Converting Relational Database to XML
Schema and Vice Versa Using ContextMap

Sanaz Rahmati

A Thesis in the

Department of Computer Science and Software Engineering
Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science

Concordia University

Montreal, Quebec, Canada

February 2006

© Sanaz Rahmati, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14334-7
Our file Notre référence
ISBN: 0-494-14334-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Converting Relational Database to XML Schema and Vice Versa Using ContextMap
Sanaz Rahmati

An important issue in modern information systems and e-commerce applications is
providing support for inter-operability of independent data sources. A broad variety
of data is available on the web in distinct heterogeneous sources, stored under
different formats: database formats (e.g., relational model), semi-structured formats
(e.g., DTD, SGML or XSD schema), scientific formats, etc. Integration of such types
of data is an increasingly important problem. Nonetheless, the effort involved in such
integration, in practice, is considerable: conversion of database schemas from one
format to another requires writing and managing complex data transformation
programs oOr queries.

Realizing the importance of converting structured schemas to semi-structured
schemas and vice versa, we have developed a method that successfully performed the
conversion. Our approach benefits highly from the reverse engineering of structured
or semi-structured schema into a ContextMap representation and leads to both
identifying and understanding all components of an existing database system and the
relationships among them.

We have successfully developed a prototype, called CODAX, for the schema
conversion process. While more sophisticated techniques are required in this context,
we believe the ideas proposed in this work lend themselves to useful analysis and

tracing tools for schema conversion.

i1

Acknowledgment

I am deeply grateful to my supervisors, Professor Wojciech M. Jaworski, and
Professor Peter Grogono for their encouragement, support, valuable advice,
generous attention, and constant help at Concordia University. I am greatly
honored to study under their supervision.

My thanks also go to Halina Monkiewicz and Veronica Jacobo-Gutierrez for
their support.

My special thanks are also due to the faculty and staff in the Computer Science
Department at Concordia University, who provided me a good opportunity to
learn and progress.

Finally, I would like to thank my parents and my husband for their support and

encouragement in pursuing my studies.

iv

Table of Contents

INETOAUCTION ettt ettt e sttt e e st e e st e e s ne b e eannentee seneen
1.1 A Motivating EXample........ccooooiriiiiiiiiiiiiie e 4
1.2 Contributions of the ThesiS.......cocuviivieiiiiiir e 8
1.3 Thesis OULINEcevriiiiiiieieeiiee ettt e 11

Backgrouﬁd and Related WOTKSoooviviiiiiiiii e
2.1 Converting Relational Database to XML Schema.........ccccoooveveiiiniinicniinnncnns 18
2.2 Converting XML to Relational Schemacocccooiiiiiiiiiiiccee 25

Using ContextMap Terminology as @ SOIUtioncocceveeninninieinicinininececeeeeceeens
3.1 ContextMap TerminolOgy.......ccccvvveriiriiiiiiiniiciceiicee et 31
3.2 High Level MOdeling.......cccueeoieiiieiniiieicneeceet et 33
3.3 Structural System and Data Representation.........o.ceeevverveeriecinieninenieeeneeneeens 34
3.4 Syntax and PTOCESSc.eevcieirieiiiiiiiceie ettt sttt 34
3.5 CONTEXTH TOOL..c..ciiiiiiiiiiienit ettt sttt s is 38

Converting Relational Database Schema to XML (XSD)ccccocovviimiiiiniiiiiienieeiee,
4.1 Mapping Relational Database to ContextMap Representation...........c.ccccuen..e. 39

4.1.1 Mapping Relational Database Schema to ContextMap Representation

ALGOTITRIM .t e s 48

4.2 Converting ContextMap model to XML Schema.......c.cccccooveiiviiiiiiniincnnnnne. 52
Converting XML Schema to Relational Databasec..cccoccevviivvineeiiiinenneniecireeeee
5.1 Mapping XML to ContextMap Representation...........cccceevveivieeeieninceneecnenne 62
5.1.1 Mapping XML Schema to ContextMap Representation Algorithm.......... 69

5.2 Converting ContextMap model to Relational Databaseccccceveeeeeevrennnne 71

A SYSIEM PIOtOLYDPE ..o e et 74
6.1 SYStEM DESIZN c..eiiiiiiiiiiii e e 74
6.2 System REQUITEMENTSoeiuviiriiiiiieiieceiec e 77
6.3 System IITUSTratioN ..c..cooiiiiiiiiiiceie et 78

6.3.1 Converting Relational Database to XML Schema......c.cccccovevvvinivininennnne, 79
6.3.2 Converting XML to Relational Database Schema..........c.ccccceeevevieninnnenn. 87
6.4 ATCRITECTUTEveiiiiiiiiteie ettt ettt ettt st st et e s enes 93
6.5 CODAX PErfOrmMancCe.......ccc.ueerieiiiiiiieenireetce et e see et ae st sse s sea e 96

Conclusions and Future Workccooiiiiiieiiiiiiiie e 99
7.1 CONCIUSIONS ...ttt ettt e st sb e sateeab e esees bt e sbeansnas 99
T 2ZFUtUIe WOTK ...ttt 101

RETETEINCES ... ittt et e et et e b e e s be e s e e s nee s 102

APPENAICES ...ttt e st ebbe e 107
Appendix-A: Database Schema EXamplescccovvveiviiriciiinnciiniceeeeie e 107
Appendix-B: CODAX Implementation Specification.........c.ccccveeceevvncenrercnnnncnne. 117
Appendix-C: ContextMap Terminology and NOtationccecveerveeeirnvenennnne 119

C-1: ContextMap NOLAtIONoovviiiieiiiiiieeeeeece e sereen 119
C-2: 4P-able Capabilify........cccooiviiiiiiiiiiiiiii e 120
C-3: Context+ FUnCoNalities.......oocuviiiiiiiiiiiieerieic e 122

Vi

List of Figures

Figure 1-1 - NorthWind application relational database schema...........c...cc.coevveenenn. 5
Figure 1-2 - Fragments of the XML schema XSD for NorthWind............ccccccceeeneenni. 7
Figure 1-3 - ContextMap schema for relational database..............cccccoeeeeveiciievnrinnnnnne. 7
Figure 1-4 - ContextMap schema for XML databasecccceecevvirineneninenieneens 8
Figure 2-1 - Summary of reverse engineering research...........cccocoevvevveciiovccveeeenenn, 16
Figure 2-2 - An example of an entity-relationship diagramcccccooceveinviennennn, 24
Figure 2-3 - Initial RID graph of the relational schema.............cccoovveiviiiieenienn, 25
Figure 3-1 - ContextMap model of ERD diagram and RID graphcccccccueen...... 36

Figure 4-1 - ContextMap schema of the NorthWind relational database schema...... 40
Figure 4-2 - ContextMap model of NorthWind relational database schema (1) 42

Figure 4-3 - Summary of relationship between database objects, set members, and set

Figure 4-4 - ContextMap model of NorthWind relational database schema (2) 46
Figure 4-5 - ContextMap of NorthWind relational database schema (3) 47
Figure 4-6 - Fragments of the XML schema (XSD) for NorthWind..........cccceenn..... 54
Figure 4-7 - Fragments of the XML schema (XSD) for NorthWind application for
viewing tables and fieldS..........cooviieiiiiiiiii e 56
Figure 4-8 - Fragments of the XML Schema (XSD) for NorthWind application for

viewing field name and properties

vii

Figure 4-9 - Fragments of the XML Schema (XSD) for NorthWind application for
VIEWING table COMSITAIMNES.iiiiiiiiiiiiiie ittt e et re e 58

Figure 4-10 - Fragments of the XML schema (XSD) for NorthWind indicating the

BB DS ettt ettt et e r et bt b e st e st e et e ena e et esaeste s tenteeneenns 60
Figure 5-1 - ContextMap schema for NorthWind XML schema..............cccveuveenn.... 62
Figure 5-2 - ContextMap model of NorthWind XML schema (1)cc..ccoveeuneenne..e. 64
Figure 5-3 - ContextMap model of NorthWind XML schema (2)ccoccecevvvieennnnen. 65
Figure 5-4 - ContextMap model of NorthWind XML schema (3)c.ccccocvvvveenennnnn. 66

THAITIES .ovtinvriintee ittt ettt sttt e et e et e e e et et e e et e e bt e ke e st b e e et e et be e nteenbeeenrseateenareebenen 67
Figure 5-6 - Part of NorthWind DDL example in Oracle.........cccocooveveieierercreniennnnn. 73
Figure 6-1 - CODAX mMOAUIES.......c.ccovirimirieirieiinieieie ettt 77
Figure 6-2 - CONTEXTH fOrm.....cccoiviiiiriiiiie ettt 79
Figure 6-3 - Dialog to choose source databasecocceceevevvieeeeieeeeeecceeeeevee, 80
Figure 6-4 - Dialog to perform reverse engineering processccooveeevvveerrevenennee. 81
Figure 6-5 - ContextMap model of relational database schema..................coccoeuneneee. 82
Figure 6-6 - Export ContextMap model to XML schema (1)ccecvrveveveeveeeeeeeen. 83
Figure 6-7 - Export ContextMap model to XML schema (2)........ocoeveveereneeeerereann. 84
Figure 6-8 - Export ContextMap model to XML - choosing file name..................... 85
Figure 6-9 - GENETAte SCIIP . ..c.eeuiriiieiiiiieieteieiee ettt 86
Figure 6-10 - View generated XML schema SCrptc.cccoovvevieeeveiiiveieieereeeeeeeene. 87
Figure 6-11 - Dialog to perform reverse engineering process, XML=>CTX............. 88
Figure 6-12 - Dialog to perform reverse engineering process, select XML file......... &9

Viii

Figure 6-13 - Generated ContextMap schema from XML file......cc.cccocovinnnenn. 90

Figure 6-14 - Generate RDB schema from ContextMapccecceeveeniinienccinineneens 91
Figure 6-15 - Generate RDB schema from ContextMap, Select file name 92
Figure 6-16 - View generated RDB schema SCript.......cccooevriiiiiinniiiniiiiccnieeeeeee. 93
Figure 6-17 — Architecture of CODAXooiiiiiiirieininie e 95
Figure 6-18 - Process model of CODAXooiiiiiiiniiniiiiececec e 96

Figure 6-19 - The comparison between running time and number of related objects 97

Figure A-1 - XML Schema for the NorthWind Database..........c.cccooeeiririniccncnnene 113
Figure A-2 - Oracle relational schema for the NorthWind databasec...... 116
Figure A-3 - User interface and class specifiCationccoccecvevevercenieenrveecnsicseennens 118
Figure A-4 - ConteXtMaps NOtALIONcocueirererimereeieieeieseeiesrertesiieeneeiese e enaens 120

iX

Chapter 1

Introduction

Nowdays, the number of organizations which use the same subject of information and
reside in various physical locations is increasing. Those organizations use a broad
variety of data available in heterogeneous data sources.

Data itself is stored under different formats and types such as: structured (relational
model), semi-structured (DTD, SGML or XSD schema), object oriented databases,
scientific formats, etc. Information systems with heterogeneous data sources have a
number of specifications such as: unified interface to the data and data schemas, more
complex maintenance procedures as compared to an information system which
contains just one data source type, and so on. In order to support interoperability of
individual data sources and to eventually provide unified interface to the system,
database schema conversion is an important issue. Transformation of such data
sources to a unique model is an increasingly significant problem.

Since conversion of database schemas from one data source type to another one
requires producing complex database conversion processes, the effort involved in
such transformation, in practice is considerable.

Having a unique representation helps business analysts to deal better with different

data source specifications. Moreover, having a well structured and accurate model

form different data sources helps the business owners, DBAs, and analysts to
understand the structure of the data sources, and to apply the necessary changes
accurately. Also, this unique model leads to performing efficient modifications on
heterogeneous data sources, by decreasing time and cost.

Realizing the importance of conversion different data sources and integration into one
unique format, we have developed a prototype that successfully performs the
conversion from structured schemas to semi- structured schemas and vice versa using
the ContextMap representation.

Our approach highly benefits from reverse engineering of structured or semi-
structured schema into the ContextMap representation, and leads to identifying and
understanding all components of an existing database system and the relationships
between them.

Basic steps are identified in the process of converting relational databases into XML
schemas and vice versa as follows:

At the first step, reverse engineering is employed to deduce information about
functional dependencies, keys and inclusion dependencies. The process involves
constructing the related ContextMap representation from an existing database based
on the structured or semi-structured schema. Using the ContextMap model helps
analysts and DBAs to understand database models and the interrelationships between
different data sources.

At the second step, the obtained ContextMap representation is transformed into the

target schema in a process known as forward engineering.

Our approach manages all type of relationships allowed in the ContextMap
representation, including many-to-many and one-to-many relationships. Moreover, by
using different types of constructed ContextMap schemas our approach manages two-
way conversion. However, in some papers [WLABO4], [MLMO1b], [LMCCO01],
[LMCCO02], only one-way conversion is contributed.

Through the functions of ContextMaps, analysts and DBAs can integrate different
database systems into a single domain and understand the business flow between
different systems, instead of going through different database specifications. Using
the merge facility in the CONTEXT+ environment to merge different database
schemas gives DBAs the ability to retrieve characteristics of each table and its
relationships [WMJKO2], as does the use of mining functions. The abovementioned
prerequisites can be divided into the following sub-functions.

e Construct a ContextMap Schema: Through the constructed ContextMap
schema, a complex database system such as structured and semi
structured, can be modeled, and implemented in a good manner, therefore
the all relations between tables becomes traceable. Also this unique
format helps analysts and DBAs to deal more efficiently with different
databases.

* Query the ContextMaps: By querying the selected sets, the ContextMaps
can explore the general and detail view of database schemas, analyze the
relationship, complexity of relations, and the constraints of the database

tables.

e Merge different database nodes by ContextMaps: Once the different
database sources are modeled in ContextMap schema, then the multiple
ContextMaps generated from different sources can be merged using

CONTEXT+ functionality [WMIJKO02].

1.1 A Motivating Example

We use a simple NorthWind [NSLB] database example to illustrate both the problem
and our solution approach. In our example, we have both XML and relational
database schema definition for the NorthWind [NSLB] database.

The relational database, which contains PRODUCTS, ORDERS, ORDER DETAILS,
CUSTOMERS, CATEGORIES, SUPPLIERS, SHIPPERS, and EMPLOYEES tables, is

shown in figure 1-1.

Figure 1-2 illustrates a small part of XML data file for NorthWind database.

Suppliers ~ Products] . Order Detalls
PK | SupplieriD SupplierD PK | ProductlD ProductiD ﬁz Q_d_e_Prr f'D“D
ProductName
8gnmtsipl\¥glrirene D d— SupplieriD <« UnitPrice
Address CategorylD Quantity
City CategorylD QuantityPerUnit Discount
Region UnitPrice
PostalCode UnitsInStock OrderiD i
Country UnitsOnOrder ol =
Phone ReorderLeveI . Orders .
Fax Discontinued PK | QrderlD
HomePage
CustomerlD
_ EmployeelD
Employees ShipperlD
- : OrderDate
Categories PK | EmployeelD EmployeelD RequiredDate
Shi Date
PK t ryID LastName Shlg\p/lead
FirstName i i
CategpryName Title Sripperd g;ei’;;gﬁ;me
Description TitleOfCourtesy B ShipAddress
Picture BirthDate ShipCity
HireDate ShipRegion
Address ShipPostalCode
City ShipCountry
Region '
PostalCode ¢ CustomerlD
Country
HomePhone A —
Extension Customers,
Photo =
Notes PK |CustomeriD
ReportsTo
CompanyName
ContactName
CompanyName ContactTitle
Phone Address
City
Region
PostalCode
Country
Phone
Fax

Figure 1-1 - NorthWind application relational database schema

Using this example we will illustrate the concept of converting a relational database

to an XML schema and vice versa using the reverse engineering process, and show

how the schemas will be mapped and represented in ContextMap unified notation.

Details of schema mapping of figures 1-1 and 1-2 into ContextMap representation,

and algorithms will be discussed in chapters 3 and 4.

<xs:element name="Categories">
<xs:complexType>
<xs:sequence>
<xs:element name="CategorylD">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:maxInclusive value="2147483647"/>
<xs:minlnclusive value="-2147483648"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="CategoryName">
<xs:simpleType>
<xs:restriction base="xs:string'>
<xs:maxLength value="15"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Description" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="8000"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Picture" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:base64Binary">
<xs:maxLength value="2147483647"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element ref="Products” minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_Categories">
<xs:selector xpath="."/>
<xs:field xpath="CategoryID"/>
</xs:key>
<xs:unique name="Categories_UniqueKey_0">
<xs:selector xpath="."/>
<xs:field xpath="CategoryName"/>
</xs:unique>
<xs:keyref name="FK_Products2" refer="PK_Categories">

<xs:selector xpath="Products"/>
<xs:field xpath="CategoryID"/>
</xs:keyref>
</xs:element>

Figure 1-2 - Fragments of the XML schema XSD for NorthWind

We store all the metadata information in the ContextMap environment. ContextMap
is a canonical concept with notation for representing knowledge, which will be
introduced in chapter 2. Figures 1-3 and 1-4 exhibit the ContextMap schema for
relational database and XML database, where the ContextMap schema will be used as

a conceptual model to store and map metadata information.

