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Abstract

A Finite Element Method for the Fully-Coupled
Magnetohydrodynamics

Nizar Ben Salah, Ph.D.
Concordia University, 1999

This thesis presents a finite element method for the solution of three-dimensional
magnetohydrodynamic flows. The physics of such flows is governed by the Navier-
Stokes equations, which are extended to account for the Lorentz forces, and by
Maxwell equations from which the magnetic induction equation is obtained. Mag-
netohydrodynamic problems are, thus, interdisciplinary and coupled in a two-way
fashion, since the effect of the velocity field appears in the magnetic transport equa-
tions, and the interaction between the electric current and the magnetic field appears
in the momentum transport equations. Such a complex problem has to be carefully

addressed and we choose to tackle it in a two-step fashion.

In the first step, the magnetic problem is addressed. A conservative stabilized
finite element method is proposed, taking into account, and this for the first time, the
explicit respect of the free-divergence constraint. The introduction of this equation
would normally lead to an over-determined system of equations. The introduction of a
new scalar variable circumvents this overdetermination by giving rise to an equivalent
system of equations which is not over-determined. This scalar is interpreted as the

Lagrange multiplier of the free-divergence constraint on the magnetic field.
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In the second step, the fully-coupled problem is tackled. The Navier-Stokes equa-
tions are extended to account for the electromagnetic Lorentz forces. Since the si-
multaneous solution of all the fluid and the magnetic variables would require huge
computational requirements, a segregated algorithm is proposed for the solution of
the coupled equations. Versions of this algorithm, taking into account the relative
intensity of the magnetic diffusion to the magnetic convection, have been developed.
It is seen from the numerical tests that updating the magnetic field at each time step
iteration is enough for good convergence even for high magnetic Reynolds numbers
Re,,.

Numerical results are obtained for both the decoupled magnetic problem and the
coupled magnetohydrodynamic problem. The first tests address the stability and
the accuracy of the finite element formulations that are developed throughout this
thesis, while other tests concern 1D, 2D and 3D typical benchmarks in the MHD
context. Results are satisfying showing good agreement with analytical solutions
when available, putting into evidence the physical effects of the electromagnetic forces
and the physical mechanisms governing the magnetic quantities and underlying the

robustness of the developed segregated algorithm.
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Chapter 1

Introduction

In his work entitled “A textbook of magnetohydrodynamics” [1], J.A. Shercliff defines
the science of magnetohydrodynamics (MHD) as the study of the motion of electrically
conducting fluids under magnetic fields. With paths available for electric charges,

electric currents ensue, with two consequences:

1. The induced magnetic field associated with these electric currents perturbs the

original magnetic field;

2. The electromagnetic forces due to the interaction of electric currents and mag-

netic field modify the original motion of the conducting fluid.

The situation is essentially one of coupled interaction between a flow quantity (the
velocity field) and a magnetic quantity (the magnetic field), expressed by the label
magnetohydrodynamics.

Interest in MHD phenomena has existed ever since the end of the nineteenth
century, especially in the astrophysics community where the work of Cowling [2] and
Ferraro [3] can be seen as pioneering work establishing the formal theory of MHD
on an astrophysical scale. One has to, however, wait until the nineteen forties for
the maturing interest in magnetohydrodynamics with the work of Hartmann [4] and
Alfven [5], whose contributions are associated with two unique MHD physical features,

namely: the Hartmann layer and Alfven waves.
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Like many other applied sciences, the postwar boom in technology had positive
effects on MHD research, resulting in the emergence of new industrial and scientific
applications. For an overview of MHD on astrophysical scales and its main features
and issues, one can consult appropriate sections of Berton [6] and the references
therein.

At the opposite end of the spectrum, MHD at the industrial levels can be divided

in two sub-categories:

o MHD of compressible fluids, mainly encompassing the use of cold or hot ionized

plasma.
e MHD of incompressible media, essentially encompassing liquid metals.

Moreover, one can subdivide MHD at the industrial level into two other sub-categories:
Ideal (or inviscid) MHD, generally associated with compressible media, and viscous
MHD, generally associated with liquid metals and thus with the incompressibility
assumption.

The study of MHD phenomena implies the interaction of two disciplines of applied
sciences, namely: fluid mechanics and electromagnetism, with the physical coupling

between the two fields mathematically expressed through Ohm'’s law:
j=0(E+uxB) (1.1)
and the expression for the electromagnetic forces:
f=jxB (1.2)

The coupling requires the study of the fluid and the electromagnetic problems, making
MHD a coupled, complex and interdisciplinary problem.

1.1 Industrial Applications of MHD

Historically, MHD suffered a setback due to the failure of a major application dating to

the seventies. During those years, the open cycle energy conversion using cold plasma
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(3000 — 5000K) drew a great deal of attention. When this technique failed because of
technical reasons (no refractory material lasted long enough at these temperatures),
the interest in MHD dropped substantially and the general impression that lasted
for 2 while was that “MHD does not work”. Since then, interest has been gradually

revived due to the emergence of potential industrial applications of MHD.

1.1.1 Electromagnetic Pumping

The use of centrifugal pumps in the transport of liquid metals poses the problem of
material resistance to hot liquids. Electromagnetic pumps, because of the absence of
moving parts, are ideal in such situations. A transverse electric current, J,, interacts
with an imposed magnetic field B (see Figure 1.1) to create a Lorentz force J,B,

equal to:
9p
0z
according to the momentum equation (if one neglects viscosity and convection). In

=J,B, (1.3)

order to obtain the pressure along the duct, one integrates the above expression and
obtains:
P= / 3,B,dz (1.4)
L
Inefficiencies in an MHD pump are attributed to hydraulic losses due to viscosity,
and to electric losses due to the electric Joule heating effect. The hydraulic losses, ),

can be written, in laminar MHD flow, as
_ 32Ha

A Re (1.5)
and in turbulent flow as
1 Ha?
—_— =2, R -0. — .
7 0 logyo (ReV/A) 08+F<Re‘> (1.6)

with Re and Ha being the usual Reynolds and Hartmann numbers, Re* being the
friction Reynolds number defined as:

._ [ARe
Re* = 33 (1.7)

and where F' is a function obtained experimentally (Berton[6]).

3
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Figure 1.1: Principles of electromagnetic pumping.

1.1.2 Electricity Generation

In this process, the mechanical energy of a moving fluid, typically a liquid metal or
a plasma polluted by metallic vapors, is changed into electrical energy. When an
electrically conducting fluid is flowing in a duct with a velocity u, under two poles
of a magnet, an induced current is produced, according to Ohm’s law (1.1), and is
collected at electrodes (see Figure 1.2). The fluid plays the role of a rotor and the
duct the role of a stator. One advantage of this type of electricity production is the
absence of any mechanical turning parts.

Electricity can be generated with an open cycle system or with a closed cycle
system. The latter process is adopted for space vehicle systems since there is a need
for recycling the rotor fluid. The primary energy for the open cycle devices is provided
by a heat generator. For the closed cycle devices, heat is provided from a nuclear
reactor or solar captors. Finally, MHD generators can be classified into four main

categories according to their form and to the conducting fluid they use:
e Linear generators (Plasma)

e Circular generators (Plasma)
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Figure 1.2: Principles of MHD electricity generation.

e Liquid metal generators (Liquid metal)

e Induction generators

Nowadays, the most significant contributions to MHD electricity generation have
occurred in the US in the program MHD, Proof of Concept (POF), which ended
in 1993. The continuation of the program is still under question. The Japanese
have developed the concept of a circular generator (Program FUJI) and Russia has
been exploiting a semi-industrial prototype (U25). Other countries such as China,

Australia and Italy also have significant research programs.

1.1.3 MHD Propulsion

The basic idea of MHD propulsion emerges from the fact that electromagnetic forces
are developed whenever there is an electric current circulating in the presence of a
magnetic field (see Figure 1.3).

The DC electric linear engine can be seen as the solid counterpart of a MHD
propulsion device. The propulsion agent is injected between two electrodes circulating

an electric current. In typical MHD propulsion devices, this electric current is radial,
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Figure 1.3: Principles of MHD propulsion.

thus inducing a tangential magnetic field By according to:

oB
pod, = —E‘i (1.8)

The coupling between this magnetic field By and J, produces the axial Lorentz force:
F; =J:By (1.9)

This force accelerates the propulsion agent outside of the propulsion device and causes
the nozzle to accelerate in the opposite direction. While being less developed than
chemical or electric propulsion, MHD propulsion has recently gained a great deal of
attention. The MHD propulsion devices are able to operate with high power levels
ranging from 4 to 10MW. Under these conditions, the electric current density is of
the order 20 to 30 kA, final velocities of up to 30 km/s and mass flow rates of nearly
5 g/s can be reached. The thrust developed is around 150 N. Efficiency coefficients
for the typical Magneto-Plasma-Dynamic thrusters are around 0.3 to 0.4, heading
towards 0.5.

MHD propulsion can be divided into three main categories according to the pro-

pellant used. As its name states, Magneto-Plasma-Dynamics (MPD) uses hot plasma
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gases (3000K) as propellants. Typical gases are argon (Ar) or nitrogen (N). The
great advantage of such devices is their low propellant consumption. For the same
efficiency, a MHD thruster will need 3 to 10 times less propellant than a chemical
thruster. The main disadvantage of such devices is the erosion of electrodes and
isolating surfaces due to the high temperature of the plasma.

The second category of MHD propulsion devices uses liquid metals as propellant.
The devices operate at low temperatures (400K), thus electrodes erosion is not as
important as in MPD thrusters. Most metals used are mercury (Hg), potassium (K),
calcium (Ca), tin (Sn) and zinc (Zn). Typical characteristics are 500 kW, 8 kA and

10 N in terms of power, current density and thrust.

MHD Naval Propulsion The operating principle of MHD propulsion holds for
naval propulsion, where the Lorentz forces are used to propel ships and submarines.
One obvious way to do so is to use electrodes delivering a direct current density j,
which interacts with a magnetic field, thus creating forces according to j x B. This
technique is called “conduction MHD naval propulsion”. Another way of generating
the necessary propulsive forces is by the so-called “induction technique”. In this case,
there is no need for electrodes and one avoids the electrolysis process of the sea water
they cause. An alternative electric current generates an alternative magnetic field
which induces currents closing their lines in the flow.

Already, the Japanese Yamato-1 prototype is a proof of the feasibility of a vi-
able MHD propulsion (Motora et al. [8]). The major challenge for the MHD naval
propulsion is to overcome the poor electric conductivity of sea water. Supraconductor

magnets are certainly “the way to the future” for the MHD sea propulsion.

1.1.4 Metallurgical MHD Applications

Whether solid or liquid, metals present the great advantage of having very high electric
conductivities (o of order O(10°)Q~'m ") and the electromagnetic forces that they

can generate are very important. These forces can set the liquid in motion, as in
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electromagnetic stirring, make it levitate, assume a certain shape, or pulverize. The
basic assumption common to all MHD applications in metallurgy is that the magnetic
Reynolds number is very small (Re, of order O(107!)). This assumption implies that
the electromotive field u x B is negligible when compared to the electric field E, and

Ohm’s law then reduces to the form:
j=oE (1.10)

One can then speak of weak electromagnetic-fluid coupling.

Electromagnetic Stirring The fundamental mechanism under which any electro-

magnetic stirring device (Figure 1.4) works is the following:

e An alternative electric current creates a vector potential A which in itself pro-

duces a magnetic field B.
e Electric currents j are induced according to Ohm’s law.

e Lorentz forces are generated within the liquid metal.

These forces are responsible for the liquid movement within the crucible. These

movements are used for the stirring of alloys during their fusion process.

Aluminum Electrolysis In a typical aluminum reduction cell, a direct current
enters the cell via the anode, whose lower surfaces are immersed in a molten salt elec-
trolyte. This molten salt, known as cryolite, is a mixture of sodium and aluminum
fluorides, together with minor constituents. The cryolite acts as solvent for the alu-
minum oxide fed to the cell, and beneath the cryolite is a pool of molten aluminum.
The reduction of aluminum ions to metal occurs at the interface between the two
liquids thus increasing the aluminum pool. The pool is partially siphoned at regular
intervals. The current passes through the aluminum to the cathode.

A typical modern cell would carry 100-200,000 Amperes, contain ten to twenty
anodes, operate at 960 Celcius and be 3 by 8 meters in its horizontal dimensions.

Cells are arranged in lines of several tens known as potlines, and a typical plant
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Figure 1.4: Principles of electromagnetic stirring (From Berton [6]).

might contain several potlines usually running parallel to each other and few meters

apart.

1.1.5 Fundamental MHD Research

MHD research is present in many domains; while certainly not exhaustive, the fol-

lowing list represents four domains with good prospects for the coming years:

e Solidification process under a magnetic field: Here, the aim is to magnetically
control the natural convection present in any solidification process in order to

obtain homogeneous crystal growth.
e Cooling of thermo-nuclear fusion reactors.
e Study of the magnetic control of turbulence.
e Study of the dynamo effect for astrophysical scales of MHD.

For more details or for an overview on the applications of MHD cited above, see

Berton [6] or Alemany [7] and the references therein.
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Figure 1.5: Typical aluminum reduction cell (From Lympany et al. [29]).

1.2 Literature Review

Despite the great development of computer resources and numerical methods in the
two last decades, MHD research is still today mainly analytical or experimental in
nature. For proof of this, one can simply look at the proportion of numerical research
activities over all the MHD research. For example, in the seventies (1970-1979),
Compendex EI database records 1970 journal articles with the keyword “mhd or
magnetohydrodynamic*”. If the keyword restriction “numeric*” is added, then the
number of records is reduced to 219 articles. The same pattern is repeated during the
eighties and the nineties with, respectively, 501 articles out of 3473, and 561 articles
out of 3046 articles. However, the absolute number of numerical articles has been
increasing since the seventies and there are many indications that this trend is to be
maintained.

Presenting a general view of the numerical activities in MHD is a very hard task
for two reasons. First, MHD is an interdisciplinary domain, and in our opinion, this
has prevented the emergence of unified and well-established numerical test cases, as is

the case for the CFD community for example. The second reason is that MHD covers
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a very large spectrum of applications, making the issues and features of each domain
very different from the others. However, and as presented previously, MHD can be
subdivided into two sub-categories: compressible (Plasma) MHD and incompressible
(Liquid metal) MHD.

For the mathematical modeling of compressible, inviscid MHD problems, one can
consult Roe and Balsara [9], where the authors examine the eigenstructure of the
equations governing one-dimensional ideal MHD, with the aim of constructing high-
resolution computational algorithms. Another key reference on the subject is Powell
(10], which describes approaches for Cartesian grid generation, for gasdynamics and
magnetohydrodynamic flow solvers that work well on adaptive Cartesian grids. The
above short list of articles is only a starting point for any reader interested in the
numerical modeling of inviscid compressible MHD flows.

On the other side of the spectrum, numerical modeling of liquid metal MHD flows
has attracted the interest of many researchers. This modeling was done essentially
in the framework of the development of a fusion reactor liquid metal coolant and the
revival of liquid metal MHD electricity generation. These MHD problems have been
studied extensively by the method of asymptotic expansions (see Walker [11] for a
review of the results of these studies). Asymptotic analysis is based on the assumption
that the liquid metal flow is essentially dominated by electromagnetic and pressure
forces, thus neglecting inertia and friction viscous forces.

The obvious restrictions inherent in these asymptotic methods have been par-
tially overcome by the development of semi-numerical methods (Hua and Walker
[12], Cuevas et al. [13]). However, these methods are still not able to describe the
velocity profiles near the boundaries. Nevertheless, the details of the flow are worth
exploring and this can be done only by means of a fully numerical approach. Yet,
only a small number of articles present mostly one-dimensional or two-dimensional
analysis. Ramos and Winowich {14] proposed a primitive variable finite element for-
mulation, a stream function-vorticity finite difference method and a primitive variable
difference scheme of the control volume type. Regarding electromagnetic quantities,

they solved for the electric potential, while the imposed magnetic field is supposed to
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remain unchanged.

Scandiuzzi and Schrefler [15] presented a finite element method for solving cross-
sections MHD flows. They treated arbitrarily conducting walls and solved for the
only non-zero component of the velocity and the magnetic field. For the boundary

conditions on the magnetic field, they developed the following relation:

dB
— +CB=0 (1.11)

where C is the ratio of the fluid to the wall conductivities.

