Planning Camera Motion

in a 3D Environment

Li Han

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada
March 2006

© Li Han, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14320-7
Our file Notre référence
ISBN: 0-494-14320-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Planning Camera Motion in a 3D Environment

Li Han

Most systems for automatic navigation inside a 3D virtual environment often
require pre-decomposing the free space into some kind of uniform ﬁnits or pre-
calculating the path or road map. In this thesis, we propose a new technique for
navigation through in a 3D virtual environment without lots of pre-calculation so that the
system allows users change their interest target during the camera motion, and even allow
users dynamically adjust the 3D objects inside the 3D virtual environment without too
much recalculation involved. The technique has successfully been integrated in a system

for walkthroughs in a 3D virtual environment.

iil

Acknowledgments

I am full of gratitude to everyone who helped me when I was working on my
thesis.

First of all, I really appreciate Dr. Peter Grogono for introducing me to Computer
Graphics and helping me to discover the beauty of it. I took great advantages from some
OpenGL materials written by him when I came into contact with Graphics at the very
beginning. After I started my Graphics research under his supervision, he always honestly
shared his opinion with me, especially gave lots of suggestions and comments on this
thesis.

Secondly, I would like to thank my parents and my husband, Steve Giroux, who
always strong supported and understood me during my study. Without them, this work
would not have been accomplished.

Last but not least, many thanks to all the members of the examining committee

for their time, informative and well documented remarks.

iv

Contents

LSt OF FIGUIES ..cutiiiiiiiieieriet ettt ettt st e e s e e s te et e e besaeesaesebesnneennaenes viit
LASt OF TADBLES ..ottt sttt b st e et b e be b e ereesneeasenssennenns xi
1 IEOQUCHION.eciiiciiiietccetet ettt ettt se bttt ss et e saesaesnsebeeaseessesaans 1
2 Background and Related WOtkc.occounevnninineiniiicneinensctee e 4
2.1 Manually Camera COntrol..........ccoceriieeiviieriinniiiinieeneeecieeeereesreesssreesnseesseeaes 4

2.2 Automatic Camera CONtrolccovcevinieninienierienenieneeieesesreeeereeseereereereenees 5
2.2.1 Planning Camera Motion as a Sequence of Shotscccceveuvevvenriennnen. 5

2.2.2 Generating a Camera Motion to Track a Moving Guide......................... 6

2.2.3 Generating a Collision Free Camera Motion from Start to Goal............ 7

2.2.3.1 Intelligent Path-FIndingcccovivieeiiiniiiniiieecee e, 7

2.2.3.2 Robot Motion Planning.........c.cceeveeieriieniiinninnniee e ecee e 9

2.2.3.3 Finding Path in 2D Games........ccccevurvueeeererireerieeceneeeieeeeenneeevnens 10

2.2.3.4 Motion Planning for Camera Movementsc.cccceevveererreennan. 11

3 DIESIEI ittt st e st et e bt e s e e s e e aeen b e araeeabeennes 12
3.1 3D Virtual Environment Builder..........ccccovevininiiniiniinenrceeeceee e 12
3.1.1 3D Virtual Environment Editorccccccooeiievieniiniiniinnneeeeereeeee 14

3.1.1.1 Defined Objects in 3D Virtual Environment Editor 14

3.1.1.2 Applied Functions in 3D Virtual Environment Editor 14

3.1.2 TFlOOTr Plan ProCeSSOrcovvueerrierriiiieiiieeenereseeeessneeesssraesesresssseeasssasnens 15

3.1.2.1 Floor Plan Generator.........cccceerververieriieniieecieeseeeeeeeseeeeseeesneennne 15

3.1.2.2 Coordinate CONVEISIONcc.ecveruieireenirieriereeerenreseeeeeeseeesseens 15

3.2 Walkthrough COontrollerecceeiieiieienrenieienrereeereeere et seeeeneesieenas 16

3.2.1 EVent HANAIET .oveeneeeieiieieeeeeeette ettt ee e e e e ee e e s e eaaenaeas 17

322 ColliSion DEeCtOrcuevruirriieiireicieienicrtetee ettt 18
3.2.3 Manual Walkthroughcccovieiienininiiiieeeeeeeeeee e 18
3.24 Automatic Walkthrough...........ccoceeveininvniinnineeeee e, 19
3.2.4.1 Find Path....cccoiiiiminiieieieererereeeeice e 19

3.2.4.2 Optimize Pathccociiiinineiiiii et 20

3.2.4.3 Smooth Path.......c.cccciiiiiiiiiiiiicnteeee e 20
IMPIEMENTATIONeveeeuiieiieitetertee ettt esbe et e st san e et abastesneesseessanrensees 21
4.1 3D Virtual Environment Builder........ccccoccevierininieniiniinincsnnisiesnneccreenneens 21
4.1.1 3D Virtual Environment EdItOrccccccerirrinenininiinnenennenieeieenneens 21
4.1.2 FloOT Plan ProCesSOrcocteiiieieereniirirreniesie e sseeetessesessee s 25
4.1.2.1 Floor Plan Generator..........ccoevueeeireeereerenierienreneeesienrensenesseessessnane 25

4.1.2.2 Coordinates CONVEITETcocvverirrenrenienieeireneenerenresesaenansnens 25

4.2 Walkthrough COntrollerc.cceivervuirienieeieneesieieee e 28
42.1 EventHandler ..ot 28
4.2.2 Collision Detectorccoviiiiiirieiieiiienietecece et 29
4.2.3 Manual Walkthroughcccooeviniiiiniiriireeer e 32
4.2.4 Automatic Walkthrough..........ccooceeriiriiiniiniiiiniiirecieese e 35
4.2.4.1 FINd Path....ccccoioiiiiiiiciicerie e 35

4.2.4.2 Optimizing the Path ... 39

4.2.4.3 Smooth Path.......c.cccconininnnic i 40

5 RESUIL ettt r e et b e 49
6 Conclusions and Future Workcecovvivininiinininiiine s 54

vi

References

...

vii

List of Figures

Figure 3-1: The generic architecture diagram of the 3D Virtual Environment Builder.... 13

Figure 3-2: The generic architecture diagram of the Walkthrough Controller................. 17
Figure 3-3: Manual Walkthroughccocoiiiiiniinie e 19
Figure 3-4: FInding @ path........cccoviiriiiiiniicnececresere st s e s e 20
Figure 4-1: 3D MOdELS ...ocuveeeieieeiecceee ettt et et 21
Figure 4-2: SeParatorsS......ccccceeecieiiiiiiiiiiieiiiitee ettt et e sreeesres e sbe e s sssaasssbtaasesnaasnnes 21
Figure 4-3: A bounding DOX.....c.ccevueeeiirniiniceieiee ettt ete e st e s 21
Figure 4-4: The 3D Virtual Environment EQtOFcocveveveevvercvienviaviveniveesereeieeenes 24
Figure 4-5: A generated floor plan...........ccvveeeiieeesiecceeceeecese e e 24
Figure 4-6: Coordinate CONVETSIONcoivierierririreeerireesieeeieesreeeseresiasesesessaessseessssessssesenses 26
Figure 4-7: The Walkthrough Controller Ulocoouvvvivvriniininineeireseseenieseenea, 28
Figure 4-8: An AABBS definition.......cccccovirinriiieninineniiinecsreneietses e seesreseeseesnes 30
Figure 4-9: Assume camera as & POINL.occveeireeriieriiirieenicrieeneeeneeesree st e e see e e e 30
Figure 4-10: ASSUme camera as @ SEZMENL.ovvuvereerirersieriiersierernresaresseessaesssneesssnsesnees 30
Figure 4-11: The DOX 0f ACHVE ATCA...cc.couerviriiiiieiereriiereeerente et se e see 31
Figure 4-12: The box of ACHVE AT€a...c..cccoiviriiiiiiiiieniiecreerreeee e 34
Figure 4-13: Rule #1: INtErSECtiON. ..ocueevririieriiniieiiiiieestieictcctentestr et ereesaneens 35
Figure 4-14: Rule #2: Around Obstacle.cccoccvviviinnicnriiniiiniiiiccieeenes 36
Figure 4-15: Rule #3: Recursive Sub-path........c.cccccoviniinninininiiniiiiinieens 37
Figure 4-16: Rule #4: Eliminated Point.c.cococeoieiiriiinininiiiiiic e 38
Figure 4-17: Find a valid path with Rule #1, #2, and #3.ccccocnvinniiiiiirine 39

