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ABSTRACT

DYNAMIC PERFORMANCE OF HEAVY VEHICLES USING FINITE ELEMENT
METHOD
Mahabubul Alam Chowdhury
Although vehicles are made of flexible structures and components, they are typically
modeled with the idealization of a rigid body. Furthermore, depending on the type of
study, the models are simplified to planar models to carry out a wide range of dynamic
studies. In recent years, non conventional applications of the finite element method
(FEM) have been utilized to examine their effectiveness in the simulation of vehicle’s
dynamic performance. Such a validated model can provide a powerful and accurate tool
for combined dynamic and structural performance of the vehicle in a wide range of
environmental and operating conditions. In this study, a finite element model of a typical
highway bus is developed with ANSYS, and is used to demonstrate its effectiveness in
evaluating its dynamic performance in ride, handling and longitudinal modes. The
number of degrees of freedom (DOF) of the developed highway bus model is 1848, and
the model is validated by static weight balance check and frequency analysis. The major
challenge and effort in this investigation was in the implementation of tire mechanics.
Both linear and nonlinear tire models are incorporated in the FEM model in this study.
Transient analyses have been carried out using mode superposition method. As such,
determination of frequency range is essential, and the first twenty-two natural modes of
the given bus are identified to be important in which the highest natural frequency is
found to be 20.976 Hz. Ride quality of the bus model has been evaluated under two road

surface irregularities (half sinusoidal and random input). The effects of the nonlinear tire

it



model and the corresponding linear tire model on simulation results are investigated
using different amplitudes of half sinusoidal input. Transient analysis and Power Spectral
Density (PSD) analyses have been carried out using realistic random road input. Pure
cornering and combined cornering and braking analyses of the bus model have also been
presented. Longitudinal tire forces, lateral tire forces and steering angle input on front
wheels as external loads are applied on the designed bus to carry out the analyses. In both
cases, in order to calculate the longitudinal and lateral forces, a proper four wheel
mathematical model has been derived and simulated in MATLAB with the same model
parameters. Moreover, in order to demonstrate the effectiveness and applicability of the
developed large finite element model, comparison between elastic and rigid chassis
performance is presented in this study for ride, handling and longitudinal analyses. When
compared with rigid body model, the response at the center of gravity (c.g.) of FEM
model is found to predict comparable performances under all excitations considered. The
effect of body flexibility on the dynamic performance is also investigated and reported in
this investigation. The effect of vertical input on bounce response of flexible model is
negligible. However, for handling responses, there is a significant difference in the load
shift when compared with the rigid body model. This in turn leads to some difference in
the trajectory of the vehicle, which is further affected by the presence of combined

braking input.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION AND STATEMENT OF THE PROBLEM

Nowadays a complete vehicle design process takes minimum 4 years, which
requires the involvement of huge man-hour and manufacturing costs, and is composed of
mainly three steps. First, designing of the vehicle structure with CAD tools like Pro-E,
CATIA, AutoCAD; second, static and dynamic analysis of vehicle structure with finite
element tools like ANSYS, COSMOS/M, NASTRAN and finally, the dynamic
simulation of vehicle with multi-body computer codes (such as ADAMS, SIMPACK).
Dynamic simulations of a vehicle are performed considering rigid body motions i.e.
neglecting flexibility effects of structure during motions of vehicle. But in some cases
flexibility can not be ignored as it plays an important role in both structural and dynamic
performance. Recently ANSYS, Inc., developer of ANSYS, has also developed an
ANSYS -ADAMS interface tool that is used to carry out the dynamic simulation of
vehicle motions along with the consideration of the flexibility effect of vehicle structure.
It is well known that the finite element method has been applied for a long time to the
structural vibration analysis of vehicles using pre-determinate time varying external
forces and kinematical excitations. However, the dynamic effects arising in vehicle
structures are generated by means of the vehicle motions. Now if it possible to use the
finite element technique in vehicle dynamic simulation, only two computer environments
are needed for the whole design process. This will naturally reduce man-hours involved

in the complete design of vehicles, and subsequently reduce the overall manufacturing



time and costs.

Dynamic performance of heavy vehicles is typically examined using rigid body
models suspended through suspensions and tires. For heavy vehicles such as a bus, the
structural properties including the damping, the distribution of stiffness (elasticity) and
mass also play an important role on its dynamic response. Therefore, a well-detailed
model utilizing Finite Element method can provide an efficient, practical accurate tool for
evaluations of both local and global dynamic properties of the vehicle and its structure.
Some recent studies have considered vehicles as multibody systems using multibody
programs such as ADAMS, SIMPACK. to simulate the vehicle’s motions. Some of the
multibody programs, containing elastic bodies and substructﬁres in addition to the rigid
bodies, are capable of including elastic effects [1]. Commercial finite element programs
(e.g. ANSYS, MSC/NASTRAN, and COSMOS/M) developed for general purposes can
be applied not only for the structural dynamic analysis (computation of dynamic stresses
and elastic deformations using predefined time dependent external forces and kinematical
excitations) but also for the study of the mobility of vehicles. The objective of this thesis
is to present examples of the non-conventional application of the finite element method,
namely to‘ predict the ride, handling and longitudinal performances of vehicles using
efficient modeling. Examples of the non-conventional application of the finite element
method are shown by the use of a highway bus finite element model. In the ride
performance measurement, three dimensional vibrations of a candidate bus model are
investigated under the action of vertical excitations through the consideration of different
road inputs at a constant forward speed. The effects of linearity and nonlinearity in the

case of radial tire stiffness have been investigated through parametric analyses under ride



performance measurements. Moreover, ride analysis has been conducted for both flexible
and rigid body models in order to demonstrate the effectiveness and applicability of the
large finite element model. Also pure turning and combined turning and braking analyses
have been presented under the longitudinal and handling performances of the candidate
bus. In order to demonstrate the effectiveness and applicability of the large finite element
model, a comparison between elastic and rigid chassis performance is presented in this
study for both types of analyses.

In this study, the dynamic analysis is carried out by a commercial finite element
program (ANSYS). However, the application of the step-by-step numerical solution
methods for the computation of dynamic responses of large finite element mechanical
models with many degrees of freedom is computationally expensive, and thus the
employment of any model reduction method becomes necessary. For this purpose, herein
the mode superposition method is employed. In the study of vehicle dynamics, the natural
modes up to 25-30 Hz are considered adequate for all practical purposes [2]. This makes
it possible to reduce the size of the model significantly without any significant errors in
the desired dynamic responses. It is well known in structural dynamics that the mode
superposition method in its original form can only be applied to linear structures in case
of small strains and displacements. However, a vehicle receives ground excitations
during its large displacement (in longitudinal and lateral directions) and rotations about
the vertical axis. In order to take these large motions into consideration, the
corresponding (three) rigid body modes with zero natural frequencies have to be included
in the considered set of mode shapes.

The following subsections present a state of the art review of relevant topics on



modeling and dynamic simulations in order to develop the scope of the present work.

1.2 STATE OF THE ART

1.2.1 Modeling of Bus Structure

In general, rigid body models are used to investigate the dynamic performances of
heavy vehicles. However, the large finite element model is necessary for the dynamic
simulations of heavy vehicles in order to get the more accurate responses. Moreover, an
efficient finite element model of a heavy vehicle requires the consideration of detailed
geometrical dimensions. With regard to the necessity of large finite element model, Kuti
[2, 3] developed a finite element bus model containing more -than 2200 degrees of
freedom. The developed model is mainly comprised of structure, suspension sets and
tires. The bus structure.is a metallic frame covered with metallic and glass sheets, which
are linked with different parts such as chassis, axles, power train, fuel tanks, and engine.
Bus structure is mainly comprised of beam and shell elements. Balasa et al. [4] built a
finite element (FE) model of the bus using beam elements for the metallic frame, shell
elements for the sheets and linear spring elements for the suspensions and wheels. The
other parts such as power train, engine, fuel tanks, luggage, and passengers were modeled
as concentrated masses. At first, the bus was modeled without windows or adhesive
between the window and the frame. Significant differences were noticed in the numerical
simulation results when compared with the experimental data. So in the next step, the
windows were modeled with shell elements, while the adhesive was represented with
linear beam elements. The accuracy of the model response was greatly improved. The
finite element model was then correlated by comparing the finite element analysis. Then

the correlated model was subjected to time transient loads, and the results were
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verified again against the time transient experimental data. In this investigation, the
detailed specification of Prévost-Car XLII-40 intercity coach shown in Table 1.1 is
considered as a candidate vehicle for the simulations. Some structural cross-sections and

parameters were taken from other sources to realize as detailed a model as possible.
1.2.2 Modeling of Suspension

Design of suspension for a heavy vehicle requires careful selection of the
suspension parameters such as the stiffness and damping properties. It is important to
achieve a compromise among the ride, handling and control performance characteristics.
Enhancement of ride quality requires soft and lightly damped suspensions. However, the
soft vehicle suspensions cause poor roll stability and handling performance. Soft
suspensions also increase the suspension rattle space requirements. On the basis of
experimental and analytical results, a number of guidelines have been developed for the
design of suspension systems. Natural frequency of the sprung mass should be approxi-
mately 1 Hz to ensure ride quality with adequate rattle space and it should not be greater
than 1.5 Hz for passenger road vehicles. Since forces due to wheel motions and
unbalance are transmitted to the sprung mass through the suspension and the human body
is very sensitive in the range of 4-6 Hz, the bounce frequency of the unsprung mass
should not be less than 8 Hz. On the contrary, larger frequencies requires stiff tire which
affects the ride quality. Practically, the value of unsprung mass natural frequency is
around 10 Hz. Pitch and bounce frequencies should be close together. The bounce natural
frequency less than 1.2 times the pitch frequency gives good results. When a vehicle goes
over a bump, the front axle is subjected to the impact before the rear axle. This excites

the pitch resonance, which is more annoying than the vertical motion. For this purpose,



the rear suspension should be assigned 20-30 percent larger ride rate, or the center of
gravity should be closer to the rear axle than the front. Designing rear suspension with
slightly larger ride rate than the front introduces higher frequency of oscillation for the
rear than the front so that front and rear end moves in phase within half a cycle after the
bump is passed [6].

In reality, the characteristics of suspension system components, namely springs
and dampers, are nonlinear and require nonlinear analysis. For comparative and
qualitative studies, the nonlinear characteristics of suspension components can be
linearized to take the advantage of the linear analytical tools. Some common type of
springs such as coil, leaf and air springs are used in ground transportation suspension
systems. Coil springs exhibit linear relationships, while the leaf springs exhibit hardening
characteristics and hysteresis due to interleaf and bushing friction. Leaf springs are useful
for vehicles that may have large variation in load. The vertical motions of such
suspension are often small in amplitude as the effective ride stiffness of leaf springs is
significantly larger than the nominal stiffness under small deflections. However, air
springs are mostly used for commercial vehicles as they exhibit hardening characteristics
and provide adaptive ride height control and improved ride quality and pavement load
performance [6].

Since the vehicle ride quality and tire-load are strongly influenced by the
suspension damping, it is important to include adequate damping characteristics in the
vehicle model. Practically, hydraulic multi-stage dampers are used in vehicle suspension
systems. Hydraulic multi-stage damper is asymmetric in compression and rebound.

However, typical vehicle models, irrespective of their application, consider linear



damping characteristics. The damping forces in rebound are considerably larger than
those in compression. The dampers exhibit high coefficients at low speeds and lower
coefficient at higher speeds [6].

A physical arrangement and modeling of suspension components of a FEM bus
model have been presented by Kuti [2]. In the suspension systems of the developed finite
element bus model, leaf springs have been applied with linear characteristics at the
extremities of the rigid spring arms. The elasticity of these leaf springs has been
approximated by linear finite spring elements. The concentrated dampers of suspension
systems have been positioned between the chassis and the axles at the midpoint of the
rigid spring arms. The damping characteristics have been approximated by linear or
nonlinear damping characteristics in order to carry out the analysis with linear model or
nonlinear model, respectively. The linearization of non-linear damper characteristics has
been done on the basis that both of them absorb the same given energy at a given nominal
frequency and stroke. Rubber bumpers have been applied just next to the suspensions
between axles and chassis with highly non-linear characteristics; however, these rubber
bumpers are in operations only when the undercarriages are about to hit the chassis. An
anti-roll torsion bar has been introduced in between the chassis and rear axle.

1.2.3 Modeling of Tire

All major forces and moments except gravitational and aerodynamic forces are
applied through the tire-ground contact to control the motion of a ground vehicle. An
understanding of the tire dynamics is, therefore, necessary to the study of longitudinal
performance, ride quality, and handling behavior of ground vehicles. For that purpose

different kinds of tire models such as pure mathematical tire model, functional tire model,



and finite element tire model are being used according to specific type of vehicle
simulation (e.g. pure cornering, asymmetric braking and braking—-in—a-turn) [7].

Julien developed mathematical model of tire for the relationship between pure
tractive or braking effort and longitudinal slip or skid. But this requires considerable
effort and elaborated experiments. In view of this, a simplified theory has been
developed. But both theories are not valid for combined slip condition {8].

A significant attempt has been made by Temple and Schlippe to develop
mathematical model for the pure cornering behavior of pneumatic tires [8]. But the theory
proposed by them is restricted to small slip angles. It assumes that there is no sliding
between the tread and the ground occurs; consequently, the lateral force and the aligning
torque increase linearly with the slip angle. Moreover, this theory is only capable to
capture the steady-state response of a tire, not the transient response of a tire. In view of
this, a simplified theory has been proposed by Segel [9]. This theory is capable to capture
the transient response of tire to large slip angle, but it is limited to pure side slip
condition.

For pure cornering analysis the longitudinal tire force can be neglected as vehicle
forward speed is constant during the maneuver. However, both longitudinal and lateral
tire forces are present during braking-in—a—turn. In general, longitudinal tire force
reduces the lateral tire force that can be generated at a given slip angle under free rolling
condition, as shown in Fig. 1.1. The effect of acceleration or breaking on lateral tire
force can be considered by the help of friction ellipse. In friction ellipse it is assumed that
the tire may slide on the ground in any direction if the resultant of the longitudinal tire

force and lateral tire forces reaches the maximum value defined by the fictional



coefficient of road surface and the vertical load on the tire. However, the longitudinal and
lateral tire force components can not be greater than their respective maximum values
Funax and Fyuay, as shown in Fig 1.2. The available cornering force F) at a given slip angle

a, for any given longitudinal tire force Fy can be calculated from the following equation

[8]:
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Fig. 1.1 Effect of tractive and breaking effort on the cornering characteristics of (a) a
bias-ply and (b) a radial-ply car tire [8].
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Fig. 1.2 The friction ellipse concept for predicting the cornering force available at
specific slip angle in the presence of a tractive or braking force [8].
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Segel [9] also proposed a semi-empirical method to predict the braking force and
cornering force in the presence of both the longitudinal skid and slip angle. Following the
same approach, a method for predicting the tractive force and cornering force as
functions of combined longitudinal slip and slip angle can be formulated. To achieve
more accurate predictions, the effects of normal load and speed on the values of
coefficient of road adhesion, longitudinal stiffness of tire during braking or accelerating
and other tire parameters should be properly taken into account.

