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Abstract

Adaptive Control of Harmonic Drive Motors with Parameter

Varying Friction using Structurally Dynamic Wavelet Networks

Seyyed Alireza Tadayoni

The many advantages of harmonic drives motors such as compactness, high gear ratio,
low backlash, light weight, and high torque capacity has resulted in their wide spread usage in
precision control applications. However, the nonlinearities of harmonic drives including
hysteresis, kinematic error, position dependent friction, and flexibility make it difficult to
develop control systems that achieve precise tracking performance. In this thesis, a new
approach for adaptive control of harmonic drive motors is developed using a structurally
dynamic wavelet neural network to achieve accurate tracking in the presence of parameter
varying friction. Furthermore, a new fuzzy logic approach is proposed for dynamic addition and
removal of wavelet nodes that achieves accurate tracking using a minimum number of nodes.
Experimental verification of the proposed method indicates that it can achieve precise tracking

performance with a significantly smaller number of nodes than existing approaches.
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Nomenclature

K, | DC motor voltage constant V/rps
K, | DC motor torque constant Nm/A
R Motor Resistance Q
K, | Spring showing the stiffness of flexspline | Nm/rad
T,, | Motor side friction torque N.m
T, | External torque applied to the motor shaft N.m
T, Load side friction torque N.m
J, | Motor side momentum of inertia Kg.m
J, Load side momentum of inertia Kg.m’
u The DC motor voltage input A"
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q, The motor side rotational position Rad
q, The load side rotational position Rad
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1 Introduction

1.1 Motivation

Developed in 1955 primarily for aerospace applications, harmonic drives are high-ratio
compact torque transmission systems [1]. Because of their great advantages harmonic drives
have captured more and more researchers' attention in the last decades. Harmonic drive gearing
earned its reputation as a high performance speed reducer from its ability to provide precise
positioning. The high degree of precision has been one of the outstanding advantages of the
harmonic drive while others are having high-ratio, high torque transmissibility, compactness,
near zero backlash, and concentric geometry. These have given them a key position between
control engineers. However, harmonic drives have some disadvantages which make them
difficult to be controlled. Harmonic drive transmissions employ a flexible gear for speed
reduction, called flexspline. Flexspline is externally toothed, non-rigid (flexible), and thin-
walled cylindrical cup which is enclosed by circular spline [3][4][5]. The flexspline makes the
transmission stiffness to be lower than what is in conventional transmissions [1][2]. It also adds
hysteresis, kinematics error, presliding displacement and friction to the list of harmonic drive’s
disadvantages which have motivated the control engineers to study the harmonic drives with
more details.

All these cause a nonlinear relation between the input and the output torques and the
precision positions control of the harmonic drives becomes more challenging to the control
engineers.

Another undesirable effect of the flexspline is the friction. Friction in harmonic drives

produces nonlinear dynamic behaviours especially at low velocities. When the system enters the



stick-slip regime the friction behaviour becomes much more complicated and much harder to
overcome. In this regime many conventional controllers fail to work, fall into limit cycles, or
have poor performance. This makes friction one of the challenging issues in the control of
harmonic motors especially in low velocities.

In the recent past, several researches have been performed on modeling of harmonic
drives starting from [1] which initiated the study of the harmonic drives by Russians. More
recently Taghirad & Belanger [2][3][4][5] represent a detailed model for harmonic drive systems
including hysteresis, compliance and an overall friction model. Taghirad modeled friction as a
combination of linear dampers in different parts of a harmonic drive gear box with no
consideration of nonlinear behaviours. Taghirad [6], Hsia[7], Legnani [8], Marilier [9],
Chedmail et al. [10] and Seyfferth [33] attempted to model the stiffness, friction and position
accuracy of harmonic drive systems.

Gandhi [34][35] also modeled main nonlinear attributes in harmonic drives such as
kinematic error, hysteresis, and friction. For the first time he observed that the friction in a
harmonic drive is position dependent. This position dependency can be however captured only
in low velocities. In high velocities the measured friction is an average value on the whole motor
round. Gandhi used Fourier series to model the position dependent friction while he only
considered one revolution of the motor side [34][35]. Consequently, he missed addressing the
load side friction dependencies.

One of the key notes of precision positioning systems is the slow motion. They are
mostly working in the low velocity ranges. Consequently a proper model which captures the
position dependency of friction in harmonic drives becomes a key point in designing a proper

controller to have an acceptable performance for such systems. However a model which captures



all the nonlinear behaviours of friction in harmonic drives has not been presented yet. In this
thesis friction in harmonic drives is studied in more details and a proper model is proposed.
In this thesis, position dependency of friction in harmonic drives is addressed in the cases

where the harmonic drives work in the low velocity ranges, unless specified otherwise.

1.2 Friction Modelling

Friction occurs in all mechanical systems. It appears at the physical interface between
two surfaces in contact. Friction was studied extensively in classical mechanical engineering.
However there has lately been a strong resurgence. Apart from intellectual curiosity, it is driven
by strong engineering needs in a wide range of industries particularly for new precise
measurement techniques and precision positioning systems.

In the history of science there has been a vast research about friction modelling. Friction
force is proportional to load, opposes the motion, and is independent of the contact area—this
was all known to Leonardo Da Vinci in 1519. Da Vinci’s friction model was rediscovered by
Amontons (1699) and developed by Coulomb (1785). Morin (1833) introduced the idea of static
friction and Reynolds (1866) introduced the equation of viscous fluid flow, completing the
friction model that is most commonly used in engineering: the static + Coulomb + viscous
friction model.

So far, about thirty friction models have been presented. Coulomb published the most
comprehensive study of friction [20]. Lately Karnopp [18] and Stribeck [21] improved coulomb
model in order to take stiction and stricbeck effect into account. Although these models bring a
better understanding of the friction, but they are considered as “static” model because they did

not consider the velocity dependency of friction.



Dahl (1968) concluded that for small motions, a junction in static friction behaves like a
spring [12][19]. Dhal’s model was developed for the purpose of simulating control system with
friction especially in servo system with ball bearings. Based on the experimental studies made by
Rabinowicz [22] and Dahl, the Dahl model was then improved. The new model took the
hysteresis into account.

More recent researches on friction modeling reveal that the friction phenomenon
demonstrates several nonlinear behaviours that must be considered in the modeling. A dynamic
friction model was proposed by C. Canudas de Wit et al. in 1995 [23]. The model, called the
LuGre model, captures most of the friction behaviour that has been observed experimentally.
This includes the Stribeck effect, hysteresis, spring—like characteristics for stiction, and varying
breakaway force. This model was compared with a standard simple kinetic friction model
(KFM) by Friedhelm Altpeter et al. through a singular perturbation analysis [24]. They
concluded that in a unidirectional motion and Fs=Fc (static & columb friction), KFM is
sufficient to model the friction. However, if Fs #Fc, the LuGre model captures more dynamic
properties. The LuGre model was also tested experimentally by Rafael Kelly [25]. C. Canudas
de Wit’s experimental results validated the LuGre friction model in an adaptive control scheme
with friction compensation [26]. In his Ph.D. thesis, Prasanna S. Gandhi uses the LuGre model
to identify the friction in harmonic drives [34][35].

In recent years, many other friction models have been proposed. Fitsum A. Tariku et al.
[28] proposed two dynamic models for simulation of one-dimensional and two-dimensional
stick-slip motion. Ruh-Hua Wu et al. [29] presented a modified Coulomb friction model
integrating presliding displacement in the microsliding regime. Milos R. Popovic et al. [30]

noticed that most friction models available describe friction only as a function of velocity.



However this is not always true. In many cases, friction is dependent on position; for example,
with harmonic drives.

As stated by Milos R. Popovic et al. [30], apart from all the researches performed on the
modelling of friction, friction dependency on the position or other system states has not been
fully addressed yet. Friction in complex contacts, especially where it depends on the system
states other than velocity, does not obey conventional models so much [35]. One of the best
techniques to overcome this problem is using general function approximators which can
approximate a wide category of functions. In this thesis a new approach to modelling friction in
harmonic drives is proposed. This includes approximating friction by a structurally dynamic

wavelet network. This idea will be proposed in the next chapters in more details.

1.3 Network Function Approximations

Using networks as a function approximator has become more popular recently. Network
function approximators are networks with the function arguments as an input and the function
output as the output. They try to reconstruct unknown functions as a summation of some
nonlinear functions called nodes. Nodes can be configured and connected together to form
layers.

The capability of the networks in function approximation is directly dictated by the
number of layers, number of nodes and the type of the nodes. It is more common to use 3 layer
networks in function approximation. It has been shown that an MLP (Multi Layer Perceptron)
network, with a single hidden layer, can approximate any given continuous function on any
compact subset to any degree of accuracy, providing that a sufficient number of hidden layer

neurons are used [31][32]. However, in practice, the number of hidden layer neurons required



may be impractically large. So a key choice for a network is the proper type and number of
nodes Vfor approximation of a particular function. Common networks are based on a wide class
of nodes including simple implicit polynomials to complex nonlinear nodes of ANNs (Artificial
Neural Networks), MLPs (Multi Layer Perceptrons), RBNs (Radial Basis Networks)
[43][44][45], and WNs (Wavelet Networks) [46][47][48][49]. All node types have good
capabilities in approximation of smooth functions. However not all networks work fine for the
sharp functions with discontinuities.

