theorem 4 for the delta wing
systems are not feasible, so the approach cannot synthesize a stable controller for the
delta wing problem.

To conclude the investigation, the LPVSMC controller was tested on the full
nonlinear vortex-coupled model of delta wing systems given by (58). The following
simulation shows the closed loop system response to the following step input

r()=0 t<0 (165)
r(t)=30 t>0

From the simulation results (see Figures 4-19 and 4-20), the control performance for the

nonlinear system is comparable or even better than for the quasi-LPV model (Figure 4-6
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and Figure 4-10). This indicates the approach is also effective for the original nonlinear

system.

- reference signal r
closed-loop nonlinear system output y
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Figure 4-19 Output of nonlinear delta wing system response to a step input
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Figure 4-20 Control input of nonlinear delta wing system response to a step input
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From the simulation results above, it is apparent that the linear parameter-varying sliding
mode controller works effectively to control delta wing systems. The simulations show
that the controller performs well for step and sinusoidal references in a stable manner
with good performance. It is also evident that the LPVSMC approach is less
conservation than fixed parameter SMC and Gouaisbaut’s SMC approach.

To sum up, a LPV multiple time-delay model is construct for the vortex-coupled
delta wing system. In the following, a controller is synthesized based on the systemic
design procedure that is developed in chapter 3. All the simulations prove that the LPV
sliding mode controller can implement the tracking of reference signal and regulation of

the output with a good performance.
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Chapter 5

Conclusions and Future Work

In this thesis a new LPVSMC synthesis approach for LPVTDS is developed that
combines SMC theory, LPV control theory, and time delay stability analysis. The main

original contributions of this thesis are as follows:

1) A new LPVSMC synthesis procedure for LPVTDS

A linear parameter-varying sliding surface is proposed to achieve the requirement of
tracking or regulation. Using this surface a parameter-dependent Lyapunov-Krasovskii
functional analysis is used to guarantee asymptotic stability of the closed-loop system.
The time-varying controller parameters are calculated from a set of LMIs, which can be
readily solved using LMI solvers such as YALMIP, SeDuMi, or LMITool. Furthermore,
the results are extended to the more general case of multiple time delay systems. This
original contribution represents the first approach for LPV based SMC of time delay

systems.

2) A new multiple time delay LPV model for vortex-coupled delta wing systems

This model is developed based on an approximation of an NIRISS representation of

vortex-coupled dynamics proposed in the literature. This model is characterized by time-

varying nonlinear terms and complex time-delayed components. Through curve fitting of
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the various coefficients and delay terms a new LPV description is developed. It is shown
that the LPV model agrees closely with the full nonlinear model representation. This
new LPV model can be used to develop and test new LPV, LPVSMC, and other
nonlinear control methods. This work represents the first LPV based model for vortex

coupled delta wing systems.

3) Application of the LPVSMC method to vortex-coupled delta wing systems

The LPVSMC approach is applied to an LPV representation of vortex-coupled delta wing
system dynamics. The simulation results demonstrate that the LPVSMC provides
improved stability and performance compared to SMC approaches without parameter
variation. It is also demonstrated that the LPVSMC approach is less conservation than
fixed parameter SMC and Gouaisbaut’s SMC approach. Furthermore, it is shown from
the simulation results that the LPVSMC performance for the nonlinear system is
comparable or even better than for the LPV model. This indicates the approach is also
effective for the original nonlinear system dynamics. The approach presented is one of

the first applications of nonlinear control for vortex-coupled delta wing systems.

Future Work

Since the LPVSMC controller coefficients depend directly on parameters to be

measured or estimated online, it is anticipated that filtering methods to deal with

parameter measurement noise or rapid parameter variations might be necessary in the
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future. Modification of the method for digital control implementation might also be
needed for certain applications. Another future work is to provide a more rigorous
analysis of the robustness properties of the LPVSMC approach, since one of the
advantages of SMC is to achieve robustness and disturbance rejection [56]. The
robustness investigation can be divided into two steps: the robustness of the attraction of
sliding surface and the robustness on the sliding surface. Generalization of the approach
to remove the other assumptions used in this thesis should also be investigated. Finally,
it is anticipated that this method will lead to significant improvement over existing SMC
approaches in aerospace and automotive applications with parameter variations. The new
method should be applied to such applications to get more experience and help guide the

improvement of the method in the future.
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APPENDIX A

