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Abstract

Medical Image Analysis and Visualization using
Geometric Deformable Model

Shuo Li, Ph.D Candidate.
Concordia University, 2006

Medical image analysis and visualization has become increasingly important in com-
puter aided medicine. Throughout the history of medicine, advances in imaging have
led to great progress in medical interventions.

The thesis proposes, develops and evaluates methods for automated analysis,
visualization and quantification of medical images. The focus of this thesis is to
perform both theoretical and practical investigations into medical image analysis
and visualization to overcome current challenges in the field.

The theoretical framework for fulfilling above goals is based on segmentation
using the geometric deformable model and some new advances: support vector ma-
chine and principal component analysis from the pattern recognition and machine
learning. The medical applications of the above theoretical framework include au-
tomated computer aided analysis of dental X-ray image and chest computer tomog-
raphy volumetric image reconstruction and visualization.

There are three main contributions in the thesis:

1. We propose and develop two faster and more robust segmentation methods
which have the potential to be used in clinical and hospital environments.

2. We propose and develop the first dental X-ray image analysis and visualization
system. It is able to analyze the dental X-ray image, extract the features and
then recognize the patterns of certain diseases such as root decay and areas of
bone loss. It has potential to be applied in the dental X-ray machine which
has attracted interest from industry.

3. We propose and develop an efficient reconstruction and visualization frame-
work. This method can reconstruct and visualize very large medical datasets

with less time and less data volume.
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Notations

Energy function

Scalar potential function
Mass density

Damping density

Two dimensional space
Three dimensional space

A bounded open subset of R? or &3
Lipschitz function

2D curve or 3D surface
Time

Speed function of level set
Divergence operator

An initial level set function
Curvature

Stopping term

Standard deviation
Gradient

Partial derivative

Intensity value of a voxel or pixel

Probability density function to be estimated inside

Probability density function to be estimated outside

Summation function
Area function

Length function



Dirac delta function

Surface area element

Heaviside function

Exterior normal to the boundary
normal derivative of ¢ at the boundary
Hessian of image

Mean grey value of the region

Original image

Sign function

Step size
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Chapter 1
Introduction

“Don’t be so humble - you are not that great.”

- Golda Meir (1898-1978) to a visiting diplomat

Throughout the history of medicine, advances in imaging have led to expedite
progress in medical interventions. Rapid changes in imaging procedures, such as
digital radiography, virtual endoscopy, spiral Computed Tomography and Magnetic
Resonance Image, have resulted in an active partnership between clinicians and
information technologies. Accordingly, computer techniques play an increasingly
important role in the medical imaging with computer aided medical image analysis

and visualization has become one of the most important active research fields.

1.1 Background

Medical imaging provides an efficient visualization of the body’s interior without
painful and potentially risky surgery. It is a group of non-invasive techniques, pio-
neered by Wilhelm Rontgen, for the visual probing of the human body. X-rays are
electromagnetic waves of short wavelength, capable of penetrating a certain thick-
ness of matter. Medical X-rays are produced by a stream of those fast electrons not
absorbed by the matter slowing down by a metal plate.

The left image in the Fig. 1 shows the first radiograph of a hand made by Wil-
helm Réntgen on Dec. 22, 1895 [57]. Since then there has been a great advance
in medical imaging as shown in the Fig. 1. The right image in Fig. 1, taken in
1995 is “100 years better” than the left image. The development of the medical



imaging has provided increasingly clear images. On the other hand, in the last
decade, many new modalities such as virtual endoscopy, spiral Computed Tomog-
raphy, interventional Magnetic Resonance and functional Magnetic Resonance have
also successfully demonstrated their diagnostic values. At the same time, the high
volume of the information provided by those new modalities requires assistance

from the information technology field to reduce the workload of the doctors and

radiologists.

Figure 1: Changes over 100 years [57]. Left : first radiograph taken in year 1895 by
W. C. Rontgen. Right: X-ray taken in 1995.

Based on the development of medical imaging, the analysis and visualization of
medical images has been woven into the fabric of the pattern analysis and machine
intelligence community and the computer graphics community since the very be-
ginning. Initially, medical image analysis and visualization were seen as applying
existing algorithms in the computer techniques to the medical dataset. However,
over the last two to three decades, the unique nature of the problems presented
within this area of study, such as the types of image information (image modality)

that are acquired, fully three-dimensional and four-dimensional (3D+time) image



set, the nonrigid nature of object motion and deformation, and the statistical vari-
ation of both the underlying normal and abnormal ground truth, have led to the

development of a new discipline in its own right.

1.2 Motivation and Objectives

As described above, with rapid advances in medical imaging modalities and com-
puter techniques, medical image analysis and visualization has become very im-
portant in medical area. After decades of development, although modern image
processing and visualization have provided very accurate and high quality 2D, 3D
and 4D views of the anatomical structure, their utilization for accurate and efficient
analysis and visualization is still limited.

The focus of this thesis is to perform both theoretical and practical investiga-
tions into medical image analysis and visualization. To meet the current challenges,
we research and develop the new advances primarily in Image Processing, Pattern
Recognition, Graphics and Computational Geometry to explore the possibility to

combine the strength of novel methods as described in the Fig. 2.

Figure 2: Methodologies involved in the thesis.

Based on the review and research of those new techniques, the road map for this
thesis is proposed in Fig. 3. As shown in the road map, the level set based geometric
deformable model (GDM) plays a important role in this thesis. The GDM will be

first researched, developed and improved to achieve a fast, accurate and robust



segmentation. Then the segmentation will be used for visualization and computer

aided diagnosis.

Figure 3: Road map of the thesis.

In essence, the aim of this thesis is to make the quality and speed of medical

image analysis and visualization more suitable for clinical settings.

1.2.1 Objective One

The first objective of this thesis is to research and develop general automatic seg-
mentation using GDM, for the clinical environment. The speed and efficiency of the
algorithm is one of the main focuses.

Image segmentation has always been a critical component in medical imagery
since it assists in medical diagnoses and visualization. But in medical imagery,
image segmentation is more challenging compared to other imaging fields. This is
primarily due to the large variability in topologies, complexity of medical structures,
several kinds of spurious artifacts and restrictive scanning methods. This is espe-
cially true for volumetric medical images where a large amount of data is coupled
with complicated 2D/3D medical structures. It is even worse for 4D medical im-
age data. Among all types of image segmentation, clinical image segmentation is
extremely challenging due to its demand on speed and accuracy.

One of latest techniques in segmentation is based on the class of GDM, referred
as “level set” or “geodesic active contours/surfaces”. It combines level set with a

deformable model. The application of the model in medical image segmentation



has become very popular because of its ability to capture the topology of shapes
in medical imagery. In this thesis, “geometric deformable model”, “level set” and
“geometric level set” will be used interchangeably.

Although popular, the level set algorithms are not generally suitable for clinical

medical image processing due to following reasons:

1. Level set is an iteration based numerical algorithm with high computational
cost.

2. Level set requires complicated settings for parameters. These settings depend
on the type and content of the image and these may vary from image to image.

3. As a numerical solution of partial differential equation (PDE), level set is

sensitive to the placement of initial contours:

(a) The running time of level set method heavily relies on the position and
size of initial curves and complexity of objects;

(b) In some images, coupled level sets do not converge for some initial curves.

1.2.2 Objective Two

To test the applicability of the GDM to medical image analysis, an application in
the computer aided diagnosis domain will be explored. Due to the fact that digital
dental X-ray systems are replacing the traditional dental X-ray (film based) systems,
which indicates an opportunity to apply computer aided dental X-ray analysis and
diagnosis, one of our main objectives is researching and developing a computer aided
dental X-ray analysis system using the GDM. A efficient computer aided dental X-
ray system is able to provide great assistance to radiologists and dentists.

However it is a nontrivial work to develop such a system due to the following
reasons:

1. Among all the image modalities, X-ray is a particularly noisy image modality.

2. There are great contrast and intensity changes on the dental X-rays. Even for

the same person using the same machine, images taken within a short interval

could have very large contrast and intensity changes.

3. In addition, teeth have very complicated topology which is sometime coupled
with artificial filling.

4. Moreover, the orientation of the teeth is arbitrary in the real clinical setting,

which challenges the automatic analysis system.



1.2.3 Objective Three

Volumetric medical image reconstruction is able to reconstruct the structured data
from unstructured 3D dataset. It has very wide application in image modeling,
4D image tracking and computer aided diagnosis and surgery. To demonstrate the
ability of the GDM on enhancing medical image reconstruction and visualization, a
volumetric medical image reconstruction and visualization system using GDM will
also be explored.

It is a very challenging problem since it is usually handles a large amount of

information and more importantly it has the following challenges:

1. Unlike those data obtained from laser scanner and so on, as typical in com-
puter graphics, which usually only contain a couple of objects, medical volume
is usually consisted of multiple organs. Moreover these organs are usually cou-
pled with complicated structure and topology which pose great challenges to
the speed and efficiency of reconstruction.

2. Medical data usually have high noise, compared to the dataset obtained from
optical scanners and so on. After reconstruction, the data volume is even
greater.

3. Medical data usually have very close distribution of intensity value and the
boundary between each object is not very clear. This is mainly due to the
technique limit of the scanning techniques and the complicity of human organs.

This poses great challenges to the simplification.

1.3 Thesis Structure

The layout of the remainder of the thesis is as follows:

1. Chapter 2 presents an introduction to level sets and related background
on medical imagery, medical image segmentation using level set and support
vector machine.

2. Chapter 3 presents our methodology for clinical level set segmentation. The
results have been published in [36, 37]. It addresses the “Segmentation” bubble
in the Fig. 3.

3. Chapter 4 presents a fast segmentation framework using a pattern classifier

trained by level set segmentation. The results have been published in 39, 41].

6



The work addresses the “Segmentation” bubble in the Fig. 3 with a slight
different aspect from the above work described in Chapter 4. It focuses on the
fast segmentation using a pattern classifier trained by a proposed pathological

level set segmentation.

. Chapter 5 presents our innovative exploration towards automatic dental X-
ray computer aided diagnosis. Some preliminary results have been published
in [38, 40, 39, 41, 42, 43]. It is the first such a work to the best of our knowledge.
The method is able to detect the early indication of bone loss and root decay,
which may be treated thus avoiding more serious and expensive procedures in
the future. It addresses the “CAD” and “Teeth X-ray System” bubbles in the
Fig. 3.

. Chapter 6 presents our methodology on clinical volume reconstruction and
visualization method. This work is done in collaboration with other fellow
Ph.d student, Chao Jin, with the author of the thesis leading the research.
Some preliminary results have been published in [31, 44]. The visualization
part is implemented by Chao Jin. The work addresses the “level set” and

“visualization” bubbles in the Fig. 3.



Chapter 2
Background Review

“It is my inner conviction that the development of science seeks in the main to satisfy the longing

for pure knowledge... Discovery is really not a creative act”

— Albert Einstein (1879-1955)

2.1 Introduction

In this chapter, related background information would be reviewed. We would first
give a historical perspective on the development of the medical imagery. And then
a historical perspective of the development of the segmentation especially the GDM
based segmentation would be given. Due to the fact that SVM plays an important
role in the thesis, a brief introduction of SVM is also given in this chapter. All these

background review provides a complete context for the thesis.

2.2 Medical Imaging

Here we provide a brief historical perspective of the development of medical imagery.

2.2.1 X-ray

X-ray was discovered in 1895 by the German Physicist Wilhelm Rontgen. The
discovery of X-rays announced a new era in the practice of medicine.
However conventional X-ray imaging techniques have several limitations, espe-

cially the following two:



1. Small characteristic differences (1% to 2%) in X-ray attenuation by various
body tissues are not detectable in recordings on X-ray film or fluoroscopic

screens.

2. Much detail is lost in the radiographic process due to superposition of three-

dimensional structural information onto a two-dimensional detector.

2.2.2 X-ray Computer Tomography (CT)

To overcome the problems in the traditional X-ray systems, CT imaging (also called
as CAT scanning for Computed Axial Tomography) was invented in 1972 by Godfrey
Hounsfield in England [57, 83]. The word “tomography” comes from the Greek words
“tomeo”, which means “cut” and “graphia” means “describing”. CT scanning is
based upon X-ray attenuation measurement at object’s slices. The volume data is
reconstructed and filtered from these slices. The reconstruction is made possible by
the digital computer. The basic algorithm involved in the CT image reconstruction
is based on theories proposed by the scientist Radon [56] in the late 1917’s.
Originally, Hounsfield used gamma rays (and later X-rays) and a detector mounted
on a special rotating frame together with a computer to create detailed cross sec-
tional images of objects. The first system took hours to acquire a single slice. And
the reconstruction took more than 24 hours. Current CT systems can acquire a
single image in less than one second and the reconstruction can be done instantly.
CT has a revolutionary impact on diagnostic imaging since it eliminates or
greatly minimizes the problem of superposition and differential attenuation men-
tioned above. CT provides unambiguous images of the cross-sectional dimensions of

the body. More importantly it provides an excellent discrimination of soft tissues.

2.2.3 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is based on the magnetic properties of atoms. An
atomic nucleus rotates around its rotary axis (spin), and this produces a small
magnetic field for nucleus with odd proton number. The Magnetic Resonance (MR)
principle was discovered by Bloch and Purcell independently in 1946. Both were
awarded the Nobel Prize in physics in 1952 [1, 2].

MRI was initially researched in the early 1970s and the first MRI prototype was



tested on clinical patients in 1980. It was approved for commercial, clinical avail-
ability by the Food and Drug Administration (FDA) in 1984 and its use throughout
the U.S. has spread rapidly since then [1].

Although compared to the CT images, MRI usually is more noisy, MRI has
revolutionized the standard of medical image diagnosis systems, largely because it
provides highly detailed three-dimensional images of the human anatomy. Recently
MRI has been used to acquire 4D data. With the advances in the computer and
magnetic technology, the image quality of MRI has improved in the past decade, and
a variety of different techniques are used in MRI applications today. The following
are some of the commonly used techniques of MRI in modern medical diagnostics:
functional MRI, interventional MRI, MR Angiography, MR Microscopy, MR Spec-

troscopy.

functional MRI (fMRI)

Functional MRI utilizes echo-planar imaging and involves very rapid scans of ap-
proximately 20 ms or less. It has been widely used in the brain research. It is able
to detect the increase in the blood flow to the local vasculature that accompanies
neural activity in the brain. Therefore activity in the patients brain, which is in-
duced by some form of stimulation, either directly through the senses or by invoking
some form of thought, such as memory can be easily captured. Sometimes chemical
agents are injected into the blood before stimulation to increase the contrast in the
MR images.
The main advantages to use fMRI as a technique to image brain activity include:
1. The scan does not require injections of radioactive isotopes. Therefore it more
safer.
2. The scan is very fast. Therefore the blood flow increase, which indicates the
brain activities, can be captured. Therefore it has been used widely in the

research.

interventional MRI (iMRI)

iMRI defines the intraoperative application of MRI, which enables real-time scan-
ning. Virtual real-time feedback provided by the iMRI allows the doctor to pre-

cisely localize brain and spinal lesions at the time of surgery thus facilitating more
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accurate surgical procedure. This characteristic enables iMRI to be used in the fol-
lowing areas: planning and visualization, guidance and navigation, and monitoring

the therapy.