Based on the application, function approximation networks work either online or offline.
Offline approximations have been widely studied and used. In the offline category the network
is first learned and then used for the approximation. In the online approximation, the learning
process and using of the network are performed simultaneously. In the control field they are
used in conjunction with adaptive controllers and take advantage of the estimators to find the
weights of their nodes. Online network approximators still have issues which have not been
addressed yet.

Although online versions of RBNs and WNs have been developed and studied
[45][52][53] recently; but one of the key notes about these networks is the static configuration of
their structure. A structurally dynamic network with the target of decreasing the number of
nodes can minimize the number of unknown parameters (minimizing the number of states of the

system), and improve the tracking performance and robustness of the controller considerably.

1.4 Structurally Dynamic Network Approximations

Structural adaptation is a method for achieving better performance by dynamically

changing the structure of a network or controller. Structurally dynamic networks have not been



fully studied by the researchers mainly because of their great complexity. Sanner and Slotine
[49] proposed an algorithm for structural adaptation of a wavelet network in conjunction with an
adaptive controller. In the Sanner’s algorithm nodes are being selected for adding or removal
based on a threshold on the magnitude and the rate of the change of their weights. Nodes whose
weights are more than the threshold or increasing in time are kept in the network; and
conversely, those nodes whose weights are lower than the threshold and decreasing in time are
removed [49]. This kind of structural adaptation method may work fine with the simulations but
in real systems that there exist sensor noise and model uncertainties it may easily fail to function
and cause large tracking error or even instabilities in the adaptive component of the controller.
This causes the system to leave the working range and activate the sliding component of the
controller which pushes the system back to its working range. However obviously this means
very poor tracking performance.

Sanner’s method has three drawbacks: First the structural adaptation is fast; second the
network is changing too much in each step; and third finding the best threshold is rather difficult.
From the switching control point of view, this method is a fast switch between many too
different controllers. With the presence of noise this kind of controller can easily fall into large
amplitude chattering or become unstable. However, the instability takes place when the adaptive

component of the controller is active and causes the system to leave its working range 4,. Then
the sliding component forces the system back to A, and keeps the system stable. The outcome

of this kind of stability is a very poor tracking performance with error bound as large as the

whole 4, .

The Sanner’s approach drawbacks will be discussed in more details in chapter 5. To

conquer them a new fuzzy structural adaptation scheme is proposed which significantly improves



the system performance. The fuzzy structural adaptation algorithm will be further discussed

more in chapter 5.

1.5 Adaptive Control

Adaptive control has been an active topic since last decade. It is a control method which
deals with parameter uncertainties in a system. Friction compensation is one of the challenging
problems in precision positioning application. During last years different friction models have
been developed to take advantage of adaptive controllers to predict the unknown parameters in
the friction formulations. Friedland [58] studied the simplest model as a Coulomb friction
opposing the direction of the motion. Juang [59] introduced an adaptive controller to estimate
the coefficients of friction in the LuGre model. His model includes the static and Coulomb
frictions as well as the Stribeck effect. Hwang [56] proposed an adaptive controller for the
friction function in the form of a Fourier neural network. Canudas [57] studied the adaptive
friction compensation of systems with position or velocity dependent friction. He modeled the
friction with two different formulations: a polynomial and a nonlinear function in the form of a
summation of Gaussian functions. Johnson [37] studied an adaptive controller to compensate:
friction with the formulation of a viscous friction. He also considered an additional term as an
average of position (or other states) dependent friction

Several other researchers have also proposed different adaptive controllers using different
formulations for the friction function. But most of their research was concerned with friction in
servo motors and simple contacts. However, adaptive controllers which are based on the friction
formulation in complex contacts, such as in a harmonic motor drive, have not been fully studied

yet.



Other types of controllers have not been used in compensation of friction in motors too

much. Taghirad [36] studied an H_ torque controller to compensate friction in harmonic drives.
Han [38] studied a robust nonlinear H,/ H_ controller for a parallel inverted pendulum with dry

friction. Chen [39] proposed a robust friction controller for robotic manipulators. He studied the
friction with the formulation of columb+stribeck and an additional term for parametric
uncertainties. Cai [40] studied the stick-slip friction in robot manipulators. He proposed a
robust controller using the Karnopp [18] friction model. Vega [41] introduced a chattering-free
adaptive sliding mode controller for robot arms. He used the LuGre model with a dynamical
time base generator gain as the friction model. Bona [42] used a robust hybrid controller for
friction compensation in robots using the friction model proposed by Canudas [57]. There are
other researches proposing controllers for friction compensation in various systems. But the key

common point of them is the use of the simple friction models proposed for simple contacts.

1.6 Thesis Contributions

The main contributions of this thesis are:
1) Adaptive Control of Harmonic Drive Motors using Structurally Dynamic Wavelet
Networks
As described before several attempts were made to model the friction in harmonic
drives. In this research the friction in harmonic drives is modelled by a structurally
dynamic approximation network. A model reference adaptive controller is also
proposed to control the system. The controller takes the advantage of an estimator to

estimate the unknown parameters of the system, mainly the weights of the friction



approximation network. This is the first time that this approach has been applied for

control of harmonic drive motors with parameter varying friction.

2) A New Fuzzy Logic Algorithm for Dynamically Varying the Structure of the
Wavelet Network
A new fuzzy based algorithm is proposed to dynamically change the structure of an
approximation network with the target of decreasing the number of nodes
participated in the network. The fuzzy algorithm is composed of two parts which are

fully discussed in Chapter 3.

3) Experimental Verification
The methods proposed in this thesis are verified on the real system shown in Figure
11. The experimental results are shown and compared with the previous approaches

to friction approximation and structurally dynamic networks.

1.7 Thesis Overview

An introduction to the thesis is proposed in chapter 1. In chapter 2 the modeling of the
robot and its components are addressed. In Chapter 3 different basis functions which can be used
in function approximation networks are discussed. These include Fourier, RBF and Wavelets.
An adaptive controller is then proposed in chapter 4 to control the system in a working range,
while outside this range a sliding controller will be effective. The stability of the system is then
studied in section 4.3. Chapter 5 addresses the structural adaptation process and gives detailed

description about the fuzzy algorithm. In chapter 6 the experimental setup is described and the

10



proposed method is applied to the real system. The experimental apparatus is the manipulator
depicted in Figure 11. This manipulator was previously used in [54] and [61]. The experimental
results are then presented and different methods are compared. Finally the conclusion and future

works are addressed in chapter 7.
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2 Problem Statement

Friction is a problem in many applications and a critical problem in precision positioning
systems. Because of the zero backlash in harmonic drives, they are widely used in precision
positioning devices. However friction in harmonic drives, as in other systems, produces
nonlinear dynamic effects, especially at slow velocities when the system enters the stick-slip
regime. So in precision positioning applications a more precise model of friction in the
components of a harmonic drive is needed. Gandhi [35] showed that the simple columb and
viscous friction models are not adequate to accurately model the friction in harmonic drives, and
more enhanced models which consider nonlinear position dependency of the friction are
required. In this research, the friction in harmonic drives is modeled as the summation of a
position dependent Coulomb and a velocity dependent viscose friction. The Coulomb friction
function is modeled as a structurally dynamic wavelet network to take care of the nonlinear
position depepdency; while the velocity dependency of the viscose friction is found to be linear

with an acceptable accuracy.

2.1 The Harmonic Drive Gear Box

Harmonic drives are special flexible gear transmission systems that have a non-
conventional construction with teeth meshing at two diametrically opposite ends. Because of
their unique construction and operation, they have many useful properties. Hence, they are
widely used in precise positioning applications including wafer-handling machines in the

semiconductor industry, space robots, lens grinding machines, and medical equipment.
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However, these drives possess nonlinear transmission attributes that are responsible for

transmission performance degradation.

‘/p, Circular Spline
« Flexspline

<

YWave Genherator
e

Figure 1. The Harmonic Drive Gear Components

A typical harmonic drive, illustrated in Figure 1, is composed of three components:
Circular Spline, Flexspline, and Wave Generator [2][3][4][5]{6]. The wave generator is an
elliptical cam enclosed in an antifriction ball bearing assembly. It normally functions as the
rotating input element. When inserted into the bore of the flexspline, it imparts its elliptical
shape to the flexspline, causing the external teeth of the flexspline to engage with the internal
teeth of the circular spline at two equally spaced areas 180 degrees apart on their respective
circumferences, thus forming a positive gear mesh at these points of engagement. The externally
toothed flexspline is a non-rigid or flexible, thin-walled, cylindrical cup which is smaller in
circumference and has two less teeth than the circular spline. It is normally the rotating output
element but can be utilized as the fixed, non-rotating member when output is through the circular
spline. The circular spline is a thick-walled, rigid ring with internal teeth. It normally functions
as the fixed or non-rotating member but can, in certain applications, be utilized as a rotating

output element as well.
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Figure 2. Fully Assembled Harmonic Drive Gear

A fully assembled harmonic drive is shown in Figure 2. In the most common speed
reduction configuration, the wave generator is the input port, the flexspline is the output port, and
the circular spline is immobile.