Proof of Lemma 2. From the Leibniz-Newton formula

x(t)-x(t—h)- [ x(s)ds=0 (166)

, the following equation holds for any N,(),N,(-) e /IR™™ :

2[xT(t)N,T(t)+xT(t—h)Ng(t)]x[x(t)—x(t—h)— [ X(s)ds}=0 (167)

:2[ X0 } [Nf(t) —N,Tm}{ x() }_2 [ { x() ] {Nﬂt)}(s)ds:o
x(t-h)| [NT(®) -NI(t)|x(t-h)| *=|{x(t-h)| NI ()

Applying Lemma 1 with a = [x(t) x(t —h)], b = x(s) and any bounded matrix function

X()E /R2n><2n:
o xt) ' [NI) s (169
| x(t—h) | [ N1(t)
1 ol
e e s,
= Y 1)-[N,() N,®]" Z(s) :
X(s) 1 x(s)
L F ereestade s X0 T NTO -NT©O] x© ]
- th (8)Z(s)x " (s)ds 2[x(t—h):| {Ng(t) _NI (t)}[x(t—h)_

J{ X } 2Y(®) [t —1][ X }h[ X } X(t)[ x) }

x(t—h) x(t-h)| | x(t-h) x(t—h)

with
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>0

[X(t) Y(t)} (169)
*) s

After simple rearrangement, the following inequality can be obtained

TN T NT TN T (170)
0:2[ x(t) } {Nl(o Nl(t)}{ X(t }_2 [ [ X(t) ] [Nl(o]x(s) i
x(t—-h) | {NJ(t) —N;(t) | x(t—-h) | x(t-h) | [NI(t)
T T t
< J:_hXT(S)Z(S)XT(s)dHL(:(j)h)] oY (I "I]L ()t‘(j)h)}h[x(:(i)h)} X(t)lixg(_)h)}
Thus,
o xt 1y x(t) x ' [ xp ] @7
_ th ()Z(s)k (s)dss[x(t_h)} PA'ANCy | O | [x(t—h)}rh[x(t—h)} X(t)[x(t_h)]
By defining
Y(o(t)=[Y,() Y, (1) (172)
and
X(a(1) = Y (6()Z (o(t)) Y(o(1) (173)

=[Y,(o(®) Y, (62" 6ONY,(6(t) Y (o) >0

we obtain the following inequality
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- LXT(S)Z(S)XT(s)ds (174)

s[ X(t) JT{Y]T(O}[I —I][ 0 }
xt-h)| 1Y) x(t-h)
+({ () } VO] VO [ X0 }
Xt-h)] | Y; () Y, (1)) [x(t-h)

_[ x(t) } Y O+Y, 1) Y ©+Y,(0) { x(t) }
xt-h) |-+ Y20 -YIO-Y,(0 | xt-h)

+{ X0 } [Y‘:(t)} - G@)[Yi (t)} [ (0 }
xt-h) | | Y) () Y, (t) | | xt-h)

Also, we have

[X(t) Y(t)HY(t)z-‘a)W(t) Y(t)HY(t)Z“(t) 0][Y(t)z-“2(t) oT ~o (175)
) Zt) Y(¥) Z(t) SO VAR O I
where

Z0)=Z7"(t)>0 (176)

This completes the proof. O
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APPENDIX B

Schur Complement. Supposing matrices Xe8™ , Ye/R™™ , Ze8™ and

W e 8™*™ , the condition [3] and [4]

X Y (177)
W= <0
® Z
is equivalent to
7Z<0 and X-YZ'YT<0 (178)

where (X~YZ7'Y") is called the Schur complement of X in W. Using Schur

complement, we can convert nonlinear inequalities to LMIs.
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APPENDIX C

Proof of Remark 2. Consider unforced LPV system with n time delays

n 179
()= A()e()+ S (A o()(t-h ) ot)c® (17)
Choose a parameter-dependent Lyapunov-Krasovskil functional candidate as
V =V, (8(1)) + V, (a(t)) + V, (a(D)) (180)
where
V,(o(t),t) =z " (t)P(o(t))z (181)

