Real-Time Animation of Walking and Running

using Inverse Kinematics

Ying Ying She

A Thesis
in

The Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of Master of

Computer Science at Concordia University

Montreal, Quebec; Canada

March 2006

© Ying Ying She

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14335-5
Our file Notre référence
ISBN: 0-494-14335-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Real-Time Animation of Walking and Running using Inverse Kinematics

Ying Ying She

Computer animation technology is a rapidly developing topic in computer science.
Realistic human motion, such as walking and running, is an important part of computer
animation. However, the simulation of walking and running in articulated human figure is
difficult, especially in real time simulation. Fortunately, recently, Inverse kinematics

algorithms provide an approach to simulate human motion in articulated figures.

In this thesis, I analyzed Jacobian based Inverse Kinematics algorithms that allow
theses methods to be used as an efficient real-time inverse kinematics simulator. I
describe the implementation of a human motion simulator, which mainly focuses on
using inverse kinematics algorithm to simulate (wounded) walking and (wounded)
running motion in an articulated body. With the assistance of inverse kinematics
algorithms, the animator merely gives the desired location of certain chosen points on the
body and relies on the algorithm to automatically compute a set of joint angles that
satisfy the end-effectors constraints. This kinematics simulation approach can be used for
real time animation in articulated figure without any motion capture data. In addition, the
thesis shows that it is also possible to simulate human animation by using purely

mathematical fechniques without physical considerations.

il

Acknowledgement

I would like to take this opportunity to give grateful thanks to my supervisor, Professor
Peter Grogono, for his supports and guidance throughout this research project. This work

would not have been completed without his concise instructions and flexible supervision.

I would also like to express appreciation to my husband Jian Lin for his endless support
and patience; my parents for setting high expectations and being consistently serious

about my education.

iv

Contents

LIST OF FIGUREScccciriireinrnsaessnscsaissamssassssisssssarssssssiossssssssatsssasssnsssassnssssssasssaseses VIII
LIST OF TABLESccuvcrinntiiessesssnssnossnsensssasssssosssssnssasssrosnsosssssasssssssssssassnsersessssssassnssons X
CHAPTER 1 INTRODUCTION ..cciveicinescrnrcsrsessarssassssassons 1
1.1 COMPUTER ANIMATIONccvirveieniermteinarersesessessesionsesasseessasssensessessessessensersesssess 1

1.2 MOTIVATIONootiuirtiieerienuernaresseasesensesassessensessssessessssansessessessessessesassesessensersessenes 2

1.3 THESIS ORGANIZATIONccoieiirreruenierueressesersueessassesassensensessensessessesessesessessessessessens 3
CHAPTER 2 BACKGROUND AND RELATED WORKcc.c.. 4
2.1 KINEMATICS AND DYNAMICScvevinrerinerieerierenserertnissnnremsresesssssesessssesessssaserenens 4

2.2 FORWARD KINEMATICS ANIMATIONcccotvrrernireriereereeesensenssenssssnseesessessessensnes 5

2.3 INVERSE KINEMATICS ANIMATIONcovieveirinrerinrerernresenseeesesseseesenesessssssesssssnnns 6

2.4 ANIMATION DATA PROCESSINGcveoiviriertrianisieranrereresessnssesssensssssssesesssssssesensones 7
2.4.1 Animation Data Generation..........cccevuvvercerriieisieerinnneseenreneerseienressensssensenns 7

2.4.2 Motion Capture Data Format..........cccccvvvvvevenenireniveeireennnens eerevnaeertessarasenanes 9
CHAPTER 3 MODELING ...cccecvuinncssanssncssarsssssssssassasssssssssnsassassasessassansonsssssssesssssasasss 11
3.1 ARTICULATED HUMAN BODY ...cctviiiiinirirniiiniicieinnenienrsenesessssesersossensonseenes 11

3.2 END EFFECTORS AND TARGETSc.veerieerrieraeetinenrnsesessessiresenseseseeessossssssesesssnssnes 14
CHAPTER 4 INVERSE KINEMATICS ALGORITHMS.......cccvccveeenrresansaessesaesenses 17
4.1 PROBLEMS WITH FORWARD KINEMATICS....c.ccvevtrievrrenrerrensesnasseesenresiseeesessenses 17

4.2 OVERVIEW OF INVERSE KINEMATICS SOLUTIONScccveruernrierreereererererersessneerneenne 18

4.3 THE JACOBIAN MATRIX ..cocveriirririeienieeiiniearietassesnesensesntesessssssessassesssensensessesssenes 19
4.3.1 End Effectors Jacobian MatriXccccevveevireennnineneeeveieereereerseresesssreons 21
4.3.2 Inverse of Jacobian Matrix and Singularity...........cccccervverevieveereeinreenenenne. 23

4.4 INVERSE KINEMATICS ALGORITHMScueetriereeereereeerneneeresenessssesesessssssensesessssessens 24
4.4.1 Jacobian Transpose Methodccccvvivriiiiiiiiiiccreicers e 25
4.4.2 Pseudoinverse Method.................. ettt et e taa et et a e e rreenrneeaaennbanas 26
4.4.3 Damped Least Squares Methodcccccovveivviveiiiiineeciicceesreeeees 27
4.4.4 Singular Value Decomposition.........ccovcvviirireerieenienneevneniniesrereinssesesnees 27
4.4.5 Selectively Damped Least Squares Methodcovveveveviiiiiivcencvinienine 28

CHAPTER 5 IMPLEMENTATION OF INVERSE KINEMATICS ALGORITHMS

..................... oees 31
5.1 MODULESootitiitiiiniinistitieeisitsiiescreee et sestse e sesessesses e seesseneasassassassesssssnasensen 31
5.1.1 Control MOdULE.........cccoveireriinriieiiirercieseeee st ee e srssressereenees 31

5.1.2 Calculation MOQUIE ..ottt sssrssasenes 35

5.1.3 Animation Module.......c.cccovvnininiinnininininiieneceenenns iesriesesnebersseasnne 36

5.2 ANIMATION PRACTICINGcivietretrerreeteereisrenresresresseessessseesssensesssesssesssessseesesenns 37
5.2.1 Human Walking or Running Cyclecoceevvvvennnrrerneniecnriseressinsnnnnns 37

5.2.2 Sinusoidal Curve ... 39

5.2.3 Wounded Walking and Runningcccccvveeveeeinveevnnnercnennecnereneenne 41

5.3 COMPARISON OF INVERSE KINEMATICS ALGORITHMS IN WALKING AND RUNNING
ANIMATION ..ooiiivirrerrietrirteeeiisiosiesiereeeeteestsesssesasnenesesaesssssessesssessssssssesssssssssssssseseess 42

vi

CHAPTER 6 IMPLEMENTATION.....cccunnerenrsnsnssesasisassasssssssessssesssaosesasasssssasssassnons 46

6.1 CODING ...ceoeviieicieeete e ccteeeceee e ever e ebe e e sber s ebe e s srs e e e sbtesesabeseenteeissesesareesssnnteeens 46
6.1.1 Coding for Rigid BodYccccccourimriiuiininiiniriiiiineneeisse e e ennenens 46

6.1.1.1 JOINE ClASS....ccirriorirriniiriniirieitinresresressiseesiesresenereeseeseessassessessessessenes 47

6.1.1.2 TTEE ClaSScoirirnririinineieeitinrinresesesessesteessessseessaessesesseessessassesssenns 49

6.1.2 Coding for Inverse Kinematics Algorithms...........ccccveveevieveceeiieviesiinninen. 50

6.1.2.1 Jacobian (Matrix) Class........ccecvvverveiierrrireeierirnrnererssnesesesieessersesiaenns 51

6.2 USER INTERFACE.....ccoitriinriniininiiiintitaeeesieseescssnsnsesssessessessessensssensesensessensonessones 52
CHAPTER 7 CONCLUSION AND FUTURE WORK......ccoccvveninrennsansasssessassasnsonne 57
7.1 SUMMARY ...ooiitiiiiricniitinieireeeetensestesstseeseaseessessessessessasssessassesssssassessessssssesseessens 57

7.2 CONCLUSIONcioteiuerenrinnerrentsirssesseeesessessessesessensessssessissessensessssesssessessensesessenns 58

7.3 FUTURE WORKoicviriiiiiriiireeaneriisistneensesssesnnrsssssisessssessssesssessssessssessessssssssseonns 59
REFERENCEScciininiinniinnnmsnessisncssisssesssssisssssssiossisassissssssssrsssassasssssssssssasssssssssassseses 62

vii

Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.

Figure 4.
Figure 4.
Figure 5.
Figure §.
Figure 5.
Figure 5.
Figure 5.

Figure §.

