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Abstract

A Study of Multiloop Networks

Edward Maraachlian

Multiloop networks is a family of network topologies which is an extension of the
ring topology. In this thesis we study the structural properties of bipartite double
loop networks using the plane tessellation technique. We also study the problem of
broadcasting in the bipartite double loop networks and in triple loop networks. For
the first kind of graphs we find that the broadcast time is d+2 where d is the diameter
of the graph. For the triple loop graphs, we give a d+5 upper bound on the broadcast
time by providing an algorithm that completes broadcasting in at most d + 5 time
units. We also find a d + 2 lower bound for the optimal triple loop graphs, these are
the graphs with maximum number of nodes given a diameter d. Finally we give an
upper bound for the broadcast time of undirected Circulant (also called multiloop )

graphs of degree 2k which is d + 2k — 1.
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Chapter 1

Introduction

The need for high performance computing is constantly increasing. Examples of appli-
cations that are computation intensive or require large memory are weather prediction
systems, astronomical calculations, protein dynamics simulations (on the IBM Blue
Gene), and human genome sequencing, to name a few. The traditional von-Neumann
model serial computers either cannot solve these problems in an acceptable amount
of time, or cannot deal with the enormous size of these problems. Parallelism, where
more than one processors works on solving the problem, is the answer to the restric-
tions of the traditional computers. There are different models for parallel computing.
One of the most common models is the MIMD (Multiple Instruction and Multiple
Data) which is sometimes referred to multicomputers or multiprocessors. The differ-
ent processors, working in parallel, will most probably need to exchange data among
each other. This is done either through a shared memory or an interconnection net-

work. Shared memory multicomputers have a limitation on the number of processors



that can be connected together. Hence, it is not practical if a very large number of
processors is to be connected. A more realistic way of designing multicomputers is to
make each processor have its own main memory. Communication between the pro-
cessors will be accomplished by passing messages using an interconnection network.
It turns out that the performance of these multicomputers not only depends on the
processing power of the processors but also on the performance of the interconnec-
tion network in disseminating data among the processor. Research has shown that
the structural properties of a network determine many of its properties such as the
minimum broadcast time, ease of routing, and fault tolerance.

Multiloop networks, (also known as chordal graphs), are an extension of the simple
ring topology. Ring topologies have been the network of choice for implementing local
area networks (LANs) and SONETs ([26],[27],[4]) because of their simplicity, regular-
ity, low degree, symmetry, and expendability. They have some major disadvantages
too which are their low fault tolerance and long diameter. Improvements on the ring
topologies can be done by adding extra links, but this should be done carefully to
preserve, as much as possible, the symmetry and regularity of the network which are
two desirable properties which would make routing and switching protocols easy to
implement.

Broadcasting is the problem of disseminating a piece of information, owned by
certain node called the originator, to all other nodes [25]. This is one of the com-

munication primitives of parallel processing, hence inefficient broadcasting can be a



bottleneck in the performance of multicomputers. Broadcasting is performed by plac-
ing a series of calls along the communication lines of the network. At any time, the
informed nodes contribute to the information dissemination process by informing one
of their uninformed neighbors. In this thesis we will adopt the often used classical

broadcast model which is the following:

e Each call involves only one informed node and one of its uninformed neighbors.

Each call requires one unit of time.

A node can participate in only one call per unit of time.

e In one unit of time, many calls can be performed in parallel.

The k-port broadcast model is similar to the classical model described above with
only one difference which allows an informed neighbor to inform % of its uninformed
neighbors in parallel and in one time unit.

A broadcast scheme of an originator u is a set of calls that completes the broad-
casting in the network originated at vertex u. An optimal broadcast scheme informs
all the vertices in the least amount of time as possible. Two very good surveys on
broadcasting can be found at [24], [25].

As it is usually done, we will represent a network by a graph G = (V, E) where
the vertices V represent the nodes or the processing elements of the network, and the
edges E represent the communication links between the processors. In the rest of this
paragraph we will present some graph theoretic definitions that will be used in the
rest of this thesis. A vertex v is said to be a neighbor of u if there is edge connecting

3



the two. A path between two vertices is a sequence of edges that connect the two
vertices together. The distance between two vertices v and v, d(u, v) is the length of
the shortest path between the two vertices. The diameter of a graph is defined to be
the largest distance between any two vertices, d = maz, yev {d(u,v)}. The degree of
a vertex v, 6(v), in an undirected graph G = (V, E), is the number of neighbors that v
has. The degree of a graph G = (V, E), A(G), is the maximum degree of its vertices,
A(G) = mazy,ev{6(v)}. A graph G = (V, E) is bipartite if there exists a partition
V = ViUV, where Vi NV, = ¢ and any edge in F is incident on one vertex in V] and
another vertex in V5. Two graphs with the same number of vertices connected in the
same way are considered to be isomorphic. More formally, two graphs G = (V, E)
and G’ = (V', E') are isomorphic, G = G, if there exists a bijection ¢ : V — V' such
(z,y) € E & (p(x),(y)) € E'. The map ¢ is called isomorphism. If G = G’ then
@ is called automorphism. A graph G = (V, E) is called vertex transitive if for any
two vertices u,v € V there is an automorphism of G mapping u to v. For all other
definitions of graph theoretic terms refer to [14].

Given a connected graph G = (V,FE) and a message originator vertex, u, the
broadcast time of u, b(u, G) or b(u), is the minimum number of time units required
to complete broadcasting from the vertex u. Note that, for any vertex w in a connected
graph G on N vertices, b(u) > [log N since during each time unit the number of

informed vertices can at most be doubled. The broadcast time of the graph G denoted

as b(G) is defined as b(G) = maxz{b(u)|u € V'} [25].



One direction of research is to find the minimum broadcast time of various net-
works. But calculating the broadcast time of a general graph is proven to be NP-
complete [41]. On the other hand, the broadcast time of common network archi-
tectures have already been calculated [3], [7], [16], [18]. For the case of trees, [41]
gave a polynomial time broadcast algorithm which calculates the optimum broadcast
scheme. In [20] a polynomial time algorithm was given that performs broadcasting in
any unicyclic graph in a minimum possible time. If the broadcast time cannot be cal-
culated easily one approach is to find some lower and upper bounds on the time. For
the case of general graphs, given that finding the broadcast time is NP-complete, one
possible approach is to design polynomial time heuristics that calculate near optimum
broadcast schemes.

Another direction of research in broadcasting is to design graphs G on N vertices
such that the broadcast time b(u) = [log N and G has as few edges as possible. These
graphs are called minimum broadcast graphs (mbg). There is extensive research in
determining the minimum number of edges, B(/NV), required to construct a mbg on
N vertices. This problem proved to be very difficult. Results concerning the value
of B(N) for different values of N (1 to 22, 26 to 32, 58 - 63, 127, 2P, 2P — 2) can be
found in [13], [17], {6], [44], [45], [40],[28], [29]. For a graph G = (V, E) and diameter
d, b(G) > d. As a result, the problem of designing graphs with maximum number of
vertices N for a given diameter d has been of interest. A graph G of a given diameter
d is called an optimal graph if it has the maximum number of vertices for that given

value of diameter. One variant of this problem is finding the maximum number of



vertices (maximum order) of graphs with a fixed diameter and fixed degree. This
problem is known as the diameter-degree problem or (d,d) problem, and has been
studied quite extensively [38],[31]. An upper bound on the number of vertices N was
given by Moore. We will be interested in the problem of maximizing N in multiloop
networks only. This is a restricted form of the (d,d) problem where in addition to
the degree and the diameter the graphs are required to have a certain structure.

In this thesis we design a degree 4 regular bipartite double loop graphs that have
the maximum number of vertices for a given diameter. We also present the minimum
broadcast time, which is d+ 2, of these graphs and present an algorithm that informs
all vertices in a d + 2 time units. Then we study the broadcast problem in triple loop
graphs. First we consider the optimal triple loop graph and find upper and lower
bounds on the broadcast time. In particular we find that d + 2 < b(G) < d+ 5. We
present an algorithm and prove that it informs all vertices in at most d+ 5 time units.
Finally, we deal with the multiloop graphs of degree 2k, we present an upper bound
of the broadcast time which is: b(G) < d + k — 1. We present the algorithm that
informs all the vertices in a time less than or equal to this upper bound. In order
to have a more comprehensive study of multiloop graphs we apply the broadcast
algorithm developed of [21] to the double and triple loop graphs. This algorithm
has not been tested in multiloop graphs and we get excellent match between the
simulation and theoretical results. Moreover, the results of simulations in the case
of triple loop graphs come to suggest that an improvement on the theoretical results

can be obtained.



The thesis is structured as follows: The first chapter is an introduction that defines
most of the basic graph theoretic terminology used in this thesis and also gives the
motivation for this work. Chapter 2 gives a literature review of the multiloop graphs.
Chapter 3 presents the theoretical contributions of this thesis. Chapter 4 contains the
simulation results of the broadcast algorithm developed by Harutyunyan and Shao
[21]. The final chapter is a conclusion and contains possible directions for future work

related to our current work.