In recent years, an empirical method for characterizing steady-state tire behavior
at pure slip condition, known as the magic formula, has been developed by Pacejka [10]
and widely used in vehicle handling simulations. The Magic Formula Tire Model
requires a set of parameters to predict the tire force characteristics. Michelin [7]
developed a purely empirical method based on magic formula to calculate the tire force
generation at combined slip condition. This is called cosine version of magic formula,
which is described with 13 coefficients or parameters as well as 4 coupling model
coefficients for longitudinal tire force and for lateral tire force 15 coefficients as well as
10 coupling coefficients. A set of magic formula parameters are calculated from tire
measurement data. One procedure, called regression method, to find these parameters is
described in [11]. A main characteristic of this technique is that it requires starting values
for the parameters to begin the optimization process. In case of pure slip conditions, most
magic formula parameters have a physical meaning. Consequently, a good approximation
of starting values can be made. However, good starting values for the combined slip
conditions can be difficult. As a result, considerable time is needed to calculate the

suitable parameters. Cabrera et al. [12] presented a different method with genetic
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algorithms to determine the magic formula parameters. The main advantage of this
method is that the optimization process to find the value of the parameters can be started
with any initial values.

Both version of magic formula tire model mentioned above are inadequate for
characterizing the transient response of the tire. In view of this, Pacejka [13] proposed a
relatively simple model for longitudinal and lateral transient responses restricted to
relatively low time and path frequencies, as shown in Fig. 1.3. The non-steady state
behavior of the tire is important in transient simulations. The transient and oscillatory
properties of the tire-wheel combination have been improved in this model. The model
was able to capture the dynamic behavior as long as the frequency of the wheel motion
remains less than 15 Hz and the wavelength of motion and road undulation is larger than
1.5m. Relaxation length approach was not included in the model since the computations
would be critical due to possible instabilities at combined slip. Therefore, a contact patch
was defined, which could deflect in both longitudinal and lateral directions with respect
to the lower part of the rim. Only translations were allowed with respect to the wheel
plane. A mass was attached to the moving contact patch to determine the longitudinal and
lateral forces and the self-aligning moment acting on the tire-road contact as a response
to the slip velocity of the contact patch mass and to the camber angle. The turn slip has
not been considered. It was reported that the carcass compliance together with the contact
patch slip model automatically takes care of the wheel load dependent lag and also of the
decrease in lag at increased combined slip. In addition, the contribution of important
gyroscopic effects related with belt distortions were taken into account. Moreover, the

non-lagging part of the camber force was modeled to act directly on the wheel rim.
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Fig. 1.3 Tire model in top and side view [13].

Mastinu [14] presented a physical tire model with semi-analytical formulation
which is capable to calculate the tire forces generated at the tire-ground interface, i.e. the
longitudinal force, the lateral force and the self-aligning torque. At steady-state condition,
the consistency between computed and measured contact area size and between
computed and measured longitudinal force, lateral force and aligning moment was
satisfactory. However, at transient-state, the model, based on the present formulation, was
capable to compute lateral force and aligning moment up to 10-15 Hz. A reasonable time
was needed for the computation of tire forces.

Maurice [15] developed a rigid ring model for both lateral and longitudinal tire
dynamics up to approximately 60 Hz, where the tire belt is modeled as rigid body with 6
degrees of freedom as shown in Fig. 1.4. The tire-road interface is modeled using a
steady state tire model in conjunction with the relaxation length concept to describe the
longitudinal and lateral tire force and the self-aligning moment. The relaxation length
approach, however, is valid for low frequencies only as the inertia properties of the tire
cannot be neglected at higher frequencies. Residual compliances were introduced to

account for the large carcass deformations near the tire contact patch. The measured
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frequency response functions of forces and moments with respect to the applied steering
angle or braking moment were used to estimate the tire parameters. The total tire
relaxation length was calculated as function of slip and the normal load. This model has
been used to study the in-plane tire responses on uneven roads and to brake torque
variations, and the out-of-plane tire responses due to side slip and yaw angle variations.
The rigid ring model has been validated by experiments carried out on a rotating drum
test stand. The tire dynamics were investigated by high frequency steer angle and brake
torque variations, while the lateral transient behavior was studied by side slip variations.
Although the model incorporates the three dimensional dynamic aspects of the tire tread
band, only pure lateral and pure longitudinal slip situations were investigated. The
theoretical stationary tire characteristic of the brush type tire model was used for the
simplicity. Based on the investigation, it was concluded that the magic formula tire
model, a better stationary tire characteristic, could be used to the improvement of the

model behavior, especially for the self aligning moment [15].
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Fig. 1.4 Schematic view of tire mode] used [15].
Some other finite element models of tire, which are possible representation of the

tire model proposed by Pacejka [13] are seen in the papers [1, 3, 16]. In those papers the
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longitudinal tire forces, lateral tire forces and self-aligning moments have been

determined by the cosine version of magic formula developed by Michelin [7].

1.2.4 Ride Analysis of Vehicle

Ride analysis of a vehicle refers to its vibration response during its motion. Ride
quality is mainly concerned with the comfort of the passenger of moving vehicle, and the
control of the intensity of dynamic loads transmitted to pavement. The performance
measures related to ride quality has been the subject of considerable analytical and
experimental evaluations. Ride quality can be assessed in terms of preservation of health,
comfort and performance. The ride vibration environment of a vehicle could be expressed
in terms of displacement, velocity, acceleration or jerk of the sprung mass. Many studies
have shown a reasonably good correlation between the vertical acceleration and the
subjective discomfort. The acceleration response of the sprung mass has thus been widely
used as a measure of the vehicle ride quality [6].

Vehicle ride vibration and tire forces are strongly related to various vibration
modes of the vehicle. Vehicle vibrations and thus the dynamic tire loads are dependent on
the restoring and dissipative properties of the suspension and tires. Extensive studies
reported on ride dynamics of road vehicles, however, have concluded that suspension
damping affects the vehicle vibration behavior in a significant manner. Vibration
absorbers mounted on vehicle axles have also been suggested for reducing the dynamic
pavement loads in the range of wheel hop frequencies [17].

Ride dynamics of heavy vehicles are typically examined using rigid body models
suspended through suspensions and tires. A number of ride dynamics models of vehicles

ranging from two-DOF quarter vehicle models to comprehensive many-DOF three-
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dimensional models have been reported in the literature [6]. Two DOF quarter-vehicle
models have been extensively used to gain a fundamental understanding of the effect of
suspension parameters on the vehicle performance characteristics subjected to
deterministic or random road disturbances. A study performed by Oueslati [17] presented
comprehensive attempt to evaluate the effects of suspension stiffness and damping on the
root mean square (RMS) values and frequency response characteristics of the vehicle.
The study [17] further presented the relative response characteristics of passive and idéal
active suspensions using a seven DOF, three-dimensional car model, subjected to
periodic and transient excitations arising from a chuck-hole type road disturbance.

In the research and design of vehicles, the accurate simulation of their dynamic
behavior is often of interest. Moreover, failures of vehicles, due to dynamic excitations,
originating either from huge transient loads or material fatigue always have local
occurrence. Consequently the accurate knowledge of local dynamic behavior of vehicles
is often interesting. Therefore, the application of large mechanical models is necessary in
order to get correct information about the local dynamic behavior of critical parts of
vehicles. In addition to, because of the required accuracy, the non-linear character of
suspensions and tires usually may not be neglected. With regard to these requirements,
Kuti [2] presented a special computational procedure for the nonlinear dynamic analysis
of vehicles using large finite element models. This procedure consisted of two phases. In
the first phase the mechanical model of linearized and undamped part of the given
structure was elaborated and the natural mode calculation was carried out. Then, in the
second phase, having considered the necessary model data, external excitations, and local

nonlinearities, the step-by-step numerical solution of equilibrium equations was
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performed. For this, a computer program had been written in FORTRAN. Correctness, in
comparison to COSMOS/M commercial finite element program, and applicability of the
presented procedure was shown by the use of a bus finite element model containing 2214
degrees of freedom. To reduce the solution time, the mode superposition method was
successfully applied as the dynamic analysis of large finite element models by numerical
methods is fairly time consuming, while the forces arising from these local nonlinearities
(spring and damper forces) were taken into account by the pseudoforce method. Heavy
vehicle vibration predominates in the 1-20 Hz range. It is important to note that this
computational procedure was particularly developed for the three dimensional vibration
analyses of vehicles under the action of vertical excitations when the vehicle forward
speed was constant. Moreover, the slips between tires and road surface were neglected.
The springs and dampers representing the elasticity and damping of tires were attached to
the ground. However, this approach produced few undesirable low natural frequencies,
which ultimately causes inaccurate result as the mode superposition method works on the
basis of the participation of modes.

1.2.5 Handling and Longitudinal Analysis of Vehicle

The handling characteristics of a road vehicle usually refer to its response to
steering commands and to environmental inputs. On the other hand, longitudinal
characteristics of a road vehicle refer to its capability to accelerate, decelerate, and
negotiate grades in a straight line motion. In general, vehicle lateral dynamics has been
studied using rigid body models. To describe a vehicle’s yaw, and lateral motions at a
constant velocity, where the roll motions are ignored, a simpler model is obtained that is

known as the bicycle model. The bicycle model has been widely used for control
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purposes [8]. A comprehensive three-dimensional simulation program, referred to as
Yaw/ Roll model, was developed by the Road and Transport Association of Canada
(RTAC) and University of Michigan Transportation Research Institute (UMTRI). The
simulation program incorporated nonlinear cornering characteristics of tires and
nonlinear suspension force, while forward speed was assumed to be constant and the road
is perfectly smooth. The above model was further improved to study the vehicle response
to braking-in-a-turn [18]. Moreover, the above model was further enhanced by
incorporating the road roughness [19].

Moreover, as mentioned before, Kuti [1, 3, 16] introduced large finite element
vehicle model for bus and truck in order to carry out the handling and longitudinal
performances measurement. The objective of these papers were to present examples of
the non-conventional application of the finite element method, namely to the three
dimensional dynamic analysis of the motions of road vehicles. The application of large
finite element models, on the one hand, makes the accurate consideration of the elasticity
and mass distribution of the structure of vehicles possible. The mode superposition
method was applied since only a few low mode shapes to the structural dynamic analysis
is enough to use. It also reduces the solution time. The vehicles carry out different
maneuvers during their motions with large horizontal displacements (in longitudinal and
lateral directions) and rotations about the vertical axis. In order to take these large
motions into consideration by the help of the mode superposition method, the
corresponding (three) rigid body modes with zero natural frequencies have to be included
in the considered set of mode shapes. A detailed theoretical description of vehicle

motions on the basis of the finite element method is given in paper [1]. It is well known
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that these mode shapes do not contain any damping and non-linear effects; therefore, the
pseudoforce method was applied to calculate the forces arising from dampers, springs
and elastic deformation of other structural elements with nonlinear characteristics. The
material damping of the vehicle has been approximated by the application of Rayleigh
and/or modal damping. Considering that the vehicles perform large rotations about the
vertical axis, the longitudinal and lateral tire forces as external excitations have been
applied carefully to the instantaneous positions of the wheels.

In the paper [1] the dynamic behavior of the three dimensional semi rigid ring tire
structural model (NDOF=306) was studied during cornering, braking and p-split
comering, using a truck finite element model of 1874 degrees of freedom. This tire
structural model contains the first natural modes of the tire belt in vertical, lateral, yaw,
camber and rotational directions and in addition it can predict the large carcass
deformations near the contact patch. The cosine version of the magic formula was used to
the computation of the transient tire forces. Here, the transient behaviors of two versions
of the truck model are compared with rigid and elastic chassis.

Another article written by Kuti [16], cornering, combined cornering and braking,
p-split cornering and wheel locking during asymmetric braking on symmetric frictional
road processes were studied using a truck finite element model of 1064 degrees of
freedom. In this study, the simpler contact patch tire model was applied. Tire springs and
dampers were attached to the contact patches of tires. The motion of contact patches was
constrained only in vertical direction so that the truck bus model could move and rotate
freely in horizontal directions and about the vertical axis, respectively. The magnitudes of

the contact patch masses were approximated in relation to the tire frequency considered.
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Considering a single contact patch, different mass magnitudes in different directions and
moments of inertia about different axes is defined. In this study, the natural frequency of
the (undamped) camber mode of tires was 46 Hz, and that of the rotational mode was 41
Hz. The yaw mode was not considered. Finally, the transient behaviors of two versions of
the truck model were compared with rigid and elastic chassis. The transient tire forces
were computed using the cosine version of the magic formula.

In the article written by Kuti [3], two examples were presented in order to
investigate the effectiveness and applicability of the elaborated method and finite element
program written in FORTRAN for the step-by-step numerical solution of the given
equations of motions. The first problem was related to an asymmetric braking when the
path of the vehicle was corrected by steering the front wheels. In the second example, the
right hand side wheels locking were studied. In both examples, the same finite element
bus model containing 2294 degrees of freedom was applied. The simpler contact patch
tire model with some modifications was used to predict the dynamic response of the tire
belt. A rigid wheel model was applied to the considerations of the rotations of wheels by
introducing a differential equaﬁon of motion for each wheel. A simple approximation
was considered to determine the effective rolling radius as a function of the time varying
vertical tire force. These effective rolling radii of wheels were calculated by the square of
the ratio of the instantaneous and initial angular velocities in such a way that their
magnitudes was equal to the corresponding deformed radii in case of zero angular
velocities. The cosine version of the magic formula is used to the computation of the

transient tire force characteristics.
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1.3 SCOPE OF PRESENT WORK

This thesis includes a comprehensive study on ride, handling and longitudinal
performance of heavy vehicles using the finite element model. Although the application
of the finite element method in dynamic simulation of the motions of road vehicles is
non-conventional, it provides more accurate response than traditional method. As
discussed in the literature review, Kuti [1-3, 16, 20] recently carried out an extensive
investigation of FEM model to addreés the issue of accuracy in simulation. However, still
there are some issues which have not been addressed in the literature. Mostly the tire
model used in ride analysis is not adequate to capture accurate response and the
application of cosine version of magic formula tire model in handling and longitudinal
performance has still made the analysis very costly. The present study, therefore, focuses
on a finite element tire model which is capable to capture the response of vehicle on
uneven road has been developed. Furthermore, an efficient mathematical model for a four
wheel vehicle which is useful to analyze the combined slip conditions as well as pure slip
conditions is proposed. More importantly, the friction ellipse tire model has been
implemented instead of cosine version of magic formula tire model. In summary, the
main contribution of this thesis can be itemized as follows:

1. To implement friction ellipse tire model in order to carry out efficient vehicle

handling and longitudinal performance analysis.

2. To develop mathematical model for four-wheel rigid body vehicle which is well

capable of capturing the responses to combined slip conditions (braking-in-a-

Turn) as well as pure slip conditions.