MR Angiography (MRA)

MRI of the blood vessels is called MR Angiography. It utilizes MR technology to
detect, diagnose and aid the treatment of heart disorders, stroke and blood vessel
diseases. MRA produces images of blood flow within the circulatory system. With
MRA, detailed images of blood vessels and blood flow are obtained without having
to insert a catheter directly into the vessel, so that there is no risk of damaging an

artery.

MR Microscopy (MRM)

MRM is a form of high-resolution imaging. It works under the same principle as

traditional MRI, only modified for smaller specimens.

MR Spectroscopy (MRS)

MRS utilizes the same magnet and electronics as other MRI, but with specialized
methods that produce a “spectrum” identifying different chemical compounds in
the tissues. It allows the assessment of chemical shifts within the tissue, which has
been shown to be useful for diagnosis of cancer, Alzheimer’s disease, diabetes, and

certain inflammatory and ischemic diseases.

2.2.4 Positron Emission Tomography (PET)

PET is a molecular imaging technique that uses radioactive labeled molecules to
image molecular biological processes in vivo. The first PET camera was built in
1973 by Edward Hoffman, Michael M. Ter-Pogossian, and Michael E. Phelps. Four
years later (1977), the full-body PET scanner was constructed. Phelps [83], who
is often credited as inventor of PET, received the 1998 Enrico Fermi Presidential
Award for his work.

TPET is very useful tool for the study of live objects, because PET images
describe not a structure, but chemical function (metabolism) of objects. Therefore,

a PET scan is often used to detect and evaluate cancer, such as of the lung or
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breast cancer. It also can be used to evaluate the heart’s metabolism, blood flow

and examine brain function.

2.2.5 Single Photon Emission Computed Tomography

Single photon emission computed tomography (SPECT) is a nuclear imaging modal-
ity, which was invented in 1963 by Kuhl and Edwards. It was once discredited
because the quality of image is not acceptable. The problem is solved by apply-
ing X-ray CT image reconstruction algorithms were applied to ECT to take into
account for attenuation for scatter in the body. Moreover recent advances include
refinements that make SPECT significantly more user friendly for both clinicians
and patients. This results in a notable growth in its presence as a member of the
imaging community.

SPECT produces 3D images that relate to an organ’s function. This allows for
better visualization of the extent of disease and reveals the progress of the disease
at the early stage. Therefore, it is an efficient tool for brain function research.

Compared to MRI or PET, it is much less expensive.

Beside the above modalities, there are still other imaging modalities, ultrasound
and fluoroscopy for example. They are omitted since they are not directly related

to our research.

2.3 Segmentation

As one of the important techniques in image processing, image segmentation has
been intensively studied. Due to the nature of segmentation, most of the algorithms
are specified for particular problems. In this section, we will give a brief introduction
to image segmentation methods.

As shown in the Fig. 4, those existing image segmentation algorithms can be broadly
classified into three categories: structural techniques, statistical techniques and
other techniques. Structural techniques are those techniques which take into consid-
eration structural information during segmentation; stochastic techniques are those
which perform the segmentation based on statistical analysis methods; and other
techniques are those which do not primarily use structure or stochastic techniques

for segmentation.
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Figure 4: Classification of segmentation methods.

2.4 Classic Deformable Models and Medical Seg-

mentation

The classic deformation model plays an important role in image segmentation. In
the past decade a large amount work was devoted to application of deformable
models for segmentation. In a classic deformable model, users typically initialize a
deformable model near the region of interest (ROI) and allow it to evolve into an
exact position. The user can then manually fine-tune the fitting by using interactive
capabilities. These models gained great successes in the human interaction based
applications.

The first use of classic deformable models in the medical image analysis was the
application of deformable contour models, such as snakes [32], to segment 2D images.
To segment 3D medical datasets, each 2D slice is segmented separately. Once a
2D slice is segmented, the contour of that slice is used as a reference contour for
neighboring slices. This reference contour is then deformed into place in those slices.
This process is repeated for all the 2D slices. The resulting sequence of 2D contours
is then connected to form a continuous 3D surface model [12, 15, 45]. Obviously
the process is not only laborious and requires a post processing step to connect
the sequences of 2D contours into a surface, but also the reconstructed surface can

have various inconsistencies since the consistency existing in 3D is not taken into
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consideration. However it is not a true 3D segmentation. In one of the initial
works on true 3D segmentation, Miller [51] in 1991 proposed a “balloon” approach
by approximating a sphere using polygons. He then geometrically deformed this
balloon until its surface conformed to the object surface in 3D CT data. The whole
segmentation process is formulated as the minimization of a weighted cost function.

Deformable superquadrics, proposed by Terzopoulos et al. [72], and deformable
generalized cylinders, proposed by O’Donnell and Gupta [26], incorporated global
shape parameters of a super-ellipsoid and generalized cylinder, respectively. Local
degrees of freedom are based on elastic properties and the action of external forces.
These models can be used to extract gross shape features from visual data, which
can be used for indexing into a database of stored models to provide shape recog-
nition. Local deformations help in reconstructing the details of complex shapes to
provide shape reconstruction. In related works, Cohen and Cohen [15, 16] used
finite-element techniques to implement an elastically deformable cylinder. Later,
Mclnerney and Terzopoulos [50] used physics based techniques to implement an
elastically deformable sphere. Whitaker [82], Tek and Kimia [70], Davatzikos and
Bryan [18] and others have also done notable work with 3D volumes.

The advantages are:
1. Classic deformable models generally offer a coherent and consistent mathe-

matical description associated with PDE.

2. They are robust to noise and boundary gaps due to smoothness constraint and
energy modelling.

3. They offer sub-voxel accuracy for boundary representation.

4. For medical image segmentation, more importantly, they accommodate signif-

icant variability of biological structures over time and across individuals.

The disadvantages are:
1. They usually require manual interaction.

2. They work only for surfaces or contours (not real region or volumetric seg-

mentation).

2.4.1 Classic Deformable Models

Classic deformable models are physically motivated, model based techniques for
delineating region boundaries using closed parametric curves or surfaces that de-

form under the influence of internal and external forces. Classic deformable models
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gained popularity after they were applied in the computer vision [32] and computer
graphics [71] by Terzopoulos and others in 1988.

Mathematically, a classic deformable model moves according to its dynamic equa-
tions and seeks the minimum of a given energy function. The deformation of a typical
2D deformable model can be characterized by the following dynamic equation:

2

MOEEA R L )
where X (s,t) = X(z(s,t),y(s,t)) is a parametric representation of the position of
a model at a given time ¢, and pu(s) and 7(s) are parameters representing the mass
density and damping density of the model, respectively. Eq. 1 makes the model
move in the direction and magnitude of the forces on the right hand side. The most

commonly used internal forces are:

P = g5 (002520 - 2 (92500, @)

which represent internal stretching and bending forces. These internal forces are

computed as the gradient of an edge map.

2.4.2 Extended Classic Deformable Models

The extended classic deformable models can be divided into three categories: en-
ergy minimization snakes, dynamic deformable models and probabilistic deformable

models,

Energy-Minimizing snakes

Snake [32, 71] is the most popular form of deformable models among all the classic
deformable models. It is a planar deformable contour model whose target is to find a
parametric model that minimizes the weighted sum of internal energy and potential
energy. The internal energy specifies the tension or the smoothness of the surface
of the model. The potential energy is defined over the volume domain and typically
possesses local minima at the edge or surface occurring at the object boundaries. It
can be mathematically represented as follows.

Let v(s) = (z(s),y(s))” be a snake embedded in the image plane (z,y) € R? ,

where z and y are the coordinate functions and s € [0, 1] is the parametric domain.
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The shape of the contour can be obtained by minimizing energy function given as:

E (’U) = Einte'rnal energy (U) + E.’Dotential energy (U) (3)

The internal deformation energy is expressed as:

! ov (I
Einternal energy(v) = /0 w1 (3)|$12 + w1(8)l'8—8—2| ds. (4)
Traditionally,
1
Epotential energy(v) :/ P(U(S))dsv (5)
0

where P(x,y) denotes a scalar potential function. In accordance with the calculus of
variations, the contour v(s), which minimizes the energy E(v) (Eq. 3) must satisfy
the Euler-Lagrange equation.

This vector-valued partial differential equation (PDE) expresses the balance of
internal and external forces when the contour rests at equilibrium as shown in the
Eq. 6. The first two terms represent the internal stretching and bending forces,
respectively, while the third term represents the external forces that couple the

snake to the image data.
A ( )—(% + 2 ( )__a% + VP(u(s, 1)) =0 (6)
8s \“1\%/ 55 sz \“2\% 52 vty = e

Dynamic Snakes

It is natural to extend Eq. 6 to a dynamic system by applying the Lagrangian
principles. This leads to dynamic deformable models that unify the description of
shape and motion, making it possible to quantify not just a static shape, but also
shapes evolving through time. A simple example is a dynamic snake, which can be
represented by introducing a time-varying contour v(s) = (z(s), y(s))? along with a
mass density u(s) and a damping density v(s). The Lagrange equations of motion

for a snake with the internal energy given by Eq. 6 is
v O 0O v o2 0%
W5E + 15— 55 (05 ) + 5 (w53 ) = VPG @

The first two terms on the left hand side of this PDE represent inertial and damping

forces, while the right hand side represents the external forces.
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Probabilistic Deformable Models

Probabilistic deformable models view the deformable models as a fitting process.
They incorporate the prior model in terms of a probability distribution, which is
usually referred as “Bayesian prior” [23]. After the model is fitted to the image
data, the probabilistic model uses a measure of uncertainty of estimated shape
parameters [69]. Let u represent the deformable model shape parameters with a
prior probability distribution p(u) on the parameters values. Let p(I|u) be the

probability of producing an image given parameter u. Bayes theorem states that:

p(|p)p(p)
p(pll) = ————=, 8
(ulr) = B Q
The internal energy measure of the deformable model (see Eq. 4) is converted into a
prior distribution over expected shapes, with lowest energy shapes given the highest
probability. This is done using a Boltzmann (or Gibbs) distribution of the form

_ eap(=5(w))
plp) =—7—" (9)

where S(u) is the internal deformation energy and Z, is a normalizing constant (

also referred as the partition function [3]).

ol /) = LI, (10
where P(p) is a discrete version of the potential energy, which is the function of the
image I(z,y) .

The fitting of the models is done by finding the p, which locally maximizes

p(p/I) in the Eq. 8. This is also known as the maximum a posteriori solution.

2.5 Level Set segmentation

2.5.1 Level Set

Proposed by Osher and Sethian [54], level set methods have attracted increasing at-
tention from researchers from different areas. The level set method and in particular

the motion by mean curvature of Osher and Sethian [54] has been used extensively
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in problems of curve evolution, because it allows for corners and automatic topo-
logical changes. Moreover, the discretization of the problem is made on the fixed
rectangular grid.

Let © be a bounded open subset of R?, with the boundary 8Q. Let Uy be a
given image, and C(S) : [0,1] — R? be a parameterized curve. The curve C is
represented implicitly via the Lipschitz function ¢, by C' = {(z, y)|¢(z,y) = 0}, and
the evolution of the curve is given by the zero-level curve at time t as the function
¢(t,z,y). Evolving the curve C in the normal direction with speed F by solving the

differential equation, we get

9 _ F

¢(0a x, y) = QSO(x’ y)a
where the set C' = {(z,y)|¢o(z,y) = 0} defines the initial contour. A particular
case is the motion by mean curvature, when F' = di’u(l—%) is the curvature. The

equation becomes

IV (12)
¢(07 z, y) = QSO(:E’ y)>

where ¢ is an initial level set function.

{ % = |Vg|div(5L),

2.5.2 Level Set based Deformable Model

Level set techniques (also referred as geometric deformable models) started with
Sethian’s PhD dissertation [63]. There is a well-known relationship between classic
deformable models and level set methods. The typical curve evolution equations
that are computed as level sets correspond to a reduced version of motion that
characterizes a massless snake p(s) = 0 with no rigidity ws(s) = 0 . This special
case results in snakes that, like conventional level set curves, minimize arc length in
the metric induced by the image.
The fundamental difference between geometric deformable models and classic
deformable models is: -
1. Parametric deformable curves are local methods based on an energy-minimizing
curves guided by external and image forces, which pull or push the curves to-

wards features such as edges or surfaces in the image.
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2. The classical active contour models solve the objective function to obtain the
final boundary, if the approximate or initial location of the contour is available.
3. Geometric deformable methods are active contour energy minimization tech-
niques, which solve the computation of geodesics or minimal distance curves
using level set methods. The level set methods are generally governed by the

curvature or other speed functions of moving curves or fronts.

A brief review of the geometric deformable methods is given in the following.

We broadly classify those geometric deformable methods into three classes:

1. Geometric Feature Driven Level Sets are those techniques where the
propagation force does not utilize the region-based strategy for its computa-
tion. These forces sometimes are called “stopping terms” or “leakage preven-
tion terms”. The normally used stopping forces, also called stopping terms,
are: gradient, edge, area-minimization, and curvature.

2. Regional Level Sets are those techniques where the propagation force uti-
lizes the region-based strategy for its computation.

3. Variational Level Sets are those techniques where the level set function is
obtained by variational approaches applied to the energy functional. As will

be discussed below, this is currently an active arca of research.

2.5.3 Geometric Feature Driven Level Sets
Image Gradient

Since image gradient is a very useful geometric image feature, it is first used as
driving force, the force to guide the evolution to the final convergency, for level set.
Caselles et al. [8], Chopp et al. [14] and Rouy et al. [60] proposed the gradient
based geometric active contours, which is later extended by Malladi et al. [49].
The main idea of the model is:
given a 2-D scalar function that embeds the zero level curve, the geometric active

contour is given by solving

09
= = @)k + W)V, (13)

where k is the curvature, V4 is the constant, and c¢(z) is the stopping term.

1
1+[V(Go (z)*I ()]

In Caselles et al.’s work (8], c(z) is given as c¢(z) =
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In Malladi’s work [49], c(z) is given as: c(z) = e*|V(Gy(x) * I(x))|, where «
is the gradient constant and |V(G,(x) * I(z))| is the absolute of the gradient of
the convolved image. This convolved image is computed by convolving the original
image by the Gaussian function with a known standard deviation o.

The advantage of the gradient driven level set is:

1. Gradient provides an efficient pulling strength when local gradient is large.

The disadvantages are:

1. The stopping term is not robust and hence may not stop the bleeding or
leaking of the boundaries. As mentioned before, this is prime concern because
the boundaries of organs in the medical image are typically not clear.

2. The pull back features are not strong. Therefore if the front propagated and

crossed the target boundary, it cannot come back.