Chapter 2

A Review of Multi-Loop Networks

Multiloop Networks are an extension of the ring networks. In this section we will
present a survey of the important results concerning multiloop networks, very good
surveys can be found in [26],]27], and [4]. One of the central problems in computer
networks research is to design network topologies that have good properties. These
properties can be grouped into two major categories: better performance and lower
cost. Cost usually stands for the number of the links, and performance usually refers
to fault tolerance, broadcast time, or ease of routing schemes. Fault tolerance is the
ability of the network to respond gracefully to an unexpected failure of a node or a
link. The best performance can be achieved when all vertices of a graph are connected
to all the rest, i.e in a complete graph. But this is practically impossible and very
costly. A compromise between cost and performance should be done and that is
why there is research to design networks with certain structural characteristics, for

example having as few edges as possible, and optimum performance. Knowing that



the broadcast time of a graph G = (V, F') with diameter d is b(G) > d, one can see the
importance of designing networks on IV vertices with as small diameters as possible.
In this respect, researchers studying multiloop networks have addressed two problems:
Problem I: Given N vertices and a degree §, design the é-regular multiloop network
having the smallest diameter d possible. This problem has proved to be difficult and
people have instead tackled a different and somehow an easier version of it. Problem 2:
Given the diameter d and a degree § construct the J-regular circulant network with
diameter d with the maximum possible number of vertices N. In what follows we will
present results of how this second problem was solved for various multiloop networks

[31].

2.1 Design of Multiloop Networks

In this section we will survey the different mulitloop networks: their structural prop-
erties, minimum broadcast times, and broadcast algorithms. One of the techniques
to deal with this problem was the plane tessellation technique which will be described
in subsection 2.1.1. First we will give the definitions of the different graphs that will

be encountered in this thesis.

Definition 1 (Chordal rings). A chordal ring , CRn(c), on a set V of N vertices,
where N is even, is the bipartite graph over V = {0, -+ ,N — 1} where V =V, U V],
Vo =1{0,2,--- ,N =2}, and V} = {1,3,--- ,N — 1}. A vertexi € V; is connected

to vertices j = i+ 1,5 — 1,9 + ¢(modN) € Vi while a vertex j € V1 is connected to



verticesi =j+ 1,5 — 1,7 — ¢(modN) € Vy, where ¢ < N — 1 is an odd integer.

Chordal rings ([2],[37]) are nothing but the basic ring structure augmented by one
extra edge per vertex. This edge, similar to a chord, connects two vertices on the
ring. To preserve the symmetry of the graph, the chord length is kept constant for
all vertices. This definition can be generalized and the generalized chordal rings can

be defined as follows [46]:

Definition 2 (Generalized chordal rings). Generalized chordal rings, GCRy(a, b, c),
are bipartite graphs on the set of vertices V = {Vo UV} where |V| = N and is even,
Vo =40,2,--- ,N =2}, and Vy = {1,3,--- ,N — 1}. A vertexi € V; is connected
to vertices j =i+ a,i + b,i + ¢ (modN) € Vi while a vertex j € V; is connected to

verticesi =j —a,j —b,j — c (modN) € Vy, where a,b, and ¢ are odd integers.

The multiloop graph family is a general family which includes the double and triple

loop graphs. The multiloop graphs are sometimes referred to as circulant graphs.

Definition 3 (Undirected Multiloop Graphs). Multiloop (also called circulant ) graphs
Cn(Es1,ESq, -+ ,£sk) are defined on the set of vertices V. = {0,1,--- ,N — 1},
where |V| = N, and the set of edges E such that a vertez i is connected to vertices

iE 51,0 E 89,0+ i % sp{modN).

The multiloop graphs are also called circulant graphs because the matrices rep-
resenting these graphs (adjacency matrix representations) are circulant, i.e. rows are
cyclic shifts of each other. In the literature, sometimes the double loop graphs are
referred to as chordal graphs [8], [10].

10



2.1.1 Plane Tessellation Technique

The plane tessellation is a technique that maps the vertices of a graph to cells on
a lattice. This visualization method was originated by Wong and Coppersmith [43]
and Fiol, Yebra, Morillo, Alegre [46]. The mapping starts by assigning vertex 0 to
an arbitrary cell. The rest of the mappings are performed according to some rules as
it is explained below. After mapping a graph on a lattice one can define a tile or a
minimum distance diagram (MDD) which is a set of the lattice cells. Every cell in the
MDD corresponds to one and only one vertex of the graph and vice versa. Moreover,
among all the cells corresponding to a vertex ¢ the cell that is chosen to be part of the
MDD is the one that is at the shortest distance from the cell corresponding to vertex 0.
To simplify the notation we will refer to a cell corresponding to vertex i as cell 4. For
vertex transitive circulant graphs (all the graphs considered in this thesis are vertex
transitive) there is no loss of generality when we take vertex zero as the source from
which the distances are measured. Wong and Coppersmith [43] gave an algorithm to
construct the MDD. First the R? space is filled by a d dimensional lattice. In order to
do the mapping, the cells in the lattice should have as many neighbors as the degree of
the graph. Once a vertex ¢ is mapped to a cell ¢, then every cell neighboring cell ¢ will
be assigned to one of the vertices ¢ £ s;, 1 < j < k, neighboring vertex ¢ in the graph
Cn(£s1,£89,- -+, £s;). All additions and subtractions are modulo N. This mapping
assigns to the each of the infinitely many lattice cells a number between 1 and N. It
was proven that every MDD tessellates the R¢ space [27]. In other words, this means

that the MDD gets repeated periodically next to each other and completely fills the

11



Figure 1: The mapping rules from the GCR vertices to the triangular lattice cells.

space. This property can be used in designing graphs. But it should be noted that
not every tessellated MDD (tile) corresponds to a graph.

In particular, this geometric method was used in designing multiloop networks
that have the maximum possible number of vertices for a fixed diameter. Some
examples are the generalized chordal graphs [37], double loop graphs [46], double
loop digraphs [11], triple loop graphs [46], and triple loop digraphs [36],[1]. The
geometric visualization technique was also used in finding minimum broadcast times
and broadcast schemes [12],[33].

To illustrate the plane tessellation technique we give the following example. Con-
sider the generalized chordal rings, GCRy(a,b,c) were a vertex has 3 neighbors. A
cell corresponding to a vertex should neighbor 3 cells, hence the triangular lattice is

needed to apply the plane tessellation technique. Every vertex of the GCR will be

12



AVAVAVAVAVAVLAVAVA
AVAVAVAVAVAVAVAVA

IAF AR IHN
VANV AT
VANV VNG VLV
VAV AVAVAN

Figure 2: The mapping of GCRy4(—1,1,9) onto a triangular lattice. The MDD is
bordered by a bold line.
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mapped to a set of triangular cells according to certain rules. The mapping (see figure
1) can be done by first choosing an arbitrary "up” pointing triangle to correspond to
vertex 0. Then for every triangle corresponding to an even vertex i, the triangle on
its right is mapped to vertex ¢ + a, the triangle on its left is mapped to vertex ¢ + b,
and the triangle below it is mapped to vertex ¢ 4+ c. There are similar mapping rules
for odd vertices: for every triangle corresponding to an odd vertex j, the triangle on
its left is mapped to j — a, the one on its right is mapped to j — b, and the one on
its top is mapped to j — c. It can be observed that, as seen in Fig. 2, every node of
the graph will be mapped to infinitely many triangles and taking one triangle of each
label will form a tile that tessellates the plane [37] . If the problem is to design a GCR
with a certain N one has to find a MDD of N cells that tessllates the plane. Hence
the design problem reduces to a geometric problem. Usually, it is easy to construct a
tile that tessellates the plane, but one has to show that there is an GCRy(a, b, ¢) that
corresponds to the drawn tile. For GCRs in [37] it has been shown how an optimal
GCR with diameter d is calculated. The details of the illustration are of the same

spirit as the details of Chapter 3.

2.1.2 A Survey of Important Results

In this subsection we present some of the results concerning the structural proper-
ties of the different graphs defined above. For GCRs it was proven, in [37], that
GCRy(1,-1,3d) where N = 3d22—+1 has the maximum number of vertices for an an

odd diameter d. This GCR is called the optimal GCR for odd values of the diameter

14



d. For an even diameter d it was proven that the upper bound on the number of
vertices is N < %. Using the plane tessellation technique it was shown that this
upper bound is not attainable, instead a GCR with even diameter d and N = 3—‘132—‘—5
was found to exist. This graph is GCRy(1,—1,3d + 1) and is called quasioptimal
GCR. Therefore, the maximum value of vertices that a GCR with even diameter can
haveisi‘i—z*—dSN<§—§i.

In [46] the double loop graphs were considered and it was shown that Cy(41, £2d+
1) are optimal double loop graphs where N = 2d?+2d+1. The graph Cy(d,d+1) can
also achieve the same upper bound on N. Furthermore, Cy(d,d + 1) is a graph with
minimum possible diameter d for 2(d—1)?+2(d—1)+1 = 2d*~1 < N < 2d*+2d+1. In
[39] a node removal procedure was suggested that obtains the tile corresponding to a
double loop graph with diameter d and N vertices such that 2d®>—1 < N < 2d?4+2d-+1.
The node removal procedure removes nodes off the tile correspondiﬁg to the optimal
double loop graph and creates a tile corresponding to a non-optimal double loop
graph. In [10] the average distance of the graph Cn(1,2d + 1) with diameter d was
calculated to be 2;5;;2%1";%) where N = 2d? + 2d + 1. In [9] it was proven that the
Cn(d,d + 1) with N = 2d? + 2d + 1 has the minimum average distance among all
circulant graphs of degree 4 and diameter d. The average distance was calculated to
be d[1 — %%‘ﬁ—:%] In [34]it was proven that the optimal Cn(1,2d + 1) is isomorphic to
the optimal Cn(d,d + 1) graph.

The triple loop graph Cn(=a,£b, +c) was considered in [46] for the case where

¢ = —(a+b). Using the plane tessellation technique it was shown that the maximum

15



number of vertices that a graph of a certain diameter can have is N = 3d% + 3d + 1.
The graph that has this many vertices is Cy(3d+1, 1, —3d—2) and Cn(d, d+1, 2d+1).
The optimal graph where ¢ = 1, and arbitrary values of a and b was solved by E.