Three-dimensional simulations of MHD incompressible flows are more rare. From
the 561 numerical MHD articles (published during the nineties), only 56 have the
keyword “3D or three dimension*”. Here, we would like to refer to some articles where
the authors used three-dimensional MHD models to solve for various numerical tests.
Sterl [16] presented a finite difference method for MHD flows in rectangular ducts. He
decoupled the magnetic field problem from the fluid one by considering the limit that
no perturbation is induced for the magnetic field. He solved for the velocity field and
the electric scalar potential with B considered constant in the equations and presented
results for a 2D MHD rectangular duct and the 3D effects of the developing entry.
Starting from Walker’s work, Sterl generalized the boundary conditions that have to
be assigned for the potential ¢ in order to account for varying relative conductivity
ratio.

Seungsoo and Dulikravich [17] also proposed a finite difference method in the
general non-orthogonal curvilinear boundary-conforming coordinate system. The al-
gorithm is based on an explicit Runge-Kutta time-stepping scheme. The model they
developed takes into account the velocity, the magnetic and the temperature fields.
They presented results for the Hartmann-Poiseuille flow, the 3D Hartmann flow and a
2D Benard cell problem under a magnetic field. They put into evidence the magnetic
weakening of the thermally induced vortices and the eventual damping of buoyancy
movement when the Hartmann number is high (Ha = 10, Gr = 3000).

Dulikravich et al. [18] solved for the three-dimensional laminar viscous flow un-

dergoing solidification or melting under the influence of arbitrarily oriented externally
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applied magnetic field. The algorithm used is the same as in [17], with the difference
that the magnetic field is decoupled from the velocity and the temperature fields
(Rem < 1) and that the energy model accounts for a temperature dependence of the
physical properties. One can also consult Sazhin and Makhlouf [19] which presents
another finite difference method for the 3D MHD equations.

Regarding the methods used for solving the MHD equations, the finite element
method has not been used as often as the finite difference or the finite volume methods.
In her theoretical article [20], Peterson proposed finite element approximations of
steady incompressible flows of electrically conducting fluids by considering the special
case of undisturbed external magnetic field. She chose to retain the velocity and
the electric potential as the variables and proposed a weak variational formulation.
She proved the stability and the continuity of linear forms and the existence and
uniqueness of the solution. Notably, she proved that the scalar ¢ has to be chosen
in the same functional sub-space as the velocity field. For another kind of finite
element approximations, one can consult Gardner and Gardner [21], where the authors
presented a two-dimensional bi-cubic B-spline finite element method for the MHD
channel flow.

Solving for the magnetic field B would normally result in an over-determined
system of equations. This can be overcome by dropping the free-divergence equation
and the terms implying this same divergence within the magnetic induction equation.
The resulting vectorial equation is a diffusion-convection “Helmholtz” like equation.
While this is done in all the previously cited references, we would like to underline that
doing so would result in only the implicit respect of one of the fundamental Maxwell
equations. On the other hand, instead of choosing the magnetic field B as the main
electromagnetic quantity, many authors choose to solve for the vector potential A,
mostly used in the context of pure electromagnetism ([22],[23],[24] and [25]). For a
general overview of the vector potential methods and some of their electromagnetic
applications, see Biro et al. [26].

In the context of MHD, these vector potential methods have also been popular and

intensively used especially for metallurgical applications. Fautrelle {27] used a vector

13



potential formulation to solve the magnetic part of electromagnetic stirring problems.
He treated it as a pure electromagnetic problem by dropping the motion effects in
the Maxwell equations. Mestel (28] examined, both analytically and numerically, the
process of levitation melting of metals. Lympany et al. [29] presented numerical
results for the MHD effects in aluminum reduction cells. Assuming a steady two-
dimensional phenomenon, they solved for the scalar potential ¢ and deduced the
magnetic field using the Biot-Savart law.

Besson et al. [30] developed a two-dimensional steady state finite element method
for solving both the MHD and the free surface problems associated with electromag-
netic casting (EMC). They represented the outside potential by an integral equation,
so their method could be described as a FEM/BEM one. More recently, Conraths
(31] described the magnetic field by an electric vector potential and a magnetic scalar
potential for modeling an inductive heating device for thin moving metal strips.

In [32], Masse et al. presented the leading conclusions of 10 years of numerical
modeling in MHD using the vector potential formulation. The description given is
quite impressive; however, an obvious drawback is the non uniformity of the numerical
approach: a finite volume method for the fluid problem, a finite element method for
the magnetic problem in the conducting domain and an integral method for the non
conducting domain. For an overview of the vector potential methods in MHD, one
can consult Trophime [33]. While this literature survey is by no means exhaustive, it
illustrates the general use of vector potential formulations, indicates their great deal
of popularity and wide use in the literature.

The leading idea to vector potential methods is that since it has to be solenoidal,
then the magnetic field derives from a vector potential. Introducing this vector po-
tential would then implicitly respect the free-divergence constraint on the magnetic
field. However, as stated previously, this would result in only an implicit respect of the
free-divergence condition on the magnetic field. To the best of our knowledge, only
Oki and Tanahashi ([34],[35]) have developed numerical schemes which explicitly sat-
isfy the solenoidal condition of the magnetic field. They introduced a variable called

hydro-magnetic cross helicity G = u - B and retained the free-divergence equation
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within their system of equations. They presented results for the natural convection
of a thermo-electrically conducting fluid under a magnetic field. In [36] and partially
in (37], Ben Salah et al. have also explicitly respected the free-divergence condition
by including it directly in the system of equations while getting rid of the overdeter-
mination of the system.

In the remainder of the chapter, an outline of the proposed research is provided
and the main steps of this research are discussed, followed by a summary of the

contributions and the achievements of the thesis.

1.3 Outline of Proposed Research

The primary goal of the thesis is to develop a robust and cost-effective magneto-
hydrodynamic algorithm that combines a Navier-Stokes flow solver and a magnetic
solver for the solution of three-dimensional MHD equations. Robustness is achieved
by the solution of the two systems of equations in a fully-coupled fashion. In order

to achieve this goal, the following questions, among many others, are addressed:

e What is the appropriate way to approach such a coupled multi-disciplinary

problem?
e What is the proper way to formulate the magnetic aspects of the problem?

o To what extent does the fluid movement change the magnetic behavior? Simi-

larily, to what extent does the magnetic field change the fluid movement?
e What type or class of solvers should be used for each system of equations?

To acquire a basic understanding of MHD phenomena and to simplify a rather
difficult problem, we first consider a decoupled approach for which the fluid and
the magnetic problems are considered separately. More precisely, we investigate the
magnetic aspects of MHD flows with the velocity field given as input data. This
step appears to be essential, not only because of the reasons cited above, but also

because it makes it possible to focus the efforts on an adequate formulation of the
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magnetic aspects of the problem. It will be seen in the second chapter that there
are alternative formulations of MHD problems; the choice between them is mainly
guided by the physical nature of the problem. Furthermore, it will be seen that any
formulation of the magnetic aspects of an MHD flow should explicitly respect local
magnetic conservation.

Next, the focus will turn to the selection of the coupling algorithm. Since the
problem is a multi-disciplinary one, involving at the nodal level eight variables, one
can expect to deal with huge computational requirements if the two problems are
considered in a simultaneous fashion. In the proposed implicit algorithm, the two
systems are solved in a segregated way, but with the two solvers exchanging infor-
mation in a tight two-way fashion. This solution strategy is based on a GMRES-like
algorithm for the fluid solver, associated with an ILUT right preconditioning. In this
algorithm, the exchange of information can be performed at each GMRES direction
when a new fluid solution is computed, at each Newton iteration, or at each time
step. Since the algorithm is essentially a segregated one, the magnetic problem thus
becomes a linear problem allowing the use of a simple solver. It will also be seen that
for low magnetic Reynolds numbers, a classical segregated algorithm is suitable for
very efficient convergence. This is permitted because the physical coupling is stronger
one way than the other. On one hand, the influence of the magnetic field on the ve-
locity is very strong; increasing or decreasing the magnetic field induces a dramatic
change in the velocity field, while on the other hand the magnetic field is not very
much influenced by the velocity field behavior.

The major thesis developments and contributions are now listed and are detailed

in the chapters of this thesis:

¢ A thorough review of the magnetic equations for the MHD flows, stressing the

need for an explicit respect of the local magnetic conservation;

e The development and implementation of a magnetic finite element solver for

the 3D MHD equations, with the magnetic field as the main variable;
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e The development and implementation of a magnetic finite element solver for

the 3D MHD equations, with the vector potential as the main variable;

e Extension of an unsteady 3D Navier-Stokes incompressible finite element solver

to account for the electromagnetic Lorenz body forces;

e Development of an MHD (fluid-magnetic) coupling algorithm. Two versions
of this algorithm are available: one for high and the other for low magnetic

Reynolds numbers;

e Implementation of a coupling structure with sequential calls for fluid or mag-

netic solvers;

e Application in the context of MHD of state-of-the-art iterative methods and
preconditionings such as Non-Linear GMRES and ILUT.

1.4 Overview of the Thesis

The remainder of the thesis is organized in five chapters. In chapter 2, the govern-
ing equations of MHD flows are presented and reviewed. Starting from the Maxwell
equations, the magnetic induction equation is introduced. Then, the “Helmholtz” for-
mulation of the magnetic induction and the vector potential formulation are presented
and briefly commented upon. Following, the conservative formulation is developed.
This formulation takes into account the explicit respect of the free-divergence con-
straint on the magnetic field by the numerical scheme. The introduction of a Lagrange
multiplier within the system of equations circumvents the overdetermination of the
system, while giving rise to equivalent equations if appropriate boundary conditions
are prescribed. The Navier-Stokes equations, taking into account the electromagnetic
forces, are then presented. The non-dimensional form of the equations is obtained.
The cases of weak and strong MHD couplings, where the magnetic Reynolds number
Re,, plays a key role, are discussed.
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In chapter 3, the variational formulations of the different systems of equations
that are used throughout this thesis are presented. The Galerkin weak form of the
B, g formulation is obtained, giving rise to a mixed finite element formulation. A
stabilization technique is introduced to circumvent the usual Brezzi-Babuska stability
condition and to allow equal interpolation for all the variables. A penalty factor is
then introduced in order to force the magnetic divergence towards zero. For the vector
potential formulation, the Galerkin weak form allows for the use of equal interpolation
for all variables. Thus, no stabilization technique is required for such formulations.
The Navier-Stokes equations are stabilized through a Galerkin Least-Squares term.

In chapter 4, the solution strategy for the decoupled formulations B,q and A, ¢
and the coupled formulation B,q,u,p is presented. The strategy for the coupled
problem is based on a non linear GMRES algorithm associated with an ILUT precon-
ditioning. Three versions of the algorithm, each offering a different level of coupling
tightness, are available: with the magnetic field updated at each time step, each
Newton iteration or each GMRES iteration.

In chapter 5, numerical tests for assessing the accuracy and stability of the different
finite element methods are carried out. Results are also presented for test cases.
These tests concern the three formulations: B,q, A, ¢ and the coupled formulation
B, ¢,u,p. In the last chapter, the conclusions of this work and prospects for eventual

future work are presented.
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Chapter 2

The Governing Equations

2.1 Introduction

In this chapter the basic equations leading to the formulation of MHD flow problems
are reviewed. First, the Maxwell equations are recalled and the so-called magnetic
induction equation is obtained after some algebra on Maxwell’s equations and Ohm’s

law.

The classical “Helmholtz” formulation is then introduced. It is particularly shown
that the magnetic conservation equation is no longer implicit within this formulation
and the respect of this conservation condition by the magnetic field is stressed. The
classical alternative formulation consisting of introducing the vector potential and its
associated scalar one is then reviewed. Following this, the conservative formulation
is developed and presented. This formulation takes into account, for the first time,
the local respect of the magnetic field conservation. It is seen that the respect of
this constraint would normally lead to an over-determined system of equations. We
would show that this system is, however, equivalent to a non-over-determined system.
To perform that, a Lagrange multiplier of the magnetic conservation constraint is
introduced within the magnetic induction equation. This multiplier is shown to be a
dummy scalar variable that does not affect the equations while forcing the magnetic
divergence towards zero.

Once these electromagnetic aspects of MHD flows are discussed, an extension of

the Navier-Stokes equations taking into account the electromagnetic Lorentz forces
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is presented. The non-dimensional form of equations puts into evidence the relative
importance of different terms of equations. The cases of weak and of strong MHD
couplings, where the magnetic Reynolds number plays a fundamental role are dis-
cussed. It is seen that in the context of this thesis both these two cases are retained

and studied.

2.2 The Maxwell Equations

The Maxwell equations reflect the general laws of physics for electromagnetic phe-

nomena. In their integral form, they can be written as:

fH-dl=AjodA+A%)—-dA (2.1)
fE-dl:-/A%?--dA (2.2)
/AB-dA=0 (2.3)
/quV=/AD-dA (2.4)

The differential form for the Maxwell equations can then be obtained from equations

(2.1)-(2.4), as:

dD
=j+ = 2.
VxH J+at (2.5)
0B
== 2.
VxE=-— (2.6)
V-B=0 (2.7)
V.-D=g (2.8)

In the above set of equations, B, H, E, D, j and q are, respectively, the magnetic
field, the magnetic induction field, the electric field, the electric induction field, the
electric current density and the electric charge density. Equations (2.5)-(2.8) are valid

for any observer regardless of his motion, so long as all the quantities are measured
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in a frame of reference moving with the observer. Equations (2.5) and (2.6) are, re-

spectively, the Maxwell forms of the Ampeére and Faraday laws.

Usually, two constitutive laws are associated with equations (2.5) and (2.8), which
relate between them the magnetic quantities and the electric quantities. They namely

relate the vector D to E, and B to H. These constitutive laws are written as:

D =¢E (2.9)

B =uH (2.10)

where € and p are, respectively, the permittivity and the magnetic permeability. Thus

equations (2.5)-(2.8) can be rewritten as:

d(eE)

V x (%) =j+ 5t (2.11)
VxE= —%% (2.12)
V.-B=0 (2.13)

2.2.1 The Principle of Conservation of Electric Charge

The principle of conservation of the electric charge (P.C.E.C.), which is the electro-
magnetic equivalent of the conservation of mass, can be stated as follows: The total
electric charge Q of a given quantity of matter is conserved. Thus, the particular

derivative of the total charge Q must be zero, which can be written as:

aQ dq .
= _ == -3 aV = 2.15
dt Jv <3t +v J) 0 (2.15)
For the integral (2.15) to be zero, regardless of the integration domain, the integrand
must be null:
dq .
F +V.j=0 (2.16)



2.2.2 Ohm’s Law

Ohm’s law can be written for an isotropic medium at rest, as:
j=0E (2.17)

For a moving medium equation (2.17) is still valid if it is written in a reference frame
moving with the medium. Retaining the prime symbol for the quantities as seen by

an observer attached to that reference frame, one can write:
j=cF (2.18)

The Lorentz transforms, which could be written for the electric current and the electric

field as:
j=j-qu (2.19)

E=E+uxB (2.20)

lead to an expression of Ohm’s law with respect to a fixed frame of reference:
Jj=qu+o(E+uxB) (2.21)
where o is the scalar electric conductivity and u is the velocity vector.