List of Figures

1 Articulated human body, with 4 end-effectors and tree structure 13
2 Tree structure of the articulated human body.......c.ccoocvevvvciciiccciiiiecen, 13
3 Tree structures of left/ right armsocevvviierciiniinne e 14
4 Tree structures of 1eft/ right 1€8Socovevvecrevnirieneerrrecrr e, 14
5 8INGIE JOINE ..ottt 14
6 Linear chain of links with 1 DOF rotational joints...........cccceevveveruervnrierinrinnen, 14
7 Tree structure links with 1 DOF rotational joints..........cccecvvveveninienrecrnnnne. 15
8 Targets for TUNMING.......ccccevuivinieiircircer e 16
9 Targets for walking..........cccevirvevinernncicnnenieceneecnren e 16
1 a 2-D arm with rotation JOINEScccoerirvervreniniirirnenne e sreveenes 20
2 An example of singular configuration...........ceecevvvivriveerneiieenrereneireeeceaneen, 24
1 Control structure of the inverse kinematics SYStem..........cocevvrerverirenrenrennnne. 32
2 Step parameters and hand parameterscccoccveverveerienenieiecsrecreereee e 34
3 An example of data transfer between modules........c.cocovvveerevvvvverinenrireeinnenn, 36
4 One human walking CyClecccvuviiniicniiinicniiincceeeseecscseeeneed e 38
5 One human running CYCle.........ccvireinerrrrneeeirnesrnrenseienssesesssesessessessereenes 38
6 An example of sINuS0Idal CUIVEcccccvrverrrerirninirecineseeese e 39

viii

Figure 5. 7 Wounded WalKing...........cccviiriiieninieninininiiieeieenennsessene e sesessessesseesnenns 41

Figure 5. 8 Wounded TUNNINGcocceviiiiiniiniiniereiicene st neeneisirene s esse e saeesaesesresnes 41

Figure 5. 9 Distance (d) between end effector and target........c...ccccovveevvvvverecrveeieeiinennn, 43

Figure 5. 10 Reachable target positions and unreachable target positions in walking cycle

... 44
Figure 6. 1 An example interface for this Systemccccovvevvevenerecieinecine e, 52
Figure 6. 2 Method panel..........c.ccvviiiiieiiininicsesest et 53
Figure 6. 3 MOtiOn PAnel..........ccocevurriiiiririniiiereecenceeseesreevireereere st sresne s esseneessentansens 53
F igu_re 6. 4 Motion control paneloccevivieiiininieerenicreeer e 53
FIgure 6. 5 VIEW PANEL........ccoieviiriiiiiiiiiieescreee ettt ettt erssne e e e srens 54
Figure 6. 6 Object transformation panel............ccocevevrrceieieienrcreniicecseceeereensenes 54
Figure 6. 7 Speed contrpl PANEL .ttt et eae s 55
Figure 6. 8 Target position control panel...........c.ooevevvireeiieieniininiiceeireeeee v 55
Figure 6. 9 Recording Panel.........ccoueeevvinvennnnnicininnnnrneneneseeosessseesescssssssessesesenes 56
FIigure 6. 10 BUIONS......ccouiiriiiiirtintceiennienteiesieesensteseesaeseesaesssesessessnesssesseossrossessesssonns 56

ix

List of Tables

Table 2. 1 Motion capture file formats and references [MERE 02, 3]

...............................

Chapter 1

Introduction

Computer animation technology is a rapidly developing topic in computer science. It has
been used in video games, feature movies, digital simulation industries. Research on
articulated models is well developed in the fields of robotics and mechanical engineering.
Computer graphics researchers simulate arbitrarily linked models and control them in
arbitrarily complex environments. Inverse kinematics algorithms play a key role in the
computer animation and simulation of articulated figures. This thesis presents an
approach that uses inverse kinematics algorithms for computer animation. Before further
discussion of the motivation of this thesis, I will first provide a brief overview of methods

for creating human figure animations.

1.1 Computer Animation

There are three widely used methods to simulate feature animation: key frame, motion

capture, and kinematics simulation.

The key frame technique is the oldest technique for computer animation and it was
first used for 2D figure animation. It uses a mixture of pre-recorded or pre-scripted

sequences that are blended together to create the illusion of continuous character motion.

This technique provides good results for making animation films. With sufficient study of
animated objects and the environments in which they interact, animators can create

convincing animation sequences in films using the key frame animation technique.

The motion capture technique was first used in the TV and film industry. Later, the
game industry embraced the technology as a routine method for animating figure
characters. Nowadays, almost all games employ Motion Capture technology to drive

figure animation.

Kinematics simulation technology is a potentially powerful tool to create figure
animation. It has developed very rapidly in recent years. Various approaches based on
dynamics/kinematics algorithms have been adopted in computer animation. Compared
with key frame and motion capture methods, kinematics/dynamics simulation has the

advantage of creating animation either off-line or in real time.

1.2 Motivation

Presently, animators use these three kinds of animation technologies in game and real-
time figure animation. There are problems associated with key frame animation and
motion capture animation. Key frame animation provides a fixed sequence of animation;
any interaction, even for one frame of the whole sequence, will lead to incorrect visual
results. There are problem with motion capture data, too. For example, applying motion
data captured from one person to a virtual person of é different size does not work well. If
a transformation (rotation angle) applied to one body is applied to another body with

different length of limb, the end position for the limb will be different. As a result, real-

time animation technology based on kinematics/dynamics simulation is better than the

other two animation technologies.

Realistic human motion is an important part of computer animation. Walking and
running is a seemingly simple behavior for people. However, the simulation of walking
and running is difficult, especially in real time simulation. The inherent instability of
walking makes it one of the hardest motions to model, especially when the conditions

underfoot are unpredictable.

In this thesis, I describe the implementation of a human motion simulator, which
mainly focuses on using inverse kinematics (IK) algorithm to simulate walking and
running motion in an articulated body. This kinematics simulation approach can be used
for real time animation. With the assistance of inverse kinematics algorithms, the
animator merely gives the desired location of certain chosen points on the body and relies
on the algorithm to automatically compute a set of joint angles that satisfy the end-

effectors constraints.

1.3 Thesis Organization

The remainder of this thesis is structured as follow. After reviewing previous related
work and background information in Chapter 2, I discuss the modeling in Chapter 3.
Chapter 4 describes four inverse kinematics algorithms used in this thesis. Chapter S
demonstrates the practicing system of inverse kinematics algorithms discussed in Chapter
4. Chapter 6 provides the implementation detail of this simulation system. Finally, the

Chapter 7 presents conclusion and future work.

Chapter 2
Background and Related Work

2.1 Kinematics and Dynamics

Kinematics is the science of motion [JOCH 00]. Kinematics is restricted to a pure
geometrical description of motion by means of position, orientation, velocity, and
acceleration [JOCH 00]. Kinematics does not consider physical laws of the real world.
Kinematics methods include inverse kinematics and forward kinematics. In computer
animation, people use kinematics to simulate the motion of real world objects. There are
several forward and inverse kinematics methods, originally derived for robotics

applications.

Traditional computer animation, using professional animators to manually create
character or skeleton animation, required large amounts of processing time to complete.
Moreover, with the application of computer animation to different fields, people
demanded more detail and 3D characters that were more controllable and better looking.
Obviously, the conventional way of making 3D animation was inadequate. Forward and
inverse kinematics techniques have become alternative techniques for speeding up 3D

animation processing.

Dynamics is a more detailed theory of motion that takes into account the effect of

force on bodies. In contrast to kinematics, it takes into account physical laws. Dynamics

can be, and, in fact, is used as a theoretical foundation for simulation and, in particular,
for graphical simulation. Forward dynamics indirectly controls the motion of object, and
requires large amounts of calculation. Inverse dynamics can be used to compute torque
and force problems. However, there is a large amount of computation required to solve
inverse force and torque problems and it is therefore difficult to create fast simulations.
Kinematics techniques can be used to simulate some dynamic problem when forces and
torques do not need to be calculated. In this way, kinematics can be used to save time in

3D animation processing.

2.2 Forward Kinematics Animation

Usually, we use matrices to describe the geometry of world space or local space.
Forward kinematics refers to the process of computing world matrices based on the
rotation angles and /or translations of joints. Chapter 3 provides a more detailed

description of joints.

Forward kinematics explicitly sets the position and orientation of each segment at a
specific frame time by specifying the joint angles for each joint [GE 00, 4]. In order to
create a pose for an articulated body, this means directly setting the rotation angles and
orientation at selected joints and applying a global translation at the root joint. To avoid
doing the complete calculation in each frame, we can specify a series of keyframes for
different poses, and calculate joint parameters between keyframes. The articulated body

can then be animated with a reasonable amount of computation.