Edge

Along the direction of gradient driving force, another local image feature, the edge,
is then used as a driving force. Kichenassamy et al. [33] and Yezzi et al. [86] tried
to solve the above problems by introducing an extra stopping term, also called the

pull back term. This is expressed mathematically as:

% _

= c(z)(k +10)| V4| + (Ve V). (14)

It is interesting to note that Ve - V¢ denotes the projection of an attractive
force vector on the normal to the surface. This force is realized as the gradient of a
potential field ¢. Malladi et al. in [49] proposed a similar edge based force by adding
some constant parameters.

The advantage is:

Compared to the gradient, the force provided is stronger and more robust.

The disadvantage is:

This approach still suffers from boundary leaking for complex structures, as
pointed out by Siddiqui et al. [64].

Local Neighborhood

Due to the fact that localized feature cannot prevent the leakage properly, the

neighborhood information is fused into driving force as presented in [86, 64]:
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1. Siddiqui et al. [64] thus changed Kichenassamy et al. [33] and Yezzi et al.’s [86]
model by adding an extra term: an neighboring force term. This term is the
product of the divergence of the stopping term times the gradient of the flow.
This term provides an additional force when the front is in the vicinity of an

edge.
o9 _
ot

where 2z - Ve|V¢| is the neighborhood force term.

c(z)(k +Vo)|[Vé| + Ve - Vo + %x - Vel V), (15)

The disadvantages are:

(a) Even though it performs better than gradient and edge based techniques,
the system is not very robust at handling the convolutedness of medical
shapes.

(b) The system does not take advantage of the regional neighborhood for the

propagation or evolution of level sets.

2. Niessen et al. [53] proposed a multiple level sets method, which takes advan-
tage of the regional neighborhood. The model is an extension of the geodesic

model [49], which will be described in the next section.
The disadvantages are:

Even though Niessen et al.’s algorithm takes the strength of regional neigh-
borhood, it is not a robust solution since like most of the classic snakes and
active contour models, it relies on the edge and gradient to stop the curve
evolution. Therefore the algorithm has problem when the image is very noisy

and there is no edge as described by Chan and Vese in [10].

Curvature with Directionality

Although the level set originally proposed with curvature as the main force term in
front evolving problem, the curvature itself cannot be used as the main force term
in a robust image segmentation. Therefore, in image segmentation, the curvature
force term is usually used with other forces as shown in previous sections.
However, Lorigo et al. [48] proposed an idea using the curvature dependent

force integrated with directionality for brain vessel reconstruction based on curve
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evolution in 3-D, also know as “codimension 2” in geodesic active contours. The
mathematical expression is given as:
o¢ | g . Vo
— = NV¢(z,t), V2¢(x,t)) + (Vo - VI) x § x Z(H =), 16
5 = NT6(.0), Vio(w, 1) + (Vo V1) x Sx L)

which consists of two components:

L. M(Vé(z,t), V2¢4(z,t)) (Mean curvature flow) are the eigenvalues of the projec-
tion operator: PyyV2¢Py, , where P = I — ]’—;’% and ¢ is a nonzero vector. The
term is used to derive the Eulerian representation of the level set equation.
Eulerian representation of the curve evolution is given by Lorigo et al. as:

% = \(Vé(z,t), V2¢(z,t)) .

2. (V¢-VI)xSx %’(H %)(Directionality of vessels), where g is the edge detector
operator and H is Hessian of image. It is the normal of these vessels projected
onto the plane. This term is like an angular balloon force, which navigates the

deformation process. Normally V¢ - VI is called the directionality term.

The advantages are:
1. The method is robust to noise due to the use of the mean curvature flow.
2. The directional component in the level set framework is very useful in the

segmentation of twisted, convoluted and occluded vessels.

The disadvantages are:

1. It is too time consuming since the directional component has to be computed

in each iteration.

Although the idea in the paper is very attractive, this paper has very little impact

in the field and there have been very few references to it since its publication.

As described above, geometric feature driven level sets primarily focused on
modelling the stopping term using different geometric features: curvature, gradient,
edge, etc. None of the above methods take advantage of a region-based strategy;

hence they are not successful in the capture of the complex shapes of medical organs.
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2.5.4 Regional Level Sets

In this section, we describe the design of the propagating force based on a regional
strategy, which is fused into the level set fundamental model to improve the ro-
bustness of the segmentation for medical imagery. These segmentation systems take
advantage of the local and global shape information for pulling and pushing bound-
aries/surfaces to capture the topology in the level set framework based on PDE.
Incorporating such regional-statistics, is also known to make the overall segmenta-

tion system more robust and accurate.

2-D Regional Geometric Contour Based on Clustering

Suri et al. [65, 66, 67, 68] derived the curve evolution equation by embedding the
region statistics into the parametric classical energy model. They obtained the level

set function in the form of a PDE as:

%0 = @)k + VIV ~ Ve - (V). (17)

V) is considered as a regional force term since it is mathematically expressed as
a combination of the inside-outside regional area of the propagating curve.

It is also interesting to note that Eq. 17 has three terms: the product of ¢
and k, V), and V.. These three terms are the speed functions, which control the
propagation of the curve. These three speed functions are known as curvature,
regional, and gradient speed functions.

The advantages of embedding the clustering technique in the level set framework
are:

1. The embedding usually leads to robust implementation;

2. With embedding the clustering techniques, the boundary achieved could be

more accurate if the class is correctly chosen.

The disadvantages are:

1. The algorithm is not fast enough to be implemented for real-time applications.

2. The performance of the algorithm depends upon a few parameters, such as:
the error threshold and the number of iterations.

3. The choice of the initial cluster is important and needs to be carefully selected.

4. The algorithm is not very robust for MR images, which has spatial variations.
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3-D Bayesian Classification Constrained Coupled Level Sets

Coupled constrained boundary estimation in the medical imaging has been very
successful when applied to shape analysis. In the level set framework, Zeng et
al. [87] put the level set under constraints in neurological applications. For example,
a volume has three tissue types, say TA, TB, and TC, and, tissue TB is embedded in
between tissues TA and TC. Such an example is seen in the human brain where the
grey matter (GM) is embedded between the white matter (WM) and cortical spinal
fluid (CSF). There is a coupling between the WM-GM and GM-CSF volumes. Zeng
et al. used constrained level sets in the application of human cortex segmentation
from MR images. The proposed coupled level set formulation is motivated by the
nearly constant thickness of the cortical mantle and takes this tight coupling as an
important constraint. The algorithm starts with two embedded surfaces in the form
of concentric sphere sets. The inner and outer surfaces are then evolved, driven
by their own image-derived information, respectively, while maintaining the volume
coupling through a thickness constraint.

The coupled-surfaces propagation with the level set implementation offers the

following advantages:

1. The initialization is comparably easy since it can be obtained from the domain
prior.

2. The claimed computational efficiency (one hour) is very impressive compared
to methods proposed before.

3. The complex sulcal folds, the folds between material entities such as sulci, can
be handled by the coupling easily.

4. By the method proposed “skull-stripping” (delineation of non-brain tissues)

and segmentation can be done simultaneously.

5. After segmentation, several characteristics of the cortex, such as surface cur-

vature and a cortical thickness map, are already ready to be evaluated.

6. The method integrates the efficiency and flexibility of level set methods with

the power of shape constraint.

The disadvantages are:

1. The method does not include a model that deals with image inhomogeneity,
unlike other research such as that of Wells et al. [81].
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2. The technique imposed no constraint to preserve the cortical surface topol-
ogy. Although it does take advantage of the topological flexibility of level set
methods.

3. The resulting surface may not produce a 2-D manifold.

3-D Regional Geometric Surface

Baillard et al. [4, 5] designed the brain segmentation system based on the fusion of
region into boundary/surface estimation. This algorithm is another instance where
the propagation force in the fundamental level set segmentation, Eq. 13, is changed
into a regional force. There are three changes made to this equation by Baillard et

al..

1. First is in the propagation force Vj.

Vo = Sgn{a’ipi(u) —(1- ai)pe(u)}7 (18)
_ 1 ifx >0,
sgn(@) = { ~1 ifz <0, 19)

where p;(u) is a probability density function to be estimated inside the struc-
ture, p.(u) is a probability density function to be estimated outside the struc-

ture, and u is the intensity value of a voxel.

As described in Egs. 18 and 19, propagation force V; utilizes the probability
density function inside (p;(u)) and outside (pe(u)) the structure to create a
pull/push force on the propagating front.

2. Second change is in the stopping term c(x). Unlike previous methods, which
use gradient of the image as stopping term, this method uses the gradient of

the probability as the stopping term as shown here:

c(z) = glpr(z|1, C))], (20)

where ‘

1—423 ifz <05,
glz] = s

41 —z)° ifz > 0.5,

25



api(I(@))+(1—a;)pe(I(x))
aipe(1(X))
a;p; (I(@))+(1—0s)pe (I(z))

(22)

{ (10 )pe (1(X)) pixel/voxel belongs to the inside,
br =

pixel/voxel belongs to the outside.

3. The third change is in the step size At. Unlike other method, which used
fixed At, the At in this work is defined adaptively to balance the speed and
stability.

The advantages of this work are:

1. The work is an excellent example of the fusion of region-based information

with the surface.

2. The algorithm is adaptive since the data consistency term c(z) and the step
size At are adaptively estimated in every iteration of the front propagation.

This provides a good tradeoff between convergence speed and stability.

3. Instead of using expectation-minimization (EM), this method uses stochastic-
EM (SEM), which is a more robust and accurate method for estimation of

probability density function parameters.

4. The algorithm does not use many tuning parameters and thus it is very effi-
cient. The method is designed to control the propagation force using region-
based analysis. Baillard et al.’s method used pixel-classification based on

Bayesian-statistics.

The disadvantages of this work are:

1. Due to use of the pixel-classification based on Bayesian-statistics, the system

is very slow although no exact time execution is reported by the author.

2. The accuracy of the system relies heavily on the Bayesian statistics, which
relies heavily on the prior information. It is difficult to extend this method
to general unsupervised segmentation, where the statistic prior information is

unknown.

2D/3D Regional Geometric Surface

Another application of the fusion of Bayesian statistics with the geometric bound-

ary/surface to model the shape in the level set framework is done by Leventon et
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al. [35]. This method focused on the segmentation of the subcortical area of the
brain, such as corpus callosum, and is a good example of the fusion of the boundary
and region-based technique. Leventon et al. derived the shape information using
maximum a posteriori probability (MAP) and fused that with gradient and cur-
vature driven boundary/surface in the level set framework. This MAP model the
shape as priors in the Bayesian framework from the training data set.

They used the equation shown in the Eq. 14 with some modifications to the finite

difference method,
¢t + 1) — ¢(t) = M[(k + Vo)Vl + Ve Vo] + Aa[8"(2) — o(t)], (23)

where ¢*(t) is computed by MAP.
The advantages are:

1. The method is robust due to MAP used.

2. It is able to successful capture the topology based on the Bayesian shape

information.

3. Shape and pose parameters converge to the shape to be segmented by the

proposed method.

The disadvantages are:

1. The time taken is relatively long (six minutes for the vertebral segmentation)

for spinal navigation, which is supposed to be a real-time application.
2. The system needs training data sets, which are collected off-line.

3. The performance of system, which involves coefficients estimated from training
data off-line and application of these estimated coefficients on-line is dependent

upon training data and test data sets.

2.5.5 Variational Level Sets

Variational level set method was first proposed by Zhao et al. [88]. It has becomes a
very popular approach for segmentation. Variational level set combines the energy
minimization, which is a very popular method in the physics, with level set methods.

In the following, different variational level set methods are introduced.
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Zhao et al.’s functional

Zhao et al. [88] proposed a coupled level set method for the motion of multiple junc-
tions (e.g., of, solid, liquid, and grain boundaries). They use the energy functional
consisting of surface tension (proportional to length) and bulk energies (proportional
to area) as shown in the Eq. 24. The approach was the first effort on combining the
level set method with a theoretical variational formulation.

Assume there are n disjoint regions €;(1 < ¢ < n) in the image. The common
boundary between (); and Q; is denoted as I';;. Zhao et al.’s obtained by minimizing

energy function given by the following:

E = Z fijLength(T;) + Z v;Area(inside(C;)). (24)
1<i<j<n 1<i<n
where f;; and I';; are constants and C; is the level set curve enclosing the region 2.

Upon minimizing 24 they obtain the level set function:

% = IVél (%dw(,—%—ﬁ},) —e—A (Z H(¢;) - 1)) , 25)

%%=00n89,

where 7;, e; and A are constants, 77 denotes the exterior normal to the boundary
01, %g denotes normal derivative of ¢ at the boundary, and H(.) is the Heaviside
function, div(-) is the divergence operator.

The advantage is:

Global energy minimization might lead the level set to converge to the global
energy minima.

The disadvantage is:

Only edge and area are used for energy minimization. Therefore the minimiza-

tion may not lead to a robust segmentation.

Samsonet al.’s functional

Along the direction of Zhao et al’s functional, Samson et al. [61] presented an
improved variational approach by adding a minimal variance force. The energy

function is given as:
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Z fijLength(T';;) + Z v; Area(inside(C;)) (26)

1<i<j<n 1<i<n

+ Z / da:dy (27)
The level set function they obtain is:

= Vil (wdz‘v(l\%) — el — (Z H(¢;) - 1)) (8
Jj=1
%%’i =0 on 092.

Due to the minimal variance functional added, the performance of the algorithm

is improved.

Mumford-Shah Functional

Chan et al. [10] tried to improve above techniques by using a Mumford-Shah mod-
elling based functional. They add a minimal variance term Ejfnver. 1The model
is able to detect contours when gradient change is not obvious. The objects with
smooth boundaries or even with discontinuous boundaries can be successfully de-
tected. Moreover they claim this model is robust to the position of the initial curve.
The 2D version of the model can be expressed as minimization of the following

energy function:

E(cy,¢9,C) = p - Length(C) + v - Area(inside(C)) + Eninvar, (29)

The Epfinver is defined as:

Erinvaer = M1 /

inside(c)

luo(z, ¥) — c1|dzdy + Ao / oz, ) — caldedy,

outside(c)

where 4 > 0, v > 0, A\; > 0 and Ay > 0 are fixed parameters and ¢; and c, are the

average of ug inside and outside C as follows:
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Jouo(z, y)H(g(z,y))dzdy

1) Jo H(8(a, ) dudy 0
Jouo(, y)(1 — H(¢(x,y)))dzdy
(@) ol — H(@(a.y))dady 5y
The level set function they obtain is:
58 = 5.(8)ln- div() — v = M(uo — @1)* + Aaluio ~ ©2)°] = 0,
$(0,3,y) = do(z,y) in Q, (32)
%_%% =0 on 99,

where 6, is the Dirac delta function.

The advantage is:

Due to the minimization with regional variance, the segmentation is robust and
fast. More importantly the segmentation can be achieved when the area has very
small gradient changes, which poses a challenge to the previous level set segmenta-
tion approach.

