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Abstract

Using Motif Databases to Help Improve Multiple Sequence Alignment
Guangyi Wang

Current progress in genome research projects has generated huge amount of data.
As a result, the analysis of these data is now a bottleneck in bioinformatics. Mul-
tiple sequence alignment is an important step in this kind of analysis. It compares
unknown sequences with well studied ones, and thus infers functional and structural
information of the unknown sequences.

However, due to the NP-completeness nature of the multiple sequence alignment,
exhaustive searching method is unrealistic. Current algorithms use heuristic approach
to get a nearly global optimal result. As a consequence, any specific program may
encounter certain cases that it is not good at.

In this work, we use protein motif databases to improve the alignment. The basic
idea is to detect possible occurrences of motifs on the sequences, and force those
parts to be aligned together. Unlike existing programs, this method uses biological
information instead of treating it as purely an optimization problem. It also reduces
the searching space. Experiments show that using motif databases could generate

good results.
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Chapter 1

Introduction

Multiple sequence alignment is an important tool in bioinformatics research. Bet-
ter alignment can lead to more accurate automatic annotations. In this paper we
present an approach to use functional or structural databases to improve the quality

of alignment results.

1.1 The Multiple Sequence Alignment Problem

In current genome projects, scientists have successfully sequenced the whole genome
of many different organisms. This has generated large amount of genomic data.
These nucleic acid data can be translated into protein sequences. Proteins play
essential roles in biochemical reactions, which build the foundation of nearly all living
activities. Consequently, the main object of bioinformatics is to use all tools at its
disposal to deduce the possible function of the coded protein.

Bioinformatics, as defined here, is the science of using computational techniques
to analyze biological data. One of the widely used techniques is multiple sequence
alignment.

Multiple Sequence Alignment(MSA) is an important step in these analysis. Once

the genomic sequence data has been obtained from sequencing, the parts which en-



code the proteiné can be identified by various tools. The protein sequence deduced
from these nucleic acids is called putative or hypothetical protein. Because of the
large quantity of these putative proteins, it is impossible to use laboratory procedures
to determine the functions of every sequence. MSA programs will align those hypo-
thetical proteins with those that have already been thoroughly analyzed to check for
similarity and to deduce the functions of putative proteins. If the functional part
does align together and exposes a high level of similarity, even if the total sequence
is very divergent, we may still deduce that these proteins may be involved in similar
biological activities.

The MSA problem has attracted much attention since the 1970s. Exact align-
ment of two sequences in the mathematical sense has been studied by Needleman-
Waunsch[14] on global cases (where the whole sequences should be aligned), and by
Smith-Waterman[20] on local cases (where only the highly identical parts should be
aligned). However, these alignment algorithms, when .extended to multi-dimensional
cases, have exponential time complexity. Due to the NP-hard nature of the problem(25],
it is unlikly to find one ultimate algorithm to perfectly solve the MSA problem. The
existing algorithms will sacrifice the optimality for acceptable speed. Instead of find-
ing the mathematical optimal solution, these “heuristic” algorithms will find good
solutions without guaranteeing that they are the best in order to complete the com-

putation within a resonable time limit.

1.2 Existing Algorithms

There are several existing algorithms. These algorithms can be mainly divided into

two category: progressive and iterative.



ClustalW is a typical progressive multiple sequence alignment algorithm. These
algorithms break the multiple sequence alignments into several pairwise alignments.
In each step, only one sequence is added into the alignment. When all the sequences
are added, a multiple sequence alignment is achieved.

The order of those steps plays an important role. In order to construct a good
order, different methods have been used. Neighbour-Joining method is used in
ClustalW. Other methods include UPGMA([12], maximum parsimony|7].

Iterative algorithms have an initial alignment, and refine that alignment over and
over until some optimal criteria is met. DALIGN([13] is a typical example of this kind
of algorithms.

For complete surveys of multiple sequence alignment, see [15] and [23]. Although
dozens of algorithms have been devised and several of them have been widely used
in practice, the alignment result may still need manual adjustment. This might be

caused by the fact that

o the current algorithms are all heuristic in nature due to the NP-Completeness

nature of MSA; and

e the pure mathematical optimal goal may not reflect 100% the biological goal.

Thus in this work, we use biological information to solve the limitation of the MSA

algorithms.

1.3 Structural and Functional Protein Databases

In order to help scientists to analyze the sequences, different protein structural and
functional databases were built. The common functional or structural parts are

summarized as patterns.



PROSITE[10] is a protein domain and family database. In that database, proteins
are grouped according to their similarities. Similar proteins should have similar
structures, thus they are grouped together into one family. Domains are the common
feature that one group of proteins share. In PROSITE, these domains have two forms:
pattern and profiles.

PROSITE also provides tools to search the domain database. In this thesis, we use

ScanProsite[9] tool to check if a certain sequence has domains stored in PROSITE.

1.4 Contribution of the Thesis

In this work we use structural and functional information to imporve the alignments.
First we introduce the concept of anchor points. These points will force the alignment
to be fixed at certain positions. By searching the databases, we could find motif at
each sequences participating in the alignment and the same motif should be aligned
together. These motifs can serve as anchor points and produce better ;alignment
result.

To verify the validity of this approach, we have implemented the algorithm using
Java. We also have tested the program using the alignment benchmark database:
BAIBASE. Results show that the alignment scores of this algorithm are higher than
those of ClustalW in all 4 references, which means this approach does generate better

alignment results.

1.5 Organizétion

First we discuss in Chapter 2 the nature of the multiple sequence alignment prob-

lem. Then, in Chapter 3, we examine the existing protein structural and functional



databases. In Chapter 4 we introduce the concept of anchor points to force cer-
tain parts of sequences to be aligned together. Using the anchor points generated by
database search, we could make sure that known functional parts are not mis-aligned.
At Chapter 5 we benchmark our approach with BAliBASE. After that, in Chapter 6

we discuss the results and possible further works.



Chapter 2

Multiple Sequences Alignment

Multiple sequence alignment(MSA) is a method to present several sequences in such
a way that the most similar sections of these sequences are put in the same columns.
In order to make such a alignment, gaps are often necessary to be inserted in these
sequences.

MSA is an extremely useful tool in comparative biological studies. It can be used
to construct the phylogenetic relations of several sequences, to find conserved parts
within a group of proteins, or to predict the structure and function of proteins. Thus
the finding of high quality MSA algorithms attracted much attentions since the 1970s.

Different algorithms have been proposed. These algorithms generally fall into
two categories: Progressive or Iterative. Yet these algorithms cannot always produce

perfect results, and manual adjustment may be needed.

2.1 Global and Local Alignment

There are two different ways to define multiple sequence alignments: global and local
alignments.
Global alignment tries to align every residue in every sequence. The final result

will contain whole sequences.



Local alignment will only generate the alignment of the most conserved region of
the sequences. The result usually contain only a portion of the total sequence. The
alignment is locally best, in the sense that if residues are added to either end of each
sequences, the final score will decrease.

We only study global alignments in this thesis.