2.2.3 The MHD Assumptions, Magnetic Induction Equation

MHD deals with media that are conducting enough to consider that the charge re-
laxation time is much shorter than the transit time for electromagnetic phenomena.
One can then neglect the displacement current dD/8% when compared to j and to

V x H, and the time variation of the charge density 8q/8t, when compared to the
electric current density j. Thus, equation (2.14) decouples from the rest of the equa-
tions, and becomes useful only for an a posteriori computation of the charge density
g. Furthermore, in the MHD context one can reasonably assume that the convection
of electric charge qu is negligible when compared to its conduction proportional to

o and that the permittivity ¢ and the magnetic permeability x can be considered
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constants and equal to those of free space. Thus equations governing electromagnetic

phenomena under the MHD assumptions become:

V x B = uj (2.22)
oB
VxE=-— (2.23)
V-B=0 (2.24)
V-j=0 (2.25)
j=0(E+uxB) (2.26)

Since u is a constant then by virtue of (2.22) the divergence of the electric current
density j is zero, equation (2.25) then becomes superfluous. Making use of (2.26), the

system of equations becomes:

V x B = puo(E +u x B) (2.27)
oB

VxE= —W (228)

V-B=0 (2.29)

The new system is constituted of seven equations with six unknowns, and hence is
over-determined. In order to remove this ambiguity, it is classical to take the curl of

Ohm’s law (2.27), term by term, to obtain:
Vx(VxB)=Vxpuo(E+uxB) (2.30)

Then, assuming the conductivity to be constant which is a classical assumption in

the MHD context and making use of Faraday’s law (2.28), one obtains:

Vx(VxB)=po(-—%3+Vx(uxB)) (2.31)
which can be rearranged into:
0B
E—Vx(uxB)%—an(VxB):O (2.32)

23



where = 1/uo, is the magnetic diffusivity coefficient. Once equations (2.29) and
(2.32) are solved for the magnetic field B, the electric field can be deduced from the
following equation:

E=nVxB)-uxB (2.33)

and the electric current density j calculated from equation (2.26).

Equation (2.32) is the well-known form of the magnetic induction equation. It
consists of a diffusive second order curl-curl term, a convective first order curl term
and a hyperbolic in time first order term. It brings the advantage of directly relating
the main hydrodynamic quantity, the velocity field, to the main electromagnetic one,
the magnetic field, without any interference. Here, it should be pointed out that the
magnetic free-divergence constraint (2.29) is implicit in equation (2.32). Indeed, if
the divergence of equation (2.32) is taken, term by term, one obtains the following
condition on the divergence of B:

o(V - B)

=0 (2.34)

Equation (2.34) stipulates that the divergence of B remains constant over time and
tion of such an initial divergence-free field is not an easy task. Moreover, although the
local conservation of the magnetic field is included in (2.32), this property might not
hold exactly for a discrete version developed for a numerical solution of the partial
differential equations. Thus the resulting system of equations must consist of both

equations (2.29) and (2.32).

2.3 The “Helmholtz” Formulation

As stated in the introduction, this formulation is widely used in the literature. The
starting point of this formulation is the system of equations (2.29) and (2.32), then

using the vector identity stating that:

V x (V x B) = -V?B + V(V - B) (2.35)
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the magnetic induction equation (2.32) could be rewritten as:

%?—Vx(uxB)—nV2B+nV(V-B)=O (2.36)

Making use of equation (2.29) in order to obtain the following “Helmholtz” equation:

%?—Vx(uxB)—nVQB=O (2.37)

and hence reducing the MHD system of equations (2.29) and (2.32) to equation (2.37)
with the appropriate set of boundary conditions. It should be noted that circumvent-
ing the constraint (2.29) by solving equation (2.37) results in a much simpler system
to solve. However, equation (2.37) does not state anymore that the divergence of B
remains constant over time. It only states that:

a(V-B)

=V (1VB) (2.38)

One can expect this divergence to play a non-negligible role in the discrete form of

the weak problem associated with the continuous strong problem (2.37).

Remark 1: We would like here to point out an analogy with the Stokes problem

for an incompressible fluid with constant viscosity. The Stokes problem is written as:
-V 2ny(u))+Vp=f (2.39)

V-u=0 (2.40)

with 7, in this case being the dynamic viscosity coefficient and y(u) being the sym-
metric part of the velocity gradient tensor. If one derives from (2.39) and (2.40), the
equations for the special case of constant viscosity 7, then by making use of equation
(2.40), one gets:

-nVu+Vp=f (2.41)

Although equation (2.40) has been used in order to derive (2.41), it is well-known
that one has to keep the divergence-free constraint (2.40) within the system of equa-

tions while developing any numerical solution of the Stokes problem. The pressure p
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plays the role of a Lagrange multiplier in order to enforce the velocity divergence-free
condition. This analogy is also valid for the Navier-Stokes equations. The magnetic
continuity equation (2.29) is the electromagnetic equivalent of the hydrodynamic con-

tinuity equation (2.40) and deserves some attention.

2.4 The Vector Potential Formulation

Alternatively to the above introduction of the magnetic induction equation which
relates the magnetic and the velocity fields B and u, one can introduce a vector
potential formulation. From equation (2.24), it is seen that the magnetic field results
from a vector potential A:

VxA=B (2.42)

then, equation (2.24) is automatically satisfied. Noting that the electric field is defined
as:
0A

E=-Vo-— (2.43)

where ¢ is the scalar electric potential, one can write Ohm’s law (2.26) in terms of

the vector potential A and the scalar potential ¢ as:

O0A 1
E—ux(VxA)+;{;Vx(VxA)+V¢—O (2.44)

This equation, known as the vector potential equation, involves that the time evolu-
tion of the vector potential is determined by the diffusion and the convection of the
vector magnetic potential and by the scalar electric potential gradient. This equation
holds for any eddy current conducting domain (Figure 2.1). Here, it should be pointed
out that by convention the conductivity o is null within inductors. By definition, the
current density is null outside the inductors. So, in non-conducting regions free of
eddy currents, which may contain source currents j,, the vector potential equation is
written:

V x (VxA)=j, (2.45)

The fact that equation (2.44) defines only the curl of A implies that the vector
potential is defined up to the gradient of an arbitrary scalar function. Actually, if
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Figure 2.1: Regions, boundary conditions and interface in typical eddy current prob-
lem (From Biro and Preis [25]).

(A, ¢) is a solution of (2.44) and if f = f(t, x) is a scalar function that is differentiable

both in time and space, then the new couple (A’, ¢'), such that:

A'=A+Vf (2.46)
i_ ., Of
¢ =¢- e (2.47)

is also a solution of equation (2.44). Hence the solution of equation (2.44) is not
unique. In order to insure the uniqueness of the solution, gauging the vector potential
is needed. Such a procedure consists of defining the divergence of A in addition to

its curl. The most used gauge is the Coulomb one defined as:
V-A=0 (2.48)

This gauge could be whether imposed explicitly by adding equation (2.48) to equation
(2.44) or as suggested by Biro and Preiss [26], and Bossavit et al [38], by adding a
penalty term to the vector potential equation (2.44):

JA 1 1

In case of constant magnetic diffusivity, as under the MHD assumptions, and when the

conductivity is constant, this results in the Laplacian operator replacing the curl-curl
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operator:

O0A
S —uxX(VxA)- —V?A+ V=0 (2.50)
uo

The conservation of the electric current is implicit in the vector potential equation
(2.44). Actually, if the divergence of equation (2.44) is taken term by term, then:

v-(%%—uxB+V¢)=o (2.51)

However, this same conservation condition does not anymore follow from the modified
vector potential equation (2.50). The electric current conservation has, then, to be

prescribed as:

V-(—%%—V¢+ux(VxA))=0 (2.52)

Thus using the (A, ¢) formulation would result in the system of equations (2.50) and
(2.52). Many other formulations using different magnetic, electric, vector or scalar
potentials exist in the literature. For a general description, one can consult Trophime

[33] and the references therein.

2.4.1 The Reduced Vector Potential

It is possible as stated by Emson and Simkin [39], to define a new vector potential A

by the following equation:
A=A+ / Vo dt (2.53)
t

Then starting from the vector potential equation (2.44), one can obtain:

A | .
7a?—ux(VxA)-}-;;Vx(VxA)—O (2.54)

Emson noted that equation (2.54) has a unique solution with an implied gauge of:

V-A=0 (2.55)
which was therefore not imposed. The same remark made in section (2.2.3) regarding
the divergence of the magnetic field B could be made for the divergence of the reduced
vector potential A. As an alternative to Emson’s method, one could follow the same

procedure regarding the vector potential formulation by adding a penalty term to
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equation (2.54) in order to impose the divergence-free condition (2.55). This would

yield the following reduced vector potential equation:

dA N | . .
E—ux(VxA)-f-“—an(VxA)—V(nV-A)=O (2.56)
which again in the case of constant diffusivity would result in the Laplacian operator

replacing the curl-curl operator as:

%—ux(Vx.&)—-ﬂl—szAzo (2.57)

2.5 The Conservative Formulation

In order to introduce this family of formulations, let us recall the “Helmholtz” formu-
lation. The idea leading to this formulation is that the system composed of equations
(2.32) and (2.29) is over-specified and leads to more equations than unknowns. For
example in the three-dimensional case and if the velocity field is assumed known, the
system of equations composed by equations (2.32) and (2.29), leads to four linear
equations with three unknowns. In Jiang et al. [40], the authors showed that an
equivalent situation exists in the pure electromagnetic context. They demonstrated
that the first order div-curl Maxwell’s system of equations (2.5)-(2.7) is not an over-
determined one. They showed that by introducing two dummy scalar variables, they
end up with an equivalent system of eight equations with eight unknowns. They
underlined the dangers of circumventing the “over-specification” of system (2.5)-(2.7)
by dropping the free divergence equation (2.7). These dangers are related to the
ellipticity of the system, the non-uniqueness of the solution and the ensuing spurious
numerical solutions that may appear.

Using the same technique, we shall show that the second order system of equations
(2.29) and (2.32) is not an over-specified one. Let 2 be a bounded, simply connected,
convex and open domain which is included in R3, with a piecewise smooth boundary
[, the union of '; and I';, with n the unit normal outward vector. Let equations
(2.29) and (2.32) hold in the domain 2 and be associated with appropriate boundary
conditions on I'. Adding the gradient of a scalar variable to equation (2.32), one gets
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the new following equation:

B
%—Vx(uxB)+an(VxB)+Vq=O in Q (2.58)

Let the homogeneous Dirichlet condition
g=0 (2.59)

holds on the boundary I'. Taking the divergence of equation (2.58) and using equation
(2.29), one gets:
Ag=0 inQ (2.60)

As equation (2.60) is subjected to the boundary condition (2.59), this leads to the
unique physical solution ¢ = 0 over all the domain Q. Thus the scalar q is really
a dummy variable (which in theory should be null) and the system of equations
(2.29) and (2.58) is equivalent to the system (2.29) and (2.32). The new system
of equations has in the three-dimensional case, four equations with four unknowns
and is no longer over-determined. By analogy to the Stokes and the Navier-Stokes
equations, q is interpreted as a Lagrange multiplier used to enforce the divergence-free

condition (2.29).

Remark 2: Equation (2.58) could be rewritten in many equivalent forms. Particu-
larly, after making use of the vector identity {2.35), one gets the following equivalent

equation:

%—Vx(uxB)—-anB+nV(V-B)+Vq=O in Q (2.61)

In the rest of this thesis, when we refer to the (B, q) formulation, we would be referring

to the system of equations (2.29) and (2.61).

Remark 3: It is easily predictable that the non-explicit respect of the constraint
(2.29) could lead to inaccurate numerical solutions. In order to show this, suppose

one discards the divergence-free equation and retains only equation (2.32). Let for
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simplicity the velocity field be equal to zero and assume the problem to be steady.

From (2.32), one obtains:
Vx(VxB)=0 inQ (2.62)
with the most probable boundary conditions

n-B=0 onl, (2.63)
nxB=0 onl; (2.64)

The solution of equation (2.62), subject to the boundary conditions (2.63)-(2.64), is
not unique. It admits a kernel composed of the gradient of scalar variables satisfying
the conditions (2.63)-(2.64). Any numerical method for problem (2.62)-(2.64) will
fail to provide a unique solution. The constraint (2.29) should thus be taken into
account and it behaves like a gauge condition filtering the divergence-free solution.
The respect of this condition reduces the kernel of spurious solutions to a unique null
scalar function.

Indeed, according to the unity partition theorem (Brezis [41]), there exist scalar
functions ¢ that are C*, satisfying 8¢/0n = 0 on '}, n x V¢ = 0 on I'; and ¢
non-null in a part of Q. Thus if By is a particular solution of (2.62)-(2.64) then any
vector B = Bg + V¢ is also a solution. But if the vector solution has to satisfy the
divergence-free condition, then A¢ =0in Q. Asd¢/0n =00on T, and n x V¢ =0
on '3, then ¢ is equal to a constant in Q. Since ¢ is prescribed zero over part of the

domain, then ¢ = 0 over all the domain Q.

2.6 The Navier-Stokes Equations

The continuity equation, which expresses the mass conservation, is written for an
incompressible fluid as

Vou =0 (2.65)
The conservation of the momentum for an incompressible flow is written, in differen-

tial form as:
% +(u-Viu-vViu+ %Vp =f (2.66)

31



where p, p, v and f are, respectively, the pressure, the density, the kinematic viscosity
and the body force field. For MHD problems, the body force term is f = j x B, and
represents the Lorentz (Laplace) forces due to the interaction between the current
density and the magnetic field. Replacing the current density by its expression given

by (2.22) gives:

cu 1 1
—+u-V)u-vViu+-Vp— —(VxB)xB=0 2.67
5 + (V) VP up( ) (2.67)
The body forces f could also be decomposed as:
B’) B
f=jxB=-V|—]+(B-V)— 2.68
j (3) @92 (2.69)

The physical interpretation of this decomposition is evident. The Lorentz forces are
decomposed into a gradient term which is naturally irrotational and another rotational
term. The gradient term -V (?—:) is a magnetic pressure term. The rotational term

(B-V) % is the force that would generate movements within the fluid.

2.7 Magnetohydrodynamic Coupling

The induction equation (2.32), the magnetic conservation (2.29) along with the mod-
ified Navier-Stokes equation (2.67) and the mass conservation equation (2.65), rep-
resent the governing equations that should, ideally, be resolved in order to describe
properly any MHD phenomenon. These equations are fully-coupled, since a two-way
coupling exists between the fluid and the electromagnetic fields. On one hand, the
influence of the magnetic field on the velocity field is through the term j x B which is
added to the usual Navier-Stokes equations. On the other hand the influence of the
velocity field on the magnetic field exists through the term V x (u x B) in the mag-
netic induction equation, which originally appears in Ohm’s law as u x B. In order
to assess the relative influence of the terms through which the coupling is exerted,
one has to obtain the non-dimensional form of equations (2.32) and (2.67). This can

be obtained by dividing each of the variables by a scaling value chosen appropriately:

w=2 gtk pr =2 B =B w:% (2.69)



The Navier-Stokes and the induction equations could then be written in the following

non-dimensional form:

. * 1 2..% * Ha'2 - *
+(u’ - V)u*— —Vu'+ Vp . (VxB*)xB*=0 (2.70)

ot Re " ReRen
V-u' =0 (2.71)
6B‘—Vx(u xB‘)+——Vx(VxB‘)+Vq =0 (2.72)
at* Re,,
V-B* =0 (2.73)

where the magnetic Reynolds number Re,, and the Hartmann number Ha are defined

as follows

1/2
Ren =pouel |, Ha = BOL<!%) (2.74)

Equations (2.70) and (2.72) give the relative importance of each term in the equations.
For instance, equation (2.72) tells that the ratio of the convection of the magnetic field
by the velocity, to the diffusion of the magnetic field proportional to the magnetic
diffusion 7, is the non-dimensional magnetic Reynolds number Re,,. High values of
Rey, indicate that the convection of the magnetic field is the dominant mechanism by
which the magnetic field is transported. Low values of Re,, indicate that the diffusion
of the magnetic field is the dominant mechanism. This number could be seen as the

analog of the hydrodynamic Reynolds number Re defined as:
UOL

v

Re = (2.75)

Equation (2.70) puts into evidence that same hydrodynamic Reynolds number Re,
which is classical in the pure fluid context. However a new non—dimensional parame-

. While the Reynolds

ter appears in front of the electromagnetic forces, namely
number measures the relative importance of the diffusion of the velocity field, propor-
tional to the kinematic viscosity v, to its convection, the new non-dimensional group
measures the relative importance of the Lorentz forces to the convective forces. A
High value for z2&— Re , would indicate that the electromagnetic forces are dominant
compared to the convective one, and low values would indicate that these same forces

can be neglected when compared to the convective one.
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2.7.1 Industrial Applications and Non-Dimensional Parame-
ters

At the human level, whether in the laboratory scale or at the industrial scale (except
for the MHD surgenerators), magnetic Reynolds numbers Re,,, are very low. In such
cases, equations (2.70) and (2.72) hint that a certain decoupling is possible between
the magnetic phenomena and the hydrodynamic ones. In fact when the convection
of the magnetic field by velocity could be neglected compared to its diffusion, the
magnetic problem could be decoupled from the fluid one. This decoupling is, however,
possible only one way and not the other. Yet the fluid problem can strongly be

affected by the magnetic problem through the term ReHl‘;:m . A low Re, is by no way

an indication that Lorentz forces can be neglected compared to the diffusive or the
convective forces. In such a case, one is dealing with a weak MHD coupling. Weak
meaning that the coupling is stronger one way than the other (small influence of the
velocity field on the magnetic one but strong influence of the magnetic field on the
velocity one). Yet, even when Re,, is small, one can be in presence of a strong MHD
coupling.