The disadvantage is:

It works well on two-region images. However it is not really a Mumford-Shah
model driven segmentation since the Mumford-Shah model is the general segmen-

tation model for any images.

Edge Functional

Several approaches have been proposed using an edge based functional.
1. Geodesic Active Surfaces

Kimmel et al. [7] proposed a gradient based geodesic active contour/surface

functional,
Eac(S) = [ [ o(S)da, (33)

where da is the surface area element and g(-) is an inverse edge indicator

function given, for example, by

9(-) = w
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2. Laplacian Edge Detector Functional

Kimmel et al. in [34] showed that a Laplacian edge detector provides optimal
edge integration with regard to a very natural geometric functional. The
functional accumulates the inner product between the normal to the edge and

the gray level image-gradient along the edge.

Erap = //< Vug,n >da (35)

The advantage is:

The Laplacian edge detector functional provides a good edge alignment [34]

in the vicinity of area where the gradient is large.
The disadvantage is :

It can only be used as a regularizer since it is based on the gradient, a localized

feature.

Hybrid Functional

It is natural to extend the above work to combine different functionals. Along this

direction, the following works have been proposed.

1. In [27], Holtzman-Gazit et al. proposed a hybrid model, which combines three
functions: Minimal variance functional, Laplacian Edge Detector functional

and Geodesic Active Surface functional.

Eiota = —Erap + BEyminver + YEcac. (36)

where 3 and « are constants.

2. More complicated hybrid model is proposed by Paragios et al. [55] for segmen-
tation and tracking of the left ventricle. He combines edge functional, global
shape functional and prior shape functional together to get a more robust

system for tracking and segmentation.

3. In this thesis, we also use a hybrid model for coupled level sets. The detail

will be discussed in next three chapters.

The advantage is:
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Hybrid functional, especially those edge functionals, usually drive the level set

converge faster to the edges.
The disadvantage is:

The computational cost could be very expensive.

2.6 Support Vector Machine

SVM has become, in both practice and theory, the classifier of choice of many
researchers and practitioners for many real-world classification problems. The main
principle was originally introduced by Vapnik [78].

In the following, we briefly introduce two most important features of SVM:
optimal margin and structural risk minimization.

Like other linear classifiers, as described in [22, 23], the SVM attempts to evaluate
a linear decision boundary or a linear hyperplane between the 2-classes (see Fig. 5
(a)), assuming the data is linearly separable. When the data is not linearly separable
in a lower dimensional space it can be mapped to a higher dimension using linear or
nonlinear kernels and a linear decision hyperplane is easier to construct. When the
nonlinear kernels are used to do the mapping, it is important to choose the right
kernel. Typically gaussian or radial basis function kernels are chosen. A detailed
description of kernels can be found in [62]. Theoretically, when the data is linearly
separable, there are possibly an infinitely many of hyperplanes (see Fig. 5 (b)),
which can correctly classify the training data. To obtain the best separation, the
SVM attempts to maximize the margin between two classes, as shown in the Fig. 5
(c). Therefore finding the maximum margin separating hyperplane reduces to a
quadratic programming problem, see [78] for a complete mathematical formulation
and derivation of the solution. More recent progress on SVM can be found in [17,
20, 21).

SVM offers following several advantages, which are typically not found in other

classifiers:

1. SVM has a good capacity on generalization, the ability to predict the unseen
or unknown samples with a good degree of accuracy, as compared to many

traditional classifiers, neural network (NN) for example.

2. Although the training time for original SVM is very high, current progresses in
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> Optimum margin
()

Figure 5: Optimal hyperplane in SVM. (a) Linear hyperplane. (b) Various hyper-
planes, which is able to separate the features. (c) Optimal hyperplane found by
SVM.

the field has make it computationally much less intensive (esp. in comparison
to NN) as shown in [11, 21].

3. Lack of training data is often not a severe problem for SVM.

4. It is based on minimizing an estimate of test error rather than the training

error. 'Together with the optimal margin scheme, it leads to the following

advantages:

(a) SVM is more robust to over-fitting.
(b) SVM is robust to noise, which severely degrades the performance of NN.

5. SVM does not suffer as much from the curse of dimensionality, which refers to
the exponential growth of hypervolume as a function of dimensionality [23]. It
performs well in higher dimensional spaces which limits many other efficient
classifiers. The computational complexity does not depend on the dimension-
ality of the feature space. This is also very important for this thesis since

feature dimension is usually high in medical image processing and analysis.
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Chapter 3
Clinical Level Set Segmentation

“The eternal mystery of the world is its comprehensibility... The fact that it is comprehensible is

a miracle.”

- Albert Einstein (1879-1955)

3.1 Introduction

Due to the importance of the clinical segmentation, one of the main objectives of this
thesis is improving the current clinical medical image segmentation using geometric
level set.

Although efficient, level sets are not suitable for clinical segmentation due to
several reasons: (1) high computational cost: normally it takes several minutes to do
a 2D(100*100) image segmentation; (2) complicated parameters setting: for different
types of images, the parameters may need to be set differently; (3) sensitivity to
the placement of initial contours, which is shown in the following aspects: (a) the
running time of level set method heavily relies on the position and size of the initial
curves and the complexity of objects as shown in the Fig. 6; (b) level set do not
converge for some initial curves and (c) for some cases, different initial contours may
give different segmented results. In the clinic or hospital, it is not realistic to expect
a good initial curve from radiologist every time. The details of the above problems

and analysis of Fig. 6 will be discussed in the next sections.
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Figure 6: Challenging nose. (a) Iteration 0. (b) Iteration 150. (c) Iteration 350. (d)
Iteration 0. (e) Iteration 600. (f) Iteration 1200.

3.1.1 Variational Level Set Method

Proposed by Osher and Sethian [54], level set methods have attracted much attention
from researchers from different areas. The detailed survey has been done in the
Chapter 2. However to keep the completeness of this chapter, we still briefly recall
several closely related variational level set methods, which have been introduced in
§ 2.5.5.

Variational level set method presently is a very popular approach for segmen-
tation. Variational level set uses the energy minimization, which has been a very
popular method for solving physics problems with the level set method. In the
following, different variational level set methods are reviewed.

Zhao et al. [88] proposed a coupled level set method for the motion of multiple
junctions (e.g., of solid, liquid, and grain boundaries). They use an energy functional
consisting of surface tension (proportional to length) and bulk energies (proportional
to area) as shown in the Eq. 37. This approach combines the level set method
with a theoretical variational formulation. Assume there are n disjoint regions
(1 €1 < n) in the image. The common boundary between ; and Q; is denoted
as I';;. Zhao et al. obtain optimal segmentation by minimizing the functional is

given by:
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Z fijLength(Ty;) + Z v;Area(inside(C;)). (37)

1<i<j<n 1<i<n

The level set function they obtain is expressed as:

= |Vl <%dw(|v¢| —6 (Z H(¢;) - 1)) (38)

%‘%z(}onaﬂ.

Chan and Vest [10] proposed a Mumford-Shah functional for level set segmen-
tation. They added a minimal variance term Epsv. This model is able to detect
contours either with or without a gradient. Objects with smooth boundaries or even
with discontinuous boundaries can be successfully detected. Moreover they claim
this model is robust to the position of the initial contour. The 2D version of the

model can be expressed as minimization of the following energy function:
E = u- Length(C)+ v - Area(Inside(C))+ Epy.
with
Eyy = )\1/ (uo(z,y) — c1)?dzdy + )\2/ (uo(z,y) — c2)*dzdy
inside(C) outside(C)

The level set function they obtain is given by

% = 6.(¢)l- div([ZG) — v = Mo — 1) + Mo(tg — 2)?] = 0
$(0,2,y) = ¢olz,y) in Q

6€(¢)3¢
Volon =0 on 9.

The Chan and Vese’s functional is very good for segmenting an image into two re-
gions. To segment images with multiple regions, we can use Samson et al.’s method,

which is one of the earliest reported work using coupled level set. In [61], Samson
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et al. presented a variational approach as shown in Eqgs. 39 and 40.

E = Z fijLength(Ty;; ) + Z v;Area(Inside(C;))

1<iLjsn 1<i<n

+Z / d dy + £ / ZH (¢;) — 1)%dzdy. (39)

where I';; is the intersection of different regions and o; is the variance. The level set

function obtained is given by

B =800 (udiv(Fh) - etpE - (S @) - 1))
%% =0 on 09.

3.2 Challenges in Level Set Segmentation

Although great success has been achieved using level set on medical image segmen-

tation, there are following two main challenges for clinical level set segmentation.

3.2.1 Stopping Criteria

Although compared to the classical deformable model, the level set is more robust to
the placement of the initial contour, initial contour placement is still a big challenge
for clinical image segmentation using the level set method. The running time of
the level set method heavily relies on the position and size of the initial curves
and the complexity of objects. As can be seen from Figs. 6(a) to (c), the majority
of the objects are segmented in the first 150 iterations while it takes another 200
iterations to segment to the tip of the nose as shown in the Fig. 6(c). Thus it is very
difficult for the user to set appropriate stopping conditions, since from iteration 150
to iteration 350, each iteration causes only a few pixel changes. Therefore a too
relaxed stopping condition on the number of pixel changes will not able to stop the
iterations while a strict stopping condition will stop the iteration before the image is
correctly segmented. Figs. 6 (d) to (f) show the iterations needed when different size
and position of the initial curve are used. As we can see from Fig. 6, to segment the
same image, the number of iterations used varies from about 350 iterations to 1200
iterations when different positions and sizes of initial curves are used while the other

parameters are the same. It becomes even worse when complicated structures such
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as thin structures, are encountered. Moreover for some cases, level set methods and

especially coupled level sets methods, do not converge for some initial curves {10, 27].

3.2.2 Hierarchical versus Coupled Level Sets Segmentation

The level set method naturally divides an image into two regions. Therefore it is
very efficient at extracting one object in an image even when the image consists of
several disconnected pieces. In order to extract multiple objects, people normally
use hierarchical methods [27, 29, 75] or coupled level set methods [19, 47].

Hierarchical Level Set Segmentation

(@)

Level 1: First Splitting

Figure 7: Binary tree representation of hierarchical segmentation: first level seg-
mentation by which, an image (a) is segmented into two regions by the one level set
function as shown in (b).

Hierarchical level set segmentation employs an hierarchical approach to extend two
region segmentation method to multiple regions segmentation. The idea is described
by the binary trees in Figs. 7 and 8. The image is first segmented into two regions
by one level set function as shown in the Fig. 7. Then based on the variance analysis
of each region, the program decides to further segment one ( see Fig. 8 (a and b)) or
both regions (see Fig. 8(c)). The procedure is done recursively until the whole image
is properly segmented. The advantage of the hierarchical level set is its easy imple-
mentation and fast segmentation. By the analysis of the region intensity variance,
which measures the deviation from homogeneity of the regions, the hierarchical level
set segmentation can easily be used as an automatic segmentation scheme using only

one level set function.
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Level 2: Adaptive Splitting

Figure 8: Binary tree representation of hierarchical segmentation: second level seg-
mentation by which, two segmented regions are further segmented into up to four
regions. (a) and (b) show that only one of the two regions is further segmented
into two regions. (c) shows that both regions are each further segmented into two
regions.

Coupled Level Sets Segmentation

In contrast to hierarchical level set segmentation, which uses one level set function
recursively to segment one image into multiple regions, coupled level sets segmenta-
tion uses multiple level sets simultaneously for multiple region segmentation. The
number of the level set functions is equal to the number of the regions in the image
as shown in [61, 88].

Advantage versus Disadvantages

Although straightforward and fast, hierarchical segmentations simply assume a sin-
gle mean inside and outside of zero level. So for multiple objects detection, it tends
to be less accurate than coupled level sets. As a result the boundaries may not be
optimal. A detailed error analysis is performed and shown in the next section. Cou-
pled level set on the other hand uses one level set function to represent each object.
However it is not only slow but it also suffers from the problem of the placement of
initial curve, a common problem that exists in the numerical minimization where
when functions are non-convex the numerical results may depend on the choice of
the initial curves [10, 7]. The placement of initial curve problem can be even worse

when the image is noisy.
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Error analysis with Bayes model

Although hierarchical level set segmentation is widely used for the segmentation,
the accuracy of the obtained boundaries is unknown. In the following, a Bayes
model (see § 2.4.2 for more detail about the Bayes theorem) is proposed to analyze
the results. A simulation on energy minimization for hierarchical and coupled level
set, separately, is performed and compared. In this simulation, data is randomly
generated with given means and covariance. We use Bayes decision to calculate the
correct decision boundary and benchmark with the decision boundary calculated
by the energy minimization. The detailed mathematic description of the Bayesian
decision approach can be found in the the book by Duda and Hart [23]. The error
measurements are defined as shown in Egs. 41 to 44. The correct decision boundary
is calculated using the Bayesian decision approach.

Eq. 41 shows the energy function (E,) for three classes: the left class, the middle
class and the right class. The grey value range of the three classes is (0, w,), (w,
wy) and (w2, max) and means of the three classess are ucfs, Umiddie 804 fhrighs. The
“max” denotes the maximum grey value in the range. Segmentation is equivalent
to finding the correct decision boundaries: w; and wy. Eq. 42 shows the energy
function (E}) for two classes: left class and right class. The grey value range of the

two classes is (0, w) and (w, max) and means of them are pyes and fpigns.

Eo(wy,ws) = / (U — fhiegs)dx + / (uo — Mmiddie)dz + / (uo — fhrighe)de, (41)
0

w1 w1

Ep(w) = / (1o — puege)dz + / (o = Hright)de, (42)
0 w
where w; are decision boundaries.
Normalized energy E(z) is defined as:
E(z)
E.(z) = ) 4
(@) = —% (43)

where N is the total number of pixels.
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Two error measurements are defined as:

e = mlscflass1ﬁed pixels ’ (44)
total pixels of all classes

misclassified pixels

total pixels of neighboring two classes’
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Figure 9: Energy minimization and Bayesian boundary. Top curve: energy curve Ej,
and E..; bottom curve: histogram of the image. (a) Two regions case: first decision
boundary by hierarchical energy minimization (e;= 0.0020; es= 0.0020). (b) Three
regions case: first decision boundary calculated by hierarchical energy minimization
(e1= 0.0607; eo= 0.0911).

Fig. 9(a) shows that when there are two classes in the image, energy minimization
is able to get a very good decision boundary, which is almost the same as Bayesian
decision boundary calculated by the Bayesian approach. However when there are
more than two classes, the hierarchical scheme will develop more errors as shown in
the Fig. 9(b). Moreover the energy curve in the Fig. 9(b) is not very sharp around

the global minima, which means that numerical algorithm may not converge to the
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Figure 10: Decision surface of energy function E. (e; = 0.0055; ep= 0.0082). (a)
Global view of the energy surface of E.. (b) Zoomed view for the cycled part of (a).

global minimum. Fig. 10 shows the energy surface of the Eq. 42. The error is much
lower than that for hierarchical level sets. From above we can conclude that coupled
level sets tend to find more accurate decision boundaries than those for hierarchical

level sets when there are more than two classes in the image.