2.2 Mathematical Definitions

The problem of MSA can be defined as an optimization problem as follows:

First let A be an alphabet of finite elements. These elements represent the residues
of biological sequences. For proteins, the characters in A could be the one letter
codes defined by ITUPAC (International Union of Pure and Applied Chemistry)[18].
Sequence s is defined as a string on A. We extend A to A’ by adding a space character,

so that we can use it to represent gaps:
A=Au{-"}
Now we can define a distance matrix D as follows:
D:AxA—>R

D is a function, and it maps pair of characters from A to a real number.

Given a sequence set @ = {s;}i = 1,...,n} of n sequences, an n x | matrix M,
consisting of letters from the alphabet A’ is said to be an alignment of @ if each
sequence s; of ) appears exactly once as a row of M, but with an arbitrary number
of ‘-’ inserted.

The score of alignment is defined as

S(M) = SP(M) — GP(M),

7
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Table 2.1: An alignment of 5 sequences

where

SP(M)= Y Y D(My, M)

1<i<j<n 1<k<l

is the sum of pairs, and

GP(M)

is the gap penalty. This penalty may varies from algorithm to algorithm, but in
most cases, it is the sum of an open penalty plus an extending penalty for every gap
introduced in M.

For a given set of sequences, the MSA problem will try to find an optimum
alignment. The global multiple sequence alignment problem could be then defined
as: For a given sequence set @, find the matrix M, such that S(M) is maximized.

Table 2.1 is an example of alignment: There are 5 sequences in this alignment.
In order to align similar or identical residues in the same columns, gaps are added to

the first, the second and the fourth sequence.

2.3 Dynamic Programming

When the number of sequences is 2, MSA is reduced to a pairwise alignment problem.
Needleman-Wunsch and Smith-Waterman have solved such case. They use dynamic
programming to find a placement of the residues, such that a global( Needleman-

Wansch) or local (Smith-Waterman) optima is found.



The main idea of dynamic programming is to use previously found partial optima
to find the final solution for the entire problem. In this particular problem of pairwise
alignment, dynamic programming will construct a matrix, where the columns and
rows are indexed by the residue of the two sequences. Figure 2.1 illustrates the
alignment of 2 artificial sequences using dynamic programming. Here we use a simple
distance matrix: for each identical pair, the score is 1, and for other pairs, the score
is -1. The gap penalty is -2.

For each cell, there are 3 choices: align the two corresponding residues indexed by
the column and row, or add a gap either vertically or horizontally. These 3 choices
will generate 3 scores, and the maximum value will be selected as the score of this
cell. Figure 2.2 shows the 3 choices of one cell on Figure 2.1. For cell D, its value

could be calculated by the following way:

e aligning the “O” in “HOME” with the “U” in “HOUSE”, represented by the

diagonal arrow in Figure2.2;
e aligning a gap with “U” in “HOUSE"”, as indicated by the vertical arrow;

e or aligning a gap with the “O” in the sequence “HOME” | as indicated by the

horizontal arrow.

Because each gap costs -2, and the matching of “O” and “U” costs -1, the value of

cell D is decided as follows:

V(D) = MAX{V(4) - 1,V(B)—2,V(C) — 2} = MAX{-2,0,—5} = 0

This means the second choice is the optimal. Trace information will also be kept for

backtracking. In the case of Figure2.2, a pointer will be added, indicating that the



E | -10y -7 -4 -3l o

Figure 2.1: Using dynamic programming to align two sequences

value of cell D is derived from cell B. After each cell has been filled, one path will
be found from the upper-left to lower-right corner. From this path, we could get the

best alignment. In the case of Figure 2.1, the final alignment will be:

HO - ME
HOU S F

For cases of n > 2, theoretically, dynamic programming in n-dimensions can also

be used. Yet the complexity of computing is prohibitively huge.

2.4 Heuristic Methods

The dynamic programming method of aligning n sequences of length [ has the com-
plexity of O(l"). It is extremely time consuming to use this method on practical

biological sequences analysis. Thus different heuristic solutions has been proposed.

10
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Figure 2.2: Using dynamic programming to align two sequences(partial)
2.4.1 Progressive Alignment

The most popular heuristic method is the progressive method. Its origin can be
traced to Feng and Doolittle[8]. The basic idea is to use a step-by-step pairwise
alignment to construct the final alignment. The procedure can be briefly described
as follows: First, it aligns two sequences from the sequence set, and at each iteration,
one new sequence is added to the alignment, without changing the relative position
of those sequences that are already in the alignment. When all the sequences have
been added, the algorithms will end with a result.

As we can see, the order of alignment could be very critical. If two sequences or
two sets of sequences has been aligned at an early stage with an inaccurate result, the
latter stage will not correct them and, possibly, even worsen the alignment. Thus, in

progressive alignment, choosing a good order to align the sequences is as important

11



as aligning the sequences.

ClustalW [21] is a typical progressive program. To decide the order of aligning
n sequences, ClustalW first conduct n(n — 1)/2 pairwise alignments to compute the
similarity. Then, according to these distances of sequences, the program use the
Neighbor-Joining method[19] to construct a guide tree. This method starts with a
star tree, where each leaf is one sequence. The lengths of the branches reflect the
distances between these sequences. The exact vlaue of each branch is not known at
the beginning, but the sum of these branches are determined only by the distances
value and the number of sequences. This star tree will evolve through N — 2 steps,
where N is the number of sequences. At each step, one pair of the leaves will be
selected and combined as one new unit in the new tree. In the next step, this unit
will be regared as a single leaf, but inside this unit, the two original leaves can be
regared as two children of this unit. The selection of sequence pair will ensure that
in the new tree, the sum of all branch lengths is minimal. Then, the distances of this
unit to other leaves will be recalculated. The internal branches of the two original
leaves will also be produced. After that a new round of selection will begin. The
procedure will repeat until only 2 leaves are left, and we will then have a result tree.
The original Neighbor-Joining result is a root-less tree, ClustalW then selects a node
as the root. The root will make the guide tree as much balanced as possible in the
sense that the difference of the two depths of the branches is minimal.

The final alignment is conducted by doing the alignment according to the guide
tree. In each step, only one sequence is added to the existing alignment. After n —1
steps, the final alignment result of the n sequences is produced.

Other interesting techniques are also used in ClustalW. First, it uses self ad-

12



Amino Acid | Gap penalty coefficent | Amino Acid | Gap penalty coefficent
A 1.13 M 1.29
C 1.13 N 0.63
D 0.96 P 0.74
E 1.31 Q 1.07
F 1.20 R 0.72
G 0.61 S 0.76
H 1.00 T 0.89
I 1.32 \Y% 1.25
K 0.96 Y 1.00
L 1.21 A" 1.23

Table 2.2: Gap coefficent for 20 amino acids

justable matrices during the aligning work. When it first compares each pairs to
construct the tree, it uses a general scoring matrix, such as BLOSUMG62. When the
program is doing the actual alignment, it will choose different matrices according to
the identity of the sequences (or alignments). Second, it uses a position specific gap
penalty. The penalty of opening a gap is different depending on the amino acid that
is just before the gap. This may help increase the accuracy of the alignment. Table
2.4.1 shows the different coefficents of opening gap penalties after each aminio acid.
The values are nomalized to 1. Smaller values will decrease the gap penalties, which
means gaps are more likely to appear nearby these amino acids than others. The
greater values indicates the reverse.