Monakhova [35], this results are presented in Chapter 3.

2.2 Broadcasting in Multiloop Networks

As it was seen in the previous section, the structural properties of the different mul-
tiloop graphs have been studied to a great extent in the last couple of decades. The
routing problem in these networks, which is not discussed in this thesis, has also been
discussed to some extent. On the other hand the broadcast problem is studied only
for three of the multiloop graphs: the generalized chordal graphs, the double loop
graphs, and the triple loop networks. In this section we will present these results.
Comellas and Hell in [12] studied the broadcasting problem in generalized chordal
rings and provided a broadcast scheme that informs all vertices in at most d + 2 time
where d is the diameter of the graph. They proved that the minimum broadcast time
of a GCRy(a,b, c) of diameter d is d+2 when d is odd and is equal to d+1 when the d
is even. The results were obtained based on the work of Ko on broadcasting in trian-
gular grids [12]. These results were obtained by making use of the plane tessellation
technique.

Broadcasting in double loop graphs was studied in [33],[39]. There exists a broad-

cast scheme [33] that guarantees that broadcasting will be completed in at most d+2

16



time where d is the diameter of the graph. They also proved that d + 2 is the exact
broadcast time of optimal double loop graphs.

They presented the following broadcast algorithm that performs broadcasting in
a minimum time. On the square grid where the edge (i,7 + d + 1) corresponds to
vertically adjacent squares and the edge (7,7+d) corresponds to horizontally adjacent

squares, the broadcasting scheme is defined as follows [33] :

1. Vertex 0 sends the message to the vertices to the vertices to the left, right,

above, and below it in that order.

2. A vertex that receives a message from the right sends the message to the vertices

to the left, above, and below it in that order.

3. A vertex that receives a message from the left sends the message to the vertices

to the right, above, and below it in that order.

4. A vertex that receives a message from below sends the message to the vertex

above it.

5. A vertex that receives a message from above sends the message to the vertex

below it.

This scheme completes broadcasting in d + 2 time steps, the verification that the
broadcast time is minimal is done by using geometric arguments on the tile that
corresponds to the optimal graph.

In [39], Obradovic et al studied the problem of broadcasting in double loop graphs
for different broadcast models. In particular, they studied the k-port broadcast model
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where a vertex can inform k of its neighbors in one time unit. They also considered
cases where every vertex v has a certain lifetime, A(v), during which it can be active
and inform its neighbors. This model was suggested as a new approach to study the
fault tolerance of the double loop graphs.

Broadcasting in triple loop graphs was studied only for the restricted case of
s3 = —(81 + s2) in [33]. A broadcast scheme was given that completes broadcasting
in at most d + 3 time. It was also proven that d + 3 is the minimum broadcast time

of optimal triple loop graphs of the restricted type.
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Chapter 3

New Results on MultiLoop Graphs

In the first part of this chapter we will present a new kind of circulant graphs called
the bipartite double loop graphs of degree 4. We will calculate the size of the optimal
graph i.e. the maximum number of vertices N that a graph of diameter d can have.
We will also find the minimum broadcast time of these graphs. In the second part
we will study the problem of broadcasting in optimal and non-optimal triple loop
graphs. Finally we will present an upper bound on the broadcast time of circulant

graphs Cn(%s1, £S89, -+ , L) of degree 2k.

3.1 Bipartite Double Loop Graphs

First we define the bipartite double loop graphs as follows:

Definition 4. A bipartite double loop graph, BDLG, is a bipartite circulant graph

BCyn(&s1,48;) on the set of vertices V. = Vol JVi where Vo = {0,2,--- ,N — 2}
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and Vi = {1,3,--+ , N — 1} and such that a vertex i € V; is a neighbor of vertices
j=1izks1,itsy € V) and a vertez j € V; is a neighbor of vertices j = iF5,,iFs2 € Vp,

where s1 and sy are two different odd integers.

3.1.1 Structural Properties

Theorem 1. The BDLGs are vertex transitive.

Proof. A graph is vertex transitive if for any two vertices ¢ and j there exists some
automorphism mapping i to j. Define the family of functions f(i) = i+« where a can
be any integer different than 0. Let a and b be any two vertices. The automorphism
satisfying f(a) = bis f(¢) =i+ (b —a). Applying this function on any two vertices
and y we get f(z) =z +b—aand f(y) =y+b—a. (f(z), f(y)) will be an edge only
if f(y) = f(z)xk where k = s; or k = s5. Substituting the values of the functions we
get: y+b—a=ax+b— azxk which is equivalent to y = x & k. This means that the
transformed vertices will be adjacent only if the original ones were too. Therefore,
the suggested family of functions preserves the structure of the graph hence is an

automorphism. O

In order to study the connectedness of the graph BCx(=s;, £s3) we have to show
that starting from any vertex ¢ one can reach all of the vertices j € V. Since the graph
is vertex transitive it is enough to check if starting from vertex 0 one can reach all the
vertices j of the graph by taking a certain number of the +s; and =+s; steps. Starting

at vertex 0, in order to reach an odd vertex j, it is enough to reach one of the even
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vertices j+ s, and j+s,. Therefore, it is enough to show that one can reach any of the
even vertices from vertex 0 taking a certain number of steps. In particular, if vertex
0 can reach vertex 2 after a number of steps then it is guaranteed that any other even
vertex 2k can be reached by repeating the steps that took 0 to 2 £ times. Therefore,
any odd vertex can be reached too from one of its even vertices, which implies that the
graph is connected. Since going from one even vertex to another involves taking an
even number of steps, we will define the composite steps A = s;+ 52 and B = s — ss.

The connectedness condition can be written mathematically as follows:

(¢A+ BB)mod N = aA+ B +yN =2 (1)

where o and  can be any positive or negative integers. Using Bezout’s lemma one

can write condition 1 as follows (GCD = greatest common devisor):

GOD(A, B,N) = GCD(S] + 82,81 — SQ,N) =2 (2)

First we will calculate the maximum number of vertices that a BDLG can have.
We will use the plane tessellation technique to study the structural properties. To
start with, a square lattice is assumed to fill the R? space. The vertex 0 will be
mapped to an arbitrary square on the lattice. As it was done earlier, we will adopt
the convention that square ¢ refers to a square corresponding the vertex ¢. The
mapping rules are as follow: The square on the right of square ¢ will correspond to
vertex i + s;. The square on the left will correspond to i — s;. Similarly, the squares

on the top and bottom of square 7 correspond to vertices i+ sp and i — s respectively.
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Mapping all the squares on the lattice to a vertex of the graph we obtain a pattern
that gets repeated. We want to determine the shape of the minimum distance diagram
(MDD), that tessellates the plane. The diameter of an MDD is is a quantity which
is equal to the value of the diameter of the graph corresponding to the MDD.

Since we do not know the structure of the optimal graph we will try to guess the
shape of an MDD with maximum number of squares that can tessellate the infinite
square lattice. For a given diameter d we first need to know how many squares
can an MDD have. According to the definition of BDLGs the number of squares
should be even, and the number of even squares (squares corresponding to even
vertices) should be equal to the number of the odd squares. There are at most 44
squares at distance ¢ from square 0 [34]. Moreover, if 7 is odd (even) then all the
squares at distance ¢ correspond to odd (even) vertices. Hence, we can calculate the
maximum number of vertices that are at a distance of d or less from vertex 0 by
the following summation: N < Zle =1+ 4i = 2d? 4+ 2d + 1. We can improve on
this upper bound since we know that there should be equal number of even and odd
squares. If d is even, then we can calculate the upper bound of the even squares as:
Neven < Zg:Z,even =1+4i =1+ (842 = ¢® + 2d + 1. The upper bound on the
odd squares is Nygq < Zleyodd =4i= (ﬂ;_—l))% = d?. The number of even squares
is more than the number of odd squares so a tighter upper bound on the size of the
MDD is N < 2N,qq = 2d?%. In case d is odd we will have Neyen, < Z;'Lz,euen =1+4i=
1+ (E;—tl’(z'd-_l))d'gl = d? while Nogg < Z;'i:l,odd =4 = (i@)dg—l =d’+2d+1 In

this case the number of even squares is less than the number of odd squares and
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Figure 3: The MDD of the BDLG is a subset of the MDD of DLGs

hence, N < 2N,,e, = 2d?. We notice that the upper bound on the size of the MDD
is independent of the parity of the diameter d. Next we will prove that this upper
bound can be attained by showing the existence of a BDLG of diameter d that has

2d? vertices.

Optimal BDLGSs

Above, we calculated the maximum size of the MDD of a certain diameter. Now we
will check if this size can be attained. The first step is to find an MDD that tessellates
the 2d plane. Then, we should find if there are any BDLGs that correspond to the
specific MDD.

In order to guess the shape of the MDD one should notice there should be equal

number of even and odd squares on the boundary of the MDD. This is because the
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graph is bipartite and every odd vertex has only even vertices as neighbors and vice
versa. We will construct the MDD by removing cells from the MDD corresponding
to an optimal double loop graph with the same diameter (Fig. 3). The squares at
distance d are of the same parity, but in the MDD of the BDLG there should be
equal number of even and odd squares on the boundary. The MDD of the optimal
double loop graph has 2d? + 2d + 1 squares, while the MDD of the BDLG has only
2d2. 1t is obvious that the MDD of the BDLGs (Fig. 3) is a subset of the MDD of the
DLGs. One approach to construct the MDD of BDLGs is to remove 2d + 1 squares
from the boundary squares of the MDD of the DLG. We will remove the squares off
the upper right and lower right boundaries of the MDD. As a result, on the boundary
of the MDD there will be 2d — 1 squares at distance d from vertex 0 having the same
parity as d and 2d — 1 squares at distance d — 1 from square 0 and hence having the
opposite parity of d. This resulting MDD will prove to be sufficient to design the
optimal BDLG.