ST T

A 3 {View}
= 8 {Table}
£ 8 {Primary Keys Constraints}
Ll 7 {Foreign Keys Constraints)}
* 52 {Field}
] 2 {Table Space Types)
* 4 {Type}
* 10 {Table Spaces}
- 1 {AUTHOR}
Syntax and Patterns @ by WM. Jaworski, 1985-2001
Mapped by Sanaz Rahmati
10
52

Figure 1-3 - ContextMap schema for relational database

A2 12 34142 143 144
01 141 4 {Context}
B S | 234 (XML Source}
1358 {(*ML Nodes}
AML Node Markups}

XML Node Property Values}

XML Node Camments}

XML Node Processing Instructions}
Author}

{
{
%
15 {XML Node Properties}
{
{
{
{

Figure 1-4 - ContextMap schema for XML database

1.2 Contributions of the Thesis

Before we highlight our contributions in this work, let us recall our motivation and
goals in reverse engineering, schema mapping, and schema conversion. Reverse
engineering and schema conversion have been studied extensively in different
contexts. When performing database reverse engineering, schemas are transformed
and mapped into different conceptual schemas, which can be for instance an ERD

(Entity-Relationship) diagram, a RID (Relational Intermediate Directed) graph, or

other representations [AlhO3].

Solutions provided by other researches, some of which we discuss in chapter 2, solve
only the one-way conversion of relational database schemas to XML schema.

However, our approach supports two-way conversion, by using different ContextMap

schema models, ContextMap schema is constructed for both XML, and relational

database schemas.

Let us discuss the reason to choose the ContextMap as a framework for mapping the
schemas. There are many works on Schema Mapping and Converting Schemas
through different methods such as reverse engineering using ERD (entity-
relationship) diagrams, ERR (extended entity relationship) diagrams and so on

[AlhO3], [CFILO0], [MFKX00], [MLMO1b], [WLABO04], [SD02].

ContextMap technology is useful in building more generic, effective and efficient

maps from XML and relational databases, as it provides:
e High level system and data modeling as well as abstraction.
e Structural system and data representation.
¢ Formal and expandable syntax and notation.

e 4P-able (pattern-able, plug-able, process-able, perform-able) capability

[WMIKO2].

ContextMap technology has formal, flexible, expandable flexible syntax and notation,
which allow efficient recovery and modeling of generic schemas for processes,

objects and views in database systems.

Moreover having different database schemas transformed to the ContextMap model
helps the analysts, and DBAs to deal only with one unique notation and understand

the database schema design more accurately.

All of the above are challenging needs, which motivated us in the development of the

concepts and algorithms in this research, where as listed as follows:

a) We studied reverse engineering and schema mapping in the scope of
ContextMap, and also proposed some novel solutions for reverse
engineering and schema mapping, and identified issues to be

resolved.

b) We proposed a solution technique performing schema conversion in
both ways- that is, from relational database to XML schema, and vice

versa.

c) For purposed of schema conversion, we proposed some algorithms to
perform reverse engineering process and to map structured or semi-
structured schemas to the ContextMap model. We also proposed

some algorithms for forward engineering purpose.

d) We studied and enriched the ContextMap representation by adding
more notations and constructed different schemas for structured and

semi-structured database schemas.

€) Using ContextMap schemas, we transformed different database
sources into ContextMap model; using merge functionality we can
integrate different maps, which will eventually converted into

different database schemas.

) We have successfully developed a prototype called CODAX, which

stands for Converting Relational Database to XML, and vice versa,

10

to show the viability of the ideas and techniques proposed in this

research.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In chapter 2 we provide a background
and review of related works on reverse engineering and schema mapping and
conversion. This includes a description of different competing approaches for reverse

engineering and schema mapping.

In chapter 3, we illustrate a brief introduction to ContextMap terminology and

notation.

Chapters 4 and 5 include our main contribution in this research. In chapter 4, we
illustrate the converting of relational database schema to XML, by introducing
algorithms for the reverse engineering process to construct a ContextMap model from
the existing relational database and for describing the ContextMap representation, and
finally by introducing some functions and algorithms to perform transformation from
ContextMap schema to XML. In chapter 5, we introduce different algorithms to
transform XML schema to the ContextMap schema, which is constructed for XML,

and finally in order to extract relational database schema from ContextMap model.

In chapter 6, we introduce our system prototype, and illustrate its features and
capabilities through an example application. The architecture and performance is also

illustrated in this chapter.

Chapter 7 includes concluding remarks and possible future directions.

11

The last part, Chapters 8, and 9 illustrates references and appendixes.

12

Chapter 2

Background and Related Works

Organizations are turning to system reengineering as a means of upgrading their
existing information systems in situations where it appears to be a less expensive, and

faster, alternative to system replacement [WLABO4].

Reverse engineering is viewed as a critical part of the whole system re-engineering
process, because successful system re-engineering depends largely on effective
reverse engineering. In general, reverse engineering can be defined as the process of
discovering how a system works. It requires identifying and understanding all
components of an existing system and the relationships between them. It helps to
adjust or redo components of a system in order to improve its functionality and
performance. The output from the reverse engineering process can also be reused as a
source of enterprise architecture components. One such major component of an
information system is the database metadata information. Consequently, database
reverse engineering mainly deals with schema extraction, analysis and
transformation, and it is necessary to semantically enrich and document a database,

and also to avoid throwing away the huge amounts of data stored in existing relational

13

databases, if the owner of an existing database wants to re-engineer, or maintain and
adjust the database design.

In the same way as for any other database reverse engineering process, must rely on a
rich set of models. These models must be able to describe data structures at different
levels of abstraction, ranging from physical to conceptual, and according to various
modeling paradigms.

In addition, statically describing data structures is insufficient. We must be able to
describe how one schema evolves into another one. For instance, a physical schema
leads to a logical schema, which in turn can be translated into a conceptual schema.
Transitions, which form the basis of DBRE (Database Reverse Engineering), can be
explained in a systematic way through the concept of schema transformation.

Over the past few years, researchers have produced several papers providing methods
for transforming a relational database into a conceptual model [BSN92], [CBS94],
[CBS96], [DAS87], [J94], [IMM90], [NA87], [PTB96], [PB94], [S98], [Alh03]. Each
exhibits its own methodological characteristics, specific assumptions, inputs, and
produces its own conceptual model. The following table illustrates the summary of

reverse engineering research.

Research Assumption Input Output Characteristics
Batini et al. BCNF or 3NF. Inclusion ¢ Entities. Based on Navathe &
(1992). [BSN92] Attribute Dependencies. | » Binary Awong’s paper, but

naming Relation relationships. further simplified.
consistency. schemas. Drawback of

No homonyms.

Specific PK &

Candidate Key.

requiring semantic
input earlier in the

process.

14

Research Assumption Input Output Characteristics
Chiang er al. 3NF. Relation Entities. Requires knowledge
(1996). [CBS96] Attribute- schemas. Binary about attribute name.

naming Data relationship. Proposes a
consistency. instances. Generalization. | framework for the
No error on key Inclusion Aggregation. evaluation of DBRE
attributes. dependencies. methods.
Clearly identifies the
cases in which
human input is
required.
Davis & Arora 3NF Relation Entity (sets). Ignores inheritance.
(1987). [DA8T] No homonyms schemas. Dangling keys. | Aims at an invertible
& synonyms. Foreign key Binary transformation from
constraints. relationships. relational schema to
n-ary conceptual schema.
relationships.
Johannesson 3NF. Relation Generalization | Based on the well-
(1994). [J94] Domain- schemas. Entities. established concepts
independent Functional Binary of relational database
queries. dependencies. relationships. theory. Drawback of
Inclusion needing all keys and
dependencies. inclusion
dependencies. Simple
and automatic
mapping process.
Markowitz BCNF. Relation Entity. Presents
& schemas. Binary theoretically-sound
Makowsky Key relationships. | treatment of the
(1990). [MM90] dependencies. Generalization. | mathematical basics.
Referential Aggregation. Requires all key
integrity functional
dependencies. dependencies and

key-based inclusion

dependencies.

15

Research Assumption Input Output Characteristics
Navathe & e 3NF, or some e Relation Entity Drawback of
Awong 2NF. schemas. Binary requiring semantic
(1987). [NA87] e Attribute- relationships. | input earlier in the

naming Categories. process.
consistency. Cardinalities. Resolves the most
¢ NoFK common situations
ambiguities. rather than claiming
e Specified exhaustiveness.
candidate keys.
e INF. e Relation Entities. Copes with
e Unique schemas. Relationships. | demoralized
Petit et al. (1996). attributes. e Data instance Generalization. | relational schemas in
[PTB96] or code. DBRE process.
Analyzes equi-join
queries in application
programs.
No restriction on the
naming of the
attributes.
Premerlani & e Non-3NF. e Relation Class. Requires high level
Blaha (1993, e Semantic schemas. Association. of human input.
1994). [PB94] understanding of | ® Observed Generalization. | Provides guidelines
application. patterns of Muttiplicity. for coping with
data. Aggregation. design optimizations.
Emphasizes analysis
of candidate keys
rather than primary
keys.
Soutou (1997, ¢ No attribute- e Data schema. Cardinality. Fully automates
1998). [S98] naming e Data instance. Constraints on | process for relational
uniqueness. e Data n-ary databases.
s Unknown dictionary. relationship.
dependencies.
Reda Alhajj e 3NF e Data Schema. RID graph. Fully automates

(2002). [AIh03]

Data Instance.

ERD.

process using
efficient DBRE

agent.

Figure 2-1 - Summary of reverse engineering research

16

Our research extends previous database reverse engineering research in figure 2-1 as

summarized here:

Our approach utilizes information obtained from the output of multiple analytical
processes, which describe how a conceptual schema can be retrieved from a
structured or semi-structured database system. The aforementioned processes are a
type of analysis of relational database and XML schema, and semantic understanding.

The obtained information is used in reverse engineering algorithms.

While the majority of previous researches assumed the relations of the input database
to be at least in 3NF, our research is based on the practical assumptions that there are
no constraints on functional and inclusion dependencies or on attribute naming
consistency or uniqueness. For modern relational databases where primary key and
functional dependency constraints exist in the metadata (i.e., schema definition), these

assumptions are not necessary.

In chapters 3 and 4, we describe our semantic metadata extraction rules and
algorithms, and detail the implementation of our prototype. In this section we
describe some of the related works, which have used database reverse engineering
methods to convert structured schemas to (XML) semi-structured schemas and vice

versa.

17

2.1 Converting Relational Database to XML Schema

The conversion from relational to XML has recently received significant attention. It

is an important problem for the following reasons [WLABO4]:

Users may want to publish their relational data as XML. Since XML has
become a standard for information exchange, users want to provide an XML
view of their underlying relational data. In this case, the relational schema is
transformed into XML schema, and then exchanged with other web
applications if necessary.

It is more efficient to directly query on XML documents by using existing
XML query language, rather than to translate XML query syntax to SQL and
query on the relational database and then translate the query result back to
XML. Therefore, providing an XML schema makes it easier for the end users
or applications to access data.

Web applications may want to exchange their data with other web
applications. As XML has become a de-facto standard for information
exchange, the relational data needs to be transformed into XML documents
and then exchanged with other web applications. In this case, the relational
schema is transformed into XML schema and relational data is likewise

transformed into XML data.

The significance of this conversion problem has motivated several researchers;

various approaches have been proposed to solve this problem.

18

In XPERANTO and Agora, users provide the relational schema and the queries
against the XML view to the system. The XML schema is generated from these
queries; they are also used to translate operations on the XML view to the relational
data, as well as to translate results. In the approaches mentioned above, the successful
conversion is closely related to the quality of the target XML schema onto which a
given input relational schema is mapped. However, the mapping from the relational
schema to the XML schema is done manually and by experts. Therefore, when large
numbers of relational schemas need to be translated into XML documents, a large
investment of human effort is initially required to design the target schemas.
The solution taken by XML Extender [CX00] from IBM provides users with the
relational schema as input, as well as with the target XML schema. Users of this tool
need to manually supply the mapping between the relational and the XML schema.
The tool has the feature to convert operations from XML to relational and obtain the
results as XML.
There are some other works, which map non-relational models to XML models. The
work described in [MLMO1b, FPBO1, and KIL.0O1] studies the transformation from
XML to EER model and vice verse, and also some works regarding generation of an
XML schema from a UML model are presented in [BCFK99, CO1]. Mani ez al.
[LMCCO01, LMCCO02] have investigated how to come up with an efﬁcienf XML
schema. We will discuss them individually as follows:

e Agora: the Agora [MFKXO00] system employs XML as the user interface

format, while all data flows inside the query processor consist of relational

tuples. Queries are first simplified by normalization, and then translated to

19

SQL. The SQL query is optimized and executed over the view that has been
created from the XML documents. Tuples that form the result are tagged into
XML elements, thereby producing the final XML result. This makes the
underlying relational engine transparent to the user.

Agora uses a subset of the Quilt query language and stores XML into the
relational database using the structure-oriented approach. Agora is
implemented on top of the Le Select data integration system [LSO1],
developed in the Caravel project. The goal in designing Agora was to
investigate the feasibility and the attainable performance of a system that
processes XML queries based on relational technology.

XPERANTO: The goal of the XPERANTO [CFILOO] project at the IBM
Almaden Research Center is to serve as a middleware layer that supports the
publishing of XML data. Clients and customers who would like to deal
directly with XML data, rather than being forced to deal with the data source's
particular (e.g. object-relational) schema and query language can use this tool.
XPERANTO creates the XML view over the internal relational database, and
provides an XML-based query interface, which translates XML queries into
corresponding SQL queries. It then transforms the results back to XML.
XPERANTO consists of the following components: XML-QL Parser, Query
Rewriter, SQL Translator, and XML Tagger. For instance, XQuery is parsed
and translated to an internal representation called XQGM. XQGM, which
stands for XML Query Graph Model, used as an input for the SQL Translator

that generates the query representation in SQL. The SQL query is executed in

20

the database and returns the answer to the XML Tagger, which creates the
resulting XML document for the users.

In this approach, only basic features of object-relational systems are included
for querying purposes. Integrity constraints and more advanced features are
not considered in this approach.

ER to XML: ER to XML [MLMOla] is a semantic approach using XML
schema; the goal of this research is to formalize a core set of features found in
various XML schema languages into X-Grammar (a grammar notation
commonly found in formal language theory). The important building blocks
of any XML schema language such as element-sub-element relationships can
be captured in X-Grammar. Informally, XGrammar takes the structural
specification feature from DTD, and the data typing feature from XML
schema. The conversion rule is to generate XGrammar from a given XML
model, then convert XGrammar to an EER model, or vice versa. A similar
approach, described by Fong et al. [FPBO1], uses a database reverse
engineering approach. It constructs the semantic model in the form of an ERD
model from the logical schema capturing user's knowledge, and then does
forwargl engineering to produce the XML document. However, this approach
[FPBO1] only deals with catalog-based databases. Similarly, the work
described in [KLO1] offers a way to translate ERD schema into DTD, by
introducing a set of rules on how to translate constructs from the ERD model
into DTD. In this approach the authors claim that their translation preserves

almost all semantic information.

21

UML-to-XML: The approach done by Booch et al. [BCFK99] utilizes a
graphical notation in UML (Unified Modeling Language) for designing XML
schemas. UML is a standard object-oriented design language. In this approach
all the elements and data types in XML schema are mapped to classes
annotated with stereotypes that reflect the semantics of the related XML
schema concept. Also a sequence number is used for content model elements
to indicate the order of document types. XML schemas may contain
anonymous groups. In this approach, special stereotypes are introduced to
indicate that the class represents an anonymous grouping of elements in UML.
Similarly, the work done in [CO1] describes an approach based on XMI rules
for transforming UML to XML Schema. It also defines a UML profile, which
addresses most XML schema concepts, except those simple content complex
types, global elements and attributes, and identity constraints. Regarding
semantic equivalence, the profile has some weaknesses in its representation of
model groups, i.e., sequence, choice, and all.

NeT and CoT: The work described in [LMCCO01, LMCCO02] studies how to
come up with an “efficient” XML schema. The approach represents three
algorithms for converting a relational model to XML: FT (Flat Translation),
NeT (Nesting-based Translation) and CoT (Constraint-based Translation). The
native translation algorithm FT translates a “flat” relational model to a “flat”
XML model in one-to-one manner. FT does not utilize the non-flat features of
the XML model, which can be used through regular expression operators. In

order to remedy this problem, NeT is presented; it derives nested structures

22

from a flat relational model by the use of the nest operator and generates a
more precise and intuitive XML schema from relational inputs.