3.3 Proposed Framework

To overcome the problems described in the above section, a classification based
approach is proposed. The approach combines the strength of a classifier, and
hierarchical and coupled level set segmentations. In this framework, as shown in the

Fig. 11, the framework is divided into following steps:

1. First, sample images or representative slices of volumetric images are seg-
mented by the hierarchical level set segmentation method. The hierarchical
method allows detection of multiple objects in an image while limiting the
complexity of the computation.

2. Then these results are used to train the pattern classifier. Together with
the first step, they form the training stage in Fig. 11. We choose the SVM

42



:"C’0..“"OCi"l‘lilll...“.lll‘\lll..l‘ll"Ill..bllﬂ'll.l?

P L Yy L R hdedodd asenuseRANE seesmessanrassnn essresnEnna seesse
- .

.

. . : Pattern i .
Hierarchical |3 , —=-~Hybrid Coupled
Level Set Classifier 1 Level Sets

eserssanssssens

(SVM)

---------------------- .o CHEEEGEXE FEETEEVEEE 0 2 M
REESEESDESHIGIRINRISRONSSE ll -

| Training

-

Segmentation | }
Results

Py P T Y Y

*
*
.
*
* -
b »
bt -
.

+
LR -
oooooooooooooooooooooooooooooo . 5
b4 .
* L d

»
M °
4 .
5 ’

Segmentation Stage

Ly L T R N L L T R T Y Y O PO TR TS

Figure 11: Framework diagram.

as our classifier, which has become increasing popular in pattern recognition
and has clear advantages over other pattern classifiers as described in the
§ 2.6. Therefore the segmentation problem is expressed as a classification
problem temporarily. Since medical images usually contain large amount of
redundant information for classification, to accelerate the segmentation by
SVM, an information reduction scheme is used. SVM training just needs to
trained only once. Once the SVM is trained, we can use it to segment the
image whenever it is needed.

3. In the clinical setting, the image is first segmented by the SVM as shown in
Fig. 11.

4. Lastly, based on the initial curves provided by the SVM, a hybrid coupled level
sets segmentation algorithm, which combines Samson et al.’s algorithm [61],
a optimal edge integrator [34] and the geodesic active contour model is used
to give the final fine result as shown in the segmentation stage in the Fig. 11.
Although the third step only gives a coarse result, it helps coupled level set
curves to find good initial curves. Therefore it takes much less time for coupled

curves to converge.

By above framework, with the help of SVM, we naturally combined hierarchi-
cal and coupled level set to achieve a fast and robust autonomous medical image

segmentation framework for clinical setting.
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3.3.1 Hierarchical Region Detection

First the hierarchical level set method described in the § 3.2.2 is used to detect
hierarchically how many regions there is in the representative images. The energy
function we use is shown in the Eq. 29. Eq. 32 shows the level set function we use

as given in the § 2.5.5.

3.3.2 Optimal SVM Training and Segmentation

The results obtained from hierarchical region detection are input into the SVM. A
window based feature extraction, as shown in Fig. 12(a), is used to extract features
from the regions segmented by hierarchical level set segmentation. The SVM clas-
sifier we use is modified from [11]. The brief introduction of SVM can be found in
the § 2.6.

Information Reduction Scheme

To accelerate the segmentation by SVM, an information reduction scheme is used.
Medical image contains quite a lot of redundant information for SVM in terms of
feature vectors. For example, as shown in the Fig. 12, when we use window feature
extraction with 7*7 as the window dimensionality, only 3% of the total features
extracted are independent since rest of the 97% are the repetition of these 3%.
Therefore for SVM based segmentation, we just need to compute those independent
feature vectors. With the help of the hierarchical lookup table, the classification of

volumetric image can be greatly accelerated.

3.3.3 Hybrid Coupled Level Sets Segmentation

SVM classification naturally provides good initial contours for coupled level sets.
We use one level set function to represent each region. Based on the fact that the
boundary segmented by SVM is close to the correct boundary, a hybrid coupled level
sets segmentation algorithm combining Samson et al.’s algorithm [61], an optimal
edge integrator [34] and the geodesic active contour model [7] is proposed as shown
in the Eq. 46. A similar functional is used in [27] for a single level set function. The

energy function is :

44



Figure 12: An image and useful information. (a) Original image. (b) Percentage of
independent vectors among all the feature vectors in the image (a).

E = _’YlEedge + ’YQEcoupled + 13Ecac, (46)

where +y; are constants and geodesic active contour (Egac ) is defined as Egac(S) =

az
a2+|Vugl?
as suggested in [27], where « is a constant. Eggg. is the functional proposed in [34]

[ 9(S)ds, where g(S) is an inverse edge indicator function. We use g(5) =

where Kimmel shows that the Laplacian edge detector Aug provides optimal edge

integration with regard to a very natural geometric functional as shown in the Eq. 47.

E(S) = //S< Aug,n > ds —/Q K|Aug|dzdy, (47)
S

where S is the evolving contour, K; is the mean curvature of level sets, n is the
unit vector to the curve and is the surface area element. Eq. 48 shows the level set

function we use.

v —))?
)—73dw( lvzzl) ’Yzei(uoa—;)

(Z H(¢:) —
—ﬁ i=1
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¢y — ¢t
At - 6,(¢°

— T Uoge, (48)

where d4(-) is the direct delta function, ueg = Aug — K|Vug| and 3 is constant.
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3.3.4 Uncertainty Map

Segmentation divides the image into several homogeneous regions, which ignores
localized intensity deviation. However, in medical applications, localized intensity
deviation is very important for the analysis and diagnosis. The intensity deviation
can be obtained from the uncertainty measurement of the segmentation.

To measure the uncertainty of the segmentation, an uncertainty measurement
is proposed as shown in the Eq. 49. The uncertainty measurement consists of two
components: a numerical solution uncertainty component (1, (z,y)) and a variance
uncertainty component (1s(z,y)). The 1 (x,y) is used to measure the uncertainty
of the segmentation to see if the numerical iteration has finished. The ¥y(x,y) is
used to measure intensity deviation inside of the segmented region. Those areas
with large intensity changes compared to other areas would have large uncertainty.

The larger the value of ¥(x,y), the larger the uncertainty of the segmentation.

1/)(35, y) = 7701(%, ?/) : ¢2(33,y), (49)
Max(H (¢;))
> Juo — il H(¢)

The uncertainty map not only gives the user digitized uncertainty of the segmen-
tation results but it also helps to remove the highly uncertain data, which might
distract the analysis as will be in the case of the dental X-ray analysis as discussed
in § 5.

3.4 Experimental Results

Both two-dimensional and volumetric images were used to evaluate the performance
of the proposed framework.

Fig. 13 shows the segmentation using proposed SVM based segmentation. One
can notice that in the Fig. 13(a) the boundary found by the SVM is not very
accurate. However it provides a good initial contour for the level set segmentation.
A comparison of Fig. 6(c) and Fig. 13(d) shows that our framework is able to greatly

accelerate level set segmentation such that whereas previously 350 iterations were
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Figure 13: SVM based level set segmentation. (a) SVM based. (b) Iteration 0. (c)
Iteration 5. (d) Iteration 15.

needed, 15 iterations are sufficient now. Fig. 14 gives the results of coupled level
sets (see Fig. 14(b, ¢, d)) and proposed framework based segmentation (see Fig. 14(e
and f)). The coupled level set segmentation is obtained by manually setting the
distribution by assuming the distribution information is known. However it still
takes 250 iterations for three coupled level set curves to converge while SVM based
segmentation just needs 15 iterations and its uncertainty map is shown in the Fig. 15.
The uncertainty map is able guide the users to those high uncertainty areas, which
might be areas requiring special attention.

Fig. 16 shows the volumetric segmentation results when one level set function is
used. And the Fig. 17 shows the results when our proposed framework is used. As we
can see even though the SVM segmentation can only provide a coarse segmentation,
it greatly speeds up the level set segmentation. To let internal evolution be visible,
some of the volume data are “cut” into two halves as shown in the Figs. 16 and 17.
Figs. 18 and 19 provide another example when three coupled level set functions are
used. To make the internal part visible, we make some parts of the volumetric data
set transparent as shown in the Fig. 18(c) and (d). For the same reason, we directly
render the internal skull portion in the Fig. 19 as shown in the Fig. 19(d). Figs. 19
and 20 demonstrate the volumetric segmentation and visualization of a chest CT
scan. Fig. 20 shows segmentation procedure performed with four coupled level set
functions. Fig. 21 shows the visualization of segmented results done by our proposed
framework, which takes only 10 iterations to converge. The volume visualization is
done by making the less dense parts part red and partially transparent to make the

bones visible.
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Figure 14: Comparison of coupled level sets (b, ¢, and d) and proposed framework
based segmentation (e and f). To distinguish the results from two methods, different
colors are used to color the region. (a) Original image. (b) Iteration 0. (c) Iteration
150. (d) Iteration 250. (e) Iteration 0. (f) Iteration 20.

3.5 Summary

In this chapter, we discuss a new Bayesian model to analyze the error in hierarchical
level set and coupled level sets. The error analysis shows that coupled level sets are
able to converge to more accurate boundaries even though it takes much longer time
to converge. Based on the analysis, an efficient clinical medical image segmentation
framework is proposed and implemented by combining a pattern classifier with hi-
erarchical and coupled level set methods. With the aid of techniques from the field
of pattern recognition, we naturally combined hierarchical with the coupled level
set methods to achieve a fast and robust automatic level set image segmentation
framework for clinical setting where the complicated setting for level sets can be
transparent to user. The framework is not only able to achieve fast segmentation,
but is also able to give a more accurate boundary. To help the clinical radiologist
to evaluate the segmentation results, an uncertainty map is computed with a pro-
posed measure of uncertainty. Two-dimensional and volumetric images were used
to test the framework. This framework works efficiently in a clinical setting where a

specialist works with a limited variety of medical images. The classifier needs to be
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Figure 15: Uncertainty map of Fig. 14(f).

Figure 16: Level set volumetric segmentation. (a) Iteration 0. (c) Iteration 150. (d)
Iteration 250.
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Figure 17: Volumetric segmentation results. (a) Volumetric segmentation by SVM.
(b) iteration 1. (c) Iteration 5. (d) Iteration 10.

Figure 18: Volumetric coupled level set segmentation results. (a) Iteration 0. (b)
Iteration 10. (c) Iteration 50. (d) Iteration 100.
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trained only once with representative images or slices segmented by the hierarchical
level set method. Then a clinician just needs to indicate to the classifier the image
type. Although only the Chan and Vese level set method and Samson et al.’s cou-
pled level set method are used to test the framework, the framework can be easily

extended to combinations of other level set methods.
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Figure 19: Volumetric segmentation results. (a) Volumetric segmentation by SVM.
(b) Iteration 2. (c) Iteration 5. (d) Segmented skull part.
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Figure 20: Volumetric segmentation results with four coupled level sets. (a) Iteration
0. (b) Iteration 30. (c) Iteration 80. (d) Iteration 120.
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Figure 21: Volume rendering of segmentation results of SVM based level set method
and of chest CT images. The flesh area is colored as transparent red. (a) One view.
(c) Another view.
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Chapter 4

Automatic Clinical Image

Segmentation using Pathological
Modelling, PCA and SVM

“Give me a museum and I'll fill it.”

— Pablo Picasso

4.1 Introduction

Although the work in the Chapter 3 can help to improve the current performance in
the clinical segmentation using level set, it still takes some iterations to segment the
image, which may not meet the real time requirement. In many clinical applications,
it would be ideal to have an even faster segmentation.

For this purpose, this chapter reports on innovative work using machine learning
techniques such as the SVM and principal component analysis (PCA) learning with
a pathologically modelled variational level set method to address the clinical im-
age segmentation and analysis. As mentioned in the § 3.1, although efficient, level
set methods are not directly suitable for clinical image segmentation. Therefore
we employ the level set method only during the training stage of the SVM, which
limits the effect of the method’s slow convergence and lack of stability. Through
the pathologically energy functional, we incorporate the pathological modelling with
variational level set. Therefore the regions segmented would naturally have patho-

logical meanings. Through the application of PCA, we then use the SVM exclusively
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for segmentation, which leads to faster and more robust segmentation. Although the
SVM has been used in the medical image segmentation, it is usually used during an
intermediate step [36, 37, 80| to accelerate convergence of the segmentation. In this
chapter, with appropriate pre-processing, we utilize the SVM to directly segment

the medical images.

4.2 Proposed Method

The proposed method consists of two stages: a learning stage and a clinical segmen-
tation stage. During the segmentation stage, a variational level set method driven
by a pathologically modelled energy functional is used to segment those manually
chosen representative images. This is followed by a window-based feature extrac-
tion using PCA analysis. The extracted features are used to train an SVM. During
segmentation of images in the clinical setting, the clinical image is then directly
segmented by the trained SVM.

4.2.1 Pathologically Modelled Variational Level Set Method

In this work, we apply the variational level set method to segment the representative
images. First, with the assistance of a radiologist or clinician, the energy functional
will be modelled according to the pathological characteristics of the different regions
in an image. In the following, we are going to take chest CT (2D and 3D) scans and

dental X-ray images as examples as can be seen in Figs. 22 and 23.

- Chest CT Scans

Fig. 22 demonstrates a pathological modelling for chest CT scans. The images can
be divided into four regions of interest: the Background Region (Q5g), the Skeletal
Structure (bone) Region (Qgg), the Fatty Tissue Region (Qrr) and the Muscle and
Visceral Tissue Region (Qr). Energy functional for the four coupled level set

functions are modelled as shown in the Eq. 52.
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Figure 22: Pathological modelling for chest CT scans. The chest CT image can be
divided into four regions: Qrgr, Qur, {2sr, and Qpgg.

— 2 _ 2
Esv(ds) = / e1(u ' CBR) dzdy +/ 82(u : CFR) dzdy +
QBR QrR

OBR OFR
— 2 - 2
/ e3(u ! CSR) dady +/ es(u - CMR) dedy (52)
o o
Qsr SR QMR MR

where ¢;, i=1,... 4, is the mean grey value of region ;.

Dental X-rays

Figure 23: Pathological modelling of dental X-ray. The dental X-ray image can be
divided into four regions: Qng, Qpar, 2ar, and Qpg.