Linear interpolation between keyframes can lead to jerky animation. Higher order
interpolation methods, such as piecewise splines, can provide continuous velocity and
acceleration, and hence smoother translation between and through keyframes. While
forward kinematics combined with a simple interpolation scheme may suffice for
animating simple objects, it is not really up to the task of animating articulated figures
[WELM 93, 8]. The reason is the structure of articulated figures. Usually, the articulated
figure is constructed by simple objects. The animation of the whole articulated figure is
animations of every simple object in the articulated body. The interpolation scheme is a
way to indirectly control the animation of simple objects in articulated body by
specifying rotation angles. However, the rotation of every simple object in the articulated
body has interrelationship. We can’t simply specify each simple object’s animation to

control the animation of the whole articulated figure.

2.3 Inverse Kinematics Animation

Inverse kinematics is an attractive alternative to forward kinematics, since animators can
specify the position of end effectors directly, using inverse kinematics algorithms to
calculate rotation angles at specific joints. The inverse kinematics technique was first
studied in robotics, but has recently been used in computer animation as well. In this
approach, an inverse kinematics problem is cast either into a system of nonlinear
equations or into an optimization problem which can be solved using an iterative
numerical algorithm [TOLA 00, 2]. Zhao and Badly [ZHAO, 94] formulated the inverse
kinematics problem of a human figure as a constrained nonlinear optimization problem.

Rose [ROSE, 96] extends this formulation to generate seamless and dynamically

plausible transitions between motion segments by combining a hierarchical curve fitting
technique with an inverse kinematics solver. In current games, for example, inverse
kinematics is mostly used in simple ways, such as controlling the player’s direction of

gaze, aiming guns, etc.

Inverse kinematics provides better higher-level control over joint hierarchies than
simple forward kinematics. For example, moving the limbs of a skeleton becomes much
more manageable [WELM 93, 9]. Animators combined inverse kinematics and motion
capture data for articulated body applications. Keith Grochow, Steven L. Martin, Aaron
Hertzmann, and Zoran Popovic [GROC 04] present an inverse kinematics system based
on a probability model of human poses. Given a set of arbitrary algebraic constraints,
their system can produce the most likely pose satisfﬁng those constraints, in real-time.
Inverse kinematics theory also can be used to determine which objects in the environment
can be reached. Deepak Tolani, Ambarish Goswami, and Norman I. Badler [TOLA 00, 1]
use a combination of numerical and analytical inverse kinematics methods to solve a

variety of problems including position, orientation, and aiming constraints.

2.4 Animation Data Processing

2.4.1 Animation Data Generation

Due to the popularity of motion capture system, many researchers have started to work
on topics such as editing and synthesizing motions using motion capture data [HO 05,

163]. There are two general ways of obtaining animation data for animation characters.

The first way is to obtain data by recording the motion of a live subject. Motion capture
is an animation technique that uses sensors attached to a real actor’s body; as the real
actor moves, the sensors send the data to the computer so that the computer character
mimics the movements and create corresponding Motion capture data. The second way is
to simulate the motion by using some techniques, such as key-framing, inverse
kinematics or inverse dynamics algorithms. The first technique usually has less
computational expense than the second. However, one of the main disadvantages in using
Motion capture data is the problem of retargeting. The Motion capture data retargeting is
a process of mapping Motion capture data to fit onto a new 3D object with accurate
geometry; in general, the new 3D object does not have the same geometric features as the
Motion capture data which is derived from the old 3D object. Simply mapping Motion
capture data to the new 3D object can cause poor animation performance. In order to
solve the retargeting problem, there are some new approaches which rescale Motion
capture data for the new 3D object in order to let the new 3D object have same animation
aspects as the source 3D object. The general idea of these two new approaches is to
combine these two techniques. First, researchers loaded the motion capture data and then
used simulation techniques to adjust the data to the dimensions of the new object. And
then, the experimenters mapped the adjusted motion data onto the new objects. Inverse

kinematics algorithms are the most useful simulation technique in animation.

2.4.2 Motion Capture Data Format

Motion capture data is stored in files with formats such as BVH, C3D, CSM, and
MOT. Most of the Motion capture data format data is represented in a hierarchical

manner, and requires matrix calculations to demonstrate the motion decoding.

For example, one of the popular Motion capture data format is the BVH file format
which was origiﬁally developed by Biovisioﬁ, a motion capture services company, as a
way to provide motion capture data to their customers. The name BVH stands for
BioVision Hierarchical data. It consists of two parts; the first part describes the body
hierarchy and initial pose information, and the second part is motion section which
describes the channel data for each frame. In each bone definition, BVH file format
provides information such as bone name, offset value (DOFs), position relationship
respect to parent bone. And for bones serving as end effectors, BVH format uses the

keyword “end Site” to identify them.

File Extension | Associated Company / File Format Reference
Description
ASC Ascension NO LINK
ASF & AMC Acclaim http:/fwww.darwin3d.com/gamedev/acclaim.zip
ASK & SDL BioVision/Alias NO LINK .
BVA & BVH | BioVision hitp:/fwww.biovision.com/bvh.himl
BRD LambSoft Magnetic Format http:/fwww.des.shef.ac,uk/
~mikem/fileformats/brd.himl
C3D Biomechanics, Animation and http:/fwww.c3d.org/c3d_format. htm
Gait Analysis
CsMm 3D Studio Max, Character http:/fwww.dcs.shef ac,uk/
Studio ~mikem/fileformats/csm.html|
DAT Polhemous NO LINK
GTR,HTR & | Motion Analysis http:/fwww.cs. wisc.edu/graphics/Courses/cs-
TRC 838-1999/Jeff/ {HTR.htm], TRC htm!}
MOT & SKL Acclaim-Motion Analysis (Under Development -
http://www.cs.wisc.edu/graphics/Courses/cs-
838-1999/Jeff/SKL-MOT html)

Table 2. 1 Motion capture file formats and references [MERE 02, 3]

In this thesis, I use a tree hierarchy similar to the Motion capture data format to
represent the human structure of bones. The configuration of each joint (bone) is similar
to the bone configuration in BVH format. In addition, in order to perform inverse
kinematics algorithms, some additional joints, tree configurations, and operations are
defined in the thesis. I will introduce these in the Chapter 3. In addition, all animation
data used in this thesis was obtained from real-time inverse kinematics calculations, not
from a Motion capture device. The animation data processing required for this thesis is

described in Chapter 4.

10

Chapter 3
Modeling

‘3.1 Articulated Human Body

An articulated body consists of a set of rigid objects, called links, joined together by
joints. Simple kinds of joints include revolute (rotational) and prismatic (translational)
joints. It is also possible to work with more general types of joints, and thereby simulate
articulated objects. The rotation joint is the most common type of joint, and its

configuration is described by a scalar angle value.

In this thesis, I simulated a articulated human body as a set of links and joints. Each
joint performs rotation with one degree bf freedom (1 DOF). The human skeleton is
represented as an array of nodes. Each node represents a joint formed by a pair of links
representing bones. The whole body is modeled with n joints, and the scalar

0,(1<j<n) is called a “joint angle”. The whole body’s complete configuration for

inverse kinematics animation is a set of scalars g,,...,6h giving the angular position at

each joint.
The main properties of each Node are:
e Size

e Joint or End Effector

11

¢ Global Position and Rotation Axis

e Parent node, Left child node and Right sibling node

¢ Rotation angle , Minimum and Maximum rotation angles in Radian
e Joint sequence number

o Attachment position

All of the nodes are arranged in a tree structure. The root of the tree is a node close
to the hip, which we consider to be the centre of the body for the purposes of animation.
The tree structure sets up an explicit hierarchy. In the tree structure, the parent of a node
is the node which is attached to that node and will cause that node to move if it moves.
The only node which does not have a parent is the root node. The root node is not really a
node in a physical sense but rather it is used as a convenient way of moving the entire

skeleton with a single translation or rotation.

The advantage of using a tree hierarchy to represent the skeleton is that it is easy to
apply joint limits to prevent unfeasible motion of the skeleton. In addition, based on the
tree structure, we can explicitly get the parent or child node of each node. We can also
use the tree structure to obtain the Jacobian matrix, J, which describes the motion. Since
the inverse kinematics algorithms should loop over the whole body to find the
corresponding change in rotation angle at each joint, the tree structure is a perfect match

for the calculation process of the inverse kinematics algorithms.

12

v

Root

v

End Effector < End Effector

End Effector <« » End Effector

Figure 3. 1 Articulated human body, with 4 end-effectors and tree structure

/ Head

Neck

Leftarm... ...
Root /

Waist Chest

Hip

Hip

/ Left Hip Left leg
\

Right Hip Right leg

Figure 3. 2 Tree structure of the articulated human body

13

L/R shoulder L/R upper arm L/R lower arm L/R hand

Figure 3. 3 Tree structures of left/ right arms

L/R hip L/R upper leg L/R lower leg L/R feet

Figure 3. 4 Tree structures of left/ right legs

3.2 End Effectors and Targets

The joint (bone) at the leaf end of a chain of links is called an “end effector”. I set the end
effector as a joint with position and orientation. In order to use the inverse kinematics

algorithm, I defined left hand, right hand, left foot, and right foot as end effectors.