Figure 3 illustrates the operation of the harmonic drive in the most common
configuration. The teeth on the non-rigid flexspline and the rigid circular spline are in
continuous engagement. Since the flexspline has two teeth less than the circular spline, one
revolution of the input causes relative motion between the flexspline and the circular spline equal
to two teeth. With the circular spline rotationally fixed, the flexspline rotates in the opposite

direction to the input.

i

Figure 3. Operation of Harmonic Drive Gear
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On the other side of the advantages of a harmonic drive, there are disadvantages which
make it a challenging device for control engineers. Some of the drawbacks of harmonic drives

are listed here.

2.1.1 Kinematic Error

What harmonic drive literature refers to as kinematic error is the difference between the
ideal and the actual output positions. In an ideal gear system, one may expect the gear
transmission ratio to be constant and the output position to be proportional to the input position.
However, in harmonic drives, a small amplitude of periodic kinematic error exists between the
ideal and the actual output position, thereby making the gear ratio dependent on the input

position. The error also has a dynamic component [2][3][4].

2.1.2 Flexibility and Presliding Displacement

Flexibility in a harmonic drive results from various compliant elements including the
flexspline cup, elliptical ball bearing and gear teeth. Nonlinear interactions of the elliptical ball
bearing, the flexspline, and the circular spline with friction at the contact surfaces along with
flexibility effects produce a presliding signature. Presliding is the flexible displacement in
harmonic drives. In mechanical systems, presliding makes a system’s output have hysteresis
attributes. A hysteresis curve can be obtained by locking the output port and controlling the
input displacement to follow a periodical reference waveform. The displacement, when plotted
against the output (generated due to the periodic motion), gives rise to hysteresis. Seyfferth et al.

proposed a fairly complex model to capture the hysteresis [33].
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2.1.3 Friction and Power Loss

All harmonic drives exhibit power loss during operation. The bulk of energy dissipation
can be blamed on the wave generator bearing friction, gear meshing friction, output bearing
friction and flexspline structural damping [2][4]. Among them most of the frictional dissipation
results from gear meshing [3][4]. Also comparing the ball bearing friction, the wave generator
friction is more important than the output bearing friction since it is acting on the high speed/low
torque port of transmission, and its effect is magnified by the gear ratio [4]. The wave generator
friction is the major part in the motor side friction, and other parts can be neglected with an

acceptable accuracy.

2.1.4 Simplified Model

Assuming no friction and external torques on the load side, the hysteresis and kinematic

error can be neglected, and the torque applied from the harmonic drive to the motor shaft, 7,
can be simply written as

T, =1, K (.9, —-9) (1)
where ¢, is the load side angular position, ¢, is the motor side angular position, r, is the gear

ratio, and K| is the spring constant for the flexspline flexibility.

2.2 Friction Components

Friction in a harmonic drive consists of two parts: the motor side friction, and the load
side friction. The former is the challenging part with nonlinear behaviours. Since the load side

is usually equipped with high quality ball bearings, its friction is generally neglected in most
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applications. On the other hand, because of being on the “high torque-low velocity” part of the
gear box, the error caused by neglecting the load side friction will be more decreased. As a
result, most researchers have focused on the motor side friction rather than the load side
[21[3][7119]. However in cases that there exists considerable friction in the load side, there is a

great risk of falling in the stick-slip regime of friction, due to the low velocity of the load side.

2.3 DC Motor

The DC motor equipped on our manipulator which is shown in Figure 11 is an RH-5A-

5502 harmonic drive motor. The common model of a DC motor is

Kme
R

K
qum = Tm qm + Rm u(t) _Text (2)

where g, is the motor shaft angular position, J,, is the motor momentum of inertia, R is the
motor resistance, K, and K, are motor constants, and # is the motor input. The term 7, is the
motor side Coulomb friction and T, is the external torque applied to the motor shaft. The motor

constants K, and K, are calculated based on offline experiments and the data provided by the

manufacturer. The motor resistance is assumed to be constant while we found that it has 20%
noise mostly caused by the contacts in the brushes. This noise in the motor resistance which

actually changes the motor constants is considered as a parameter uncertainty.

2.4 Motor Side Friction

Friction in the harmonic drive, as in any other system, produces nonlinear dynamic

effects, especially at slow velocities when the system enters the stick-slip regime. As mentioned
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before, Gandhi [35] showed that the simple columb and viscous friction models are not adequate
to accurately model friction in harmonic drives, and more enhanced models which consider
nonlinear speed and position dependency of the friction torque are required. In this research, a
structurally dynamic neural network is proposed for estimation of position dependency of
harmonic drives, while the velocity dependence is found to be approximated with the viscose
friction with an acceptable accuracy.

Yu Kun [61] showed that the static and columb ftrictions in harmonic drives are very
close. He showed that static friction is about 3 percent larger than columb friction. Neglecting

the 3% difference, the motor side friction as
F(x,x) =—sign(x) f,(x) (3)
where f (x) is the magnitude of the friction function (columb or static). Taghirad [4] also stated

the equality of static and columb friction in harmonic drives.

2.5 The Load Side Friction

In order to decrease the friction, the joints in the load side are equipped with high quality
ball bearings which result in having near zero friction in compare to motor side friction. Besides,
dividing this small friction to the gear ratio (# = 80) easily makes the consequents of the load
side friction negligible on the motor shaft. This low friction also helps us to neglect the

flexibility of the flexspline and hysteresis in the harmonic drive and results in a simpler model.

In the load side we have

J.g, :Ks(rg‘Im -q,) 4
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Accumulating all the models result in a nonlinear 4" order model as

_ . .
x K K K

! £ TR, (rx; —x3) ——2—2x, + —"-u(t)
Y| |g U, JR P JR 5
%, x4

. F K
x L%, —x

4 I J/ J/ ( 1 3) |

[xl X, X3 X ]T = [qm 4, 4, 4 ]] (6)

where the terms are defined in the nomenclature.

Assuming no friction on the load side the model can be assumed as a 2nd order model.
The adaptive controller is designed based on the 2" order model. Having good performance
when applied to the real plant (which is 4™ order) shows the stability of the controller to the
unmodeled dynamics and uncertainties. So the plant model assumed for the robot manipulator in

the adaptive controller is

JE+e,x—F (%,x)=u @)
while J, is the accumulated J (motor side, load side and the gear) on the motor side, ¢, is the
viscous friction coefficient, u is the system input, and F,(x,x) is the nonlinear friction.

Experiments on the harmonic motor show that the friction function is periodical with the interval
of 27 , however this is rather obvious as the friction exists on the motor side only. Gandhi [35]

also showed this periodic behaviour.

2.6 Approximation of Position Dependent Friction

Based on (3) the estimation of the friction can be written as
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F,(%,%) = -sign(*) £, (x) @®)
where j} ,(x) is the magnitude of the Columb friction which is to be adaptively approximated

with a function approximation network. The network is mathematically represented as
~ ~ N ~
f,0)=Cy+2,a,C¥,(x) ©)
i=1

where N is the number of nodes in the network, f ,(x) is the approximation of f,(x), éi is the

estimate of the weight of each node, é‘o is the estimate of the bias, and ¥, is a basis function

(more details of basis functions are addressed in chapter 3). «; is a parameter for the level of the
participation of the node in the network. o, =0 is a deleted node and «, =1 is an active node.

The graphical structure of the network is shown in Figure 4; however this representation will be

described in detail later.

Input [ | Qutout

£, (x)

Figure 4. The Network Structure

The controller is a MRAC (Model Reference Adaptive Controller). The target of the

MRAC is to follow a reference model with of
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J X, +e, X, +k,x, =7 (10)
where r is the reference input and ¢, /J, >0 and k,/J, >0 to satisfy the stability of the

reference model.

In this chapter the problem was described and the basics of our new approach were
proposed. A 4™ order model was proposed for the manipulator which was then simplified to a ond
order model. A structurally dynamic network is then proposed to estimate the position dependent
friction in a harmonic drive. However, theré are not any notes about the type of the nodes of this
network yet. In the next chapter different node types will be discussed and the most suitable one

will be selected for our research.
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3 Basis Functions

In signal analysis, there are a number of different ways one can use in order to translate a
signal into different forms that are more suitable for different applications. The most popular
basis function is the Fourier transform which converts a signal from time versus amplitude to
frequency versus amplitude. There are also a number of basis functions that one can map the
function onto. Radial Basis Functions (RBF) are also basis functions which synthesize a function
based on some radial-symmetric functions localized in time and without any frequency
resolution. Wavelet is another category which is almost more capable than Fourier and RBF in

function approximation. These basis functions are briefly described in this section.

Fourier, Gaussian Radial Basis Function (GRBF) and Wavelets are basis functions
considered in this research. These basis functions are used to approximate the friction function in
the harmonic drives. The friction function is assumed to be a function of x only. As previously

described, the friction function is periodical with the interval of 2z defined on [0,27].

3.1 Fourier Basis Function

A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum
of sines and cosines. Fourier series make use of the orthogonality relationships of the sine and
cosine functions. So the periodic functions can be approximated using the Fourier series
formulation in a Fourier network. A Fourier Network decomposes the function based on a finite

Fourier series approximation and its node is defined as
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Wi (x)=sin(im /1) an
Y (x) = cos(imx /1)
where [ is the function interval. For the friction function we have / = 27 and the node definition

reduces to

W' (x) =sin(ix/2)

(12)
Y (x) =cos(ix/2)

The adaptable parameter in the Fourier node is the weight of the node.