viil

Figure 4-18: Optimizing @ path.cc.coeiiverieiininnrretceeerrte s e 39
Figure 4-19: Change the camera Orientation.coceevereererierenieniteneseeieeeseseesreseaennens 41
Figure 4-20: Change the camera orientation while having positive slope..............cc.e...... 42
Figure 4-21: Change the camera orientation while having negative slope.ccc........ 43
Figure 4-22: Change the camera orientation while having zero slope.........c.ccoceevevirennnne 43
Figure 4-23: Change the camera orientation while having infinite slope.c.ccueu.... 44
Figure 4-24: Smoothing a path with curves in (a) or circular arcs in (b).........ccccvveeuneenee. 45
Figure 4-25: The circular arc CIC 2t @ COMMET.vveevereeeeeeeeeerreeeeeereseeresseeseeeseressees 45
Figure 4-26: Keep moving in a constant SPEed...........cccevvrreerernrercreneesieeseenreenseeseeseeenns 47
Figure 5-1 : 3D Virtual Environment Editor User Interface..........ccoceevvevvvecvenveeneesuennnns 49
Figure 5-2 : Virtual house - Master bedroomcceevvecvevieeienieneeeircire e 50
Figure 5-3 : Virtual house - Second bedroom.........c..ccceevirueneneieneniiincrriesece e 50
Figure 5-4 : Virtual house - Reading room..........cccocverivrermerieniinieniecritesesesiesanesaenneens 50
Figure 5-5 : Virtual house - DIner ro0mooveveieieerirnieiineeeneneeerientesereeseeseeesseeseneens 50
Figure 5-6 : Virtual house - LiVINg FOOML.......cccevuivuiiirineniinieniiee et seeeeeeesasesseeneans 50
Figure 5-7 : Virtual house - LIVINE TOOML......cc.coeoiviininiiirreierieeenenreseeneesneseneseenanens 50
Figure 5-8 : Virtual house - Bathroom...........c.cccovirenininninencnieniinenenesceeeresee e sneens 50

Figure 5-9 :

3D Virtual Environment Editor User Interface — Left Command Window.. 51

Figure 5-10 : Walkthrough Controller User Interface — Bottom Command Window...... 52
Figure 5-11 : Automatic walkthrough (1)cccccocvvviininiiniiiiiiiiiiineees 53
Figure 5-12 : Automatic walkthrough (2).....cc.cocovviiiiniiniiiniiiiniiicene 53
Figure 5-13 : Automatic walkthrough (3).....c.cccocirviiiiiininiiiiiiiicccrceceen 53
Figure 5-14 : Automatic Walkthrough (4)........ccoceeeeieniniiie e 53

ix

Figure 5-15 : Automatic walkthrough (5)

Figure 5-16 : Automatic walkthrough (6)

...

...

List of Tables

Table 3-1: Keyboard and mouse events

..

X1

1 Introduction

From the movie special effects that captivate us, to medical imaging to games and
beyond, the impact that 3D graphics have made is nothing short of revolutionary.
Computers are getting faster and faster, with enhanced graphic capabilities providing the
resources on which graphic technologies can evolve. Specifically, 3D technologies have
been getting more and more attention the last few years.

The field of 3D graphics is expansive and complex. Our goal is to present a series
of fairly technical yet approachable articles on 3D graphics technology. Virtual
environments become widely presented, and the crucial of all virtual environment
systems is to effectively control the viewpoint or virtual camera. In many virtual
environment applications, like games, architectural walkthroughs, urban planning
systems, CAD model inspection systems, and training systems, the user must navigate
through the environment to inspect it and perform certain tasks.

Therefore, a classical assignment is to simulate camera movement through the
virtual environment freely and automatically. Many applications either use pre-defined or
pre-calculated paths for the animated presentation of scenes, or they leave the camera
control entirely up to the user. Such direct control has a number of disadvantages. It is
difficult for inexperience users, it results in rather ugly motions that easily lead to motion
sickness, and it requires a lot of attention while the user should preferably concentrate on

more high-level tasks.

We are looking for methods and tools which support the co-existence of user-
controlled movement and animation for the purpose of presenting objects and actions in a
3D virtual environment.

We propose a new technique for navigation through in a 3D virtual environment.
The technique avoids pre-decomposing the free space into smaller units and also avoids
pre-calculating the path or road map. But of course, the system has to know about the 3D
environment first and then manage to generate a path automatically. Hence, the first goal
of this thesis is to build up a 3D virtual environment, which is made of 3D models (e.g.
tables or chairs) and separators (e.g. walls or ceilings). The objects inside the
environment all have a bounding box, which is pre-defined by the system while the user
is building the 3D virtual environment. Then, we allow the camera to simulate collision-
free walking through the virtual environment either manually or automatically.

Certainly, the emphasis of our technique is automatic walkthrough in a 3D virtual
environment. To start with, the user specifies target of the camera, the system computes a
camera path, and then optimizes the initial path. Finally, the path is refined to present the
user with a smooth and pleasant camera motion. Obviously, the central task is to find a
path, in which the camera must follow a “human” behavior, that is, staying at a particular
height above the ground. In a 3D space, the user moves through the space at fixed height
and, therefore the camera movement generally is reduced to 2D. Because we indeed
move in 3D space, the camera is considered as a directed line instead of a point to prevent
the camera flying over an object from the top.

This thesis is divided into 6 chapters, in which contributions are introduced step

by step as follows:

Chapter 1 introduces readers to the concept of 3D graphics, the problem of
controlling camera movements in 3D virtual environment in general, and the goals of this
work.

Chapter 2 represents previous solutions to relative area. We start with analyzing
those previous works done in relative subjects. Then, we represent the more advance
solution. |

Chapter 3 describes the design of the program used to buildup a 3D virtual
environment that is suitable for the algorithms of the camera walkthrough manually and
automatically presented in this thesis.

Chapter 4 defines the implementation of the Virtual Environment Builder and the
Walkthrough Controller that are described in Chapter 3.

Chapter 5 shows the results obtained and uses several screenshots of a sample
scene created by our program.

At the end, Chapter 6 gives the conclusion of this thesis and suggests some of the

possible future work.

2 Background and Related Work

Over the past years, extensive research has been done on supporting camera
motion in virtual environments, including to assist the user in controlling the camera and

to control the camera automatically.

2.1 Manually Camera Control

A number of authors have studied techniques to support the motion directed by
the user. For example, A.J. Hanson and E.A. Wernert [9] proposed a unified
mathematical framework for incorporating context-dependent constraints into the
generalized viewpoint generation problem. Detailed examples have been worked out and
presented for the particular case of a 3D through-the-screen display controlled by a 2D
mouse. The basic strategy is to supply a set of view-determining data at each sample
point of a “virtual sidewalk,” along with possibly state-dependent procedures to create
the actual view to be presented. Ultimately, it is up to the designer to limit the viewer’s
freedom of navigation enough to focus attention and prevent loss of context, but not so
much as to disturb the feeling of exploration and discovery appropriate to the viewer’s
task.

J. D. Mackinlay, S. K. Card, and G. G. Robertson [10] described a technique
called point of interest logarithmic motion, which offers an improvement in the
techniques available for targeted 3D viewpoint movement, and which is useful when
users wish to rapidly access many objects or objects with great detail. In this technique,
the user starts by selecting a point of interest. This information is used to simplify the

user’s control task, resulting in movement that is both rapid and controlled. On each

animation cycle, the viewpoint is moved the same relative percentage of the distance
toward the point of interest target. Thus the movement is rapid when the user is distant,
but slow and controlled when very near the target.

Even though the main focus of the system described in this thesis is automatic
camera control (in other words, path finding), our system also provides the basic manual
camera control by keyboard or mouse to allow users navigate inside a 3D virtual
environment. The manual walk-through functions include moving the camera linearly
(forward/backward, right/left, and up/down), turning the camera (yaw/pitch/roll), and
rotating the camera with respect to a particular point. However, the methods to assist the
user in controlling the camera [9, 10] do not assist the user in actual navigation to a
particular goal. Consequently, we next discuss other related research that has been done

onh automatic camera control.

2.2 Automatic Camera Control

The area of research on automatically controlling the camera can be roughly
divided into two groups of techniques, including planning camera motion as a sequence
of shots, generating camera motion to track a moving guide, and generating a collision-

free camera motion from a start to a goal placement through a virtual environment.