21



3. To integrate load shift due to comnering and braking-in-a-turn in the
mathematical model.

4. To define longitudinal and lateral slips for the finite element tire model based on
the tire contact length, and to justify the proposed definition by comparing
elastic body response with rigid body response.

5. To validate the finite element model by static weight balance check and
frequency analysis.

6. To employ the mode superposition method in linear finite element model
analysis, by which solution time can be reduced drastically.

7. To introduce ground spring with tire in ride analysis. This provides effective
means to give the road excitations on the tire ground contact patch, especially
when mode superposition method is employed.

1.4 THESIS ORGANIZATION

In Chapter 2, detailed finite element modeling of a highway bus, namely modeling
of bus structure, suspension sets and tire, has been presented. Validations of model by
static weight balance check and frequency response (modal) analysis have been
illustrated. Moreover, prediction of low natural modes has been done by conducting
transient analysis using kinematic harmonic sine sweep excitation. These modes are
necessary to apply mode superposition method in transient analyses. This method is
computationally very efficient compared to full method.

In Chapter 3, ride quality of the bus modeled in chapter 2 has been evaluated using
ANSYS considering only surface irregularities or vertical excitations, namely half

sinusoidal road input like a bulge and random road input like a city road. The effects of
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nonlinear tire model and the corresponding linear tire model on ride quality have been
investigated considering different maximum heights of the bulge. Moreover, in order to
demonstrate the effectiveness and applicability of the large finite element model, ride
analysis has been conducted for both flexible and rigid body models using linear tire
model. This chapter also presents responses of the FEM model with linear tire model for
a typical random rough road excitation.

The handling analysis of the candidate bus model is presented in Chapter 4. It
includes pure cornering and combined cornering and braking analysis in order to simulate
the handling and longitudinal performance of the candidate bus. Moreover, in order to
demonstrate the effectiveness and applicability of the large finite element model,
comparison between elastic and rigid chassis performance is presented in this study for
both types of analyses. Mathematical four-wheel rigid body model is thus also developed
to facilitate the analysis and comparison.

Chapter 5 presents the conclusions of tile work undertaken and recommendations

for the future work.
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CHAPTER 2

FINITE ELEMENT MODELING OF HIGHWAY BUS AND ITS
VALIDATION

2.1 INTRODUCTION

For a heavy vehicle, a well-detailed finite element model is necessary instead of
using a typical rigid body model in order to attain more accurate dynamic responses and
to examine the combined integrity of structural and dynamic performances. A highway
bus is a perfect example of heavy vehicle. In this study, the finite element model of a
typical highway bus shown in Fig. 2.1 is created in ANSYS, and is used to demonstrate
the examples of the non-conventional application of the finite element method in

measuring dynamic performances of heavy vehicles.

Fig. 2.1 Complete highway-bus finite element model.

Four types of elements, namely BEAM4, SHELL63, MASS21 and COMBIN14
(linear spring-damper element) have been used to construct the linear finite element

highway bus model. In addition to those four types of element, COMBIN39 (nonlinear
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spring element) element has been used to model nonlinear elements of the highway bus.
The nonlinear model includes only the nonlinearity of radial (vertical) tire stiffness.
Important information regarding the linear finite element highway bus model is

summarized as follows:

Total Number of nodes: 325
Number of degrees of freedom: 1848
Total Number of beam elements: 522
Total Number of shell elements: 343
Total Number of mass elements: 115
Total Number of spring-damper elements: 46

Highway buses are considered commercial vehicles in both Canada and the United
States. As such, they are subject to provincial weight and dimension limit regulations; for
example, if overall length (including bumpers) is greater than 12.5 m, a minimum of 3
axles is required according to the original 1988 Memorandum of Understanding (MOU).
Moreover, weight and dimension of vehicle play an important role on its dynamic
performances. So, in this study to carry out the dynamic performances of a highway bus,
a representative highway bus has to be chosen. The candidate bus chosen for this study is
the Prévost-Car LeMirage XLII-40 model- a 12.2 m (40 ft) long two-axle highway bus.
In order to build the finite element model of Prévost-Car LeMirage XLII-40, weights of
different bus components are approximately taken according to Table 2.1 [21] since
Table 2.1 is for model XLII-45, and model X1II-45 is five feet longer than model XLII-
40. Moreover, material selection for different bus components has been accomplished on
the basis of paper [21] as type of material dominates the weight of a component.
However, the required properties of the selected materials (Table 2.2) to build the model

are taken from the website of Automation Creations, Inc. [22]. Finally, gross weight of
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the candidate bus becomes 17735 kg (Table 2.3). Several important dimensions of the
candidate bus in Table 2.3 are approximately taken on the basis of the data given for
model XLII-40 in Table 1.1 [5]. The remaining dimensions in Table 2.3, such as the
distance of front tire center from c.g. (b), the distance of rear tire center from c.g. (c), and
the location of c.g. are determined through self-weight analysis and precise mass
calculation of the candidate highway bus model.

Table 2.1 Prévost Car XLII-45 Bus Components and Weights [21].

Percentage of [Percentage of
Total Total
Component Name & Parts 'Weight (kg) Total (kg) |Component Bus
[Exterior Finish 1409.5 6.6
IDoors, front bumper, front face 323.7 1.5
(Windows 686.2 3.2
Baggage doors 163.3 0.8
Rear face 29.9 0.1
Motor cover 81.2 0.4
[Rear bumper 25.9 0.1
[Evaporator door, service doors 99.3 0.5 ,
Interior Finish 6077.7 28.4
[Dashboard 89.8 0.4
iDefrost unit 45.8 0.2
Drivers seat 115.7 0.5
IParcel compartment 531.5 2.5
IPassengers 4382.1 20.5
IPassenger seats 881.9 4.1
Toilet 30.8 0.1
Baggage Compartment 2423.8 11.3
IA/C ventilation 172.4 ‘ 0.8
Gas tank 93.4 0.4
IFuel 661.1 3.1
Luggage 1496.9 7.0
Motor Compartment 2582.0 12.1
IMotor and mechanicals 2582.0 12.1
Spare Tire Compartment 169.6 0.8
Spare tire, gear box, Pitman arm 169.6 0.8
Suspension 2953.8
Differential 1360.8 6.4
Tag axle 680.4 3.2
Rigid axle 912.6 4.3
Structure 3628.7 3628.7 17.0 17.0
Body & Accessories 2120.8 9.9
Miscellaneous body parts 2120.8 9.9
TOTAL 21368.6 21368.6 100.0 100.0
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Table 2.2 List of materials used in the model.

Properties
No. of . Young’s .
Material Name of Material Moduflgus Density (kg/m’) POISS.OH
(N /m2) Ratio
AISI 1005 Steel,
Subcategory: AISI 1000
1 Series Stez:gelfyCarbon Steel; 0.20000E-+06 7872 0.29
Low Carbon Steel; Metal
Aluminum 7005-W,
Subcategory: 7000 Series
2 Aluminum Alloy; 72000 2780 0.33
Aluminum Alloy; Metal;
Nonferrous Metal
Conventional LEXAN
polycarbonate sheet,
3 Subcategory: 2550 1200 0.10
Polycarbonate; Polymer;
Thermoplastic
Table 2.3 Important Dimensions and Weights of the candidate FE highway bus.
Name of Parameter Value of Parameter
Overall Length 1220 m
Overall Width 2.6 m
Overall Height -3.46 m
Cabin Floor Height 1.16 m
Floor-To-Ceiling Height 2.15m
Ground Clearance 0.32m
‘Wheel Base, L 725 m
Front Track Width, # 2.098 m
Rear Track Width, z, 194 m
Front Overhang Length 1.825 m
Rear Overhang Length 3.125 m
Moment of Inertia about Vertical Axis I, = 0.24496E+06 kg-m"2
Distance Front Tire to Center of Mass, b 52719 m
Distance Rear Tire to Center of Mass, ¢ 1.9781 m
Center of Mass (X, Z) from Rear Right (5.1031 -1.2952) m
Corner Point of Bus Body
Height of Center of Gravity from the 1.11184 m
Ground, h
Tires (Rear) MICHELIN 315/70Rx22.5
Tires (Front) MICHELIN 365/70Rx22.5
Chassis Frame 4.5 mm thick - "= section steel profile
Gross Vehicle Weight Rating, m 17735 kg
Gross Weight on Front Tires, my 4838.84 kg
Gross Weight on Rear tires, m, 12896.16 kg
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2.2  FINITE ELEMENT MODELING

2.2.1 Modeling of Highway Bus Structure

The structural components of the bus shown in Fig. 2.2 have been modeled with
beam and shell elements. Beam and shell parts of the structure are meshed using BEAM4
and SHELLG63, respectively. BEAM4 is a uniaxial element with tension, compression,
torsion, and bending capabilities. The element has six degrees of freedom at each node:
translations in the nodal X, y, and z directions and rotations about the nodal x, y, and z-
axes. BEAM4 is chosen for meshing chassis, floor-beam, side-post, side-truss and roof-
beam. Chassis, floor-beam, side-post and side-truss are made of steel, material no. 1 in
Table 2.2. Roof-beam is made of aluminum, material no. 2 in Table 2.2 as aluminum
provides a very high potential for weight reductions. SHELL63 has both bending and
membrane capabilities and both in-plane and normal loads are permitted. The element
has six degrees of freedom at each node: translations in the nodal x, y, and z directions
and rotations about the nodal x, y, and z-axes. SHELL63 is used for meshing floor,
sidewall, ceiling and window. Floor and sidewall are made of steel, whereas ceiling is
made of aluminum skin and window is of polycarbonate (Lexan) sheet, material no. 3 in
Table 2.2. Polycarbonate (Lexan) windows offer high weight savings potential; however,
scratch resistance, UV protection and static charge resistance are concerns [21]. All non-
structural mass such as passengers, passenger seats, fuel, parcel compartment, engine,
toilet, defrost unit, A/C ventilation, gas tank, driver seat, dashboard and luggage are
represented by mass elements concentrated at the centroid of the actual equipment mass.
MASS21 is used to represent the mass elements. MASS21 is a point element having up to

six degrees of freedom: translations in the nodal x, y, and z directions and rotations about
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the nodal x, y, and z-axes. A different mass and rotary inertia may be assigned to each
coordinate direction. Material damping of structural elements can be approximated by the

application of Rayleigh or modal damping.

onode304

node: 12

e aa ¢ z
Ground Spring

node:258 / b =

Fig. 2.2 Skeleton structure of the applied bus model with ground spring.
2.2.2 Modeling of Suspension Sets

The main frame of the chassis including the front and rear undercarriages are
shown in Fig. 2.3. In the suspension sets, leaf springs are applied with linear
characteristics at the extremities of the rigid spring arms, while the linear dampers are
positioned at the midpoint of the rigid spring arms just above the axles. The stiffness of
leaf springs on each side of rear axle is 468000 N/m, while that of leaf springs on each
side of front axle is 156000 N/m. The characteristics of a real damper used in the
suspension sets of a typical highway bus are nonlinear as shown in Fig. 2.4. However,
linear damper characteristics are considered in this study. The applied linearized damper

characteristics used in the suspension sets are shown in Fig. 2.5, and the linearization of
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the non-linear damper characteristics is done by linear curve fitting for the positive part
(extension of damper) of the curve shown in Fig. 2.4. However, that fixed damping
coefficient is considered in both extension and compression of the applied damper. An
anti-roll torsion bar is built in between the chassis and rear axle. Rigid spring arms and
anti-roll torsion bar have been modeled using beam elements and meshed with BEAM4.
Leaf springs and dampers have been modeled with linear spring-damper element
COMBIN14. COMBIN14 has longitudinal or torsional capability in one, two, or three-
dimensional applications. The longitudinal spring-damper option is a uniaxial tension-
compression element with up to three degrees of freedom at each node: translations in the
nodal X, y, and z directions. No bending or torsion is considered. The torsional spring-
damper option is a purely rotational element with three degrees of freedom at each node:
rotations about the nodal x, y, and z-axes. No bending or axial loads are considered. The

spring or the damping capability may be removed from the element.

TN node:215
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Fig. 2.3 Chassis with undercarriages and ground spring.
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Fig. 2.4 Nonlinear damper characteristics.
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Fig. 2.5 Linearization of nonlinear damper characteristics.

2.2.3 Modeling of Tires

The most important aspect of this study is to develop a rigid ring tire model. Kuti
[2] used a tire model with the springs and dampers representing the elasticity and

damping of tires were attached to the ground. But this approach produced few
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undesirable low natural frequencies, which ultimately causes inaccurate results as the
mode superposition method works on the basis of the participation of modes. Now, these
extremities of the springs and dampers are connected to the contact patches of tires as
shown in Fig. 2.6. The motion of contact patches is constrained only in vertical direction
using either boundary conditions or heavy stiffer springs (kg=200e9 N/m) that represents
the ground; hence the complete bus model can move and rotate freely in horizontal
directions and about the vertical axis, respectively. Boundary conditions are used in order
to constrain the contact patches vertically as shown in Fig. 2.6 in case of longitudinal and
handling analysis, while ground springs are modeled to constrain the contact patches as
shown in Fig. 2.7 in case of ride analysis only. Moreover, these ground springs provide
effective means to give the road excitations on the tire ground céntact patch. Linear
spring element (COMBIN14) is used to represent the ground spring in case of ride
analysis with linear finite element bus model. On the contrary, nonlinear spring element
(COMBIN39) is used to represent the ground spring in case of ride analysis with
nonlinear finite element bus model as ground shows only compressive strength in fact.
COMBIN39 is a unidirectional element with nonlinear generalized force-deflection
capability that can be used in any analysis. The element has longitudinal or torsional
capability in one, two, or three-dimensional applications. The longitudinal option is a
uniaxial tension-compression element with up to three degrees of freedom at each node:
translations in the nodal x, y, and z directions. No bending or torsion is considered. The
torsional option is a purely rotational element with three degrees of freedom at each node:

rotations about the nodal x, y, and z-axes. No bending or axial loads are considered.
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Fig. 2.6 Finite element model of tires for handling analysis.
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Fig. 2.7 Finite element model of tires with ground spring for ride analysis.

Tire is a complex mechanical system, and it is difficult to model precisely its

elasticity and damping. The elasticity of a tire in the radial (vertical) direction is non-
linear, but it can be represented by linear spring characteristics [23, 24]. Figs. 2.8-2.11
show the applied non-linear and linearized tire spring characteristics, in radial direction,
of the front and rear wheels. The linearization of radial tire stiffness is done by linear
curve fitting for the compressive zone shown in Figs. 2.9 and 2.11. However, the fixed

radial tire stiffness is considered for both compression and tension in case of linear tire
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model. It should be noted that on each side of rear axle two tires are considered. In lateral
and longitudinal directions linear spring characteristics are applied. The damping
coefficients of tires in each direction are selected on the basis of published measured data

[6]. The damping coefficient of a tire in each direction is taken as 4000 N-s/m.
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Fig. 2.8 Nonlinear characteristics of the elasticity of the front tire in radial direction.
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Fig. 2.9 Linearization of nonlinear characteristics of the elasticity of the front tire in
radial direction.
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Fig. 2.10 Nonlinear characteristics of the elasticity of the rear tires in radial direction.
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Fig. 2.11 Linearization of nonlinear characteristics of the elasticity of the rear tires in
radial direction.