Suppose one is in the presence of inductive fields. Suppose furthermore that one

a

is interested in the quasi-steady regime (5; = iw) with w being the pulsation of the

source currents, then a new non-dimensional parameter could be defined as:
R, = powl? (2.76)

This parameter, called the shielding or the screen parameter which is a measure of
the diffusion time (o L?) to the period ﬁ, would then appear in the non-dimensional

form of equations as:

oB*

R

~RepVXx (uw"xB*)+Vx(VxB*) =0 (2.77)

equation (2.77) states that in order to be able to neglect the term V x (u* x B*),
the term %’,‘ should be small compared to unity. When %ﬂm > 1, then the magnetic
convection term could not be neglected anymore. Thus, one would be in the case of

low Rep, but with a strong coupling still needed between the fluid and the magnetic
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equations! This is the case, for example, with inductive MHD propulsion. For more
details, see Trophime {33].

While in this thesis, we would exclude any study of inductive systems or quasi-
steady regimes, we would, however, for generality, keep the possibility of both low and
high magnetic Reynolds numbers. We would then be able to develop the appropriate
algorithms for each of the two cases, weak MHD coupling and strong MHD coupling.
These algorithms could then eventually be applied for the solution of the coupled

problem with or without inductive fields and in different possible regimes.

2.8 Boundary Conditions

Boundary conditions reflect the general laws applied to an infinitely small surface,
which is an interface between two materials and domains (1) and (2). For the fluid

quantities, such considerations lead to:
u¥ = u@ (2.78)

expressing the continuity of the velocity. For the magnetic field, these considerations
lead to:

BY.n=B?.n (2.79)
expressing the continuity of the normal components of the magnetic field, and to:
HY, = H®), (2.80)

expressing the continuity of the tangential component of the magnetic induction field.
When the vector and the scalar potentials are used, then the boundary conditions
are:

Axn =0 @ =cst (2.81)

for the boundaries where B -n =0,

An=0 =—==0 (2.82)



for the boundaries where H x n =0, and
A-n=290 (2.83)

at infinity.
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Chapter 3

Variational Formulations and
Finite Element Discretization

3.1 Introduction

This chapter describes the finite element methodologies that have been developed
throughout this thesis for the magnetic problem, the vector potential formulations and
the incompressible Navier-Stokes equations. In the second section, the weak-Galerkin
variational form of the conservative formulation (B, q) of the magnetic problem is in-
troduced. It is seen that this weak form is of mixed type, requiring either the respect
or the circumvention of the L.B.B. stability condition. In this thesis, we opt for a sta-
bilized formulation since mixed formulations are known to be prohibitively expensive
in three-dimensional cases. This formulation is presented in the third section. In the
fourth section, the weak-Galerkin form of the vector potential formulation (A, ¢) is
presented. This variational statement does not need any particular treatment, since
the Galerkin method is sufficient to ensure its stability, in this case.

In the fifth section of the chapter, the Navier-Stokes equations are tackled. Again,
the weak-Galerkin form of the equations turns out to be of mixed type and stabiliza-
tion is provided through a Galerkin Least-Squares like term. The advantage of this
technique is that it gives rise to a stable formulation, even when the convective terms
are dominant.

In finite element methods, the space and the time discretizations performed on

the variational formulations yield systems of n equations in n unknowns that have to
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be solved , each, with the most appropriate solver. This depending on the nature of
the system (linear versus non-linear) and on the nature of the problem (coupled or

decoupled).

3.2 The Galerkin Method for the Conservative For-
mulation

The Galerkin weighted residual formulation for the system of equations (2.29) and
(2.61) consists of multiplying the two equations by two test functions B* and q*, re-
spectively, chosen in two appropriate functional spaces. After integrating the resulting

equations over the domain 2, one gets:
/B‘ ( ) df — n/B‘ V‘BdQ-H;/B‘ V(V - B) dQ
—/B'-Vx(uxB)dQ+/B‘~quQ:O (3.1)
Q Q

/ﬂ ¢ (V-B)d2=0 (3.2)

for all B* and ¢*.
Applying the divergence theorem, the weak form of the Galerkin formulation is ob-

tained as:

/B‘ ( )dQ+n/VB‘ VB dQ - fB' V x (u x B) dQ2
+/QB‘-quQ—n/Q(V-B)(V-B‘)dﬂ—n/r(n-VB)-B‘dF
+n/r(n-B‘)(V-B)dI‘=0 (3.3)

/n ¢ (V-B)d2=0 (3.4)

In the usual manner, the discrete problem associated with the weak form (3.3)-(3.4)

can be established as:
. th . *
/B dQ+n/VB . VB dQ — /B V x (up x By) dQ
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+/QB;,- thdQ—n/n(V- By) (V-B{,)dQ—n/P(n- VB,) - By, dT
+r)/r(n—B;,)(V-Bh)dI‘=O (3.5)

/n g. (V-By) d2 =0 (3.6)

for all B}, and g; belonging to some finite dimensional functional sub-space.

The variational problem formulated by equations (3.5)-(3.6) is of mixed type and
presents many similarities to the mixed variational formulation for the Navier-Stokes
equations (Brezzi and Fortin [42]). Hence, it requires the respect of the inf-sup
stability condition, also called the L.B.B. condition, in order to find a stable numerical
solution (B}, qp). In practice, the respect of this stability condition implies the
use of different approximations for the two variables (B}, q;). In three dimensions,
elements respecting the L.B.B. condition could prove complicated and expensive with
respect to execution time and memory storage. An alternative way of obtaining a
stable finite element method for the system (3.5)-(3.6), is by circumventing the L.B.B.
condition (Hughes et al. [43]).

3.3 The Stabilized Finite Element Method

Suppose 2,=US2,, a certain partition of the domain Q into elements and h the “size”
of an element (2. Following Brezzi and Pitkaranta [44], the continuity equation (3.6)
is modified as:
/ g (V-By)d2+ ¥ 7 / Van - Vgl dQ =0 (3.7)
NNy
where 7, is a function of the mesh size hA.
This stabilization technique is equivalent to augmenting the continuity equation
(2.29) of the strong problem with a Laplacian dissipation term of the scalar ¢, and has
already been used successfully for the Navier-Stokes incompressible and compressible

flows (Baruzzi et al. [45]). Hence, the stabilized formulation can be introduced as:
. 3Bh . .
/B d9+n/VB . VBy d — /B V x (u x By) dQ
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+/QB;,- vq,,dsz—nfn(v- By) (V-B;,)dQ—n/P(n- VBy) - B, dT

+n /F (n- BL) (V-By)dl =0 (3.8)
/q;, (V-Bp)d2+ ¥ n/ Vagr- Vg dQ =0 (3.9)
Q Qeerh Q¢

This formulation (3.8) and (3.9) creates the necessary coupling between the momen-
tum and the continuity equations. This coupling can be seen as the counterpart to
the use of staggered grids in finite difference schemes. Once the stability of the formu-
lation is insured, the volume integral emanating from the V(V - B) term is penalized
with a term 73, in order to enforce the magnetic divergence towards small values when
the convection is dominant (i.e. small values of n). Then, the formulation reads as:

. [OBn . .
/QB,,. (T%‘) dQ+n/nVBh : VBth—/th V x (u x By) dQ

+/QB;,- Vq,,dQ+(7'2—n)/Q(V- B:) (V~B;,)dQ—n/F(n- VB,) . B, dT

-i-n/r(n- B;) (V-Bn)dl =0 (3.10)
/q,; (V-Bp)dQ+ Y ﬂ/ Var- Vg, dQ =0 (3.11)
Q Qeerh ﬂg

The stabilized method defined by (3.10)-(3.11) allows for the use of equal inter-
polation for the two variables (B}, qp,), thus facilitating the implementation and

permitting the use of elements less costly in terms of calculations.

3.4 Galerkin Method for the Vector Potential For-
mulation

The Galerkin weighted residual formulation for the system of equations (2.50) and
(2.52) is obtained by multiplying the two equations by two test functions A* and
¢*, respectively, chosen in two appropriate functional spaces. After integrating the
resulting equations over the whole domain 2, one gets:

A oA dQ—n [ A*- V2A dQ
Q ot 0
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—/ﬂA‘-ux(VxA)dQ+/nA‘-V¢dQ=O (3.12)

. JA _
/ng v'-(——i +ux(VxA)—V¢) dQ =0 (3.13)
for all A* and ¢°.

After integration of the second order terms appearing in equations (3.12) and (3.13),

the weak form of the Galerkin formulation becomes:

/A‘- (%A) dQ+n/ VA*- VAdQ+/A‘- Vo dO

—/A‘ (V x A) dQ — n/n VA)-A*dT =0 (3.14)

at

In the usual manner, the discrete problem associated with the weak form (3.14)-(3.15)

/Q<6—A—ux(VxA)+V¢)-V¢‘dQ +/F(j~n)'¢'d1“=0 (3.15)

can be established as:

. aAh . »
/QA,,- (E—) dQ+n/QVAh- VAth+/QA,,- Von dO2

—/nA;,.u,,x(VxA,.)dfz-n/F(n.VA..)-A;,dr=o (3.16)

/Q(g%—uhx(VxAh)+V¢h)-V¢,‘,dQ +/[:(jh'n).¢"1(ﬂ-‘=0 (3.17)

Since both equations (2.50) and (2.52) include second order terms in A and ¢, the
formulation (3.16) and (3.17) does not need additional stabilizing terms to allow equal

interpolation for the variables (A, ¢).

3.4.1 Galerkin Method for the Reduced Vector Potential Equa-
tion

The discrete weak Galerkin form for the reduced vector potential equation (2.57) is

presented as:
/A,, (i‘ﬁ —up X (VxA,.)) dQ + r,/nvix;,- VA, d0
-1 /r (n-VAu)-Azdl =0 (3.18)
for all A,‘, belonging to some finite dimensional sub-spaces.
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3.5 Galerkin Method for the Navier-Stokes Equa-
tions

The Galerkin weighted residual formulation for the Navier-Stokes equations (2.65)
and (2.67) is obtained by multiplying the two equations by two test functions, v for
the momentum equations and p* for the continuity equation, respectively, chosen in
two appropriate functional spaces. After integrating over the whole domain 2, one

obtains:

ou 2 1 1
/Qv- (b—t--{—(u-V)u—uVu+;Vp—;(VxB)xB) d2=0 (3.19)

/Q p’(V-u)d2=0 (3.20)

for all v and p*. Integrating by parts the second order term appearing in the integral

form of the momentum equations (3.19) gives the weak Galerkin form:

ou 1
/ﬂv- (§+(u-V)u>dQ+u/nVu-Vde—;/an-de

_iL((VXB)XB)'VdQ+%APVndr‘—l//[:(vun)VdF-_—O (321)

/Q p* (V- u)dQ =0 (3.22)

Again, in the usual manner, the discrete problem associated with the weak Galerkin

formulation (3.21) and (3.22) is:

du 1
/‘;Vh- (Wh-%(uh-\?)uh)dQ+u/nVu|,-Vvth—;/np,.V-vth

1 1
—;/‘)((VXBI;)XBh)'Vhdﬂ+;/yphVh-ndI‘—V/F(Vuh-n)-vhdI‘=0 (3.23)

/ﬂ gy (V-up) d2 =0 (3.24)
for all vy, and p}, belonging to some finite dimensional functional sub-spaces.
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3.5.1 Galerkin Least-Squares Formulation

The variational problem formulated by equations (3.23) and (3.24) is of mixed type,
and, again, requires circumventing the L.B.B. condition. Moreover, Galerkin for-
mulation like (3.23) and (3.24) is known to generate unstable numerical solutions
whenever the convective term (u - V)u is dominant. In the context of fluid mechan-
ics, Galerkin Least-Squares formulations ([46]) have been used successfully by many
authors, in order to ensure both the stabilization for equal order interpolation and
for high Reynolds numbers. In this case, such formulation could be presented in the

following compact form as:

Buy, 1
/{;Vh‘ ('Et—'{"(uh’v)uh)dQ'*'V/QVUh'VVth—;./QphV'VhdQ

1
-‘i-z%ﬁ / <_6t— + (uh V)uh -vV? up + — Vph> ((uh . V)Vh + quvh + ;Vp,',) dSQ,
(3278 Qe

—;/ﬂ((Vth)th)-vth+-p-/Pphvh-ndI‘— V/F(Vuh-n)-vhdf‘

+ /n pL(V - up) d2 = 0 (3.25)

From the above stabilized formulation (3.25), one can obtain the corresponding mo-
mentum equations by choosing p; = 0, or obtain the corresponding continuity equa-

tion for v, = 0.

Remark 1: If the test and the shape functions are interpolated on a linear basis,
then the second order terms appearing in the stabilization terms of (3.25) cancel and

the formulation simplifies to:

du 1
/nv.,- (#+(uh-V)uh)dQ+u/ﬂVuh-Vvth—;/np,.V-vhdﬂ

+ ) n/ (-— + (un - Viu, + —Vp,,) . ((u,l -V)vn + le;) s,
Q€N p

+/Qp,‘,(V - up) dQ

1 1
—;/ﬂ((Vth)th)-vh dQ+;/rPn vh-ndl— V/P(Vu..-n)-vhdr‘=0 (3.26)
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3.6 Finite Element Space Discretization

In finite element methods, the domain  is decomposed into a finite number of ele-

ments, Nel, (2 = U4 Q,). The solution vectors By, gh, An, ¢, un and py are

approximated within each element by the same polynomial shape functions. These

approximations lead to the following expressions:

nnd

Bp = Z Bhp;(t) ¥;(x)
i=1

nnd

G =D an;(t) ¥j(x)

=1

rmd

An =3 Ap(t) i(x)
=t
nnd

P = Z on;(t) ¥;(x)

nnd

up = g un;(t) ¥;(x)
nnd

Pn =) paj(t) ¥(x) (3.27)
i=1

where B, qn;, Anj, ¢n, un; and Pr; are the values of the approximate solutions at

node j, ¥; is the shape (or the interpolation) function associated with node j and

nnd is the total number of nodes per element. Then, from the above expressions, one

can derive that:

th nnd

N =,z=:1 By;(t) v;j(x)

8 nnd )

?Ogtll =JZ=:1 dn;(t) ¥;(x)

OA nnd

S =2 Anlt) %)
j=1

a nnd

% = Z ¢h] wj(x

ou nnd )

Wh =D un(t) ¥;(x)
Jj=1
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aph nnd
o = 2 Pt %) (3.28)

Jj=1
where th, Ghj, Ah,-, d),,j, Un; and pp; are the nodal values of the different time
derivatives. Substituting equations (3.27) and (3.28) into the variational formulations
(3.10)-(3.11), (3.16)-(3.17), (3.18) and (3.26) gives rise to four coupled systems that

can generically be put in the following form:
MU +K|]U=F (3.29)

where U represents By, and g, Ay and ¢, or u, and p, and where U represents th
and gpj, An; and @y, or u; and pp;. The coefficients of the matrices [M] and [K] are

obtained from the variational formulations that are used for each pair of variables.