However, NeT is only applicable to a single table at a time, and cannot obtain
the big picture of a relational schema where many tables are interconnected
with each other. CoT addresses this problem; it uses semantic constraints to
come up with a more intuitive XML schema for the entire relational schema.
Some testing has been done on NeT and CoT algorithms. According to the
experimental results with DTDs, NeT and CoT can present better output in
terms of both accuracy and size.

Publishing XML: The work described by Shanmugasundaram et al. [SSBO1]
Provides a solution to effectively structure and tag data from one or more
tables as a hierarchical XML document. In this approach the use of new scalar
and aggregate functions in SQL for constructing complex XML documents
directly in the relational engine is explored. The results of their experimental
study show that constructing XML documents inside the relational engine can
have a significant performance benefit. The XML publishing task is separated
into three subtasks: 1. Data extraction. 2. Data structuring. 3. Data tagging.
COCALEREX [WLABO04]: the work, which is described by Chunyan Wang,
studies the conversion for both catalog-based and legacy relational databases.
To convert legacy database into XML, the first step is to obtain all possible
information to construct the ERD model, which can be done by applying the
reverse engineering technique. In this approach, some algorithms [AlhQ3] are

adopted to extract the ERD model from the given legacy relational database,

23

then convert the ERD to a RID graph, and finally generate the XML schema
from the RID graph.
Figure 2-2 illustrates the example of the entity-relationship diagram, which

will be converted to RID diagram in figure 2-3.

The main difference between this work and our work is that, instead of using
ERD and the converting it to an RID and then to the target schema, which is
XML, we perform the reverse engineering process in one phase and convert
the relational database schema into ContextMap model, and transform the
ContextMap model into to an XML schema. The ContextMap model gives the

users the ability to manipulate schema information more easily, as compared

to the RID graph.

Shipper

Order Details
Ve
o
3
S P
Jul
WK '

hd

Cateqories .¢L____.{:j;;\;>_.____._ Product

Suppliers

Figure 2-2 - An example of an entity-relationship diagram

24

[ifipper

Employees 4 otk
‘\\ ‘\\

\""m‘ "'-.ﬁ\\\
Orders " Ort!erDeialls! \
T,

: N \. L 4
Categotie Lag i
Products "l et SUpRIY — 1]

Figure 2-3 - Initial RID graph of the relational schema

Our approach is different from the others. We focus on the conversion of relational
databases to XML using reverse engineering and forward engineering processes. To
convert a relational database into XML schema, we first need to obtain all possible
information to construct a ContextMap model, which is possible by applying the
reverse engineering technique. In our approach, we adopt some algorithms to
construct the ContextMap model from the given relational database and convert the
ContextMap model to an XML schema. Also, using the ContextMap model as a
conceptual model allows the users to deal with only one unique notation and thus

understand the different database design and specifications in one unique format.

2.2 Converting XML to Relational Schema

Recently, more research has been addressed to the particular issues of the conversion

from XML to relational schema. On the business side, database vendors are extending

25

their database products to support the XML type. Also research has been done in
[SD02], [XRO2], [DWO00] to come up with an efficient relational database.

In this section, we present an overview of the XML to Relational schema mapping
currently available from two selected commercial Database Management Systems:

IBM DB/2 and Microsoft SQL Server.

e MXM and IMXM [SDO02]: designed by Sihem Amer-Yahia and Divesh
Srivastava, MXM and IMXM are a mapping schema and an interface API to
define and query XML-to-Relational mappings.

A mapping is expressed as an instance of MXM. MXM is declarative, concise
and captures existing XML-to-Relational mappings. Mappings can be
expressed for documents for which no schema information is provided, and
for documents that conform to either a DTD or an XML Schema. IMXM is an
interface that allows querying of information contained in a MXM mapping.
MXM is extensible and can incorporate new XML-to-Relational mappings.
IMXM is implemented on top of this repository and, is used for generating a
relational schema and loading XML documents into the corresponding
relational database. The main weakness of this approach is that the generated

schema is not accurate.

¢ Rainbow system [XR02]: Rainbow, which is described by X. Zhang, creates a
middle layer between XML and relational databases for loading and extracting
of XML documents and mapping XML schemas to relational schemas. In this

system, XQuery is used to specify a mapping. While this language is powerful

26

enough to express existing mappings, its specification would be much longer
and it is not clear how to use it for this purpose. Also, no interface API is
provided.

e ER 2000 [DWO00]: The work presented in the paper describes XML-to-
Relational transformations that preserve constraints on DTDs. Our mapping

schema proposal also handles constraints.

e IBM DB/2 [CX00]: IBM DB/2 is equipped with the XML Extender tool for
storing XML documents. DAD (Document Access Definition) is used for
XML-to-Relational schema mapping. DAD uses the following elements for
mapping, and to describe the structure of XML documents:

e Element node, which specifies the elements in an XML document.
e Anribute node, which specifies the attributes.

RDB (Relational Database Node) node is another subelement, which is used to

describe its mapping to the relational schema. Both element node and attribute

node have RDB node as their subelement. RDB node has the subelements table,
column, and condition, which specify a table, a column, and a relationship
between tables in a relational schema. In the DAD mapping, XML elements are
mapped to relational tables or columns, XML attributes are mapped to database
columns, and relationships between XML elements are mapped to relationships
between relational tables. The principles for this mapping are as follows:

1. Identify the structure of the XML documents using element node

and attribute node.

2. Identify the mapping to a relational schema using RDB node.

27

3. Identify the relationships between tables in the RDB node sub-

element of the root element node.

4. Identify the table and column, to which an element or an attribute is

mapped, in the RDB node sub-element of each non-root element node

and attribute node.
Microsoft SQL Server: Microsoft SQL Server introduces the XML Bulk
Load utility for storing XML documents. The XML-to-Relational mapping
uses XDR (XML-Data Reduced) schema. XDR uses four elements, such as
ElementType, AttributeType, element, and attribute, to specify the structure of
XML documents, and two attributes, relation and field, as well as one
element, relationship to specify the mapping to a relational schema.
In order to declare XML elements and attributes, ElementType and
AunributeType are used. In addition, the attributes relation and field,
respectively, specify a table and a column, and the element relationship
specifies the relationship between two tables in the relational schema. Like the
DAD, the XDR schema maps XML elements and attributes to relational tables
or columns, and relationships between XML elements to relationships
between relational tables. The steps specifying the mapping are almost
identical to that of DAD.

1. Specify the structure of XML documents using the elements

ElementType, AttributeType, element, and attribute.

2. Specify the table and column to which an element or an attribute is

mapped, using the attributes relation and field.

28

3. Specify the relationship between tables using the element

relationship.

Our approach to this problem is different from the existing approaches described
earlier. IBM DB/2 and Microsoft SQL Server, require users to use a new language,
such as DAD, XDR, and RXL. Our conversion from XML to relational schema
handles all constraint mappings, and is straightforward in comparison to all works
mentioned above. In our approach, we have developed algorithms to perform reverse
engineering and produce the ContextMap model, which is used for XML schema, and

to convert the ContextMap model to relational schema.

29

Chapter 3

Using ContextMap Terminology as a

Solution

A methodology is needed, both to represent relational (structured) and XML (semi
structured) database schemas, and also to guide the business analysts and database

administrators in the whole design process.

ContextMaps originally called jMap (jointed map), was first introduced by Dr. W.M.
Jaworski [WMJ99]. The technology was initially developed for recovering and
refining knowledge from legacy systems. By using the concept of a spreadsheet
structure, it is feasible to describe and process conceptual information. Different
information can be easily integrated into one consistent map using ContextMap
notation, thus it can be considered to be a kind of high-level notation technology. The
use of ContextMaps notation allows efficient recovery and modeling of generic
schemas. This technology can be applied in many domains, such as modeling,
mining, evaluation of contexts, enterprises, methods, processes, projects, artifacts,
databases, websites, information system, knowledge models with generic templates,

domain experts, and proprietary notational technology.

30

ContextMap methodology has formal, flexible, expandable syntax and notations that
can efficiently recover and model generic schemas for processes, objects, and views

in these systems.

The basic element in ContextMaps is the context tuple, which is a generic association
of set members cast in roles. A ContextMap could consist of an unlimited number of
context tuples.

Although ContextMap could be implemented, deployed and used in a number of
different manners in computer program, database, and modeling methodologies etc.,
For the sake of simplified visualization, it is generally represented as an extended

spreadsheet.

3.1 ContextMap Terminology

The ContextMap terms used in this thesis include definitions, acronyms and

abbreviations [WMIJKO02].

Figure A-4, ContextMap notation table, will be used to explain the ContextMap
terminology.
e ContextMaps: represent the relationship between different information sets
and provide the functionality of arrays, graphs, relational tables, etc.
e JMaps: Abbreviation of Jointed map. The previous name of ContextMap.
e CONTEXT+: A set of tools, which was developed for processing

ContextMaps.

31

Context tuple: A generic association of set members cast in roles. In the
extended spreadsheet a column of roles and the related set members define

context tuple.

KTuple: Abbreviation of Knowledge Tuple. It consists of set, set member and
Role Tuples, has its own Schema and contains Identifier, Type and
Descriptors.

Schema: Work frame of ContextMaps. The ContextMaps integrate concepts
and concept instances with abstract architecture.

Set: Sets are shown inside {} in the rightmost column.

Set Member: The members below the bold {} in the rightmost column.

Set Roles: the upper case letters in spreadsheet cells, such as letter “E”, “G”,
and “L”.

Set Member Roles: the lower case letters or digits in spreadsheet cells, such
as “f”, “t”, and “1”.

Cardinality of Roles: the number of non empty Roles in every row.
Cardinality of Set Member: the number of set members under each set.

Atom: Anything in a rightmost column: set name, value under {Set}.

32

3.2 High Level Modeling

ContextMap is a formal representation method for information systems with a set of
predefined formal notation. It consists of an unlimited number of context tuples; i.e.,
a generic association of set members cast in roles. In the extended spreadsheet, a
column of roles and the related set members define context tuples. Graphically, a
context tuple is represented by a compounded edge and the connected compounded

nodes.

A directed edge object consists of tail object, middle object and head object. While
context tuples represent system behaviors, processes, tasks, procedures and programs,
the aggregation of the context tuples forms ContextMaps. The ContextMap allows
modeling, mining and evaluating context, processes and views of information systems

with generic templates and by domain experts.

For example, the size of each structured or semi structured database schema script
may vary from a few lines to thousands of lines. However, no matter how little or
how big the script is, and how many database object the database schema consists of,
it could be high level modeled or abstracted into the above mentioned concept sets

which have been illustrated in figure 1-3 and figure 1-4.

33

3.3 Structural System and Data Representation

Not only can ContextMap represent individual data, it can also represent the
structural information among those data, as well as relations and operations on data.
For example, for a computer program, the operation — control flow or processes are
implicitly hidden by syntax and notation of programming language or semantic model
itself. If a user is not quite familiar with a certain language or the semantic model, it

is very hard for him to understand the relation and operations on those data.

However, if the user deals with ContextMap representation, understanding the

program or semantic model becomes quite easy and straightforward.

3.4 Syntax and Process

ContextMap technology uses formal and expandable syntax and notations, i.e. the
syntax of ContextMaps is based on the Relationship-Oriented paradigm, defined by
relating sets and set members [WMIJKO2]. In ContextMaps, the relationships are
represented by kTuples (i.e. vertical columns in the map). The kTuple consists of set,
set member and role tuples. This construction is the fundamental structure defined by

the concepts and instances related by roles.

The relating mechanism is implemented by allocating roles to sets in schema and

their instance to set components in the map. Compared to diagrams, maps are very

34

compact, and offer a rich context within limited space of a computer screen. Maps are
created or edited within an organized electronic sheet (e.g. MS Excel spreadsheet)
that assures efficient manipulation of relationships (columns) and heavy reuse of

components (rows).

ContextMap is a graphical technology and notation for specifying, visualizing and
modeling generic schemas with information systems. ContextMap notation is an
essential element in this technology [WMJ95]. It can be widely employed in many

fields such as:

e Information system architecture.

e Recovery and reuse of system patterns.

e Evolving information systems.

e Software evaluation and renewal.

e Automation of system design.

¢ Modeling of web sites and knowledge hubs.

e Systems workstations.

ContextMaps notation is illustrated in figure A-4. In practice, some symbols can be
used for different meanings, and in special cases, users can define new symbols for
themselves. The defining regulations are flexible, and easy to understand. In order to
more clearly and in detail explain ContextMap notation, figure 3-1 illustrates how the
entity-relationship diagram (figure 2-2) and the RID graph (figure 2-3) would be

represented.

35

set member roles set roles set members sets

% W

{Contezt}

Figure 2-00' &n example entity-telationsh disgram
Relationsfips not in Figurs 203

Relationgiips from Figuwe 2-09 extendfl by Edge Descriptors and Cardinalite
Figure 2103 titil RID graph of thefflational schema ...
In Figusd 203 and in Figure 2.03

In Figul 2-03 but mot in Figuregf 0

{Edgeffypet 4

<<le|at'nship>>

[Triggle Nodest 4

Work:]

Sypol ‘
{Edge Descriptors}

Supenvises

15-4

has

done-by
{NodeslEntities}
Employees
Categories

Orders

Order Details
Works

Products

Supply

Shipper

Custom

Supplier

Edge Cardinality}

12

{Content Source}
Extracting the estended entity-relationship madel from a legacy relational database. [Al03)
{Author}

WYY W sptarandPatens® by B Jsvorsk 19862005 Mipingby Sans Rt

Figure 3-1 - ContextMap model of ERD diagram and RID graph

1. We define these sets {Context}, {Edge Type}, {Triangle Nodes}, {Edge
Descriptors}, {Nodes/Entities}, and {Edge Cardinality} for representing the “ERD
Diagram and RID graph” shown in figure 3-1. In this figure, the red arrow indicates
the set {Edge Descriptors}.

2. We pick the correct notation based on the basic elements of ContextMap

36

notations in figure A-4 such as nodes, edges and flows. In this example, these
schemas “A”, “X”, “E”, and “F” are used.
3. We expand each set by filling in its members. In figure 3-1 members under set
{Edge Descriptors} are indicated by the red arrow.
In the above ContextMap, figure 3-1, nodes can be represented as “Sets” or

“Components”. The following describes the syntax of the ContextMaps:

e The bold {} is called set, such as {Context} and {Edge Type}

e The elements under the set is called set member, such as “Supervises” and
“IS-A”, which is indicated in figure 3-1.

e The contents in columns (1-30), shown in figure 3-1, are called Context
Tuples.

e The single uppercase capital letters in Context Tuples are set roles, such as the
letter A, X, E, and F which is indicated in figure 3-1.

e The lower case letters or digits in Context Tuples are set member roles, such
asf, t, 1, b, m and v, which are indicated in figure 3-1.

e The column 31 with numbers is the count of the set member roles.

e The column 32 with numbers is the count of the set members.

All information is kept in the ContextMap repository. With the CONTEXT+ tool,
each ContextMap can be driven into a specific view and be traced back to the general

view.

If users need to develop large ContextMap models, they can hide irrelevant columns

and rows, editing visible cells and inserting new columns and new rows.

37

In general, sets appear on the right of the map between bold curly brackets. Each
column has to be read vertically using the ContextMap syntax. For each “Value” in
the spreadsheet, the user can read up or down a column and across towards the right
of the map to find which role and set member the “Value” is referring to. Employing
this, the user can also obtain the schema of ContextMaps by hiding set members and

irrelevant columns and get useful information by applying the query tool.

3.5 CONTEXT+ Tool

The CONTEXT+ tool provides users with four different functionalities (Mode,

Query, Output, and Run). The tool can be used to:

e View different mappings, by using different query functions gives users the
ability to process and analyze complex maps more easily.

e Merge different maps generated from different domains.

e Apply specific colors for noticeable display.

e Calculate the cardinality of each set and set member, in order to analyze the

complexity of each set and its member.
e Use schema functionality, to understand the basic design elements.

e Generate structured and semi-structured database schema scripts.

38

Chapter 4

Converting Relational Database Schema

to XML (XSD)

In this chapter, we consider how relational database can be converted into XML
schema. The background and related works are already discussed in Section 2.1. In
Section 4.1, we represent our approach and algorithms to extract ContextMap model
from a relational database schema and in section 4.2, we go through the forward

engineering approach for converting a ContextMap model to XML schema.

4.1 Mapping Relational Database to ContextMap

Representation

In this section we present the proposed process for mapping a relational database into

a ContextMap schema.