Longitudinal stiffness of a tire is calculated on the basis of the experimental value
of longitudinal slip stiffness (211896 N/unit slip) and longitudinal relaxation length
(0.1524 m) taken from Fancher et al. [25] with respect to the same vertical load (26487
N) on that tire. Longitudinal stiffness of a tire is calculated from the following relation:

Long. tire stiffness = Long. Slip Stiffness / Long. Relaxation Length
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The effect of vertical load on longitudinal slip stiffness and longitudinal relaxation length
of a tire is measurable through experiment. According to the experiment conducted by
Maurice et al. [15], the characteristics of longitudinal slip stiffness and longitudinal
relaxation length with respect to the vertical load are nonlinear, but the ratio of them is
approximately unique. So, linear spring characteristics can be approximated for the
longitudinal tire stiffness. The calculated longitudinal stiffness of a tire is 1390037.76
N/m.

Lateral stiffness of a tire is calculated on the basis of the experimental value of
comering stiffness (277610 N/rad) taken from the Fig. 2.12 and lateral relaxation length
(0.3354 m) taken from Fancher et al. [25] with respect to the same vertical load (26487
N) on that tire. Lateral stiffness of a tire is calculated from the following relation:

Lateral tire stiffness = Cornering Stiffness / Lateral Relaxation Length

y = 1E-09x° - 0.0003x% + 16.707x
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Fig. 2.12 Effect of vertical load on cornering stiffness of tire.
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The effect of vertical load on cornering stiffness and lateral relaxation length of a tire is
measurable through experiment. According to the experiment conducted by Maurice et
al. [15], the characteristics of cornering stiffness and lateral relaxation length with respect
to the vertical load are nonlinear, but the ratio of them is approximately unique. So, linear
spring characteristics can be approximated for the lateral tire stiffness. The calculated
lateral stiffness of a tire is 827698.27 N/m.

First rotational, camber and yaw modes of the developed rigid ring tire model can
be taken into account, considering different mass magnitudes in different directions and
moment of inertia about different axes for the contact patch of a tire. In this study, the
natural frequency (undamped) of the camber mode of a tire is taken 46 Hz, and that of
rotational mode is taken 41 Hz on the basis of the Kuti [16]. The yaw mode has not been
considered yet. The magnitudes of a contact patch masses in different directions are
calculated in relation to the corresponding included tire frequency. The following formula
is used to calculate the contact patch masses in different directions:

f, =1@2xm)x\JkIm,;

where: f, = Natural Frequency in Hz,

k = longitudinal or lateral tire stiffness in N /m,

m, = tire contact patch mass in kg

The calculated contact patch mass of a tire in the longitudinal direction is 20.95 kg as
rotational frequency of the applied tire is taken 41 Hz, and the longitudinal stiffness of a
tire is 1390037.76 N/m. Similarly, the calculated contact patch mass of a tire in the lateral
direction is 9.91 kg as camber frequency of the applied tire is taken 46 Hz, and the lateral

stiffness of a tire is 827698.27 N/m.
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The construction of contact patches can be taken into account as a possible finite
element representation of the tire model as presented by Pacejka et al. [13]. But in this
study, the longitudinal and lateral tire forces arising between tires and road surfaces are
determined by the friction ellipse instead of using the cosine version of magic formula
tire model developed by Michelin [7]. The application of friction ellipse tire model over
cosine version of magic formula tire model is found to be extremely useful and efficient
for vehicle handling and longitudinal performance analysis as Magic Formula tire model
requires the determination of increased number of parameters, around 42. On the
contrary, friction ellipse tire model requires only a few numbers of experimental data
sets. Moreover, the determination of increased number of parameters raises the total
percentage of errors.

According to the Julien’s theory, the tire tread is regarded as an elastic band, and
the longitudinal strain of the tire tread is a measure of the longitudinal slip [8]. On the
other hand, a simplified theory proposed by Segel [9] relates the slip angle with lateral
tire tread deformation at a longitudinal distance measured from the front of the contact
patch and along the wheel plane. But in this study, contact length approach, with the
slight modifications of the concepts used by Julien and Segel [8, 9], is introduced to
measure the longitudinal slip and the slip angle of tire. Consequently, the longitudinal

slip and slip angle are defined as follows:

. DC X - DCWX
=" (2.1)
ll
D_ —-D
o= ; cwy 2.2)
where: i is the longitudinal slip,
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o is the slip angle,

D,  isthe longitudinal displacement of the contact patch,
D,,.  isthe longitudinal displacement of the wheel center,
D,  isthe lateral displacement of the contact patch,

D,,, isthe lateral displacement of the wheel center,

l, is the tire contact length,

Referring to Fig. 2.13, the tire contact length can be calculated from the following

equation:
[, =R, xA(t) 2.3)
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Fig. 2.13 Tire contact length.
where R, is the unloaded tire radius, and A(#) is the angle produced by the tire contact

length with respect to the wheel center. ¢ between the parentheses represents the time

function. Referring to Fig. 2.13, A(¢) can be calculated from the following relation:
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A(t) =2xcos™ (R(t)/R)) (2.4)

where R(t) is the dynamic loaded radius of tire and it can be calculated using the

following equation:
R(t)=R,—D(t) (2.5)

where D(t) is the vertical tire deformation and it can be readily found from the output of

FEM model simulation.

There is also an alternative way to calculate the tire contact length, [; as indicated
in Eq. 2.6, but it requires the experimental data for the longitudinal slip stiffness,

C, versus vertical tire load.
(k, x1)/2=C,; where k, is the longitudinal tire stiffness (2.6)

Linear spring-damper element COMBINI14 (uniaxial tension-compression
element) is used to represent radial tire stiffness and damping in case of ride analysis with
linear finite element bus model. On the contrary, nonlinear spring element COMBIN39
and COMBIN14 are used to represent radial tire stiffness and damping, respectively in
case of ride analysis with nonlinear finite element bus model since a tire has no springing
action when it lifts off the ground. Tire stiffness and damping in longitudinal and lateral
directions are modeled with COMBIN14. Rigid wheel rims are modeled with
COMBIN14 having heavy stiffer spring constant (ky=200e9 N/m). Contact patches are
modeled with MASS21. An extra one dimensional torsional spring is used in each front
tire to receive the steering input. COMBIN14 is used to model that torsional spring. It is

important to mention that twenty constraint equations have been written for merging the
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nodes used in the tire modeling, because all nodes in a tire does not have same degrees of

freedom.
2.3 MODEL VALIDATION

Vehicles always are in motion and follow different shapes of path running over
from smooth highways to extremely rough off-road terrains. So, static weight balance
checks and frequency analyses are of primary concern in the effective design of vehicles.
To validate the developed finite element highway bus model, first weight balance is
checked by conducting static analysis due to the self weight of the bus. Then modal
analysis is performed to obtain the natural frequencies and to compare those with the
available experimental data of a real bus, since designing of a bus is followed by a
number of guidelines and rules of thumb in view of the ride quality, human comfort and
handling performance. It is important to note that natural frequency plays a major role on
the dynamic performance of a system.

2.3.1 Static Analysis

Static weight balance of the candidate bus with or without ground spring has been
checked considering self-weight of the bus. It should be noted that linear tire model is
used in both cases, and the sprung mass, rear unsprung mass, and front unsprung mass are
15411.99 Kg, 1410.41 Kg, and 912.6 Kg, respectively. Figs. 2.14 and 2.15 show the
Jongitudinal displacement of the candidate bus with or without ground spring due to the
gravitational weight, respectively. The maximum longitudinal displacements of the
candidate bus with or without ground spring are 8 mm and 13 mm, respectively.

Reaction loads due to the gravitational weight on different positioned tires are

listed in Table 2.4. Figs. 2.16 and 2.17 show the vertical displacement of the candidate

41



bus with or without ground spring due to the gravitational weight, respectively. In both
cases, the vertical displacements of the bus body along the length and width are almost
same. Static suspension deflection and rattle space are found approximately 155.4 mm
and 0.635m, respectively. In addition, the vertical deflections of front and rear tires are

17.6 mm and 25.6 mm, respectively, which are same as those found based on static load

and radial tire stiffness.

.0060 006868 007667
.005669 .006468 .0072e68 .008067

.008866

Fig. 2.14 Longitudinal displacement of complete bus with ground spring due to the
gravitational weight.

L010539 012937

.0113 - -
.01014 .010939 .011738 .012538 .013337

Fig. 2.15 Longitudinal displacement of complete bus without ground spring due to the
gravitational weight.
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Table 2.4 Reaction load on different tire-ground contact.

Position of Tire-Ground Contact Reaction Load (N)
Rear Right 63538
Rear Left 63036
Front Right 23873
Front Left 23538

S.155424 =.120886

. . 8 )
~.138155 -.103616 ~-.069077 -.034539

.017289
0

Fig. 2.16 Vertical displacement of complete bus with ground spring due to the
gravitational weight.

120885 -.086347 ~-.051808

.017269
-.138155 -.103616 -.069077 -.034539 0

Fig. 2.17 Vertical displacement of complete bus without ground spring due to the
gravitational weight.
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Figs. 2.18 and 2.19 show the lateral displacement of the candidate bus with or
without ground spring due to the gravitational weight, respectively. Both models show

maximum lateral deflections of 4 mm at the roof.

001226 002825 004425 006024 007623
.002026 .003625 005224 .006824 .008423

Fig. 2.18 Lateral displacement of complete bus with ground spring due to the
gravitational weight.

.541E-03 .002141 .00374 .003339 .006938
.001341 .00294 .004539 .006139 .007738

Fig. 2.19 Lateral displacement of complete bus without ground spring due to the
gravitational weight.
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2.3.2 Modal Analysis

Modal analysis is carried out for linear undamped bus model with or without
ground spring. Table 2.5 summaﬁzes the first fifty natural frequencies of the designed
bus for both cases and it shows good correlation with the natural frequencies of a real
bus. First three frequencies are rigid body frequencies which have been found due to the
applied boundary conditions. Corresponding rigid mode shapes are shown in Fig. 2.20.
Fig. 2.21 shows the rolling, pitch and bounce mode shapes, and corresponding to those
natural frequencies. These sprung mass frequencies are less than 1.5 Hz, and the bounce
natural frequency is less than 1.2 times the pitch natural frequency. The unsprung mass
frequencies and corresponding mode shapes are shown in Fig. 2.22. These unsprung mass
frequencies are well above 8 Hz. These predicted sprung and unsprung mass frequencies

are typical design frequencies for such road vehicles.
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Table 2.5 First fifty natural frequencies of the candidate bus.

Natural Frequency of Linear Undamped
Bus Model with Ground Spring

Natural Frequency of Linear Undamped
Bus Model without Ground Spring
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1* Rigid Body Mode Shape

Freq:0.139e-04Hz Dax. Dsp:0.007493 m
Tire Model with Ground Spring

Freq:0.186e-04 Hz DMax. Dsp:0.007493 1
Tire Model without Ground Spring

2nd Rigid Body Mode Shape

Freq:0511e04 Hz  Blax Dap:0.007488 in
Tire Model with Ground Spring

Freq:0.725e-04 Hz Max Dsp:0.007458 m
Tire Model without Ground Spring

3rd Rigid Body Mode Shape

Freq:0.007164 Hz Max. Dsp:0.0145]1 m
Tire Model with Ground Spring

Freq:0.007164 Hz Max. Dsp:0.03452 m
Tire Model without Ground Spring

Fig. 2.20 Rigid body mode shapes of the designed bus.
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Rolling Mode Shape

f— =
Freq:0.727815 Hz Max Dsp:0.017048 m Freq:0.727815 Max. Dsp:0.017048 m
Tire Model with Ground Spring Tire Model without Ground Spring

Pitch Mode

Freq:1.141 Hz Max. Dsp:0.015803 m Freq:l.141 Hz Max. Dsp:0.015503 1n
Tire Model with Ground Spring Tire Model without Ground Spring
Bounce Mode Shape

! i ]
Freq:1.314 Hz Max. Dsp:0.009336 m Freq:1.314 Hz Max. Dsp:0.009335 m
Tire Model with Ground Spring Tire Model without Ground Spring

Fig. 2.21 Sprung mass mode shapes of the designed bus.
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Front Unsprung mass Mode Shape

H g 47 4
Freq:9.162 Hz Max. Dsp:0.033024 m Freq:9.162 Hz Max. Dsp:0.033024 m
Tire Model with Ground Spring Tire Model without Ground Spring
Rear Unsprung mass Mode Shape

&

Freq:9.317 Hz Max. Dsp:0.025765 1 Freq:9.317 Hzx Max. Dsp:0.025765 m
Tire Model with Ground Spring Tire Model without Ground Spring

Fig. 2.22 Unsprung mass mode shapes of the designed bus.
2.4 IDENTIFICATION OF FREQUENCY RANGE

In this study, some transient analyses have been carried out using mode
superposition method instead of using the full method, since mode superposition method
was more efficient over the full method in analysis of model with large numbers of
degrees of freedom. However, the identification of frequency range is essential in case of
mode superposition method. The first twenty-two natural modes of the given bus are
identified to be important in which the highest natural frequency is found to be 20.976
Hz. This implies that the number of the utilized second order differential equations in
modal space is equal to twenty-two, which is only the 1.2 % of the number of original

differential equations. The low natural modes have been predicted with the observation of
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vertical responses of node No. 69 (Fig. 2.23) and 216 (Fig. 2.24) due to the application of
harmonic sine sweeping kinematic excitation (amplitude: 0.05 m and frequency, being
proportional to time, is swept from 0 Hz to 20 Hz) on both tires of rear wheels in vertical
direction. At 0.8 sec the excitation frequency is 1.28 Hz and at that frequency node No.
69 being on the chassis (Fig. 2.3) representing sprung mass exhibits large amplitude
response (Fig. 2.23), as expected. On the other hand, at 3 sec excitation frequency is 9 Hz
and at that frequency the node No. 216 being on the rear axle (Fig. 2.3) representing
unsprung mass shows large amplitude response (Fig. 2.24), as expected. The vertical
vibration of node No. 69 above 10 Hz decreases very quickly, while the magnitudes of
vibration of node No. 216 at around 20 Hz are very small. Consequently, in order to get

more accurate response for the motion of the applied bus, the low natural modes up to

20.976 Hz can be considered.
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Fig. 2.23 Vertical Displacements of node No. 69 for sweeping excitations.
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Fig. 2.24 Vertical Displacements of node No. 216 for sweeping excitations.