S

Figure 3. 5 Single joint

/ End Effector
LRt € €9 €D Leaf D

Figure 3. 6 Linear chain of links with 1 DOF rotational joints

14

e Leaf 2
e S22 D
& _Leaf 2
& S22 S Leaf 2D

End Effector

Figure 3. 7 Tree structure links with 1 DOF rotational joints

Also, there are four targets corresponding to these four effectors when we calculate
the movement in 3D space. The animation of the articulated body is controlled by targets’
positions. Usually, in Jacobian inverse kinematics algorithms, end effectors are tracking
targets " i)ésitions. I used two ways to control the Jacobian formulation. The first way tries
to move targets towards the cnd effectors; the second way tries to move end effectors

towards the targets’ positions.

If there are k end effectors, there are k targets. The positions of k end effectors are
denoted as a column vectors = (s,,...,sk)T , where s, is the position of ith end effector.
Also, the k targets are denoted as a column vector? = (¢,,...,£,) , Where ¢, is the position

of the ith target position. Our model uses 4 end effectors and 4 targets for the human

body.

15

Figure 3. 8 Targets for running

Figure 3. 9 Targets for walking

16

Chapter 4

Inverse Kinematics Algorithms

4.1 Problems with Forward Kinematics

In computer-generated films, most simplified characters are represented by skeletons
structure in order to be manipulated motion by kinematics theories. Usually, skeleton
structure of these characters are animated by forward kinematics using data which is
either captured from live performers or interpolated from keys designed by animators.

See Chapter 2 for definition of forward kinematics.

The problem with forward kinematics is that it is time consuming and difficult t/o
control. Forward kinematics gives user absolute control on the articulated body; however,
it can be time-consuming if every movement requires that user should select and rotate
multiple joints. Usually, forward kinematics can control the position of each segment
only indirectly by specifying the joint angles for each joint, the result is unpredictable
behavior of the animated skeleton. In contrast, inverse kinematics can directly specify the
position of end effectors and can use inverse kinematics algorithms to calculate the

rotation angle of each joint.

In symbols, we can express Forward Kinematics by the equation P = f(f) and

Inverse Kinematics by the equation 8= f'(P) .

17

4.2 Overview of Inverse Kinematics Solutions

For inverse kinematics (IK) solutions, f(f)may be relatively easy to evaluate while

f7'(P) usually isn’t. There may be several solutions for @ , or there may be no solution.

As a result, there are many different approaches to solving IK problems. General
solutions of inverse kinematics are usually either analytical methods or numerical

methods.

Analytical methods use mathematical techniques to obtain an exact solution by
directly inverting the forward kinematics equations. Analytical solvers provide explicit
solution to calculate the generalized coordinates from the position information [HO 05,
163]. Numerical methods use approximation and iteration to converge on a solution; they
tend to be more expensive, but are far more general purpose. For complex systems,
hybrid methods that combine analytical and numerical techniques often work best.
Numerical solvers linearize the relationship of the generalized coordinates and the 3D
coordinates of the end effectors around the current posture to obtain the IK solutions for
new 3D coordinates of the end effectors close to the current position / orientation [HO 05,
164]. In this chapter, we discuss numerical inverse kinematics technique based on

Jacobian matrix algorithms.

18

4.3 The Jacobian Matrix

In this thesis, we use closed-form solutions to solve inverse kinematics problems. The
‘Jacobian Matrix can provide a linear approximation to the function that we have to iterate
the process. So we can assume a linear relationship between joints movement and end
effectors movement based on the movement of end effectors. So, for one end effector, we
can have one linear equation for all the links that linked to the end effector. For an
articulated rigid body, the best method may be to convert the system of linear equations
into a matrix equation, and then apply matrix manipulation operations to solve this
equation. Consequently, using the Jacobian matrix is an effective way to solve inverse

kinematics problems.

A Jacobian Matrix J is a vector derivative with respect to another vector. If we have
f(%), a vector function of a vector argument, the Jacobian is a matrix of partial derivatives

for each combination of components of the vectors. The Jacobian is usually written as

J(, x).

o 9 9
o, ox, = ox,
Y o

J(f,x)= ox, 0Ox,
Pn Y
o T ox,

Consider the example of a 2D arm with 1-DOF rotation joint,

19

Figure 4. 1 a 2-D arm with rotation joints

The Jacobian Matrix J is

Oe Oe

X X

_| %9 —6;):
J(e,p) = aey aey

op, Ogp,

The Jacobian matrix J(e,¢) shows howe, and e, vary with respect to each joint angle in
the body. In this 2D example, the end effector is denoted as e = lex,eyj . With the

movement of e, the joint rotation angles change and the Jacobian matrix J changes

accordingly.

20

4.3.1 End Effectors Jacobian Matrix

For the inverse kinematics algorithm, J is a multidimensional derivative relating the
end effectors movement to joints movement. Based on the information from the
articulated body tree, the Jacobian matrix is a m x nmatrix, where n is the number of

joints of the body, and m = 3k, where £ is the number of end effectors of the body.

As mentioned in Chapter 3, end effector positions are denoted as § = (s,,...,5,) and

target positions are denoted as? = (¢,,...,¢,) , which k is the number of end effectors. The
end effector positions § = 5(@) are functions of joint angle vector 8 =(4,,...,6,)" . In

order to solve inverse kinematics problems, we have to find the value for 8 =(6,,...,6,)"

n

from ¢, =5,(6), for i=1... k. Unfortunately, there may not be always a unique solution.

(To see why, note that you can hold your hand in a fixed position while moving: your

arm.) The Jacobian matrix J(s,#) varies over the domain of all possible values of@. For

any given joint position vector s, we can explicitly compute the individual components of
the Jacobian matrix. In this case, we can use iterative methods to linearly approximate the

function s, using Jacobian matrix by
Os;
J(5,0) =(—);;
(5,6) =(30,)is

We can take a geometric approach to computing the Jacobian matrix. If the jth joint is

a rotational joint with a single degree of freedom, the joint angle is €, , the position of the

21

joint is P, and v;is a unit vector pointing along the current joint rotation axis; we can

calculate the corresponding entry for this Jacobian matrix J as

Os,
'a—él'zvjx(si—pj)

J

In addition, if ith end effector is not affected by the movement of the jth joint, the entry of

% = 0. In this paper, all rotation joints in the rigid body are based on 1DOF.

J

In inverse kinematics animation, we are looking for the update value of joint angle

A& to increment the joint angle by g, =6, + A@ . The change of end effector positions

new

is caused by the change of joint angles, which isA5 = JAG . We use e, =t,—s, to denote

the desire position change of ith end effector in order to track the target movement. So

As is approximately equal toe . As a result, we can use this equation
é=JAG,

for choosing A@in order to update joint angles. Given some desired incremental change
in end effector configuration €, we can get the approximate update of joint angle @ by
computing

AO=J"¢.

22

4.3.2 Inverse of Jacobian Matrix and Singularity

The previous section reduced the inverse kinematics problem to the form A& = J e, we

can obtain A8 by calculating the inverse of Jacobian Matrix J ' . However, in most cases,
Jacobian Matrix J will not be invertible since it is non-square. For example, if we have a
4-joints linear chain, and only one end effector for this chain. The Jacobian Matrix for

this chain is a 3x 4 Matrix, which is not a square matrix.

Even if J is invertible; calculating J™' can lead to a poor result since the matrix may be
singular or almost singular. In Figure 4.2, the target moves along the direction along the x
axis, and the 3-jointed arm track the target position. Since the arm is fully extended, as a
result, an incremental change to any joint rotation angle will be in approximately the
same movement of the end effector along x axis. Physically, this means that no
infinitesimal change in joint angles can effect a change in the horizontal position of the
end effector. [BUSS 03, 314] Mathematically, for Jacobian matrix, the first row for the 3-
jointed arm will consist entirely of zeroes. Consequently, the Jacobian matrix is almost

singular and cannot be accurately inverted.

23

A Y
Target End Effector Root
1' D D Ul '
g
Direction
> x

Figure 4. 2 An example of singular configuration

For the remainder of this chapter, we discuss several strategies for choosing solutions

which avoid computing the J™' in order to get A@ joint angles’ animation update.

4.4 Inverse Kinematics Algorithms

Different inverse kinematics algorithms have been discussed and used in recent years.
Fedor [FEDOR, 03] present three of such methods: Algebraical method based on limbs
positioning; iterative optimization method based on Jacobian pseudo-inversion; and
heuristic CCD iterative method. In this section, I discuss four different approaches of
Jacobian Inverse Kinematics algorithms. They are Jacobian Transpose Method,
Pseudoinverse Method, Damped Least Squares Method (DLS), and Selectively Damped

Least Squares Method (SDLS).