39

=

13/14/15(16[17118]18 20 | 21 ny x|
11 3 {(View)
13 8 {Table}
8 8 {Primary Keys Constraints}
7 T {Foreign Keys Constraints}
19 52 {Field}
8 2 {Table Space Types}
4 4 {Type}
8 10 {Table Spaces}
11 1 {AUTHOR}
Syntax and Patterns @ by VWM. Jaworski, 1988-2001
Mapped by Sanaz Rahmati
oo 1
52

Figure 4-1 - ContextMap schema of the NorthWind relational database schema

Figure 4-1 illustrates the ContextMap schema of the loaded relational database, called
NorthWind [NSLB] relational schema shown in figure 1-1.

The schema consists of sets, namely {View}, {Table}, {Primary Keys Constraints},
{Foreign Keys Constraints}, {Field}, {Table Space Types}, {Type}, and {Table
Spaces}.

There are some set roles namely “V”, “F”, “N”, and “E” and four member roles
namely “f”, “t”, “k”, “b”, and “v”. Set role “V” is allocated to {View}, “F” is
allocated to {Table}, “N” is allocated to {Primary Keys Constraints},”E” is allocated
to {Foreign Keys Constraints}, and “N” is allocated to {Field}, { Tablespace Types},
{Type}.

If users need to develop large ContextMap models, they can hide irrelevant columns
and rows, editing visible cells and inserting new columns and new rows. The
terminology and symbols of ContextMap are introduced in chapter 3 in detail.

In figure 4-1, the schema of the NorthWind [NSLB] relational database schema and

its sets relationship is described as follows:

40

{Table} (Row 6: F) has number of {Field} (Row 32: N).

{Field} (Row 32: N) has a specific {Type} (Row 88: F).

{Table} (Row 6: F) has a specific { Tablespace Type} (Row 85: N).

{Tablespace Type} (Row 85: N) has {Tablespaces} (Row 93: N).

{Table} has {Primary Key} constraints (Row 15: N).

{Table} has {Foreign Key} constraints (Row 24: N).
The detailed explanations of each part of the map are given in the following sections.
In the figure 4-2, each set members is shown in rightmost column under the set name.
In figure 4-3 we represent the relationship between database objects, set members,

and set names in our context.

41

25

] 1izbalalsielzislalwlnlzihiuwiishwslivigiel 2ol)02 23 24
1 11 3 |¥iew}

4 Types

2 Tables

K References

15 & {Table}

OrderDetails

Orders

Products

Customers

Suppliers

Categories

Employees

Shippers

% {Primary Keys Constraints}

7 {Foreign Kegs Constraints}

-

52 jField}

CustameriD

EmployeelD

OrderDate

RequiredDate

ShippedDate

OrderlD)

ShipVia

Freight

Shiphame

ShipAddress

ShipCity

ShipRegion
ShipPostalCode

ShipCountry

ProductMame

SupplierlD
CategorylD

QuantityPerlnit

UnitsinStock
UnitsOnQrder

FeOrderLevel

Discontinued

UnitPrice

Discount

FroductlD

CompanuMame
ContactMame
ContactTitile

Address
City

Region

PostalCode

Country

FPhone

Fax

HomeFage

Cateqgoryhlame

Description

Picture

LastName
Firstiarme

Title

TitleQFCourtesy

BirthD ate

HireDate

Extension

Photo

MNotes

ReportsTo

HomePhone

ShipperlD

2 {Table Space Types}

4 1Twpe}

dbDate

dbMemo
dbText

dblLong

3
11
4
Z
2
2
4
2
8
T
:]
5
5
3
3
5]
2
2
4
2
2
b4
2
2
2
4
4
2
1
1
d
3
3
& Quantity
4
4
2
2
4
4
4
4
4
4
3
Z
Jed
d
2
2
2
z
z
=
jed
2
2
2
4
2
3
8
4
1
1
1
1
8

w0 4|Iﬂal§le Spaces}

v
1 #:200° 10

Py

‘1' N v
Mo S
#
a 2.5

12
5

g o B2

N pinie el

Figure 4-2 - » ontextMap model of NorthWind relational database schema (1)

42

Database Object Set Member Set Name
PRODUCTS, ORDERS, ORDER
DETAILS, CUSTOMERS, CATEGORIES,
Table {Table}
SUPPLIERS, SHIPPERS, and
EMPLOYEES
Product_ID, ProductName, Quantity, and
Table Field {Field}
Table Field Type dbMemo, dbDate, dbText, and dbLong {Type}
PK Products, PK_OrderDetails,
PK_Orders, PK_Customers, PK_Suppliers, | {Primary Key
Table Primary keys
PK_Categories, PK_Employees, and Constraints }
PK_Shippers
FK OrderDetailsl, FK_OrderDetails2,
{Foreign Key
Table Foreign keys | FK_Ordersl, FK_Orders2, FK_Orders3,
Constraints }
FK _Productsl, and FK_Products2
{Tablespace
Tablespace types System, and User_ Data
Types)
Tablespace PCTFREE 10, PCTUSED 40, PCTUSED
{Tablespaces}
parameters 50, and ...
Views Types, Tables, and References {View}

Figure 4-3 - Summary of relationship between database objects, set members, and set

names

43

Back to figure 4-2, we use set member roles “v”, “f”, and “t” in order to associate
tables to their fields, and fields to their types. Set member role “k” is used to associate
primary key constraints with its related fields, and also set member roles “v”, “f”, “t”,
and “b” is used to associate foreign key constraints in a binary table relationship in
figure 4-4.

Moreover, in figure 4-5, set member role “f” is used to connect tables to its tablespace
types and tablespaces.

For instance, in order to find a related field for the Orders table, it is first necessary to
find set member Tables, under {View} set; moving horizontally, we will find the
related set member roles “v” for the set member Tables. It means whatever columns
indicated with “v” represent the table information area in the map.

Moving down vertically in this area (column: 5 till column: 12), we will have set
member role “f” which indicates specific table name; in our example it is located at
(column: 6 till row: 7) for Orders table.

If we traverse the map vertically again we will have set member role “t”, which
indicates the related fields for Orders table. Note that some fields are marked with
“k”, instead of “t”, which indicates primary key of the table.

The same method has to be applied to find the related fields, types, foreign keys,
tablespace types, and tablespaces for Orders table. Therefore the related fields and
their types for Orders table are: OrderID (dbLong), CustomerID (dbLong),
EmployeelD (dbLong), OrderDate(dbDate), RequiredDate (dbDate), ShippedDate

(dbDate), ShipVia (dbLong), Freight (dbLong), ShipName (dbText), ShipAddress

44

(dbText), ShipCity (dbText), ShipRegion (dbText), ShipPostalCode (dbText),
ShipCountry (dbText). The Primary Key Constraint is PK_Orders, which is linked to
OrderID field. The Foreign Key Constraint for Orders table is FK_QOrders] which
links Orders table to Customers table through CustomerID field, and also
FK_Orders2 links Orders table to Employees table through EmployeelD field, finally
FK_Orders3 links Orders table to Shippers table through ShipperID field.

The Tablespace Type for related table is User_Data, with following Tablespace

parameters PCTFREE 10, PCTUSED 70, INITRANS 1, and MAXTRANS 355.

45

1) 2] 31 415{6|- 718191101 1]12;12{ 14} 15 16} 17} 18] 19

20

22 1 23 E i

24

25

{¥iew}

FiFie

1T able}

OrderDetails

Orders

Products

Customers

Suppliers

Categories

Employess

Shippers

1Pri

nary Keys Constrai

ints}

PEK_OrderDetails

FPK_Orders

PK_Products

PK_Customers

PEK__Suppliers

PK_Categories

FPK_Employees

PK_Shippers

JForeign Keys Constra

ints}

FK_OrderDetails1

FK_OrderDetails2

FK_Ordersi

FK_Orders2

FK_Orders3

FK_Productsi

FK_Productsz

-

52

JField}

CustaomerlD

EmployeelD

OrderDate

RequiredDate

ShippedDate

OrderiD)

ShipVia

Freight

ShipMame

Shipfddress

ShipCity

ShipRegion

ShipFPostalCode

ShipCountry

ProductMame

SupplieriD

CategorylD

QuantityPerlnit

UnitsinStock

UnitsOnOrder

ReOrderLevel

Discontinued

UnitPrice

Quantity

Di=scount

ProductiD

Companyhame

ContactiMame

ContactTitile

Address

City

Region

PostalCode

Country

Phone

Fax

Htsmepqge

Categoryhlame

Description

Picture

LastMame

FirstName

Title

TitleDFCourtésg

BirthDate

HireDate

Exstension

Fhoto

Motes

ReportsTo

HomePhone

ShipperlD

2

jTable Space Tapes}

4

1Tspe}

RBR G NIRNINN NN NNNION N @ b e e e N 0 IN L L N NN T NN RN R I W L i i i ™ b b NN RO OV L

1 JTable Spaces}

i

1 _iAUTHOR}

Pt

DA Jaweor:

i

ia

=200

200

: Fatternz © by
1aQ

N
»
5
5

7o

5z

Figure 4-4 - ContextMap model of NorthWind relational database schema (2)

46

L2122 Z #d| B

3 {¥iew}

Types

Tables

References

§ {Table}

OrderDetails

Orders

Products

Customers

Suppliers
Categories
Employees
Shippers
JPrimary Keys Constraints}

=]

e B R R A F N I R IR N L)

-

{Foreign Keys Constraints}
{Field}

—
-]
n
T

2 |Table Space Types}
System

Uger Data

+ {Tope}

10 {Table Spaces}
PCTFREE 10
PCTUSED 40
PCTUSED 50
PCTUSED 60
PCTUSED 70
INITRANS 1
MAXTRAMS 155
MAXTRAMS 200
MAXKTRAMNS 255
 MAXKTRANS 355
{AUTHOR}

3!(;5 and Pattarns © b WAL Joworzki, 1385-2001

JES JUDGS JEINS DI v V) SN DD DRGSR S LR L B I NN

ol
—
—

TRrS .
CC il Mo WO
20 e o
m o e

107

«n
w“n
wn
oo

Figure 4-5 - ContextMap of NorthWind relational database schema (3)

47

4.1.1 Mapping Relational Database Schema to ContextMap

Representation Algorithm

In this section, we present the proposed reverse engineering process of mapping the
relational database schema into ContextMap schema. The process is described in
three algorithms. The first step in schema mapping is to construct ContextMap
schema. For this purpose, a set of specific set roles R = (Ry,..., Ry) and sets S =
(S1,..., Sp) are used to build ContextMap schema from relational database schema.
The algorithm below accepts specific sets and set roles as input, and generates

ContextMap schema for relational database schema.

Input: S, R /* Sets and Set Roles */
Output: RDB_WorkSheet I* Schema for RDB_WorkSheet */

Algorithm: Construct ContextMap Schema forRDB Schema

With a given worksheet
For each S;in S where i in [1..n]
For each R;in R where j in [1..m]

Insert relational database sets (S;) where Si in ({Table}, {Field},
{Type}, {Primary Key Constraints}, {Foreign Key Constraints}, {View}).

Insert the related R;jin front of each relational database sets (S;).

End.

The second algorithm accepts available database tables in the system called T,

represented as T = (T, ..., Ty,) and the related fields F = (Fy, ...,F,), having field types

48

TY= (TY,, ...,TY,), primary key constraints PK= (PK;, ...,PK,), and foreign key
constraints FK= (FK; ..., FK;) and it inserts the information in the ContextMap
representing relational database schema, as set members in its related set defined as

S=(S;,....Sy) sections.

Input: S, T, F, TY, PK, FK /* Sets and Database Objects */
Output: RDB_WorkSheet /* RDB_WorkSheet with inserted Set Members*/

Algorithm: Create Set Members from RDB Schema
With the given sheet
For each Sjin S whereiin [1..n]

If S;={Table}
For each Tjin T where jin [1..m]
Insert T; as set member under (S;) set.
End If

If S;= {Field}
For each Fjin F where j in [1..0]
Insert Fj as set member under (S;) set.
End If

If Si={Type}
For each TY; in TY where jin [1..p]

Insert TY; as set member under (S;) set.
End If

If Si= {Primary Key Constraints}
For each PK; in PK where jin [1..q]
Insert PK as set member under (S;) set.
End If

If S;= {Foreign Key Constraints }
For each FKj in FK where j in [1..r]
Insert FKj as set member under (S;) set.
End If

If Si={View}
Insert set members “Types”, “Tables”, and “References” under (S;) set.

End If

End.

49

The algorithm below accepts available database tables in the system called T,
represented as T= (T, ..., T) and the related fields F= (F,, ... ,F,), field types TY=

(TY1, ...,TYp), primary key constraints PK = (PKj, ...,PK,), and foreign key
constraints FK noted as FK= (FK;, ..., FK;) and it traverses through the map and
inserts the associations which are set member roles, between each set member, as a

result it constructs the context tuple section in the map.

Input: T, F, TY, TR, PK, FK /* Set Members */
Output: RDB_WorkSheet /* Schema for RDB_WorkSheet */
Algorithm: Construct Set Member Roles based on input Set Members, and
Build Association
With the given sheet
For each Ty in {table} set where k in {1..m]
For each F; in F where j in [1..0]
Call InsertAssociation (T, Fj). /*Create the association between Ty and F; */
For each TY, in {Type} set where x in [1..p]

Call InsertAssociation (Fj, Tyy). /*Set the association between Fj and Ty, */

For each PKj in PK where j in [1..q]
Call InsertAssociation (T, PK;). /*Set the association between Ty and PK +/

For each FK| in FK where jin [1..r]
Call InsertAssociation (Ty, FK;). /*Set the association between Ty and FK; +/

End.

50

In order to map relational database schema to ContextMap schema by the above
algorithms, we need to go through all three as detailed next. To do so we have chosen
NorthWind [NSLB] database as an example to describe above algorithms.

The first algorithm is used to construct the ContextMap model from the relational
database schema. It inserts sets such as: {View}, {Table}, {Primary keys
Constraints }, and set roles corresponding to each set such as “V” for {view}, “F” for
{Table}, and {Type}, “N” for {Primary Key Constraints}, {Field}, and {Table Space
Type}, and {Table Space}, and “E” for {Foreign Key Constraints}.

In the second algorithm we perform the following steps as below:

1. Insert tables (PRODUCTS, ORDERS, ORDER DETAILS, CUSTOMERS,
CATEGORIES, SUPPLIERS, SHIPPERS, and EMPLOYEES) as set members
under {Table} set.

2. Insert the related fields as set members below {field} set.

3. Insert the related field types as set members below {type} set.

4. Insert the related primary key constraints as set members below {Primary key
Constraints} set.

5. Insert the related foreign key constraints as set members below {Foreign key
Constraints} set.

6. Insert set members “Types”, “Tables”, and “References” under { View} set.

In the third algorithm we do the following steps as below:
1. Associate each table to its fields by using “f”” and “t” as set member roles.

2. Associate each field to its type by using “f” and “t” as set member roles.

51

3. Associate each Primary Constraint name to its corresponding table by using
“f” and “k” set members, and also use “k’ to connect the associated field to its
Primary Constraint name.

4. We use “f” set member role to connect each Foreign Constraint name to its
corresponding tables and we use, “f” and “t” set member to specify foreign
key relationship between two tables, and we use “b” set member role to show

the foreign key fields of the related tables.

4.2 Converting ContextMap model to XML Schema

In this section, we propose a forward engineering process for transferring the
conceptual schema, which is presented as a ContextMap model, into an XML
schema. The process in pseudocode is depicted in the algorithm below.

In order to transfer a ContextMap model to an XML schema using the algorithm
below, we need to go through four steps as detailed next:

In the first step of the algorithm, each table T; in form of T= (T;, ..., Ty) in
ContextMap is translated into an XML element E; in form of E= (E;, ...,E,), having
the same element name E; in the XML schema. Under each element E;, there will be
several sub elements inside the empty element. For example, the Orders entity is
translated into an element named “Orders”. The empty element is called

<complexType>.

52

Input: RDB_WorkSheet /* RDB ContextMap Model */

Output: XML Schema /* Generated XML Schema */

Algorithm: Generate XML Schema from ContextMap model of RDB Schema
With the given sheet

For each T;in S where iin [1..n]

e Translate each Table in the ContextMap model into a "complexType" element
in XML schema (E;).

¢ Find the association between each table and its fields, and Map each field in
every table into a sub element within the corresponding element of the table.

e Find the association between each field and its type, and Map each field’s type
and length.

¢ Find the association between each table and its constraints, and Use “key” and
“keyref’ to map each relationship between two Tables

End.

Figure 4-6 illustrates the mapping of table name to XML schema:

<xs:element name="Categories">
<xs:complexType>

</xs:element>

<xs:element name="Customers">
<xs:complexType>

</xs:element>

<xs:element name="Employees">
<xs:complexType>

53

</xs:element>

Figure 4-6 - Fragments of the XML schema (XSD) for NorthWind

The cardinality constraint in the ContextMap model can be explained by associating
two built-in XML attributes, also called indicators, namely “minOccurs” and
“maxOccurs”, with subelements under the XML <complexType>.