2.2.1 Planning Camera Motion as a Sequence of Shots

There are some papers that study the computation of effective fixed camera
positions to assist the user in performing certain (manipulation) tasks, the so-called “shot
systems”, and the shots are often calculated by solving a set of constraints [11, 12, 13].

For example, S. M. Drucker and D. ZSeltzer [12] proposed a method of encapsulating

camera tasks into well defined units call “camera modules”. Through this encapsulation,
camera modules can be programmed and sequenced, and thus can be used as the
underlying framework for controlling the virtual camera in widely disparate types of

graphical environments. These systems do not plan obstacle-avoiding motions.

2.2.2 Generating a Camera Motion to Track a Moving Guide

Most previous work on planning camera motions is directed toward systems in
which the camera must follow an object: third-person games are a good example. This
area can be roughly divided into two groups of techniques.

To start, one family of techniques assumes the path of the guide to be unknown.
For instance, H.H. Gonzalez-Banos, C.Y. Lee, and J.C. Latombe [14] proposed an
algorithm that computes a motion strategy based exclusively on current sensor
information — no global map or historical sensor data is requested. The algorithm is
based on the notion of escape risk and the computation of an escape-path tree. The
escape-path tree is a data structure storing the most effective escape the observer’s field
of view. Also, N. Halper, R. Helbing and T. Strothotte [15] introduced a way to compute
visibility constraints-based for an arbitrary number of points. Their camera system works
for arbitrary dynamic scenes and spatial complexities of environments. The camera needs
no specialized collision information. They were the first to provide a constraint-solver
based on existing camera state and motion characteristics. The method produces
intelligent “nearest-best-fit” frame-coherent camera animations in real-time by reacting to
future conditions.

The second group of techniques assumes the motion of the object is known

beforehand. O. Goemans and M. Overmans [5] presented a technique to generate a

camera motion such that the camera tracks a guide moving through a known environment
along a known path. The motion planner applies a single-shot (Probabilistic Roadmap
Method) approach to construct a graph in the free configuration space. A substantial
performance gain is accomplished by a technique which determines whether a node or
edge should be added to the roadmap based on its usefulness. The resulting camera path
is smoothed to improve the path quality.

Our problem setting is rather different from the ones studied above. It requires
motion planning rather than reactive behavior, and therefore the techniques above are not
suitable to solve our problem, which is generating a collision free camera path from Start

to Goal.

2.2.3 Generating a Collision Free Camera Motion from Start to Goal

In this section, we present work that has been done in the field of camera path

planning.

2.2.3.1 Intelligent Path-Finding

B. Stout [7] summarized two major path-finding approaches, in which the
vicinities are made of tiles — rectangular pixmaps of predetermined size. The first
approach is finding the path while moving, and there are three obstacle-avoidance
strategies:

Movement in a random direction. If the obstacles are all small and convex, the
entity can probably get around them by moving away a little bit and trying again, until it

reaches the goal. A problem arises with this method if the obstacles are large or if they

are concave; in this case, the entity can get completely stuck, or at least waste a lot of
time before it stumbles onto a way around.

Tracing around the obstacle. Fortunately, there are other ways to get around. If
the obstacle is large, one can do the equivalent of placing a hand against the wall and
following the outline of the obstacle until it is skirted. The problem with this technique
comes in deciding when to stop tracing.

Robust tracing. A more robust heuristic comes from work on mobile robots:
"When blocked, calculate the equation of the line from your current position to the goal.
Trace until that line is again crossed. Abort if you end up at the starting position again."
This method is guaranteed to find a way around the obstacle if there is one. However, it
will often take more time tracing the obstacle than is needed, making it look pretty
simple-minded-though not as simple as endless circling.

The second approach is planning the path before moving. The entire path is
calculated in advance before any move. There are several path algorithms, including
Breadth-first search, Bidirectional breadth-first search, Dijkstra's algorithm, Depth-first
search, Iterative-deepening depth-first search, Best-first search, and A* Search. We will
not discuss this approach in detail. The reason is that the second approach is not related to
what we are doing since we do not pre-calculate the entire path.

Compared to the approach that we are proposing in this thesis, the background
and environment are rather different. Our system is based on a 3D environment, which is
using 3D objects, instead of 2D images made of tiles, for the background/environment
and the vicinities. However, we have a generally similar concept of the obstacle-

avoidance strategies, for example, moving in certain direction, tracing around the

obstacle, and combined all the strategies so that we are able to include most of the
situations. Due to different build-up environment, the implement algorithms are certainly

different.

2.2.3.2 Robot Motion Planning

J.C. Latombe [16] presents three general concepts for robot motion planning if a
start configuration and a goal is given and a path to the goal is calculated while avoiding
obstacles. The presented methods are called roadmap, cell decomposition and potential
fields.

Roadmap methods capture the connectivity of the free space in a network of one-
dimensional curves R, called a roadmap. For path planning the initial and goal
configurations are connected to R, and R is searched for a path between these points. The
visibility graph and Voronoi diagrams are examples of techniques based on roadmaps.

Cell decomposition methods decompose the free space into cells in such a way
that a path between any two configurations can be easily generated. A connectivity graph
is generated and with this a continuous free path is computed.

Potential field methods discretize the free space into a fine rectangular grid. A
particle moves through the grid under the influence of attractive forces (introduced by
goals), and repulsive forces (introduced by obstacles) thus generating a path. Compared
with roadmap and cell decomposition, potential fields are more efficient. However, they
may not always find a solution and they may get stuck in local minima of the potential.

S. Beckhaus, F. Ritter, and T. Strothotte [6] introduced CubicalPath, a dynamic
potential field-based camera control system that helps with the exploration of virtual

environments. The potential field adjusts itself when objects of interest are viewed by the

camera. Therefore, objects lose their attraction and after a while the camera moves to the
next interesting object. As the geometry is completely transformed into cubes, the
CubialPath method operates only on the number of cubes that define the cube space. It
uses an “abstract” and simplified version of the geometry data through its cubes.

S. Bandi and D. Thalmann [17] divide the space into a 3D grid of uniform cells.
Then with the A* algorithm, which is a roadmap approach, the shortest path between

given points x and y is computed.

2.2.3.3 Finding Path in 2D Games

C. A. Mandachescu [4] proposed a framework for game design in which all
objects have a recalculated bounding box. Polygons with four or more edges (depending
on the accuracy desired and the shape of the object) represent the bounding boxes. They
are automatically generated at the creation of the object and are filtered to minimize the
number of vertices while preserving the overall aspect of the object.

The vertices of all the bounding boxes from a region of interest (situated in the
vicinity of the direct path from the Source to the Target) are dynamically triangulated
using a triangulation algorithm. The result of such a triangulation is a 2D mesh situated in
the empty space available for movement. None of the edges generated by triangulation
will cross any hard object (source, target, obstacle).

A path from the Source to the Target is then derived by navigating on the edges
generated by triangulation as well as on the contours of the hard objects. Further
smoothing is done by removing redundant points from the discrete path while avoiding

collisions.

10

2.2.3.4 Motion Planning for Camera Movements

D. Nieuwenhuisen and M. H. Overmars [8] described an approach to
automatically planning camera motions in first-person views of virtual environments. The
technique is based on a novel application of the Probabilistic Roadmap Planning
approach originally developed in robotics. In this approach the user simply specifies a
required goal position (and orientation) using, for example, a map, and the system
automatically computes a smooth camera motion from the current position and
orientation to the required position and orientation. As preprocessing the approach uses
the probabilistic roadmap method to compute a roadmap through the environment. When
a camera motion is required a path is obtained from the roadmap which is then improved
by various smoothing techniques to satisfy camera constraints. The method described
allows for free-flying camera motions, either on a constraint surface or in space.

All of the research described in this section depends on discretization of the entire
virtual environment by predefined units or prior calculation of the path, and therefore is
not applicable to our problem. However, we have gained different ideas and learned
various methods by studying previous work. In this thesis, we propose a new technique to
find a path for camera motion without decomposing the free space into discrete units and

also without pre-calculating the path or road map.

11

3 Design

This thesis represents a solution for walking in a human-like way through a 3D
virtual environment. In order to experiment with automatically controlled camera
movement, we needed a three-dimensional virtual environment. Accordingly, the first
task was to construct a suitable 3D environment. Since this is a complex task, we chose to

start by implementing a software tool to help with the construction of such environments.