3.6.1 Linear Tetrahedral Reference Element

In the present work, the computational domain is subdivided into four-node tetrahe-
dral elements with all the variables interpolated by linear functions. To facilitate the
computation of the coefficients of the mass matrix, [M], of the influence matrix, [K],
and of the right-hand-side vector F, it is classical to evaluate these coefficients at the
element level, after mapping the element to a reference element, ., of fixed simple
geometry (Figure 3.1). The interpolation functions are defined over the reference

linear tetrahedral as:

Y =1-§-n-¢

Yo =§
1/;3 =1
Uy =C (3.30)

Since the interpolation functions are linear, the integrals in the elementary systems are
computed analytically. The elementary systems that are obtained are then assembled

in a global system of a form like (3.29).
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VC

Figure 3.1: Actual linear tetrahedral element in the (x,y,z) global coordinates (right)
and the reference element in the (£, 7,() local coordinates (left)

3.7 Time Discretization

The time derivative vector U is evaluated by a finite difference-like expression and

substituted into equation (3.29). Using the Gear scheme, the vector U is written as:

U—3Un— 4Un_.1+ U_2
- 2A ¢t

(3.31)

The Gear scheme is a variable order variant of the implicit Euler scheme, with the
order chosen here to be 2. It, however, requires solution vectors at two time steps
n—2and n -1, in order to be implemented. During the first time step, one can use
the first order implicit Euler scheme:

3 Un - Un—l

= — .32
U A3 (3.32)
then, from the second time step on, the second order Gear scheme can be appro-
priately used. Using (3.31) or (3.32) into (3.29) gives a new global system of the
following generic form:

(K] U=F (3.33)

The nature of such a system depends mainly on the formulation that is used. The
systems emanating from the (B, g), or the (A, ¢) formulations are linear ones. The

solution of such systems can be handled without major obstacles. When the fluid
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problem (u, p) is coupled with the magnetic one (B, g), the system obtained is non-
linear and presents more challenging problems in its solution. Ways of solving each

of these systems are presented and discussed in the following chapter.
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Chapter 4

Solution Strategies

4.1 Introduction

As stated in the introduction, a two-step approach has been adopted in order to
achieve the goals of the thesis. In the first step, the magnetic problem has been de-
coupled from the fluid problem, while, in the second step, both problems are coupled.
Since the problems to be solved at each step are different, the solution strategy has to
adapt to the problem that is solved. For the fluid solver, a GMRES-based algorithm
with an ILUT preconditioning is implemented. In the third section, an overview of
the solution strategy of the decoupled magnetic problem is presented. This strategy
concerns the (B, g) conservative formulation, the (A, ¢) or the A formulations.

In the second step, the coupled problem is tackled. First, it should be noticed that
the coupling has been developed between the (B, q) conservative formulation and the
Navier-Stokes equations, rather than between the (A, ¢) or A potential formulations

and the Navier-Stokes equations, because of the following reasons:

e The (A, ¢) or the A formulations are generally associated with inductive sys-
tems in which the vector potential A (called the source generator) results from

an alternative source, and is written as:
A(x,t) = Real (e“"‘A(x)) (4.1)

Since this kind of quasi-steady regime has been excluded from this work, it is
logical to exclude the coupling between the vector potential formulations and

the Navier-Stokes equations.
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e The use of the (B, g) conservative formulation in the coupling brings about the
main electromagnetic variable, namely the magnetic field B, a physical quantity

that can be easily and directly measured.

® The computation of the Lorentz body forces is straightforward when the mag-
netic field is used. When the vector potential A is used, the expression of the

body forces is somewhat more difficult to express and to implement.

In the fourth section of the present chapter, the solution strategy for the (B, g, u, D)
coupled problem is presented. This strategy is based on a segregated scheme. Two
versions of the algorithm are available: one for a weak MHD coupling and the other
for a strong MHD coupling. Both the magnetic and the fluid problems are addressed
in the coupled strategy.

The basic difference between the weak and the strong coupling is the frequency of
updating the magnetic field during the fluid computations. It will be seen that high
magnetic Reynolds numbers require a frequent and robust updating of the magnetic
problem, while for low magnetic Reynolds numbers the updating of the magnetic

problem could be done less frequently.

4.2 The Fluid Solver

The fluid problem, which can be described in its strong form by equations (2.70)-
(2.71), or in its weak form by the variational statement (3.26), can be put in the

following generic form:

[K(U)] {U} ={F(U, B)} (4.2)

where [K(U)] is the global matrix, {U} is the global nodal variables vector and
F(U, B) is the global right-hand-side vector. The non linearities in system (4.2) are
due to the convective terms of the governing equations and results in a fluid matrix
[K(U)] which depends on the velocity itself. In order to solve such a non linear

system, one has to linearize it, say by, Newton’s method. Defining the residual vector
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{R(U, B)} as

{R(U,B)} = {F(U,B)} - [K(U)]{U}, (4.3)
Newton’s method consists of solving a succession of linear systems obtained from the
Taylor series development of the expression of the residual vector {R(U, B)} around

{U, B*}, the solution vector at the ith iteration. For a given {B'}, the residual vector

at the ith + 1st iteration is written as:

(R, B} = {R(U‘,B‘)}+[——3R(Ui’.3 i)} {AU*+1}+[—————62R(UI:’BI)] {a2 1}

ouUt U
(4.4)
If one neglects the second and higher-order terms, then:
) . S 6R(U" B") .
1+1 1 ~ 1 i ! i+1
{RW™, BY} ~ {RU', B} + [-—an ] {av+'} (4.5)

One is looking for a solution {U**'} in such a way that the residual is null at the

ith + 1st iteration. Thus, at each iteration, one has to solve:

[3—’%5-] {av} = -{R(", B} (4.6)

The matrix [—R(U——'ﬂ] is called the Jacobian matrix of the residual {R(U?, B*)} and

au
is denoted by: o
[T = [MJ (4.7)

out
Thus, finding {U**'} is equivalent to computing {AU**'} in such a way that:

[7@h)] {av*t} = - {RrRU", BY)) (4.8)
Newton’s algorithm reads:

Newton-Raphson Algorithm for Fluid Problem

1- Begin: Choose an initial solution {U°} and a convergence criterion e

2- Newton iteration: For i=0, 1,...., nNewton

e 2.1. Solve
1Y) {av+} = - {R(U*, B")}
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e 2.2. Update the Solution:
{vm} ={v} +{av™)

e 2.3. Convergence Test: If || {AU**'} |l < € Then Stop

3- End of Newton iterations
4- End

Remark 1: A drawback of the Newton method is the computation of the Jacobian
matrix at each Newton iteration. Updating the matrix is expensive in terms of the
computation and storage. In order to reduce such requirements, one needs a less

expensive resoiution method.

Remark 2: [terative solvers are known not to require an exact computation of the
matrix. Rather, they only require exact computations of the residual vector (the
right-hand-side). Hence, an iterative solver seems to be a viable method for the

solution of the fluid problem.

4.2.1 GMRES Method

Among iterative methods, Krylov-based methods are known to require only the com-
putation of matrix-vector products and thus are appealing since the decomposition
of the Jacobian matrix is avoided. For an overview of Krylov-based methods, one can
consult Dutto [47]. Among Krylov-based methods, the GMRES method developed
by Saad [48] has been applied successfully to non-symmetric matrices.
Let us, for simplicity of notation, rewrite the linear system to be solved at the ith
Newton iteration as:
[Al{z} = {8} (4.9)
The GMRES method consists, then, of finding an approximate solution of {z} which
is a vector of K., the Krylov subspace of dimension m associated with {b} (the initial

residual vector) and the matrix [A]:
Kn = span {{b},[A]{b},...[A]"" {8}} (4.10)
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The approximate solution {z}™ is constructed such that:
108} ~ 141 {2} Il = min [l 6} — 4] {a}™ (@.11)

Remark 3 It can be shown that if the dimension of the Krylov sub-space m is chosen
to be N, the dimension of the Jacobian matrix, then, neglecting the round-off errors,
the approximate solution obtained by the GMRES method is the exact solution ([48]).
In this case, the GMRES method becomes essentially a direct method. However, it
is clear that m = N makes the method too expensive. In practice, m < N so the

computation requirements remain reasonable.

Remark 4 In the non-linear version of GMRES, the matrix-vector products, re-
quired for the computation of the m — 1 basis vectors of the Krylov sub-space, are
performed through the following difference-like expression:

., — [RU + e, BY)} - (R, BY)}

4 6

(4.12)

As with any finite difference scheme, the above product is subject to a truncation
error. In the case of (4.12), the truncation error is of order O(e), stressing the need
for the coefficient ¢ to be carefully chosen in such a way to insure both a good
approximation of the directional derivative and the numerical stability of the method.
Brown [49] gives the necessary conditions on ¢ for a local convergence of the Newton

method. In the present work, € is given by the following expression:
e=c¢o (|| {R(U', B")} |2 + «0) (4.13)

where ¢; is set to 107S.

Starting with an initial solution {z}, the non-linear GMRES algorithm reads:

Non-Linear GMRES Algorithm:

1. Set eps. Compute 1o = b — Azg, 8 =||ro|l2, v1 =10/8
2. Define the (m + 1) x m matrix Hm = {h; jhi<i<m+1,1<j<m-
Set H,, =0.

3. For j=1,2,...,m Do:
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Compute w; = [F(zo + eps * w;) — F(zo)]/eps
Fori=1,...,7 Do:
hij = (wj, ;)
w; = wj — hijv;

EndDo

© P® N e

hivrj = llwjll2. If hjy1; =0 set m = j, goto 12
10.  vjgr = wi/hjsry

11. EndDo

12. Compute yn, the minimizer of ||fe;, — Hny||» and
Tm = Zg + VinYm.-

13. If satisfied Stop, else set zq = z,, goto 1.

Remark 5: It is possible to adjust eps at each iteration. For example, one can
set eps = ePSmacn/||w;|| for each j, where epsmqcn is the square root of the machine
zero. However, one should be cautious regarding the influence of this choice on the
convergence. Some numerical tests performed during this thesis have proven that
setting € to a constant makes the GMRES algorithm convergence much better than

updating € at each GMRES iteration.

4.3 Preconditioning of Linear Systems

While solving system (4.9), and like any other iterative method, the convergence
of the non-linear GMRES method to the solution {z} is known to depend, among
other factors, on the spectral properties of the matrix [A] (Saad [50]). In order to
enhance the desired spectral properties of the matrix [A], it is classical to introduce

a preconditioning non-singular matrix [M] and to solve the alternative system:
[M]7'[A]z = [M]™'b (4.14)

By introducing this equivalent system, one hopes that the spectral properties of the
new matrix [M] ™' [A] will favor the convergence of the iterative method. A good

preconditioning for the GMRES method should have the two following properties:

33



1. GMRES-like methods require, for a good convergence, that the eigenvalues be
located in the smallest portion of the complex plane ([50]). Observing that the
identity matrix [I] presents the particularity of having all unit eigenvalues (all
located in the same point); Constructing a preconditioning matrix that most
closely approximates the original matrix [A] should make the matrix product
[M]™'[A] a good approximation of the identity matrix [I]. It is obvious that
the more this property is satisfied, the more effective the preconditioner is. In
the limit when [M] = [A], the product matrix [M] ™" [A] is equal to the identity
matrix and one has the best possible preconditioner. However, the closer [M)]

approximates [A], the greater the computational requirements are.

2. The matrix [M] should be easily “invertible”, meaning that the system

[M]}{z} = {y} (4.15)

makes it easy to find:
{z} = (M]"" (v} (4.16)
It is obvious that the more this property is satisfied, the easier system (4.14) is

solved with lower computational costs.

A good preconditioning matrix is thus a compromise between the above two contra-
dictory properties.

As an extension to system (4.14), the system of equations is recast as:
(M7 [A] [Mo] ' [Ma) {z} = [My] " {b} (4.17)

If [M;] = [I], the system is said to be right preconditioned and, if [M;] = [I], then it
is left preconditioned. The right preconditioning form is mostly used in the literature
mainly because the residual {4} is the same for both the original system (4.9) and
the preconditioned one (4.17). This property of right preconditioning thus allows
a direct measure of the quality of the preconditioning and is most appropriate to
study the influence of different preconditioning matrices on the convergence and the

convergence rate.
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4.3.1 Different Types of Right Preconditioning
A basic preconditioning that has been used is to choose [M] as a diagonal matrix:
[M] = [D], dﬁ = Q4 and d,;j = 0, 1 # ] (418)

with d;; and a;; being, respectively, the coefficients of the matrices [D] and [A]. This
preconditioning has been applied successfully to the GMRES method (See reference
(64)).

However, the diagonal preconditioning is not sufficiently robust in all cases. The
work of Meijernick and Van Der Vorst [51], opened the way for the development
of a new family of preconditionings which basically consist on an incomplete LU

factorization of the matrix [A], which is written as:
[M] = [L][U] = [A] + [E] (4.19)
One can distinguish two classes of incomplete LU factorization preconditionings ([47]):

1. The zero-nonzero structure of [L] + [U] is the same as the original matrix [A],

i.e., my; is a nonzero coefficient of [L] + [U] if and only if a;; itself is nonzero.

2. A certain amount of fill-in is allowed to take place in the structure of [L] + [U].
In the limit of large fill-in amount, [M] becomes a complete LU factorization

of [A].

Among commonly used right preconditionings, ILU(0) is a representative of the
first class ([50], [51]). More recently, Saad [52] developed the very promising ILUT
method. The preconditioning matrix is obtained by constructing [L] and [U] subject
to the restriction that for each row of both triangular matrices, only a controlled
amount [fil of non-zero coefficients are allowed in [L] and [U] during the Gauss
elimination. Furthermore, coefficients of the matrix deemed to bring an insignificant
contribution to the incomplete decomposition are dropped. Thus, two values charac-
terize the ILUT method: an integer one, [fil, for the number of non-zero coefficients
per row and a real one, tol, which is a criterion to measure the influence of a coefficient

on the incomplete LU decomposition. Both [fil and tol are to be set by the user.
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For this thesis, the GMRES method has been associated with the ILUT(Ifil, tol)

preconditioning for the solution of the fluid problem. The resulting non-linear right

preconditioned GMRES/ILUT algorithm is written in the following form:

Non-Linear GMRES/ILUT Algorithm:

1.
2.

10.
11.
12.

13.

14.

© 0 N e

Set eps. Compute rq = b — Azo, 8 = ||ro|l2, v1 =r10/8
Define the (m + 1) x m matrix H, = {hijh<icmiri<jcm.
Set H,, = 0.
For j =1,2,...,m Do:
Compute w; = My,
Compute w; = [F(zo + eps * w;) — F(zo)]/eps
For:=1,...,7 Do:
hij = (wj, v;)
wj = wj — hiju;
EndDo
hjp1; = |lwjll2- If hjy1; = 0 set m = j, goto 12
Vit1 = Wi/ hjp1
EndDo
Compute y,, the minimizer of ||Be; — Hpyl|2 and
Im = Zg + VinlYm.

If satisfied Stop, else set zo = z,,, goto 1.

4.4 The Magnetic Solver

Both the conservative formulation (B, ¢) and the vector potential formulation (A, ¢)

(or the reduced vector potential A formulation) give rise to a system of NV equations

which reads in the generic following form as:

[K'(U)] {B} ={F'(B,U)} (4.20)

where [K'(U)], {F'(B,U)} and {B} are, respectively, the global matrix, the global
right-hand-side vector and the global nodal variables.

System (4.20) is linear, since the coefficients of the matrix [K'(U)] do not depend

on (B,q) (on (A, ¢) or on fk); Indeed, they depend only on the velocity vector u,
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which, in this case, is a given data. For relatively large problems, it is preferable to
use an iterative solver such as a linear GMRES solver. However, for our academic
purposes and since the system is linear, a direct solver, based on the well-known
Gauss elimination, is still a reasonable strategy for the resolution of system (4.20).
The Gauss elimination proceeds by decomposing the matrix [K’(U)] into two matrices
(Dhatt and Touzot [53]):

[K'(U)] =[L] [U] (4.21)
where [L] is a lower triangular matrix with unity terms on its diagonal and [U] is an

upper triangular matrix obtained through the Gauss elimination process.

4.5 The Coupling Strategy

The fully-coupled problem which is described in its strong form by equations (2.70)-
(2.73), or in its weak form by the variational statements (3.10), (3.11), and (3.26),
can be recast as:

[KU)I{U} = {F(U, B)} (4.22)
and

[K'(U)){B} = {F'(B,U)} (4.23)
In equation (4.22), [K(U)] is the global matrix, {U} is the global nodal variables
vector and F'(U, B) is the global right-hand-side vector, corresponding to the fluid
problem. In (4.23), [K'(U)] is the global matrix, {B} is the global nodal variables
vector and F'(B, U) is the global right-hand-side vector, corresponding to magnetic

problem.