Vy(o(.0=" [ 2 OR(s(0))z(0)d0

Via.0=3 [, [27©)Qe(0)i(0)d0ds

and P(:),Q(),R(:) € 8" are symmetric positive definite matrix functions with P(-)>0,

Q()>0 and R(:) >0. Calculating the derivative of V, along the trajectory of Equation

(103) yields
N n y < P, (182)
d;? =2"ATPz+) (2} Al Pz)+2"PAz+ D (2 "PA, 7, ) +ZT(Z<'& (cl)jz
= i=l P Jc;
Vv,

is represented as follows
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%:Zn:(zTRz—zLRmzhi) 45

and

n

% = Z(z "h,Qz)- Z]:( L7 (S)Q(c(s))i(s)ds)

(184)

By approximation the integral in the above equation and using Lemma 2,
T T T (185)
to.T . z ‘¢:+Y} _‘G1+Y3 z z Yf 1 Yf z
— |  z (5)Qo(s))z(s)ds< +h,
L_hi (®)Qo(s))(s)d [zhiil |: (* _YZT_Y2 Z, i z, YzT Q Y2T zZ,
we obtain the following inequality

n Tr,T T Tyr ' (186)
dV, &.r . Z Y +Y, Y +Y, ) Z 1Y o ¥ ‘
ES;"(Z hiQZ)jL;(LhJ { ® -Y “Yj{zhi}h{zhi] [Y;}z [YZT } LJJ

The quadratic form of the derivative of this parameter-dependent Lyapunov-Krasovskii

functional can be written as

- i | ] (187)
{ ATP+PA+(Z<‘3i ia;si‘)}n(RJrYl +Y1T)} PA,-Y/+Y, - PA -Y[+Y, Y Yh,
= 1 =

® -Ry, “§2 - ~2T 0 0 h,Y;

: 0 - 0 to <0

® 0 0 R,-Y,-Y] hY]

* ® e ® _thi
L o

Consider a reduced form of a closed-loop multiple time delay LPV system

-9 -



where

- {o 0 }
A=~ |,
0 Ao

A, = A ,
0 A0

i=1,2,--4n

Zw}
zl

A=l . ,
0 A0

—-G(c)?(c)

L(0)C(0)

~

.

n

+3As)

i=1

z,(t-h;)
z,(t-h;)

|

(188)

(189)

Submitting Equation (188) into Equation (187) and pre- and post-multiplying with

diag(P",P",P ™), we have
PA] +A P+F'AT+A F
+(z (e, )]+n(R+Y +YT)
NG
(’f‘)
(%)
(%)

where F=A P!, Y, =P 'Y P, Y,=P'Y,P" and Q=P"'QP".

the proof. o

hi _‘qr+sg
‘ji—ié“ ;
0
0
*)

.93 -

¥,

i=l

h,Y,

h,Y;

—(N)ihi
i=1 _

(190)

This completes



APPENDIX D

For the problem given we have

(191)
m(z,) € [3.5603, 4.1049] and F—gl(—zl—) =[1.9760x 221]S2.O691
Z,
and the positive definite matrix functions as
P()=P,+P m(z,)>0 (192)

Q)=Q,+Qm(z,)>0
RO)=R,+R;m(z,)>0

The MATLAB / YALMIP results obtained below show that the matrix functions above

are positive definite:

PO =
40.5166 0
0 40.5166

Pl

i

1 0
0 1

Eig(PO+Pl*myi, )=
44.0769
44.0769

Eig(PO+Pl*my,, )=
44 .6215
44.6215

Q0 =
245.8622 0.0057
0.0057 245.8622

Q1 =
-49.3019 -0.0011
-0.0011 -49.3019

Elg (Q0+Q1*mmin )=
70.3311
70.3343

Elg (QO""Ql*mmax )=
43.4819
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43.4839

RO =
-97.8358 ~-0.0191
~-0.0191 -97.8358

Rl =
34.4268 0.0049
0.0049 34.4268

Eig(RO+R1*myi, )=
24,7324
24.7357

Eig (RO+R1*my,, )=
43.4819
43.4839
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