The main advantage of using progressive alignment is its speed. The time com-
plexity of ClustalW, for example, is O(n?2), where n is the number of sequences and

l is the average length of the sequences.

13



2.4.2 Iterative Alignment

Iterative methods use an initial alignment as the beginning and refine it at each
iteration. After a certain number of itérations, the local optimal is reached and
the program stops. Unlike the progressive methods, iterative methods use many
different ways to build the initial alignment and to adjust the alignment at each
iteration. DIALIGN is the typical iterative alignment algorithms. It first builds a
set of well aligned pairwise fragments, or diagonals, among all input sequences. All
these diagonals are saved in a set M. These diagonals may cause conflicts and could
not all be used to generate the final alignment, so the second step is to try build a
non-conflicting set M. At each iteration, some diagonals are added into M,. This
goes on until none could be added anymore.

DIALIGN also have several interesting features. First, it does not use residues as
alignment blocks. Instead, it uses fragments as unit to assemble the result. Second,
it does not have gap penalties. Such feature is especially good for local alignments.

DIALIGN is not as fast as ClustalW but the speed is acceptable for practical
usage. It also performs better on local alignment than global alignment.

Other iterative methods may use genetic or statistics algorithms to do the refin-
ing work. However, experience shows that pure genetic algorithms are too slow for
practical usage. Thus some of the algorithms use a hybrid of other approaches and

genetic algorithms.

2.4.3 Other Approaches

Several different approaches have been proposed as well.

T-Coffee [16] is a progressive algorithm that combine local and global methods.

14



During the pairwise stage of the alignment, the program not only evaluates the sim-
ilarity scores of the sequences pairs, but also store the partial global alignments in a
library. Furthermore, a local alignment fragment library is also constructed during
this stage. The actual alignment phase will try to select the maximum non-conflicting
alignment fragments from these two libraries. This approach will increase the accu-
racy of some alignments that involve divergent sequences.

POA[11] is a program to do MSA using Partial Ordered Graph. The central idea
is to change the data structure from a two-dimensional matrix to a “nearly” one-
dimensional partial order graph. If two sequence have common fragments, that part
will be merged, and form a chain. This chain diverges into two branches when the
content of two sequences are different, and will merge again if common fragments are
found again.

There are other approaches in MSA such as Hidden Markov Model (HMM) [6],
genetic algorithms[17] and artificial intelligence. As the MSA problem is a CPU-
intensive task, people have also tried parallel or distributed algorithms. However, it

will not change the exponential complexity nature of the problem.

15



Chapter 3

Protein Structure Database

As time passes, scientists have accumulated more and more genomic sequences in
various sequencing projects. The task of examining the biochemical function and
structure of each encoded protein in those data is huge. Biologists have to use “in
silico” methods, which means using computer software, before applying “wet lab”
techniques to examine the detail feature of the proteins. This approach is possible

because of the following principle: The amino acids sequence determines the 3D

structure, and thus decides the function of the protein.

3.1 Protein and Its Structures

Proteins play very important roles in life activities. It not only constructs most of the
organs, but is also involved in nearly all reactions in the cell. For example, enzymes
are one special group of proteins. They act as catalysts that make most metabolism
and signal transduction functions possible.

The central dogma states that DNA in the nucleus of the cell are transcribed
to RNA, and then translated to proteins at the ribosomes. In this theory, every 3
nucleotides will determine an amino acid in the protein. This means that protein,

like DNA, has a linear feature. Because of this linear feature, string is a suitable data

16



structure to represent a protein.

Unlike DNA, which has the double helix form, protein does not have one uni-
versal structure. Different proteins may fold in different ways. The folding of one
particular protein is ultimately decided by its amino acid sequence. That being said,
to correctly predict the folding of a particular protein, people have to consider dif-
ferent interactions of nearby amino acids. These interactions can be very complex.
The protein folding problem is still an open problem in bioinformatics now. One less
demanding task is to categorize proteins according to their structural or functional
characteristics. Biologists have summarized patterns in different levels. The following

is a brief description of protein structures.
3.1.1 Primary Structure

The building blocks of protein are amino acids. These amino acid units are linked to-
gether by peptide bonds. Together they form a chain structure. This linear structure

of protein is called its primary structure.
3.1.2 Secondary Structure

Most proteins contain one or more specific patterns. Those groups of amino acids
are called secondary structures. The two most common kinds of structures are alpha
helix and beta sheet.

In an alpha helix, the interaction bonds of amino acid groups make the polypeptide
chain fold into a coil structure, resembling a telephone cord. This kind of structures
sometimes signify the presence of functional domains in the protein, such as DNA
binding sites or zinc fingers.

Beta sheet is another major type of secondary structure. In a beta sheet, frag-

17



Figure 3.1: Structure of Flavodoxin: Image from PDB[4] database.

ments of polypeptide chain will be fully stretched. Several such strands will run in
the same or opposite directions. They form a structure called parallel or anti-parallel
sheets.

Figure 3.1 shows one protein(flavodoxin) that contains both the alpha helix and
the beta sheet. The dark-colored coils are helices and the light-colored arrows are

beta sheets. -
3.1.3 Tertiary Structure

Tertiary structure refers to the actual 3-D structure of one polypeptide chain.- As we
have stated before, the linear line-up of amino acids decides the 3-D folding of the
peptide chain. This 3-D structure is the main factor that decides the function of a

protein. Genetic mutation may change the amino acids in a protein sequence, and

18



thus changes the final folding of the protein. The resulting protein may be denatured
and fail to participate in the biochemical reactions, or, in some case, the change of

the structure is beneficial and enhance the function of the protein.
3.1.4 Quaternary Structure

Two or more polypeptide chains together can compose a higher level of structure. In
a quaternary structure, one molecule is a subunit. The whole protein group is called
a protein complex. One example of quaternary structure is hemoglobin. Hemoglobin
is responsible of oxygen transportation in animals. One typical form of hemoglobin

contains 4 subunits, while each subunit is a globular protein with oxygen-binding

group.
3.2 Secondary Structure Databases

Motifs are functional or structural blocks in protein sequences. The exact occurrences
of one motif may vary from sequence to sequence, but a certain pattern is conserved

among all the occurrences.

3.2.1 PROSITE Database

PROSITE is a protein structure database. The basic idea is to categorize all pro-
teins into different families. Each family may contain a certain number of proteins
that are functionally or evolutionarily related. These relations are reflected in the
similarities of their sequences. Certain regions of sequences are more conserved than
others. Usually these regions are the evidences of relations among the sequences in
one family. The PROSITE database is based on these conserved regions and summa-

rize the regions into signatures, or fingerprints. If a new protein sequence contains

19



a fingerprint of one family, we can then infer that this protein may be a member
of this family. This new sequence may potentially share the common functional or
structural feature of that family.

There are two forms of fingerprints in the PROSITE database: patterns or profiles.

Pattern Entry

Pattern entry uses regular expression to describe the signature. In this form, finger-
print contains one list of elements. Each element represents one amino acid, or one
amino acid groups, or wild card characters of various length. The elements may be

in the following form:

the IUPAC one letter code for amino acid;

the wild card letter ‘x’, which can match any amino acids;

e codes in square brackets, indicating an acceptable set of amino acids;

codes in curly brackets, indicating that those amino acids can not appear at

this position.