With prior information of the pathology associated with possible diagnosis, this

pathological modelling can also be used for computer aided diagnosis. As shown in
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the Fig. 23, X-ray images can be divided into four regions of interest: the Normal
Region (Qyg), the Potentially Abnormal Region (2psg), the Abnormal Region
(Q24r) and the Background Region (Qpg). Since Q4r and {lpg are not separable in
terms of intensity values, so in the segmentation, we take 24z and 2gr to be one
region: the Abnormal and Background Region (245g). Energy functional for three

coupled level set functions are modelled as shown in the Eq. 53.

u—cnr)? u—-c 2
Emv(di) = e / %dmdy + 62/ —(——2—P—@~)—dxdy
QnR ONR Qpar OPAR

. 2
tes / @——gi"‘—”l*l-dxdy. (53)
QaBr UABR

4.2.2 Hybrid Variational Level Set

To achieve a fast and robust coupled level set segmentation, a hybrid variational
functional is used. The hybrid coupled level set functional combines Samson’s algo-
rithm [61], an optimal edge integrator [34] and a geodesic active contour model [7].

Therefore, the final energy functional is

E = Env(¢i) — Erap + 2Ecac (54)

where ~y; are constants.

The level set function derived from the functional is shown in the Eq. 55.

O, _ . Vi (u— Ci)z
5 = 726€(¢i)dw(g|\7—¢i|) - 6155(@)0—?
k
~ﬂée(¢i)(_§: H(¢:) = 1)” = 116 ($i)uee, (55)

i=1

where uge = Au — K[| Vul.

Since the proposed pathological modelling explicitly incorporates regions of prob-
lems as part of the modelling, the identification of such areas would be an automatic
byproduct of the segmentation. Through the use of the uncertainty map introduced

in § 3.3.4, we can also gauge the degree of severity of such problem regions.
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4.2.3 Learning

As shown in the Fig. 24, the learning phase consists of several steps. First, manually
chosen images are segmented by the variational level set described in the § 4.2.1.
To avoid distraction, the high uncertainty areas are removed, with the assistant of
the uncertainty map introduced in § 3.3.4. Next, window-based feature extraction
is applied. The results will be used to train the SVM after applying PCA learning
to extract features.

. Representative - Principle Pattern |
. images’ \l/.aet\l/ae?g;atl Component | | Classifier

E ( Analysis 1. (8WMm)
A ‘1§ . ;
“Imag*e’l High Window Learning

i Databas Uncertainty [~ Feature

‘ Removal Extraction Phase

Figure 24: Learning phase diagram.

Uncertainty Removal

Before feature extraction, those areas of high uncertainty in the segmented image
will be removed. The uncertainty measurement proposed in the § 3.3.4 is used to

build the uncertainty map.

Feature Extraction and Principal Component Analysis

A window-based feature extraction was applied to each segmented region in the
image. This is illustrated in the Figs. 25 to 27. The whole feature extraction is
shown in the Fig. 25. Fig. 26 shows some of the feature samples extracted. The
samples of average patch and eigenpatch are shown in the Fig. 27. The PCA method
used here is adapted from [76, 77]. Let the features I'; (i = 1..M) constitute the
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Figure 25: Feature extraction diagram.
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Figure 26: Window based features.

training set (I'). The average matrix (I') and covariance matrix C are:

1 M
1=1

1 M
C = — > &I'ep, = AAT
w2

L = ATA(Lpn,=®7d,,)

M
w o= Y vuP(l=1,...,M) (56)
k=1
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Figure 27: Average patch (first row) and eigen patches.

where L is a M x M matrix, v;, are the M eigenvectors of L and u; are eigen-patches,
which were called eigenfaces in [76, 77]. The advantage of the PCA approach here
is its ability to remove the effects of noise and also to accelerate the classification

by reduced feature dimension.

SVM Training and Segmentation

The strength of the SVM classifier has been demonstrated in many research areas
such as handwriting recognition application, which is described in Dong et al.’s [20,
21]. The features extracted from the eigen-patches are used to train the SVM. The

classifier we use is a modified version of the SVM classifier proposed in [11].

4.3 Results

To evaluate the proposed method, both chest CT scans (two-dimensional and three-

dimensional images) and dental X-ray images are used to test the proposed method.

4.3.1 Chest CT Scans

Two-dimensional Scans

Figs. 28 and 29 show the results of two-dimensional image segmentation. Fig. 28
shows the results of pathological variational level set segmentation, which divides
the image into four regions of background, the skeletal structure (bone), the fatty
tissue, and the muscle and visceral tissue, as defined in the § 4.2.1. However the

variational level set method is a time consuming method, which generally takes
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longer than 10 minutes to segment a 256 x 256 image for a PC (Pentium 1G Hz
and 1G RAM). Fig. 29 demonstrates the segmentation results using the proposed

method, which just takes around 1 second.

Figure 28: Experimental results on CT scans. (a) Iteration 0. (b) Iteration 20. (c)
Iteration 50. (d) Iteration 100.(e) Iteration 125. (f) Iteration 150.

Figure 29: Experimental results on CT scans. (a) (c) Original images. (b) (d)
Segmented images.

Three-dimensional Scans

Figs. 30 and 31 show results on three-dimensional image segmentation. Fig. 30 shows
variational level set segmentation on volumetric CT scan image (256 x 256 x 100),
which usually takes longer than two hours while with our proposed method takes

around 20 seconds.
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Figure 30: Volumetric coupled level set segmentation results. (a) Iteration 0. (b)
Iteration 30. (c) Iteration 80. (d) Iteration 120.

Figure 31: Volume rending of segmentation results of using proposed method on
chest CT scans. (a) One view. (b) Another view.

4.3.2 Dental X-ray Images

As described before, dental X-ray segmentation is a challenging problem for classic
methods due to the following characteristics: (1) poor image modalities: noise,
low contrast, and sample artifacts; (2) complicated topology; and (3) there may
not be clear edges between region of interest, which is especially true for dental
images with early stage problem teeth. Fig. 32 demonstrates the variational level
set segmentation described in the § 4.2.1 on dental X-ray images. As can be seen, the
variational level set method is able to successfully segment the image using the given
pathological modelling, which provides automatic feature extraction for PCA and
SVM training. Fig. 33 shows the results by the proposed method. Since pathological
modelling explicitly incorporates regions of problems as part of the modelling, the

identification of such areas is an automatic byproduct of the segmentation.

4.4 Summary

Due to the presence of complicated topological and residual features, the segmen-

tation of medical imagery is a difficult problem. In this chapter, an automated
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Figure 32: Coupled level sets segmentation. (a) Original image. (b) Iteration 0. (c)
Iteration 50. (d) Iteration 100. (e) Iteration 200. (f) Iteration 250.

Figure 33: Experimental Results on Dental X-rays. (a) (c) Original image with
problem area circled by dentist. (b) (d) Segmented image with problem area circled
manually for attention.

approach to clinical image segmentation has been presented. The processing of
these images in our approach is divided into learning and segmentation stages to
facilitate the application of PCA with a SVM classifier. During the initial learning
stage, representative images are chosen to represent typical input images. These im-
ages are segmented using a variational level set method driven by a pathologically
modelled energy functional designed to delineate the pathological characteristics of
the images. Then a window-based feature extraction is applied to these segmented
images. Principal component analysis is applied to these extracted features and the
results are used to train an SVM classifier. After training the SVM, any time a
clinical image needs to be segmented, it is simply classified with the trained SVM.

By the proposed method, we take the strengths of both machine learning and the
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variational level set method while limiting their weaknesses to achieve automatic
and fast clinical segmentation. To test the proposed system, both chest CT scans
(2D and 3D) and dental X-rays are used. Promising results are demonstrated and
analyzed. The proposed method can be used during pre-processing for automatic
computer aided diagnosis.

These results show that the proposed method is able to provide a fast and robust
clinical image segmentation of both 2D and 3D images. Due to the use of patholog-
ical modelling to define the regions of interest, the segmentation results can be used
to further analyze the image. The proposed method can be used as pre-processing
step for automatic computer aided diagnosis. We will continue exploring this idea

in the next chapter.
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Chapter 5

Computer Aided Dental X-ray
Analysis

“I believe the present fashion of applying the actions of physical science to human life is not only

a mistake but has something reprehensible about it.”

- Albert Finstein (1879-1955)

5.1 Introduction

The past few years have seen a great increase in the usage of digital dental X-ray,
which is the important way to detect periodontitis ( commonly known as “gum
diseases”) and bone loss that cannot be seen during a visual examination in dental
practices.

The benefits of digital x-rays include:

1. Reduced waiting time: Digital x-rays are available very quickly and can be
displayed on the computer screen almost immediately after. This saves the
time to process film.

2. High resolution image: Comparing to classic X-ray film, digital X-rays provide
much high resolution image. With the higher resolution digital X-ray of sec-
tions of the teeth, or of the entire jaw, comes the possibility of more accurate
diagnoses.

3. Safer radiation exposure: Sensors in digital X-ray systems are more sensitive
than X-ray film systems, resulting in up to a 90% reduction in a patient’s

exposure to X-ray.
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Moreover with the fast development of digital dental X-ray machine, the dental
X-ray is not only becoming cheaper and more convenient but since they are accessible
electronically, this makes computer aided dental X-ray analysis possible, convenient
and efficient. All these provide the opportunities and challenges for the development
of computer aided dental X-ray analysis.

Besides being used for clinical purposes, dental X-ray is also widely used in the
forensic identification. Jain et al. [13, 24, 28| are developing an automatic human

identification system using dental X-ray.

Figure 34: Dental X-ray samples.

However, although dental X-ray are widely used, it is a challenging task to
do automatic, or even semi-automatic, computer aided dental X-ray analysis. As
shown in the Fig. 34, as compared with other types of images, dental X-ray analysis
is a challenging problem for classic image processing methods due to the reasons
discussed earlier in § 4.2.1 with the additional complication of arbitrary teeth ori-
entation. Therefore the dental X-ray is normally inspected by a dentist. Although
efficient, human inspection requires specialized training and a dentist’s time, which
is increasingly expensive. Moreover, human inspection gives a subjective judgment,
which may vary from person to person, and, as such, does not give a quantitative
measurement. Inspection results could be affected by many factors, such as fatigue
and distraction by other features in the image, for example. Also, some early bone
loss may not be visible to the human eye. All of these issues indicate a need for
effective automatic or semi-automatic dental X-ray analysis. In Chapter 4, level
set segmentation method has been used for dental X-ray images. The segmentation
method employs three coupled level sets driven by a proposed pathologically varia-

tional modelling. The work also demonstrated the segmentation results has can be

67



used for further clinical diagnosis.
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Figure 35: Framework diagram.

In this chapter, we describe an innovative work on semi-automatically providing
indications to the dentist to aid in finding areas of bone loss in teeth or the jaw
and to help detect root decay, which are the primary reasons that X-ray is taken
in many countries. Early detection of bone loss and root decay is very important
since often they can be remedied in the early stage by dental procedures, such as a
root canal, for example. Without early treatment, bone loss may lead to tooth loss
or erosion of the jaw bone. Although the approach developed here can be applied
to other types of dental X-ray, we will be dealing primarily with periapical X-rays,
which are close-up views of a few individual teeth including the root and surround-
ing bone. Periapical X-ray is very useful in diagnosing an abscess, impacted tooth or
bone loss due to periodontal disease. Compared with panoramic dental X-ray, which
include the entire jaw region, periapical X-ray taken for these purposes are more
challenging since the orientation of the teeth may not be fixed and problem areas
are either complicated, as shown in the Fig. 34(a), or easily overlooked, as shown
in the circled areas in the Fig. 34(b) and (c). These factors complicate the use of
traditional image processing methods. Therefore we employ our clinical level set
segmentation framework developed in Chapters 3 and 4 using pathologically mod-
elled level set functions for segmentation due to its ability to capture the topology
of shapes in medical imagery and its robustness to noise. The benefit of using level

set segmentation on dental X-rays in particular will be discussed in detail in the
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§ 5.2

To analyze the dental X-ray to determine areas of decay, adapting the frame-
work presented in Chapters 3 and 4, a semi-automatic computer aided dental X-ray
analysis framework is proposed. The diagram of the proposed framework is shown
in the Fig. 35. As shown in the Fig. 35, the proposed framework consists of two
phases: segmentation and analysis. Segmentation phase again contains two stages:
training and clinical segmentation. The analysis phase contains three steps : uncer-
tainty map building, bone loss detection and root decay detection. To the best of
our knowledge, we are the first group working towards automatic computer aided
dental X-ray diagnosis for the detection of bone loss and root decay using the level

set method. This chapter reports on our preliminary results towards this goal.

5.2 Variational Level Set and Dental X-ray

Figure 36: (a) Original image. (b) Variational level set segmentation by [10]. (c)
Results by Sobel edge detection. (d) Histogram image of (a). (e) Original image.
(f) Variational level set segmentation by [61]. (g) Results by Sobel edge detection.
(h) Histogram image of (e).

As described in previous chapters, the variational level set method naturally seg-
ments the image according to the energy functional. Due to this characteristic, as
shown in the Fig. 36, a variational level set method is able to detect a boundary
where traditional methods fail. Moreover, the variational level set method is very

robust to noise (see Fig. 37), which presents serious challenge to many traditional
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image processing techniques on dental X-ray as shown in the Fig. 38. The varia-
tional level set method is very robust to noise, compared with the gradient based
classic image processing method. Even when the amount of the noise is very high (o
= 40), the variational level set method can still determine the correct segmentation

as shown in the Fig. 37.

Figure 37: Noise robustness. (a-d)are variational level set segmentation by [10] ((a)
noise level o (variance of the noise) = 10; (b) noise level o = 20; (c) noise level o =
30; (d) noise level 0 = 40.). (e-f) edge detection by Sobel edge detection ((e) noise
level o = 10; (f) noise level ¢ = 20.). (g-h) are edge detection by LOG ((g) noise
level o = 10; (h) noise level o = 20).

5.3 Proposed Framework

For the proposed framework, we first employ level set methods to segment the
image into three regions: Normal Region (NR), Potentially Abnormal Region (PAR),
Abnormal and Background Region (ABR). As before, the segmentation contains two
stages: a training stage and a clinical segmentation stage. During the training stage,
first, manually chosen representative images are segmented using hierarchical level
set region detection. Then the results are used to train an SVM classifier. During
the clinical segmentation stage, dental X-ray are first classified by the trained SVM,
which provides initial contours for two coupled competitive level set functions. The
competition of the two level set functions will give the final segmentation result.
Based on the segmentation results, an analysis scheme is applied. The scheme first

builds an uncertainty map, which is then used to automatically mark any areas of
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Figure 38: Edge detection of Fig. 34. (a-c) are edge detection by Sobel edge
detection and (d-f) are edge detection by laplacian of gaussian (LOG).

bone loss. Subsequently, an average intensity profile based method is employed to

isolate the teeth and detect possible root decay.

5.3.1 Competitive Variational Level Set Segmentation

As shown in the Chapter 3, variational level set can be modelled with a patholog-
ically meaningful energy modelling, which will lead to a pathologically meaningful
segmentation. In this implementation, we propose a new variational level set seg-
mentation method driven by a new proposed pathological energy modelling. By
the competition of two coupled level set functions, the segmentation segments the
image into three pathological meaningful regions: Normal Region (NR), Potentially
Abnormal Region (PAR), Abnormal and Background Region (ABR). The modelling
explicitly incorporates problem regions as part of the modelling, such that the iden-

tification of these areas would be an automatic product of the segmentation.