The “maxOccurs” indicator specifies the maximum number of times a sub-element
can occur. “maxOccurs” =“unbounded” indicates the element may appear more than
once. The “minOccurs” indicator specifies the minimum number of times a sub-
element can occur. The default value for both the “maxOccurs” and the “minOccurs”
attributes is 1. If we want to specify a value only for “minOccurs”, it must be either O
or 1. Similarly, if we want to specify a value only for the “maxOccurs”, it should be
greater than or equal to 1. If both “minOccurs” and “maxOccurs” are omitted, then
the sub-element must appear exactly once.

In the second step of algorithm, we go through the ContextMap model to find the
association between each attribute of the table Ti, and extract each attribute.

Each attribute of the table Ti is mapped into a sub element of the corresponding
element Ti. For example inside the <complexType> of Orders table there are several
sub elements such as OrderID, CustomerID, EmployeelD, OrderDate, RequiredDate,
ShippedDate, ShipVia, Freight, ShipName, ShipAddress, ShipCity, ShipRegion,
ShipPostalCode, And ShipCountry.

These are mapped inside of the <complexType> of Orders table.

54

The XML schema of the Orders table is shown in figure 4-7:

<xs:element name="Orders">
<xs:complexType>
<xs:sequence>
<xs:element name="OrderID">

</xs:element>
<xs:element name="CustomerID" nillable="true">

</xs:element>
<xs:element name="EmployeelD" nillable="true">

</xs:element>
<xs:element name="0OrderDate" nillable="true">

</xs:element>
<xs:element name="RequiredDate" nillable="true">

</xs:element>
<xs:element name="ShippedDate" nillable="true">

</xs:element>
<xs:element name="ShipVia" nillable="true">

</xs:element>
<xs:element name="Freight" nillable="true">

</xs:element>
<xs:element name="ShipName" nillable="true">

</xs:element>
<xs:element name="ShipAddress" nillable="true">

</xs:element>
<xs:element name="ShipCity" nillable="true">

</xs:element>
<xs:element name="ShipRegion" nillable="true">

</xs:element>
<xs:element name="ShipPostalCode" nillable="true">

</xs:element>

55

<xs:element name="ShipCountry" nillable="true">
</xs:element>

</xs:element>

Figure 4-7 - Fragments of the XML schema (XSD) for NorthWind application for

viewing tables and fields

The <sequence> specification in the XML schema captures the sequential semantics
of a set of sub elements. For instance, in the <sequence> given above, the sub
element OrderID comes first, followed by CustomerID, and then EmployeelD,
OrderDate, RequiredDate, ShippedDate, ShipVia, Freight, ShipName, ShipAddress,
ShipCity, ShipRegion, ShipPostalCode with ShipCountry at the end.

These sub elements must appear in instance documents in the same sequential order
as they are declared here. The XML schema also provides another constructor called
<all> which allows elements to appear in any order, and all the elements must appear
once or not at all.

In the third step of algorithm Generating XML Schema from ContextMap RDB
Schema, we extract the related fields and their types for each table from the
ContextMap model.

<simpleType> element is used in order to map the data type and the length of the
each attribute.

For example, inside the <complexType> of Orders table there are several sub

elements such as ShipAddress, CustomerID, etc. They are mapped inside of the

56

<simple Type> of Orders table, and their data type is shown by “xs:string”,
“xs:integer”, and so on.

The partial XML schema of the Orders table’s data types is illustrated in figure 4-8:

<xs:element name="Orders">
<xs:complexType>
<xs:sequence>
<xs:element name="OrderID">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:maxInclusive value="2147483647"/>
<xs:minlnclusive value="-2147483648"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="CustomerID" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="5"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

</xs:element>

Figure 4-8 - Fragments of the XML Schema (XSD) for NorthWind application for

viewing field name and properties

In the fourth step of the algorithm, we traverse the map and find the association
between each table and its primary key and foreign key constraints, and extract

constraints of the table from the ContextMap model.

57

b (13

We use the elements “key”, “unique”, and “keyref” to enforce the uniqueness and

referential constraints among the data. The “key” element specifies an attribute or
element value as a primary key within the containing element in an instance
document, and the “keyref” element specifies foreign keys, i.e., an attribute or
element value corresponding to that already specified key or unique element. The
“key” and “keyref” elements replace and extend the capability of “id”, “idref” and
“idrefs” in DTD. They are among the valuable features introduced in XML schema.
Also, we can use “key” and “keyref” to specify the uniqueness scope and multiple
attributes to create the composite keys. Figure 4-9 illustrates an example:

<xs:element name="0OrderDetails">
<xs:complexType>

</xs:complexType>
<xs:key name="PK_OrderDetails">
<xs:selector xpath="."/>
<xs:field xpath="OrderID"/>
<xs:field xpath="ProductID"/>
</xs:key>
</xs:element>

<xs:element name="Orders">
<xs:complexType>

</xs:complexType>

<xs:key name="PK_Orders">
<xs:selector xpath="."/>
<xs:field xpath="OrderID"/>

</xs:key>

<xs:keyref name="FK_OrderDetails1" refer="PK_Orders">
<xs:selector xpath="OrderDetails"/>
<xs:field xpath="OrderID"/>

</xs:keyref>
</xs:element>

Figure 4-9 - Fragments of the XML Schema (XSD) for NorthWind application for

viewing table constraints

58

In figure 4-9, we first specify the primary key for each table in the ContextMap
model. From the {Primary Key} set in ContextMap schema, we know that OrderID 1s
the primary key of Orders table; OrderID and ProductlD together form a composite
primary key of OrderDetails table. From the {ForeignKey} set, OrderID is also a
foreign key of OrderDetails table, so we use “keyref” to specify the foreign key
relationship between OrderDetails and Orders table.

Compared to DTD, the XML schema provides a more flexible and powerful
mechanism through “key” and “keyref” which share the same syntax as “unique” and
also make referential constraints possible in XML documents [WLABO4].

Figure 4-10, illustrates the mapping and summarizes the steps of the above

algorithms:

<xs:element name="Categories"> “@========= \anping the table name
<xs:complexType>
<xs:sequence>
<xs:element name="CategorylD"> mmsmmm=me= Mapping the attribute
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:maxInclusive value="2147483647"/>
<xs:minlnclusive value="-2147483648"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="CategoryName"> @esmesmsesm== \[anning the attribute
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="15"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

</xs:complexType> Mapping the unique keys and the primary keys
<xs:key name="PK_Categories" > «gue

59

<xs:selector xpath="."/>
<xs:field xpath="CategoryID"/>

</xs:key>

<xs:unique name="Categories_UniqueKey_0">
<xs:selector xpath="."/>
<xs:field xpath="CategoryName"/> Mapping the relationship between Tables

</xs:unique>

<xs:keyref name="FK_Products2" refer="PK_Categories">
<xs:selector xpath="Products"/>
<xs:field xpath="CategorylD"/>

</xs:keyref>

</xs:element>

Figure 4-10 - Fragments of the XML schema (XSD) for NorthWind indicating the

steps

60

Chapter 5

Converting XML Schema to Relational

Database

In this chapter, the conversion of XML schema (XSD) into relational database
schema is considered, and proposed algorithms for XML-to-Relational transformation
are presented.
We propose a prototype called CODAX that maps an input XML schema to a
relational database schema. The process contains the following two steps:
1. Transforming an XML schema to a ContextMap model, which will be,
discussed in section 5.1. Since an XML schema can be very complex due to
its hierarchical nesting capability, a ContextMap model is used to map
complex XML database schema into structured ContextMap schema. On the
other hand, generating relational schemas from a ContextMap model makes
the process of mapping simple.
2. Generating relational schemas, which will be discussed in section 5.2. We
generate a relational schema from the ContextMap representation after

mapping an XML schema to a ContextMap model

61

5.1 Mapping XML to ContextMap Representation

In this section we propose a new process for mapping XML schemas into

ContextMap notation.

{XML Nodes)
{ML Node Markups}

{AML Node Praperties}

[XML Node Property Values)
{

{

{

AML Node Comrments}
*ML Node Processing Instructions)
Author)

Syntax and Patterns © by W.M. Jaworski_1988-2002
Manging by XML Data Base Automatic Mapping

§ 8 8 1633 644

Figure 5-1 - ContextMap schema for NorthWind XML schema

We construct the ContextMap schema shown in figure 5-1 from the NorthWind
[NSLB] XML schema in figure 1-2.

The ContextMap consists of sets, namely {XML Source}, {XML Nodes}, {XML
Node Markups}, {XML Node Properties}, { XML Node Property Values}, {XML
Node Comments}, and { XML Node Processing Instructions}.

Set roles namely, “A”, “F”, and “N”, and set member roles, namely “f” and ’t”, are
used to construct the ContextMap model. Set role “S” is allocated to { XML Source},

and “F” is allocated to {XML Nodes}. “N” is allocated to {XML Node Markups},

62

{XML Node Properties}, { XML Node Property Values}, {XML Node Comments},
and { XML Node Processing Instructions}.
The user can also obtain useful information in ContextMap representation by
applying the query tool. The terminology and symbols of ContextMaps are introduced
in chapter 3 in detail.
In figure 5-1, the schema of the NorthWind XML schema is described as following:
{XML Node} (Row 341: F) has { XML Node Markups} (Row 546: N).
{XML Node Markups} (Row 546: N) have {XML Node Properties} (Row
561: F).
{XML Node Properties} (Row 561: F) have { XML Node Property Values}
(Row 577: F).

{XML Node Properties} (Row 561: F) have { XML Node Comments} (Row
647: F).

63

40 208 08
4 {Contextt

334 | [XML Source}

204 1ML Nodes!

n2

a3

nd

nb

n?

n9

nid

nll

ni2

ni3

i

ni?

nig

n20

a2l

n22

n23

n24

n25

n26

n2?

n28

n29

n30

n3l

n32

n33

n34

n35

n3b6

n37

[End of Nodes]

14 |¥ML Node Markups}

2mml

zs:schema

zs:complezType

IS:sequence

z5:simpleType

. zsiestriction
‘zs:mazlength
z5:key

zs:selector

zs:field

1skeyref

I5:pattern

[End of Node Markups]

15 XML Mode Properties)

63 |%ML Nade Property Values|

{¥ML Node Comments}

L e o

1
1T ML Node Processing Instructions}
2 {Authort

LB EEEELERRREREALEENELY i 3

2888858808888 08988088838881853888888 8858:808581639844

Figure 5-2 - ContextMap model of NorthWind XML schema (1)

64

B Y B e g O 0 e e 900 21120 2024 28 25 07 282900 21 % S n6 e g ol o | S

3 i

PR R TER] O 1 R AR g e

ar 4

{Contextf

20

JAML Source}

JAML Nodes}

{XML hlade Markups!

2eml

g5:schema

1s:element

15:compleType

15:50qUENCE

ts:simpleType

g5:1estriction

gs:mazlength

2s:key

15:5elector

1s:field

15:keyrel

15:pattem

|End of Node Markups)

ML Node Properties}

version

encoding

tmins:zs

elementFormDefault

attributeF ormDefault

hame

base

value

tef

minDccurs

maz0ceurs

gpath

refer

nillable

THEELEEIERL

[End of Nodes Properties]

§

o«

{AML Node Property Values)

J*ML Node Comments}

XML Node Processing Instructions}

[N g

{Authrt

TEEHE 9

-~
o

8968888886808 888888%8

88 81639 644

Figure 5-3 - ContextMap model of NorthWind XML schema (2)

65

{Context}

JAML Sourcet
PMLNodest

XML Node Markupst
XML Node Properties}
version

1 smins:zs

1 elementFormDefault

1 attributeFormDefault

58 name

35 base

19 value

7 ref

7 minOccurs

7 maz0ccurs

A 1path

7 refer

6 nillable
{End of Nodes Properties]

69

XML Node Property Valuest

“UTF-8*

“http:Hwww.w3.orgi2001/XMLS cher

“qualified”

“unqualified”

“Categories”

“CategorylD”

“ssinteger”

-c M -

qory
“zs:string”

15"

“Products”

“unbounded”

“PK_Categories”

“FK_Products2®

_w;_awmu—nmnqqmma—;*_—_..--g

“Customers™
:C_uslomelID'
"CompanyName~
-40- -
&0 “ContactName™
<o “true”
Sa0-
“ContactTitle”
[End of Node Property ¥alues]
. ©u 1 J¥ML Node Comments}
L. 1 J4ML Node Processing Instructionst
. W 2 JAuthor}
654 ® 200 8]
X6553228'88888888198833833883838838838883888881(533(;(4
856 : ! :
857

Figure 5-4 - ContextMap model of NorthWind XML schema (3)

In the figures 5-2, 5-3, and 5-4, each set members is shown in right most column

under the set name. In figure 5-5 we represent the relationship between database

objects, set members, and set names in our context as follows:

66

Database Object Set Member Set Name
XML Node hierarchy | nl, n2, n3, and... {XML Node}
?xml, xs:schema, xs:element, {XML Node
XML Node Markups
xs:complextype, xs:sequence, and ... Markups}
version, encoding, xmins:xs,
{XML Node
XML Node Properties | elementFormDefault,
Properties}
attributeFormDefault, name, base, and...
{XML Node
XML Node Property | “Categories”, “ CategorylD”,
Property
Values “xs:integer”, “CategoryName”,
Values}
XML Node {XML Node
“Orders table primary key”
Comments Comments}

Figure 5-5 - Summary of relationship between database objects, set members, and set

names

Set member nl, n2, and ... under {XML Nodes} are used to show the hierarchy

structure of the XML. In order to accomplish the hierarchy shown in figure 5-2 set

member roles “f” and “t” are placed in the corresponding row.

Moving down vertically from “f” or “t” to the area of { XML Node Markups}, we

have found another “f” which corresponds to the set members under {XML Node

Markups}. The set members under {XML Node Markups} are XML tags such as:

?7xml, xs:schema, and so on.

67

Similarly, moving down vertically in figure 5-3 from set member role “f” in the
{XML Node Markups} area, we find numbers under { XML Node Properties} area.
The set members under { XML Node Properties} are XML properties such as version,
encoding, and so on.

We continue to traverse the ContextMap from numbers in the {XML Node
Properties} area down to find another type of numbers in the { XML Node Property
Values} area as shown in figure 5-4. The set members under { XML Node Property
Values} are property values such as “1.0”, “UTF-8” and so on.

For example, if we want to find the related information for Categories table, we move
from XML Node (n3) vertically to find the related XML Markup, which is
xs:element. For instance from set member n3 (Row: 344), we move horizontally to
the left to retrieve the first “f” set member role (Row: 344, Column: 6).

To indicate the XML hierarchy in the { XML Nodes} area, we use “t” set roles in the
same column and the order in which they appear in the area.

For example, n7, n9 and n13 represent a hierarchy tag structure beginning with n7 as
the topmost level tag, which contains n9 as the middle level, and n13 as the lowest tag
level.

From the retrieved “f”” in the { XML Nodes} area, we move down in the same column
to find the related “f” in the { XML Node Markups} area, and move right to find the
corresponding set member which is xs:element.

We continue to traverse in the same manner to find all related {XML Node
Markups}, {XML Node Properties}, {XML Node Properties Values}, and {XML

Node Comments} corresponding to { XML Nodes} n3.

68

5.1.1 Mapping XML Schema to ContextMap Representation

Algorithm

The algorithm below retrieves the information from an XSD file, and loads XML
metadata information to a ContextMap model. Let X be the input XSD file and N =
(N1,..., Nj) be all the individual nodes in an XSD file, and S = (Sy,..., Sp) all the sets

that belongs to XSD schema.

Input: X, N, S /* XSD file, Sets and XML Nodes*/

Output: XML_WorkSheet I* XML_WorkSheet which represents,
ContextMap model of XSD file */

Algorithm: Load XML (XSD file) information to Context
Map Schema for Xml

With given sheet

For each S;in S whereiin [1..n]
For each N; in X where j in [1..m]

e Insert Njas set member under { XML Nodes} set, and
Insert the association between XML nodes.

¢ Insert XML tags, as set member under { XML Node Markups} set, and
Insert the association between XML nodes, and Node Markups.

¢ Insert XML Properties for each tag as set member under
{ XML Node Properties} set, and
Insert the association between { XML Node Markups}, and {Node

Properties}.

e Insert XML Property values for each tag as set member under
{ XML Node Property Values} set, and
Insert the association between { XML Node Properties}, and {Node

Property values}.

End.

69

In order to map XML (XSD) schema to ContextMap schema by the above algorithm,
we need to go through all steps as detailed next:

We assume that the ContextMap XML schema already exists, and it contains { XML
Nodes}, {XML Node Markups}, {XML Node Properties}, {XML Node Property
Values}, {XML Node Comments}, { XML Node Processing Instructions} sets, and
“F” and “N” set roles.

In the first step, we load XML nodes (Nj, N, ..., Np) as set members under { XML
Nodes} set, and use “” and “t” set member roles to associate each node to its sub
nodes.