Fourier transform is a helpful tool for many applications. Its key feature is mapping data
into frequency resolution while missing showing when each frequency starts or ends in the time
domain. This is because of missing any time resolution in the Fourier series approximation. To
combat this problem, mathematicians came up with the short term Fourier transform which can
convert a signal to frequency versus time. Unfortunately, this transform also has its shortcomings
mostly that it cannot get decent resolutions for both high and low frequencies at the same time.
So how can a signal be converted and manipulated while keeping resolution across the entire
signal and still be based in time? This is where wavelets come into play. Wavelets are finite
windows through which the signal can be viewed. Wavelets can be translated about time in

addition to being compressed and widened.

3.2 Radial Basis Function (RBF)

Radial Basis Functions are time localized functions which are widely being used as basis
functions in function approximation networks [45][51][53]. Up to now, several different types of

RBFs have been introduced to be used in the NN networks for nonlinearities while the Gaussian
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RBF (GRBF) is the most common in use. Other types include Logarithmic Radial Basis Function
(LRBF), Inverse Multi Quadratic Equation (IMQE), Thin Plate Splines (TPS),...[50]. An RBF
node is defined as

Y (%) = o(x —x,) (13)

where x, is the node center. The GRBF is defined based on the Gaussian function as

px)=e7 (14)
where the o is often called the spread of the node.
The parameters in GRBF nodes are the node weight (C,), the node center (x,), and the
spread (o). The GRBF node responds only to a small region of the input space where the
Gaussian function is centered. The key to a successful implementation of these networks is to

find suitable centers (x,) and suitable spreads (o) for the Gaussian nodes. In complex and

intricate functions this process does not seem to be so straight forward and effortless to do.

3.3 Wavelets

It is well known from Fourier theory that a signal can be expressed as the sum of a,
possibly infinite, series of sines and cosines. This sum is also referred to as a Fourier expansion.
The major disadvantage of the Fourier expansion however is missing of the time resolution. This
means that although we might be able to determine all the frequencies present in a signal, but we
do not know when they are present. To overcome this problem in the past decades several
solutions have been developed which are more or less able to represent a signal in the time and

frequency domain at the same time.
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Wavelets are mathematical functions that cut up data into different frequency
components, and then study each component with a resolution matched to its scale [63]. They
have advantages over traditional Fourier and RBF methods in analyzing physical situations
where the signal contains discontinuities and sharp spikes. Wavelets were developed
independently in the fields of mathematics, quantum physics, electrical engineering, and seismic
geology [62][49][46]. Interchanges between these fields during the last ten years have led to
many new wavelet applications such as image compression, turbulence, human vision, radar, and
earthquake prediction. Wavelet functions are separated to different families which each family is

defined based on a main function called the Mother Wavelet.

The wavelet transform converts a signal from the time domain to two domains of time

and frequency. The continuous wavelets transform of a function is defined as [63]
c | t-b
Ty @by da™ [ flow (15)

where a is the scale, b is the time shift, and  is the mother wavelet function. The discrete

wavelets transform is defined as [63]
T Yomm) =l a, [ [ (O (a,"t = nby )t (16)

where a, and b, are constant numbers and m represents the scale and »n represents the time
shift. Based on these, the formulation of a wavelet node can be defined as

Y@ =p"p(px-k)  pkeR (17)
for the continuous form and

Y0 ®) =202 x - kx,) jkeZ (18)
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for the discrete form which is based on Multi Resolution Analysis (MRA). The parameters p (in
continuous) and j (in discrete) are the frequency scale and % is the time shift (translation). These

two parameters which are defined in two different domains give the wavelets transform the
capability of having the resolution in both time and frequency. This feature however makes the
wavelets one of the most useful tools for function approximation, and prioritizes it over the

Fourier series and RBF.

3.4 Mother Functions in Wavelets

Wavelets mother functions, or simply mother wavelets, play a significant role in wavelets
networks. They significantly change the capability of the wavelet networks to construct intricate
and spiky functions. However not any function can be a candidate of mother wavelets. The

mother wavelets must satisfy the following property:

fotodx =0 (19)

In orthonormal networks the following properties should also hold

[0 (e =1 (20)
WY o 0 i<>j o
(R 1 l=_] ( )

where < f,g > is the dot product of the functions defined as

<f.g>= [f(x)E@(x)dx (22)

where g(x) is the complex conjugate of the function g(x).
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Different mother wavelet functions are used in the signal analysis field. This includes
“Meyer”, “Battle-Lemarie”, “Haar”, “Mexican Hat”, “Morlet”, “Symlets”, “Gauss-n” (nth
derivative of the Gaussian function), ... [63]. The mother function wavelet used in this research

is the Mexican hat defined as
o(x) = C(1-x)e ™" (23)

where C is such that the I* norm of ¢(x) would be 1.

In this chapter different types of basis functions were discussed. In this research the wavelets
are used because of their great capability in approximating intricate functions with less number
of nodes. However the experimental results of the other types of basis functions are presented
and compared. In the next chapter the adaptive controller will be discussed and the stability of

the system will be analyzed.
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4 Adaptive Control using Approximation Networks

Adaptive controllers take the advantage of the estimators to have an estimate of the
system parameters, and use the estimated values as the best knowledge about the system. Then
the system parameters are updated based on the system tracking error through an update law.
However this loop results the system to track the reference input and also find the system
parameters simultaneously. The tracking error convergence can be guaranteed through the
stability analysis while the parameter convergence needs an additional condition called the

richness of input or persistent excitation.

Adaptive controllers have proven to be highly effective in control of systems with
unknown parameters. As friction is an unknown parameter in our problem, adaptive control is
one of the best candidates for controlling this manipulator. For this purpose a model reference
adaptive controller is designed to control the system and estimate the unknown nonlinear
function using an approximation network simultaneously. As described before, the
approximation network constructs the unknown function based on the basis functions reviewed
in Chapter 3. The unknown parameters in the network to be estimated are the weights of the

nodes. The mathematical formulation of the network is shown in Equation (9).

The system is considered to work in a working the range A, < 4. The system should be
stable in the set 4, and accurately controlled in the set 4,. Two controllers are designed for the
two cases when the system is inside 4, and when the system is outside 4,. The adaptive

controller is effective only in 4,. Outside 4,, a sliding controller is activated which pushes the
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system back into A,. The sliding controller keeps the stability of the system in cases the

adaptive controller fail to function or cause large tracking errors. The global structure of the

controller is shown in Figure 5.

Figure 5. The Fuzzy Controller

4.1 Plant Input

The plant input of the adaptive controller is defined as

u= m(uk + ua)+ mu, (24)
u, =—ks (25)
u, =—k,(x,t)sgn(s) (26)

where u, is the proportional term and u, is the feed forward adaptive component defined in
(28). The term u,, is an additional sliding component which keeps the stability of the system in

case the adaptive component fails to function or becomes unstable. The system is supposed to
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work in a working range 4, c A, where A is the set that the system should be stable in. The

parameter m is defined such that m =1 in 4, and m =0 outside 4, . So we have

1 xeA4,
m=
0 xgAd, 27
m=1l-m
The adaptive component is defined as
u, =J,x, +¢,%-F, (x,%) (28)

while the hat variables are an estimate of the real values and

x, =X, —Aeé
s=é+ e (29
e=x-Xx,

while £ and A are positive constants, and &, is a sufficiently large positive constant which
satisfies the sliding controller condition. Note that in (28), the sign of F, in the input u is

negative. This is to cancel out the friction £, and lead to having zero friction.

4.2 Adaptation Laws

Based on the adaptation laws, the system unknown parameters are updated in such a way
that the system tracking error converges zero. The system unknown parameters include the
weights of all nodes in the wavelet approximation network, the system viscous damping, and the
system moment of inertia. The common back propagation method is used for the update law and

the following are derived:
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J,0 [r, 0 0 0 ol-x,5.7,,7)

é,| |0 ». 0 0 p(_x&@p’gp)

éo 0 0 y, O go(— sign(%)s,C,,C, ) (30)
&l Lo 0 0y plw@siens.c.C

where the bar variables are maximums of normal variables which are found based on the
physical properties of the system. Conservative estimates can be calculated using the properties

of the mother wavelets ¢ and bounds on the L, norm of f,(x) [49]. The projection function is

then defined as

x (yl<z)or(y=zand x<0)or (y<-z and x> 0)
plx,y,2)= 31)

0 otherwise

4.3 Stability Analysis

Proving the stability of a dynamically structured network has much more issues and is
much more complicated than common static networks. However, Sanner and Slotine [49]
showed that the stability of the system can be guaranteed regardless of the mechanism of the
structural adaptation. In this research a similar proof is proposed which holds regardless of the
structural adaptation mechanism. For this purpose the closed loop system dynamics is written as
Jp)'c'+cp5c—Fp(x,5c) =mlu, +u, |+ mu, (32)
Outside of the working range we have

J 5te,i—F,(x,8) = —k, (.0sgn(s) (33)
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In this case, outside 4, (m=0), the stability of the system is guaranteed because of the
stability of the sliding controller due to the large enough gain k. In the working range 4,
(m =1), using (9) and (24) to (28), we have

Jive,i-F (0,%)=—ks+J,x, +¢,3-F,(x,%)  (34)
and
Jp$+ks=.7px, +'5px+[fp(x)—fp(x)]sgn(x) (35)
The term f (x)— f,(x) is of great importance in the stability analysis. To analyze this term,