71



Pathological Energy Modelling

With an evolving curve C, one level set function divides the image (u) into two

parts: Normal Region Qung(“+” region) and Abnormal Region Q4r(“” region) as
shown in the Fig. 39(b). The energy functional is given by
— (u—cnr)? (u—car)®
E(®) = B o, 2l dady + 6, [, “op dudy, (57)

where ¢; is the mean grey value of the region €;, o0; is the variance and §; is a
constant.

However for medical diagnosis and early detection, the areas between the normal
and abnormal regions are more important since these are the areas of potential
problems, which are of particular interest for medical diagnosis and early detection
of problems. Therefore we propose a competitive level set model with two level
set functions to segment the image into three regions: normal region, abnormal
region and potentially abnormal region. As shown in the Fig. 39(a), a dental X-
ray image (ug) can be divided into four region of interest: the Normal Region
(Qnr), the Potentially Abnormal Region (2par), the Abnormal Region (€24r) and
the Background Region (Qpg). Since Q4r and Qg is not separable in terms of
intensity values, so in the segmentation, we take 24z and 2gg to be a single region:
the Abnormal and Background Region (24r). The energy functional for the two

coupled level set functions ($; and ®;) can be modeled as:

E(@1,®2) = A1 [y, “52dady + X [, Losamnl dady,

0' OABR

T prAR in ((u ;PARl)z (u— ‘;PARz )d:vdy (58)

y
9PAR, 9PARy

where the function Min(xz,y) returns the smaller value of z and y and \; is a
constant. The modelling is in the same spirit as multiphase modelling in [79)].

As shown in the Fig. 39(c) using competitive coupled level set functions, if both
level set functions classify an area as a normal region, we take it as a normal region
Qnrg; if both level set functions classify a region as an abnormal and background
region, we take it as an abnormal and background region Q4p5r; however if only
one of the level set functions segments a region as a normal region, the region

will be taken as a potentially abnormal region Qp4g. Using the proposed method,
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Figure 39: Region modelling. (a) The dental X-ray image can be divided into four
regions: Qng, Qpar, Qar, and Qpr. (b) With one curve C,| one level set function
segments the image into Qyg and Qag. (¢) Two competitive coupled level set
functions segment the image into three regions: Qyg, Q2par and Qagr.

segmentation can be naturally achieved by the competition of the two level set
functions.

Although it is possible to use three coupled level set functions to segment the
image into three regions as described in [40, 39, 42], the two coupled level set method
is able to achieve faster segmentation and a more accurate boundary as discussed
in [79].

To achieve a fast and robust segmentation, a hybrid coupled level sets functional
that combines minimal variance (Eq. 58), the optimal edge integrator [34] and the

geodesic active contour model [7] is used:

E = E(®1,%2) — mErap +12Ecac, (59)

where ~y; are constants.

Competitive Level Set Functions

The level set functions ®; derived from the functional in the Eq. 59 are shown below
in Eqgs. 60 and 61.

0P, . d—n )2 — 2
5 = 0:(®1) [’dew(%ggh) -4 ag\,?) H(®,) — (—a%%(l — 2H(®,))

+ Cogasn (1~ H(D,)) - U], (60)
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Although we only apply the proposed level set method to the dental X-ray,
the method can be extended to be a general segmentation method. Three regions
medical image segmentation plays an essential role in the medical image processing
since most X-ray and some types of CT images naturally contain up to three region

of interest.

5.3.2 Segmentation

To apply the level set method in the dental clinical setting, we adapt the clinical
segmentation framework described in the Chapter 3 for general clinical settings.
The framework uses an SVM to provide a good initial contour for the level set
method, which greatly speeds up convergence of the coupled level set functions.
Following the same principle, we use an SVM to provide initial contours for two
coupled level set functions. The purpose is not only to speed up the segmentation
convergence, but also to provide a competitive initial condition for level set functions.
The segmentation phase has two stages: a training stage and a clinical segmentation

stage.

Segmentation Phase

During the training stage, manually chosen representative images are segmented by
hierarchical level set region detection ( see § 3.2.2 for detail) using the Chan and
Vese level set method [10]. In the hierarchical level set region detection, first a level
set function is used to separate {4pgr from the rest of the image (Q4p and Qpg).
Then another level set function is used to separate 245 and {2zg. Then these results
are used to train an SVM classifier.

During the clinical segmentation stage, a dental X-ray image is first classified

by the trained SVM. The classifier is able to give a rough classification of the three
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regions (Qagr, 2vg and Qpag), which may not be accurate. But it provides good
initial contours for coupled level set functions as described in [36, 37] and § 3.2.2.
The final segmentation will be achieved by evolution of these two level set curves
under the functional described in the Eq. 59 and level set functions described in
Eqgs. 60 and 61. The competitive initial conditions are set as following: for @, we

W o”n

set classified )y g as the “+” region and rest of the image as the region; for ®,,
we set classified QQyr and Qpag region as the “+” region and rest of the image as

the “-” region.

Eigenpatch Feature Extraction

In the training stage, after segmentation, the results are used to train a SVM.
The procedure of the feature extraction is illustrated in the Fig. 40. To speed up
classification we use the PCA method based on eigenpatch discussed in § 4.2.3 as
shown in the Fig. 40.
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Figure 40: Feature extraction diagram.

5.3.3 Analysis Phase

The analysis phase contains three steps: uncertainty map building, bone loss detec-

tion and root decay detection. The first two steps are fully automatic. The only
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manual input for the last step is the image orientation. This information is not

difficult to obtain in the dental clinical setting.

Uncertainty Map

As shown in the § 3.3.4, intensity deviation has a good diagnosis value together with
segmentation result. Here, following the same principle in the § 3.3.4, an uncertainty

map is built based on the following uncertainty measurement:

(u — enr)T1 + (v — cpar) (T2 — 271) + (u — capr)(1 — H(¢1))(1 — H(¢2))

V= oNRTL + 0par(ta — 211) + 0apr(1l — H(41))(1 — H(¢s))

where 1 = H(¢1)H(¢2) and To = H(¢1) + H(¢2)
The uncertainty map provides a digitalized intensity deviation for further analy-
sis. As shown in the following, those high uncertainty areas usually have diagnostic

value.

Bone Loss Detection

Areas of bone loss will generally occur in those regions of high uncertainty. There-
fore, we mark these areas with different levels of emphasis according to the uncer-
tainty measurement and the type of region segmented.

Color emphasis scheme: Although the uncertainty map is an objective and
digitalized uncertainty measure, it fails to provide direct visual cues. In this chapter,
we propose an approach to combine the uncertainty map with the color channels to
give efficient and direct visual aids to the dentist. To achieve the visual assistance,
the RGB channels of the image are used to couple the intensity values of the image
with the degree of uncertainty at each pixel. For all regions, the G channel is used
to represent the intensity value of each pixel of the original dental X-ray image.
The uncertainty values are nonlinearly scaled to the range 0 to 255. To differentiate
between the three type of regions, for Q4gr, the R channel is set to the uncertainty
value while the B channel is set to 0; for 2psg, both the R and B channels are set
to 255 to emphasize this region; and for {)yg, both the R and B channels are set to

the uncertainty value.
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Root Decay Detection

Root decay detection consists of three steps: tooth isolation, root decay location
and seriousness level evaluation. This is a semi-automatic process in which the

orientation of the teeth is supplied manually.

4 I [ 1
:««;,,fra\éf”’ v\

Figure 41: Teeth isolation. (a) Original image 1. (b) Original image 2. (c) Integrated
intensity profile of (a). (d) Integrated intensity profile of (b). The scales of the
profiles in (c) and (d) are normalized to facilitate comparison.

Teeth isolation: As suggested by Jain et al. [28], individual teeth can be
isolated by the integrated intensity value as shown in the Fig. 41. The integrated
intensity values sum the intensities of pixels along the vertical direction. Since the
teeth usually yield higher intensity values than the jaws and other tissues, the gap
of teeth will have a very low value on the integrated intensity value profile as shown
in the Fig. 41 (c) and (d). However, unlike a dental forensic X-ray analysis, which
can be assumed to have certain orientations, the clinical dental X-ray used to detect
root decay, etc., could have any orientation. As shown in the Fig. 42(a) and (c),
if the orientation varies, this profile method will not be able to obtain the correct
isolation. Therefore as additional information, we assume that the orientation is
given. Then we rotate the image according to the given orientation so that the
teeth are aligned in a consistent direction. After the rotation, instead of using an
integrated intensity value, we use the average of the intensity value (the integrated
intensity value divided by the number of pixels) as shown in the Fig. 42(b) and (d).

Root decay location and seriousness level evaluation: The areas of decay

are considered to be root decay if they are found at the root of teeth with the
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Figure 42: Teeth isolation. (a) Original image. (b) Rotated image. (c) Integrated
intensity profile of (a). (d) Average intensity profile of (b). (e) Two parts of a tooth:
crown and root.

following seriousness levels, in order of most serious to least serious: 1. Serious
Level (SL): if the Qapg is found at the root of the tooth; 2. Warning Level (WL) :
if the Qpag of any uncertainty is found at the root of the tooth; 3. Attention Level
(AL): if a high uncertainty area of Qyg is found at the root of the tooth. In this
implementation, the bifurcation decay (as shown in the Fig. 42 (e)), the decay on
the bifurcation of the teeth, is taken as one type of areas of root decay.

To improve the robustness and reduce the misidentification, the following two
schemes are applied: 1. the seriousness level of the root decay is decided by the
most serious level. 2. the area of decay is assumed to be a “round” shaped region.
So the “nail like” shaped regions will be ignored since they are usually either nerves

or noise..

5.4 Experimental Results

Altogether sixty dental X-ray with different level of bone loss and root decay were
used to test the proposed framework. The root decay and bone loss area detected by
the program are validated by two dentists. The promising results were demonstrated

and analyzed in segmentation and analysis sections below separately.
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5.4.1 Segmentation

Figure 43: Segmentation results. (a) Original image. (b) Iteration 0 provided by
SVM. (c) Iteration 40. (d) Iteration 60.

Figure 44: Segmentation results. (a) Original image. (b) Iteration 0 provided by
SVM. (c) Iteration 40. (d) Iteration 60.

First, images were used to test the proposed segmentation method. The results
presented in Figs. 43 to 46, show that competitive level set segmentation is able to
give pathologically meaningful segmentation. Most of the bone loss and decay areas
are segmented as potentially abnormal region; the serious decay areas are included in
the abnormal and background region; and the early decay areas are included in the
normal region. The pathologically meaningful segmentation is achieved by explicitly

incorporating regions of problems as part of the modelling, such that those areas
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Figure 45: Segmentation results. (a) Original image. (b) Initial condition provided
by SVM. (c) Iteration 20. (d) Iteration 60.

Figure 46: Segmentation results. (a) Original image. (b) Iteration 0 provided by
SVM. (c) Iteration 40. (d) Iteration 80.

would be automatically segmented by the competition of the level set functions.
Moreover, as shown in those figures, although the SVM only gives an approximate
segmentation, it is able to provide good initial contours for two level set functions,
which not only accelerates the segmentation, but also provides competitive initial
conditions for level set functions. Indeed, the competitive level set segmentation
is robust to the placement of the initial contours so that even when the initial
contours do not closely correspond to the final segmentation, the level set functions
can still achieve an accurate segmentation as shown in the Fig. 46 although with

more iterations.

5.4.2 Analysis

The pathological segmentation provides a sound basis for analysis. Since the patho-

logically modelled competitive level set segmentation explicitly incorporates regions
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of problems as part of the modelling, the identification of decay areas is an automatic

product of the segmentation.

Figure 47: Segmentation results. (a) Original image. (b) Bone loss area marked
with color channel method. (c¢) Root decay detected.

Figure 48: Segmentation results. (a) Original image. (b) Bone loss area marked
with color channel method. (¢) Root decay detected.

Based on the uncertainty map and segmentation results, the color emphasis
scheme is able to indicate all the areas of bone loss and decay in the image, as
shown in Figs. 47(b) and 48(b), in which the bone loss areas are emphasized by the
color scheme. Since the soft tissue has the same intensity distribution, they are also
marked as bone loss area. The scheme provides direct visual cues, which will greatly
reduce the possibility that some of these areas, e.g. areas indicated by arrows in
the Fig. 47(b) for example, might be overlooked. Although the area is segmented
as a normal region in the segmentation phase, the color channel scheme is able to
highlight those areas for the dentist’s attention.

Figs. 47 to 50 show the results of teeth root decay detection. In the example
shown in the Fig. 47, after being given the orientation of the image, the color analysis

scheme successfully locates the areas of root decay (see Fig. 47(c)). In this example,
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Figure 49: Root decay detection results. (a,c) Original image with root decay area
pointed by dentist. (b,d) Root decay detected.

Figure 50: Root decay detection results. (a) Original image. (b) Segmentation
Results. (c) Root decay detected.

the system automatically locates three areas of root decay. Two of them are at the
warning level (pink area) and one is at the attention level (orange area). In the
example shown in the Fig. 48, five areas of root decay are detected although one
of them is a false positive. Fig. 49 shows other two examples of locating a warning
level area of root decay (pink area in the Fig. 49(b)) and a serious level root decays
(red area in the Fig. 49(d)). Fig. 50 shows an example of locating a warning level
area of root decay (pink area in the figure).

Fig. 51 shows two of the visualized uncertainty maps. The uncertainty map is
able to give a general idea of the problem areas. And more importantly, it provides
a digitized uncertainty measurement for further analysis.

The experimental results validated by dentists show that the proposed framework
is able to help to find all the areas of bone loss. For the root decay detection, the

proposed framework is able to semi-automatically detect all of root decays. But due
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Figure 51: Uncertainty maps of (a) Fig. 43 and (b) Fig. 45

to complexity of the dental X-ray, there are still 11 false positive of root decay out
of 162 areas of root decay detected. One of these false positive is indicated by an
arrow in the Fig. 48(c).

5.5 Summary

In this chapter, a semi-automatic dental decay detection framework has been pro-
posed to detect the areas of bone loss and root decay from dental X-ray. In this
framework, first, a new proposed competitive coupled level set method is used to
segment the image into three pathologically meaningful regions using two coupled
level set functions. Tailored for the dental clinical setting, a two-stage clinical set-
ting applicable segmentation method is used. The method uses a trained SVM
classifier to provide an initial contour for two coupled level sets. Then, based on
the segmentation results, an analysis scheme is applied. Firstly, the scheme builds
an uncertainty map from which those areas with bone loss will be automatically
detected. Secondly, the scheme employs a method based on the average intensity
profile to isolate the teeth and detect root decay. Experimental results show that our
proposed framework is able to automatically detect the areas of bone loss and, when
given the orientation of the teeth, it is able to automatically detect the root decay
with a seriousness level marked for further dental diagnosis. The framework has the
potential to be used in a dental clinical setting since the classifiers can be trained in
advance and the orientation of the X-ray image can be given or predetermined by
the dentist.
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Chapter 6

Volumetric Medical Image

Reconstruction

“The grand aim of all science is to cover the greatest number of empirical facts by logical deduction

from the smallest number of hypotheses and axioms.”