Each element can be followed by a number or a range of number in one pair of paren-
thesis. This means the repetition of the previous element. Elements are separated by
hyphens ‘-’. Table 3.1 shows a sample entry in the PROSITE database. The entry
describes that the first residue of the pattern should be a tryptophan. The second
element, x(9,11) means that the pattern could have 9 to 11 amino acids following
the tryptophan, and the exact types of these amino acids are not important. The
following elements could be interpreted in a similar way, until we reach {R}, which

means the third last position can be any amino acids except arginine. The second
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W-x(9,11)-[VFY]-[FYW}-x(6,7)-[GSTNE]-[GSTQCR}-[FYW}-{R}-{SA}-P
Table 3.1: Sample Pattern in PROSITE

last position uses the same notation to indicate that neither alanine nor serine can
appear.
Patterns usually describe small conserved regions. If the pattern is very short, it

may generate a high number of false positive hits.

Profile Entry

A profile, which is a matrix form of fingerprints, uses a table containing position-
specific amino acid weights and gap penalties. A cut-off value is also defined in the
entry. Suppose we have one such profile. In order to decide if a specific sequence
contains that profile, the sequence is aligned with the profile. This alignment is
exactly the same as a pairwise alignment of two sequences. With this alignment, we
can get a score. If the alignment score is higher than the cut-off value, a positive hit
is reported.

A profile usually contains large regions of sequences. It may even contain a whole
domain. A profile is considered to be more accurate and robust than pattern entry,
because it contains more information. Instead of having only two states of rejection
and acception, the profile gives a number value to reflect the likelihood of the sequence
having the pattern. This will reduce the number of false negative results.

Figure 3.2 shows a sample profile entry in PROSITE. Some matrix description
lines are omitted, but the structure of the file is clear. The lines that begin with
“MA” all describe the matrix. Among these lines, the first few lines contain meta-

information such as name and cut-off value. The main part is composed of lines with
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/GENERAL_SPEC: ALPHABET=’ACDEFGHIKLMNPQRSTVWY’ ;
/DISJOINT: DEFINITION=PROTECT; N1=l; N2=53;
/NORMALIZATION: MODE=1; FUNCTION=GLE_ZSCORE; R1=44.55; R2=-0.0035;
R3=0.7386; R4=1.001; R5=0.208; TEXT='’ZScore’;
/NORMALIZATION: MODE=2; FUNCTION=LINEAR; R1=0.0; R2=0.1;
TEXT=’OrigScore’;
/CUT_OFF: LEVEL=0; SCORE=90; N_SCORE=7.0; MODE=l;
/DEFAULT: MI=-26; I=-3; IM=0; MD=-26; D=-3; DM=0;
/M: SY='F’;M=-2,-3,-3,-4,2,-3,-2,1,-2,0,-1,-2,-3,-3,-4,~-2,-1,0,-5,2;
/M: sYy=’'1'’;M=-1,-5,-2,-3,-2,-3,0,1,1,-1,1,-1,-2,-1,1,-1,0,1,-4,-4;
/M: sy=’A’;mM=2,-3,1,0,-5,2,-2,-1,-1,-3,-2,1,1,0,-2,2,2,0,-8, -5;
Some lines omitted..
/M: 8Y='V’;M=0,-4,-3,-4,-1,-3,-3,5,-3,3,3,-2,-2,-2,-3,-2,0,5,-8,-4;
/M: sy=’L’;M=-1,-6,-3,-3,-1,-3,-2,2,-3,3,2,-2,-2,-2,-3,-2,-1,2,-5,-3;
/M: SsY='D’;M=0,-6,3,3,-6,0,1,-3,2,-5,-2,2,-1,2,1,0,0,-4,-7,-5;
/M: SY="K’;M=-1,-6,0,0,-2,-1,0,~-3,3,-4,-1,1,-1,0,1,0,0,-3,-6,-4;
: SYy=’'N’;M=1,-4,1,1,-5,0,0,-2,0,-3,-2,1,1,0,-1,1,1,-1,-7,-5;
/I: MI=0; I=-1; MD=0; /M: SY="X’; M=0; D=-1;
/M: 8Y='G’;M=1,-5,0,0,-5,1,-2,-1,-2,-3,-2,0,0,-1,-2,0,0,-1,-8,-6;
/M: SsY='G’;M=1,-6,3,3,-7,3,0,-4,-1,-5,-4,2,-1,1,-2,1,0,-3,-10,-6;
/M: SY='W’;M=-9,-12,-9,~11,1,-11,-4,-8,-5,-3,-6,-6,-8,-7,3,-4,-8,-9,26,0;
/M: SY="W’;M=-7,-9,-9,-9,0,-9,-4,-5,-5,-1,-4,-6,-7,-6,2,-3,-6,-6,18,-1;
/M: Sy=’K’;M=-1,-7,0,0,~-3,-2,0,-2,2,-3,-1,1,-1,1,2,0,-1,-3,-5,-5;
/M: sY='G’;M=2,-3,0,-1,-6,3,-3,-2,-3,-4,-3,0,0,-2,-3,1,0,0,-10,-6;
/M: sY=’Q’;Mm=2,-6,0,0,-3,-3,1,-2,0,-2,-1,0,-2,1,1,-1,-1,-3,-5,-3;
/I: MI=0; I=-2; MD=0; /M: SY="X’; M=0; D=-2;
/M: sY='T’;M=0,-4,-1,-1,-4,0,-2,0,-1,-2,0,0,-1,-1,-1,0,1,0,-7,-5;
/M: sy=’T’;mM=0,-5,0,0,-3,-1,-%,-1,1,-3,-1,1,~1,0,0,1,1,-1,-6,-4;
.Some lines omitted..
/M: sY='Y’;M=-§,-1,-7,-7,10,-8,-1,-1,-5,-1,-3,-3,~-7,-6,-6,-4,-4,-5,0,13; -
/M: 8y=’v’;m=0,-3,-3,-5,-2,-2,-3,5,~-3,2,2,-2,-2,-3,-4,-1,0,5,-8,~-5;
/M: Sy='E’;M=1,-6,2,3,-6,0,0,-2,1,-4,-2,1,0,2,0,0,0,-3,-8,-6;
/M: 8Y='P’;M=0,-5,-1,-1,-2,-2,-1,-2,-1,-3,-2,0,1,-1,-2,0,-1,~-2,-6,-3;

SESE: SESSSCSEECECSEEE: SEEEEESSEEE
P

Figure 3.2: Profile entry in PROSITE

keywords “/M” or “/I”, which indicate insertion position and matching position.
Take the ninth line of Figure 3.2 for example, The “SY=‘F’" means we can use one
character “F” to indicate this position. The following “M=-2-3,...-5,2;” are the values
that each amino acid will get at this position: an alanine(A) will get -2, a cysteine(C)
will get -3 and so on. The “/I” keyword is used for insertion. This part indicates
the expense of opening a gap, or finishing an existing gap etc. Reference [5] gives a
detailed explanation of the syntax.