S, (x) is written as

f,(x)= [, (x)+ [, (x) (36)
fpw (x)=C, + ﬁ:cil}]i (x) (37)

where the term f,"(x) is the discrete wavelet representation of f,(x) and f, is the fixed error

introduced to the system by the truncation of the wavelet terms to the discrete points of time

shifts and scales in the fully active network. Then we have
[0 =1, =Co+ D CY¥, ~ £, ()~ fo(x) (38)
i=1

where f,, is the error introduced to the system due to the structural adaptation and relates to

those nodes whose ¢, <1, i.e. those nodes which are not participating in the network. So we

have
£ =2 1-a)C¥,(x) (39)

To prove the stability of the system with the presence of the structural adaptation the

following function is considered
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1 ~7 ]. Nz N 1 "‘2
¢+ Ci+)> [ Cl 40
27, " 2p0 Z] 27 (40)

where * =% _* Using (30) and (35), the derivative of V' along the trajectories of the system

would be
~ ~ N ~
V =—ks’ +[Jpx, +¢,x+C, +ZC,‘PI. (x)—fm(x)}s+
i=1
41
Vi les o bilac]
v, U e T e T Fre
Where
Jer ()= [ (X)+ fo (%) (42)
Using (30) we have
V=—ks’+f, (x)s+

~

J, (x,s +go(— x,s,.}p,jl, ))+
5p(a'cs+go(— Xs,¢,,C, ))+

Co (Sign()'c)s + @(— sign(%)s,C,, C, ))+

i [(N?i (‘P,. (x) sign(x)s + go(— Y. (x) sign(:’c)s,éi , C’, ))]

(43)

the first term in ¥ is always negative. Excluding the second term it is possible to show that all
the remaining terms are also negative. For example for the third term we have: if the projection

function returns a value, the terms in the parenthesis will cancel. However if the projection

function return zero then either J, >J, (so J,>0) and —x,s>0 or J, <~J, (so J, <0)

and — x5 < 0. In both cases we have J »%,5 < 0. The same proof is applicable to other terms and

the upper bound of the third term to the sixth term is proved to be 0. So we have
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V<—ks’ - £, (x)Sgn(x)s (44)
Based on (40), ¥ can be unbounded if any of s,J p,Ep,éo,(N?, become unbounded.

However based on (30) and (31) all the terms J p,Ep,(NTO,(?,. are bounded by their maximum

values and the only variable which can make ¥ unbounded is s . So for the negative definiteness

of the function V', the bound on s would be

e 45
sl (45)

where
Lo = @, (46)

This shows the function V' is decreasing whenever | s| is bigger than some threshold.
This shows that the error does not converge to zero. However the bound | s | relates to the value
of 1, /k. So the boundedness of the tracking error relates to the boundedness of T+ for 18

however bounded because f, is bounded due to the boundedness of f, and boundedness of the

wavelet terms; and f|, is bounded because of the boundedness of «, and é‘i. So s is proved to

be bounded. The boundedness of s directly results in the boundedness of e because the tracking

error is the output of a linear stable first order filter driven by s [49].

Note that this convergence and limit does not relate to the mechanism of the structural
adaptation. Of course, a poor choice of structural adaptation mechanism will result‘in poor a
convergence of the tracking error and would be as bad as using no network at all [49]. And in the
worse case the bound on the tracking error may be so large that effectively only the action of the

sliding component keeps the state of the manipulator bounded.
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In this chapter an adaptive controller was proposed which works in conjunction with a
sliding controller. The adaptation laws for the adaptive component were presented, and the
stability of the system was proved. In the next chapter the structural adaptation will be addressed
and its effect on the system performance will be discussed. The new fuzzy based algorithm for

the adding/removing of nodes from the network will be then proposed.
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5 Fuzzy Logic Structural Adaptation

Structural adaptation is a method for gaining better controller performance by
dynamically changing the structure of the controller. It also improves the system behavior in
dealing with system uncertainties, unpredicted situations, and noise. The system performance
directly depends on the number of unknown parameters that the adaptive controller is estimating.
Each unknown parameter adds one state to the system and increases the system dimension. On
the other hand having more unknown parameter makes the richness of input condition harder to
be satisfied by the reference input which consequently increases the parameter estimation error.
This can be a source of transient errors which deteriorates the performance of the tracking.
Decreasing the number of nodes decreases the number of unknown parameters and consequently
results in a better transient response and a better performance and robustness in response to the
unknown dynamics. Large number of unknown parameters in an adaptive controller makes the
controller less strong in response to the sensor noise as well. So a method for minimizing the
number of nodes to achieve the best structure of a network is of great importance. This method
is called the structural adaptation and consists of two processes: “Adding new nodes” and
“Removing unnecessary nodes”. In the Add process, new nodes are introduced to the network;
and in the Remove process, unnecessary nodes are removed. In our representation of the

network a node is added to the network by setting its «, to 1, and is removed by setting its ¢, to

0.

Different methods can be used to add/remove nodes to/from a network; however

inappropriate adding and removing of nodes can deteriorate the performance such that the
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outcome becomes worse than the case of having no networks at all [49]. The performance of the
system greatly relies on the way the network structure is being changed. Fast add/removal of
nodes, or add/remove of nodes when the system is experiencing severe transient responses can
deteriorate the performance such that it became worse than the case that the network was
structurally static or even there was no nodes in the network at all [49].

Adding and removing nodes to/from a network imposes large changes in the state of the
whole network. Consequent changes in the structure of a network may be a source of causing
large errors, chattering or even instability. In experiments, these changes in the structure of the
network can effectively cause large impulses to the system and excite the unmodeled high
frequency dynamics of the system and cause large tracking errors or large amplitude chattering.
However because of the locality of wavelets in both time and frequency, the impact of changing
the structure of a wavelet network decreases in regions which are farther from the position that

the nodes are inserted or removed.

An important issue is the time between two consequent structure changes. The structural
adaptation should be as slow as possible to let the system fit itself into the new structure.
Although fast structural adaptation may result faster convergence in achieving the most suitable
network, but in real systems transient noises can easily deteriorate the performance and cause

large amplitude chattering.

The structural adaptation is continuously applied to the system, i.e., similar to the
parameter adaptation process, the structural adaptation process does not necessarily need to be
stopped. However, in our method the fuzzy rules automatically stop the structural change when

some level of accuracy in the tracking error is achieved.

37



Sanner and Slotine [49] proposed an algorithm for structural adaptation of a wavelet
network in conjunction with an adaptive controller. In the Sanner’s algorithm nodes are being
selected for adding or removal based on a threshold on the magnitude and the rate of the change
of their weights. Nodes whose weights are more than the threshold or increasing in time are kept
to the network; and conversely, those nodes whose weights are lower than the threshold and
decreasing in time are removed [49]. This kind of structural adaptation method may work fine
with the simulations but in real systems that there exist sensor noise and model uncertainties it
may easily fail to function and cause large tracking error or even instabilities in the adaptive
component of the controller. This causes the system to leave the working range and activate the
sliding component of the controller which pushes the system back to its working range. However
obviously this means very poor tracking performance.

Sanner’s method has three drawbacks: First the structural adaptation is fast; second the
network is changing too much in each step; and third finding the best threshold is rather difficult.
From the switching control point of view, this method is a fast switch between many too
different controllers. With the presence of noise this kind of controller can easily fall into large

amplitude chattering or become unstable. However, the instability takes place when the adaptive

component of the controller is active and causes the system to leave its working range A4,. Then
the sliding component forces the system back to A, and keeps the system stable. The outcome

of this kind of stability is a very poor tracking performance with error bound as large as the

whole 4, .

As mentioned before, setting the threshold is not easy and straight forward in the
Sanner’s method. Using a low threshold causes very few nodes to be participated in the network,

while a little increase on the threshold suddenly introduces a lot of nodes.
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The proposed method for the structural adaptation is based on some heuristic rules
obtained from the system behavior and some notions in the switching control field. The process
of structural adaptation is like a switching control problem having many different networks in the
controllers, and a switching algorithm to switch betwee_n them. So some notions of the switching
control field are applicable here. One of the main notions is the dwell time which will be
discussed more later.

In this thesis a new method of structural adaptation is proposed which is based on some
fuzzy rules. The decision of adding and removing nodes to/from the network is made by a
parallel fuzzy controller which is designed to organize the changes in the network structure. The
structural adaptation includes two processes: adding new nodes and removing unnecessary
nodes. The fuzzy algorithm adds new nodes when a node is needed and deletes unnecessary
nodes when they have relatively low effect on the function reconstruction process or cause
chattering. The fuzzy controller is designed based on some heuristic phenomena derived from
the system behavior and some concepts in the switching control. The fuzzy algorithm consists of
two parts: FA1 and FA2.

The main responsibility of FA1 is to decide for adding new nodes to the network. It
decides for removing the last node added to the network too. As noted before the performance of
the system is very sensitive to the structural adaptation. For example when the system output is
chattering or is experiencing severe transient responses with fast changes, adding new nodes can
potentially exacerbate the situation. It can magnify the chattering amplitude, or cause the system
to leave its working range. But if the tracking error is relatively small and does not have large
chattering, the network is capable of accepting a new node without performance deterioration.