- Albert Einstein (1879-1955)

6.1 Introduction

The reconstruction and visualization of volumetric medical data has been an active
area of research in recent decades. It plays a critical role in the medical image
analysis and visualization. The problem of 3D reconstruction arises in the medical
imaging where human organs are scanned through an image modality (e.g. CT , MRI
scans). Such reconstructions of human organs are widely used for computer aided
diagnosis, planning and simulation [52, 84], prosthesis milling, radiation therapy
planning and volumetric measurements. Due to the increasing use of the 3D and
4D medical data, the reconstruction becomes increasingly important.

There have been a great number of approaches proposed, which may be roughly
classified into two groups: surface reconstruction and volume reconstruction. Most
of the current approaches cope only with surface modelling. In the surface recon-
struction approach, typically the main goal is to reconstruct a triangulated surface
that bounds an object. This group of methods is usually very fast. However only

the surface information is used. The internal part is discarded. In this category,
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recent researchers are use GDM to detect the surface. Most of these works are ap-
plication oriented as shown in [6, 73]. One the other hand, volume reconstruction is
usually based on voxel-technique. The surface can be fit on the set of parallelepipeds
based on these techniques, for example the marching cube technique [46], and the
object is rendered with conventional rendering algorithms such as ray casting and
ZSweep [25]. The volume reconstruction is able to keep all the information. However
the main disadvantage is it relies on the large volume of data to be manipulated.
This is a fatal problem for many real time applications such as remote data access
and web based visualization, which becomes more and more popular now.

To overcome the above problems, we explore the advantage of using tetrahe-
dral meshes to combine surface reconstruction and volumetric reconstruction. We
propose an approach to reconstruct non-grid models from grid based volumetric
data sets. By this method, the regular grid based volumetric medical image is first
segmented by a coupled level set method driven by a pathologically modelled func-
tional. Then the volumetric medical image is transformed from regular grid data to
a tetrahedral mesh. To reduce the redundancy and noise in the data set to reach
the goal of effective storing, transferring and rendering the data efficiently, a hybrid
sculpting scheme is proposed to sculpt the tetrahedral mesh obtained while still pre-
serving the important features necessary for diagnosis. With customizable criteria,
the hybrid sculpting scheme is able to provide multiple levels of detail, thus enables
the efficient reconstruction and visualization of the data at different levels of detail.
The method has the potential to be used in a clinical setting where a radiologist
or clinician can quickly inspect a volumetric image even when the data is remotely

obtained.

6.2 Proposed Framework

6.2.1 Pathological Segmentation

In this work, the pathological level set method described in the § 4.2.1 is used to
segment the volume first. With the assistance of radiologist, the energy functional
is modelled according to the pathological meaning of different regions in a typical
medical image of the type being considered. Without losing generality, we are

going to take chest CT scans as an example to describe the modelling. For this

85



implementation, a chest CT image is divided into four region of interest as shown
in the Fig. 22 in the § 4.2.1: the Background Region (Q2pg), the Skeletal Structure
Region (Qgg), the Fatty Tissue Region (Qpg) and the Muscle and Visceral Tissue
Region (Q2ar). The detail of the modelling can be found in the § 4.2.1.
Segmentation plays an important role in the reconstruction since it changes the
unstructured data into structured data. It creates a basis for the reconstruction.
Compared to other segmentation methods, level set is able to achieve accurate and
automatic segmentation. More importantly it is very robust to noise, which is
essential for medical image processing. Although it is a originally slow processing,
several efforts [36, 9] have been proposed to improve the speed of level set when

applied in medical and clinical applications.

6.2.2 Tetrahedral Partition

The original grid data is transformed into tetrahedral mesh by simply splitting each
voxel/cubic diagonally into five tetrahedra as shown in the Fig. 52. The tetrahedral

mesh provides great flexibility with reconstruction due to the following two reasons:

1. Operations of hybrid sculpting can be easily performed on its basic primitive,
tetrahedron. It is convenient to assign attributes and functions to the vertices
and tetrahedron. Computational steps such as interpolation, integration, and
differentiation are fast and can be done in similar forms.

2. With tetrahedral mesh and segmentation results, we can easily combine vol-
ume visualization with surface visualization. Moreover, the triangles that

generated by tetrahedra may be rendered with hardware acceleration.

6.2.3 Hybrid Sculpting

Usually a medical image contains a large amount of redundancy, which has been
inherited by the tetrahedral mesh after partition. To achieve efficiency in stor-
ing, transferring and rendering, an efficient tetrahedral mesh sculpting scheme is
needed to reduce the complexity of original dataset by collapsing some of the tetra-
hedra while preserving meaningful features. Based on region information naturally
obtained by segmentation, inspired by [6, 30, 58, 85], some of the basic graphics

techniques such as tetrahedra collapse, flip check and error predictions are modified
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Figure 52: Tetrahedral partition. (a) One cube. (b) Partition of five tetrahedra.

and adopted from [30], we propose a hybrid sculpting scheme, which is consisted of

two sculpting schemes: internal sculpting and surface sculpting.

Internal Sculpting

By internal sculpting, each region is internally sculpted individually. To meet differ-
ent requirements and obtain an optimized sculpting, a customable hybrid regional
and local error prediction based internal sculpting scheme is used to reach different
levels of sculpting. This is done by a weighted sum of regional error prediction (g,)
and local error prediction (g4, &5, €, and &;) to optimally choose the next cell to be

collapsed as shown:
Agr = WrEp + WeEg + WnEn + WsEs + WyEy, (62)

where w; are weights and ¢; are error predication functions as following:
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where s; are the attribute values of the original vertices v; of the cell 7 ready for
collapse; ur and oy are mean value and variance of the region the cell belongs to;
s, is the attribute value of new vertex after collapse; 9, is the new vertex generated
after collapse; a,b and c¢ represent the three edges of the cell 7, which share one
common vertex; and 7; are the neighboring cells.

The internal sculpting removes internal redundancy while preserving internal
pathological features via the hybrid error prediction function. This is achieved by
choosing the cells with smallest Ae; values to collapse in each iteration of the sculpt-
ing. The internal sculpting is only performed in each segmented region individually
and does not touch the boundaries of either the regions or the overall volume..

Greedy Internal Sculpting Scheme The sculpting is an iteration based process.

Each iteration gives one level of sculpting ratio, which is defined as:

number of tetrahedra removed

sculpting ratio(y) = (63)

number of tetrahedra in the original image
To achieve fast processing, we choose the greedy strategy to implement each

iteration as listed below:

1. For all the non-surface cells, the cells are sorted with respect to Ae; and stored
in a queue, if the Ae; is smaller than a specific threshold.

2. For all the cells in the queue, a collapse operation is performed after checking
that the operation will not cause the flipping problem (i.e., its interior becomes
its exterior after a collapse). For more detail about the tetrahedral collapse,
we refer the reader to [31, 58, 85].
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Surface Sculpting

Based on the segmentation, during the tetrahedral partition, tetrahedral cells on
the surface are marked. During the internal sculpting, these surface cells are left
untouched. However, for many applications, the surface of the overall volume plays
a less important role in the visualization of the volume. Therefore we provide such
a surface sculpting scheme subject to customization based on need.

To obtain an optimized surface sculpting, a weighted sum of gradient error pre-
diction (g4), shape error prediction (¢,) and Hausdorff error prediction (e) is used
to optimally choose the cell along the surface to be collapsed as shown in the Eq. 64.
Based on the Hausdorff distance function (h(-)), which is the maximin function of
a set to the other set [59], Hausdorff error prediction is asymmetric and oriented as
shown in [74]. This characteristic helps to preserve more meaningful features along

the surface.

Agg = weey + WsEs + When (64)

Hausdorff Error Prediction: &, = max(h(P, P),h(fj, P)), (65)

Hausdorff Distance Function:  h(P,P) = gg}){(;?eig(distance(pi, Pi)s
where P is localized surface mesh and P is sculpted surface mesh, and functions
max and min return the larger and smaller value, respectively.

Greedy Surface Sculpting Scheme  Similar to greedy internal sculpting, each
iteration of greedy surface sculpting has the following steps:

For all the cells on the surface,

1. if the cell has one single vertex on the surface, the cell will be collapsed to
that vertex;

2. if the cell has two vertices on the surface, the cell will be collapsed to the
middle of these two vertexes when among all the cells share the same two
vertices, the cell has the smallest Aeg, which is smaller than the specified
threshold;

3. if the cell has three or more vertices on the surface, the cell will not be col-

lapsed.
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Combined Sculpting

To obtain large sculpting rate, internal sculpting and surface sculpting can be com-
bined together. For combined sculpting, in each iteration, the mesh is sculpted by

surface sculpting followed by internal sculpting.

6.3 Experimental Results

We have implemented our algorithm on a Windows Platform with a 2.39GHz Intel
Pentium 4 CPU and NVIDIA Quadro4900 XGL adapter with 128 Megabit RAM.
We use ZSweep as our irregular mesh rendering technique to obtain the final images.

In the following, our proposed method is tested on chest CT scans. Results
show that the proposed framework is able to successfully reconstruct the organs
from the original medical volume. Also the proposed hybrid sculpting is able to re-
move redundancy while preserving important features with multiple levels of detail.
Although only tested using chest CT scan, our method can be used for a general
medical volume with its associated pathological modelling.

The Fig. 53 shows the level set segmentation using pathologically modelled vari-
ational level set method. Each level set function is first initialized as a sphere as
shown in the Fig. 53(a). Driven by the pathological energy functional, the evolving
of the level set curves converges to final segmentation, which segment the volume
into four pathologically meaningful regions as shown in the Fig. 53(d). The seg-
mentation creates a solid basis for the whole reconstruction. It helps to find the

structure and boundaries of each pathological region, which is ideal as the starting

point for feature preserving hybrid sculpting.

Figure 53: Volumetric segmentation results with four coupled level sets. (a) Iteration
0. (b) Iteration 30. (c) Iteration 80. (d) Iteration 120.

To test the efficiency of the internal sculpting, we use ZSweep to visualize the
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tetrahedral mesh before and after internal sculpting as shown in the Fig. 54. Com-
parison of Fig. 54 (a) and (c) shows even when 64% of tetrahedra are collapsed
by internal sculpting, there is still no noticeable visual change in its visualization.
This indicates the efficiency of internal sculpting scheme at preserving the important

features while removing large amount of redundancy in the image.

Figure 54: Volume rendering for internal sculpting using ZSweep. (a) Original
image. (b) v = 48%. (c) v = 64%.

Bone structure is used to demonstrate the surface sculpting and combined sculpt-
ing as shown in the Figs. 55 to 58. Fig. 55 demonstrates the reconstructed bone
from the original volume. Fig. 56 demonstrates the results of only surface sculpting.
The surface is extracted from the surface tetrahedra in the mesh. Since the surface
usually contains very important information, surface sculpting alone can only col-
lapse 17% of tetrahedra as shown in the Fig. 56. Using combined sculpting, a large
sculpting rate can be achieved as shown in Figs. 57 and 58. Even when more than
90% of the tetrahedra have been collapsed, the main structure of the volume is still

kept, which indicates the efficiency of the proposed sculpting schemes.

Figure 55: Two views of bone surface rendered from tetrahedral mesh (v = 0%).
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Figure 57: Two views of sculpting results using combined internal and surface sculpt-
ing (v = 63%).

Figure 58: Two views of sculpting results using combined internal and surface sculpt-
ing (v = 91%).
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6.4 Summary

In this chapter, a volumetric medical image reconstruction method using tetrahe-
dral meshes and level set has been whereby non-grid models are reconstructed from
grid based volume. In addition, the approach is able to provide customizable fea-
ture preserving levels of detail. By this method, the grid based volumetric medical
image is first segmented by coupled level sets driven by a pathologically modelled
energy functional. The segmentation divides the volume into pathologically mean-
ingful regions. The volume is changed from regular grid data to a tetrahedral mesh
by tetrahedra partition scheme, which divide one cube into five tetrahedra. To re-
duce the redundancy in the mesh, a hybrid sculpting scheme is proposed to reduce
the amount of redundancy and noise while preserving the important features. The
hybrid sculpting scheme consists of internal sculpting and surface sculpting, which
is able to provide multiple levels of detail through each iteration of sculpting thus
enabling efficient reconstruction and visualization of the data. Initial results con-
firm the efficiency of the proposed method and demonstrate high visual quality for
rendered data even when a large sculpting rate is achieved. These results show
that the proposed framework is able to maintain important features with less data
volume and change the data from regular grids to tetrahedral mesh whose raster-
ization are supported by 3D graphics hardware. Moreover the results show that
hybrid sculpting proposed provides efficient multiple levels of detail by removing
redundancy while preserving important features. The framework has potential to
be used in clinical setting where a radiologist or clinician can inspect the volumetric
image with less data volume and faster hardware supported volumetric rendering

even the data is remotely obtained.
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Chapter 7
Conclusion and Future Work

“I never worry about the future. It comes soon enough.”

— Albert Einstein (1879-1955)

7.1 Conclusion

This thesis reports on our efforts to overcome some of the current challenges existing
in medical image analysis and visualization using geometric level set.

The theoretical contribution of the thesis lies in extension of geometric level set
on domain of medical image analysis and visualization. To improve the performance
of the geometric level set, the strength of geometric level set was combined with
some recently developed techniques such as, support vector machine and principal
component analysis for example, to limit the weakness and strengthen the strong
points. Results have shown that by this, we are able achieve fast, robust and accurate
segmentation methods. Two novel level set segmentation methods are proposed.
The competitive level set, which segment triple region image using two coupled level
set functions, and pathological level set, which incorporate pathological diagnosis
information into level set segmentation, proposed in the thesis have potential to be
used widely in medical image analysis and visualization since it provides a base for
further processing.

The practical contribution of the thesis lies in two applications: dental X-ray
CAD and chest CT volume reconstruction. Results from dental X-rays have shown
that the dental X-ray CAD is able to automatically detect the bone loss and root

decay based on the analysis of segmentation result. Results of volume reconstruction
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on chest CT scan have shown that the proposed method is able to transfer grid based
medical volume into non-grid volume. More importantly, it is able to remove the

redundant while keeping important features.

7.2 Future Work

As is often the case in research, this thesis leaves more open questions than closed
chapters.

In the future, we will keep working on the following:

1. research and development of a general automatic approach, which fuses seg-
mentation and registration together. As two popular tools in the medical
image analysis and visualization, automatic segmentation and registration are
two very challenging and unsolved problems. This is a very active and chal-

lenging research topic in the field.

2. research and development of an efficient (real time if possible) volumetric
medical image reconstruction and visualization system using cutting edge seg-
mentation and registration method with application on virtual augmentation

and simulation for diagnosis and surgery.
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