Both pattern entry and profile entry describe widespread structural or functional
patterns among protein sequences. Sometimes, these patterns are also called mo-
tifs. Other protein structure databases, such as Pfam[3] and PRINTS[1], also store
structural or functional motifs. In the next chapter, we will discuss how to use mo-

tifs from these databases to mark the corresponding regions of the sequences, force
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these regions to be aligned together, and thus create more accurate alignment results.
We will only use PROSITE in the next chapter, however, the same principle can be

applied to all of these databases.
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Chapter 4

Use Motifs to Improve Alignment

The previous algorithms are all based on modeling the alignment problem as a math-
ematical optimization question. Yet not every solution to this optimization question
is the best alignment in the biological sense. As a result, manual adjustment is of-
ten necessary to refine the alignments produced by those algorithms. During this
refinment, an experienced biologist may decide that certain parts of the sequences
are more important than others, especially if some functional sites are involved in
these parts. Thus the alignment of these regions are much more important than the
alignment of those regions that do not contribute to the function of the proteins.

In this chapter, we will explain how to simulate this manual adjustment work
automatically. The goal is to eliminate, or at least reduce the manual editing to
refine the alignment. To achieve this goal, it is not enough to rely only on the
mathematical optimization model. Biological knowledge should also be used in this
automated procedure as well. We will search the protein motif database to gain
such information. After that, we use this information as constrains to do the actual

alignment.
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> laboA
sitkGEKLRVLgynh

> lycsB
mkeGDCMTTIIhrededei

Table 4.1: Sequences with motifs Capitalized

> laboA
5,11
> lycsB
4,10

Table 4.2: The anchor points file

4.1 Anchor Points

First we have to find a way to override the dynamic programming procedure, because
the domain information should take precedence over the scoring scheme during the

alignment. We propose the concept of anchor points.

4.1.1 The Concept of Anchor Points

Anchor points are the positions at which all sequences should be forced align together.
For example, if we have two sequences as shown in Table 4.1, and we decide that the
capitalized part of the sequences should be aligned together, we could define the
anchor points as in Table 4.2. In this file, two numbers are associated with each
sequence. For 1aboA, these two numbers are 5 and 11, and for 1ycsB, those two are
4 and 10. By assigning these values, we are indicating that the fifth residue of 1aboA
(G) should be aligned with the fourth residue of 1ycsB (also a G). The second values
of each sequence have similar meaning: align the eleventh residue of laboA (L) with
the tenth residue of 1ycsB (I).

The final alignment with such anchors is shown in Table 4.3.
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Table 4.3: Alignment after anchors are applied

4.1.2 The Benefits of Using Anchor Points

The function of the anchor points in an alignment is to force certain parts to be aligned
together. One sequence may contain several anchor points, and if every sequence in
the set has the same number of anchor points, a valid anchor points set is defined
and could be used during the alignment.

As we have stated, the main purpose of introducing anchor points is to force the
relevent parts to be aligned together. To decide why some parts are more relevent
than others, extra informations are needed. These information could be achieved from
other auxiliary tools, such as protein motif database search, or protein structure
prediction. In other words, these are the informations that could not be simply
reflected by scores and penalty functions in the mathematical optimization model.

The anchor points can also reduce the search space. Suppose that we have two
sequences, and each sequence has exactly one anchor point defined in it. Let us also
suppose that the two anchor points occur at the middle of each sequence. The actual
searching would be reduced by half. Because aligning two sequences of length n
requires cn? computing time. Here c is some constant value. By inserting one anchor
point at each sequence, we split the alignment problem to two small problems of size
2. Each problem requires ¢(2)2. The total amount of work is thus c(%)?+c(3)? = §n?,
which is half of the original cost. If each sequence has exactly ¢ evenly spaced anchor

points, we have to do t + 1 alignments each at a cost of c(H_Ll)Z, so the total cost is

2

n’ . Figure 4.1 illustrates the case of adding one pair of anchor points. The whole
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Figure 4.1: Using one anchor point to reduce half searching space

rectangular space represents the search space of the original problem. After adding
one anchor point at each sequence, the space is split into 4 parts. Now we only have
to consider the two shaded areas.

Please note that the above analysis is based on the best case scenario, where the ¢
anchor points divide the sequence into t+1 exactly equal parts. In real alignment, this
is rarely the case, and the search space will not be reduced so significantly. However,
we will not go much further in this direction in this thesis, because the quality of the

alignment, rather than the speed, is our main concern of using anchor points.

4.1.3 The Generation of Anchor Points

We have discussed that introducing anchor points may help produce more acurate
alignments. Now the problem is how to generate accurate anchor points. The ap-
proach we are using is to detect the motif among each sequence before the alignment.
After motifs are found, we try to choose a set that could cover all the sequences
without causing a conflict.

It is also possible to use other methods to generate the anchor points. For example,
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secondary structure prediction could be used to detect the helix or the sheet position
in the sequences. Assuming that the conserved region should have the same secondary
structure, we could use the start point and end point in the prediction result as anchor

points. In this way, we could force the structure to be aligned together.
4.1.4 Using Anchor Points in the Alignment

To apply the anchor points constraints during the alignment, we have to split the
optimal search path deséribed in Chapter 2 into several fragments, and, to ensure
that the anchor points are correctly aligned, we use them to serve as the split points.

We choose one progressive alignment algorithm, ClustalW, as the starting point of
implementation. This is not only because ClustalW is the most widely used algorithm,
but also because it is relatively easy to add the concept of anchor point into ClustalW.
The original ClustalW uses a divide-and-conquer method. First it will choose the
middle point M of one sequence, then the program will use dynamic programming to
find the matching point N in the other sequence. N is chosen to maximize the sum
of scores of the two paths (from upper-left corner to (M, N), and from (M +1, N+1)
to the lower-right corner). By splitting the two sequences at (M, N), the original
alignment problem becomes two smaller problems. If we happen to have anchor
points in the two sequences, we will just use them as the splitting points. If there is
no anchor point in the current aligning fragments, the program will be exactly the

same as the original method.
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4.2 Using Secondary Databases to Improve Mul-
tiple Sequence Alignments

Invthe following section we will explain in detail the procedure of using a secondary
database to help MSA. |

The first step is to take each sequence in the alignment file and check the sequence
against the PROSITE database. The detected motifs are stored and the matching
parts of the sequence are also stored.

The motif detection is done by the ps_scan program provided by PROSITE. Sup-
pose ps_scan has detected that sequence ¢ has domain P, we put the tuple (P,ame, %, Pa, P)
into a candidate pool. Here P, and P, are the start and end point in the query se-
quence. Ppgme is the name of the domain detected. After each sequence has been
searched, the set will contain all the domains that have been detected.

It is very likely that one sequence will contain several motifs. Thus the second
step will select the motif that can cover as many of the sequences as possible. The
ideal motif should appear at each sequence. The choice is done by sorting the set of
P,ame according to the number of occurrences in these squences. The most frequently
appearing domain will be examined first. If this domain does appear in all the se-
quences, an anchor point file is generated. Two anchors are defined at each sequence.
Those two points are decided by the beginning and the end of the domain detected
in each sequence.