4.5.1 Simultaneous Solution of the Coupled Problem

In order to approach the solution of (4.22) and (4.23), one can consider the simul-
taneous solution of these two systems. “Simultaneous”, means the solution of both

problems at the same time within the same global system:
U
[Kq(U, B)] s~ {Fy(U, B)} (4.24)
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where (K, (U, B)] is the global matrix, {U, B}" is the simultaneous global nodal vari-
ables vector and {F,(U, B)} is the global right-hand-side vector, corresponding to the

coupled problem.

Problem (4.24) is non-linear both in {U} and {B}. The non-linearities are due to
the presence of the advective terms within both the Navier-Stokes equations and the
magnetic induction equation. These terms, depending on both the Reynolds number
Re and the magnetic Reynolds number Re,,, could prove very strong, making the
non-linearities very important. The solution of such systems requires an iterative
method since the matrix [K,(U, B)] depends on the solution {U, B}" itself. Again
a Newton-Raphson method could be used in order to linearize such a system and
to solve it iteratively. If an initial guess is adequate within a certain convergence
radius, then the convergence of the Newton algorithm is at least super-linear. While
the simultaneous solution of the equations is the most robust technique, especially
when associated with a Newton'’s-like algorithm, it is, however, the most expensive
computationally especially for relatively large problems. At the elementary level,
the matrix [K,] is an 32 by 32 square matrix, thus leading to a huge global system.
Furthermore a Newton’s method requires the re-computation of the matrix at each
iteration. So the simultaneous method is not satisfactory from the point of view of

efficiency, especially for 3D problems.

4.5.2 Segregated Methods

As an alternative to the simultaneous solution approach, one can use a segregated

scheme. Two remarks hint for the justification of such approach.

e First, one can observe that for a given flow field (flow field means the three
components of the velocity and the pressure), the magnetic field (the three
components of the magnetic field and the scalar ¢q) can be obtained directly
without any other interference. The same thing can be said for the magnetic

field.
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e The second remark refers to the discussion in subsection (2.7.1). Actually,
for MHD at the human level, we have underlined that the magnetic Reynolds
number is small. The term small is relative and it does not in all cases exclude
the existence of regions where “local” magnetic Reynolds numbers are more
important. As seen in subsection (2.7.1), such moderate magnetic Reynolds
numbers mean a moderate influence of the velocity field on the magnetic one.

It suggests again for the use of a segregated method.

Segregated methods consist of a sequence of solutions of the two problems. The
process is stopped when a certain convergence criterion is achieved during the iterative
process. For time-dependent problems, coupling iterations are actually time steps and
convergence is achieved when steady-state solution is obtained. In order to introduce
the segregated algorithm, notice that solving systems (4.22) and (4.23) at each time

step is equivalent to solving:

(kW) {aU} = -{RW*, BY)) (4.25)

[k'W)] {aB'} =-{R(B, U} (4.26)

where, the residual vector of the fluid problem { R(U*~!, B~!)} and the residual vector
of the magnetic problem {R'(B*~!,U*~!)} are obtained by:

{RW,B™Y} = {F(U,B)} - K (W) {U*'} (427)

{R(B=,U} = (F(B,V)} - [K')] {B") (4.28)

The generic form of the segregated algorithm could, then, be presented as:

Algorithm 1:Generic Form of the Segregated Algorithm

1- Choose initial solutions {U°} and {B°} and convergence criterion ¢

2- Time Steps: For i=1,2,...,nsteps
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-2.1. Solve the Magnetic Problem:

[K'UmMI{aB} =~ {R(B, U}

-2.2. Update the Magnetic solution:

{8} ={7} +{a5)

-2.3. Solve the Fluid Problem:

(k@] {aU} = - {RW',B")}

-2.4. Update the Fluid Solution:

(U} ={v} +{av}

-2.5. If || {R(U*, B")}|l, < € Stop
3- End of Time Steps
4- End

Remark 6 In Algorithm (1), {U™} and {B"} are respectively the fluid and the

magnetic solutions at certain previous mth and nth iterations.

Remark 7 This segregated algorithm is very interesting since the two, fluid and
magnetic, problems are decoupled in the algorithmic sense while physically the ef-
fect of each of the fields on the other is still accounted for. Hence, by separately
solving each of the problems, one can choose methods that are adapted to each type.

Eventually, this permits the updating of each of the solvers in an independent fashion.

Remark 8 The convergence test is set for the fluid problem, since between the two
problems the latter is more difficult to converge. As seen in secticr. (4.4), the magnetic
problem is solved with a direct solver, hence making the control of the convergence

of the coupled problem an easy task.
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4.5.3 The Simplest Segregated Algorithm

Since Algorithm (1) is a segregated one, then m < i and n < i. Letting m take
different values among 0,1, ...,7 and n take different values among 0,1,2,...,1 — 1,
leads to a whole family of explicit schemes. For instance, setting m = i — 1 and
n = 1 gives the simplest segregated algorithm. “Simplest” means the most obvious
algorithm, in the algorithmic sense. In such case, Algorithm (1) becomes:

Algorithm 2:Classical Segregated Algorithm

1- Choose initial solutions {U°} and {B°} and convergence criterion €

2- Time Steps: For i=1,2,...,nsteps

-2.1. Solve the Magnetic Problem:

[KI(Ui—I)] {AB‘} - _ {RI(Bi—l’Ui—l)}

-2.2. Update the Magnetic solution:

{8} = {8} +{a5}

-2.3. Solve the Fluid Problem:

[kWwh] {av} = - {RW, BY}

-2.4. Update the Fluid Solution:

{} ={v} +{av}

-2.5. Convergence Test: If || {R(U*, B')} ||, < € Stop
3- End of Time Steps
4- End
Steps (2.1) and (2.2) in the algorithm (2), consist of solving and updating the
magnetic solution. It was already seen that the direct solver chosen for the solution
of the magnetic problem is still an acceptable strategy for our academic purposes and
when the magnetic problem is decoupled from the fluid one. However, when the fluid

and the magnetic problems are coupled, this strategy is no longer practical because
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it would involve the complete LU decomposition of the magnetic matrix at each time
step of the segregated algorithm. One should then look for another strategy which
would imply on one hand, reasonable computational requirements and robustness of

algorithm, on the other hand.

One way to satisfy these two requirements is to make m take other values than i—1.
This amounts to freezing the magnetic matrix [K’(U™)] for a certain number { of time
steps. This, however, lags the magnetic matrix behind the residual magnetic vector,
thus, requiring the implementation of an inner iteration for the magnetic problem.
This inner iteration could be seen as a fixed-point method or as a Modified Newton
method for the linear magnetic problem. In such case, the segregated algorithm (2)

becomes:

Algorithm 3:Segregated Algorithm with Inner Magnetic Iterations

1- Choose initial solutions {U°} and {B°} and convergence criterion €
2- Compute the LU decomposition of the matrix [K'(U%)] = (L] [U]

3- Time Steps: For i=1,2,...,nsteps

-3.1. If (i.mod.m) = 0 and m # 0 compute [L] [U] = [K'(U*)]
-3.2. Set {Bj'} = {B"~1}
-3.3. Inner Magnetic Iterations: For j=1,...,niter

-3.3.1. Solve The Magnetic Problem:

[Lv1{aBit} = - {R(BELUTY)

J

-3.3.2. Update The Inner magnetic Solution:

{87} ={Bi1} +{a8}
-3.3.3. If | {R(B{ ™, U*1)} ll, < €Stop
-3.4. End of Magnetic Iterations
-3.5. Update The Magnetic Field:

{5} ={5"}
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-3.6. Solve the Fluid Problem:

[kWh]{av'} = - {RW*, BY)

-3.7. Update the Fluid Solution:

(v} = (o) + {av)

-3.8. Convergence Test: If || {R(U*, BY)}|], < ¢
4- End of Time Steps
5- End

In algorithm (3), the updating of the magnetic matrix takes place only when
needed. This property is highly desired in order to take into account both low and
high magnetic Reynolds numbers Ren,. Actually and as discussed in section (2.7),
when diffusion is the dominant mechanism by which the magnetic field is transported,
a certain decoupling exists between the magnetic field and the fluid one. Setting
m = ( is sufficient for the convergence of the segregated algorithm while resulting in
a once and for all decomposition of the magnetic matrix.

However, when the magnetic Reynolds number Re,, is high, the magnetic matrix
must be updated more frequently. Actually, in such cases, the magnetic field is
frozen in the velocity field (in the physical sense), and any change in the fluid field is
immediately captured by the magnetic field. Thus freezing the magnetic matrix (with
the initial velocity field) would certainly resuit in the divergence of the algorithm.
Hence, m can no longer be set to zero. The choice of m, as an updating criterion,
depends on the magnetic Reynolds number Re,,. The higher the magnetic Reynolds

is, the more frequent the necessary updating of the matrix is required.

Remark 9: Algorithm (3), described above could be seen as a compromise between
and as a mixture of, the modified Newton method where the matrix is decomposed
once and for all, and a substitution (or Picard’s) method where the matrix is updated

at each iteration.
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4.5.4 Tighter Segregated Algorithms

In algorithm (2) and (3), the index n has been set to ¢ giving rise to classical seg-
regated schemes. If tighter coupling is required between the magnetic and the fluid
problems, one could relate n to inner iterations of the fluid problem (Newton or
GMRES iterations), rather than to time steps outer iterations. For instance, if the
updating of the magnetic solution is required at each Newton iteration, the resulting
algorithm becomes:

Algorithm 4:

1- Choose Initial Solution {U°} and Convergence Criterion .
2- Solve for the Initial Magnetic Solution with {U°}.

3- Time Steps: For i=1,2,...,nsteps

-3.3. Newton Iterations: For j=1,...,nNewton

-3.3.1. Solve the Fluid Problem:
[T hH){av} = - {RW~', B}
-3.3.2. Update the Fluid Solution:

{7} ={v='} +{av}

-3.3.3. Solve the Magnetic Problem.

-3.3.4. Update the Magnetic Solution:

{8’} = {5} +{a5}
-3.4. End of Newton Iterations.
-3.5. Convergence Test: If | {R(U*, B*)} ||, < € Stop.
4- End of Time Steps.
5- End.

If the magnetic problem is updated for each Krylov iteration during the solution of
the fluid problem with the GMRES algorithm, then the algorithm becomes:
Algorithm 5:

1- Choose Initial Solutions {U°} and Convergence Criterion e.
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2- Solve for the Initial Magnetic Solution with {U9}.
3- Time Steps: For i=1,2,...,nsteps

-3.1. Newton Iterations: For j=1,...,nNewton
-3.1.1. Krylov Iterations: For k=1,...,nKrylov
-3.1.1.1. Compute the kth Element of the Krylov Base.

-3.1.1.2. Solve the Magnetic Problem.
-3.1.1.3. Update the Magnetic Solution:

{8} = {8} +{aB"}
-3.1.2. End of the Krylov Iterations.

-3.2. End of the Newton Iterations.

-3.4. Convergence Test: If || {R(U*, B')} ||, < € Stop
4- End of Time Steps.

5- End.

4.5.5 Conclusion

The algorithms, associated with the solution strategies outlined throughout this chap-
ter, have been used to obtain the solutions of different numerical tests. These tests
concern both the decoupled magnetic problem (with (B,q), (A, ¢) or A) and the
coupled problem (B, q,u,p). The next chapter is dedicated to the presentation of

these numerical tests and their results.
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Chapter 5

Numerical Results

5.1 Results for the B, ¢ formulation

For the B, g formulation, numerical tests have been carried out in two steps. In
the first one, the accuracy and the stability of the method have been studied. In
particular, the convergence rates of the different methods obtained with the different
combinations of the stabilization coefficient 7; and of the penalization factor 7, are
computed. The performance of the conservative formulation, developed in this thesis
is compared to that of the “Helmholtz” formulation in both cases of steady state and
unsteady solutions.

Once the stability and the accuracy of the conservative formulation have been
studied, some benchmark tests are carried out. These tests are well-known in the
context of MHD and put into evidence two physical unique characteristics of MHD
flows: The Hartmann layer and the Alfven waves. While being simple tests, they

illustrate typical industrial configurations. The tests are presented as follows:
e The Hartmann-Poiseuille flow,
e The Hartmann-Poiseuille flow with external electric current,
e The Hartmann-Couette flow,

e The Hartmann-Rayleigh flow.

Finally a three-dimensional test case is shown. This test case illustrates the tran-

sition between two extreme situations occurring in the context of MHD flow: the
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quasi-diffusion of the magnetic field, where the velocity field plays a negligible role,
and the quasi-convection of the magnetic field by the velocity one. In the latter case,

the magnetic field is said to be frozen in the velocity field.

5.1.1 Steady Case

In order to assess the stability and the quality of the finite element formulation (3.10)-
(3.11), we study this problem in a cubic domain (0 < < 1,0<y < 1,02 <1).
The velocity vector is set to u = (1,0,0)T. The Dirichlet boundary conditions and
the right-hand-side vector f = (2z — 27, —27,22)T are imposed in such a way as to
reproduce approximately an arbitrary solution of the continuous problem, namely
B = (z?,4% —2(z + y)2)T and ¢ = 0. The dissipation coefficient 7, can be given by
one or the other of the two following expressions:
h2

1= a%, (51)

S (CORCIN

The penalization factor 7, is set to either:
T2 = Oa (5.3)

which corresponds to the original physical model, or to:

T2 = ||u]lh/2. (5.4)
In the latter case, the coefficient r = 7, — 77 ends up to be:
r=g (1 - Re’"") , (5.5)
2
where Rep,, is the local magnetic Reynolds number defined by:
Remp = op[u]h. (5.6)

Computations have been made for two different magnetic diffusion coefficients 7 =
1.2 x 107! and = 1.2 x 1073 representing, respectively, a highly diffusive case and
a highly convective one, and for & = 0.1, 1/3 and 1.0. For each case, we calculated
the mesh variation of the Ly(f2)-norms of the magnetic field divergence ||V - By||, the
error ||B, — B|, the Lagrange multiplier ||gx|| and its gradient ||Vgy]|.
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Comments:

Highly Convective Case: When the magnetic convection is important (n=12x
1073), the best solutions are obtained with 7, = [lu]|h/2 and this is true regardless
of the expression used for 7. Actually, the methods generated with 7, = [lu]|h/2 are
much more conservative and accurate than the “Helmholtz” formulation (Figure 5.1)
and than the formulation obtained with 7, = 0 (Figure 5.2). Results are shown with
o = 0.1 for the first comparison and with & = 1.0 for the second comparison, using
71 as defined in Equation (5.2) in both cases. However, the trends are maintained in

both cases with other o values and with 7, as in Equation (5.1).

However, it should be noticed that when 7> = [|u||h/2, the formulations obtained
with 71 as given in Equation (5.2), which is of order O(h) when the convection is
dominant, gives optimal convergence rates for both B, and gn- In fact, for the
Lagrange multiplier ¢ and the magnetic field, convergence error rates are equal to 2.
For the gradient of g, and the divergence of By, the rates are around unity (Figure

5.3). These rates are independent of the value assigned to o (Figure 5.4).

When 7, is expressed by Equation (5.1), which in the convective dominant case
is of order O(h?), the convergence rates are still optimal for the magnetic induction
field and for its divergence, while for the scalar q and its gradient the rates become
sub-optimal. For gy, the rate is around 1 and the gradient of g, seems to be bounded
by a constant (Figure 5.5). Figure (5.6) shows these convergence rates for o = 1/3
and a = 1.0. In contrast, the method generated by Equation (5.2) gives rise to better
accuracy and magnetic conservation than the method generated by Equation (5.1).
Overall, the two methods do not seem to be very sensitive to the value of the constant

a, so a = (.1 seems a suitable value to be assigned for both methods.