51




CHAPTER 3

RIDE ANALYSIS OF VEHICLE

3.1 INTRODUCTION

The vehicle body vibration or the ride quality is one of the primary concermns for
the vehicle engineers. Ride quality deals with the sensation or feel of the passenger in the
environment of a moving vehicle, and the control of the magnitudes of dynamic loads
transmitted to the pavement [6]. It is thus important to evaluate the ride quality of a
vehicle in design process utilizing a set of performance measures, and to establish
appropriate suspension and tire properties for a given vehicle. Vehicle vibrations are
induced by a variety of sources including vibrations of the engine and driveline,
aerodynamic forces, unbalance of tire and wheel assembly, and most importantly the
surface irregularities, ranging from the potholes to random variations of the surface
elevation profile, which excites the vehicle body through the tire wheel assembly and the
suspension system. In this study, ride quality of the candidate bus has been analyzed
under only surface irregularities using both rigid body and flexible body (based on FEM)
approaches. Two types of surface irregularities, namely: half sinusoidal road input like
bulge and random road input representing city road, are taken into account for this
purpose. The influences of nonlinear and the corresponding linear tire model along with
the effects of rigid body and flexible body on simulation results are investigated. Mode
superposition method is used in order to simulate the transient response due to half
sinusoidal road input and linear tire model. However, full method is used in case of

nonlinear tire model and random road input as any nonlinearity and table load data, for
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instance, track height corresponding to time are not applicable with mode superposition

method in ANSYS.
3.2 RIDE ANALYSIS USING HALF SINUSOIDAL ROAD INPUT

In this section, ride analysis of the candidate bus model for the case of half
sinusoidal road input is presented for both nonlinear and the corresponding linear tire
modes and the results are compared. Moreover, in order to demonstrate the effectiveness
and applicability of the large finite element model, ride analysis has been conducted for
both flexible and rigid body models using linear tire model only and results are
compared. For this purpose, the bulge is considered as half sinusoidal input positioned in
lateral direction on the surface of a perfectly smooth horizontal road and can be described
as,

Z=Axsin {{mx V/IA)x(t-1t,)}
where: A is the maximum amplitude of the bulge,

V is the forward velocity of the bus, V =20 m/s,

L is the length of the bulge, A =1.5m,

t isthetime, t, <t <t,+ AV,

t, is the time instant at which the bulge is reached by the corresponding wheel
It is assumed that the velocity of the bus is 20 m/s, and left and right hand side wheels
mounted on the same axle pass over the bulge simultaneously. Time delay between the
excitations of front and rear wheels is taken into consideration. The developed FEM
model is also able to simulate the initial displacements due to the weight of the bus. Thus

the motions due to excitation are defined from the initial position of the nodes.
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As discussed in section 2.2.3, tire stiffness in vertical direction is nonlinear and can
be approximated by a fixed stiffness for both in compression and tension (Figs. 2.8-2.11).
Simulation of vehicle response over a bulge is a good opportunity to examine the
influence of tire nonlinearity. Hence, two sets of responses are obtained for amplitudes of
A=0.05 m and 0.1 m. Since FEM model is utilized, the response can be obtained at any
location of the vehicle. To examine the responses that reflect both bounce and pitch
behavior of the vehicle, several nodes on the chassis are selected. The selected nodes are
nodes No. 214 (located on the chassis at the right side of the rear axle), 264 (located on
the chassis at the right side of the front axle), 215 (located on the chassis at the left side of
the rear axle), and 262 (located on the chassis at the left side of the front axle). Moreover,
the bounce and pitch responses of the center of gravity of the candidate bus is
investigated. Similarly, to examine the bounce behavior of the wheel, several nodes
located on the wheels centers and the wheels rims are selected. The selected nodes are
nodes No. 218 (located on the rear right wheel center), 234 (located on the front right
wheel center), 221 (located on the rear left wheel center), 232 (located on the front left
wheel center), 270 (located on the rear right wheel rim), 276 (located on the front right
wheel rim), 273 (located on the rear left wheel rim), and 277 (located on the front left
wheel rim) shown in Fig. 2.3.

The right hand side chassis bounce responses for 0.05 m bulge using linear tire
model is shown in Fig. 3.1. The same responses for the nonlinear tire model are presented
in Fig. 3.2. Similarly, Figs. 3.3 and 3.4 present the left hand side chassis bounce
responses for 0.05 m bulge using linear and nonlinear tire models, respectively. As the

results indicate, the static deflections of the chassis at the front and rear and left and right
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are slightly different for the two models and there is insignificant difference between the
responses for the linear and nonlinear tire models when amplitude of bulge is 0.05 m. It
should be noted that the magnitudes of the vibration for nonlinear tire model are slightly
larger than those of the vibration for linear tire model. This can be attributed to the fact
that nonlinear tire model is less stiff than the linear tire model due to the methodology
used (section 2.2.3) in the linearization of nonlinear vertical stiffness of a tire. Moreover,
the vibration magnitude for the front chassis is slightly larger than that of rear chassis for
both linear and nonlinear tire models since the equivalent spring stiffness of front
suspensions are less than that of rear suspensions as discussed in section 2.2.2. It is
interesting to note that front end and rear end of the chassis starts moving in phase (i.e.,
the bus body is merély bouncing) after approximately 3.4 seconds for both linear and
nonlinear tire models. Thus, the passengers will feel the annoying pitch motion for 3.4
seconds. From the point of view of passenger ride comfort, pitching is more annoying
than bouncing. The bounce response of the center of gravity shown in Fig. 3.5 also
demonstrates the different static deflections for the two linear and nonlinear tire models.
Also there are small differences between linear and nonlinear tire models response when
amplitude of the bulge is 0.05 m. It is again noted that that the magnitudes of the
vibration for nonlinear tire model are slightly larger than that of the vibration for linear
tire model. Consequently, the responses for nonlinear tire model takes a little more time
to become steady compared to that of the linear tire model. The pitch response of the
center of gravity shown in Fig. 3.6 also reveals that there is no significant difference
between the responses for linear and nonlinear tire models. However, it should be noted

that due to the long wheel base (7.25 m) the pitch angle is very small, less than 0.5 degree
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for both models. The nonzero initial pitch angle indicates the front end of the chassis is
few millimeters up compared to the rear end of the chassis.

The right hand side wheels bounce responses for 0.05 m bulge using linear tire
model is shown in Fig. 3.7. The same responses for the nonlinear tire model are presented
in Fig. 3.8. Similarly, Figs. 3.9 and 3.10 present the left hand side wheels bounce
responses for 0.05 m bulge using linear and nonlinear tire models, respectively. As the
“results indicate, the static deflections of the wheels at the front and rear are slightly
different for the two models and there is small effect on the responses when the
amplitude of bulge is 0.05 m. In Figs. 3.7-3.10 the magnitudes of the responses for
nonlinear tire model are slightly larger than that of the responses for linear tire model. It
should be noted that wheel bounce is quickly damped out for both tire models compared
to the bus body because of the damping effect of suspension and tire itself. As discussed
in section 2.2.2 and 2.2.3, damping co-efficient value is the same for both front and rear
suspension, and there are two tires on each side of the rear axle and one tire on each side
of front axle. So equivalent damping capacity acting on rear axle is larger than that acting
on the front axle. As a result, the bounce of rear wheels becomes steady faster than that of
front wheels for both linear and nonlinear tire models even though the rear wheels are
excited by the bulge after fractional second of the front wheels excitation.

Fig 3.11 demonstrates the rattle space or the relative distance between the axle at
rear right wheel and chassis for 0.05 m bulge using linear and nonlinear tire model, while
Fig. 3.12 presents the rattle space between the axle at front right wheel and chassis for
both linear and nonlinear tire model. Fluctuation of rattle space for nonlinear tire model is

slightly larger than that of linear tire model. However, rattle space for both tire models
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become steady at the same time. Moreover, rattle space at the front axle takes slightly
more time to become steady than that of the rear axle.

Figs. 3.13 and 3.14 illustrate the bouncing of the right hand side rear wheel for 0.05
m bulge using linear and nonlinear tire model, respectively, where the lower thick black
line represents the shape of the bulge (max. amplitude: 0.05 m, wavelength: 1.5 m). The
upper thin gray line being parallel with the lower one shows the hypothetical position of
node No. 270 when the tire is not loaded i.e. is not deformed, and the thick gray line
demonstrates the calculated vertical position of node No. 270 when the rear wheels pass
over the bulge. Since thick gray line goes over the thin gray line, the corresponding wheel
is bouncing i.e. wheel lift off occurrs. It is important to note that tires would be in
stretched condition in this case. However, in reality each spring and damper representing
the elasticity and damping of the given tires is switched off when the tires are about to lift
off the ground. As the results indicate, rear right wheel tires lose the contact with the
ground twice for linear tire model, whereas for nonlinear tire model rear right wheel tires
lift-off once, and those are in about to lift-off for the second time. The rear left wheel
shows the same behaviors like rear right wheel for both linear and nonlinear tire models
as shown in Figs. 3.15 and 3.16. According to the Figs. 3.17 and 3.18, front right wheel
tire also loses the contact with the ground twice for linear tire model, whereas for
nonlinear tire model front right wheel tire lifts-off once. The front left wheel shows the -
same behaviors similar to front right wheel for both linear and nonlinear tire models as
shown in Figs. 3.19 and 3.20.

Alike the first case (A = 0.05 m), the same type of responses for the second case (A

= (0.1 m) are given in Figs. 3.21-3.40. Although the patterns of the responses are identical
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for both cases, significant differences have been observed between the magnitudes of the
responses for linear and nonlinear tire models in the second case.

In conclusion, it can be realized that the linear tire model can provide reasonable
results for small amplitude of excitations and moderately high forward velocity of the

candidate bus. .
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Fig. 3.1 Vertical displacements of node No. 214 and node No. 264 for linear tire model
(amplitude of bulge: 0.05 m).
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Fig. 3.2 Vertical displacements of node No. 214 and node No. 264 for nonlinear tire
model (amplitude of bulge: 0.05 m).
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Fig. 3.3 Vertical displacements of node No. 215 and node No. 262 for linear tire model
(amplitude of bulge: 0.05 m).
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Fig. 3.4 Vertical displacements of node No. 215 and node No. 262 for nonlinear tire
model (amplitude of bulge: 0.05 m).
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Fig. 3.5 Bounce of the center of gravity (amplitude of bulge: 0.05 m).

Pitch of Center of Gravity [rad]

0.008

0.006

0.004

0.002

0.000

-0.002

-0.004

-0.006

-0.008

——Linear Tire Model
——Nonlinear Tire Model
A
AVA
VIVAVAVZS======
ViRVl
/
!
Y
2 3 4 5 7 8 9 10
Time [sec]

Fig. 3.6 Pitch of the center of gravity (amplitude of bulge: 0.05 m).
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Fig. 3.7 Vertical displacements of node No. 218 and node No. 234 for linear tire model

(amplitude of bulge: 0.05 m).
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Fig. 3.8 Vertical displacements of node No. 218 and node No. 234 for nonlinear tire

model (amplitude of bulge: 0.05 m).
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Fig. 3.9 Vertical displacements of node No. 221 and node No. 232 for linear tire model
(amplitude of bulge: 0.05 m).
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Fig. 3.10 Vertical displacements of node No. 221and node No. 232 for nonlinear tire
model (amplitude of bulge: 0.05 m).
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Fig. 3.11 Rattle space at rear right wheel (amplitude of bulge: 0.05 m).
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Fig. 3.12 Rattle space at front right wheel (amplitude of bulge: 0.05 m).
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Fig. 3.13 Bounce of the right hand side rear wheel for linear tire model (amplitude of
bulge: 0.05 m).
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Fig. 3.14 Bounce of the right hand side rear wheel for nonlinear tire model (amplitude of
bulge: 0.05 m).
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Fig. 3.15 Bounce of the left hand side rear wheel for linear tire model (amplitude of
bulge: 0.05 m).
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Fig. 3.16 Bounce of the left hand side rear wheel for nonlinear tire model (amplitude of
bulge: 0.05 m).
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Fig. 3.17 Bounce of the right hand side front wheel for linear tire model
(amplitude of bulge: 0.05 m).
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Fig. 3.18 Bounce of the right hand side front wheel for nonlinear tire model (amplitude of
bulge: 0.05 m).
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Fig. 3.19 Bounce of the left hand side front wheel for linear tire model (amplitude of
bulge: 0.05 m).
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Fig. 3.20 Bounce of the left hand side front wheel for nonlinear tire model (amplitude of
bulge: 0.05 m).
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Fig. 3.21 Vertical displacements of node No. 214 and node No. 264 for linear tire model
(amplitude of bulge: 0.1 m).
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Fig. 3.22 Vertical displacements of node No. 214 and node No. 264 for nonlinear tire
model (amplitude of bulge: 0.1 m).
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Fig. 3.23 Vertical displacements of node No. 215 and node No. 262 for linear tire model
(amplitude of bulge: 0.1 m).
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Fig. 3.24 Vertical displacements of node No. 215 and node No. 262 for nonlinear tire
' model (amplitude of bulge: 0.1 m).
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Fig. 3.25 Bounce of the center of gravity (amplitude of bulge: 0.1 m).
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Fig. 3.26 Pitch of the center of gravity (amplitude of bulge: 0.1 m).
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Fig. 3.27 Vertical displacements of node No. 218 and node No. 234 for linear tire model
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Fig. 3.35 Bounce of the left hand side rear wheel for linear tire model (amplitude of
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Fig. 3.36 Bounce of the left hand side rear wheel for nonlinear tire model (amplitude of
bulge: 0.1 m).
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Comparison between Rigid Body and Flexible Body:

In this study, flexible and rigid body models are compared when the candidate
buss passes over a bulge (A = 0.Im, A = 1.5m). Only linear tire model is used as the
influence of flexible structure on the responses is the main concern. The bounce and pitch
of the center of gravity for both rigid and flexible body are shown in Figs. 3.41 and 3.42,
respectively. Also Figs. 3.43 and 3.44 demonstrate the bounces or vertical responses of
rear right chassis and rear right wheel, respectively for both rigid and flexible body (node
No. 214 is located on the chassis at the right side of the rear axle, and node No. 218 is
located on the rear right wheel center). According to the Figs. 3.41-3.44, there is no
difference in the bounce and pitch responses of the center of gravity (c.g.) and the bounce
responses of chassis and wheels between rigid body and flexible body. Bending mode of
chassis and axles was not within the first twenty two natural frequencies considered in the
mode superposition method. This may be the reason for no effect of flexibility on the ride
response results of c.g., chassis and axles. However, very little differences are observed
in the veﬁical responses for the nodes in the roof (node Nos. 191 and 166) between rigid
and flexible body as shown in Figs. 3.45 and 3.46. This is mainly due to the fact that roof
of the bus is more flexible compared to its chassis and axles. Moreover, there are
significant differences in the lateral vibrations of the right sidewall (node Nos. 12 and
258) between rigid and flexible body as shown in Figs. 3.47 and 3.48. The lateral
oscillation frequencies of node Nos. 12 and 258 of flexible body are approximately 11Hz
and 13.5Hz, respectively, which completely comply with the 10" mode shape (natural
frequency: 11.229Hz) and 13" mode shape (natural frequency: 13.91Hz) of flexible

body. On the contrary, the lateral oscillation frequencies of node Nos. 12 and 258 of rigid
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body are approximately 1Hz. The lateral oscillation frequencies of node Nos. 12 and 258
of flexible body could be reduced to about 1Hz if bottom part of the sidewall were made

inward tapered. In reality, bottom parts of the sidewall of all vehicles are inward tapered.
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Fig. 3.41 Bounce of the Center of Gravity for linear tire model (amplitude of bulge: 0.1
m).
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Fig. 3.42 Pitch of the Center of Gravity for linear tire model (amplitude of bulge: 0.1 m).
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3.3 RIDE ANALYSIS USING RANDOM ROAD INPUT

Experimental data of a Montréal city road ‘Cote-Des-Neiges’ shown in Fig.
3.49(a) has been taken as random road input [26]. The maximum amplitude of road
roughness is 0.058 m. According to the sirnulatjon results described in the previous
example, the linear tire model is capable of capturing the correct response in a desired
range for small amplitude of excitations. Therefore, linear tire model and linear ground
spring are considered for this example. Moreover, the flexible damped model is used for
this example. Initial displacements arising from the total weight of the bus are involved in
the analysis. The velocity of the bus is assumed to be equal to 20 m/s (72 km/h). It is
important to note that initial distance coordinates are different for rear and front wheels.
Simulation is carried out in time domain, and then outputs are converted into PSD (Power
Spectral Density) units as the time domain response for random input is not useful. Figs.
3.49(b) and 3.49(c) demonstrate vertical displacements of node No. 218 (a node on the
rear right wheel center) and node No. 214 (a node on the chassis at rear right axle),
respectively. Figs. 3.50(a) and 3.50 (b) illustrate lateral displacement and lateral
acceleration of node No. 304 (a node on the roof), respectively, which have been
produced due to the track height difference between left and right track and the flexibility
of the structure. The results show that maximum lateral acceleration of roof is 0.67
m/sec”. Finally, Figs. 3.51 and 3.52 show the damping forces exerted on the chassis for
the dampers positioned in the front-right suspension and rear-right suspension,
respectively.