24

4.4.1 Jacobian Transpose Method

As discuss in section 4.3.2, sometimes Jacobian inverse method works poorly, because

the Jacobian matrix J is not square or invertible. The Jacobian Transpose Method uses the

Jacobian transpose matrix J” to avoid the need for the inverse matrix.

In the Jacobian transpose method, we set A@ equal to

A0=aJ"é
for some appropriate . [BUSS 04, 7] It is much faster to calculate the transpose than to

calculate the inverse of J or the pseudo-inverse of J.

The way to choose the value of « is to try to minimize the new value of the error

vector ¢ after the update. [BUSS 04, 7] To do this, we assume that the change in end -

effectors position will be exactly /7@ , and choose « so as to make this value as close as

possible toe . In this paper, the scalar « is calculated from

As o At
a =
2x(|At))

The « value will be changed within each step of calculating A@andJ” .

The Jacobian transpose method has the effect of localizing the computations. With
the Jacobian transpose method, we can just loop through each joint and compute the
change to that joint angle directly. In addition, Jacobian transpose method work

acceptably with only one end effector for an articulated body.

25

4.4.2 Pseudoinverse Method

The pseudoinverse method is a technique for finding a matrix that effectively inverts a
non-square matrix. The pseudoinverse of a matrix J is also called the “Moore-Penrose
inverse” of J. It is defined for all matrices J, even ones which are not square or not full
row rank [SAMU 04, 8]. If we have a non-square matrix arising from an overconstrained
or underconstrained system, we can try using the pseudoinverse method. For inverse

kinematics problems, we set A@ equal to

AO=J"¢,

where the J " is the pseudoinverse of J matrix. The pseudoinverse matrix J~ is defined by

J=JTJI"y?.

The pseudoinverse method is widely discussed in the literature but it often performs
poorly because of instability near singularities [BUSS 04, 9]. Singularity problems will
lead to a situation in which end effectors move to impossible directions or oscillate. We
can use the corresponding configuration to minimize the chances of bad effectors of
singularities. The corresponding configuration can be setting the maximum rotation angle
changed value (constant value). If A8 exceed the maximum rotation angle, the A8 will
be scaled. However, the pseudoinverse method did not have good performances in
articulated body animation even after configurations. After configuration, the
pseudoinverse method might have the problem which is unable to effectively track targets.

So, in the rest part of this chapter, we discuss other two more superior IK methods.

26

4.4.3 Damped Least Squares Method

The damped least squares (DLS) method avoids many of the pseudoinverse method’s
problems with singularities and can give a numerically stable method of selecting A&

[BUSS 04, 9]. The damped least square solution uses
AO=J"(JJT + 2D)7'e,

to compute A@ , where A € Ris a non-zero damping constant. This damping constant
must be chose very carefully and it depends on the configuration of the articulated body
and target positions. The use of a suitable damping constant can make the Damped Least

Squares method numerically stable.

4.4.4 Singular Value Decomposition

It is a useful fact that every m x nmatrix has singular value decomposition. The singular
value decomposition (SVD) provides solution for analyzing the pseudoinverse method,

the DLS method and the SDLS method. The SDLS method is discussed in next section.

If a matrix Jis a m x n matrix with m>n, then J can be written as so called singular

value decomposition of the form

J=UDVT",

In which U is a m xn matrix and V is a square n x n matrix, and both are orthogonal

matrices; D is a m x n diagonal matrix. All diagonal elements of matrix D have non-zero

27

values d;; = o0;. If J is a complex matrix, then there always exists such decomposition

with positive singular values .The singular value decomposition of J always exists, then it

J can be written in the form below
J=Y ocuy [BUSS 04, 11],
in which r is the largest rank value of matrix D witho, # 0.

The pseudoinverse of J is equal to

J =Y o vu . [BUSS 04, 12]

i=1
The DL§ methods can be wrote as below,

JIIT + 2D = z}: = ;ZZ vu! . [BUSS 04, 12]

4.4.5 Selectively Damped Least Squares Method

Selected Damped Least Squares method (SDLS) is a refinement of Damped Least Square
(DLS) method. SDLS method is based on the numeric filtering theory from Maciejewski
and Klein [MACI 85,109]. The SDLS method selectively applies different filtering to all
singular vectors. It is similar to choosing different damping value based on different
targets’ positions. In addition to DLS method, SDLS method considers the relative

position of end effectors and target positions. So the SDLS method selects damping

28

constants based on the configuration of articulated body and related position between end

effectors and targets.

The steps to calculate the SDLS method is:

1. Compute Singular Value Decomposition from J = UDV”

2. Calculate response vector A@ that is the SDLS solution from A& = Zf Ty,

[it R M
for some scalars 7, ,anda, = ué .
k
3. Calculate the value of N, = ZH "u j.’,."
4. Calculate M,, =o' Z;zl |vj,,.|p¢,’ ; withp, | = ||6se /6@". M, , estimates the
distances moved by the £th end effector caused by the individual changes in

joint angles. [BUSSKIM 04,7] . And then calculate M, = Z M,

5. Set global constanty,,, =4/ z .This will be the maximum permissible change

in any joint angle [BUSSKIM 04, 6]. And then set ¥, =min(l, N,/M,)-y,.. .
6. Calculate ¢, = ClampMaxAbs(c]'ay,,y,)

7. Finally, clamp the value forAf,AQ = ClampMaxAbs(Zi(o,., Vmax) > and update

| joints angle.

The intuition behind the SDLS method is to consider each joint angle individually
and decide how much it is trying to move the end efffector to the target position.

[BUSSKIM 04, 6] The damping process of A@ is implemented by restricting the

29

maximum changes in joint angles. Compared with the DLS method, the SDLS avoids
choosing damping constant. Compared with the pseudoinverse method, SDLS reduced
oscillate when near singularity or singularity since the SDLS method treats singular

vectors separately.

For the pseudoinverse, DLS and SDLS methods, we must first loop through the joints,
compute and store the J, use SVD to get solutions for pseudoinverse, DLS and SDLS,
and then compute the change in joints, and finally apply the change to all joints.
Comparing these methods above with the Jacobian transpose method, the Jacobian
transpose method is more efficient in memory access and caching, as well as using fewer
computations than pseudoinverse, DLS and SDLS methods. However, the Jacobian
transpose method still has worse performance than the DLS and the SDLS method. In
Chapter 5, I discuss the experimental results of these four methods introduced in this

chapter.

30

Chapter 5

Implementation of Inverse Kinematics
Algorithms

5.1 Modules

The practical system described in this thesis implements inverse kinematics algorithms
for an articulated human body. The implementation is organized into three modules: the
Control Module, the Calculation Module, and the Animation Module. Unlike other
inverse kinematics animation systems, the Data Module does not get input animation data
from key-framed ‘o>r Motion capture data but, instead, all the animation data in this system
are calculated by inverse kinematics algorithms in the Calculation Module in real-time
and then mapped onto the articulated human body by the Animation Module. The next

three sections describe these modules in detail.

5.1.1 Control Module

The Control Module is the top-level component of the system; its purpose is to generate a
set of values for the parameterized motion. The Control Module encapsulates the
information required to produce a motion, and passes this information on to the

Calculation Module and the Animation Module.

31

Since the implementation uses inverse kinematics algorithms to simulate human
animation, the main control parameters of motions are targets’ positions of the articulated
body. There are four targets for the body: they are close to the left hand, right hand, left
foot, and right foot. The state of the Control Module can be dynamically changed in
response to the system’s control sources, which are the four targets. Based on the
changing positions of targets, the Calculation Module uses an inverse kinematics

algorithm to calculate the A@ value for each joint in the body.

T T

Control Module

Calculation Module

® Targets positions
Joint Rotation Limits I:
e Weighted Parameters

Algorithm Data
> | Module Module

!

- \ i

Animation Animation Module

Drawing the human rigid body
by each step

o /

Figure 5. 1 Control structure of the inverse kinematics system

32

There are several other control parameters in the system. A user can choose any of
the four inverse kinematics algorithms to calculate the A@ values for joints. Also, the user

can choose “walking”, “running”, “injured walking”, and “injured running” to control the

type of action for the articulated body animation.

In addition, the Control Module also provides information to control the calculation

and output data. This information includes:

. Joint angle rotation limitations

The system set a fixed value range for each joint to prevent unnatural rotation of
the human body. This value is provided as a joint configuration at the beginning.
Based on the algorithm calculation, if the A@ value is not in the range of the joint
rotation limitation, the control system provides a solution to adjust the rotation

which is within the joint angle rotation limit range.

L Weighted parameters

In order to imitate wounded walking, weighted parameters are set to allow some
joints to rotate more easily than others. For example, the & is the rotation angle
for left knee. Before updating the value for the rigid body, we multiply or add the

weighted parameter value w and ;, so that 6,

I—new

=wé,_,, or 6,

I—new

= O +W
and we then map the new 6, value to the human body. As a result, the human

body performs an injured walking or running motion.