The new node enhances the system performance by improving the estimation capability of the
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wavelet network. FA1 continuously checks the system status for a proper condition to add a new
node.

As noted before FA1 decides about removing the last node added to the network too. This
takes place in cases that the tracking error becomes large or has chattering. Removing the last
node results in a better situation because the network excluding this node had had such an
acceptable performance that it had reached that configuration. So the last node is removed by
FA1 to enhance the performance in cases that it does not result in a good performance. This
node can be added again if FA1 decides to do so.

The inputs of FA1 are: two variables defined based on the tracking error (equation (48)),
the last time that a change in the network structure has been made, and the current time. Its only
output is the change of the nodes count. If the output is +1 then a new node is added, if it’s 0 no
changes is made and if it is —1 the last node is removed from the network. The overall diagram
of FA1 is shown in Figure 6.

At the same time and in parallel to FA1, FA2 decides about removing bad nodes from the
network. Bad nodes are those which have a small contribution in reconstruction of the estimated
function, or those which have chattering. These nodes deteriorate the performance by causing
chattering on the output or decreasing the robustness of the network by being an unnecessary
state in the system equation.

FA2 checks each node to see if it is necessary to be in the network or not. Its inputs are
the node’s weight, the last time that a change in the node’s existence has been made, and the
current time. Then its output is the change in the node’s existence. An output of +1 means the
node should be added back to the network, 0 means no change should be made, and —1 means

the node should be removed. The overall diagram of FA2 is shown in Figure 6.
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The fuzzy propositions in FA1 and FA2 can be set such that it results in a cautious
structural adaptation, or a reckless one. The definition of these fuzzy propositions also affects
the convergence of the structural adaptation process. In real systems, in case of presence of
noise and uncertainties, the structural adaptation process may not actually converge to a constant
value, but have a limit cycle around a certain point. The width of the limit cycle again depends
on the level of cautiousness of the structural adaptation which relates to the parameters set in the

fuzzy propositions.

In this research, all the 3 reviewed basis functions of Wavelets, RBF, and Fourier are
used as the basis function of the approximation network, and their performances are compared.
However the wavelet is found to be the best. This is mainly because of its localization in both
time and frequency domain and having both time and frequency resolution at the same time. As
described before this greatly localizes the effect of adding a new node to a close neighborhood
region. Zhang [46] which proposed a neural wavelet network for function learning showed that a
wavelet network is much more capable in function approximation than usual MLP networks and
Gaussian networks. Wavelet networks are defined based on different formulations of discrete

wavelet transform. Based on (18) our node structure for the wavelets network is
Y () =292 x — kx,) JkeZ 47

where the frequency is quantized on m points, and the time shift is quantized on 2" +2m

points on its working range [0,27].
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5.1 Adding New Nodes

Having more nodes in a network makes the discrete estimation closer to the continuous

one, which consequently improves the accuracy of estimation. Mathematically it decreases f;

which causes having less tracking error bound. In this research, a mechanism for adding new
nodes to the network is proposed based on some heuristic rules derived from the behavior of the
system and some concepts in the switching control field. These rules are grouped together to
create a fuzzy algorithm to decide if a node should be added to the network; and conversely, if
any node should be removed. The membership functions in the fuzzy rules can be set in such a
way to have a cautious structural adaptation or a reckless one. These membership functions are
shown in Figure 7 and Figure 8. Small values of 4 and B cause cautious structural adaptation
while large values cause reckless one. Although the stability of the system is guaranteed by the
sliding component of the controller, but achieving a good performance is reliant to the
performance of the adaptive component which controls the manipulator in the working range.
This is because the outcome of relying on the sliding controller to maintain the stability is large

bounds of error as large as the whole range of 4, .

Fast switching between two nicely stable controllers can easily result in instabilities [70].
This is the basic idea of definition of dwell-time in the switching control literature. The stability
of a switching controller is greatly dependent to the value of the dwell time. A small dwell time
(fast switching), may cause instabilities while larger values may stabilize the same controller
[70]. Based on this phenomenon some fuzzy rules are defined to prevent the system from having
fast changes in the network structure. These rules create a fuzzy algorithm which organizes the

structure of the network. The fuzzy algorithm is illustrated in the Figure 6.
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AE

Figure 6. The Fuzzy Controller

where N, represents a node which can be either wavelets, RBF or Fourier.
Adding a new node takes place by setting its &, to 1. When a node is added, its weight is

set to zero. The weight is then being updated by the update laws. In general, adding new nodes
to a network can effectively change the weights of all other nodes. But as wavelets are localized
in both space and frequency, the effect of adding a new node to a wavelet network will be less on
regions further from the point that the new node is inserted. This phenomenon makes the
wavelet networks much more robust to the structural adaptation, while other basis functions (like

the Fourier) lack this advantage.
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5.2 Fuzzy Algorithm 1 (FA1)

It is found that suddenly introducing a large number of nodes to the network significantly
deteriorates the performance. Continuous large structural changes cause large tracking error and
large amplitude chattering. Chattering is found to be due to the presence of unmodeled high
frequency dynamics in the real plant which are excited in these fast changes. As there may be a
large difference between the amplitude of two consequent (neighbor) nodes on the x axis in the
transient state, there may be fast jumps in the estimated friction on the consequent points of the
x axis. These fast jumps can excite the unmodeled high frequency modes of the system and

cause large tracking errors. Based on this, the fuzzy rules are defined based on the following

variables
a(t) =le(1)
OEEIGEING
s j‘ le(t) | dt
1-t, (48)

5 (s)= ;5 (s)
kps+1
N
x=| Min(—-,1
[ (5 )}
where £, is the time which the last change in the nodes count has taken place, p and d are

arbitrary positive numbers. If § <& the output of the filter converges to & with the time

constant of xp where x = (5* 18 )d <<1; and if §>6" the output of the filter converges to &

with the time constant of p.

FALl is constructed based on 10 rules which are shown in the following table.
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If t—1, is Large' and
" P Negative” | Zero? | Positive”
Small® Ayis0 | Ayis0 | AyisO
Medium*® AN is +1 AN is +1 AN is 0
Large” Ay is +1 | Ay is +1 | Ay is —1

If r—t, is Small' then A, is 0

Table 1. The Fuzzy Engine for Adding New Nodes

where the fuzzy propositions are defined in Figure 7, Figure 8, and Figure 9, and A, represents

the number of nodes which should be added to the network. A, is interpreted as

Round(A,)=0 | The number of nodes should not be changed.

Round(A,)=+1 | A new node should be added.

Round(A, ) =-1

The last node should be removed.

Table 2. Interpretation of A,
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5.3 Order of Nodes

To get a better function approximation it is much better to spread the nodes almost
homogenously on the x axis. By other means the nodes should not be inserted only in some
squeezed areas of the x axis. If doing so, the network will have strong approximation
capabilities in those areas while having weak capability in other regions. However, if a node is
inserted in a region that the original function is flat, the amplitude of that node would gradually

converge to zero. This will then result in the removal of that node from the network which will
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be discussed later. But as the original function is unknown to the controller, this method gives
the new nodes the chance of being placed in almost all points of the space domain. Although
this is not a good method for functions having large flat areas but its performance is quite well
for common fluctuating functions.

Another issue is the order of frequencies of nodes to be added. Low frequency nodes
reconstruct the large scale shape of the function while high frequency nodes reconstruct high
resolution (sharp changes) shape. So to obtain a better performance in the function reconstruction
process, low frequency nodes must be added first. Based on this idea an algorithm is proposed
which sets the order and position of each node in space/frequency domain. This algorithm fills
the nodes queue with the low frequency nodes first and the higher frequencies next.

Besides, the low frequency nodes have a wider range on the x axis. So fewer number of

low frequency nodes is required to cover the whole space axis ([O,27r]). Conversely high
frequency nodes have a much narrower range and more of them are required to cover the whole
x axis range. Based on this, the number of nodes is increased in each frequency level. For
example there are 2 node in the first frequency level (j =0), 3 nodes in level j =1, 5 nodes in
J =2 and generally 2/ +1 nodes with the frequency of ;.

The mentioned algorithm is shown in Figure 10. The variables used in the algorithm are

defined as

J»  The frequency of node n
49)
k,  The space shift of node »

and i/, j and n are “integer” variables. The algorithm creates the queue as
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5.4 Removing a Node

Although having more nodes in a wavelet network results in more precision in theory; but
having large number of nodes is not so much desired in practice. Large number of nodes can
cause implementation problems such as taking a long time for calculations in real-time
controllers, or increasing the round-off error. It can also cause large tracking error and chattering
in the presence of noise and uncertainties. So those nodes which are not participating too much
in the function reconstruction should be removed from the network. A node is removed by

setting its ¢, to 0. Based on the proposed method in this research, a node should be removed

from the network if any of the following conditions holds:

5.4.1 Condition 1
The last node introduced into the network will be removed if “Round(A, ) =-1". The

last node removed from the network can be added again if FA1 states “Round(A, ) = +1.