If , = 0 (Figure 5.7) and the convection is still dominant then the accuracy of the
method is very poor and the error norms are very important especially when Equation
(5.1) is used for 7;. Moreover, and regardless of the expression used for 7,, the method
is very sensitive to the value of the constant «, showing signs of instabilities due to the

effect of the convection. No general trend for the convergence rates could be drawn.
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Thus, one should avoid using such a method.

Highly Diffusive Case When the diffusion is dominant (n = 1.2 x 10~!), then
all the methods obtained by the different expressions for 7; and 7, are accurate,
convergent and stable. When 7, = 0, both expressions arising from Equations (5.1)
and (5.2) for 7, give approximately the same results in terms of the magnetic field
error and the magnetic divergence. This can be explained by the fact that since the
magnetic diffusion is dominant, Equations (5.1) and (5.2) lead both to expressions of
O(h?).

The convergence rates obtained for the two expressions for 7; are the same. We
obtain convergence rates of 1 for the magnetic field divergence and for the scalar g.
The convergence rate for the magnetic induction is of order 2 and the gradient of
q is bounded by a constant (Figure 5.8). As expected, the linear interpolation on
tetrahedral elements keeps the optimal convergence rates for the magnetic induction
and its gradient, while ¢ and its gradient converge at sub-optimal rates.

When 7, = ||u||h/2, we obtain the best results in terms of the error on By and
on its divergence. However, the differences between these results and those obtained
with 7, = 0 are not very important. Again, the convergence rates are those expected:
optimal for the magnetic field and sub-optimal for the scalar q (Figure 5.9). Once

again, the results obtained are quite independent of 7; and of the constant a.

5.1.2 TUnsteady Case

In order to highlight the advantages of using the conservative stable formulation
(3.10)-(3.11) rather than a formulation derived from the “Helmholtz” formulation,
one should look at the behavior of the solutions obtained with the two methods,
for an unsteady problem, and compare them in terms of the norm of the divergence
of the magnetic field. In the same manner as in section (5.1.1), the velocity vector
u = (1,0,0)7, the right-hand-side vector f = (22 —29+1, -2, 2z)T and the Dirichlet
boundary conditions are imposed in such a way as to reproduce approximately an

arbitrary unsteady solution of the continuous problem B = (z? + ¢, 32, -2(z +y)2)T
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and ¢ = 0. Computations have been made with the following coefficients: 7, =
1.0h%/4n, 7 = ||u[|h/2 n = 1.2 x 10~" and At = 0.1 and starting from a zero initial
solution.

Figure (5.10) shows the evolution of the divergence of the magnetic field as a
function of time. In the top figure, the solutions during the first 50 time steps are
highlighted, while in the bottom part, the solutions are shown over 1000 time steps. It
is seen that the conservative formulation performs much better than the “Helmholtz”
formulation. The magnetic divergence reaches an “optimal” value after 50 time steps,
then keeps on that same divergence, which is non-zero as a result of the linear inter-
polation of a quadratic function. With the “Helmholtz” formulation, the divergence
first increases then is reduced to a constant plateau that is approximatively five times

higher than the one obtained with the conservative formulation.

5.1.3 The Hartmann-Poiseuille Flow

The Hartmann flow is one of the cornerstone examples of MHD flows (Moreau [54]).
The validation of any MHD code should use this flow as a benchmark test. The
Hartmann-Poiseuille problem consists of a liquid metal flowing under the influence
of a pressure gradient, in the z-direction, through a rectangular cross section duct
infinitely long in the z-direction. A uniform external magnetic field By is applied along
the y-direction (Figure 5.11). The liquid flow induces a perturbation of the imposed
magnetic field By, that is in the same z-direction as the flow. Assuming that the walls
are at y = +h and are perfectly insulating, using the non-slip boundary conditions
for the velocity and imposing the perturbation of the magnetic field to be zero at
these walls, the problem has an analytical solution for the velocity and the magnetic

field, that can be put in the following form([54]):

_ pGHa (cosh(Ha) — cosh(yHa/h)
Y = TR ( sinh(Ha) ) (5.7)
_ ByRe,, (sinh(yHa/h) — (y/h) sinh(Ha)
B: = ——hg ( cosh(Ha) — 1 ) (5.8)

where B; and u are, respectively, the £ components of the magnetic and the velocity

fields, pG the pressure gradient keeping the fluid in motion (p being the density)
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and Re,, and Ha are the magnetic Reynolds number and the Hartmann number,

respectively, defined as:

Re,, = ouuh (5.9)
s\ 12
pv

The square of the Hartmann number is the ratio between the electromagnetic forces
and the viscous forces. In Equation (5.9), u is the velocity u, at y = 0 and in Equation

(5.10) v is the kinematic viscosity of the liquid metal.

The Hartmann flow, with the velocity field given as input data, has been computed for
the following physical parameters: ¢ = 7.14x10%(2-m)~!, n = 1.2x10"'m2.s7!, pv =
1.5x107*Kg-m~!-s7!, pG = 4.85x1075Pa-m~", h = 0.5m, By = 1.4494 x 10~*Tesla
([19]). The unstructured nearly uniform mesh consists of 4446 elements and 1600
nodes. We compare the results for B, obtained from the analytical solution with the
results from the numerical computations. The agreement between the two is quite
good (Figure 5.12). Then, a parametric study is made using the Hartmann number
as a parameter (Ha = 1,2,5,10,20) (Figure 5.12). This parametric study shows a
very good agreement with the analytical solution. Furthermore, this study puts into

evidence the building of the Hartmann layer.

Figure (5.13) shows the analytical solution for the velocity (Ha = 1,2, 5,10, 20). It is
seen that the intensity of the applied transversal magnetic field influences the velocity
field. From a Poiseuille profile when the magnetic field is zero (Ha = 0), the velocity
profile is flattened and becomes nearly constant in the core region of the duct, with
the gradient of the velocity concentrated in two boundary layers (Hartmann layer)
near the walls, when the magnetic field is strong (Ha > 1). The flattening of the
velocity profile is due to the magnetic braking of the flow. In Figure (5.12), one
can see the magnetic signature of this boundary layer. As the Hartmann number
is increased from 1 to 20, one can see a boundary layer type behavior developing
for the induced magnetic field. This behavior can be put into evidence because the

walls are perfectly insulating which allows the use of the Dirichlet conditions for the
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magnetic field. If the walls were perfectly conducting, then the boundary conditions
should be set to the Neumann type conditions and hence the magnetic signature of

the Hartmann layer would disappear.

5.1.4 Circuit with an External Electric Current

For the Hartmann-Poiseuille problem described in the previous section, analytical
considerations show that the only non-zero component of the electric current density,

jz is given by([54]):

; h(He
J:  _ £ +1 — (ﬁ_(_h_l (5.11)
oByV  ByV cosh Ha
and that the electric current mean value, J, becomes:
1L rh . B
J—%/_h]z dy=o0BU +¢ (5.12)
where:
1 rh _ tanh(Ha)
oG E
== _ =2 14
0’302 B() (5 )
- 25 (- i)
E=05 \! " e (5:15)

Suppose, now, that the channel extent in the z direction is not anymore infinite
but has a length L. Consider, however, that it is still long enough that no variations
occur in that direction. Suppose also that the walls in the z direction are carrying
an electric current I provided by an external source (Figure 5.14); then, if I # 0,
the operation of the duct could be interpreted in terms of energy conversion (Figure
5.15). Actually, when 0 < I < 2hLpG/B,, the system is a generator of electric
current. A part of its mechanical energy is converted into electrical power supplied to
the external circuit. When I < 0, the system operates as an electromagnetic pump.
When I > 2hLpG/B,, it operates as an electromagnetic brake under the influence
of the Lorentz forces and, when these forces are strong enough, they can reverse the

direction of the flow. With I # 0, analytical solutions (Moreau [54])) are written as
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follows:

with £ and V being in this case:
o= (-5 (-5 w09
V= (apbfiz B 2UBIQLh> tanflic;fa (5.19)

Numerical solutions have been computed for I = 4504, I = 504 and [ = —1004
for Ha = 2 and Ha = 10. The mesh is the same one used in the Hartmann-Poiseuille
flow test case. The computed solutions show good agreement with the analytical
ones (Figure (5.16)). Figure (5.17) shows, for Ha = 10 and Ha = 2, the analytical
solution of the z— component of the velocity field. The possibility of flow reversal is

illustrated in the case when I > 2hLpG/B,.

5.1.5 The Hartmann-Couette Flow

The Hartmann-Couette flow is the MHD counterpart of the known hydrodynamic
Couette flow and it is studied using the same geometry as the Hartmann-Poiseuille
flow, with the difference that the walls are no longer at y = +h, but rather at
y =0 and y = h (Figure (5.18)). Moreover, in this case no driving pressure gradient
is applied; the imposed sliding movement U, of the wall y = A, in the direction
perpendicular to the applied magnetic field By, drives the flow between the two
walls. The flow velocity analytical solution is written as([54]):

sinh(Hay/h) FE
- \Sububor L Al 5.20
=G He T B (5.20)
where R, is given by the expression:
_ (sinh(Hay/h) _
R, = ( <inh Ha (1 — cosh Ha) + cosh(Hay/h) —1 (5.21)
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This velocity field induces a magnetic perturbation B;, which analytical expression

is:
Re, cosh(Hay/h) _ poEh

B: =B Ha sinhHa Ha R (5.22)
where R, is:
_ (cosh(Hay/h) )
Ry, = ( SobHa (1 — cosh Ha) + sinh(Hay/h) (5.23)

These solutions satisfy the hydrodynamic boundary condition of no-slip velocity at
walls u(y = 0) = 0 and u(y = k) = Uj. It can be shown that the mean value of the

electric density is given by:

2E \ 1-cosh
) coshHa (5.24)

1
J=3 [ jdy = 0Bl (1+
W2 T 0PN T B, ) ~sinhHa
Since the boundaries are insulating, the electric current has to close up in the fluid

which means that the mean value J is null. The expression of J requires, then, that:
E = —ByUy/2 (5.25)

The magnetic aspects of the Hartmann-Couette flow, with the velocity field given
as an input data, have been computed for the same physical parameters and with
same mesh as for the Hartmann-Poiseuille problem (See Section 5.1.3). The bound-
ary conditions are imposed on the walls through the exact solution (5.22). Results
have been obtained for different Hartmann numbers (Ha = 2,5,10) and have been
compared with the corresponding analytical solution obtained by equations (5.20) and
(5.22). The comparison (Figure 5.19) shows good agreement between the computed
and the analytical induced magnetic field.

5.1.6 The MHD Rayleigh Flow

Suppose an infinite plane plate is at rest in a semi-infinite domain which is electrically
conducting. Let By be an applied magnetic field along y, the coordinate normal to
the plate. Suppose the plate is suddenly set into motion at ¢ = 0, with a constant
velocity U (Figure 5.20). Then, the motion propagates within the fluid domain as a
wave. Ahead of this diffusive wave front, the fluid is still at rest; behind the front,
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the fluid is in motion. Within the moving fluid, one can distinguish two regions: The
Hartmann layer in the vicinity of the plane plate, which has a characteristic thickness
d= ( )1/2 /Bo, and a second region which is essentially a uniform plateau where the
velocity is maximum and constant. The development of such a velocity field induces
a perturbation in the imposed magnetic field. This perturbation propagates as a
plane wave. This wave is called the Alfven wave and travels within the fluid domain
with a constant velocity Ao = Bo/(1p)'/2. When the kinematic viscosity of the fluid
is equal to its magnetic diffusivity, then the magnetic Prandtl number is equal to
one (P, = v/n), and an analytical solution exists for the MHD Rayleigh problem
(Moreau [54]).

This analytical solution is written in tue following form:

% (2 (erfrs +erfAl) +e ¥4 (L —erfA ) +e*¥/4(1L —er fAs))  (5.26)
a= % (erfA —erfiy) + e AW/d(1 —erfA_) — edo¥/d(] ~ erf/\+)) (5.27)
where:
y £ Apt
s = _z(dt)132 (5.28)
d=v=nq (5.29)
b
a= PRLE (5.30)

and u and b are the £ components of respectively the velocity field and the induced
magnetic field. This MHD Rayleigh problem, with the velocity space field given
as an input data, has been computed with the following physical parameters:c =
(107/(47)) (- m)~!, n = 1.0m? - 57!, p = 0.4 x 107*kg - m~' - 571, By = 1.4494 x
10™4Tesla, At = 0.01, ¢ < 0.08s and with the same mesh as for the Hartmann-
Poiseuille flow. The homogeneous Dirichlet conditions are imposed for the magnetic
field on the plate. We compare the results obtained from the analytical solution and

the numerical computations. The agreement between the two is quite good (Figure
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5.21). The three regions (Hartmann layer, the magnetic plateau and the wave front)
are clearly distinguished.

5.1.7 Lid-Driven Cavity Problem

Let the domain of study be a cubic unity domain (0 <z <1,0<y<1,0< z<1).
Suppose the hydrodynamic solution of the classical lid-driven cavity problem at a
certain Reynolds number Re, where the 2— component of the velocity is imposed to
ug in the plane y = 1, is given as input data. Suppose, then, that a transverse uniform
magnetic field By, is imposed in the y direction (Figure 5.22). The three-dimensional
velocity field will convect the magnetic field through its lines.

The capacity of the velocity field of convecting the magnetic field through its own
lines depends on the magnetic Reynolds number, Re,,. When Re,, is low, the mag-
netic field is transported in a quasi-pure diffusive manner. The convection of the mag-
netic field by the velocity could hence be neglected. As the magnetic Reynolds number
increases, the convection of the magnetic field becomes more important. When Re,,
is high enough, the convection of the magnetic field becomes the dominant regime of
the transport mechanism and the magnetic field is said to be “frozen” in the velocity
field.

Computations have been carried out in the above described geometry for differ-
ent magnetic Reynolds numbers (Re,, = 0.1, 1, 10, 100, 400, 1000). The unstructured
mesh consists of 41873 elements and 8147 nodes. In each case, we seek the steady-state
solution. The velocity field given as input data represents the hydrodynamic solution
for Re = 400. The choice of this Reynolds number is somewhat arbitrary since the
purpose of the test is to show the effect of different values of the Re,, number on the
magnetic field transport. Dirichlet boundary conditions are imposed, thus, represent-
ing the non-perturbation of the external magnetic field by the internal induced one.
The computed solutions show the gradual evolution of the magnetic field transport
from a quasi-diffusive regime to a quasi-convective one. In Figures (5.23) to (5.26),
the magnetic field in the mid-plane z = 0.5 is shown for Re,, = 0.1, 100, 400, 1000

and the gradual evolution from diffusive transport to convective transport is put into
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evidence. In Figures (5.27) and (5.28), the magnetic field norm and the y-component
of the magnetic field are shown respectively along the medians y = 0.5 and z = 0.5.
The convective transport is again put into evidence as the Re,, grows from 0.1 to
1000. In Figure (5.29), we show the velocity field (given as an input data for this case
test) norm and the y-component of the velocity along the median y = 0.5. Compar-
ing the qualitative behaviors of the velocity (Figure (5.29)) and of the magnetic field
(Figure (5.28)) gives the ultimate explanation for the statement :the magnetic field
freezing in the velocity field.

5.2 Results for the A, 9 Formulation

In this section, the test cases that are carried out for the A, ¢ formulation are pre-
sented. In the same fashion as for the B, q formulation, we first study the stability
and the convergence of the finite element formulation (3.33)-(3.34). Once this first

step is done, two other numerical tests are presented:

e A 1-D test, where an external magnetic field is applied on a unidirectional fluid

flow.

e A 2-D test, where the rotation of a solid cylinder convects the constant imposed

magnetic field.

5.2.1 Stability of the Formulation

In order to assess the stability and the quality of the finite element formulation (3.33)-
(3.34), we study this problem in a cubic domain (0 < z<1,0<y<1,0<z<1).
The velocity vector is fixed to u = (1,1,1)7. The Dirichlet boundary conditions and
the right-hand-side vector f = (2z — 29+ 1,2z — 2+ 1,1 — 42,4)T are imposed in
such a way as to reproduce approximately an arbitrary solution of the continuous
problem, namely A = (22,32, —2(z + y)z)T and ¢ = z + y + z. Computations have
been performed with n = 0.1. In the same manner as in section (5.1), we compute
the mesh variation of the Ly(2)-norms of the magnetic vector potential divergence

||V - A4, the vector potential error ||A, — A||, the electric scalar potential ||¢y|| and
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its gradient ||V¢y||. Figure (5.30) shows the variation of these norms. The method is
stable. The convergence rates (slopes) have been computed for the vector potential.
The slopes are around unity for the divergence of the vector potential and around 2

for the vector potential itself.