3.1 3D Virtual Environment Builder

The 3D Virtual Environment Builder is a software tool used to build up a 3D virtual
environment. It is a tool that includes its own types of objects and is able to load an
object and a 3D scene from data files, adjust objects in the 3D scene, and save all the
adjustment for further usage. In addition, it may generate a floor plan in order to provide
an overall view of the entire 3D virtual environment as well as allow users indicate a
target position for camera movements. The 3D Virtual Environment Builder may also
convert the position from the window coordinates (by mouse event) to the world
coordinates, a feature that we will need later.

Figure 3-1 shows the generic architecture diagram of the 3D Virtual Environment

Builder.

12

3D Virtua
Environment
Builder

3D Virtual

Floor Plan
Environment Processor
Editor

Generator

)
' Mouse Event
%..............._d.e.te.cti,o.n,......

|

Oli‘tput Convert

! o

Figure 3-1: The generic architecture diagram of the 3D Virtual Environment Builder

13

3.1.1 3D Virtual Environment Editor

The 3D Virtual Environment Editor is used to create and modify a 3D virtual
environment. A 3D environment, for example, a house or a building, contains multiple
rooms separated by walls, and each room has various pieces of furniture and other
accessories. Therefore, we consider only two major objects, furniture/accessory and
wall/floor, in a 3D environment. Because the furniture or accessories usually have
irregular 3D shapes, a bounding box is constructed to enclose each object; this makes it
easier to locate the object’s position and volume in a 3D space. Consequently, 3D Virtual

Environment Editor uses three types of objects: 3D model, separator, and bounding box.

3.1.1.1 Defined Objects in 3D Virtual Environment Editor

First, a 3D model consisting of a triangular mesh is used to represent any furniture
or accessory (such as desks and chairs) in the 3D virtual environment.

Secondly, a separator is made up of polygons. Separators are used to represent
walls, floors and ceilings in the 3D virtual environment.

The last object is the bounding box. It is an area in the form of rectangle that

encloses each object in the 3D virtual environment.

3.1.1.2 Applied Functions in 3D Virtual Environment Editor

The 3D Virtual Environment Editor applies basic functions to its own objects,
including load, adjust, and save.

Above all, the 3D VE Editor needs to be able to load 3D models, separators, and a
3D scene with many 3D models. To load any of them, the 3D Virtual Environment Editor

imports information from a data file in a specified format. It requires different kinds of

14

information. for loading different objects. For instance, loading a 3D model needs the
model’s vertices, faces, texture information, and material information, and so on; loading
a separator requires the separator’s length in X, Y, Z axes, position, and orientation, and
so on; loading a 3D scene with many 3D models needs the position and orientation for
each model, and so on. After loading, users may make adjustments to the 3D scene. The
adjustments provided by the software include modifying any object’s scaling, translation,
and rotation in the 3D world coordinates, varying a particular object’s length, and altering
a particular object’s texture or color.

Users may save all the modification of the 3D virtual environment after making
the adjustments. The 3D Virtual Environment Editor will save all information into data

files.
3.1.2 Floor Plan Processor

3.1.2.1 Floor Plan Generator

In order to have an overall view of the entire 3D virtual environment as well as
allow users indicate a target position for camera moving automatically, a floor plan is
generated automatically, and then displayed on the screen. Previously, we’ve mentioned
that each object has its bounding box. Therefore, the Floor Plan Generator draws a floor
plan by collecting information about all objects’ bounding boxes, and then generating an

overall view of the scene while representing all objects in a shape of box.

3.1.2.2 Coordinate Conversion

We allow users to specify a point-of-interest target while automatically generating

a camera motion. Users may simply click on the floor plan to indicate the camera target

15

position; this provides a friendly interface. To achieve this, the program must transform a
point from the window coordinates to the world coordinates. The role of the Coordinates
Converter is to convert the window coordinates (2D) to the world coordinates (3D)
whenever a mouse event occurs.

When users click on the floor plan with the mouse, the Coordinates Converter
first converts the mouse coordinates from windows pixel (0 ~ windows size) to windows
coordinates (-1 ~ 1). How do we transform coordinates from 2D to 3D? As we know, the
floor plan is a top view, so we assume the camera always stay at the same height when
moving automatically. Thus, the Coordinates Converter only needs to compute the
values of X-axis and Y-axis in the 3D world coordinates and keep the value of Z-axis

constant.

3.2 Walkthrough Controller

Once a 3D virtual environment is built by the 3D VEB Controller, the
Walkthrough Controller allows users to navigate freely inside either manually or
automatically without hitting on any obstacles. Obviously, it mainly involves camera
movements. The camera in our case is always a first-person camera giving a subjective
viewpoint.

Figure 3-2 shows the generic architecture diagram of the Walkthrough Controller.

16

__Controller

Detector Handlef

Keyboard = Mouse Event.
Event

Manual Automatic
Walkthrough Walkthrough

Figure 3-2: The generic architecture diagram of the Walkthrough Controller

3.2.1 Event Handler

An interactive mode is necessary because the Walkthrough Controller allows
users to walkthrough inside the 3D virtual environment either manually or automatically.
Consequently, the Event Handler accepts both keyboard and mouse events as shown in

the list in Table 3-1.

17

Page Up/Page Down Camera roll

Mouse click on the floor plan = Camera move automatically to the target position

Table 3-1: Keyboard and mouse events

3.2.2 Collision Detector

Without any additional restrictions, the camera passes straight through any object
in a virtual world. This, however, doesn’t make any sense in the real world. Therefore, it
is essential to avoid obstacles so that the simulation will be much more realistic. This
requires that the program be aware of all the objects’ positions in a virtual scene; it can
do this by collecting all bounding box information. Then, before a single movement
either manual or automatic, the Collision Detector determines if the next target position

of camera movement can be accessed along with an arbitrary path.

3.2.3 Manual Walkthrough

The Manual Walkthrough contains the basic controls for camera movements so
that users are able to control navigation in the 3D virtual environment. The basic controls
(see Figure 3-3) include move forward/backward/left/right/up/down, pitch/yaw/roll, and
rotate left/right/up/down about a point, which is considered to be the point at which the

camera is currently looking.

18

.
»

Move Up/Down

A ~Rotate Up/Down

\4 I\</Iove Left/Right

X » X
i "Rotate Left/Right
ove Forward/Backward
2 Z Z
Assume the camera is locating Assume the camera is locating Assume the camera is
at the origin at the origin currently looking at the origin

Figure 3-3: Manual Walkthrough

3.2.4 Automatic Walkthrough

Having to manually control the camera to a target position is tedious for users,
especially when there are many obstacles in the way. Hence, when the user specifies a
target of interest, the system automatically generates camera motions to reach that target.
To start, the user indicates the target position. Given this input, the system first finds an
initial camera path, and then optimizes this path by removing the redundant path nodes.

Finally, the optimized path is smoothed to present users with a pleasing camera motion.

3.24.1 Find Path

The most important part of generating an automatic camera movement is to find a
valid path from the current position of the camera to another point, called the target point,
while avoiding obstacles. To do this, the program first detect if there is any collision
between the camera current position and the target. If collision occurs, it finds the closest
obstacle, and then tries to walk around the obstacle to approach the target. Meanwhile,
the program builds up a tree diagram for the entire possible path nodes, and will look up

the tree diagram until it finds a valid path. For example, as shown in Figure 3-4, we try to

19

go around the obstacle from its left side first. If it succeeds, we have a path: Start 2> Left
> Target. Otherwise, we give up the Leff node, and then try to reach Target from the
Right. If it succeeds, we have a path: Start = Right -> Target, otherwise the attempt to

find a path fails.

Figure 3-4: Finding a path.

3.24.2 Optimize Path

After finding a valid path from the start point to the destination point, optimizing
the path is necessary in order both to reduce the total number of the path nodes and to
make the path shorter. For example, assume we have 5 path nodes: Pstart, PN1, PN2,
PN3, and Ptarget. If no collision occurs traveling from Pstart to PN3, PNI and PN2 are
redundant path nodes, which only make the path longer and less realitic. Therefore, we
can remove all redundant nodes from the path, and rebuild a optimized path: Pstart >

PN3 > Ptarget.

3.2.4.3 Smooth Path

To present users with a pleasant camera movement, we finally must smooth the
camera motion by keeping the camera always pointed in the direction in which it is
moving, replacing sharp corners by smooth arcs, and moving the camera in a constant

speed.