The second step is to check if there exists a BDLG that maps to the MDD
suggested above. This will be done by tessellating the plane with the MDD and
calculating the values of s; and s;. It can be observed that, (see Fig. 4), there is
more than one way where the MDDs can tessellate the plane. In more details, once
the first tile is positioned, a second tile can be placed by either positioning its leftmost
square next to the rightmost square of the first MDD, or positioning it on the top of
the rightmost square of the first MDD, or on the top of any of rightmost boundary

squares of the first MDD. We will not adopt the usual method of calculating the step
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Figure 4: Shows two possible tessellation of the same MDD. The squares mark with
0 are even squares while those marked with 1 are odd squares. The first figure shows
that the boundary has equal number of even odd squares, and that even squares on
the boundary are neighboring odd squares on the boundary of the neighboring MDD



sizes s; and s, from the tessellation because there are plenty of tessellations but most
of them do not correspond to a BDLG. We will use a simple algebraic technique where
we will define the tessellation in terms of a variable x and we will calculate the value
of z after imposing the condition that the tessellation corresponds to a legal BDLG.
The variable z is taken to be the vertical distance between the rightmost square of
the first tile and the leftmost square of the MDD that is on the right of the first MDD
(Fig 4). In terms of x we can find the position of the zero square on two neighboring
MDDs.

((2d — x)s1 + zs92)modN =0
((d —z)s1 + (d + z)sy)modN = 0
These equations can be written without using the mod, as follows:

(2d — z)s1 + zs2 = aN

(d—z)s1 +(d+z)sy = BN

Writing the equations in the matrix form and using the fact that N = 2d? allows us

to solve s; and s,.

2d —z z S1
= 2d°
d—z d+zx S2 6}
By inverting the matrix we get:
81 d+zx —x o
S x—d 2d—x Jé]
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We get the following values of s; and s, in terms of z, o, and S.

s1=(d+z)a—2z0

sy = (x —d)a+ (2d — )8
Equation (2) is satisfied if s1 + s = s1 — 82 + 2, and if s; + s and s; — s are both
even. First we enforce the condition s; + $3 = s1 — s9 + 2 and we get:

20x — 20x + 2d0 = 2ad — 2dB + 2

Solving for x we get:

L 20d—2dp — 2dp +2

2(a - B)
_ad—2dB+1
R )

Since a and § are arbitrary numbers we can choose the values of & = 2 and § = 1.
This gives that x = 1. Hence, the value of s; = 1 and s, = 2d 4+ 1. Note that s; + s2
and s; — s9 turn out to be even and hence condition 2 is satisfied.

We want to underline the differences between the BDLGs that were discussed
above and the DLGs studied in [46] and [33]. BDLGs are, by definition, bipartite
where the set of vertices V' = Vo UV; with the restriction that |V5| = [V1|N/2. On the
other hand, the DLGs are not bipartite in general, but the optimal DL.Gs happen to
be bipartite since the step lengths s; and s, are odd but the number of even vertices
is not equal to the number of odd vertices as in the case of BDLGs. The idea of
designing a topology with this restriction came from the GCRs (generalized chordal

rings) which are of the same form but are of degree 3. The method, plane tessellation
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technique, used to find the optimal graphs was the same one used for GCRs with

differences in the details of application.

3.1.2 Broadcasting

In this section we will give a broadcast scheme that completes broadcasting in d + 2
time units. We will also prove that d + 2 is a lower bound on the broadcast time of
BDLGs of diameter d. Hence, we prove that the broadcast time of bipartite double
loop graphs of diameter d is d 4+ 2. The broadcast scheme is very similar to that of
double loop graphs presented in [33]. Since the graph is vertex transitive, we will

describe the broadcast scheme for the originator 0. Note that s, > s1.

Notation 1. We say that a vertex v receives the information through its edge s; if

the information was sent to it by verter u = v + s;.

Broadcast Scheme for Originator 0

1. Vertex 0 sends the message to the vertices to s, —So, —s1, and s; in that order.

2. A vertex v, that receives the message through its s; edge, sends the message to

the vertices v — sy, v — 81, and v + s; in that order.

3. A vertex v, that receives the message through its s, edge, sends the message to

the vertices v + s5, v — 51, and v + $; in that order.

4. A vertex v, that receives the message through its —s; edge, sends the message

to the vertex v + s1.

28



5. A vertex v, that receives the message through its s, edge, sends the message to

the vertex v — s1.

The above message forwarding rules do not include a mechanism to check if the vertex
to whom the message is being forwarded is already informed or not. As a result, there
might be cases where two informed vertices might try to inform the same vertex, or
an informed vertex tries to inform an informed vertex. According to the broadcast
model, a call involves only one informed and one uninformed vertices. In order to
decide on how to forward the message in these cases we augment the above algorithm

with two other rules as follows:

1. If a vertex v is informed, and because of the above mentioned rules there is
a new vertex v’ at time ¢ that wants to inform v again, two cases may arise:
Case I: v is still forwarding the message according to the rules 1 to 5. In this
case we compare the edge d, through which v is going to forward the message
at time ¢ + 1, to the edge s through which v would have received the message
from v’ at time ¢. . If d = —s, then v continues to forward the message without
any changes. If d = s and |d| = s, then v forwards the message to v — s; and
v + 87 in that order in the following two time units. If d = —s and |d| = sy,
then v stops forwarding the message. If |d| > |s|, then v proceeds according
to the rules 1 to 5 and assuming that it was informed at time ¢ by the edge
s. If |d] < |s|, then v does not change its forwarding schedule. Case 2 v has

finished forwarding the message. In this case, v does not have to do anything,
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and v’ does not put a call on edge s and instead skips to the next neighbor on

its message forwarding schedule.

2. If at a certain time unit ¢ there are more than one vertices who want to inform
a vertex v, the vertex that puts a call to inform v is chosen as follows. Let v;
where 1 < 7 < 4 be the vertices who want to inform v via the edges e; where
1 <i <4 (edges e; are from v’s perspective). We compare the absolute values
of e; and choose the edge corresponding to the minimum. If there are two edges
with equal absolute values, then if the value is [ss|, then v forwards the message
via —s; and s; in that order. If the value is |s1| then v does not try to inform

any other vertex.

The additional 2 rules follow from this observation. When at a certain time ¢ a
vertex v + s; or v — s; considers informing vertex v it is guaranteed that the vertices
v & s will be informed at time ¢ + 1 without the intervention of vertex v. To see
why, assume that v — s; considers informing vertex v at time . Then the vertices
v—181, 0 <7 < a, are all informed at time ¢ where « is chosen to be the smallest
positive integer such that v — as; was informed by an s; or —s, edge. Without loss
of generality assume that s; informed v — ais; , then v — as; informs the vertices
v —as; — Sz, v— (o + 1)sy, and v — (o — 1)s; in the following 3 time units. On its
turn vertex v — (o — 1)s; will need o — 2 time units to inform v — s; at time ¢ — 1.
Therefore, we conclude that v — as; was informed at time t{ — o — 2. v — as; informs

v — as; — Sp at time ¢t — @ — 1, which informs v — as; — 283, v — (a + 1)s7 — S,
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Figure 5: Shows the 4 different regions of the BDLG MDD. It also shows the time at
which every square will receive the message if only steps 1 to 5 of the algorithm are
considered.

and v — (@ — 1)s; — s2 at times ¢t — o, t — a + 1 and ¢ — a + 2 respectively. Finally,
v —(a—1)s; — s2 will need o — 1 time units to inform v — s,. As a conclusion we see

that v — sy will be informed at time ¢ + 1 without having v to forward the message

to it.
Theorem 2. The above scheme completes broadcasting in d 4 2 time units.

Proof. Let v be a vertex in the graph. Every vertex v is mapped to a unique square
in an MDD, so we will use the MDD to visualize the path taken by the message to
inform v. We divide the MDD into 4 quadrants as shown in Fig. 5. We can write v
as v = as; + bsy and prove the theorem by taking 4 cases:

Case 1. a > 0 and b > 0, i.e. the vertex is in quadrant 1. Then from the shape
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of the MDD we know that a + b < d — 1. According to the above scheme, the first
s9 step will be taken at time 0. After that, at every time unit a new s, step can be
taken. Therefore, completing the all the s, steps will take b time units. After taking
the b** s, step, two time units will pass and afterwards, the first s; step can be taken.
Therefore, after taking all the s, steps, the a-many s; steps will be completed in a+ 2
time units. In total, taking the a and b steps will take at most a 4 b+ 2 time units. If
a = 0 then informing v will take b time units, and if b = 0 then informing v will take
a+ 3 time units. Since a + b < d — 1, then all vertices in quadrant 1 can be informed
in at most d + 2 time units.

Case 2: a < 0 and b > 0, i.e the vertex is in quadrant 2. Then from the shape of
the MDD we get that |a| + b <= d. The first b steps of length s, can be completed
in b time units. Then after waiting for one time unit, the |a]-many —s; steps can be
completed in |a| time units. Therefore, the total time to inform any vertex is |a|+b+1
which implies that informing the vertices in the second quadrant of the MDD takes
at most d + 1 time units.