5.2.2 Uniform Flow under a Magnetic Field

Suppose an electrically conducting fluid domain Q has an uniform y—component
velocity V. An external alternative magnetic field B with frequency w, is applied
on the fluid domain. Suppose further that B has only one component along the
z direction with B being only a function of y: B = (B,(y),0,0). Then, if one
uses the reduced vector potential A* formulation, the magnetic field condition B =
(Bz(y),0,0) becomes in terms of the new reduced potential, A* = (0,0, A;"(y)).
The described problem has an analytical solution (Trophime [33]) in terms of the
reduced vector potential A* which can be written, when the frequency w is null, as

(for simplicity of notation A* stands for A,"):

Reym _ - Remy/L _
A'(y) = Ao (e 1) +e(,:: _?0) (e y l) (5.31)

with the boundary conditions being:
A*(0) = Ay (5.32)

A*(L) = A, (5.33)

Numerical solutions have been computed for different magnetic Reynolds numbers
(Rem = 1,5,10, 20,40, 50). The results show a quite good agreement between com-
puted and analytical solutions (Figure 5.31).

5.2.3 Convection of a Magnetic Field by a Rotating Velocity
Field

A very long cylinder of radius 7y with a conductivity ¢ is rotating in the zy plane with
an angular velocity wy. Suppose, then that the cylinder is immersed in an uniform

magnetic field B directed along the z axis (Figure 5.32). The magnetic field lines are
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then convected by the velocity of the cylinder. The effect of convection is proportional
to the magnetic Reynolds number (Re,, = powgrg?). In the limit of infinite Re,,, the
magnetic field is expulsed out of the cylinder. Assuming the cylinder to be infinite
along the z axis and steady state conditions (% = 0), the vector potential has only
one non trivial component A, which is a function of £ and y. The vector potential

problem consists then on finding A, such that:
V24, —(uxV xA), =0 r>rg (5.34)

V24,=0 r<ro (5.35)

The problem has an analytical solution which has been developed by Moffat [55] and

is written as:

A; = Im[Bf(r)e"] (5.36)
where:
f(ry=r+ g r>Trg (5.37)
f(r) = DJi(pr) r<rg (5.38)
with:
_ (I =1d)k
p= 7 (5.39)
Ren
ko? = % (5.40)
The constants C and D are:
_ ro[2J1(pro) — proJo(pro)]
€= pJo(pro) (G41)
2
D= g (5.42)

The boundary conditions are imposed as in Figure (5.32). Numerical solutions have
been computed for different magnetic Reynolds number (Re,, = 0,6, 12, 24, 48). The
unstructured nearly uniform mesh consists of 4446 elements and 1600 nodes. Figures
(5.33) and (5.34) show the effect of increasing the angular velocity wg on the convection

of the magnetic field. These results are in good agreement with the analytical solution.
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On the other hand, the beginning of the expulsion of the magnetic field is showed
in Figure (5.35). One can see that as the magnetic Reynolds number Re,, increases,
the vector potential goes to lower values in the vicinity of the cylinder. In these

computations, the radius of the cylinder is set to ry = 0.2m.

5.3 Results for the (u, p, B, ¢) Coupled Formulation

For the coupled problem, results are obtained for the lid-driven cavity problem under
a constant transversal magnetic field By. When the external imposed magnetic field is
zero, the problem becomes the classical hydrodynamic lid-driven cavity problem. The
cavity is a cubic domain with (0 <z <1,0<y <1,0 < z<1). The fluid movement
in the cavity is induced by the imposed boundary condition u = ug of the plane y =1
(Figure 5.22). The velocity field induces a perturbation of the magnetic field in the
fluid domain. Moreover, the interaction between the velocity and the magnetic fields
creates the electromagnetic Lorentz forces. These new body forces are responsible for
the change of the structure of the flow. The hydrodynamic Reynolds number Re is set
to Re = 10° and a parametric study of the magnetic Reynolds number Re,, and the
Hartmann number Ha has been conducted. The unstructured nearly uniform mesh
consists of 41873 elements and 8147 nodes. The parameters of the solution algorithm

are set to the following:

e Time step At = 5.0.

Number of time steps N = 100.

For the ILUT algorithm [fil = 15 and tol = 107%.

For the GMRES algorithm, the number of Krylov basis vectors m = 8.

For the Newton iterations, niter = 5.

The Dirichlet boundary conditions are imposed for both the velocity field and
the magnetic field, thus expressing the non-slip property at solid walls and the non-
perturbation of the external magnetic field by the induced one.
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3.3.1 Low Magnetic Reynolds Numbers

First, we investigate the influence of the Hartmann number Ha at a low magnetic
Reynolds number where the magnetic diffusion dominates the magnetic convection.
To do so, we set the magnetic Reynolds number to Re,,, = 1. The Hartmann number is
set successively to Ha = 1,2, 5,7, 10, 20,30. Two algorithms are tested. In Algorithm
(3), the magnetic matrix is computed and decomposed during the first time step, and
kept constant during all the other time steps. The magnetic problem is solved once
at each time step. In algorithm (5), the magnetic matrix is again decomposed once
at the first time step, but the magnetic problem is solved at each GMRES iteration
of the fluid problem.

Surprisingly, the segregated algorithm (3) performs much better than the tighter
algorithm (5). In Figure (5.36), the performances of both algorithms in terms of the
residual norm are compared. In Figure (5.37), The CPU time performances of both
algorithms are compared together. Obviously, the segregated algorithm is the fittest

algorithm.

Figures (5.38) to (5.40) show the evolution of the velocity field at the mid-plane
2 = 0.5 from Ha = 0 to Ha = 20. One can observe the dramatic change of the
structure of the vortices. When no external magnetic field is applied (Ha = 0), there
are two vortices: a large central one in the core region (clockwise rotation) and a
smaller one in the right bottom corner (counter clockwise rotation). As the Hartmann
number Ha becomes greater, the large central vortex becomes more horizontal and
eventually breaks into many vortices. The small vortex in the right bottom corner
becomes larger. These changes in the vortices structure are due to the increasing effect
of the electromagnetic forces. These forces weaken the vortices strength, leading to the
breaking of vortices. An analogy exists with the Rayleigh-Benard cell problem under a
magnetic field. Seungsoo [17] showed numerical results confirming the multiplication

of initial bouancy vortices under the effect of a transversal magnetic field.
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High Hartmann numbers When the Hartmann number becomes greater (Ha >
20), marching the problem in time does not yield a steady-state solution. The conver-
gence of the algorithm (in terms of time steps) reaches a stagnant plateau; however,
the algorithm converges pretty well within a time step (the residual is reduced by 6 to
7 orders of magnitude). In Figure (5.41), a typical behavior of the residual evolution
is shown. This can be a sign of the absence of a steady solution under such conditions
and the fluid keeps on exhibiting an unsteady behavior as time is increased. In order
to show this, we study the behavior of the fluid properties (essentially the different

components of the velocity) in terms of time steps, under the following conditions:
e Time step At =0.1.
e Number of time steps N = 1900.
e The Hartmann number Ha = 30.

Figure (5.42) shows the time evolution of the velocity norm for five nodes located in
different locations of the domain (Figure 5.43). One can see that no steady state is
obtained and that the solution continues to oscillate in time. This behavior can be
the signature of instabilities developing in the fluid domain due to the effect of the
electromagnetic forces which, in this case, are of the same order of magnitude as the
convective forces. The absence of predominant forces prevents the development of a
pattern of flow leading to a steady state solution. The study of the stability of the flow
is beyond the scope of this thesis; however, a parametric study with the Ha number
is thought to be necessary for the study of these instabilities that develop within the

fluid and for the study of the eventual bifurcations that could be generated.

5.3.2 Moderate and High Magnetic Reynolds Numbers

When Re,, is greater than one, the convection of the magnetic field by the velocity
one is no longer negligible compared to its diffusion. In such cases, the updating
of the magnetic matrix should take place more than once during the time marching

process. If the matrix is updated only once, then the algorithm diverges. However,
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the frequency of the updating depends on the intensity of the Reynolds magnetic
number Re,,. Actually, when Re,, = 10, it is still possible to converge the algorithm
to the machine zero with the magnetic matrix computed and decomposed only at the
beginning of the iterative process. When Re,, = 100, the matrix is updated every 10
time steps. When Rep, = 200, the updating takes place every 5 time steps. For each
of the magnetic Reynolds numbers, the computed velocity and the magnetic fields
are given in the plane z = 0.5 (Figures (5.44) to (5.46)).

Again, for these numerical tests, two algorithms are used: Segregated Algorithm
(3) and Tighter Algorithm (5). Again, the performance of Algorithm (3) is better than
the performance of Algorithm (5), both in terms of convergence residual and CPU
time (Figures (5.47) and (5.48)). Such results suggest that as the magnetic Reynolds
number Rep, increases, it is the quality of the updating of the magnetic solution
that is more critical than the frequency of such updating. It is more beneficial for the
convergence of the method to update the magnetic matrix while keeping the algorithm
segregated, than to use a tighter algorithm with the magnetic matrix frozen at the

first iteration.
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Figure 5.12: Above: Induced magnetic field B, (10~"Tesla) along the y-axis (m),
Ha = 3.45, Comparison between numerical and analytical solutions; Bottom: Non-
dimensional induced magnetic filed B*, vs the non-dimensional coordinate y* for
different Ha numbers.
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different Ha numbers: Analytical solution given as an input data for the Hartmann-
Poiseuille test case.
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Figure 5.14: Geometry of the duct for the Hartmann-Poiseuille flow carrying an
external electric current
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Figure 5.18: Geometry of the duct for the Hartmann-Couette flow .
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Figure 5.20: Geometry of the duct for the Hartmann-Rayleigh flow .
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Figure 5.21: Induced magnetic field along the y-axis for different times, Comparison
between analytical and numerical solutions for MHD Rayleigh flow.
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Figure 5.23: Magnetic field at the mid-plane z=0.5; Re,,
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Figure 5.24: Magnetic field at the mid-plane z=0.5; Re,, = 100.
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The y-component of the magnetic field vs the x-coordinate along y=0.5 in the plane z=0.5
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Figure 5.28: The magnetic field along the median y=0.5; Above: The y-component
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The y-component of the velocity vs the x-coordinate along y=0.5 in the plane z=0.5
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Figure 5.29: The velocity field along the median y=0.5; Above: The y-component of
the velocity, Bottom: The velocity vector norm.
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Figure 5.35: The vector potential A.(z,y) for different Re,, numbers, Above: Along
the median z = 0, Bottom: Along the median y = 0.
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Figure 5.36: The convergence history; Above: The segregated algorithm (3), Bottom:
The tighter algorithm (5) .
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Figure 5.38: The velocity field at the mid-plane z = 0.5 with Re = 10® and Re,, =1,
Above: Ha =0, Bottom: Ha = 2.
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Figure 5.39: The velocity field at the mid-plane z = 0.5 with Re = 10° and Re,, = 1,
Above: Ha = 5, Bottom: Ha = 7.
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Figure 5.41: Typical convergence history for Re = 10%,Re,, = 1 and Ha = 30 .
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Figure 5.42: Transient solution at five different nodes, Re = 103, Re,, = 1 and
Ha = 30.

124



<

_>
__»
S

U

/i | |0
n4406 | ‘h3219

| o

:n3315

|

o ——lg-=>—">

_-"n1883 N30

towmt | yewrdnse | zewelmaf

I4
4
]

Node 36 0
Node 88 0
Node 21 0
0
0

Node 91
Node i

!
13
I
4

Figure 5.43: The nodes considered for the stability; Above: Location of the nodes on
the domain, Bottom: Coordinates and numbers of the nodes .

125



sr((Viamu )y 2e(Vilesv P 2o(Vitssw ) 2)

0.42 0.54 0.65 077 o.89 H

|
|
|

spU(B_x)y2+(B_y"2«(B 2D

Y : " -
09 o9 1 [N 12

Figure 5.44: Results at the mid-plane z = 0.5 with Re = 103, Re,, = 10 and Hea = 10.
Above: The velocity field, Bottom: The magnetic field.
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Ha = 10. Above: The velocity field, Bottom: The magnetic field.

128



Rey=1l

(PUfor Aot
(13

(PU o Alortm )

Re, =10

iLH

Re, =N

LAY

Figure 5.47: Table for the comparison in terms of CPU time of algorithms (3) and
(5), for different values of Re,, the magnetic Reynolds number.
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Figure 5.48: Convergence history of algorithms (3) and (5) for different Re,, magnetic
Reynolds numbers .
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Chapter 6

Conclusions and Future Work

A finite element method has been developed in this thesis for the solution of 3D mag-
netohydrodynamic (MHD) equations. This method has been developed in two main
steps: In the first step, we focused on the appropriate formulation that has to be used
to determine the magnetic aspects of MHD flows. This formulation is a conservative
one, meaning that the local conservation of the magnetic field is accounted for. This
formulation is stabilized, thus permitting the use of equal interpolation for all the
variables.

Here, we insist that the conservative formulation is the appropriate way of formu-
lating the MHD flow problem. The appropriate way does not mean that the alter-
native formulations are inadequate or inefficient. However, there should be only one
way to formulate any MHD flow, with the magnetic field as the main electromagnetic
quantity, and we believe that the conservative formulation is that way.

The second step has been selecting a strong and robust algorithm for the solution of
the coupled problem. This algorithm is based on a segregated algorithm which is valid
for both the high and low Re,, numbers. Surprisingly, this algorithm performs very
well, even in the context of high magnetic Reynolds Re,, numbers. The non-linear
GMRES algorithm associated with ILUT preconditioning proves to be a very robust
and efficient algorithm. Numerical results have been obtained for many validation
test cases, in steady and unsteady regimes, ranging from 1D to 3D for the decoupled
B, q and A, ¢ formulations, as well as for the coupled formulation B, q, u, p.

When the magnetic Reynolds number is low, the magnetic matrix can be computed
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once and for all. All subsequent updates of the magnetic variables can be done using
the initial decomposition of the magnetic matrix without affecting the convergence
rates. When the magnetic Reynolds number is high, the matrix has to be updated
and decomposed more frequently to guarantee convergence. This frequency depends
mainly on the value of Re,,.

Eventually, future work should concentrate on some key points which, in our
opinion, will lead to the maturation of the finite element MHD code. First, it is easy
and straightforward to replace the direct solver for the magnetic problem with a linear
GMRES algorithm. This will substantially reduce the time and storage requirements
whenever the magnetic matrix has to be updated during the iterative process, which
is important for 3D applications since memory is limited.

Of considerable importance is the extension of the vector potential formulation
solver to account for a quasi-steady regime under the assumption of a low frequency
source. This will enhance the capabilities of the MHD package developed in this
thesis. After that, the coupling between the Navier-Stokes solver and the vector
potential solver should be performed. Another possible future improvement would be
to take account for the electric scalar potential within the magnetic field formulation.
This will make it possible to impose an electric potential difference as a source term,
while still solving for the magnetic field. For the Navier-Stokes solver, an extension
to account for the turbulence within the fluid domain is certainly an obvious eventual
future work.

Finally, we would like to comment on the somewhat inadequate way we handle the
magnetic boundary conditions for the high Re,, cases. Actually, when Re,, is high,
there is no reason to suppose that the external magnetic field is not affected by the
induced magnetic field. The appropriate way to solve such a problem is to solve the
MHD equations in two domains. The first domain is the conducting fluid, where the
MHD equations are written as shown in chapter 2. The second domain, surrounding
the conducting domain, is non-conducting by definition and is large enough to suppose
that the induced magnetic field at its boundaries is null. The MHD equations in

this domain are written without the convective term, since the velocity is nil. At the

131



boundaries between the two domains, and since in MHD the permeability is constant,
the magnetic field is continuous over the interface and no boundary conditions have
to be specified.

The few points listed in this chapter represent some directions of future improve-

ment of the MHD finite element method developed and presented in this thesis.
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