20

4 Implementation

The 3D Virtual Environment Builder and the Walkthrough Controller were
developed in Visual C++ with OpenGL libraries, including GL, GLU, GLUT, GLAUX,

and GLUI etc.

4.1 3D Virtual Environment Builder

4.1.1 3D Virtual Environment Editor

As described previously, the 3D Virtual Environment Editor mainly includes

three types of objects: 3D models, separators, and bounding boxes.

Figure 4-1: 3D models Figl% 4-»2”:‘8\;'1)al'~ators Figure 4-3: A bounding box
First of all, 3D models, which must be in 3D-Studio File Format (.3ds) [1], are
used to represent any furniture in the 3D environment (e.g., desks and chairs), as shown
in Figure 4-1. The 3D Virtual Environment Editor can import 3DS files directly so that
on the user does not have to spend time building models. Moreover, instead of hard
coding, a file named 3d.txt saves all of the information related to a 3D model, including
the 3DS file name, scaling ratio, translation value in X, Y and Z axis, a rotation matrix,
and some information related to its bounding box. Thus, we can easily adjust the size,

position and orientation of every 3D model in the scene as well as its bounding box.

21

The data structure of 3d rxt is defined as:

{

char

float
float
float
float
float
float

struct t3DInfo

strFile[255];
scale;

Clex, ClenY, ClenZz;
CtranslateX, CtranslateY,
CrotateMatrix[16];

CtranslateZ;

The transformation matrix of a 3D model (43d) is constructed as follows:

M3d =

o O O =
O O = O

0 translateX scale 0 0 0

0 translateY) i 0 scale O 0
x rotationMatrix x

1 translateZ 0 0 scale 0

0 1 0 0 0 1

Secondly, separators, which are indeed made up of polygons, represent walls,

floors and ceilings in the 3D virtual environment as shown in Figure 4-2. The applied

adjustment for walls includes translation, rotation, length modification, and texture

alteration, etc. By putting them in appropriate positions and setting different textures,

walls can be used to separate and distinguish different areas (e.g., rooms and corridors).

Likewise, all information about separators is saved in a file named separator.txt for

customized subsequent adjustments.

The data structure of separator.txt is defined as:

{
int
float
int
float
float
float
float
float
int

struct dSpInfo

textureIDTop; // Texture ID of top

repeatTop; // Texture repesat time of top
texturelDBottom; // Texture ID of bhottom
repeatBottom; /7T : repeat time of bottom
lenX, lenY, lenZ; // Length

translateX, translateY, translateZ;// Translation
rotateM[16]; // Rotation
color; /7 Co

Colo
door; /7 indicator of ¥

loor Plan Gener

oy e
OO

22

The transformation matrix of a wall (Msp) is constructed as below:

translateX

Msp = x rotationMatrix

translateZ

0
0 translateY
Ji
0 1

DS S~
S D ~ O

The last object, bounding box is an area in the form of rectangle enclosing each
object in the 3D virtual environment as shown in Figure 4-3. In other words, each object
in this 3D virtual environment has its own bounding box. A 3D model’s bounding box
can be customized by resizing as well as repositioning, but a separator’s bounding box is
fixed by programmatically expanding certain distance according to the separator’s own
size. Details of the bounding box will be covered in a later section, Camera Controlled
Movement: Collision Detection.

Furthermore, the 3D Virtual Environment Editor provides a friendly user interface
(see Figure 4-4) for the previously mentioned customized adjustments, which includes
modifying any object’s scaling, translation, and rotation in the 3D world coordinates,

varying certain object’s length, and altering certain object’s texture or color, etc.

23

24

4.1.2 Floor Plan Processor

4.1.2.1 Floor Plan Generator

A floor plan is generated by collecting information about all objects’ bounding
boxes. For instance, the transformation matrices of a 3D model bounding box (M3dB)

and a separator bounding box (MspB) are respectively constructed as:

1 0 0 CiranslateX
0 1 0 CrranslateY i)
M3dB = M3d x x CrotationMatrix
0 0 1 CrranslateZ
0 0O 1
MspB = Msp

After constructing the transformation matrices above, the Floor Plan Generator is
able to draw all the objects’ bounding box with their appropriate length at the correct
position. The length of a 3D model’s bounding box (len3dB) is given in the file of 3D
models (3d.1xt), and the length of a separator (lenSpB) is generated programmatically by
extending the separator’s length, which is given in the file of the separator (separator.txt),

with a certain distance. Therefore,

len3dB = (ClenX,ClenY,ClenZ)
lenSpB = (lenX + extend,lenY + extend,lenZ + extend)

Figure 4-5 is a generated floor plan of the 3D virtual environment shown in
Figure 4-2. Note that the floor plan indicates the position of the door of each room. In the

screen view, doors are shown in red.

4.1.2.2 Coordinates Converter

25

When users click on the floor plan, the Walkthrough Controller will move the
camera move smoothly from the current position to the target position automatically. To
be aware of the target position, the Coordinates Converter needs to convert the clicked
position from the windows pixel coordinates to the 3D world coordinates. The procedure

for coordinate conversion is shown in Figure 4-6.

(0,00 ——> ot
], y1) 2, y2)‘
T By
(width, height)
In pixel In the window coordinates

L]

Sar |

,,,,,,

z

In the world coordinates

Jar ;

Figure 4-6: Coordinate conversion

26

Step 1:Once a mouse-click event occurs, the Coordinates Converter gets the clicked
position in windows pixel coordinates. The first step is to convert the position
from windows pixel coordinates (x/, y1) to windows coordinates (x2, y2), given
by:

= x1 — width/ 2 2= height /2 ~ y1
width/ 2 height /2

where width and height are the actual window size.
Step 2:The next step is to convert from window coordinates to eye coordinates. First, we
need to know (x2°, y2°), which is the value of (x2, y2) in the eye coordinates:
x2' x2 X2xXw y2' y2
— =""=x2'= == y2'=
w h
A 1 2 /2 1 2

Then, the Coordinates Converter gets the z component from the current camera

position (curX, curY, curZ) in the eye coordinates, and then convert the x and z
component of the clicked position from 3D window coordinates (x2, y2) in 2D to

eye coordinates (x3, y3, z3) in 3D.

z3 =curZ

23_= y2 :>y3=z?>><y2xh
z3 near 2x near
x3 x2 z3xx2xw
— = =>x3=——7—
z3 near 2x near

where curZ is the z component of the current camera position in the eye
coordinates.

Step 3: The last step is to transform from the eye coordinates to the world coordinates. In
this step, the Coordinates Converter simply gets the model-view matrix by calling

a GL function as follows:

27

glGetFloatv (GL_MODELVIEW MATRIX, transM.m);

Assume that (x, y, z) is the clicked position in the world coordinates, so:

x3
y3
X x3 X z3
transM .m x Y= »3 = Y =—1—
z z3 z| transM.m
1 1 1

The position in the world coordinates can be consider as transforming (x3, y3, z4)
by the inverted matrix [2] of transM.m. Consequently, the final form of the
equation is:
x3

= Inverse(transM .m) x

— N ¥

4.2 Walkthrough Controller

4.2.1 Event Handler

Figure 4-7: The W;;kthrbugh Controller Ul

Table 3.1 in section 3.2.1 lists all of the acceptable keyboard and mouse events.
However, a good interactive system does not require users to remember the relationship

of the keys and functions. Therefore, a friendly user interface of the Walkthrough

28

Controller is provided, as shown in Figure 4-7. It includes all the camera controls and

provides hint for the corresponding hot keys.

4.2.2 Collision Detector

Collision detection is critically important in walkthrough simulation. As we
described previously, there are various different shape objects in a 3D scene; therefore,
each object is enclosed by a bounding box. In our case, we have chosen to use axis-
aligned bounding boxes (AABBs) to bound objects and to use them in a method checking
for collisions between such a box and the camera. The collision detection is accomplished
by using a ray/polygon intersection check. Note that only bounding boxes can be
embedded in a method but not an object because the object information comes from a
specified data as we describe in 4. 1.1 3D Virtual Environment Editor.

The reason for choosing AABBs is that the geometric attributes used in the
intersection calculation do not change. The AABBs is defined by its minimum and
maximum points (6 floats), face normals (6), and face vertices (4 vertices of 6 faces) as

follows:

struct Vertices
{

float x1; // Mind
float x2; /70
float yl; // Minim
float v2; // Maxim
float zl; // M
float z2; // Maxim

struct AABBs

Vertices vertex;
Coordinate faceNormal([6]; // The normal of 6 faces.
Coordinate faceVertex[6] [4]; // Four vertices of &

29

Figure 4-8 shows an AABBs bounding box and details of its definition. There are
six faces in total: front (0), right (1), back (2), left (3), top (4) and bottom (5). In addition,
the order to travel the vertices of each face is counter-clockwise (left-top, left-bottom,

right-bottom, and right-top).