PSD of left track height and right track height are shown in Figs. 3.53 and 3.54,

and are obtained using the time history data presented in Fig. 3.49(a). MATLAB
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subroutine using Welch’s averaged modified periodogram method was used for the
generation of the PSD as a function of circular frequency. The all PSD inputs and
responses are obtained from raw time history data and were not filtered to remove low
frequency unevenness of the road. According to the frequency analysis of the undamped
linear candidate bus discussed in section 2.3.2, the undamped rolling, pit-ch and bounce
natural frequencies of chassis and body are 0.73 Hz, 1.14 Hz and 1.31 Hz, respectively.
On the other hand, the undamped bounce natural frequencies of front and rear axles are
9.16 Hz and 9.32 Hz, respectively. PSD of vertical acceleration of node No. 214 (a node
on the chassis at rear right axle) is given in Fig. -3.55. The same responses are shown for
node Nos. 264 (a node on the chassis at front right axle), 215 (a node on the chassis at
rear left axle), and 262 (a node on the chassis at front left axle) in Figs. 3.56, 3.57 and
3.58, respectively. As the results indicate, the first highest pick of PSD of vertical
acceleration of node No. 214 is at around 0.65 Hz (damped natural frequency), and the
second highest pick is attained at around 9 Hz (damped natural frequency), which comply
with the frequency responses of the undamped candidate bus as the damped natural
frequency is smaller than the undamped natural frequency when the value of damping
ratio is less than 1. On the contrary, the first highest pick of PSD of vertical acceleration
of node Nos. 264, 215, and 262 are at around 9 Hz, and the second highest picks are
attained at around 0.65 Hz. At first sight, the results seem contradictory with the
frequency responses of the candidate bus, but it is possible to transmit vibrations from
axles to the chassis local points through suspensions. It is important to note that the
chassis of the candidate bus is connected with the axles at those nodes (node Nos. 214,

264, 215 and 262) through dampers. PSD of bounce and pitch acceleration of the center
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of gravity are shown in the Figs. 3.59 and 3.60. As the results indicate, the first ciamped
bounce and pitch natural frequency of the body is 0.68 Hz and 0.61 Hz, respectively. It
also indicates the value of damping ratio is 0.45, which is less than 1.

PSD of vertical acceleration of rear right wheel is given in Fig. 3.61. The same
responses are given for front right wheel, rear left wheel, and froﬁt left wheel in Figs.
3.62, 3.63 and 3.64, respectively. The bounce acceleration responses for all wheels are
found maximum at around 8 Hz as shown in Figs. 3.61-3.64. The results indicate the
damped bounce natural frequency of the wheels are 8 Hz, which is less than the
undamped bounce natural frequency of the wheels. This reveals that the value of damping
ratio is less than 1.

PSD of vertical load on front left tire is given in Fig. 3.65. The same responses are
shown for front right tire, rear left tires, and rear right tires in Figs. 3.66, 3.67 and 3.68,
respectively. The résults demonstrate that tire loads are mainly dominated by the bounce
of the body as the first highest picks are seen at around 0.62 Hz, which is nearly equal to
the damped bounce natural frequency of the body. The fundamental reason of this
phenomenon is that inertia of body is significantly greater than that of axles and wheels
assembly as the weight of the body is 86.9 % of the total bus weight. On the other hand,
PSD of damping forces in rear left and rear right suspension systems and front left and
front right suspension systems are found maximum at around 0.65 Hz as shown in Figs.
3.69-3.72. This also indicates that the damping force is mostly dominated by the vertical
motion of chassis and body as the weight of the axles is only 13.1 % of the total bus
weight. Fig. 3.73 illustrates the PSD of the lateral acceleration response of node. No. 304,

and the maximum amplitude is found at 6 and 8 Hz, which indicates the roof of the bus is

86



sensitive between 6 and 8 Hz.
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PSD of Vertical Acceleration of Node 214 [(m/sec 2)%/Hz]
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PSD of Bounce Acceleration of CG [(m/sec 2)2/Hz]
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PSD of Rear Right Wheel Vertical Acceleration [(m/sec 2)2/Hz)]
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PSD of Front Rlght Wheel Vertical Acceleration [(m/sec 2)2/Hz]
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PSD of Rear Left Wheel Vertical Acceleration [(m/sec 2)2/Hz
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PSD of Damping Force in Front Right Suspension [(N) 2/Hz]
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Fig. 3.69 PSD of damping force in front right suspension.

PSD of Damping Force in Rear Right Suspension [(N) 2/Hz]
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PSD of Damping Force in Front Left Suspension [(N)2/Hz]
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Fig. 3.71 PSD of damping force in front left suspension.
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PSD of Lateral Acceleration of Node 304 {(m/sec 2)2/Hz]

EETEE S EETE

‘alie Ol o

+itiHliE + H
14
14

i IHEE 4
ity

17t it
T TTITee Y T

[ | 'TITI?ﬁ
Lo
AT Imm T

rritir
TImT -~
EEEE

+

il atatnd il T
1 B Y S} LLy1gt Ll

uy

C T T

2

10° 10!
Frequency [Hz]
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CHAPTER 4
HANDLING AND LONGITUDINAL ANALYSIS OF VEHICLE

4.1 INTRODUCTION

The handling characteristics of a road vehicle usually indicate its response to
steering commands and to environmental inputs, such as thrust of wind and road
disturbances. The control of the direction of motion of the vehicle and its ability to
stabilize its direction of motion against external disturbances are two basic issues in
vehicle handling. On the other hand, longitudinal characteristics of a road vehicle indicate
its capability to accelerate, decelerate, and negotiate grades in a straight line motion [8].
Different types of handling and longitudinal analyses, such as pure cornering (steering
input only), combined comering and braking, pure symmetric or asymmetric breaking, p-
split test (comnering on asymmetric frictional road surface), and wheel locking, are
performed for this purpose in practice. In this chapter, pure cornering and combined
comnering and braking analyses of the candidate bus modél carried out using ANSYS
have been presented. Since among other vehicle design and operational parameters like
location of the center of gravity, vehicle’s forward speed, tire properties have great
influence on handling and longitudinal behavior of a vehicle, the capability of the
presented finite element model of tire to represent the complex tire dynamic
characteristics is investigated in both cases. It is important to note that longitudinal and/or
lateral forces are generated between tires and road surface to keep the vehicle in
dynamically equilibrium during its motion. Longitudinal tire forces, lateral tire forces and
steering angle input on front wheels as external loads are applied to the bus model to

carry out the analyses. In both cases, in order to calculate the longitudinal and lateral
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forces, a proper four wheel mathematical model has been derived and simulated in
MATLAB with the finite element highway bus model parameters and with the
corresponding operational conditions. Moreover, in order to demonstrate the
effectiveness and applicability of the large finite element model, comparison between
elastic and rigid chassis performance is presented in this study for both types of analyses.
The transient simulation of four wheel mathematical model in MATLAB 1is used to
establish rigid body performance of the bus model. In pure cornering analysis, the
longitudinal tire forces are neglected as constant forward speed is considered throughout
the analysis, and the lateral tire forces are calculated using the Elastic-Band Theory. On
the contrary, in combined cormnering and braking analysis, the lateral tire forces are
determined by the friction ellipse, instead of using the cosine version of magic formula
tire model developed by Michelin [7]. The total weight of the bus and initial
displacements arising from this total weight are involved in the analyses. In both types of
analyses, the 3D FEM bus model developed for ride analysis is utilized with
modifications to change in the tire model. In this case, the ground spring is removed, and
the motion of the contact patches is constrained only in vertical direction so that the
complete bus model can move and rotate freely in horizontal directions and about the
vertical axis, respectively. Mode superposition method is chosen for both types of
transient analyses in ANSYS to minimize the simulation time.

4.2 CORNERING ANALYSIS

Cornering analyses of the applied bus model are performed considering two cases
- extensive and intensive trapezoidal steering angle inputs discussed in section 4.2.2. It is

assumed that vehicle moves with constant forward speed 20 m/s. Tractive efforts or
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longitudinal tire forces are thus neglected. Lateral tire forces are calculated using Elastic-
Band Theory. For this purpose mathematical modeling of a proper four wheel vehicle has
been derived at first. Simulation of the four wheel model has been carried out in
MATLAB with finite element highway bus model parameters and with same steering
angle input to find out the lateral tire forces. These lateral tire forces can be termed as
pure lateral tire forces as tractive efforts have been neglected. Finally, considering that
vehicle performs large rotations about the vertical axis during cornering, the lateral tire
forces as external excitations have been applied carefully to the instantaneous position of
the wheels of the finite element Highway-Bus model, as indicated in Fig. 4.1. The
transient simulation of four wheel model in MATLAB is used to establish rigid body
performance of the model during comering. It must, however, be noted that the rigid
body model was simplified and can not simulate all aspect of handling responses that can
be performed by the 3D FEM model developed in this investigation. The assumptions

made in developing the rigid body model are identified in the following subsection.

X

Direction of Moving

Fig. 4.1 Current position of the vehicle in turning.

4.2.1 Mathematical Modeling

The vehicle undergoes in a transient state between the application of steering

input and the attainment of steady state motion. To examine the transient response, the
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inertia properties of the vehicle is taken into consideration. During a turning maneuver,
the vehicle is in translation as well as in rotation. To describe its motion, it is convenient
to use a set of axes fixed to and moving with the vehicle body. With respect to the axes
fixed to the body, the mass moments of inertia of the vehicle are constant, whereas with
respect to the axes fixed to earth, the mass moments of inertia vary as the vehicle change
its position. With reference to Fig. 4.2, let ox and oy be the longitudinal and lateral axes
fixed to the vehicle body with origin at the center of gravity, and let V, and V, be the
components of the velocity V of the center of gravity along the axes ox and oy,
respectively, at time z. As the vehicle is in both translation and rotation during a turn, at
time ¢ + 4¢, the direction and magnitude of the velocity of the center of gravity as well as
the orientation of the longitudinal and lateral axes of the vehicle change, as shown in Fig.

4.2.

AT t+at

Fig. 4.2 Change of velocity component.

The change in velocities in each direction can now easily be expressed as [8]:
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Change in Velocity along x-axis,

(V, +AV,)CosAO -V, —(V, + AV,)SinAd

Change in velocity along y- axis,

(V, +AV,)CosAO =V, +(V, + AV, )SinAB

For small angle, CosA8 = 1 & SinA® = AB. Moreover, neglecting AV,x A6 as small higher
order term, change in velocity along x-axis simplifies to:

AV, -V A0 4.1)
Similarly, change in velocity along y-axis is:

AV, +V A0 4.2)
Differentiating (4.1) with respect to time, ¢, gives:

a,=dv, [dt-V d6/dt (4.3)

Differentiating (4.2) with respect to time, £, gives:

a,=dv,/dt+V,do/dt 4.4)

In order to derive the mathematical model of a four wheel vehicle, it is assumed
that the vehicle body is symmetric about the longitudinal vertical plane, and that roll
motion of the vehicle body is negligible. Referring to Fig. 4.3, for a vehicle having plane
motion, the equations of motion with respect to the axes fixed to the vehicle body are

given by:
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&

Fig. 4.3 Full Vehicle Model.