Case 3 a < 0 and b < 0, i.e. the vertex is in quadrant 3. From the shape of
the MDD we know that |a| + |b] <= d. The first —s, step will be taken at time 1.
Therefore, the |b]-many —s, steps will be completed in [b] + 1 time units. One time
unit after the [b|*® —s, step was taken a —s; step will be taken. So the |a|** —s; step
will be taken at time |b| + 1 + |a| + 1. Therefore, the vertices in quadrant 3 will be

informed in |a|+ |b] +2 time units. Since |a|+]b| <= d we get that the time to inform

all the vertices takes at most d + 2 time units.
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Figure 6: Shows the maximum number of vertices that can be at a distance d from
the originator if the broadcast time is equal to d + 1.

Case 4: a > 0 and b < 0, i.e. the vertex is in quadrant 4. From the shape of
the MDD we know that a + |b| < d — 1. The |b]-many —s; steps will be completed
in |b] + 1 time units. After that 2 time unit passes before the first s; step is taken.
Hence, the vertices in quadrant 4 will be informed in at most a + |b| + 3 time units.
Since a + |b] < d — 1, we get that the vertices in quadrant 4 will be informed in at

most d + 2 time units. O

Now we want to prove that there is no other scheme that completes the broad-
casting in a more efficient way. In order to achieve this we will prove an auxiliary

result stated in the following theorem.

Theorem 3. If a graph G = (V, E) has more than d + 2 vertices at a distance d
from another verter vy, then the broadcast time, b(G), of G satisfies the following
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inequality: b(G) > d+ 2.

Proof. We will prove this by contradiction. Assume that in a graph G there are d+ 3
vertices vy, Vg, -+ + ,VUgss such that the distance between vy and v; is equal to d, the
diameter of G, i.e. d(vg,v;) = d,1 < i < d+ 3. Since there are more than 2 vertices
at distance d from vg, from [19] we conclude that b(G) > d + 1. Now assume that
b(G) = d + 1, we will prove that this will lead to a contradiction with the fact that
there are more than d + 3 vertices at distance d for vg.

Assuming that b(G) = d + 1, implies that there is an optimal broadcast scheme
which informs all vertices in at most d + 1 time units. Let P; be the path that is
taken by the message to inform vertex v; in this optimal broadcast scheme where the
originator is vo. Since d(vg,v;) = d, then the length of the paths P; are greater or
equal to d. But since b(G) = d + 1 then they are also less than or equal to d + 1.
Assume that there are two paths P, and P; of length d+ 1. These two paths have the
originator vertex in common. Since there is a common vertex then it is impossible
that both v; and v; were informed at d + 1, one of them will be informed at d + 2.
Therefore, we conclude that there is no more than one path of length d + 1. Hence,
we can have two cases:

There is exactly one path of length d + 1 and the rest are each of length d (Fig.
6). Without loss of generality let Pyi3 = [vg,u1,- "+ ,Uq,Vass) be this path. Let
Pilvg,u, -+ ,uly_;,v) , 1 <14 < d+ 2 be the rest of the paths. All paths have the
originator in common. Assume that all of the vertices u} were different from each

other and different from u; then the broadcast time will be more than d + 1. The
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only way that the broadcast time will be d + 1 is when there is at most one vertex
ul # u; and the rest u, i # 4/, are the same as u;. Let path P, be the path such that
ul # u;. None of the paths P; , 2 < j < d + 2 can have a vertex u} = u},otherwise
the broadcast time of the graph will be more than d+ 1. So we conclude that u} # u}
for 2 < j < d+ 2. Moreover, applying the same argument, as it was done above, and
considering paths P;, where 2 < j < d+ 2, and the path Py 3 that have wl = uy we
conclude that there is at most one path P, that does not have uf # u,. Repeating the
same arguments d — 1 times we conclude that only vy and u;, 1 < j < d —1, can be
branching vertices. A branching vertex is a vertex where two paths having a common
part branch into two different directions. We also argued that at every branching
vertex u; on Py;3 there could be only one new path. It could be possible that ug on
Pi.3 is at a distance d from vy. If we assume that uy coincides with v, 5 we can see
that v4.9 is informed at time d. So we are left with d+ 1 paths that should branch off
P;.3 to inform the d + 1 vertices vy, -+ ,v441. From the above presented argument
we deduced that there are d branching vertices while there are d + 1 paths. By the
pigeon hole principle we conclude that there will be 1 branching point that will have
two paths branching off F;,3, which implies that the broadcast time is greater than
d + 1 which contradicts the initial assumption. Hence, our theorem is proved.

There are no paths of length d + 1, which implies all of them are of length d.
Applying the arguments of the previous case, it can be seen that if there is a path
P; such that all the other paths branch off P; then there could be only d + 1 vertices

at distance d from the originator vy under the condition of b(G) = d + 1. If such a
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path P; cannot be found the number of vertices that can be at distance d from the

originator will be even less than d + 1.

O

We know that the BDLG of diameter d has 2d — 1 vertices at distance d from
vertex 0. Therefore, using Theorem 3 we get that 5( BDLG) > d+2. Given the upper

bound by the broadcast scheme described above we conclude that b(BDLG) = d+ 2.
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3.2 'Triple Loop Graphs

In this section we will study the undirected triple loop graphs. These are circulant
graphs of degree 6 and are a special case of the multiloop graphs defined in Chapter

2. For convenience we repeat the definition of the triple loop graphs.

Definition 5. A triple loop graph (undirected circulants of degree 6) is the graph
G = (V,E), denoted by Cn(+£s;1,+Ss,+s3), defined on the set of vertices V. =
{0,1,--- ,N — 1}, where |V| = N, and the set of edges E such that a vertez i is

connected to vertices i £ s1,1 % $2,% & s3(modN).

The special case where s3 = —(s1+52) was studied using the tessellation technique.
The broadcast time of the optimal graph with diameter d was proved to be d+ 3 [33].
In this section we we will study the broadcast problem in triple loop graphs where
s1 = 1 while s; and s3 can have arbitrary values. The optimal graph of this family
was obtained by E. Monakhova [35]. Her results concerning the optimal triple loop

graphs will be presented in subsection 3.2.1 .

3.2.1 Structure of Optimal Triple Loop Graphs

In [35] the following class of triple loop graphs was studied: s; = 1 and 1 < s <
83 < L%J Given a diameter d, the maximum number of vertices N that a triple loop

graph can have was calculated together with the values of s, and ss.
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Theorem 4. The mazimum order of a triple order graph with diameter d > 1 is

/

24 842 424+ 1 for d=0(mod 3)
N = 32041 +48[¢)2 + 30[¢] + 7 for d=1(mod 3) (4)

32[4]° + 80[£]2 + 70[¢] + 21 for d=2(mod 3)

\

This bound can be achieved by taking the following values of s, and s,.

(
(8d? + 24, 8d%2d + 2) for d=0(mod 3)

(s2,88) = § (8[4]2 +6[¢] +2,8[42 + 8[¢] +4)  for d=1(mod3)  (5)

(8[4]% + 10[g] + 4,8[¢]* + 14[2] + 6) for d=2(mod 3)

\

Writing d as 3n 4+ o where o = 1,2, or 3 we get the following result.

(
32n* +16n* +6n+1  for r=3n,n>1,

N =1 39n% 4+ 48n% + 300 + 7 for r=3n+1,n>0, (6)

32n® +80n? +70n+21 for r=3n+2,n>0,

\

(

(8n? + 2n,8n? + 6n + 2) for d=3n

(s2,83) = q (8n2+6n+2,8n2+10n+4) for d=3n+1 (7

(8n%+10n +4,8n% + 14n+6) for d=3n+2

\

3.2.2 Broadcasting in Optimal Triple Loop Graphs

We will prove that d+2 is a lower bound for the broadcast time of optimal triple loop
graphs of diameter d. First we will study some structural properties of the graph,
then using these properties we will calculate the lower bound. Triple loop graphs are
vertex transitive, therefore it is enough to study the broadcast problem where the
originator is vertex 0.
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Structural Properties

Define the quantity A as follows: A = s3 — s;. The values of s, and s; are different
depending on the value of d mod 3. But note that the value of A is always 4n + 2.
We can write N and s3 in terms of A and n as follows: N = (4n+5)s3+A+1, where
6= —1,1, and 3 for d = 3n,3n + 1, and 3n + 2 respectively. Note that 8 = 2a — 1.
The value of s3 written in terms of A is s3 = (2n + a)A + 2n + 2.

We will find the shortest distance between two vertices in the optimal triple loop
graphé (TLG). Since the graph is vertex transitive we will be considering only the
shortest distance between vertex 0 and all the other vertices. In particular, we are
interested in those vertices whose distance from vertex 0 is equal to the diameter, d,
of the optimal TLGs. Any vertex can be reached from vertex 0 by taking a series of
s; steps (edges) where 1 <7 < 3. Let a; be the number of steps taken along the edge
s;. Note that a; can be positive or negative, a negative a; implies that |a;| steps were
taken along —s;. To get to vertex v from 0 the following condition should be satisfied
(a151 + ags2 + agsz)mod N = v. There could be more than one triplet (a;,az,as)
that satisfies the above condition. A triplet corresponds to a set of paths, the exact
steps of the paths are not specified but the number of steps along each step size s; is
specified. The length of the path represented by the triplet (a, b, c) joining 0 to v is
|a1| + |az| + |as|. It should be noted that if a triplet (af, a}, a}) satisfies the condition
(afs1 + ayse + ajss)mod N = v, then it does not follow that [ = |a}| + |ay| + |aj]
is the shortest distance between 0 and v because the paths specified by the triplet

(a!, a}, a3) might not be the shortest. Therefore, it is not straightforward to find the
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shortest distance since one has to find all the possible triplets (a;, az,a3) and chose
the one with the shortest value of |a;| + |az| + |as].