}9 Top (4)

Front (0)

- Bk

- Riohtl(1)

Vertices
traveling order

T Bottom 5)

Figure 4-8: An AABBs definition.

In the first stages of the project, we assumed that the camera is a point as shown
in Figure 4-9, like a bug flying through a building. To provide a more realistic simulation
of walking through, the camera is currently modeled by a segment of a given certain
height as shown in Figure 4-10 to prevent the camera from giving the appearance of

flying over obstacles.

Camera
®

Camera (start)

Figure 4-9: Assume camera as a point. Figure 4-10: Assume camera as a segment.

In the current camera setting, when camera movement occurs, we check to see if

the camera collides with any obstacle by using a ray/polygon intersection check.

30

However, it would not be accurate if we checked only the ray/polygon intersection with

rays of the two vertices of the camera segment. Therefore, we check also the ray of one

of the mid-points of the camera segment as shown in Figure 4-10. If more accuracy is

required, more intermediate points will need to be involved in the computation, which

will then require longer to execute.

To reduce the computation to a minimum during movement, we check only the

obstacles that could actually generate a collision [3]. We start by creating an Active Area

that will enclose the end points (start and target) of the camera segment as shown in

Figure 4-11.
Camera (start)
L EEEEPR
Pstart- . :
; a 5
X e i
‘ i
? A
i E
: ;
: !
: :
H . i
‘ ~. Ptarget
-,“..mw.,..“.mﬁ...m,.mmmmmwmwﬂm_,m«.m,,mmwmﬁé
(a) Top View Camera (target)
Camera (start)

Pstart} " =~ T

; ;
PStArt2 @< omz == mm oo ko -5

H 4 e - s

v e L Ptarget2

(b) Side View Camera (target)

Figure 4-11: The box of Active Area.

Psiart]1Ptargetl and Pstart2Ptarget2 are the diagonals of the top face and bottom

face of the Active Range box as shown in Figure 4-11 (b). The height of the camera

31

Pstart1Pstart2 (or PtargetlPtarget2) is the height of the Active Area box. According

to each obstacles position, the Collision Detector only checks the obstacles that locate
inside the Active Area for collision detection so that the program will be more efficient.
To detect if collision occurs, the program computes the intersection distance from
the ray defined by camera start and target position against all face planes of the obstacles
inside the temporary range. If distance is negative, it returns no intersection. Otherwise, it
computes the intersection point using the distance check if the intersection point is inside

the polygon. If so, it returns the intersection of the closest colliding obstacle.

4.2.3 Manual Walkthrough

When camera movements occur, the Manual Walkthrough method finds the
appropriate values of the parameters for the OpenGL function gluLookAt(), which are
eye position, at position, and up vector, to place the camera with an appropriate position
and orientation.

Because transforming a point (e.g., eye or af position) to a certain place involves
some matrix calculations, first of all, a Matrix class was built to implement most of the
matrix manipulations, for instance, loading an identity, translation, scaling, or rotation
matrix, multiply two matrices, and inverting a matrix, etc. Then, in the Camera class, we
linearly move the eye and at position along X, Y, or Z axis when moving left/right,
up/down, or forward/backward; rotate and translate the at position and the up vector
correspondingly when doing pitch/yaw/roll; rotate and translate the eye position and the
up vector when turning left/right or up/down.' The basic functions of the camera class are

listed below:

32

// Camera look-at,

void lookAt(void);

// Camera move along X (left/)
void Camera::moveX(float direct):

// Camexra move along Y (up/down)
void Camera::moveY (float direct):;
/7 Camera move along % (forward/backward)
void Camera::moveZ(float direct);

// Camera pitch about a unit vecter (vx, vy, vz}
void Camera::pitch(float direct, float vx, float vy, float vz):

// Camera yvaw aboub a unit vector (vx, vy, vz}
void Camera::yaw(float direct, float vx, float vy, float vz);

// Camera roll about a unit wvector (vx, vy, vz)

void Camera::roll (float direct, float vx, float vy, float vz);

// Camera rvoate (left/right) along a unit vector (vx, vy, vz} about a point P
void Camera::turnX(float direct, float vx, float vy, float vz, Coordinate p):

/7 Camera roate (up/down} al g a4 unit vector {wvx, vy, vz} about a point P
void Camera::turnY(float direct, float vx, float vy, float vz, Coordinate p);

As an example, the following shows the method for camera rolling:

void Camera::roll (float direct, float vx, float vy, float vz)

{
float angle = stepAngle * direct;

/7 vk, wy, vz) 1s a unit vector that the camera rolls about.
transM. loadRotateMatrix (angle, vx, vy, Vvz);

/ Y is the oactual UP ve
up = transM.transformPoint (camY);

To obtain a realistic effect during a walkthrough simulation, the Camera class
should always keep the up vector of the camera appearing to point upwards in the view.
For instance, even if the camera currently is looking up or down, moving up/down or
forward/backward should always be horizontal instead of along with the Y or Z axis of
the eye coordinates. See the case of forward in the following figure (Assume X-axis of

the world coordinate is the floor level).

33

Eye Coordinates

Eye Position
Forward Direction
N

N

)

» X At Position

World Coordinates

Z

Figure 4-12: The box of Active Area.

Take yawing as another example. In walkthrough simulation cases, the ideal
yawing motion is obtained by rotating the ar position and the up vector about the Y-axis
of the world coordinates rather than the eye coordinates. Otherwise, after some combined
motions of pitch and yaw, the camera will be out of the horizontal, which is less realistic
because people generally keep their eyes in a horizontal plane however they move their
head.

Therefore, the solution is that in walkthrough simulation, some movements are
still relative to axes of the eye coordinates, but some movements need to be with respect
to the axes of the world coordinates. Consequently, one of the nice things about our
Camera class is that it does this calculation (“twisting” the camera along the line of sight)

automatically.

34

4.2.4 Automatic Walkthrough

4.24.1 Find Path

We apply four principal rules on finding a valid path in order to cover most of the
cases in a virtual environment built by the 3D Virtual Environment Editor. As described
previously, all objects are enclosed with a bounding box; hence, we only have cuboidal
obstacles in the 3D dimension and rectangular obstacles from the top view. Assuming
that the camera keeps its height constantly during an automatic walkthrough, we consider
only two dimensions (top view) while finding the path and will take the third dimension
(height) into account for collision detection while the camera is moving. The following
illustrates how the four principal rules for a path work, and we illustrate them with some

specific cases.

Rule #1: Intersection

Pstart

Ptarget

Figure 4-13: Rule #1: Intersection.

(1) Find Point PO by moving the intersection of segment PstartPtarget with a

distance d towards Pstart.

35

(2) Find Points P/ and P2 by traveling parallel along border of the closest
obstacle in both directions.
(3) Between P1 and P2, pick one of them to be a path node if and only if:
e it does not have any intersection with the same obstacle while connecting
itself and Prarget,
¢ it does not have any intersection with any obstacle while connecting itself
and PO.
Note that P/ will be first checked; P2 won’t be considered anymore if P/ is
valid to be a path node.
(4) Set the newest path node as Pstart, and then go back to step (1) until the path

meet the destination Prarget.

Rule #2: Around Obstacle

Pstart

Ptarget

Figure 4-14: Rule #2: Around Obstacle.

(1) By applying Rule #1, we find PO, P1, and P2. If neither of P/ and P2 is valid
to be a path node, find P3 and P4 by traveling parallel along the two

neighboring borders of the current obstacle.

36

(2) Chose one of them to be a path node by checking for collision detection. Note

that P4 won’t be checked if P3 is valid.

Rule #3: Recursive Sub-path

Recursive Sub-Path

P2” Pstart/P0”
......

Ptarget

Figure 4-15: Rule #3: Recursive Sub-path.

(1) With Rule #1 and Rule #2, we find PO, P1, P2, P3, and P4.
(2) However, both path P/ = P3 and path P2 = P4 have collision with other
obstacles. We will find a sub-path from one of those two paths by recursively

calling the Find Path process. Note that P2 > P4 won’t be checked if P/ 2>

P3 is a valid path.