In the second step, for each node in the XSD file we load XML tags such as
xs:schema, xs:element, xs:complexType, xs:sequence, xs:simpleType and , ... as set
members under { XML Node Markups}, and we use “f”” set member role to associate
each node to its tags.

In the third step, we load each property in XML nodes under {XML Node
Properties}, and we use numbers (1, 2,...) to determine the number of the properties
in each node and to connect each node to its tag and properties.

In the fourth step, we load each property values in XML nodes, under { XML Node
Property Values} and again we use numbers to associate each XML node property to
its property value.

Finally in the last step if XSD file contains any comments, we load the comments

under { XML Node Comments} section.

70

5.2 Converting ContextMap model to Relational

Database

In this section, we present the algorithm below to translate the conceptual schema,
which is presented as ContextMap model of XML schema into relational schema. The

process in pseudocode is depicted in the algorithm below.

Input: XML _WorkSheet I* XML ContextMap Model */
Output: RDB Schema /* the corresponding relational schema */

Algorithm: Generate RDB Schema from ContextMap model of XML Schema

With given sheet

For each N; where i in [1..n]

1- Generate relational structure from a given ContextMap model from an
XML schema by performing below steps:

e Find the “xs:element” set member under { XML Node Markups }
set, and search for related set members under { XML Property
Value} set.

e Translate the set member into a relational table.

e Find the inner hierarchies under “xs:complexType” set member
under { XML Node Markups} and translate each sequence
element into an attribute of that relational table.

2- Transform XML schema constraints into relational schema constraints
by translating:
e "unique" set member under { XML Node Markups}, and related
xml nodes into relational constraints.
e "key" under { XML Node Markups}, and related xml nodes into
relational constraints.

e keyref" under { XML Node Markups}, and related xml nodes into

relational constraints.
End.

71

In order to convert the ContextMap model to relational database schema by above

algorithm, we need to go through the steps as detailed next:

We use retrieved associations, in order to traverse the ContextMap and for each node
Ni, N= (Ny, ..., Np) extract XML Markups, XML Properties and XML Property

Values.

Based on each XML Node Markup, we extract XML Property and Property Values

for each node and generate the relational database DDL script.

In the first step of the algorithm, we construct the relational database DDL script, as

follows:

1. Map the property value of <xs:element tag as table name.
2. Map the property value of each sub element <xs:element under <xs:sequence>
as field name.
3. Map the property value of each sub element <xs:restriction under
<xs:simpleType> as field type.
4. Map the property value of each sub element <xs:maxLength as field length.

In the second step of algorithm, we transform the XML schema constraints into

relational schema constraints, as follows.

1. Map primary key constraints and related fields by extracting property values of
<xs:key element and sub elements .
2. Map foreign key constraints and related fields by extracting property values of

<xs:keyref> element and sub elements.

72

3. Map unique key constraints and related fields by retrieving property values of
<xs:unique element.
Figure 5-6, shows the DDL (Data Definition language) example in Oracle which

shows the mapping according to the above algorithm steps:

CREATE TABLE Categories D E—— Mapping the table name
(
CategorylD Number ,
CategoryName varchar2(500) Gomemmmemeneem. . \[apping the attribute
Description varchar2(4000)
Picture varchar2(4000)
)
TABLESPACE User_Data
PCTFREE 10
PCTUSED 50
INITRANS 1
MAXTRANS 200
/
Mapping the unique keys and the primary keys
ALTER TABLE Categories ADD (
CONSTRAINT PK_Categories PRIMARY KEY (CategorylD))
/

Mapping the foreign keys
ALTER TABLE Products ADD (
CONSTRAINT FK_Products2 FOREIGN KEY (CategorylD)

REFERENCES Categories (CategoryID))
/

Figure 5-6 - Part of NorthWind DDL example in Oracle

73

Chapter 6
A System Prototype

We have designed and implemented a prototype for converting the relational database
schema to the XML schema and vice versa. We refer to this prototype as CODAX,
which stands for Converting Relational Database to XML and vice versa. It leads to
identify and understand all components of an existing database and the relationships
between them. It also provides an algorithm for performing reverse engineering
process and converting relational database into XML schema and vice versa. System
design is discussed in section 6.1. The illustration and architecture for CODAX are

discussed in section 6.2 and 6.3.

6.1 System Design

CODAX supports the schema conversion from structured into semi-structured
schema and vice versa, using ContextMap map as a conceptual model.

In order to convert semi-structured to structured schema, it is necessary to extract the
schema information from semi-structured metadata information. For this purpose, our

prototype CODAX includes an XML parser [DHWOL1], which extracts the XSD

74

schema and a transformer, which maps the schema into ContextMap representation,
and an analyzer. The analyzer process goes through the map and extracts the
necessary information from the map, and performs the forward engineering process.
The same mentioned steps are needed when converting structured to semi-structured
schema.
There is a visual feature in CODAX, which enables users to have a list of available
tables, their columns, primary keys, and foreign keys in the form of the ContextMap
representation. The above metadata information has already been mapped to the
ContextMap model. Users can modify the schema information, using the
CONTEXT+ environment, and can also issue different query options “AND”,
“XOR”, “OR”, “NOT” over this generated ContextMap model, and have the ability to
merge different ContextMap schemas which belong to different database sources.
CODAX has an interface which exhibits the tables within the ContextMap model
generated from the relational database, in which users can select the desired tables
and use transformer functions to convert the ContextMap model to the XML schema.
CODAX has also similar screens for converting the XML into the relational database
schema.
Finally, CODAX has an interface to construct ContextMap representation from the
relational database or XML schema. In general, CODAX provides functionalities
listed below:

e Supports a visualized interface.

e Can be used for relational databases conversion into XML using any of the

known RDBMS including SQL/Server, DB2, Oracle, and MS Access.

75

e Gives Users the option to choose between a relational database and an XML
schema.

e Keeps a list of the converted and available databases, which can be used to
add or delete any table or table property from the map by system developers.

e Extracts schema information from relational as well as XML database
schema, and displays the result within the GUIL

e Performs reverse engineering process, and builds different ContextMap
models for the given relational database or XML.

e Converts the constructed ContextMap model from relational databases schema
to the corresponding XML schema and vice versa.

e Converts the constructed ContextMap model from XML to the corresponding
relational database schema and vice versa.

e Provides direct view of the steps of each process.

CODAX is composed of four main modules:
1. CCTXLRR - Converting ContextMap model to relational database schema
module.
2. CCTXXML - Converting ContextMap model to XML schema module.
3. CTX2XML - Constructing ContextMap model from XML schema module.
4. CTX2RDB - Constructing ContextMap model from relational database
schema module.

Figure 6-1 illustrates the modules of CODAX and its flow.

76

XML

LegacyRDB

CTX2RDB

CTX2XML

ContextMap

CCTXXML

CCTXLRR

XML

Legacy RDB

Figure 6-1 - CODAX modules

6.2 System Requirements

1. Hardware and software availability: CODAX has been implemented
in two-tier network architecture. For this purpose we used different
clients, and a data server, which may consist of different data base
instances.

2. Development requirements: CODAX has been implemented using

Oracle 9i, Microsoft Access 2000, Microsoft SQL/Server 7, DB/2

77

database, VBA (Visual Basic for Applications), Microsoft Excel
2003 tools, and Windows XP operating system.

3. We use ODBC Interface to connect to different databases.

4. CODAX can be run into a CPU Intel Pentium 4 with a speed of 2.40
GHz and 512 MB for the main memory. Most of the coding is based
on VBA (Visual Basic for Applications) language, with more than

2000 lines of code.

6.3 System Illustration

In this section we will illustrate our developed system prototype, which includes
solutions for two-way conversion, and also performs processes of mapping relational
or XML schema into related ContextMap representations through reverse engineering
process. Based on the schema selected by the user, CODAX generates different

ContextMap representations to illustrate structured or semi-structured schemas.

In addition, the prototype has the ability to generate different database schemas from
ContextMap representation using ODBC (open database connectivity). A series of

CODAX functionalities have been illustrated as follow.

In figure 6-2, two entries have been added to the CONTEXT+ form in order to

convert a semi-structured to structured database and vice versa.

78

Search & Edit & Display by Patterns & Colors

Run

By tolor 1™ Schema £ XML <—>Map | [~
-1 1 Row

™ Cardinality
[~ applyColor

" VB <---> Map I~ col

" Java <> Map

[Al e e mep [Unroe

{* Map ™ Row
=0 f‘ ™ C++ <> Map |

™ Graph I col

e ! % ‘
(" Map & Graph ~
L {‘; SML=> RDB Database\)

e
7 RDB = XML Databass™

\\‘H‘“'—_.

" JavaScript

" Help

Figure 6-2 - CONTEXT+ form

6.3.1 Converting Relational Database to XML Schema

The dialog shown in figure 6-3 is used to convert relational database schema to XML.
To do so, users need to follow two steps: using the first tab gives the user the ability
to perform reverse engineering process and thus transform relational database schema
to the ContextMap schema. For this purpose we, call a set of functions inside

CTX2RDB. Users need to choose the source database and click on the Import push

79

button shown in figure 6-3, clicking on import push button will invoke the dialog

shown in figure 6-4.

st - Format . Tools ' Data Window " Help

B oo @I -4 e
F

3 4 5 b 7 B 9 10 11 12 13

a Base Schema Migrator

RDB =3 CT¥) CTR=5%ML |

Source DataBase _Ij

Oracle
DB2
SqlServer
Access
XML
]

Impert

Cancel

Figure 6-3 - Dialog to choose source database

As shown in figure 6-4, users have the ability to either use database DDL script, or
capture the database schema directly and perform the reverse engineering process.

Using either option will result the dialog shown in figure 6-5.

80

Format. Took ~Data - ‘Window Help

y - @z -4l

<10y B 7T UEEZEE %%
3 4 5 B 7 8 8 10 1 12 13

Import From DB

Cancel

,,,,,, EETENE - ann IR

Figure 6-4 - Dialog to perform reverse engineering process

81

9 201 21 22 ke 24
11 3 |¥iew}

4 Types

g Tables

7 References

15 & {Table}

OrderDetails

Orders

Products

Customers

Suppliers

Categories

Employees

[ARRCRRE AV S R R R N I S

Shippers

2 JPrimarg Kegs Constraints}

PK_OrderDetails

PK_Qrders

PK_Products

PK_Customers

PK_Suppliers

PK_Categories

PK_Employees

PK_Shippers

L [E TR N IR R PR PN PP PR

7 {Foreign Keys Constraints}

FK_OrderDetails1

FK_OrderDetails2

FK_Ordersi

FK_Orders2

FE_Qrders3

FK_Productsi

FOVRS IR UV JUIF A e ey

FK_Products2

—
uw
]
o)

{Field}

2 |Table Space Types}

1Tape}

[--BE _B1--]
-

10 |Table Spaces}

b
-
)

JAUTHOR}

e

o
a3
)
ol
N

Mapped by Sanaz Rabhmati

200 10

R

Figure 6-5 - ContextMap model of relational database schema

82

Clicking on the CTX=> XML database schema tab gives the user the option to
perform forward engineering process, and will invoke the dialog shown in figure 6-6.
Users can choose either XML or relational database in this section. For example, if
the source database is Oracle, then after performing reverse engineering process,
users can manipulate the ContextMap schema and transform it to another schema
such as SQL/Server database or XML schema. For this purpose we call a set of

functions inside CCTXXML module.

Target DataBase

Export

Cancel

| —— - s Tt
INNKNNNNNNNNNNNN 19 52 |Fied
t k. i & CustomerlD
. k 5 EmployeelD
t | 2 OrderDate
t . 2 RequiredDate
1 3 ShippedDate
K | 5 OrderlD
t 2 ShipVia
t 2 Freight
2 ShipName
2 ShipAddress
. ShipCity
15l £ cms_25feb.sgl £ Sheetl \ Norhwind fd]

Figure 6-6 - Export ContextMap model to XML schema (1)

83

Clicking on the Export button will invoke the dialog shown in figure 6-7. Users can
select the name of the tables, and also select the name of the script file shown in
figure 6-8. By clicking on the OK button as shown in figure 6-9, the database script
from ContextMap schema will be generated. By clicking on the View Push button the
generated script from the ContextMap schema will be accessed as illustrated in figure
6-10. The Execute button is used to create the relational database schema from a

script if users have chosen the target database as relational.

3 0.8 T8 W E 2 ¢ arial S0 s B S EEERS %
2% oz 24 9500w 23 29 T3 3

{¥iew}

Types
Tables
References

Select gll__i

Deselect ?.llJ

Target DataBas

Export l
DataBase Script Name Save As...

Cancel

HRERERORE
L3

Yiew

NNN Execute

N1

e §
i
k 8 Cancel
o
2
3 —
N 5 OrderiD
2 ShipVia
2 Freight
2 ShipMame
2 ShipAddress
2 ShipCity.
ms,_25feb.sgl { Sheetl 3 Norhwind / 14

Figure 6-7 - Export ContextMap model to XML schema (2)

84

)

» 0 10 » Br U EEEE $%

-

B v~ & x4 WGl o

2l 22 3 i 24 %] 2. 27 2 23 0 H

5 (Viewd

Tupes
Tatles

Relerencox
ble}

RO =>CT% CTam>] . Selocled Table(s):

[5w ¥r_P_Home (2} x|
I adobe Cysenaz

yarad L7150
Eyasss Eatemp
G Anti rug CYunzipped
ycomp2es) INDCRS

CyDocuments and Settngs 1)) ¥eUTermp
vasshels

oMo Roldar

“yold_pard_drive
CAPrEDrivers
CyProgram Fles

Flename: [Morthwind

| Py Hetpork e
. Places Jave as brpe: AML Fiis

Lo Lo
g%
§L

———
2 Sy

/ ovs Z5febisol £ Shestl s NorhWind / [41

Figure 6-8 - Export ContextMap model to XML - choosing file name

85

L V{Urﬂ££$$*&m%

e =]
3 Jview}

Selacted Tatilefz):

Decedlataly = o TR Selact a,lef

Dexelect Al l

BEEEEOEE

1
1 3 OuderDar
. i FewriedDae
! ShipedDane
m 5 Quduis
) : Ship¥ia
2 Frwight
. : . Shiphlams
; k4 Ehipfdoress

Figure 6-9 - Generate script

86

As shown in figure 6-10, users also have the ability to view the generated script.

; B Nwind3 - Notepad
F||e Edit. Wiew. Insert' Fomd rie : Edt Format - View Help

2 (By o fk7am] version="1.0" encoding="UTF-8"7> v
& E} ﬁtéﬁ% <xs:schema xmlns:xs= http //www w3, arg/ZOOl/XMLSchema elementFormpefault="qualified" att o

208 * <xsielement name="Categories">

1] e <xs:complexTyper
2. e ren <Xs:sgguence>
T <xs:element name="CategoryId"»
T <xs:5impleType>
2 <xsirestriction base="xs:integer"»
3
‘ </xs:simpleTypes
5
§ </xs:elements
7
§ I <xs:element name="CategoryName">
9 f : «xs:simpleTyper
© i «sirestriction base="xs:string"»
[N «s:maxLength value="13"/>
2 </xsirestrictions
B
" </xs :5impleType>
3
5 </xs:element>
7
:: <xs:element names="Description” nillable="true"s
<xs:simpleTypes
s <xsrestriction base="xs:string"> -
2 <xs:maxtength value="8000"/>
</xs:restrictions
| </xs:simpleType>
3 </xs:element>
<xsielement names="picture" nillable="true"s
<xs:simpleType>
I <xs:restriction base="xs:string">
i <xs:maxLength value="2147"/> v

CustomerlD
EmployeelD
COrderDate
RequiredDate
ShippedDate
OrdeclD
ShipYia
Freight
Shiphlame

A iwe e lus amion

fo e ine

t
ki
t
t
!