33

. Speed parameters

The Control Module provides some additional controls, such as “Step Frequency”,

“Slowdown Factor” and “Speed” to control the speed of walking and running.
. Step parameters

The Control Module also provides control of the leg step gait. There are two
vectors, one is the front leg‘s maximum position, another one is the back leg’s
maximum position. These two vectors can be changed in order to change the gait

of each step.
. Hand parameters

Similar to step parameters, the Control Module also provides hand swing
parameters to control the positions of hands. There are two vectors were set to be
maximum swing position of front hand and back hand when the articulated body

was performing walking or running.

Maximum back hand position

~

Maximum front hand position

Maximum back leg position Maximum front leg position

Figure 5. 2 Step parameters and hand parameters

34

5.1.2 Calculation Module

The Calculation Module consists of the Data Module and Algorithm Module. Based on
the control parameters transferred from the Control Module, the Algorithm Module sets
the selected inverse kinematics algorithm as the current algorithm. Based on the current
algorithm, the Algorithm Module creates a corresponding Jacobian matrix J and other
factors. At each step, the target positions are updated and the current algorithm calculates
the corresponding rotation angle, changing the value A& for each joint. For example, for

the tfanspose Jacobian method A@ =aJ"é , the Algorithm Module first calculates the

scalar & , then transposes the JtoJ”, and finally calculates the A& value.

The Data Module in this implementation provides data to perform actions for the
Animation Module. The data is in the form of a degree-of-freedom (DOF) value,

specifically, the rotation-angle A@ for each joint in the articulated body. The A@ values
for each joint are stored in a multi-dimension vector [A O, A0, ... ,A@n]r , where n is the
number of joints in the rigid body. Then the Data Module updates the vector
[AG,,AGZ,,...;.,AH"]T for each joint in the tree structure, obtaining the global position and

axis of each node. The information for each node is then transferred to the Animation

Module.

35

5.1.3 Animation Module

The Animation Module in this completes the human animation simulation. It gets
combined information from Control Module and Calculation Module, and maps the

animation data onto the rigid human body.

The Animation Module provides visualization for the joints in the articulated body. In
each step, after the Calculation Module has calculated the vector [A@,,AHZ, ,AO,,]T

based on the current target positions transferred from the Control Module, the Animation
Module draws each node on the predefined joint’s geometrical shape (obtained from the
Control Module). In each step, the Animation System rotates and draws joints in different
positions. As the body is drawn in different positions at each step of the computation, the

user perceives the illusion of natural human motion.

Control Module
Targets’ position update

New targets positions

Calculation Module Joint geometrical property

Joints rotation information

A 4

Animation Module
Rotate each joint to new position, and draw it.

Figure 5. 3 An example of data transfer between modules

36

5.2 Animation Practicing

The animation component of this system includes four action simulations: “Walking”,
“Running”, “Wounded Walking”, and “Wounded Running”. These actions are simulated
on an articulated model of a human body with 20 joints and 4 end effectors. The target

positions are moved sinusoidally in X, Y, and Z directions, each component with its own

period.

5.2.1 Human Walking or Running Cycle

Simulation of realistic human walking and running is a one of the more difficult research
problems in multibody systems and robotics due to its complexity and high
dimensionaiity. There are many solution are based on periodic walking or running cycle
and moving on a flat surface based on a constant speed. In a general approach, the human
walking step is composed of two different phases. The first phase is the swing phase or
single suioport phase when one foot is on the ground while the other swings. [HART, 99]
The second phase is called the double support phase as both feet are on the ground while
the body is moving forward [HART, 99]. In this thesis, I assume a human walking cycle
that can be simulated by a left leg swing phase, a double support phase, and a right leg

swing phase.

37

Left Leg Swing Phase

Double Support Phase

Right Leg Swing Phase

Figure 5. 4 One human walking cycle

A simple human running cycle is a cyclic behavior in which legs swing forwards and
backwards. A running cycle consists of two swing phases; a left leg swing phase, and a
right leg swing phase. A running cycle doesn’t have the double support phase since both
feet are never on the ground at the same time. However, in this thesis, I still assume that

there is an intermediate phase, which is similar to double support phase in the walking

cycle but both legs are off the ground.

Left Leg Swing Phase

Intermediate Phase

Right Leg Swing Phase

Figure 5. 5 One human running cycle

38

In this thesis, the walking and running motions of the human body are based on
sinusoidal curves. These curves, and the way in which they are applied to animation, is

the topic of the next section.

5.2.2 Sinusoidal Curve

The sinusoidal curve provides a good approximation to the motion of the joints of the leg
during walking or running. In this thesis, I use sinusoidal curves to control the movement

of target positions in order to control whole walking and running cycles.

Figure 5. 6 An example of sinusoidal curve

o Walking cycle control source code:

target[0].Set(0.35,back_y leg,back z_leg*sin(walk _speed*T));

target[1].Set(-0.35 front y leg front z leg*sin(walk _speed*T));

target[2].Set(-0.8,back y hand,-0.3*sin(walk_speed*T));

target[3].Set(0.8,front_y hand, 0.3 *sin(walk _speed*T));

39

. Running cycle control source code:
target[0].Set(0.35,back_y leg,back z leg*sin(run_speed*T));
target[1].Set(-0.35,front y leg ,front z_leg*sin(run_speed*T));
target[2].Set(-0.8,0,-1.0%sin(run_speed*T));

target[3].5et(0.8,0,1.0*sin(run_speed*T));

The source code above indicates the usage of sine function in order to control the z axis
value of each target’s position. The statement “target [num].set(x, y, z)” sets é target
position. “walk_speed” and “run_speed” are two variables set by the user before starting
the walking and running simulation. In addition, the coefficients, “+0.35”, “£0.87,
“front y leg”, “ back z leg”, “back z leg”, “front z leg”, ‘“back y hand” and
“front y_hand” are constants. We chose corresponding coefficients for the ‘“farget

[num] set(x, y, z)” function based on walking and running step distance in the coordinator.

The variable T is incremented each time the target positions change. The sine
function changes its value as T increases. As a result, the targets move through a
sinusoidal curve in 3D space. In addition, this thesis assume that the right leg swing
phase and the left leg swing phase in walking/running cycle take the same time period.
Based on this feature of walking and running cycle, we can use a sine function to control

the target positions” movements.

40

5.2.3 Wounded Walking and Running

The Control Module uses some weighted parameters to simulated walking and running
for a wounded body with rigid limbs. In the Calculation Module, before mapping rotation
angles to joints in the rigid body, the system multiplies or adds weighted parameters to
specific joint rotation angle values. In figure 5.3 the specified wounded effect is appliéd
to the left hip, upper leg and right upper arm. In figure 5.4 the specified effect is applied

to the left upper leg and right upper arm.

Figure 5. 8 Wounded running

41

5.3 Comparison of Inverse Kinematics Algorithms in

Walking and Running Animation

The previous chapter introduced four inverse kinematics algorithms: the Jacobian
Transpose Method, the Pseudoinverse Method, the Damped Least Squares Method (DLS),

and the Selectively Damped Least Squares Method (SDLS).

To compare these inverse kinematics algorithms, I implemented each of them on a
human rigid human body in order to perform walking and running animation. The target
position were moved by varying each x, y, z component sinusoidally, each component
with its own period. In these experiments, the target position increments were small
enough to provide a smooth visual result. The end effectors track the movement of target
positions, and the system used one of the algorithms to calculate the corresponding
rotation angles for each joint in the rigid body. Two leg target positions in walking cycle

are reachable, while others are not reachable.

qued on the distance between targets and corresponding end effectors, there are two
different types of target positions. One is reachable target positions; another is
unreachable target positions. I set d as the distance between one target and the
corresponding end effector. During the animation simulation, ifd < 0, the target position
is reachable. Ifd > 0, the target position is unreachable. For example, in Figure 5.10, two
targets which are related to end effectors in legs are always reachable during the walking
simulation. And other two targets related to hands are always unreachable during the

walking simulation.

42

Root End Effector Target

@ @

Y
NP

R, A

Figure 5. 9 Distance (d) between end effector and target

. Jacobian Transpose Method

This method is fast and easy to implement. However, it performed poorly in walking and
running animation, even when the target position increments are very small. The human
articulated body looks jerky and oscillates in walking and running animation applications.

Usually, this method is suggested only for single target position tracking.
° Pseudoinverse Method

This method performs a little bit better than Jacobian transpose method in giving a
smooth visual result. However, its performance was still poor in the walking and

running cycles.

Comparing this application between walking and running cycles, the walking cycle
had better performance. The reason has to do with setting the target position to be
reachable or unreachable. In the running cycle, four targets position were set to be
unreachable, while in walking cycle, two legs target positions were set to be reachable.