Along x direction (+ ve —)

ma, = Fx,,CosS,, + Fx,Cosd, + Fx,, + Fx,, — Fy ,Sin6,, - Fy;Sind,
substituting for a, from Eq.4.3

= m(V,~VyQ) = Fx,Cosé,, + Fx,Cosd, +(Fx,, + Fx,)— Fy,Sind, — Fy;Sind,
: 1
=V, =V,Q+—(Fx,Cosd,, + Fx,CosS, + Fx,, + Fx,, — Fy  Sin6,, — Fy Sind;) (4.5)
m

Along y direction (* + ve)

ma, = Fx,Sind,, +Fy,Cosd, + Fx,Siné; +Fy,Cosd; +Fy, +Fy,
substituting for a,, from Eq.4.4
= m(V,+V.Q)= Fx,,Siné,, + Fy,Cosd,, + Fx,Sind, + Fy,Cosd; +(Fy,, + Fy,)

=>V,=-V.a +—1—(FnyCos5fo +Fy,Cosd; + Fx,,Sind,, + Fx,;Sind, +Fy,, + Fy,)(4.6)
m
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Yaw equation of motion is obtained by taking the moment about C.G or z-axis (/"%t+ ve):

I1,Q=—(Fy, +Fy,)c+Fxt, /2= Fxt |2+ Fx,CosS,t, 12— Fy,Sind,t,12
~ Fx;CosOt, |2+ Fy,Sindt, 12+ (Fx,Sind, + Fy,Cosd )b+ (Fx,Sind,,
+Fy,Cosd )b

=Q= Ii[—(Fym + Fy,)c +(Fx,, — Fx,)t, 12+ (Fx,CosS, — Fx Coss, + Fy ,Sind ,

4

~Fy,Sind, )t 12+ (Fx,Sind,, + Fx,,Sind,, + Fy Cosd, + Fy,Cosd,)b] (4.7)

where: Fxﬁ
Fx,,

Fx

i

is the longitudinal force on the front-inner tire,
is the longitudinal force on the front-outer tire,
is the longitudinal force on the rear-inner tire,
is the longitudinal force on the rear-outer tire,
is the lateral tire force on the front-inner tire,
is the lateral tire force on the front-outer tire,
is the lateral tire force on the rear-inner tire,

is the lateral tire force on the rear-outer tire,

is the mass moment of inertia of the vehicle about the z-axis,
is the angular or yaw velocity about the z-axis,

is the steering angle, &, distribution on front-inner wheel,
is the steering angle, &, distribution on front-outer wheel,
is the front track width,

is the rear track width,

is the distance from front tires to center of gravity,

is the distance from rear tires to center of gravity.
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Using the assumption of small average steering angle, Jy, the following terms in
the Egs. 4.5-4.7 can be written as follows:
Sinds = dg, Cosdp =1, Sindy, = Jp, and Cosdp= 1

Hence, the equations of motions of the vehicle (Eqs. 4.5-4.7) becomes:
: 1
V.=V,Q+ — (Fx,, + Fx, + Fx, + Fx, —Fy, 6, —Fy;0;) (4.8)

Vy=-VQ +-—1-(F)’fo +Fy, + Fx;, 0 + Fx 0, + Fy,, + Fy,) (4.9)
m

Q= %—[—(Fym + Fy, )+ (Fx,, = Fx ), 12+ (Fx, — Fx, + Fy 6, —Fy,6,)t, /2

+ (Fxp0, + Fx,0,, + Fy, + Fy )]

(4.10)

The trajectory of the vehicle can be determined by solving the following

differential equations along with the Eqgs. 4.8-4.10:

X, =V,Cos(y) -V, Sin(w) 4.11)
Y, =V, Sin(y)+V,Cos(y) (4.12)
V=0 (4.13)

For a given steering angle dy, the steer angles of inner and outer wheels, d; and dy,
are based on Ackermann steering geometry. These angles can be computed as a function

of dr as follows. Using the geometry shown in Fig. 4.4, for a radius of curvature R:
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el

Turne Canter

U (
U
Fig. 4.4 Steering Geometry.
L
o, = .
f t; (4.14)
2
§fo = Lt ; where: L is the wheel base and ¢ 5 is the front track width.  (4.15)
R+-L
2
t 0, +0
Assuming -=- << R, average steering angle, d; = Lﬁ——L) L =>R-= L
2 2 R 5,

Substituting for R in the Egs. 4.14 and 4.15, J; and Jy, can be expressed in terms of
steering angle:

2L6
S, =——"~L— (4.16)
2L—t, X4,

2L
5, = ———tm (4.17)
2L+1t, X0,

For constant speed turning, the longitudinal equation (Eq. 4.8) as well as Fx term
in the lateral and yaw equations (Eq. 4.9 and 4.10) can be dropped to yield a 2 DOF rigid
body handling model. The tire lateral forces, Fy can be further expressed by comering
stiffness and slip angle:

Fy = C, a; where: C,, is the cornering stiffness of tire,
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a is the slip angle of tire.
Since two tires on each side of rear axle are considered in the applied finite element bus

model, the lateral tire forces in the Egs. 4.9-4.10 can be written as follows:

Fy,=Cqnog (4.18)
Fy ;= Copo 0fo (4.19)
Fy, =2Cqi oy (4.20)
Fy, =2Cs0 0ro (4.21)

A number of factors affect the cornering stiffness, C, of pneumatic tires. The
normal load on the tire strongly influences the cornering stiffness and the relation
between them is nonlinear as shown in Fig. 2.12. During turning, lateral load shift occurs
from inner side to outer side of the vehicle owing to the lateral acceleration. As a result,
the normal load on the outer tires increases while that on the inner tires decreases in
turning. In order to calculate the cornering stiffness, C, of inner and outer tires with
respect to the instantaneous normal load on the corresponding tires, the following
empirical relation constructed from the curve fitting of experimental data as shown in
Fig. 2.12 can be used:

Co=1¢”N’ - 0.0003N° + 16.707N

In the above equation, N represents instantaneous normal load on a tire. Thus, it gives:

Coi=1¢N;’ - 0.0003 Ni* + 16.707 Ny (4.22)
Cop=1¢"N;,” - 0.0003 Ni,> + 16.707 Ny, (4.23)
Coi=1e ®(N./2) — 0.0003 (N./2)* + 16.707 (N,/2) (4.24)
Caro=1¢"(N,o/2)° = 0.0003 (N,/2)" + 16.707 (N,o/2) (4.25)

In the Eqgs. 4.22-4.25, Ng, N, N,; and N,, indicate instantaneous normal load on the front-
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inner tire, the front-outer tire, the rear-inner tires and the rear-outer tires, respectively.
Referring to Fig. 4.5(a) and 4.5(b), the instantaneous normal loads on tires Ng, Ny, Ny

and N,, are calculated by the following relations obtained by taking moment about B, A,

D and C, respectively:

a
Mg m b
S l mea & ma,
> Y
- 3 > 7y
h k
P Q
Al Py L Dy . L .
C‘—ﬂ | 1? . & f_ Fyy E e v
) 4 B 4o | * b > tro >
4 t .
Nﬁ Njo Nn Nro
Fig. 4.5 Normal load on front tires (a) and rear tires (b).
m;Xa,xh . ) . megty,
N =n; ——————;wheren  =static load on front - inner tire = sN;20 (4.26)
Ly Ly
m;Xa,Xh ) . mgtg
N, =ng,+ t—;where n,, =staticload on front - outer tire = P— N, <m,g(4.27)
f f
m, Xa,xh ) . . m, gt
N, =n, ———————;wheren,; =staticload on rear - inner tire =———*>,N ; 20 (4.28)
t, t
m, xa,xh . Mgty
N, =n,+ -—;————;where n,, = staticload on rear - outer tire = — N,,<m.g (4.29)
r

r

The values of ng, ny, n, and n,, can be determined by the static analysis of the
vehicle due to the gravitational weight. my and m, represents the front and rear wheel

loads, and those are calculated by the following relations:

- mxc¢ (4.30)
b+c

mg
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m, = ’ZXb ; where m = gross vehicle mass. 4.3D
+cC

In the Eqs. 4.18-4.21, az, o5, ar and a,, indicate silp angle of front-inner tire,
front outer tire, rear-inner tires and rear-outer tires, respectively. Referring to the velocity
diagram of the vehicle as shown in Fig. 4.6 and using the small steering angle
assumptions, slip angles of different positioned tires can be defined in terms of the

vehicle motion variables V,, Vyand € as follows:

Fig. 4.6 Velocity diagram of vehicle.

V. +bx&
5ﬁ -, =t (4.32)
V, —t,xQ
V. +bxQ
éﬂ, -, = (4.33)
V, +1,XQ
-V +cxQ
a, = ———— (4.34)
V. —t,xX8
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3 —Vy +eXxX O

a, = (4.35)
V. +1,, X8

4.2.2 Transient Response of the Bus with Rigid and Elastic Body

4.2.2.1 Extensive Cornering

Bus response under extensive cornering is obtained for a trapezoidal steering
input (max. amplitude, 2.2 degree) that lasts for 5.5 sec is presented as average front
wheel steer angle in Fig. 4.7(a). The corresponding steer angles for inner and outer front
wheels are obtained on the basis of Eqgs. 4.16 and 4.17, respectively and shown as Figs.
4.7(b) and (c). During turning or cornering, lateral inertial load is generated because of
the time varying lateral acceleration, and the lateral inertial load causes lateral load shift
from inner to outer wheels. As a result, the normal load on inner tires is decreased and
that on outer tires is increased. The variations of the cornering stiffness on different
positioned tires throughout the simulation of the designed bus with rigid body, illustrated
in the Fig. 4.8, are caused by the nonlinear characteristics of the applied cornering
stiffness with respect to the normal load (Fig. 2.12). Consequently, the variations of
cornering forces developed on different positioned tires and ground interface throughout
the simulation of the designed bus with rigid body are nonlinear as shown in Fig. 4.9.
These cornering or lateral tire forces as external excitations have been applied carefully
to the instantaneous position of the wheels (Fig. 4.1) to carry out the simulation of the
candidate bus with elastic body in cornering. The lateral velocities, the lateral
accelerations and the yaw velocities of the centers of gravity of the rigid and elastic bus
models are given in Fig. 4.10, where the thin and thick lines refer to the bus with the

elastic body and with the rigid body, respectively. As these results show, both the models

114



produce identical response for the center of gravity, where only small deviation is

observed for lateral velocity.
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During turning normal loads on the inner tires decrease, while those on the outer
tires increase in both rigid body and elastic body bus models. However, there is
significant deviation in the normal loads on the inner and outer tires of the front and rear
axles between the bus models with rigid body and elastic body. The results for the front
tires are shown in Fig. 4.11. These results show that for axle load over 23.5 KN, there is
around 6 KN difference in the load shift predicted by the two models. The elastic model

consistently show lower load shift. Similar trend in a similar study was reported in [1].
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Fig. 4.11 Normal load distribution on inner and outer front tires.
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This perhaps can be partially attributed to the distribution of mass over a wide area for
the case of flexible model. Same results for the rear axles are shown in Fig. 4.12. In this
case, for axle load over 63 KN, the rigid model tends to predict a load shift of 16 KN
larger than that of the flexible model. In both cases (front and rear), the flexible model
predicts 25 % less load shift than that of the rigid model. This, in turn, affects the tire

characteristics under handling and corresponding responses.
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Fig. 4.12 Normal load distribution on inner and outer rear tires.
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Another interesting result that can be evaluated is the development of slip angles
at each wheel under the given steering input. For the rigid body model, slip angle is
calculated on the basis of Egs. 2.32-2.35 derived from velocity diagram of the bus. In the
case of elastic body model, on the other hand, the slip angle is established based on Eq.
2.2, which is mostly dominated by the tire contact length parameter, /.. In this case, the
tire contact length value corresponding to instantaneous vertical load is considered
throughout the simulation and is calculated using Eqgs 2.3-2.5. It is important to note that
as linear vertical tire stiffness is considered for the flexible body model, the magnitude of
the tire contact lengths of different positioned tires vary linearly with respect to the
vertical loads on corresponding tires. The slip angle time history for each tire of rigid and
flexible bus model is presented in Figs. 4.13 and 4.14. As the results show, both results
predict similar trend for slip angle for each wheel location. The results further reveal that
the difference in the magnitude of slip angle for the outer tires is considerably more than
that of the inner tires. The flexible body model exhibits larger values for outer tires and
smaller values for inner tires compare to the rigid body model.

The trajectory of the bus models for the given input is finally presented in Fig.
4.15. Due to the difference in slip angle predicted by rigid and flexible model, it is
expected that there will be a deviation in the path of the two models. It is important to
note that as the results indicate in the Fig. 4.13, the average slip angle of front tires in
case of rigid body model is smaller than that of flexible body. Consequently, the results
show that the rigid body model predicts a tighter curve response when compared to that

of the flexible model.
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Fig. 4.13 Slip angle generation on inner and outer front tires.
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123




80

E
c
K]
8
.5 40 Rigid Body
> Elastic Body
£
@
3
8
0
8 20
] T T T T T T T T T T

0 20 40 60 80 100 120 140 160 180 200 220

Distance in X-direction (m)

Fig. 4.15 Trajectory of the bus.

4.2.2.2 Intensive Cornering

The results presented above are responses to an extensive corering at 72 km/hr
subjected to average steer angle of 2.2 degree over period of 5.5 seconds. In order to
‘examine the effect of more severe input the simulations were repeated for a steer angle
input of 3.2 degree at the same forward velocity, and is referred to as intensive cornering.
The average steer angle input along with the corresponding inner and outer wheel steer
angles are shown in Fig. 4.16.

The time history of cornering stiffness for each tire during the simulation is
presented in Fig. 4.17. These results show the expected increase in cornering stiffness of
outer tires while that of inner tires reduces with the load shift. Comparison of these
results with those obtained for extensive cornering (Fig. 4.8) clearly reveals same trend
with noticeable difference at the end of 6 seconds when steering input reduces to zero.

The smooth transition of dynamic stiffness value to the static value observed in the case
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of extensive cornering is not present in the case of intensive comnering. In the case of
intensive comnering, the stiffness value tends to oscillate and over shoot prior to returning
to its static levels. This can be easily attributed to the roll dynamics (lateral oscillation) of
the sprung mass.

The time history of cornering forces developed at the tire-road interface of each
tire are shown in Fig. 4.18. The trends of comering forces correspond well with the
cornering stiffness trends obtained in Fig. 4.17. The lateral oscillation of the sprung mass
is also evident in the lateral and yaw response plots for the intensive steering input as
presented in Fig. 4.19. Fig. 4.19 also presents the simulated responses for the flexible bus
model. As shown, both the models predict very comparable results both in trend and
magnitude, where same deviation is noticed for the lateral velocity responses only.

The slip angles generated at each tire of the rigid body and flexible body models
under the intensive cornering input are shown in Figs. 4.20 and 4.21. Similar to extensive
cornering response, the slip angle response over the entire maneuver is very similar for
both rigid and flexible body models. Again the noticeable deviation is only observed for
outer wheels, where flexible body model exhibits larger values.

Finally, the trajectory of the bus models under the intensive steering input is
shown in Fig. 4.22. The results obtained are very similar to those of under extensive
steering input. As the results indicate in Fig. 4.20, the average slip angle of front tires in
case of rigid body model is smaller than that of flexible body and the difference is little
more compare to extensive cornering. Consequently, in this case, also the rigid body

model tends to follow a tighter curve than that of flexible body model. Moreover, the
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radius of turn for intensive cornering is smaller compare to extensive cornering for both

models.
0.060
a
0.050 ’ ‘
.E- 0.040 I \
Sl | \
? 0.030
] \
g 0.020
0.010 ’ \\
0.000 - T : — ' .
o 1 2 3 4 5 6 7 8 9 10
Time (sec) ’
0.060
b
g 0.050
‘g 0.040 \
E E 0.030
v~ \
o
g 0.020
B \
g 0.010 \
0.000 r : . . . X ;
o 1 2 3 4 5 6 7 8 9 10
Time (sec)
0.060
c
: E 0.050 l, ‘\
g 0.040 I \
§ ‘g’ 0.030 I \
0.020 I \
g 0.010 \
0.000 T T T T T ' T
o] 1 2 3 4 5 6 7 8 9 10
Time (sec)

Fig. 4.16 Steering angle input (a), steering angle input distribution on inner front wheel
(b) and on outer front wheel (c).
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Fig. 4.20 Slip angle generation on inner and outer front tires.
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Fig. 4.21 Slip angle generation on inner and outer rear tires.
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4.3 COMBINED CORNERING AND BRAKING ANALYSIS

The bus models developed in this investigation is finally evaluated for simulation
under combined comering and braking maneuver. For this, the steer angle used is the
trapezoidal input presented in the Fig. 4.7, while identical braking moment presented in
Fig. 4.23 is applied to each wheel of the bus. The braking moment is applied slightly after
the steering input initiated and is released slightly before the end of steering input, as
shown in Fig. 4. 23.