Figure 6-10 - View generated XML schema script

6.3.2 Converting XML to Relational Database Schema

The dialog shown in figure 6-11 is used to convert XML to relational database

schema. The process is done in two steps. The XML=> RDB database schema tab

87

will invoke the dialog shown in figure 6-11. The first tab gives users the ability to
perform reverse engineering process for XML schema to ContextMap representation.
Also, the Select File option will give users the ability to choose the XML file shown
in figure 6-12, and the Go bottom will perform reverse engineering process, and

generate ContextMap schema as in figure 6-13. For this purpose we call the functions

inside CTX2XML module.
NEEAN S B - &z -4 i » 4 e W BIUEEEEF%E D
v 3
122314686 0 o 5 5
T'AAAA 4 4 (Context}
2.¢ ! sampleXML Filesample
3y 1 Starting levels
4 v 1 Ending le
5 v 1 xmltree " " ed 1 RDB Schems »
6:§ 1.1 (XMLS [Nede Number]
i
8 F 12 [XML Nd
g9 [End of
10 N.1:2 [XML Ng
1 ! |End of I
12 Ni1 2 [XML Nd
13 |End of I
14 N:1: 2 [XML Nd
15 [End of Select file
1B N 1 2 [XMLNg R =
17 |End of
18 N1 2 {xML N Ge
13 [End of)
20AAAA 4 2 {Author)
vy vivd Syntax af
Nivvvyv 4 Mapping
B6.5595% 7 »
32261 15]
%
%
27
28
29
0

Figure 6-11 - Dialog to perform reverse engineering process, XML=>CTX

88

{ [Context)

o
RS«

sampleXML Filesample

Starting levels

Ending le

xmitree

[N S S D P P e]

1 [XML So

[End of I

2 [XML Ng

[End of F

2 [XML No

[End of |

2 [XML Ng

[End of I

2 (XML No

[End of

2 XML N

[End of)

2 {Author

Syntax aj

2N RPN

Mapping

- EV- R I S

13

7 {XML Ne AML=>CTX [CTX=>RDB 1

Look in: }j mywork

My Recent
Documents

Deskiop

Select File

Go

l My Documents

My omputex

Klams
@cms_ZSFeb

@Contexti»ora_XmIBCK_Z

fg‘]convertor

ftwind3
Bl

<

My Netwark
Places

L

File hame:

Filesof type:

A Fles 1]
I Bpen as readionly

:J Cpen i .
» Cancel I

Figure 6-12 - Dialog to perform reverse engineering process, select XML file

89

B s%¢

| CONTEG 7wl 0« B IU

L
i
fil

FHES8 &R - @=-4 00
v &

25 228 27 2
4 {Context} o ;
374 XML Source} [Node mark [Nod
220 {XML NOdBS} [Markup]
14 XML Node Markups}
15 {XML Node Properties}
{
{
f
{

80 {XML Node Property Values}

XML Nade Comments}

AML Node Processing Instructions}
Author}

Microsoft Excel

Done! Click <OK:» to continug, .,

Figure 6-13 - Generated ContextMap schema from XML file

CTX=> RDB tab will invoke the dialog shown in figure 6-14. Users can choose either
XML or relational database as the target database in this section and also can choose
the script file or XML file name by clicking on the Save button as in figure 6-15. The

OK button will generate the file based on the target database.
The View File button provides a view of the generated as in figure 6-16.

The Execute button creates the relational database schema, based on the generated

script. For this purpose we call some functions inside CCTXLRR module.

90

EHAE 8B - w400l Hewe ..

HCT > 5

conrEnTe 7 A w10]

213141224 75 2% o 27 2
1B 220 220 {XML Nodes} [Markup |
1 n
i 5 Transform:Semi Structured fo RDB Schema
2
4 XML=5CTY CTR=>R0B |
2
Vi
2
2
2 N
5 Script File Name i |
2
% Target DataBase I ORACLE v]
2
z Cancel
2
2
2 View File
2
; Execute i
2
2 Yo — _— - -
2 n25 xs:keyref
2 n26 xs:selector
2 n27 xs:field
2 n28 xs:element
2 n29 xs:complexType
2 n30 XS'sequence
3 n vesalamant

Figure 6-14 - Generate RDB schema from ContextMap

As it can be seen in figure 6-15 and 6-16 users have the ability to choose and view the

generated script.

91

View . :Insert. Format - Tools Data = Window . Help Tel
18 & B o @ T2 ME couere] 2 e $% E _-h-A
- £
34l 2B 7% LRI hen i W
| 220 220 {ML Nodes) Markup |
7 ",,.,.,,

nl

Ioe=scr c7><=>RDB]

Script File Name

Target DataBase

Save As

My Recent
Documents

{ﬂf«i
"

Desktop

My Documents

?WA‘M

My Computer

__——J My Network

4idkt 4

jKazaa
3Montreal

-

(ZiNew Folder

.-iDocuments and Settings

1iGRASP_extensions

Z3My Downloads

[3PrPDrivers
)Program Fies
ysanaz
35

(Sytemp
Zyunzipped
ZJWINDOWS
Ef,‘]WUTemp
yvaschelp

) ems_25fq Folder is Empty

|
|

File name:

J

Save I :Hb)

R
3

PN IRO NI RN RN RO IR T N I IR I RO IR ING RO RO IR IR RN IR TR R TR TN

Save as ype: | Script Fles [*sal Cancel)
Places ’
n26 - - xs:selector
nz7 xs:field
n28 xs:element
n29 xs:complexType
n30 Xsisequence

Figure 6-15 - Generate RDB schema from ContextMap, Select file name

92

dit Mew Insert - Format

Teols

Su@m o g4 o

Data Window . Help

M riat
.

File . Edit . Format - View: ‘Help

B s %

ak
I

SML=SCTY CTX=>RDB ;

t Gahtéxt

Script File Name

Target DataBase

CREATE TABLE Products (
Product_ID nNumber ,
[Productname varchar2(40) ,
SupplierIip Number,
CategoryID Number -
qQuantitypPerunit varchar2(20) ,
Unitprice Number .
UnitsInstock nNumber,
unitsonorder nNumber,
reorderLevel Number,
Discontinuad varchar2(l)

TABLESPACE System
PCTFREE 10
PCTUSED 60
INITRANS 1
I?AXTRANS 255

Alter Table products add Constraint PK_Products
/

CREATE TABLE orderpetails (
orderID Number
ProductID Number

UnitPrice wumber

Quantity Numher

;
i e cn o Episcount Number)

TABLESPACE System

n23

PCTFREE 10

n24

PCTUSED 40
INITRANS 1

n25

Primary Key (Product_ID)

FMAXTRANS 155
n26 /
n27 y . ; ; -
n28 i ~ S ‘
n29

SR I RS NGRS R R

xs:complexType

Figure 6-16 - View generated RDB schema script

6.4 Architecture

CODAX architecture model is shown in figure 6-17. As can be seen from this
diagram, the source database can be either of the following types: XML, SQL/Server,
Oracle, DB/2, or Access.

The Extract-Map process uses the individual source and maps its metadata
information to the ContextMap. The new mapped metadata information is stored in

the internal ContextMap repository. This repository can be used by the next process

93

(Extract-Transform), located in the target scope. The Extract-Transform process

generates the desired target schema.

The CODAX processing model is illustrated in figure 6-18. It has different modules
to support the schema conversion. “Extract Schema Information” and “Create
ContextMap Representation” are two main modules used for reverse engineering
process; they are used to extract the metadata information from the relational database
or XML schema, and to generate the related “ContextMap Representation”.
“Manipulate ContextMap Repository” is used to modify generated ContextMap
models or perform queries. In order to perform forward engineering “Select Target
Database”, “Retrieve schema from ContextMap representation” and “Transform

Schema to ContextMap Representation”, are used to construct the target schema.

94

Source

< < - >

omde J Usausener) | XML | [acoess

\ Extract-Map /

ContextMap Repository

Extract-Transform

omee J Usausener) | XML | [Taceess
N |/

Figure 6-17 — Architecture of CODAX

95

Figure 6-18 - Process model of CODAX

6.5 CODAX Performance

We assume that we have a main object such as table and objects such as columns,

keys, foreign keys and candidate keys, which are related to the main object.

96

We have tested the proposed approach on the SAMPLE [NSLB] database in DB/2
and XML, and LIBRARY [NSLB] database in DB/2, Access, and XML, and
NorthWind [NSLB] database in DB/2, MS SQL/ Server, XML, and Oracle, as well as

Biblio [NSLB] database in MS SQL/ Server, XML, and Oracle.

Database Database Number of Time to Construct
Name Type Related Objects ContextMap Model
XML 20 15”
Biblio SQL/Server 20 12”
Oracle 20 107
DB/2 38 17"
NorthWind | SQL/Server 38 16”
Oracle 38 18”
XML 38 207
DB/2 45 21"
Library Access 45 24”
XML 45 26”
SAMPLE | DB/2 54 31~
XML 54 33~

Figure 6-19 - The comparison between running time and number of related objects

Testing these databases provided rough feedback and estimates about the relationship
between the number of main objects and related objects, and the time required to
convert it into XML or relational database schema. The result of the comparison

between the run time required and the number of related objects is plotted in figure 6-

97

19. It roughly shows that, as the number of related objects to main object increases,
the run time to extract the related objects and generate the ContextMap model from a
database schema increases as well. Therefore, if the number of related objects
increases, then the time for extracting keys, candidate keys, foreign keys and columns
and constructing the ContextMap will increase.

The job of reconstructing ContextMap from a relational database is undoubtedly
heavy and tedious, especially for a large real application. Particularly, deciding on
candidate and foreign keys is time consuming because it requires analyzing the
related tables and attributes. Users could be relieved from this heavy load by using

CODAX.

98

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have presented a prototype called CODAX for converting relational
databases into corresponding XML schema and vice versa. It includes developed
algorithms for the reverse engineering and schema conversion. These algorithms
handle the mapping of the semantic constraints as much as possible during the
transformation process. We also construct and describe ContextMap schemas and
propose new notations for that purpose.

Furthermore, CODAX can properly and equally deal with 1:1, I:M, and M:N
relationships in the schema conversion. It provides essential functionalities that allow
users to partially convert selected portions of a metadata information conversion.

We illustrated CODAX on an example NorthWind [NSLB] database. We construct
the ContextMap model from the source database using reverse engineering
algorithms, and use the CONTEXT+ environment to query and manipulate the sets
within the map, and successfully transform the ContextMap model into the target

schema.

99

Using the generated ContextMap model from different database schemas helps
analysts and DBAs to:
a) Deal with only one simple notation.
b) Understand the structure of the data sources efficiently and also to apply
the necessary changes accurately.
c) Merge various ContextMap models generated from different database
sources and schemas into one map.
We have tested the proposed approach on the SAMPLE [NSLB] database in DB/2
and XML, and LIBRARY [NSLB] database in DB/2, Access, and XML, and
NorthWind [NSLB] database in DB/2, MS SQL/ Server, XML, and Oracle, as well as
Biblio [NSLB] database in MS SQL/ Server, XML, and Oracle.
We performed the two-way transformation for above mentioned relational database
schemas to XML schema and vice versa for both LIBRARY [NSLB] and NorthWind
[NSLB] databases, doing so we have observed that the generated schemas are
identical.
On the other hand, the users' knowledge could also be involved in this system.
However, compared to reconstructing a ContextMap from scratch, it is almost
impossible to manually reengineer a given relational database into XML or vice
versa. As a result, the human beings mental workload is greatly reduced by using
CODAX.
Further, designers, and DBAs can use CODAX to update and redesign and

understand existing database systems.

100

The CODAX gives users a direct visualization for each phase of the process;

therefore it helps users to easily view the result of each phase.

7.2 Future Work

As far as the future work is concerned, CODAX could be expanded in the following
directions.

We would like to expand and develop new algorithms and interfaces to convert
object oriented databases to XML, and also relational schemas. In order to do so we
need to enrich our notations and define new schemas and algorithms to transform
object oriented databases into ContextMap model.

Also, more research may be conducted to improve the performance of the conversion
from relational database to XML schema and vice versa.

CODAX may be expanded into a Web-based application to be used over the Internet.
In order to do so we first need to implement Context+ environment into a Web-based
application.

Finally we would like to add new features to CODAX, to perform data migration by

implementing some database store procedures.

101

Chapter 8

References

[AIhO3] R. Alhajj. Extracting the extended entity-relationship model from a legacy
relational database. In Information Systems, volume 28, pages 591-618. Elsevier

Science Ltd., 2003.

[BCFK99] G. Booch, M. Christerson, M. Fuchs, and J. Koistinen. UML for XML

Schema Mapping Specification. Rational White Paper, December 1999,

[BSN92] C.Batini, S. Seri, and S. Navathe, Conceptual Database Design: An Entity

Relationship Approach. Benjamin Cummings, Redwood City, 1992.

[CBS96] R. Chiang, T. Barron, and V. Storey. A Framework for the Design and
Evaluation of Reverse Engineering Methods for Relational Databases. In Data &

Knowledge Engineering, volume 21, pages 57-77, 1996.

[CFILOO0] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Schanmugasundaram, E. Shekita,
and S. Subramanian. XPERATO: Publishing object relational data as XML. In proc.

of Int'l Workshop on the Web and Databases (WebDB), pages 105-110, 2000.

102

[CO1] D. Carlson. Modeling XML Applications with UML. Addison-Wesley, 2001.

[CX00] J. Cheng and J. Xu. XML and DB2. In Proc. of the 16th IEEE Int. Conf. on

Data Engineering, pages 569-573, 2000.

[DA87] K. Davis, and A. Arora, Converting a Relational Database Model into an
Entity-Relationship Model. In Proc of the 6th International Conference on Entity-

Relationship Approach, pages 243-257, 1987.

[DHWO1] D. Draper, A.Y. Halevy, and D.S. Weld. The nimble XML data integration

system. In Proc of ICDE, pages 155-160, 2001.

[DW00] D. Lee, W. Chu, Constraints-Preserving Transformation from XML
Document Type Definition to Relational Schema, ER 2000 19th International

Conference on Conceptual Modeling, volume 1920, October 2000.

[FPBO1] J. Fong, F. Pang, and C. Bloor, Converting relational database into XML
document. In 12th International Conference on Data Engineering, pages 61-65, IEEE

Computer Society Press, 2001.

[J94] P. Johannesson, A Method for Transforming Relational Schemas into
Conceptual Schemas. In Proc. of the I0th International Conference on Data

Engineering, pages 190-201, IEEE Computer Society Press, 1994.

[KLO1] C. Kleiner and U. W. Lipeck, Automatic generation of XML DTDs from
conceptual database schemas, In Proc. of the Annual Conference of the German and

Austrian Computer Societies in Web-Databases, 2001.

103

[LSO1] Eric Simon, Le Select, a Middleware System that Eases the Publication of
Scientific Data Sets and Programs. Workshop on Information Integration on the

Web,2001.

[LMCCO1] D. Lee, M. Mani, F. Chiu, and W. W. Chu, Nesting based relational-to-
XML schema translation. In Int'l Workshop on the Web and Databases (WebDB),

pages 61-66, 2001.

[LMCCO02] D. Lee, M. Mani, F. Chiu, and W. W. Chu. , Translating relational
schemas to XML schemas using semantic constraints. In 1 1™ ACM Int'l Conf. on

Information and Knowledge Management (CIKM), pages 282-291, 2002.

[MFKXO00] I. Manolescu, D. Florescu, D. Kossmann, F. Xhumari, and D. Olteanu.

Agora: Living with XML and relational. In The VLDB Journal, pages 623-626, 2000.

[MLMO1b] M. Mani, D. Lee, and R. R. Muntz., Semantic data modeling using XML

schemas. In 20" Int'l Conf. on Conceptual Modeling (ER), pages 149-163, 2001.

[MLMOla] M. Mani, D. Lee, and R. R. Muntz., Taxonomy of XML schema language
using formal language theory. In Philip S. Yu and Arbee S. P. Chen, editors, Extreme

Markup Languages. IEEE Computer Society Press, 2001.

[MM90] V. Markowitz, and J. Makowsky, Identifying Extended Entity-Relationship
Object Structures in Relational Schemas. In IEEE transactions on Software

Engineering, Pages 777-790, 1990.

104

[NA87] S. Navathe, and A. Awong, Abstracting Relational and Hierarchical Data
with a Semantic Data Model. In Proc of the 6th International Conference on the

Entity-Relationship Approach, pages 277-305, 1987.

[NSLB] Northwind, Sample, Library and Biblio are trademarks of Microsoft Corp.

[PB94] W. Premerlani, and M. Blaha, An Approach for Reverse Engineering of

Relational Databases, volume 37, pages 42-49, 1994.

[PTB96] J-M. Petit, F. Toumani, J-F. Boulicaut, and J. Koulomdjian, Towards the
Reverse Engineering of Denormalized Relational Databases. In Proc of the 12th

International Conference on Data engineering, pages 218-227, 1996.

[S98] C. Soutou, Relational Database Reverse Engineering: Algorithms to extract
cardinality Constraints, in Data & Knowledge Engineering, Volume 28, pages 161-

207, 1998.

[SD02] Sihem AmerYahia, Divesh Srivastava, A mapping schema and interface for

XML stores, Pages 23 - 30, 2002.

[SSBO1] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H.
Pirahesh, and B. Reinwald. Efficiently publishing relational data as XML documents.

The VLDB Journal, Pages133-154, 2001.

[WLABO4] C. Wang, A. Lo, R. Alhajj, and K. Barker. Converting legacy relational
database into XML database through reverse engineering. In 6" International

Conference on Enterprise Information Systems (ICEIS), pages 216-221, 2004.

105

[WMI99] Wojciech M. Jaworski, et al. Representing processes, schemata and

templates with jMaps, Semiotica 125(1/3), Pages 229-47, 1999.