In the case where one motif appears on the same sequence more than once, we
have to select the one that best align with the other sequences. This is done by
comparing the quality of these occurrences. The one that has the highest identity

ratio will be selected.
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Figure 4.2: Adjustment of motif start and end point

It is also worth noting that the motif occurrence may not necessarily be an exact
hit. If the occurrence in the query sequence has several residues missing at the
beginning or at the end of a motif, we have to adjust the P, and F, value of this motif
in the other sequences. This is because we want the anchor points to signify the same
relative position of the motif. Figure 4.2 illustrates an example of such adjustment.
In this case, both sequences contain the same motif. But the two occurrences of this
motif have several residues missing at the beginning and the end. This is represented
as the dashed lines. As the missing parts are not the same in two sequences, P, and
P, of sequence 1 and 2 are not pointing to the same positions of the motif. We have
to adjust P, of sequence 1 and P, of sequence 2 to P, and to P). Same adjustment
is applied to the case of more than 3 sequences. The result will ensure that all the
motifs in different sequences are precisely aligned.

We have now discussed the theory of the multiple sequence alignment problem
and th-e idea of using a motif database to help the alignment. In next chapter, we
will test the validity of this approach by implementing the algorithm and evaluating

the program with alignment benchmark data set.
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Chapter 5

Implementation and Results

We have implemented the algorithm stated in Chapter 4 and have tested the program

using the BAIiBASE database.

5.1 Implementation

The program, ProMSA, is implemented in Java. The reason to use Java for imple-
mentation is due to its object oriented and platform independent features. Object-
Oriented programming makes the designing and future extention of the program
easier. The biologists may need to work on different computing environment. Java’s
cross-platform feature eliminates the work of re-compiling and re-installing the pro-
gram among different machines.

We use ClustalW version 1.83 as our base of implementation. The source code
is in C. We have re-designed the whole program using object techniques. Sequences,
alignments and score matrices are now encapsulated as classes. However, the core
part of the algorithm remains the same, except that a part on anchor points is added.
Figure 5.1 shows the 4 phases of ProMSA. In most cases, if no anchor points file is
provided, the alignment result is exactly the same as the ClustalW result. In some

sequence sets, there is a small difference between the two scores, mainly due to the
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Figure 5.1: Flowchart of ProMSA

different choices of numerical precisions in ClustalW and ProMSA. ProMSA uses
doubles to store the scores of the dynamic programming, while ClustalW only keeps
two significant digits after the decimal point.

The part on domain detection is done by ps_scan, which is the standalone edition
of ScanPROSITE[9]. In order to minimize false hits, we use the ‘-s’ option. This
prevents the program from returning very short and frequently appearing motifs. We
exclude these motifs because they are very likely only false positive hits.

The result of ps_scan is piped into ProMSA as input. Information such as domain
names, starting and ending points goes from ps_scan to ProMSA. This information
is used to select the best coverage of sequences. If one motif is selected, a text
file containing the anchor points will be generated. Then, ProMSA launches the

alignment module. This module will check the presence of an anchor point file. If
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there is one anchor point file, these points will be read and added as attributes to
the sequences. The dynamic programming part will check if any anchor points fall
in the range of the current alignment segments. If there is no anchor points, normal
dynamic programming is done. If there are anchor points, the fragments are split

according to these points. This is a recursive procedure untill all residues are aligned.

5.2 Test Database

Historically, the evaluation of alignment programs is done on data selected by the
authors. In order to eliminate the bias of evaluating alignment programs, BAIiBASE
was introduced.

BAIiBASE[24, 2, 22] is a database specially designed to measure the performance
of MSA programs. Version 1 of BAliBASE has 142 alignments, over 1000 sequences.
Version 2 has 167 alignments, 2100+ sequences. Version 3 has 217 alignments and
6255 sequences. These alignments are divided into several reference sets according
to some structural or functional characteristics. These references contain different
cases that alignment algorithms should consider. Reference 6-8 in version 2 evaluate
special kinds of alignments concerning transmembrane regions, repeats and inverted
domains. Version 3 removed these special cases but increased the number of sequences
in the first 5 reference set. Checking the performances of one program on different
reference sets may reveal the preference of that program, and give a direction on how
to improve it. Within one reference set;, the length of the sequences and the similarity
among the sequences in the alignment also varies. For example, in reference set 1 of
BAIiBASE 1 and 2, the alignments may be short(< 100 residues), medium(200-300

residues) or long (> 400 residues). The similarity of these alignment can also further
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Sequence Domains Anchor points
DYN3_RAT | PS50003,PS00410 | 517,614
bmx_human PS50003 6,104
b21_huma PS50003 0,108

1btkA PS50003 4,125

1pls PS50003 6,94

lawe PS50003 24,118

Table 5.1: Domains detected in 1dynA

be divided into low( < 25% identity) medium (20 — 40% identity) and high (> 35%
identity). BAIIBASE 3 removes the high identity sequences in reference set 1, because
“the comparision of alignment in this level is indecisive” [22].

All the alignments in BAliBASE are manually verified and adjusted. Thus we have
an “answer” for a certain alignment question. The package also has a comparison
program, named baliscore, to score the computer-generated results with the result in
the database. The more the computer generated result agrees with the hand made
result, the higher it will score.

In order to evaluate ProMSA, we ran the data set of BAIiBASE version 2 and
version 3 with both ProMSA and ClustalW. The following is a discussion on the
results. The scores in the following tables are evaluated by the baliscore program.
Appendix A contains a complete set of scores of running ProMSA and ClustalW on

sequences in BAIIBASE 3.0.

5.3 Result

5.3.1 A sample sequence set: 1dynA

As an example, we show the alignment generated by ProMSA on sequence set 1dynA

of BAliBASE 2.0 reference set 4. This data set contains 6 sequences, with the longest
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DYNS_RAT
bmx_hwean
bzZ1_ human
1btki
ipls

lave

DYN3 RAT
brx_huwan
b2l human
1btki
ipls

lawe

bax_human
1btkA
DYN3_RAT
b21_human
1pls

1awe

bax_human
1btkA
DYH3_.RAT
b21_human
1pls

1awe

sequence having 627 residues, and the shortest sequence having 105 residues. As we

can see in Fig 5.2, the underlined residues indicate the two core blocks that has been

597
87
88

108
77

101

grssqgvhkkstigng. .. .virKGULTVsnigink. . .ggskgywivita
............... mdtksilEELLLErsggkklimspnnykerlfvitck
..................... rEGULLR1lgggrvk....twkrruwfiltcd
ceesvscsssasessrs.aavilESTIFLRrsggkkktsplnfkkelfllcy
............... mepkrirEGYLVKkgsvE. ... .ntwkpnuvvlile
igknidgvegkdiggcenefimEGTLTRVG.. ... .. . aKherhiflfd

...rslelacdsgEDVDSWkasllragvypdkst..... tendenggaen
.. .gllyvyvasneESRSQWlka.......... ereesans srsevensen
gnhtvyrisaptpEEREEUikcikaaisrdptfye...vovvvnencenas
.. .gplyvEspreELRKRWihglknvirynsdlvgkyhpetwid.ggyle
.. .gdhffgaaf I\EERDAWvVrdinkaikcieglehhhbhhh..........

.« onsvifsaksaEERNNUmaalislgyr.stle......