5.4.2 Condition 2

Another fuzzy algorithm (FA2) is designed to decide if a node should be removed from
the network or not. All nodes participating in the network should be examined by FA2 to check

if they meet the proper conditions to be in the network. If a node is targeted for removal, the «,

of that node will be set to 0. FA2 is defined based on the following variables
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U (= lCi (t)l - Cim

t
ﬂc, () —C’lar
o) =1 (50)
(1) s
¢ =——c
s+1

where 17 is the time that the last change in the node’s «; has taken place, 7 is an arbitrary
positive constant, and C" is a positive number indicating the threshold for magnitude of the

weight of each node to be participated of in the network. ®, indicates the level of chattering of
each node. Based on these variables the following rules are designed which compose fuzzy

algorithm 2 (FA2) as

If r—¢* is Large, and

o Negative” Zero® Positive”

i

Small® | A, is 0 | A, is+1] A, is +1

2

Medium® Aa, is =1 Aa, is 0 Aa‘ is 0

Large” A is—-1] A is -1 Aai is -1

; a;

If -7 is Small; then A, is 0
Table 4. The Fuzzy Engine for Removing Nodes

where the fuzzy propositions Small' and Large; are the same as Small" and Large” defined in

Figure 7, Figure 8, and Figure 9, and A, is interpreted as

Round(A, )=0 | Change nothing.

Round(A, )=+1 | The node should be introduced if it’s not in the network.

Round(A, )=-1 | The node should be removed if it’s in the network.

Table 5. Interpretation of A,
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where the “Round” is the common “Round(x)” function defined as the closest integer to “x”.

In this chapter the structural adaptation was addressed and a new fuzzy based method was

proposed. In the next chapter the experimental results of the proposed method will be shown and

compared with other methods.
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6 Experimental Results

6.1 Experimental Setup

The method proposed in this research has been fully tested and approved on a 5 link 2-
DOF manipulator which was also used in [54] and [61]. The key point of this manipulator is two
arms driven by two DC motors equipped with two harmonic drive gears. The motors are from
HD Systems Inc. model Hi-TDrive RH-5A-5502. The catalogue of this motor is provided in
Appendix A. These arms are connected together and form a 5-link system with the target of
moving the top joint on a certain predefined path. This robot can be used for many precision
positioning purposes like tele-surgery and optoelectronic industries. The robot is shown in

Figure 11.

Figure 11. The Robot
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Each DC motor is equipped with an encoder coupled to the motor output shaft having
1440 encoder ticks per motor round. These encoders are used as the system feedback for both
the position and the velocity; however measuring the velocity with the encoder needs more
considerations. The controller is implemented on an Intel 2.4°” PC, running the Windows
2000, and Venturcom™ RTXT™ ag the real-time operating system. For the purpose of
communication a Quanser™ MultiQ™ PCI interface card having 4 of 16bit D/A, 4 of AB
encoder channel, and 64bits DIO is used. The D/A channel is used for the controller output, the
encoder channel to measure the position, and the 16bit DI channels for communicating with an
external micro controller. The external microcontroller measures the velocity based on the time
between each two consequent encoder ticks using the inverse time method. An amplifier with
the gain of 3, also from Quanser™ is used to supply the required current for the motor. The
maximum voltage of the amplifier is +22.76v while the working range for the DC motor is
between -10 and +10v. By applying sine waves of different frequencies and measuring the

amplifier input and output amplitudes a Bode plot can be obtained as shown in Figure 12. This

figure guides us for selecting the sampling period of the controller.

2
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2
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101 102 103 104 105 106
frequency (Hz)

Figure 12. The bode plot of the amplifier
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6.2 Implementation Issues

Applying the reviewed theoretical formulations to the experiment needs some additional

considerations. Some of these issues are addressed here.

6.2.1 Velocity Measurement Based on the Encoder

Velocity measurement based on encoder turned out to be a critical problem. Neglecting
the quantization error caused by the encoder, there still is the problem of measuring the velocity.
Measuring the velocity is of great importance because it is directly fed forward to the system
input through the viscous friction and through x, (equation (29)). It also exists in s which plays

a significant role in almost all equations. Based on these two reasons, system performance
greatly relies on accurate measurement of velocity. As the only sensor of the system is the shaft
encoder, an observer is needed to obtain the velocity. Methods of measuring the velocity based

on the encoder fall into two main categories:

1. Finite-Difference [64].
Finite-Difference scheme counts the net number of pulses during a fixed interval
of time; multiply it by the angle corresponding to successive pulses and divide it
by the duration of the interval [64]. References [65][66][67] represent several
physical implementations of the finite-difference scheme, with very few
variations in the basic principals [64]. This method gives a good precision if the

number of encoder counts in two consequent observations is relatively high.
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2. Inverse-Time [64].
The inverse-time method deduces velocity as the inter-pulse angle divided by the
time between two successive pulses [68][69]. This method is much more precise
than the Finite-Difference method if the number of encoder counts between two

observations is relatively low.

In large timer intervals both of these two methods may cause large estimation
errors, however Belanger [64] designed a velocity and acceleration observer using
Kalman filtering which slightly overcomes this problem.

In this research the required method is selected based on the velocity of the arm.
In low velocities the Inverse-Time is used which results in a better precision while Finite-

Difference is used in fast motions.

6.2.2 Determining the Optimum Motor Speed

The faster the motor rotates, the more change would be in the encoder position in each
two consequent timer intervals. To gain a better performance, it is much better to observe the
system states in closer points. By other means checking the tracking error and updating the
friction function in closer points of the motor shaft result in a much better approximation of the
friction function. For this reason the motor speed is selected such that the change in the encoder
position in each two consequent timer intervals would be about 2 encoder counts. Now that the
number of encoder counts in two consequent timer intervals is small (around 2), the Inverse-

Time method would be more suitable for measurement of the velocity.
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6.2.3 Calculation’s Time

In real time systems the required time for calculation is a critical problem. The more
number of nodes participating in the network, the more time is required for the calculations. The
calculation consists of three parts: updating the weights of the nodes, calculating the output of
the network, and calculation of the fuzzy algorithms. Using the best optimization techniques and
buffering results to avoid recalculations a PC with the CPU of P4 2.4GHz is capable of handling
the calculation of about 50 nodes in 1000us. So setting the timer interval to 1000us the PC can
only handle the maximum of 50 nodes in the network. Needing more nodes for the friction
estimator in realtime controllers requires more powerful computers or using distributed
networking techniques to distribute the network between two or more computers. This technique

is however an active topic these days.

6.2.4 Determining the Timer Interval

Another key parameter is the sampling period. Many issues should be taken into account to
select a proper sampling period for the controller. Although lower intervals make the system be
closer to the continuous controller, but too low intervals may cause practical problems. Notably
the computation time required could be potentially prohibitive for large numbers of nodes. Also
the velocity updates are limited by the calculation procedure previously noted above.
Considering all these factors a sampling period of 1000us is used for this application using a PC

with the P4 2.4GHz CPU.
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6.3 Experimental Test Conditions

In this section the experimental results are shown for the wavelet network. However the
results are compared with the networks with other types of basis functions (RBF and Fourier).
To implement the proposed method some simplifying assumptions are introduced which are
listed below. Constant parameters are also listed. The results are then shown in Figure 6.4. It
should be noted that as the adaptive component of the controller has a good performance, the

system does not leave the working range 4, , and the sliding component of the controller would

always be zero.

6.3.1 Assumptions

The experiments are performed by considering some assumptions. Although the real
system avoids all these assumptions, but the acceptable results confirm the robustness of the
controller to unmodeled dynamics, uncertainties, and noise. The assumptions are

1) The effect of gravity on the arms is zero. However the manipulator is placed in the

horizontal plane.
2) The friction in the load side is small in compare to the motor side friction. So the
hysteresis and presliding is ignored.

3) The amplifier has a constant gain in the working range of frequencies.
4) Although based on (30) the adaptive controller should find the values of J ,and ¢,

but for better convergence of the network and also more precise estimation of the
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position dependent component of the friction, and assuming that J , and ¢, does not

change with time and position, they have been estimated offline.

6.3.2 Constant Parameters

The assumed constant parameters in the experiment are listed below. Note that the
wavelet functions adaptation gain (y,) is considered 10 times more than that of the bias (y,).
This to impose the estimator to try to estimate the friction function by updating the weights of

the wavelet nodes ( C,) rather than changing the bias (C,).

A =50 k=0.03

7o =1 7, =10
m, =245 -3 ¢, =75-3

p=1 d=3

Fora = A=2 B=17 C=12
Forf = A=5 B=5 1)
= A=001 B=0.05 C=0.10
=

A=0.05 B=0.05

Forv,

For o,

For Small' = A4=0.1 B=02
For Small, = A4=0.1 B=02

The fuzzy rule base properties are
¢ The inference method is: “Mamdani”.
e The T-norm and S-norms are: “Max” and “Min”.
e The fuzzifier is: “Singletone”.

e The defuzzifier is: “COG (center of gravity)”.
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6.3.3 The Reference Input

In order to estimate the position dependent part of the friction function, a proper
reference input should be applied. To have a better performance in measuring the friction
variation vs. position, the reference input should be such that it does not excite other components
of the friction too much. One of the best signals might be the triangular signal at a low velocity.