One of the features of this method is that it can work properly only when the target

43

positions are reachable. As a result, the walking animation application of this method is
better than running animation application. However, the worst feature of the
pseudoinverse method was that the unreachable target positions caused the rigid body to

oscillate.

Unreachable target position

Unreachable target position

e

pertiiy

;. e
Reachable target position / \

Reachable target position

Figure 5. 10 Reachable target positions and unreachable target positions in walking cycle
o Damped Least Squares Method

The application of this method worked substantially better than either the Jacobian
Transpose Method or the Pseudoinverse Method. Walking and running animation is
natural and smooth. Compared with SDLS method, the DLS method did not have good

performance when the target position was reachable.
. Selectively Damped Least Squares Method

This method has the best performance of all four algorithms. But it is slower than the
other algorithms since it requires the most calculation. It also has the best performance

for both reachable target positions and unreachable target positions. For the rigid human

44

body with multi-end effectors that I have used in this thesis, Selectively Damped Least

Squares Method is a good choice.

45

Chapter 6

Implementation

6.1 Coding

The objective of this thesis is the simulation of walking and running animation of an
articulated human body. In order to implement the algorithms, there are two important
pieces of code. The first part is the coding of the articulated structure of the body. The
second part is the Jacobian Matrix based inverse kinematics algorithm. In this section, we
show some abstract coding samples. I used Buss’s inverse kinematics algorithms coding

samples code as start point.

6.1.1 Coding for Rigid Body

The articulated human body consists of joints and limbs. The joints are arranged in a tree
‘structure, as described in Chapter 3. The joint is the basic data type of this articulated
human body. The tree structure is a container used to store joints as nodes in an ordinary

structure.

¢ Joint (Node) class: normal joints and end effectors

e Tree class: A binary tree structure consists of joints

46

6.1.1.1 Joint Class

Joints have various properties from the point of view of the simulation. The joint (node)
class defined in this thesis represents the joints in articulated human body. Some
properties are fixed and some properties change with time. I separate the properties of a

joint into two categories: immutable properties, and mutable properties.

e Immutable properties:

These properties were provided during initialization of the joints and the tree
structure, and cannot be changed. This ensures that the body maintains its essential,

invariant features during the animation.

double size; // geometry size of this joint

The double size is the geometrical size of each joint. In this thesis, we assume that
basic body characteristics do not change during the motion, so that the size of a joint does

not change during the simulation.

VectorR3 attach; // the attached point of this joint with its neighbors

VectorR3 r; // the related position difference with its neighbors

During the simulation, joints are moving and rotating. These vectors are the key to
ensuring that the joints remain connected after being translated and rotated. If they were
allowed to change during the simulation, the body would come apart after even a few

steps.

47

double minTheta; // lower limit of joint angle

double maxTheta; // upper limit of joint angle

These joint limits, minTheta and maxTheta, are predefined during initialization of the
joint. When the system performs simulations, these properties are used to prevent
unnatural rotation of the joints. These two limits are set as the upper limit and lower limit
of joint rotation angles, respectively. If the algorithm calculates a rotation angle larger
than maxTheta or less than the minTheta, the system will use the limit value (maxTheta or

minTheta) instead of the calculated result.

Node* left, // left child node
Node* right, // right child node
Node* parent; // pointer to parent node

These three pointers to Node determine the position of the joint in the tree structure.

It will not be changed during the simulation in order to keep the tree structure consistent.

enum Purpose {JOINT, EFFECTOR};

// indicate the purpose of this joint in the tree structure, joint or end effector

Purpose purpose;

This enumeration distinguishes normal joints and end effectors in the body. It is

very important to treat them separately when the system is using inverse kinematics

algorithms to calculate the transformation of joints.

48

e Mutable properties:

Joints have other properties that change during execution of the simulation. These

variable properties include:

VectorR3 s; // Position vector of this joint
VectorR3 w; // Global rotation axis
double theta; // rotation angle of this joint

These properties represent the position, orientation, and rotation of the joint. They

change at each step of the simulation. The changes are determined by mutator functions:

void SetTheta(double newTheta) // Change rotation angle theta value
void ComputeS(void); // Change position vector

void ComputeW(void), // Change rotation axis vector

6.1.1.2 Tree Class

The tree structure is a container for joints (nodes). In this simulation, joints are stored in a
binary tree structure. Each node (joint) of this tree can have one or two child nodes, and
has at most one parent node. A tree has one root node which is the only node with no

parent. There are some functions defined for this tree structure; these are described next.

void InsertRoot(Node*); /linsert root node to the tree
// Insert left/right child to a node in the tree
void InsertLeftChild(Node* parent, Node* child),//

void InsertRightChild(Node* parent, Node* child);

49

The tree class also provides functions to traverse the tree. For example:

Node* GetRoot() const { return root; } //return root for the tree
Node* GetSuccessor (const Node*) const; // return child nodes

Node* GetParent(const Node* node) const ;//return parent node

In addition, in both the tree class and the node (joint) class, there are functions for

drawing the current tree and node.

void DrawTree(Node*); //In tree class, draw the tree

void DrawNode(bool); //In node class, draw the node

6.1.2 Coding for Inverse Kinematics Algorithms

All articulated human body animation simulations in this thesis are based on Jacobian
series inverse kinematics algorithms, as explained in Chapter 4. Since I used a tree
structure to present the articulated human body, all calculations performed by the
algorithms are based on the tree structure. On the other hand, the Jacobian series inverse
kinematics algorithms are all based on the Jacobian Matrix. Conséquently, I had to create
the Jacobian Matrix based on the tree structure, and then implement all algorithms based

on the Jacobian Matrix.

50

6.1.2.1 Jacobian (Matrix) Class

The detailed description of Jacobian Matrix is given in Chapter 4. The constructor of
Jacobian class gets information from the tree structure and creates the corresponding

Jacobian matrix.

MatrixRmn J; // Jacobian matrix (mxn)

Jacobian (Tree*); // Constructor of Jacobian matrix

Based the joints number » and end effectors number m in the tree, the Jacobian

matrix is 3m x n matrix. Initially, all elements in the Jacobian Matrix are 0.
VectorRn dTheta; // n dimention vector

In the Jacobian class, there is an n-dimensional vector dTheta, which stores all joint
rotation angles A& . The dimension of this vector is the number of joints in the articulated
human body. At each simulation step, the inverse kinematics function calculates the
value of A@ for each joint. As below, there are four inverse kinematics algorithm
calculation functions. In addition, there is another function defined to update new A&

value to vector dTheta.

void CalcDeltaThetasTranspose(); // Transpose algorithm
void CalcDeltaThetasPseudoinverse(); //Pseudoinverse algorithm
void CalcDeltaThetasDLS(); //DLS algorithm

void CalcDeltaThetasSDLS(), //SDLS algorithm

void UpdateThetas(bool Wounded,int motion); //Update AQ to joints

51

6.2 User Interface

Figure 6.1 shows an example of the user interface for the inverse kinematics animation

simulation system. The interface is an animator’s workbench. The inset-windows on the

bottom and right side are control panels.

3 K Motion |, FPS: 61

Figure 6. 1 An example interface for this system

The interface includes nine sub-panels. The panels on the bottom are “Method Panel”,
“Motion Panel”, “Motion Control Panel”, “View Panel”, and “Object Transformation
Panel”. Panels on the right side are “Speed Control Panel”, “Target Position Control

Panel”, “Recording Panel” and a panel with three buttons.

52

¢ Method Panel

The user can choose one of these four inverse kinematics methods to perform

simulation.

Figure 6. 2 Method panel

e Motion Panel

The user can choose “Walking” simulation or “Running” simulation.

Figure 6. 3 Motion panel

e Motion Control Panel

The user can choose “Wounded” effect or “Moving Forward” forward effect

on the rigid human body.

Figure 6. 4 Motion control panel

53

e View Panel

This panel includes additional viewing options. The “Axes” option draws X,
Y, Z Axes on the view window. The “Perspective” option provides perspective
viewing result. The “rotation Axes” option draws rotation axes for each joint in
the human rigid body. The “Draw Targets” option draws target position for the

rigid human body.

Figure 6. 5 View panel

e Object Transformation Panel

This panel provides transformation options for the rigid human body. For
example, when the user touches the “Rotation” ball, the rigid human body will be
rotated at the same time as it performs the animation simulation. This panel

provides different observational point for users.

Figure 6. 6 Object transformation panel

54

e Speed Control Panel

This panel provides speed setting and step frequency setting for the walking

and running simulation.

Figure 6. 7 Speed control panel
e Target Position Control Panel

There are four targets for this rigid human body, two for hands and two for

legs. This panel provides target position setting for these four targets.

Figure 6. 8 Target position control panel

55

¢ Recording Panel

In this system, the user can record each frame of animation and create a movie

(“.avi”) file. Users can set the frame size they want for the recording.