Now we will define the idea of a representation of a vertex. The triplet (ai, az,as)
will be considered to be a representation of v in the space where the basis vectors are
8, 1 <14 < 3. It is also possible to calculate v as the sum (kss3 + koA + k151)modN.
Hence, the triplet (ki, k2, k3) is another representation of v but in a different space
whose basis vectors are s;, A, and s3. The only difference between the two spaces is
the presence of A or s, hence we will denote the first space by s, — space and the
second by the A — space. The two ways of representing v are equivalent because for
every representation (ap,as,as) of v in the s — space there is a unique representation
(k1, ks, k3) in the A — space such that (k151 + koA + kssz)mod N = v and vice versa.
The triplets are related as follows: k; = aq, ag = —ky, and a3 = k3 + ky. In order to
list all the triplets (a;, az, as) corresponding to a vertex v = a;8; + agss + azss in the
89 — space we will first list all the possible triplets (ki, ko, k3) in the A — space and
then convert them to the corresponding representation in the s, — space. It turns out
that for a vertex v, it is more intuitive to list the possible triplets in the A — space.
The next paragraph explains why it is so.

The optimal TLG has all its vertices distributed on a loop and every vertex has
additional chords connecting it to other vertices on the loop. We will divide the
vertices of the loop into different sets by using the chords s, and s3. Starting from
vertex 0 one can take s3 or —s3 steps to reach the vertices is3 where —(2n—1) <i <

2n. A set S; will be defined to be the vertices v such that (i — 1)s3 < v < is3 where
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i #0and —(2n — 1) < i < 2n. Note that vertex 0 is in both sets S; and S_;. In
addition to the vertices in these sets there are 4n + 4 vertices on the loop between the
sets Son and S_(2n_1), let Sy be the set containing these 4n + 4 vertices. Any vertex
v, except 0, will be only in one of the sets S; , —(2n — 1) < i < 2n. If v is in set Sk
then we can list all the triplets (a, b, ¢) such that (cs3 4+ bA + a)modN = v. Note that
for the optimal triple loop graph s; = 1 so in what follows we will use 1 instead of
s1 and will call this step unit step. A negative unit step is a unit step that connects
a vertex ¢ to (¢ — 1)mod N. To get to a vertex in set S; one can start from 0 and
take a series of steps s3 and get to vertex (k — 1)s3 and then take a series of A steps
followed by as many unit steps as it takes to get to v. Another option is to take a
series of —s3 steps followed by a —A step and a negative unit step to get to vertex
(k — 1)s3, afterwards one has to take some A and units steps. Equivalently, one can
go first to ks3 in two different ways (similar to the above case) and then take the
necessary A and units steps. Since we are interested in the broadcast time we will
list the representations in the A — space of specific vertices which are at a distance
of d from 0.

Consider the vertex v such that v = (is3+nA+(n—i+a))modN wherei < n—o.

One triplet representing v in the A — space can be immediately written as follows:

(n—i+a,n,i) (8)

We will list some of the representations of v in a systematic way such that it will be

obvious that the length of the corresponding paths is increasing. The guidelines to list
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the representations are to first take 1-s; steps to get as close as possible to v, there are
two such positions each on one side of v. Then from each position, reached by the +s;3
steps, take £ A steps to get to a vertex as close to the v as possible. Again two such
positions exist, one on each side of v. Variations on these steps can be introduced, for
example, by taking +s3 to get to the second nearest position to v from both sides. Or
by taking A steps to get to the second nearest position to v again from both sides.
These two approaches can be combined or even modified so that the +s3 are taken
to get to the j** nearest position to v (from either sides) and then +A are taken to
get to the k** nearest position to v and finally the required number of unit steps are
taken to get to v. It is obvious that as k and/or j is increased the length of the path
increases. Couple of examples will be enough to convince someone. In what follows
when we use the term "top side” of a vertex v, where v < [N/2], we refer to that
side which has vertices u such that u < v, while the bottom side refers to the side
with vertices u such that u > v. If v > [N/2] top refers to the side with vertices u
such that u > v and bottom refers to the side with u < v.

A second representation of v can be obtained by noticing that it is possible to
reach 2s3 by taking a certain number of —s3 steps with one —A and one negative unit
step. After reaching is3 it is possible to take n A steps and (n — o + 1) units steps.
Therefore, v = (—(2n+a—-1)ss— 2n+a—i)ss—A-1+nA+ (n—i+a))mod N

which corresponds to the triplet
(n—i+a-1,n—-1,—(4dn+2a —i—1))

A third representation can be obtained from the first one with the difference that one
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more A step can be taken to get to the closest vertex to v from the bottom. Hence,
v can be written as v = (is3 + (n + 1)A — (3n +¢ — 2 — a@))mod N. The triplet

corresponding to this representation will be:

(=[3n+i—-2—qa],n+1,7)

A fourth representation can be obtained from the third one with the difference that
at the beginning —s3 steps are taken to get to is; as it was done for the second
representation. Therefore, v = (—(2n+a—1)s3—(2n+a—1i)ss—A—-1+(n+1)A~

(3n+ i~ 2 — a))mod N and the corresponding triplet is:

(-[Bn+i—2—-a],n,—(4n+2a—1i—1))

In the following 4 representation we will first get to (¢ + 1)s3 and then take the
necessary —A to get to the closest two vertices on both sides and then take the

required unit steps. Without any explanation we will present all 4 for them.

v = (+1)ss—(n+a)A—(n+i—a+2))mod N (9)

= (i+1)ss—(n+a+1)A+Bn—i+a))mod N (10)

= (—(dn+20~-2—-d)s3—(n+a+1)A—-—(n+i—a+3)mod N (11)

= (—(dn+20—-2-i)s3—(n+a+2)A+Bn—i+a—1))mod N (12)
Continuing in this fashion one can get other representations of v and the list is infinite
since one can go around the loop several times before getting to v. But there is no
need to list them since it can be seen that all of these paths will be much longer than

d. In particular if the A steps are taken to get to the k** nearest position to v, where
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k > 2 then the number of unit steps needed will be considerably numerous hence
the length of the path will be larger than d. Similarly, as less +s3 steps are taken to
get to the jt* closest vertex to v more A steps will be needed. For all of the vertices
that we considered the length of the path increased as additional representations were
obtained by the above mentioned guidelines. The length of the path corresponding
to each of the above mentioned 8 representations is calculated and the results are
summarized in Table 1. It can be easily observed that the first representation (first

row of Table 1) was corresponding to the shortest path.

Triplet Length

(n—1i+a,n,i) In+a=d
(n—i4+a—-1n—-1—(4n+20 —i—1)) 5n — 2 — 2+ 20

(—=[Bn+i—-2—al,n+1,7) 5n+2i—a

(-Bn+i—2-0qa],n,—(4n+2a —1i — 1)) T+o—3
(—(n+i—a+2),—(n+a),i+1) In+a+l=d+1
(Bn—i+a),—-(n+a+1),i+1) 5n + 2 — 21 + 1

(—-n+i—a+3),—-(n+a+1),—(4n+ 20 -2 —1)) m+3a+3
(Bn—t+a-1),—(n+a+2),—(4n+2a—-2-1)) | In+5ba—2i+3

Table 1: Displays 8 representations of v and the length of the corresponding path.

Now without any explanation we will list some vertices which are at distance d
from the origin, they are shown in table 2. We are not giving a complete list of all the
vertices at distance d. In order to prove the required lower bound on the broadcast
time of TLGs we need to find at least d + 3 vertices, and that is what we are trying
to do below.

From what was presented in Table 2, it can be seen that the number of vertices at
distance d from the originator vertex 0 is much more than d + 3, by using theorem 3

we conclude that d + 2 is a lower bound on the broadcast time of optimal triple loop
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Vertex v
v=>G+1ss—(n+a)d—(n+i+1-a) t<n—a«
v=1is3+nA—(n—i+a) i<n-—a
v=>_C+Ds3—(n+a+)A—-(n+i—1—-0a) [i<n-—a
v=tis3+nA—(i—-n—a+1) i>n+a
v=(i+1l)ss—(n+a+1DA-Bn—-i—1+4+0a) |{i>n+a
v=1is3+nA+(i—n—a+2) i>n+a
v=>G4+Dss—(n+a)A—Bn—-i—1+4+a) |i>n+a«
v=1s3+ (n+ 1)A — (i —n) i<n—u«o
v=is3+(n+ DA+ (1 —n+2) i<n—a

Table 2: A list of vertices that are at distance d from vertex 0.

graphs.

3.3 A Broadcast Algorithm in MultiLoop Graphs

In this section we will give an upper bound on the broadcast time of the undirected
multiloop graphs of degree 2k. Let the steps s;, 1 < i < k, be ordered such that
81 < 89 < -+ < 5. First we will consider the case where £ = 3 i.e. the general triple
loop graph. We will prove that an upper bound on the broadcast time of triple loop
graphs is d+ 2k — 1 = d + 5 by describing an algorithm that guarantees broadcasting
in d + 5 time units. After considering the triple loop graph, we will generalize the

results to the case where there are k steps, i.e. degree 2k multiloop graphs.

3.3.1 Upper Bound on Broadcast Time of Triple Loop Graphs

First we will describe a broadcast algorithm that informs all the vertices of any triple

loop graph in less than d + 5 time units. Then we will prove the correctness of the
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algorithm.

The Broadcast Algorithm

The vertices of the triple loop graph are numbered from 0 to N — 1. We will adopt
the following to name the edges of a vertex i: an edge will be called s; if it leads to
a new vertex j such that j = (i + s;)mod N, similarly it will be called —s; if it leads
to a new vertex j such that j = (¢ — s;)mod N. Since the graph is vertex transitive,
it does not matter which vertex is the originator so without loss of generality we
will assume that vertex 0 is the originator. Given that s; < s; < s3 we suggest the
following algorithm:

Broadcast Algorithm for vertex 0

1. Vertex O first sends the message via edge s3,—S3,52,—Sa, 51, and —s; in that

order.