[WMIJ95] Wojciech M. Jaworski, Conceptual Spreadsheets for Data and Knowledge
Warehousing, ATW95, University of New Hampshire, Durham, New Hampshire, June

1995.

[WMJA94] Wojciech M. Jaworski, Michailidis A. A., Recovery and Enhancement
of System Patterns: InfoSchemata and InfoMaps, University of Massachusetts -

Lowell, Lowel Massachusetts, June 1994.

[WMIKO2] Wojciech M. Jaworski, Kang Zhou, CONTEXT+: Development
Environment for 3P-able Context Maps, Major Report Concordia Univesity, July

2002.

[XRO2] X. Zhang et al. Rainbow: Mapping-Driven XQuery Processing System, In

Proc. of the ACM SIGMOD Conf. on Management of Data, page 614, 2002.

106

Appendices

Appendix-A: Database Schema Examples

Figure A-1 illustrates the Flat XML Schema Output for the NorthWind Database.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="Categories">

<xs:complexType>
<xs:sequence>
<xs:element name="CategorylD">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>

<xs:element name="CategoryName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="15"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element ref="Products" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_Categories">
<xs:selector xpath="."/>
<xs:field xpath="CategoryID"/>
</xs:key>

<xs:keyref name="FK_Products2" refer="PK_Categories">
<xs:selector xpath="Products"/>
<xs:field xpath="CategoryID"/>
</xs:keyref>
</xs:element>
<xs:element name="Customers">
<xs:complexType>
<Xxs:sequence>
<xs:element name="CustomerID">
<xs:simpleType>

107

<xs:restriction base="xs:string">
<xs:maxLength value="5"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="CompanyName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="40"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ContactName" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="30"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ContactTitle" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="30"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Address" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="60"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="City" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="15"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:element>
<xs:element ref="Orders" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_Customers">
<xs:selector xpath="."/>
<xs:field xpath="CustomerID"/>
</xs:key>
<xs:keyref name="FK_Orders1" refer="PK_Customers">
<xs:selector xpath="Orders"/>
<xs:field xpath="CustomerID"/>
</xs:keyref>
</xs:element>
<xs:element name="Employees">
<xs:complexType>
<xs:sequence>
<xs:element name="EmployeelD">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>

108

</xs:element>
<xs:element name="LastName ">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="20"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="FirstName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="10"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Title" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="30"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="BirthDate" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="11"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="HireDate" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="11"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element ref="Orders" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_Employees">
<xs:selector xpath="."/>
<xs:field xpath="EmployeelD"/>
</xs:key>
<xs:keyref name="FK_Orders2" refer="PK_Employees">
<xs:selector xpath="Orders"/>
<xs:field xpath="EmployeelD"/>
</xs:keyref>
</xs:element>
<xs:element name="OrderDetails">
<xs:complexType>
<Xs:sequence>
<xs:element name="OrderID">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="ProductID">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>

109

</xs:element>
<xs:element name="UnitPrice">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="Quantity">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="Discount">
<xs:simpleType>
<xs:restriction base="xs:integer"/>

</xs:element>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_OrderDetails">
<xs:selector xpath="."/>
<xs:field xpath="OrderID"/>
<xs:field xpath="ProductID"/>
</xs:key>
</xs:element>
<xs:element name="Orders">
<xs:complexType>
<xs:sequence>
<xs:element name="OrderID">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="CustomerID" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="5"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="EmployeelD" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="OrderDate" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="11"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="RequiredDate" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="11"/>
</xs:restriction>
</xs:simpleType>

110

</xs:element>

<xs:element ref="OrderDetails" minOccurs="0"
maxQOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_Orders">
<xs:selector xpath="."/>
<xs:field xpath="OrderID"/>
</xs:key>
<xs:keyref name="FK_OrderDetails1" refer="PK_Orders">
<xs:selector xpath="OrderDetails"/>
<xs:field xpath="OrderID"/>
</xs:keyref>
</xs:element>
<xs:element name="Products">
<xs:complexType>
<xs:sequence>
<xs:element name="ProductID">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="ProductName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="40"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="SupplierID" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="CategoryID" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="QuantityPerUnit" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="20"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="UnitPrice” nillable="true">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="UnitsInStock" nillable="true">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>

111

<xs:element ref="OrderDetails" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_Products">
<xs:selector xpath="."/>
<xs:field xpath="ProductID"/>
</xs:key>
<xs:keyref name="FK_OrderDetails2" refer="PK_Products">
<xs:selector xpath="OrderDetails"/>
<xs:field xpath="ProductID"/>
</xs:keyref>
</xs:element>
<xs:element name="Shippers">
<xs:complexType>
<xs:sequence>
<xs:element name="ShipperID">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="CompanyName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="40"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element ref="Orders" minOccurs="0" maxQOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:key name="PK_Shippers">
<xs:selector xpath="."/>
<xs:field xpath="ShipperID"/>
</xs:key>
<xs:keyref name="FK_Orders3" refer="PK_Shippers">
<xs:selector xpath="Orders"/>
<xs:field xpath="ShipperID"/>
</xs:keyref>
</xs:element>
<xs:element name="Suppliers">
<xs:complexType>
<xs:sequence>
<xs:element name="SupplierID">
<xs:simpleType>
<xs:restriction base="xs:integer">

</xs:simpleType>
</xs:element>
<xs:element name="CompanyName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="40"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element ref="Products" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

112

<xs:key name="PK_Suppliers">
<xs:selector xpath="."/>
<xs:field xpath="SupplierID"/>

</xs:key>

<xs:keyref name="FK_Products1" refer="PK_Suppliers">
<xs:selector xpath="Products"/>
<xs:field xpath="SupplierID"/>

</xs:keyref>

</xs:element>
</xs:schema>

Figure A-1 - XML Schema for the NorthWind Database

Figure A-2 illustrates the Oracle Relational Schema for the NorthWind [NSLB]
database.

CREATE TABLE Products (
Product_ID Number,
ProductName varchar2(40) ,
SupplierID Number ,
CategorylD Number,
QuantityPerUnit varchar2(20),
UnitPrice Number ,
UnitsInStock Number ,
UnitsOnOrder Number ,
ReorderLevel Number ,
Discontinued varchar2(1)

)

TABLESPACE System
PCTFREE 10

PCTUSED 60

INITRANS 1

MAXTRANS 255

/

Alter Table Products Add Constraint PK_Products Primary Key (
Product_ID)
/

CREATE TABLE OrderDetails (
OrderID Number ,
ProductID Number ,
UnitPrice Number ,
Quantity Number ,
Discount Number

)

TABLESPACE System
PCTFREE 10
PCTUSED 40
INITRANS 1
MAXTRANS 155

/

Alter Table OrderDetails Add Constraint PK_OrderDetails Primary Key (
OrderID , ProductID)
/

CREATE TABLE Orders (

113

OrderID Number ,
CustomerID Number ,
EmployeelD Number ,
OrderDate Date ,
RequiredDate Date ,
ShippedDate Date,
RequiredDate Date ,
ShipVia Number ,

Freight Number ,
ShipName varchar2(40),
ShipAddress varchar2(60),
ShipCity varchar2(15),
ShipRegion varchar2(15),
ShipPostalCode varchar2(10),
ShipCountry varchar2(15)

)

TABLESPACE User_Data
PCTFREE 10

PCTUSED 50

INITRANS 1
MAXTRANS 200

/

Alter Table Orders Add Constraint PK_Orders Primary Key (OrderID)
/

CREATE TABLE Customers (
CustomerID Number ,
CompanyName varchar2(40) ,
ContactName varchar2(30),
ContactTitle varchar2(30),
Address varchar2(60),

City varchar2(15),

Region varchar2(15),
PostalCode varchar2(10) ,
Country varchar2(15) ,

Phone varchar2(24),

Fax varchar2(24)

)

TABLESPACE User_Data
PCTFREE 10

PCTUSED 70

INITRANS 1

MAXTRANS 355

/

Alter Table Customers Add Constraint PK_Customers Primary Key (
CustomerID)
/

CREATE TABLE Suppliers (
Supplier]ID Number,
CompanyName varchar2(40) ,
ContactName varchar2(30) ,
ContactTitle varchar2(30) ,
Address varchar2(60) ,
City varchar2(15) ,
Region varchar2(15),
PostalCode varchar2(10),
Country varchar2(15),
Phone varchar2(24) ,

Fax varchar2(24) ,

114

HomePage varchar2(500)

)

TABLESPACE User_Data
PCTFREE 10

PCTUSED 50

INITRANS 1
MAXTRANS 200

/

Alter Table Suppliers Add Constraint PK_Suppliers Primary Key (
SupplierID)
/

CREATE TABLE Categories (
CategoryIlD Number ,
CategoryName varchar2(500),
Description varchar2(4000),
Picture varchar2(4000)

)

TABLESPACE User_Data
PCTFREE 10

PCTUSED 50

INITRANS 1

MAXTRANS 200

/

Alter Table Categories Add Constraint PK_Categories Primary Key (
CategorylD)

CREATE TABLE Employees (
EmployeeID Number,
LastName varchar2(20),
FirstName varchar2(10),
Title varchar2(30),
TitleOfCourtesy varchar2(25),
BirthDate Date ,

HireDate Date,

Address varchar2(60) ,
City varchar2(15),
Region varchar2(15),
PostalCode varchar2(10) ,
Country varchar2(15),
HomePhone varchar2(24),
Extension varchar2(4),
Photo varchar2(4000) ,
Notes varchar2(4000) ,
ReportsTo Number

)

TABLESPACE System
PCTFREE 10

PCTUSED 60

INITRANS 1
MAXTRANS 255

/

Alter Table Employees Add Constraint PK_Employees Primary Key (
EmployeelD)

CREATE TABLE Shippers (
ShipperID Number ,
CompanyName varchar2(40),
Phone varchar2(24)

115

)

TABLESPACE System
PCTFREE 10
PCTUSED 60
INITRANS 1
MAXTRANS 255

/

Alter Table Shippers Add Constraint PK_Shippers Primary Key (
ShipperID)

Alter Table OrderDetails Add Constraint FK_OrderDetails1 Foreign Key
(OrderID) References Orders (OrderID)

/

Alter Table OrderDetails Add Constraint FK_OrderDetails2 Foreign Key
(ProductID) References Products (ProductID)

/

Alter Table Orders Add Constraint FK_Ordersl Foreign Key (
CustomerID) References Customers (CustomerID)

/

Alter Table Orders Add Constraint FK_Orders2 Foreign Key (
EmployeelD) References Employees (EmployeelD)
/

Alter Table Orders Add Constraint FK_Orders3 Foreign Key (ShipperID
) References Shippers (ShipperID)
/

Alter Table Products Add Constraint FK_Productsl Foreign Key (
SupplierID) References Suppliers (SupplierID)
/

Alter Table Products Add Constraint FK_Products2 Foreign Key (
CategorylID) References Categories (CategorylD)
/

Figure A-2 - Oracle relational schema for the NorthWind database

116

Appendix-B: CODAX Implementation Specification

The following figure lists all forms and their corresponding classes.

Form Name

Related Classes

Calling Forms

FrmMainRDBtoXML

Mstartup

FrmCCTXLRR

Mshow

FrmCTX2XML

FrmCCTXLRR

Mshow

MimportDBWKS

MGeneralFunctions

MGeneralExcelFunctions

MApplyColor

MCardinality

MGeneral CTXFunctions

MGlobals

MGroupMap

FrmCTX2XML

Mshow

SqlTable

MexportDB

MGeneralFunctions

FrmMainXMLtoRDB

MStartup

FrmCCTXXML

Mshow

FrmCTX2RDB

FrmCCTXXML

Mshow

MxmlToCtxMap

MGeneralFunctions

MGeneralExcelFunctions

MApplyColor

117

MCardinality

MGeneral CTXFunctions

MGlobals

MGroupMap

Mshow

SqlTable

FrmCTX2RDB
MexportRDB

MGeneralFunctions

Figure A-3 - User interface and class specification

118

Appendix-C: ContextMap Terminology and Notation

C-1: ContextMap Notation

ContextMaps notation is illustrated in the following figure [WMJA94]:

Category Name Description

A (A)ggregation of columns - context tuples
E - (E)dge properties
F - (F)low graph nodes
L - (L)flow graph with cycles
N - (N)ode properties
v - (V)alue

Notation of Set Roles S - (S)equence
G - (G)uard
R - (R)esource
0] - (O)bject
| - (I)dentifier
X - Cartesian Product
? - unknown

Notation of Set Member | v - marker

Roles ? - unknown
m - (m)iddle of 'arrow’
f - tail of 'arrow'
t - head of "arrow'
b - both f/t
F - (f)rom node

119

Category

Name

Description

- (t)o node

- (Doop

- f/t - both nodes component

- (firom node component

- (t)o node component

- ()oop node component

- yes

- otherwise

- (r)ead

- (u)pdate

- (d)elete

- component of Cartesian Product

- concurrence

- (J)oin from fork

- (Key

C-2: 4P-able Capability

4P-able notation is a technology for representing enterprise architectures, static and
dynamic structures, templates, and schemas for system processes and artifacts. The
library of this notation acts as a knowledge repository. The most important character

of ContextMaps is 4P-able notation, can be illustrated as the following formula

[WMIJKO2]:

Figure A-4 - ContextMaps notation

120

4P-able = Plug-able + Process-able + Pattern search-able + Perform-able

e Plug-able: Merge-able

ContextMap is a collection of different pieces of knowledge connected together in
a logical way. Many scattered elements and relationships among the concepts in
software engineering process can be integrated to one ContextMap, so that a
formatted and clear view is presented for users. Based on ContextMap
technology, separate knowledge can be merged into one view horizontally and
vertically. The “Join Maps” function of the CONTEXT+ was developed to meet
this requircment.

e Process-able: Create-able, Read-able, Update-able, Delete-able

By using different syntax in the spreadsheet, it is feasible and convenient to
describe and process conceptual knowledge. The letters “c”, “r”, “u”, and “d”
stand for “create”, “read”, “update”, and “delete” in software engineering process
correspondingly.

e Pattern able: Search-able, Navigate-able

The ContextMap is a kind of notational technology. This notational pattern
strongly supports search and navigation. With the use of spreadsheet structure, a
large amount of data can be organized logically. One can simplify the procedure
in processing ContextMaps. by using the custom-make Query of the
CONTEXTH+; it is convenient to get the specific knowledge that users expect to

search from the map.

e Perform-able: Execute-able, Run-able

121

A ContextMap consist of a notational map on the left side and the State, Precondition,
Action, Data Object etc. on the right side. Using the map, the performance tools of
ContextMap execute the source code in the same way as a traditional program is

executed, and displays the output.

C-3: Context+ Functionalities

The main functionalities of the Context+ are listed below:

Mode Section Functionality

o ‘“Visible Map” - is used to display the map without hidden parts.

o “Select Sets” - is used to select the specific sets for viewing, and it will
display the map only with selected sets.

o “Select Maps” - is used to display all the available worksheets in the current
workbook and have some of these worksheets perform “By Color” the
operation simultaneously. The result of selected maps will be opened in the
new sheet with the sheet name “original sheet name + Result”.

e “Join Maps” - is used to merge one or more selected maps together in one
map. The criteria: comparing the values of concept column within each
selected worksheet, join the columns having the same values of concept. Or
add additional rows with different values of concept. Then save the result into
a separate sheet named “Merge Result”. This function can be implemented
independently.

e “Add Atom” - is used to insert a Row into all spreadsheets of the Active

Workbook.

122

Query Section Functionality

“By Color” - this button will be implemented with one of ‘AND’, ‘XOR’,

‘OR’, ‘NOT’ operations based on the selected predefined - query. The
predefined - query should be marked in three places in the Context Maps.
“AND?” - in order to perform an “AND” query, select at least two cells from
different rows to generate corresponding map, which remains all the not
empty columns within these rows.

“XOR?” - in order to perform an “XOR” query, select at least two or multiple
cells from different rows to generate corresponding map, which remains the
exclusive not empty columns within these rows.

“OR” - in order to perform an “OR” query, select at least one or multiple
cells from different rows to generate corresponding map, which retains the
each of the not empty columns from within these rows.

“NOT?” - in order to perform a “NOT” query, select only one cell to retrieve

negation columns and generate corresponding map.

Output Section Functionality

“Schema” - is used to extract the schema from the map.

“Cardinality” - is used to display the number of non empty roles of each row
and the number of sub-concept values of each concept set. It helps us to see
the complexity of each set.

“ApplyColor” - is used to apply a different color in each cell of the

spreadsheet based on the following criteria.

123

o “Map”, “Graph”,and "Map & Graph” - is used to present views, all
outputs are in ContextMap formats. But graph format is recommended for
future work.

Output Section Functionality

e “Group (Row and Col)” - is used to view the whole map in a grouped way,
each range of group is based on each range of set.

e “Ungroup (Row and Col)”- is used to view the whole map in an ungrouped
way.

e “Help”- is used to display help.

124