Figure 6. 9 Recording panel

¢ 3 Button Panel

The “Reset” button resets the animation to initial status. The “Pause” button

pauses the animation. And the “Quit” button is the button to exit the system.

Figure 6. 10 Buttons

56

Chapter 7

Conclusion and Future Work

7.1 Summary

We have examined the simulation of human walking and running by using Inverse
Kinematics algorithms which are based on the Jacobian Matrix. Human walking and
running motions are simulated by end effectors in an articulated human body tracking
target positions. We used sinusoidal curve as the moving tracks of targets. And, in order
to simulate injured walking and running motion, we added weighted parameters in
corresponding joints. To complete the animation, we used IK algorithms to calculate joint

rotation angles corresponding to the movement of targets.

The first step in solving the inverse kinematics problem is to differentiate a set of
non-linear equations to obtain linear equations by constructing the Jacobian Matrix. The
second step of the approach is to use the Jacobian Transpose method, the Pseudoinverse
method, the DLS method, or the SDLS method to solve IK problems. The Jacobian
Transpose method uses the transpose of Jacobian Matrix. It is the simplest of the four
methods and requires the least iteration. However, it shows the worst performance in
articulated human body animation. This method has good performance with only one

target tracking. The Pseudoinverse method is so-called because it uses the pseudoinverse

57

of the Jacobian Matrix rather than the true inverse. In practice, this method applied to
walking and running gives slightly better results than the Jacobian Transpose method.
However, both methods have problems when the Jacobian Matrix is singular or close to
singular. The YDLS method and SDLS method have greater complexity than the other two
methods. However, according to the research described in this thesis, they are not slower
than another two methods in practice. Furthermore, they provide much better animation
in hum>an walking and running simulation. After experimenting with several methods in
the course of this work, we concluded that the SDLS method has the best performance in

human walking and running simulation of these four methods.

7.2 Conclusion

Most cited approaches that use IK use it as part of a system for motion capture data
editing and retargeting. The advantage of motion capture technique is that it directly
gives exact end effectors’ position. The IK technique should estimate targets’ position in
order to get end effectors’ position. However, one of the main issues in using motion
capture data to animate human figures is the problem of retargeting [MERE 05, 1]. This
is the issue of applying motion data captured from one person to a virtual person of a
different size [MERE 05, 1]. In order to solve motion capture data retargeting problems,
researchers should spend a lot of time in doing motion capture data editing and synthesis.
From the discussion above, we can conclude that it is possible to simulate human motion
without any motion capture data; and only rely on kinematics algorithms such as inverse

kinematics algorithms.

58

In addition, the thesis shows that it is also possible to simulate human animation
without physical considerations (dynamics). We can use purely mathematical techniques
to simulate it. For example, a real walking cycle simulation must take into account
gravity, the weight of human body, and the friction of the floor, etc. With different
physical factors, the motion of the body will have different resulting motions. However,
incorporating these factors into the simulation will consume valuable system resources.
Instead, in our system, without physical consideration, we can adjust the target positions
in order to have different motion result. And different rotation results lead to different
walking or running styles. Consequently, we can reduce system cost in real time motion

simulations.

This inverse kinematics animation technique demonstrates the feasibility of
designing computer games based upon fully kinematics character simulations. It allows
animators to design varieties of motion. And also this technique will play an important

role in real time animation simulation systems.

7.3 Future Work

There are several directions which require further research to make the motion more

realistic and to simulate more human motions.
e More Motion Simulation
This thesis uses sinusoidal curves to control target positions, and then to control the

whole articulated body’s motion. For other motions of human body, we can first analyze

59

the path of target movement, using the path as input for this simulation system, and

obtain the result transformation of each joint in the body.
o More Complex Motion Simulation

This thesis only considers each joint’s animation with 1-DOF. We seek to simulate
different motions. So we should consider more DOFs in the calculations for each joint.
With some modified of Jacobian Matrix in algorithms, the system can calculate joints
with more than one DOF. It will then be suitable for a real human body motion animation

simulation, since different joints in the body have different DOF numbers.
e More Constraints and More Effectors

It should also be mentioned that it is necessary to introduce even more constraints in
joints in order to make the animation realistic. And this is a requirement for real time
motion simulation, since sometimes we cannot predict what kind of pose the articulated

human body can perform during real-time interaction.

Another possibility for future work is to provide more effectors on the articulated
human body. For motions other than walking and running, we might specify more
effectors in the articulated body. The effector locations are not restricted to the end of

legs and arms. They can be any joints in the articulated body.
e Combination of Algorithms

Based on different features of these IK algorithms, we can try to give a combination

of methods for solving the IK problem. In fact, we can select the most suitable method

60

according to the given conditions. Even in one articulated human body, we can try to

apply different IK algorithm in different end effectors.
e Improved User Interface

One of the potential applications of the system is game developers. I plan to
invéstigate how professional animators specified the animation factors to be controlled. I
plan to modify the user interface based on the requirement of professional animators. I

will add more viewing windows and control panel in order to fulfill their requirement.

61

References

[BUSS 04] S.R. Buss, “Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares Methods”, 17 April 2004,
<http://math.ucsd.edu/~sbuss/ResearchWeb >, (22 March 2006).

[BUSSKIM 04] S.R.Buss and J.S. Kim, “Selectively Damped Least Squares for

Inverse Kinematics”, Journal of Graphics Tools, vol. 10, no. 3, pp.37-
49, 2005.
[BUSS 03] S.R. Buss, 3-D Computer Graphics a Mathematical Introduction with
OpenGL, 1* ed., Cambridge, The Press Syndicate of Cambridge University,
2003, pp.289-307.
[GE 00] K.T. Ge, “Solving Inverse Kinematics Constraint Problem for Highly
Articulated Models”, Master’s thesis, Waterloo University, 2000.
[JOCH 00] A. Jochheim, M. Gerke and A. Bischoff, “Modeling and Simulation of
Robotic Systems”, <http://virtual.cvut.cz/odl/partners/fuh/course_main>,
17 August 2000, (22 March 2006).
[WELM 93] C. Welman, “Inverse Kinematics and Geometric Constraints for
Articulated Figure Manipulation”, Master’s thesis, Simon Fraser
University, 1993
[MEREO5] M. Meredith and S. Maddock, “Adapting Motion Capture Data Using
Weighted Real-time Inverse Kinematics”, ACM Computers in

Entertainment, vol.3, no.1, 2005.

62

[GROC 04] K. Grochow, S.L. Martin, A. Hertzmann, and Z. Popovic, “Style-Based
Inverse Kinematics”, ACM Trans. on Graphics, vol. 23, no.3, pp. 522 —
531, August 2004.
[TOLA 00] D. Tolani, A. Goswami and N.I. Badler, “Real-Time Inverse Kinematics
Techniques for Anthropomorphic Limbs”, Graphical Models and Image
Processing, vol. 62, no. 5, pp. 353-388, September 2000.
[WATT 03] A. Watt and F. Policarpo, 3D Games Animation and Advanced Real-Time
Rendering, 1% ed., Harlow, Addison Wesley Professional, 2003, pp. 460-
523.
[MACI 85] A. Maciejewski and C.A. Klein, “Obstacle Avoidance for Kinematically
Redundant Manipulators in Dynamically Varying Environments”,
Intematior;al Journal of Robotic Research, vol. 4, pp. 109-117, 1985
[MERE 02] M. Merédith and S. Maddock, ‘“Motion Capture File Format Explained”,
< http://www.dcs.shef.ac.uk/~mikem/>, Department of Computer Science
Technical Report CS-01-11, University of Sheffield, 2001, (24 January
2006).
[HART 99] M. W. Hardt, “Human Walking”, <http://www.sim.informatik.tu-
darmstadt.de/~hardt/papers/heidelberg/node2.html>, October 1999, (22
March 2006).
[HO 05] E.S.L. Ho, T. Komura and R.W.H. Lau, “Computing Inverse Kinematics with
Linear Programming”, ACM Symposium on Virtual Reality Software and

Technology, pp.163-166, 2005.

63

[ZHAO 94] J. Zhao and N.I. Badler, “Inverse Kinematics Positioning using Nonlinear
Programming for Highly Articulated Figures”, ACM Transactions on
Graphics (TOG), vol.13, no.4, pp. 313-336, October 1994.
[LEE 99] J. Lee, S.Y. Shin, “A Hierarchical Approach to Interactive Motion Editing for
Human-like Figures”, SIGGRAPH 99, pp. 39-48, July 1999.
[ROSE 96] C. Rose , B. Guenter, B. Bodenheimer and M.F. Cohen, “Efficient
Generation of Motion Transitions Using Spacetime Constraints”,
Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, pp.147-154, 1996.
[FEDOR 03] M. Fedor, “Application of Inverse Kinematics for Skeleton Manipulation
in Real-time”, Spring Conference on Computer Graphics, Proceedings of

the 19th spring conference on Computer graphics, pp. 203-212, 2003.

64