2. If a vertex receives the message through edge —ss, it forwards it via s3, 83, —59,

s1, and —s; in that order.

3. If a vertex receives the message through edge s3, it forwards it via —s3, —s3,

+82, —81, and s; in that order.

4. If a vertex receives the message through edge —s,, it forwards it via s,, s1, and

~81 1n that order.

5. If a vertex receives the message through edge s;, it forwards it via —s,, —s,

and s; in that order.
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6. If a vertex receives the message through the edge s; it forwards it via the edge

—81.

7. If a vertex receives the message through the edge —s; it forwards it via the edge

S1.

As it was done for the broadcast algorithm of bipartite double loop graphs we
have to augment the above algorithm with more rules so that the the rules of the
classical broadcast model are respected, namely, that every call involves an informed

vertex and one of its uninformed neighbors.

1. For the case where there is a vertex v is informed and has finished informing its
neighbors, and because of the above mentioned rules if there is a new vertex v/
at time ¢ that wants to inform v again, the following is done: v’ does not make

the call to inform v and skips to the next vertex on its schedule.

2. If a vertex v is informed but still is in the process of informing its neighbors,
and there is another vertex v’ at time ¢ that according to the rules 1 to 7 is
considering to inform v, then the following happens. Let d be the edge through
which v was going to inform its neighbor at time t+1. Let s be the edge through
which v would have received the message from v’ had it not been informed. If
|d| > |s| or d = —s, then v does not change its message forwarding policy, and
v does not inform v. If |d| < |s|, then v continues its message forwarding policy
at time ¢ + 1 based on the rules 1 to 7 and assuming that it was informed by v’
at time ¢, and v' does not inform v and skips to the next vertex on its schedule.
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If s = d then v stops forwarding the message, and v’ does not inform v at time

t.

3. If according to the rules 1 to 7, two or more vertices try to inform another
vertex v through the edges e; then the following happens. We choose the edge
e; such that |e;| < |e;| for all values of ¢ # j and use that edge to inform v.
If v is already informed, then we get back to the previous case where vertex
v/ = v+e;. If there are two edges e; and —e; such that |e;| < |e;| for all values

of i # 7, then either one of them is chosen to inform wv.

We need to justify the additional steps. If a vertex v is informed it forwards
the message to some of its neighbors such that when it is done with forwarding the
message, all the vertices v & s;, v & 89, and v % s3 are informed. Steps 1 through 7
make sure that this result is obtained. When a vertex is informed and idle it means
that it finished forwarding the message to all of its uninformed neighbors, so there is
nothing else to be done. To justify the steps 2 and 3 of the additional set of steps,

we present the following theorem.

Theorem 5. When a verter v receives a message via s; at time t then the vertices

v+t s;, where |s;| > |s;|, will be informed at the latest by the time ¢t + 1.

Proof. Assume that vertex v is informed at time ¢ and v + s, where |s;| > |s;| is not
informed at ¢ 4+ 1. Since v received the message through the edge s; then the vertex
u = v + §; is the sender of the message. Vertex u on its turn received the message
from u’ through an edge s} such that |s;| > |s;|. Along the path of the vertices which
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informed each other ending in u and v there should be a vertex that got informed via
an edge s} such that |s;| = |sk|. Let this vertex be called w. Let ¥ be the series of
calls that starting at w informed v in T time units by following a path P of length L,
path P takes a vertex w to v. Since the graph is vertex transitive it can be concluded
that path P takes a vertex ¢ to ¢ + v — w. If sy = —s), then let w; and wy be two
vertices such that w; — s;, = w and w — s}, = wy. Clearly since w was informed by its
s, edge then w; was the vertex informing w. After being informed, w first informs
wy by its —s}, edge. Since w and ws were informed by their s, edge, then the same
series of calls were done by both of them. After being informed it took 7" time units
for w to inform v. Since w, is informed one time unit after w is informed then it will
take T+ 1 time units before wy + v — w = (w — §}) + v — w is informed. Note that
w— 8, +v—w=v— s, but since s; = —s;, we get that the vertex v + s; will be
informed by the time 7"+ 1. This contradicts the initial assumption.

If s}, = s then let wq be the vertex such that wy — s}, = w. So w; is the one who
informed w. But we do not know through which vertex w;, was informed, this implies
that w; might not inform the vertex wy;+v—w 7T time units after being informed. The
order in which w uses its edges depends on the edge through which it was informed. If
w was informed by an edge s, such that sgs,, > 0 (i.e. both edges had the same sign)
then after w, is informed and after it forwards the message through —s}, the order of
the edges that w; will use will be the same at that of w. Hence T time units after w;
is informed the vertex w; + v — w will be informed. If sxs,, < 0 (i.e. the edges have

different signs) then after w; sends the message via —s), the order of the remaining
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edges used by w; will not be the same as that of w. There can be a maximum of 2
time units difference between the time at which w; forwards the message over an edge
s; and the time at which w forwards the message along the same edge s;. Given that
w; is informed one time unit before w and adding the possible 2 time unit difference
we conclude that the vertex wy +v —w=w+ s, +v—w =v+ s, = v+ s will be
informed at most one time unit after v is informed. This again contradicts the initial

assumption. a

Theorem 5 explains why when an informed but active vertex, v, is attempted to
be informed again, it uses this fact to modify its forwarding schedule. If a vertex
was considering to inform v via the edge s at time ¢ then we are sure that all the
neighbors v + e of v where |e| > |s| are all informed by time ¢ + 1 the latest. For the
case where v is attempted to be informed by several edges simultaneously the same

reasoning explains why the edge with greatest absolute value is chosen.

Broadcast Time

An upper bound on the broadcast time can be obtained by calculating the time
needed by the above algorithm to inform all the vertices of the graph. A vertex v in
a triple loop graph can be written as v = as; + bsg + ¢s3. We are not concerned with
calculating the values of a, b, and ¢ that give the shortest distance d(0, v) = |a|+|b]+|c]|
between vertex 0 and v. The existence of such a shortest distance is sufficient for our
purposes. It is clear that every vertex v can be written as v = as; + bsy + cs3 such

that |a| + |b] + |c| < d where d is the diameter of the graph. According to the above
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algorithm the originator, vertex 0, first sends the message via s3 if ¢ > 0 then after
c time units all the necessary sz will have been taken. If ¢ < 0 then during the
first time unit vertex 0 will notify vertex ss but in the second time unit vertex —s;3
will be informed. In the following ¢ time units all the necessary —s3 will have been
taken. The cs3 vertex will spend one time unit to send the information via s3 or —s3
depending on the sign of ¢. Then vertex cs; will send the message first via s; then
via —sy or vice versa depending on the sign of ¢. Therefore, the maximum delay is 2
time units before the first |s,| step is taken. An example of how this case may arise
is the following: ¢ > 0 and b < 0. Similarly the maximum delay before an |s;| step is
taken is 2. Therefore, the total time needed to inform vertex v is less than or equal
tol+|c]+2+4|b|+2+|a] =5+ ]|a] +1b] +|c|- Since |a| + [b] + |¢| < d then the

maximum time to inform any vertex v is d + 5.

Theorem 6. The broadcast time of the above algorithm in a triple loop graph with

diameter d is at most d + 5.

Proof. Assume that there is a vertex v = as; + bsy + cs3 with |a| + |b] + |¢] < d
such that v is not informed at time d + 5. According to the algorithm cs; will be
informed in ¢ time units if ¢ > 0 or |c| 4+ 1 time units otherwise. After cs3 is informed
it will take |b] + 1 additional time units to inform css + bsy if b and c are positive
or b and c are negative, otherwise it will take |b] + 2 additional time steps to inform
cs3 + bsy. Similarly, once cs3 + bs, is informed it will take |a| + 1 time units if a,b > 0
or a,b < 0. Otherwise it takes |a| + 2 time units. Summing the maximums we get
that the maximum time needed to inform as;, + bsy + cs3 is less than or equal to
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la|+1+|b] +2+|c| +2 = 5+ |a]+|b| + |c|. According to the assumption at time d+5
v was not informed which implies that d +5 < 5 + |a| + [b| + |c[. This implies that

la| + [b| + |¢| > d where d is the diameter of the graph, which is a contradiction. O

3.3.2 Upper Bound on Broadcast Time in Multiloop Graphs

For the general multiloop graph we can generalize the result of the previous section
easily. For a multiloop graph G with diameter d and steps £s;, 1 < ¢ < k, an upper
bound on the broadcast time is b(G) < d + 2k — 1. The algorithm that provides
us with this bound will be presented later, but first we like to make the following
observations. As k becomes in the order of O(N), where N is the number of vertices,
then our upper bound becomes on the order of O(N) which is somehow bad. For
example in the case of £ = [%’-J, the multiloop graph becomes a complete graph
“ whose broadcast time is known to be [log(N)] which is drastically different than our
result which is 5(G) = N. Hence, it can be seen that our algorithm does not provide
an efficient scheme when the number of steps is very high. Having said this, we want
to note that the reason behind the interest in multiloop graphs is their similarity to
the simple loop structure without its disadvantages which are long diameter and low
fault tolerance. So the object of interest is the set of graphs with a constant number
of steps.

The algorithm generalizes the first 6 steps of the one for the triple loop graphs.
As before it is assumed that step sizes are labeled such that sy > s > -+ > 5.