In order to simulate responses to combined steering and braking maneuver, the
models are modified to include both longitudinal and lateral (cornering) tire forces. It is
assumed that vehicle’s initial forward speed is 20 m/s. The influence of breaking on
comering forces of tires is considered according to friction ellipse. In general, braking (or
tractive) force reduces the cornering force that can be generated at a given slip angle.
This longitudinal and lateral tire force can be termed as combined longitudinal and lateral

tire force, respectively. Finally, considering that vehicle performs large rotations about
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the vertical axis during combined cornering and braking, combined Longitudinal tire
forces, combined lateral tire forces and steering angle input on front wheels as external
loads have been applied carefully to the instantaneous position of the wheels of the finite

element Highway-Bus model as illustrated in Fig. 4.24. In order to calculate required
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Fig. 4.24 Current position of the vehicle in combined turning and braking.
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external loads, a proper four wheel mathematical model has been derived and simulated
in MATLAB with the finite element highway bus model parameters and with the
corresponding operational conditions. The simulation is performed in two phases. In the
first phase, pure cornering analysis is carried out in order to predict the relationship
between the comering force and the slip angle under free rolling conditions (i.e., in the
absence of tractive or braking effort). In the second phase combined cornering and
braking analysis is carried out. The relationship developed in the first phase between the
pure cornering force and the slip angle under free rolling conditions along with friction
ellipse is utilized in the second phase. The transient simulation of four wheel model in
MATLAB serves the rigid body performance of the candidate bus model during
combined cornering and braking. The modeling considerations for braking and the
comparison between elastic and rigid chassis performance in combined cornering and

braking is illustrated in the following sub sections.
4.3.1 Mathematical Modeling

The mathematical modeling for the first phase or pure cornering analysis is
already described in the section 4.2.1. The purpose of the first phase is to make a data
table of the relationship between the comering force and the slip angle under free rolling
conditions for each wheel. The relationship between the pure cornering force and the slip
angle under free rolling conditions helps to calculate the combined lateral tire force on
each wheel using the friction ellipse in the second phase. In order to carry out the second
phase or the combined cornering and braking analysis of the rigid bus model, the
longitudinal equation of motion (Egs. 4.8) must be considered along with lateral and yaw

equations (Eqs. 4.9 and 4.10). The trajectory of the vehicle can be determined by solving
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the differential equations, Egs. 4.11- 4.13 along with the equations of motion. The value
of steer angles of front-inner wheel and front-outer wheel d; and dy, in the equations of
motion can be calculated using Egs. 4.16 and 4.17. In the equations of motion Fx
represents the Braking or longitudinal tire force on each wheel as the braking moment, by,
is applied on each wheel. Braking forces can be calculated, using a simple approximation
that dynamic loaded radius of tire is nearly equal to the effective rolling radius of tire,

from the following relations:

b . . : :

Fx, = z 2~ ; where R, ,= dynamic radius of front-inner tire (4.36)
d_fi

Fx, =—"— ;where R, ,=dynamic radius of front-outer tire 4.37)
d_ fo
b . : . .

Fx, = R 2 ; where R, = dynamic radius of rear-inner tires (4.38)
d_ri
b . . :

Fx,, =—2— ;where R, , = dynamic radius of rear-outer tires (4.39)
d_ro

Dynamic radii of different positioned tires can be calculated from the following relations:

R, ;=—N,/k, +R,; where ky= vertical stifnness of front tire (4.40)
R, ,=—N,lk;+R, (4.41)
R, ,=—N_/k,+R,; where k, = vertical stifnness of rear tires (4.42)
R, ,=—-N_,/k, +R, (4.43)

In the Egs. 4.40-4.43, R,rand R,, is the unloaded radius of front and rear tire, respectably
and Np, Np,, Ny and N,, indicate instantaneous normal load on the front-inner tire, the
front-outer tire, the rear-inner tires and the rear-outer tires, respectively. Referring to

Figs. 4.25(a) and 4.25(b), the instantaneous normal loads on tires Ns, Ny, N,; and Ny, are
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calculated by the following relations obtained by taking moment about B, A, D and C,

respectively:
(m,+L)xa Xh ] ] i m,gt
Nyo=n;— ! Y __-wheren 7 = static load on front - inner tire = —->%
Iy Ly
N,20 (4.44)
a
meg meg b
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Fig. 4.25 Normal load on front tires (a) and rear tires (b).

(m;+L,)xa,xh

. - mg gtﬁ
N,=n,+ ;where n , = static load on front - outer tire = ———,
I by
N,<m:g (4.45)
(m —-L )Xa,xh i ) . m_gt
N, =n,———>—2;where n, =static load on rear - inner tires = UL Uy
t, ,
N, >0 (4.46)
(m —L )Xa, xh ] ) m_ot .
N,=n,,+ 2 ;where n,, = static load on rear - outer tires = ———"—g——”-,
t 1,
N, ,<mg (4.47)

The values of ng, ng,, n, and n,, can be determined by the static analysis of the vehicle

due to the gravitational weight as discussed section 2.3.1. my and m, represents the front
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and rear wheel loads, and those are calculated by the Eqgs. 4.30 and 4.31. In Egs. 4.44-
4.47, the term L, represents the longitudinal load shift from rear axle to front axle due to
the braking. Referring to Fig. 4.26, the instantaneous load transfer, L, (in kg) from rear
axle to front axle are calculated by the following relation obtained by taking moment

about the front wheel:

mg

A

na, Ir
N Q_ I h

ny \1: ¢ > * b 3-‘: FbCf
7, Lo n
Fig. 4.26 Load shift during braking.
h
L = mz& ; Where: ay is the braking deceleration (4.48)
X8

The combined lateral tire forces, Fy in the equations of motion can be determined

using the friction Ellipse method as follows:

Fy =Fy. - |1-(—22 4.49
Vi =Fy, 5. /1-( ) (4.49)
Fxmaxﬁ
Fy =Fy,  I- (e
Vo = FYa_p |1 ) (4.50)
Fxmax ,
Fx,
Fy =2xFy, , \/1—(—)‘"——)2 (4.51)
B Fxmax
Fy,, =2xFy, ,,,\/1 (e (4.52);
- Fxmax
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where Fy, is the pure lateral tire force at instantaneous slip angle generated on a tire, and
Fxmax is possible maximum braking force that can be generated on each wheel. Possible

maximum braking force, Fxmax can be calculated by the following relations:

Fxmax ; = UXN, (4.53)
Fxmax , = XN, (4.54)
Fxmax, = uxN , (4.55)
Fxmax,, = UxXN,, (4.56);

where p is the co-efficient of road adhesion. The value of p is 0.95 as the asphalt and
concrete (dry) type of road is considered in this analysis. The pure lateral tire force, Fy,
at instantaneous slip angle generated on a tire can be calculated by interpolating pure
lateral force versus slip angle data table (constructed from the first phase simulation, i.e.

pure cornering analysis). Instantaneous slip angle can be calculated with the help of Egs.

4.32-4.35.
4.3.2 Transient Response of the Bus with Rigid and Elastic Body

The applied longitudinal tire forces or breaking forces, computed from the
combined cornering and braking simulation of the four wheels rigid body model are
given in Fig. 4.27, and the corresponding longitudinal slips on each side of axle for
flexible body model are presented in Fig. 4.28. Results show that inner rear wheel tires
develop less than the half of the longitudinal slip of inner front wheel tire. The same trend
is found between outer rear wheel tires and outer front wheel tire. This is expected since
there are two tires on each side of the rear axle, and vertical loads on rear tires are greater
than that of front tire. Because of two tires, the longitudinal tire stiffness on each side of

the rear axle is just double compare to that on each side of front axle. Moreover, slip
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decreases with the increase of vertical load as frictional force increases with the increases
of vertical load. It should be noted that load shift for the flexible body as seen in Figs.
4.11 and 4.12, between inner and outer wheel tire is very little; consequently, there is
almost no difference between the inner and outer tire slip responses of same axle. The
comering force developed by the tires on each side of axles under combined braking and
steering maneuver is shown in Fig. 4.29. These results can be readily compared with
those of pure cornering under same steering input presented earlier in Fig. 4.9. The
results show that the available cornering force under the braking effort reduces
significantly as expected. Similar trend can also be observed from the time history slip
angle response at each tire presented in Figs. 4.30 and 4.31. These results further show a
comparison of slip angle developed by the tires of elastic body and rigid body models.
Similar to pure cornering, the noticeable deviation is only observed for outer wheels,
where flexible body model exhibits larger values. However, the difference is continually
decreasing throughout the application of brake. Again the results further reveal that the
flexible body model exhibits very little larger values for inner tires compare to the rigid
body model, which is opposite to the slip angle time response for pure cornering.

Various vehicle responses to combined braking and steering maneuver are next
presented for both rigid body model and flexible body model in this section. Figs. 4.32(a)
and 4.32(b) show longitudinal velocities and longitudinal decelerations of the centers of
gravity of the bus model versions. It is necessary to mention that rolling resistance of

wheels is not considered in this example, and it is evident from the results presented in

Fig. 4.32.
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Figs. 4.33(a)-(c) show lateral velocities, lateral decelerations and yaw velocities
of the centers of gravity of the bus model versions, respectively. These results can be
readily compared with those obtained in Fig. 4.10 for pure cornering in order to examine
the braking effort. These results presented in Fig. 4.33 show that both the rigid body and
flexible body models predict identical responses to combined braking and steering
maneuver.

The trajectory of the center of gravity for the given combined maneuver for the
two models is shown in Fig. 4.34. As the result shows, under combined maneuver, the
flexible body model tends to follow a tighter curve than that of the rigid body. This when
compared to pure cornering trajectory presented in Fig. 4.15 clearly show the opposite
trend. Since the average slip angle of front tires for the flexible body model is little larger
than that for rigid body model, it apparently seems rigid body model should follow a
tighter curve than that of the flexible body model. However, the fact is that load shift
between inner and outer wheels in case of rigid body is significant, whereas in case of
flexible body, load shift is very small as shown in Figs. 4.11 and 4.12. As a result, the
braking force shown in Fig. 4.27 can be regarded as asymmetric braking in case of rigid
body model, whereas it can bé regarded as symmetric braking in case of flexible body

model. The asymmetric braking causes the rigid body model moves outward.
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Fig. 4.27 Braking forces at different tires.

141



-~ - \ f
2 e [NNer Front Tire
-§' — Inner Rear Tires
N 45 \ l
-2 L l
-2.5
"3 T T T
2 4 6 10
Time [sec]
0.5
0 b‘\\ /i
) \\ / I
< - v f
&, —Quter Front Tire
= — Quter Rear Tires
N 45 \ I
_2 \ j
-2.5
'3 T T
2 4 8 10
Time [sec]

Fig. 4.28 Longitudinal slip of tires of the flexible body model.

142




Cornering Force on inner Front Tire {N)

Time(Sec)

143

Fig. 4.29 Change of developed cornering forces at different tires.
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Fig. 4.30 Slip angle generation on inner and outer front tires.
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Fig. 4.31 Slip angle generation on inner and outer rear tires.
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Fig. 4.34 Trajectory of the bus.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

The four-wheel rigid body model developed for this investigation is capable of
simulating longitudinal, lateral and yaw responses to various steering and braking inputs.
The proposed FEM model, on the other hand, can be used to predict very wide range of
responses in 3-D environment for a wide range of single or combined inputs. The present
limited study has shown that the influence of body flexibility has little effect on the
responses to the inputs considered. It, however, provides a powerful tool for examining
combined integrity of structural and dynamic performances.

The following important conclusions can be drawn from the analytical studies
undertaken in this research:

1. The developed finite element bus model is effective in the dynamic simulations of its
motions as it is validated by static weight balance check and frequency analysis.
Sprung mass and unsprung mass mode shapes are successfully uncoupled. The found
rolling, pitch and bounce frequency of the sprung mass are 0.73 Hz, 1.1 Hz and 1.3
Hz, respectively; whereas front and rear unsprung bounce frequencies are 9.1 Hz and
9.3 Hz, respectively.

2. A new definition is suggested for longitudinal and lateral slips for the finite element
tire model based on the tire contact length, the value of which directly varies with
vertical tire load, and the proposed definition is justified by comparing the elastic

-

body responses with the rigid body responses.
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. Excitation frequency and vehicle dynamics studies are typically limited to 20 Hz.
Thus, employing Mode Superposition method drastically reduces the solution time
even though large degrees of freedom bus model is used.

. The methodology applied to identify the low frequency range i.e. the considered low
frequency range of the applied finite element bus model for employing mode
superposition method is well adequate to capture the response of the bus with regards
‘to the given excitations, and this is verified by comparing the responses in ride
analysis with mode superposition method and full method.

. Attached ground spring with tire in ride analysis provides accurate response.
Moreover ground spring provide effective means to give the road excitations on the
tire ground contact patch.

. The mathematical model developed for four-wheel rigid body vehicle is well capable
to capture the responses to combined slip conditions (braking-in-a-turn) as well as
pure slip conditions, and good correlation is found between the responses of rigid
body bus model and elastic body bus model in handling and longitudinal studies.

. The application of friction ellipse tire model over cosine version of magic formula tire
model is found to be extremely useful and efficient for vehicle handling and
longitudinal performance analysis as magic formula tire model requires the
determination of increased number of parameters, around 42. On the contrary, friction
ellipse tire model requires only a few numbers of experimental data sets. Moreover,
the determination of increased number of parameters raises the total percentage of

€Irors.
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8. In case of pure turning and braking-in-a-turn analyses, the developed rigid body and
elastic body models are found to predict almost same results for the responses of the
center of gravity to the inputs considered.

9. For the ride analysis, both rigid and flexible models predict same responses, where
there is little or no effect of body flexibility. The elastic model is, however, capable of

simulating three dimensional responses under vertical input.

5.2 FUTURE WORK

Although this thesis has taken an important step towards the non-conventional
efficient application of the finite element method for three dimensional dynamic analysis
of road vehicles, it only presents limited results and analysis needed to explore its full
potential. Significant more work may be identified as follows that will enhance the model
and its usefulness for analysis and simulation of vehicle dynamics:

1. To correlate the finite element bus model in terms of structural stiffness and mass
distribution with a reél bus in order to obtain a more accurate set of results. This can
be accomplished by comparing finite element static analysis results with the
experimental results obtained for a real bus.

2. To improve the finite element bus model, namely inclusion of non-linear damper
characteristics in suspension and yaw frequency of tire.

3. To improve the four-wheel rigid body bus model, namely inclusion of linear or
nonlinear suspension effects, roll motion, nonlinear vertical tire stiffness, effective
rolling radius of tire, rolling resistance, and road roughness in pure turning and

combined turning and braking analyses.
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4. To validate the four-wheel rigid body and finite element bus model using time
transient road test data for pure turning and combined turning and braking analyses.

5. To explore the full potential of the four-wheel rigid body and finite element bus
model, p-split cornering, wheel locking and asymmetric braking can also be
investigated and further can be checked against the time transient experimental data

sets.
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