Figure 5.2: BAIiBASE reference of 1dynA

EE LLLKRSQONK KMSPHNYKER LFULTKTMLS
S IFLKRSQQKK KTSPLNFKKC LFLLTUHKLS
RKE WLTUBNIGIM KGGS...KGY WFULTAESLS
HEG W LK| GCGRY KTUK....RR WFILTDNCLY
HEG YLUKKGSUFN TWKP..... W WUULLEDGIE
EEC TLTRPGAKHE RHIFLFDGLM ICCKSNHGQP

.......... QYPFQIUYKD GLLYUYASHE
HEQISIIERF PYPFQUUYDE GPLYVUFSPTE KHUTRYNSDL
ceermnenen TEQRNUYKDY RSLELACDSQ LRAGUYPDKS
DQUIKACKTE ADERUUVEGNH TUVRISAPTP KARISR....
................. TKQ QDHFFQAAFL NKATKCIES.
.................. DPE NSUIFSAKSA ISLQYRSTLE

Figure 5.3: ProMSA alignment of 1dynA

marked by the biologists.

When we run ProMSA on 1dynA, in the motif detection phase, one motif (PH
domain, PROSITE entry PS50003) is found in each of the -sequences and the anchor
points is duly placed. Table 5.1 shows the domains and the anchor points of each se-
quences. In sequence Dyn3_RAT, another motif (PS00410) is also detected. However,

this motif only appears in one sequence and is discarded. The actual values of the
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BRX_human ... .eie. cieiieinas semesasmes sseaness MD THSILEELLL
TDEKA e ie e it eietie sesanmambe emasnsmeen ARVILESIFL
DYH3_RAT RLCEETERIVU ANHIREREGK THDQULLLID IQUSYINTNH EDFIGFANAQ
D271 _BUMAN = ..l cies teeirrmcen seemeesree mamsameena REGWLLKLGG
APLS e i eiae eereicenee crenmann ME PKRIREGYLU
FAWE 000 e iecmsere semaememie sememmenan .--MNEIGQKN IDGUWEGKDIG
bmx_human KRSQOQKKKHMS PN........ ..ovuennn. . -NYKERLFU LTKTHLSYYE
1btka KRSOOQKKKTS PL........ ... ..... . -NFKKCLFL LTUHKLSVYYE
DYN3_RAT QRSSQUHKKS TIGNQUIRKG WLTUSNIGIM KGGSKGYWFU LTAESLSWYK
b21_human BRUKT . ... trieminier tremenrenn - . UKRRWFI LTYDNCLYYFE
1pls KKBSUFN... .. ... .. ... ..., . TUKPHWY LLEDGIEFYK
1awe QCCHNEFIMEG TLTR...... ... ... .UGAKHERHI FLFDGLHMICC
bmx_human ... ie. i hieiieiet freeneimen smemeaere seee- QyPF{
1btkA RRGE .. . ... .t ieriecee cmnencnnen -ESSEMEQIS IIERFPYPFQ
DYN3_RAT LACDSQEDUD SUWHASLLRAG YYPDKSFTEN DENGQAENFS MDPQLERQUE
B21_human = el checiiiees seemeesene mesaamnees . .DNKDQUIR
APLS e e eectee teimmeiien caecnaneen . .QODHFFOA
TAWE i isiees semesaencs emmemssmen smammemesn .. .EYKHAFE
bmx_human IUYKDGLLYY YASNEESRSG WLKA...... - ........ f mesemeasans
1btkn UYUYDEGPLYY FSPTEE!RR“-UIHQLKHUIR ....... ¥YNS DLUQKYHPCF
DYH3_RaT TIRNLUDSYH SIINKCIRDL IPKTIMHLMI MNUKDFINSE LLAQLYSSED
b21_human ACKTEADGRY UVEGHHTUYRI SAPTPE.... .....oinve comens EKEE
1pls AFLEERDAYY RDINKAIKCI EGLEHHHHHH ... ._...... ..........
1awe TTLEDENSUT FSAKSAEEK. . vumer wrcmmmnnes memmeens HN
DMX_DUMAN el e eeicieis ceraierres wemmemeemae arwemenwan
1btka VIDGOYLCES QTAKNAMGCY ILEN. . ... ... iiieis crrnenaens
DVH3_RAT QNTLHMEESUE QAQRRDEMLR HYQALKEALA IIGDINTUTU STPAPPPUDD
b21_human EIKCIKRRIS RDPFYE .. .. . iiiiniinne tencemenre ascsccnnen
APLS e e e iiiereme mesnmemiese massemamse mememeeman
1auwe EMRQLISLQV £ I

Figure 5.4: ClustalW alignment of 1dynA

anchor points is adjusted, so that the first points in each sequences are all pointing
to the same relative position of the motif. Similarly, the second set of points in the
anchor file are also adjusted. With the help of these anchors, in the alignment phase,
the two core blocks are aligned exactly as the reference given by the BAIIBASE,
while ClustalW fails to do so. Figure 5.3 and Figure 5.4 show the al-ignment results

of ProMSA ClustalW, respectively.
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Name | ProMSA | ClustalW
1ckA 0.814 0.814
lcsp 0.592 0.592

1dynA 0.603 0.194

11kl 0.809 0.773

1mfa 0.442 0.442
1pfc 0.166 0.328

1pysA 0.581 0.581
1vin 0.894 0.881
lyce 0.834 0.745
2abk 0.457 0.457

kinasel | 0.844 0.633
kinase2 | 0.685 0.658
average | 0.643 0.592

Table 5.2: ProMSA and ClustalW score of Ref 4 in BAIIBASE 2.0

5.3.2 Results of Ref 4 on BAIIBASE 2.0

Table 5.2 shows the scores of the alignments produced by ProMSA and ClustalW
using BAIiBASE 2.0 reference set 4 as the test set. Baliscore normalizes the scores
of each sequence set to 1. These scores reflect the similarity of the subject alignment
with the reference alignments.

To get these scores, we have used the same parameters on both programs. The
matrices are from the BLOSUM series. We use the same penalty coefficient (Open
penalty -10.0, extending penalty -0.2) as well.

From Table 5.2, we could see that the idea of using constraints generated from
structural database does improve the quality of sequence alignment. Reference 4
shows a significant improvement, because sequences in this reference are more di-
vergent and the conventional program cannot generate satisfying results. A notable
exception is the sequence set 1pfc, which has a lower score than ClustalW result. The

reason is that one sequence in this set, 1yuh, has two occurrences of one same motif:

37



Reference | ProMSA | ClustalW
Ref 1 Part 1 0.359 0.323
Ref 1 Part 2 0.744 0.737

Ref 2 0.731 0.689
Ref 3 0.542 0.538
Ref 4 0.652 0.597

Table 5.3: ProMSA and ClustalW score of BAIIBASE 3.0

PS50835. The rest of the sequences in the set have just one PS50835 in each of them.
Although ProMSA has correctly selected this motif at the coverage test phase, the
program selected the first occurrence to generate the anchor points. This is differ-
ent with the reference result given by BAIiBASE, which align the second occurrence

instead. This exception shows the possibility of improvement in future research.
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Chapter 6

Summary and Discussion

In this thesis, we have presented the idea of using structural databases to improve
the multiple sequence alignments. Unlike other current algorithms, this idea uses not
only mathematical means but also information from biological databases to optimize
the alignment of protein sequences. This approach increases the accuracy of the
alignment result, especially in the cases of divergent sequences. BAiBASE was used
as the benchmark to evaluate the validity of this idea and confirmed that this is a

promising approach.
6.1 Summary

Using ClustalW as the foundation, ProMSA added several steps before the actual
alignment. First, the sequences are examined by the ps_scan program to detect the
presence of motifs. Then the program will do a coverage examination. If there is one
motif that covers every sequence, an anchor points file is generated. The purpose of
this anchor points file is to guarantee that the same motif is correctly aligned. In the
actual alignment stage, the program follows the ClustalW algorithm. Except that
if anchor points appear in the sequences, then they will be selected as split points.