(3) By applying Rule #1 and Rule #2, we find a sub-path PO” - P1” -> P3” that

leads to the goal.

Rule #4: Eliminated Point

37

Figure 4-16: Rule #4: Eliminated Point.

(1) By applying Rule #1, chose P2 to have a path Pstart > P0 > P2/ P0’, and
then, find P1’ and P2’ at PO’

(2) If, after choosing PI°, we find out that PI’ > Ptarget collides with the same
obstacle again, then path finding will stuck in a loop with these two objects.
The solution is to eliminate P/ ’.

(3) P2’ may not be accessible because it is located inside an object. In this case,
P2’ is eliminated.

(4) From the path node tree on the right in Figure 4-15, we can see the path is not
able to reach the destination via the branch of P2. Consequently, we give up
the P2 branch, and go back to P1.

(5) With Rule #2, we find P3, which can finally reach Prarget.

Note that an eliminated point can no longer be used with any rules.

With all four principal rules, we can find a valid path in most of the situations.

Note that we never apply these four rules randomly, instead, we use them in order. For

example, Rule #1 is always the first rule to use for path finding, and Rule #2 is used only

if there is no valid path found with Rule #1. Likewise, Rule #3 is used only if both Rule

38

#1 and Rule #2 don’t work and so on. Figure 3-17 shows a sample for finding a valid

path from Pstart to Ptarget with Rule #1, Rule #2, and Rule #3.

Figure 4-17: Find a valid path with Rule #1, #2, and #3,

4.24.2 Optimizing the Path

After finding a valid path from the start point to the destination point, optimizing
the path is necessary in order to reduce the total amount of the path nodes and make the

path nicer. The optimizing solution is to remove the redundant path nodes.

PNO PN9O
PN8 PN8

PN5 PN6 PN7 PNS5 PN7

Before optimization After optimization

Figure 4-18: Optimizing a path.

39

In Figure 4-18 (same example as Figure 4-17), there are a set of path nodes PNO,
PNI, ..., PN9. The optimizing process is shown as following:

(1) Begin with PNO.

(2) Check the segment from this point to one of other points (in reverse order,
PN9, PN8, PN7...) for collision detection.

(3) If only the segment m doesn’t have any collision occur, go back to
step (2) with PN,,+; until the last path node.

(4) If one of other segments P_M,m; also doesn’t cause any collision, remove

the path node between n+/ and m-I. For example, see Figure 3-9, no collision

occurs with segment PNOPNS5 , thus PNI, PN2, PN3, and PN4 are removed
from the path node set.

(5) Go back to step (2) with PN, until the last path node.

4.2.4.3 Smooth Path

We have three processes for path smoothing: Camera Orientation, Corners with

Circular Arcs, and Constant Speed.

Process #1: Camera Orientation

The goal of this process is to set the camera orientation to where it is going. Let’s
say the camera is currently looking at a point Pat, so Pat has to move to a desirable

position, which is a point that aligns with the next path node. Note that

either PNOPat or PNOPat'is a vector that shows the direction of the camera currently

looking at. Thus, when the orientation is changing, the Par is always turning about the

40

current camera position along the circle with a certain radius as shown in Figure 4-19, in

which the arrows show the camera orientation.

Figure 4-19: Change the camera orientation.

The first step is to find the equation of the straight line between the point of the
camera current position and the point of the next path node position (which is the camera
orientation target). For instance, in Figure 4-18, we will begin with finding the equation
of PNOPNI . The equation is represented as:

yv=mx+b=>mx—y+b=0

yi-y0
xI—x0

where m =

, which is the slope of the straight line.

Then, according to the slope value and the relative position of where the camera
currently looking at, we can decide the camera should change its orientation clockwise or
counter-clockwise. The following figures list all the cases:

e When having positive slope (m>0), Pat is:

(1) on the left side of the line if mx-y+b < 0;
(2) on the right side of the line if mx-y+b > 0;

(3) on the line if mx-y+b = 0.

41

Therefore, the camera will adjust its orientation correspondingly as shown as

follows:
Y _ Y
ARSI NI
at
X X
PNO Pat .~PNO
Counter-clockwise Clockwise Keep its orientation ~ & Either way
Y Y Pat
PNO PNO '.
X X
Pat
PN1 PN1
Clockwise Counter-clockwise Keep its orientation Either way

Figure 4-20: Change the camera orientation while having positive slope.
e When having negative slope (m<0), Pat is:
(1) on the left side of the line if mx-y+b < 0;
(2) on the right side of the line if mx-y+b > 0;
(3) on the line if mx-y+b = 0.
Therefore, the camera will adjust its orientation correspondingly as shown as

follows:

42

Y Pat Y
PNO Q'PNO
Pa X
PN1
Clockwise Keep its orientation Either way
Y Y Y
PNI PN1 PNI
Pat e A
3
\ X {at\ X
PNO PNO .
Clockwise Counter-clockwise Keep its orientation Either way

PN1

Figure 4-21: Change the camera orientation while having negative slope.

When having zero slope (m=0), Pat is:
(1) above the line if mx-y+b > 0;
(2) below the line if mx-y+b < 0;

(3) on the line if mx-y+b = 0.

Therefore, the camera will adjust its orientation correspondingly as shown as

follows:
Y Y
PNO Pat Pat PNO
X ag- X
PN1 PN1
Clockwise Keep its orientation Either way
Y Y
PNl Pat PNI Pat
X XDy
PNO PNO
Clockwise Counter-clockwise Keep its orientation Either way

Figure 4-22: Change the camera orientation while having zero slope.

When having no slope (i.e., infinite slope), Pat is:

43

(1) on the left side of the line if mx-y+b > 0,
(2) on the right side of the line if mx-y+b < 0;
(3) on the line if mx-y+b = 0.

Therefore, the camera will adjust its orientation correspondingly as shown as

follows:
Y
Pat 4
PNO PNO
X X
Pat
PN1 PN1
Counter-clockwise Clockwise Keep its orientation Either way
Y e, ' Y
Py f PNt...A PNI PNI
>
X Pat X X
* PNO PNO PNO
Clockwise Counter-clockwise Keep its orientation P? Either way

Figure 4-23: Change the camera orientation while having infinite slope.

Process #2: Corners with Circular Arcs

In this process, we are willing to give circular arcs at the corner so that users will
have a pleasing navigation with the automatic smoothed camera movements. Notice that
we are not giving a curve because collision might happen with curves as shown in the
dashed line of Figure 4-24 (a). Hence, we only put a circular arc at the corner part of the

path and the rest of the path keep in straight line as shown in Figure 4-24 (b).

44

-
-
e e - ——— T

~

(a) Smoothing a path with curves.

(b) Smoothing a path with circular arcs at corners.

Figure 4-24: Smoothing a path with curves in (a) or circular arcs in (b).

The following figure, Figure 4-25, shows how to find the circular arc at a corner.

PNO PR

L. PN2
- @

Figure 4-25: The circular arc C1C 2 ata corner.

Assume that we set = 0.2. We have:
Cl=PNO+(PNI-PNO)x(1-t)
C2=PNI+(PN2—-PNI)xt
Since we want an equilateral triangle ACOCIC2 , we find C0 by rotating the point
C2 60 degrees about CI. Then, we draw a circle about C0 with radius coc1 (orm).

The circular arc CIC2 is the circle corner we wanted.

Process #3: Constant Speed

45

With the previous two processes, the camera motion contains changing
orientation (which is similar to a person staying in one place but turning his or her head
to look somewhere else), moving along a straight line, and moving along a circular arc at
the corner. To achieve the goal of moving constantly, we must keep a constant speed
while the camera is changing its orientation and moving along either a circular arc or a
straight line.

Combining Process #1 and Process #2, take Figure 4-26 as an example, assuming
the start is PNO and the target is PN2. In this figure, we separate the actions from the
Process #1 and Process #2 into (a) and (b) in order to illustrate more clearly even though
the actions are actually continuous. The camera movement from PNO to PN2 can be

broken down into the following actions:

(1) At PNO, change the camera orientation from Pat0 to Patl along PatOPatl as
shown in Figure 4-26 (a).

(2) After looking right at the target position, move the camera linearly
alongm as shown in Figure 4-26 (b).

(3) At C1, change the camera orientation from Patl’ to Pat2 along Patl' Pat2 as
shown in Figure 4-26 (a).

(4) Then, Move the camera from C/ to C2 circularly along C1C2as shown in
Figure 4-26 (b).