For this purpose the reference input shown in Figure 13 is applied to the system.
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Figure 13. Reference input

6.4 Experimental Results

The reference input shown in Figure 13 is applied to the manipulator and the system
response is shown in the following figures. Figure 15 shows the number of nodes participating in
the network, while Figure 14 shows the tracking error. The nodes count has had an increase of

about 30 nodes in about 45s. After this increase it has started to bounce around 27 and finally it

has stopped at 28 nodes.
Different components of the plant input are also shown in Figure 16. It states that the

dominant part of the input signal is u,. The system is found to work in the working range 4,;

i.e.m =1 in all the time. The adaptive controller is found to be stable such that the system does
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not leave the working range 4, and consequently the sliding component of the controller is

always 0.
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Figure 14. Tracking Error ( PI = 25.82 - defined in (52))
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Figure 15. Wavelets Nodes Count

Figure 17 shows the position of the nodes over time. It shows where nodes are inserted
and which nodes are removed. Figure 18 to Figure 23 show the histogram of the nodes’ position

over time. For example at time # =100, there are 1 nodes in the neighborhood of 0, 3 nodes in
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the neighborhood of 45, 5 nodes in the neighborhood of 90 and so on. In Figure 25 to Figure 30
the system response for other types of node configuration are shown. Figure 25 and Figure 26
show the tracking error and nodes count for Fourier, Figure 27 and Figure 28 for RBF, and
Figure 29 and Figure 30 for Sanner’s method. The former figures clearly show the drawbacks of

the Sanner’s method.
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6.5 Comparison

The comparison between different methods and different node configuration is done by

defining a performance index as

2
pro fe dt (52)
T
For better comparison of different networks and methods, the performance indices and

average nodes count in the last 20 seconds of the experiment are shown in the following table

Method Performance Index Average Nodes Count
Our Method — Wavelets PI=2582 N =28
Our Method - Fourier PI =90.43 N~=~8
PI Controller PI =208.79 ---
Our Method - RBF Pl =683.6 N ~45
Sanner’s Method - Wavelets Pl =6993.4 N ~ 220

The above table clearly shows that our proposed method with the node configuration of
wavelets results in the best performance. However it has the minimum number of nodes after the
Fourier network. Although Fourier with about 8 nodes has the minimum number of nodes but
this is not because of its good capabilities. It is because of the high frequency of the 9" node. In
the Fourier network the frequency of the 9™ node is 9 times of the frequency of the 1% node.
This frequency is so high that it is almost considered as noise and this node will be removed by
FA?2 because of chattering or too low weight. This is also verified by the fact that the number of
nodes of the Fourier network did not converge to a certain value. This is caused by the similarity
of the last couple of nodes to noise which results in consequent removal and add of those nodes

to/from the network.
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A key point in the success of the Fourier network to achieve a good performance in our
experiments is the continuity and smoothness of the friction function. Fourier networks give a
good performance in case of periodic and continuous unknown functions. But in case that the
unknown function is not continuous or has sharp spikes, theoretically the Fourier network needs
many nodes to give acceptable approximation accuracy. However this is practically impossible

because of the large frequency of the nodes and consequently similarity to noise.

The PID has the 3™ rank. It has problems when the direction of the motion changes. Each
time the sign of the velocity is changed the PI controller imposes a transient response to the
system. This is because of the discontinuity of the friction function at the zero velocity. The PI

controller is blind to this kind of discontinuity.

The next one is the RBF. The large P/ of RBF is because of the time (x axis) locality of
an RBF node. When a Fourier node is added to the network, its effect will be applied to the
entire x axis; while the effect of adding an RBF network is limited to the neighborhood of its
center. Adding an RBF node improves the approximation capability of the network only in its
close neighborhood. This means the network does not have any approximation capability in
regions having no nodes in the close neighborhood. So the network will have poor tracking

performance in these regions.

Finally the Sanner’s method on the end of the list has the P/ of 6993.4. Looking at the
nodes count diagram (Figure 30 and Figure 31) clearly shows the drawbacks of the Sanner’s
method. The network structure has a very fast and large change between about 180 and 260

nodes36. Comparing the diagrams for the Sanner’s method we find:
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1. The number of nodes in the network changes very fast.

2. The number of nodes is much higher in compare to other methods.

3. The number of nodes changes too much in each step.

The relation of the nodes count chattering with the Sanner’s method is not so clear. Below is
a brief step by step description of the cause:

* In the Sanner’s method the number of nodes in all frequency levels are the same;
for example the number of the nodes with smallest frequency level is equal to the
number of nodes with the largest one. However, the range of large scale nodes is
much higher than the low scale nodes.

* As the number of low frequency and the number of high frequency nodes are
equal, and all the nodes are spread homogenously on the x axis, the time shift
between the two adjacent nodes is the same for all frequency levels.

* As there should be a small enough time shift between two adjacent large
frequency (small scale) nodes, the distance of two adjacent small frequency (large
scale) nodes will be small either.

* Sanner states that the largest scale node should be selected such that it would be
nearly constant on the set 4. So the effective domain of low frequency nodes is
so large that two adjacent nodes can be assumed to be the same. This is because
the small time shift between these two can be easily neglected in compare to the
node’s domain.

» As the adjacent low frequency nodes are nearly the same, the update rate of their

weights will also be nearly equal. So their weights will change almost the same.
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* As the nodes are selected based on the thresholds on their weights, for two
adjacent low frequency nodes, the thresholding condition will be satisfied almost

the same time.
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Figure 24. PID Controller ( P/ = 208.79)
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7 Conclusions and Future Work

In order to compensate friction in harmonic drives an adaptive controller is proposed which
takes the advantage of approximators as the best estimate of the system. The friction is found to
be a function of velocity and position. The velocity dependence is modeled as a viscous friction
with acceptable accuracy. However, a structurally dynamic approximation network is proposed
which reconstructs the position dependency of friction. Three node types are used in the
approximation network and the experimental results of each configuration are proposed. Among
the reviewed types the wavelets proved to be the best having the best performance index and the
less number of nodes.

To update the structure of the network two parallel fuzzy algorithms are designed. The
fuzzy algorithms update the structure of the network with the target of decreasing the number of
nodes to improve the system performance and robustness. These fuzzy algorithms decide about
the adding and removal of nodes based on some heuristic phenomena derived from the system
behavior and some notions in the switching control like dwell-time (Table 1 and Table 4).

This idea significantly improves the tracking performance of harmonic drive motors and
makes them a better candidate to be used in precision positioning systems. Comparing the
system responses clearly confirms the tracking error improvement. The proposed idea not only

has a better performance in compare to the previous method proposed by Sanner, but also it uses

a much fewer of nodes.
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The main contributions of this thesis are:

1)

2)

3)

Modelling Friction with a Structurally Dynamic Wavelet Network

In this research the friction in harmonic drives is modelled by a structurally dynamic
approximation network in conjunction with a model reference adaptive controller.
Figure 32 shows that the wavelets prove to be the best due to its performance index
and the low number of nodes. The wavelet achieves the tracking error limit of about
5 encoder counts which is a very acceptable performance in many precision

positioning applications.

A Fuzzy Algorithm to Update the Structure of the Approximation Network

In this thesis, for the first time, a fuzzy based algorithm is proposed to dynamically
change the structure of an approximation network with the target of decreasing the
number of participated nodes. Figure 34 clearly shows the effect of the new
algorithm. The number of nodes participating to the network is about 10 times less

than Sanner’s method while having about 10 times more precision.

The Experimental Verification
The proposed methods are applied and verified by the experiments. The experimental
results show a good improvement to the tracking error and number of nodes by the

new method.

Future Works

To improve the method further, the following areas could be investigated in the future work.

1) The set of rules of the fuzzy algorithms can be improved.
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2)

3)

4)

S)

6)

The definition of inputs can be changed. Other states of the system can be added to the
inputs.

A major improvement is an enhancement in the fuzzy algorithm outputs. The outputs
can be improved to have a node half in the network and half not. This can be

implemented by having the range of [O,l] for a,, not only strict values of 0 and 1.

In this research the velocity dependency of friction is considered to be linear. Another
network can estimate the velocity dependency of friction. In our research we missed this
because it needs too much computation that could not be done on a single computer.

The calculations can be distributed in two or more computers. This makes this idea
applicable to systems having complex friction dependency. An example is the aircraft
systems which the drag force is a complex function of several system states.

Not only friction but also any state dependent complex force in the system can be
approximated with this method. The idea can be generalized to estimation of any force

dependent to any number of states in a system.
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Appendix A

RH-5A-5502 SPECIFICATIONS

Performance Specifications
DC Voltage (VDC)

Shaft Speed (rpm)
Continuous Current (amps)
Continuous Torque (In-lbs)
Output Power (HP)

12.0
55
0.50
2.60
0.0023

Torgue Constant (oz-in / amp) 0.0140

Rotor Inertia (oz-in-secz)

0.2240

Motor Type

DC Construction
Commutation
Shaft Orientation

Permanent Magnet
Brush
In-line; Single-ended

Gearing Options

Gearing Gearmotor
Gearhead Model

Gear Type Harmonic

Gearbox Ratio (: 1) 80.00

Gearing Efficiency (%)

Housing / Enclosure

Units Metric

Motor Shape Cylindrical Body
Diameter / Width (inch) 0.79

Length (inch) 3.15

NEMA Frame

Options

Extreme Environment

Other Specifications

Feedback Integral Encoder; Integral Tachometer (optional feature)
Features Ser\}omotor; Brake

Environment

Operating Temperature (F)
Shock Rating (g)

Vibration Rating (g)

32to 104
30.0
2.50

Notes

Available in analog & digital control unit, zero backlash, continuous rating
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