This will force the positions indicated by these anchors to be aligned together.
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BAIiBASE has been selected as the test set for evaluating this approach. Com-
pared to ClustalW results, scores are generally improved, especially in the cases of

divergent sequences. This demonstrated the validity of the approach.

6.2 Possible Future Works

There are still possible future works to increase the accuracy. The current method
will find only one motif which appears at every sequence. Yet it is possible that the
sequence set contains several motifs and each motif should be aligned as well.
Another possibility is that if a motif can not be found for every sequence, the
program could use some strategy to generate a partial alignment including the se-
quences that do have a motif in common. The other sequences could be added to the
alignment at a later stage. Comparing to the current treatment of discarding this
motif and running an alignment Without any anchor, this might increase the quality

of alignment to some degree.
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Appendix A
Result of ProMSA on BAIIBASE

3.0

A.1 Ref1l

A.1.1 Part 1
Name | ProMSA | ClustalW
1 0.947 0.947
2 0.208 0.208
3 0.563 0.563
4 0.277 0.199
5 0.214 0.212
6 0.097 0.097
7 0.465 0.465
8 0.356 0.472
9 0.669 0.297
10 0.195 0.195
11 0.070 0.078
12 0.818 0.818
13 0.173 0.173
14 0.644 0.624
15 0.579 0.579
16 0.319 0.319
17 0.647 0.433
18 0.222 0.174
19 0.499 0.499
20 0.354 0.415
21 0.294 0.156
22 0.096 0.096
23 0.202 0.319
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24 0.246 0.056
25 0.082 0.082
26 0.103 0.031
27 0.260 0.176
28 0.129 0.129
- 29 0.505 0.336
30 0.296 0.310
31 0.313 0.304
32 0.113 0.113
33 0.475 0.515
34 0.254 0.264
35 0.594 0.498
36 0.363 0.374
37 0.360 0.360
38 0.598 0.402
Average | 0.359 0.323

A.1.2 Part 2
Name | ProMSA | ClustalW
1 0.689 0.681
2 0.828 0.828
3 0.894 0.894
4 0.843 0.843
5 0.836 0.836
6 0.864 0.868
7 0.781 0.793
8 0.869 0.869
9 0.906 0.906
10 0.824 0.824
11 0.643 0.643
12 0.489 0.455
13 0.915 0.918
14 1.00 1.00
15 0.878 0.444
16 0.628 0.773
17 0.882 0.881
18 0.897 0.897
19 0.808 0.808
20 0.814 0.801
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0.837

21 0.841
22 0.728 0.728
23 0.784 0.784
24 0.836 0.836
25 0.362 0.387
2% |- 0.780 0.776
27 0.815 0.803
28 0.725 0.725
29 0.780 0.779
30 0.823 0.843
31 0.746 0.761
32 0.647 0.647
33 0.646 0.646
34 0.879 0.879
35 0.764 0.749
36 0.886 0.886
39 0.760 0.760
40 0.950 0.952
41 0.581 0.581
42 0.519 0.519
43 0.739 0.743
44 0.854 0.829
Average | 0.744 0.737
A.2 Ref?2

1 0.778 | 0.077

2 0.184 | 0.184

3 0.894 | 0.892

4 0.637 | 0.641

5 0.716 | 0.726

6 0.896 | 0.868
7 10718 | 0.734

8 0.526 | 0.002

9 0.917 | 0.917

10 |0.695|0.690
11 |0.863|0.653
12 | 0586 0.539
13 |0.312]0.325
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14 0.745 1 0.748
15 0.490 | 0.490
16 0.669 | 0.683
17 0.878 | 0.876
18 0.870 | 0.866
19 0.758 | 0.758
20 0.795 | 0.791
21 0.819 | 0.817
22 0.661 | 0.685
23 0.764 | 0.779
24 0.457 | 0.457
25 - 1 0.778 | 0.784
26 0.739 | 0.744
27 0.718 | 0.709
28 0.923 | 0.923
29 0.739 | 0.739
30 0.861 | 0.877
31 0.894 | 0.749
32 0.913 | 0.915
33 0.907 | 0.902
34 0.680 | 0.652
35 0.748 1 0.751
36 0.782 | 0.784
37 0.684 | 0.691
38 0.912 | 0.875
39 0.886 | 0.880
40 0.556 | 0.554
41 0.615 | 0.603
Average | 0.731 | 0.689
A.3 Ref3
Name | ProMSA | ClustalW
1 0.672 0.662
2 0.501 0.340
3 0.451 0.426
4 0.826 0.818
5 0.680 0.686
6 0.328 0.576
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7 0.829 0.645
8 0.569 0.567
9 0.396 0.400
10 0.720 0.711
11 0.824 0.824
12 0.473 0.365
13 0.266 0.342
14 0.621 0.545
15 0.377 0.372
- 16 0.011 0.283
17 0.353 0.353
18 0.737 | 0.698
19 0.543 0.552
20 0.246 0.246
21 0.556 0.528
22 0.793 0.749
23 0.563 0.622
24 0.525 0.461
25 0.365 0.482
26 0.512 0.447
27 0.551 0.570
28 0.539 0.536
29 0.746 0.731
30 0.672 0.697
Average | 0.542 0.538

A.4 Ref4
Name | ProMSA | ClustalW
1 0.877 0.836
2 0.607 0.017
3 0.813 0.789
4 0.851 0.846
5 0.771 0.807
6 0.678 0.671
7 0.626 0.624
8 0.778 0.770
9 0.695 0.676
10 0.853 0.853
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11 0 0
12 0.797 0.759
13 0.451 0.438
14 0.712 0.712
15 0.759 0.037
16 0.773 0.773
17 0.773 0.773
18 0.693 0.693
19 0.666 0.814
20 -0.806 0.803
21 0.801 0.801
22 0.785 0.718 -
23 0.526 0.467
24 0.460 0.446
25 0.807 0.790
26 0.415 0.415
27 0.276 0.313
28 0.811 0.804
29 0.747 0.747
30 0.589 0.582
31 0.541 0.541
32 0.831 0.841
33 0.526 0.181
34 0.523 0.531
35 0.587 0.591
36 0.865 0.870
37 0.206 0.168
38 0.560 0.549
39 0.810 0.810
40 0.748 0.774
41 0.274 0.298
42 0.697 0.676
43 0.586 0.618
44 0.792 0.720
45 0.476 0.476
46 0.364 0.362
47 0.747 0.714
48 0.865 0.680
49 0.774 0.071
Average | 0.652 0.597
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