(5) After reaching C2, move the camera from C2 to PN2 linearly alongm

as shown in Figure 4-26 (b).

46

The radius of the circle of changing
orientation constantly equals to Ro.

PN2
N

PNO e “

(b) Moving the camera along a path.

Figure 4-26: Keep moving in a constant speed.

In the Process #3, the program divides the path into equal steps (as shown in
Figure 4-26) according to the length of the path so that the camera will move at constant
speed. Assume that the user gives the program a constant speed named cSpeed. For the
linear motion, the program simply moves the camera in distance cSpeed for each step:

distances—— = distance ——— = cSpeed

For the circularly motion or turning, the program needs to computer how many degrees

to move or turn on the circle path for each step.

degree; - e
2nRox ——Fa0bal - oSpeed = degree; - ~=-——
Rox - cSpee CLTCCs obar 27Ro

cSpeed x 360
deg}‘eer?a”'ﬁaﬂ =W
degree ‘M

Cit2 = HrCOCI

47

After calculating the distance of each step for linear motion and the degree per step for
circular motion, we can divide a path into steps and the camera is able to move with

constant speed.

48

Our system provides such a friendly user interface (see Figure 5-1). The entire 3D

virtual environment is displayed in the graphic main window. Figure 5-1 shows the top
view, which allows users to adjust the 3D objects in place easily with the provided
functions. Also, the view can be switched to the “human” view so that users can navigate
through the 3D virtual environment. As an example, we are constructing a virtual house.
While switching to “human” view, according to different position of the camera, the

result is shown below from Figure 5-2 to Figure 5-8.

49

S

S

ing room

=

mer room

iv

D
L

L .
N -

tual house -

tual house - Second bedroom
tual house

ir
ir
ir

\J
v

R G
- -

5
7

-3: Vi

5
5

0
N
.

.

igure
igure

F

F

ing room

v

Bathroom

tual house - Reading room
L
tual oue

tual house

ir
ir
ir

v
v

5-4:V
5-6
-8

5

Fgure

-
S
L
- - -

Figure
igure

F

50

Figue 5-9 : 3D Virtual Environment Editor User Interface — Left Command Window

Figure 5-9 shows the left command window of 3D Virtual Environment Editor in

Figure 5-1. The provided functions include modifying any object’s scaling, translation,

51

and rotation in the 3D world coordinates, varying certain object’s length, and altering

certain object’s texture or color etc.

Figure 5-10 : Walkthrough Controller User Interface — Bottom Command Window

Figure 5-10 shows the bottom command window in Figure 5-1. It includes
functions of moving forward/backward/left/right/up/down, pitching/yawing/rolling, and
rotating left/right/up/down about where the camera currently looking at.

Figures 5-11 to 5-16 depict the floor plan of the virtual house. The floor plan
indicates the position of the door of each room. In the screen view, doors are shown in
red. For automatically walkthrough, the user simply mouse-clicks on a valid position
inside the virtual house and the system will find a path automatically by applying the four
path-finding rules respectively as we described previously. After a initial path is found,
the system optimizes and smoothes the path so that the path is more reasonable and
provides the user with a pleasant navigation. The figures below illustrate six situations in
which the generated path describes camera movement from one room to another.
Experiments show that our technique finds a valid path automatically in almost all cases

inside a 3D environment.

52

[oot vhe oo Plan 0 The Flaor Blan

Lo vie Fh}m Plate, . x| R The flmar $‘l gy

S Fhe: Floor B £

s

i
L
Figure 5-15 : Automatic walkthrough (5) Figure 5-16 : Automatic walkthrough (6)

53

6 Conclusions and Future Work

In this thesis, we have described a new approach to automatically planning
camera motions in a 3D virtual environment. The technique needs neither to pre-
decompose the free space into any kind of uniform units nor to pre-calculate the path or
road map. As a preliminary step, we developed a tool to dynamically modify the objects
inside the 3D virtual environment. Because the space is not pre-divided into many
uniform units, it is very easy for the system to handle the dynamic adjustments. There is
only one thing the system needs to be pre-defined first, that is, a bounding box around
each of the 3D objects. Cuboids have been chosen to represent the bounding boxes.
Combining the approach of finding a valid path according to the four finding-path rules
and the techniques of optimizing and smoothing the initial path, we obtained a system
that can help with the exploration of virtual environments. Experiments with 3D virtual
environment walkthroughs verified the quality of the resulting motions.

The system is quite reliable, yet there are few things can be done to make it better
in the future:

» Improve the 3D Virtual Environment Editor by adding functions such as read

some other 3D objects beside 3DS files and import new 3D objects.

» Build a more complex 3D virtual environment to experiment and help to

improve the finding path technique. A more complex 3D virtual environment
implies to a building that has a few levels so that the camera motion will

involve climbing up stairs and ladders.

54

» This thesis puts more emphasis on finding the path than on optimizing and
smoothing it. Improving the techniques of optimizing and smoothing is left as

future work.

55

References

[1] D. Ben. (2001). 3DS Loader Tutorial. Retrieved September, 2004 from

http://www.gametutorials.com/gtstore/c-1 -test-cat.aspx

[2] P. Grogono (2003). Concordia University Graphics Library. Retrieved October, 2004

from http://www.cs.concordia.ca/~grogono/CUGL/

[3] Alan W, F. Policarpo (date). The anatomy of an advanced games system II. In A.
Editor (Eds.), 3D Games Animation and Advanced Real-time Rendering. pp. 83-129,
Addision-wesley.

[4] C.A. Mandachescu (2003). Path Finding in 2D Games. Dept. Computer Science,
Concordia University, Montreal, Quebec, Canada, April 2003.

[5] O. Goemans, M. Overmans (2004). Automatic Generation of Camera Motion to Track
a Moving Guide. Institute of Information and Computer Sciences, University of Utrecht,
the Netherlands, July 2004.

[6] S. Beckhaus, F. Ritter, T. Strothotte (2000). Cubicalpath — Dynamic Potential Fields
for Guided Exploration in Virtual Environments. Proceedings Pacific Graphics 2000
(Hong Kong, China, October 2000), pp. 387-395, Los Alamitos, 2000. IEEE Computer
Society.

[7] B. Stout (1999). Intelligent path-finding.
http://www.gamasutra.com/features/19990212/sm_01.htm, 1999.

[8] D. Nieuwenhuisen, M.H. Overmars (2003). Motion Planning for Camera Movments
in Virtual Environments. Institute of Information and Computing Sciences, Utrecht

University, the Netherlands, January 2003.

56

[9] A.J. Hanson, E.A. Wernert (1997). Constrained 3D Navigation with 2D Controllers.
Computer Science Department, Indiana Unviersity, 1997.

[10] J.D. Mackinlay, S.K. Card, G.G. Robertson (1990). Rapid Contolled Movement
Through a Virtual 3D Workspace. Computer Graphic (SIGGRAPH ’90 Proceedings)
1990, pp. 171-176.

[11] W.H. Bares, S. Thainimit, S. McDermott (2000). 4 Model for Constraint-based
Camera Planning, Smart Graphics. 2000 AAAT Sprint Symposium, AAAI Press, 2000,
pp. 759-774.

[12] S.M. Drucker, D. ZSeltzer (1995). CamDroid: A System for Implementing Intelligent
Camera Control. P. Hanrahan and J. Winget (Eds), SIGGRAPH Symposium on
Interactive 3D Graphics, 1995, pp. 139-144.

[13] N. Halper, P. Olivier (2000). CAMPLAN: A Camera planning Agent, Smart
Graphics. 2000 AAAI Spring Symposium, AAAI Press, 2000, pp. 92-100.

[14] H.H. Gonzalez-Banos, C.Y. Lee, J.C. Latombe (2002). Real-Time Combinatorial
Tracking of a Target Moving Unpredictably Among Obstacles. Proc. IEEE Int. Conf. On
Robotics and Automation, 1683-1690, Washington D.C., May 2002.

[15] N. Halper, R. Helbing, T. Strothotte (2001). Computer Games: A Camera Engine for
Computer Games. Computer Graphics Forum Volume 20, Issue 3.

[16] J.C. Latombe (1991). Robot Motion Planning. Kluwer Academic Publishers, 1991.
[17] S. Bandi, D. Thalmann (1998). Space Discretization for Efficient Human Navigation.

Proc. Of Euro graphics, volume 17, pp. 195-206, March 1998.

57