Broadcast Algorithm for the Originator 0
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1. Vertex 0 (the originator) forwards the message through the edges in this order:

Sky =Sk, ', 81, and —381.

2. A vertex receiving a message via edge s; where s; > 0 forwards the message in

the following order —s;, s;—1, —8;—1, -, 1, and —s7.

3. A vertex receiving a message via edge —s; where s; > 0 forwards the message

in the following order s;, —s;_1, Si_1,**+, —S1, and s;.

The additional rules are exactly the same as for the broadcast algorithm for triple
loop graphs.
The proof of correctness follows from theorem 5 which was proved in the general

case without assuming that there are only 3 edges.

Theorem 7. The above algorithm informs all vertices of the multiloop graph in at

most d + 2k — 1 time units.

Proof. Consider that there is a vertex v = agsy + - - - + a1 8; that was not informed by
the time d + 2k — 1, as before |ag| + - - - + |a1| is assumed to be the shortest distance.
Following the same logic as above we can calculate the maximum time needed to
inform v according to the above mentioned algorithm. For the edge s; one time unit
might be spent waiting, then for each step s; there can be a maximum wait of 2 time
units. Hence, the maximum time will be 2k — 1+ |ag|+- - -+]|a1|. If this time is greater

than d 4+ 2k — 1 we conclude that |ag| + - - - + |a1| > d which is a contradiction. O
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Chapter 4

Simulations

Finding the minimum broadcast time of a given graph is in general an NP-complete
problem. That is why there are many attempts in the literature to find near optimal
polynomial broadcast algorithms. In this chapter we will consider only one such
algorithm developed by Harutyunyan and Bin [21]. This heuristic was tested on
several regular and arbitrary graphs and produced good results. We will be interested
in testing their heuristic on the different multiloop graphs presented in this thesis.
Another reason for our interest in the simulation is to find get pointers if the lower
bound on the broadcast time of triple loop graphs can be improved or not. In case
the simulations yield a broadcast time of d + 2, we can immediately conclude that
d + 2 is a tight lower bound. Otherwise, there is a good reason to look for a better
lower bound. In the first section, we will describe the heuristic and in the following

section we will present the obtained results.
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4.1 The Heuristic

The basic idea of this algorithm is to find a matching between the set of informed
and uninformed vertices at each round and then inform the matched vertices. The
algorithm does a BFS (breadth first search) from the informed vertices at every round
and as a result the uninformed vertices are labeled with the shortest distance from an
informed vertex. These are used to define parent child relationship and consequently
are used to assign a weight to each uninformed vertex. Finally a minimum number
weight matching [21] is done to choose which vertex is to be informed next.

Let the set I(t) represent those informed vertices that have at least one uninformed
neighbor at time ¢. Let U(t) be the set of those uninformed vertices at time ¢ that
have an informed neighbor v such that v € I(t). At every round ¢, every uninformed
vertex v will be assigned a weight EB(v,t) after doing a BFS and some calculations.

After defining the necessary terms we can provide the pseudocode of the heuristic
called Tree Based Algorithm (TBA) [21]:

TBA

1. Initialize I(0) such that it contains the originator of the broadcasting.

2. Compute EB(v,t) for every uninformed vertex.

3. Do a matching between I(t) and U(t) by applying the minimum number weight

matching of [21].

4. Mark all the matched vertices of U(¢) as informed, and update I(t) to obtain
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I(t+1).

5. Continue steps 2,3, and 4 until I(t + 1) is empty. In that case ¢ will be the

broadcast time.

4.2 Simulation Results

Tables 3, 4, 5, and 6 summarize the obtained results. Table 3 shows that the simu-
lation results of the heuristic on optimal generalized chordal graphs are the same as
the theoretical values. For graphs with diameter d when d is even the broadcast time
is d + 1 which agrees with our simulations. When d is odd the exact broadcast time
is d + 2 which is again the same as the simulation results. For optimal double loop
graphs, the broadcast time was found to be d + 2, here again the simulation results
are the same as the theoretical one. The same scenario happens with the optimal
triple loop graphs, where s3 = —(s; + s2). The theoretical broadcast time d + 3 is
the same as the simulation results. The third table presents the simulation results
of the heuristic on optimal triple loop graphs that were studied in section 3.2. We
had proved that a lower bound on the broadcast time is d + 2 and an upper bound is
d 4+ 5. The simulation results turn out to be d + 4 in all of the cases that were tried.
For the bipartite double loop graphs (Table 6) the results of the heuristics showed

that the tested algorithm complete broadcasting in the optimal time which is d + 2.
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GCR, (1, -1, 3D) | GCR,(1, -1, 3D+1)
D TOpt THeuristic D TOpt TH euristic
11 13 13 10 11 11
15 17 17 12 13 13
17 19 19 16 17 17
29 31 31 18 19 19
39 41 41 20 21 21
49 51 51 40 41 41
59 61 61 50 51 51
69 71 71 60 61 61
79 81 81 80 81 81
89 91 91 90 91 91
99 101 101 100 101 101

Table 3: Simulation results of the broadcast heuristic in GCR,,. Top refers to the the-
oretically calculated broadcast time. Theyristic refers to the broadcast time obtained
by the heuristic of [21]. D is the diameter of the graph.

Opt. Double | Opt. Triple Loop
Loop Graph Graph

D TOpt TH euristic D TOpt TH euristic
10 12 12 10 13 13

20 22 22 20 23 23

30 32 33 30 33 33

40 42 43 40 43 43

50 52 53 50 53 53

60 62 63 60 63 63

70 72 73 70 73 73

80 82 83 80 83 83

90 92 93 90 93 93
100 102 103 100 103 103

Table 4: Simulation results in optimal double and triple loop graphs where s3 =
—(s1 + s2). The algorithm was run 100 times for every value of the diameter.
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d Toptimal Theuristic
9 13 13
10 14 14
11 15 15
12 16 16
13 17 17
14 18 18
15 19 19
16 20 20
17 21 21
18 22 22
19 23 23
20 24 24
21 25 25
22 26 26
23 27 27
30 34 34
31 35 35
32 36 36
45 49 49
46 50 50
47 51 51

Table 5: Simulation results in optimal triple loop graphs in the sense defined in [35].
The algorithm was run 100 times for all values of the diameter except 45,46,and 47.
It was run 25 times for these cases.
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d Toptimal Theuristic
10 12 12
20 22 22
30 32 32
40 42 42
50 52 52
60 62 62
70 72 72
80 82 82
90 92 92
100 102 102

Table 6: Simulation results in optimal BDLGs. Algorithm was run 100 times for each
diameter.

59



Chapter 5

Conclusion and Future Work

In this thesis we studied the problem of broadcasting in some circulant graphs. In
particular we considered the bipartite double loop graphs, the optimal triple loop
graphs, the general triple loop graphs, and the multiloop graphs. Using the plane
tessellation technique, we calculated the maximum number of vertices that a bipartite
double loop graph of diameter d can have. We also showed how to construct such
a graph. The broadcast time of these graphs was calculated to be d + 2 where d is
the diameter. Concerning triple loop graphs of diameter d, we found that d + 2 is
a lower bound on the broadcast time of optimal graphs. This was due to the large
number (more than d + 2) of vertices at distance d for vertex 0. We also gave an
algorithm that is guaranteed to complete broadcasting in d + 5 time units. Finally,
we generalized the above mentioned algorithm to get a d + 2k — 1 upper bound on
the broadcast time in mulitloop graphs of degree 2k.

Finding the broadcast time in a general graph is NP complete, therefore, there
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has been many heuristics that do broadcasting in a polynomial time. We tested one
such algorithm developed by Harutyunyan and Shao [21]. In this thesis we presented
the results of simulations of the above mentioned algorithm on different multiloop
and chordal graphs. The obtained broadcast times were quite close to the theoretical
bounds or the exact theoretical times.

We presented guidelines that help in calculating the shortest distance between
two vertices in the optimal triple loop graphs. We used them to find some vertices at
distance d from vertex 0, d being the diameter of the graph. It is possible to build
up on these guidelines and get analytic formulas to calculate the shortest distance
and determine the shortest path between any two vertices. These results might be of
interest for routing purposes in optimal triple loop graphs. Further studies on optimal
triple loop graphs can be done to improve the lower bound on the broadcast time.
We believe that a.d + 3 lower bound on the broadcast time can be attained, and that
is what we will try to prove in our future work. Moreover, the numerical simulations
never got a broadcast time less than d + 4, this comes to lure us to believe that even
a d + 4 lower bound can be possible to find. We will try to improve the general
algorithm and customize it for the optimal triple loop graph such that it completes
broadcasting in d + 4 time units instead of d + 5 as it stands now. In short, our
ultimate goal will be to find the exact broadcast of optimal triple loop graphs.

We also intend to study the fault tolerance of triple loop graphs. In particular we
believe that it is possible to get some analytic results concerning the fault tolerance

of optimal triple loop graphs. In particular, the change in the diameter of the graph
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can be studied in the case of link failures and hence the additional required time to
complete broadcasting can be calculated.

One natural generalization of the subject matter of this thesis is to study k& —
broadcasting in multiloop graphs. k — broadcasting is a broadcast model where an
informed vertex can inform up to k of its neighbors simultaneously. To the best of our
knowledge k — broadcasting was studied only in double loop networks by Obradovié,
et. al. [39]. We will address this problem in our future work.

Our upper bound on the broadcast time of multiloop graphs deteriorates in value
as the number of steps s; increases. But as the degree the graph increases to become
of the same order as the number of vertices then our result predicts a very large
broadcast time which is linear in the number of vertices. We believé that in case of
very large number of edges there is a different upper bound on the broadcast time.

This issue can be part of our future research too.
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