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ABSTRACT

Low power design of Motion Compensation Module for MPEG-4 Video
Transcoder in DCT-domain

Wan Hoi Cheung

For the 21* century, the Internet has matured into the de facto data transport
platform that analog media such as videotape, film, and broadcast will be supplanted by a
digital media infrastructure. This digital infrastructure will allow data to be transferred
between any two computing machines on the planet in a heterogeneous network
environment. In the case where data is transmitted from the SONET network to PSTN
network, dynamic bit-rate adaptation/reduction at the gateways is then required due to the
transmission media has a lower capacity than the capacity required by the bitstream.
There are many different approaches to this problem of bit rate conversion. A robust
scheme is to implement a transcoder module to perform dynamic adjustments of bit rate
of the coded video bitstream to the desired transmission rate.

The emphasis in this thesis is on the study of the transcoder’s Motion
Compensation module of MPEG-4 compressed video stream in the DCT domain on both
algorithmic and implementation level.

For the algorithmic level of Motion Compensation in DCT-domain (MC-DCT)
design, the 3-2-1 partial information scheme is integrated into the DCT Coefficient
Translation and Truncation Transformation Matrix (DCTTTM)-based algorithm with two
bit precision on the element of DCT-Constant Matrix (DCT-CM) to process the MC-DCT

operation.
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For the VHDL hardware-level design, data-dependent signal processing has been
applied to the MC-DCT module to reduce power consumption via various manoeuvres
such as zero bypassing, custom handling of internal bandwidth, the implementation of
multiplication-free module, the 3-2 Wallace tree propagation-delay-free addition map and

the logic-based addition module.

Keywords: MPEG-4, Motion Compensation, transcoder, drift error correction, discrete

cosine transform (DCT) domain, requantization, data-dependent logic, low power.
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Chapter 1
INTRODUCTION

1.1. RESEARCH MOTIVATION

Visual information is of vital importance if human beings are to perceive,
recognize, and understand the surrounding world. As the Internet matures into the de
facto data transport platform for the 21st century, it seems clear that analog media such as
videotape, film, and broadcast will be supplanted by a digital media infrastructure built
on the Internet and Internet-related technologies. In addition, services like
teleconferencing, video on demand, distance learning, and remote surveillance for
provide a convenient means of acquiring visual information from remote locations. This
digital infrastructure will allow visual data to be readily transferred between any two
computing machines on the planet, if so desired. However, the speed at which this data
can be transmitted will depend on a number of factors, but primarily on the network
infrastructure. Most existing networks such as POTS, ISDN, DSL over PSTN, ATM over
SONET (Synchronous optical network) or SDH (Synchronous Digital Hierarchy), and
3G Wireless are interconnected resulting in a heterogeneous network environment. On
one hand, POTS over PSTN networks planned with copper wires laid down over a
century ago and intended for analog voice communications are used with modem
technology to transmit data at speeds as high as 56 kb/s. On the other hand, ATM over
SONET via optical fiber technology allows data and/or voice transfers at 51.840 Mbit/s
and higher. In the case where data is transmitted from the SONET network to PSTN

network, dynamic bit-rate adaptation/reduction at the gateways is required since the



receiving transmission medium has a lower capacity than the capacity required by the
originating bitstream [1].

One solution is to use the scalable coding feature inherent in the MPEG-4
standard where the video is coded at two or more layers, a base layer and one or more
enhancement layers. The base layer stores the most critical information while the other
enhanced layers supplement the video quality. The enhanced layers maybe skipped
(dropped) in the case of changing network environments. This approach is nonetheless
not sufficiently flexible to handle finer scaling since the scalability in MPEG-2 provides
only a limited number of possible transmission bit rates.

A more robust scheme is to implement a transcoder module to perform dynamic
adjustments of the bit rate of the coded video bitstream to match the desired downstream
network. This can be done by first partial decoding of the bitstream and then requantizing
the DCT coefficients coarsely to achieve bit rate reduction. Figure 1.1 shows a diagram
of the transmission of a video stream from a server X to end user Y where a transcoder is
deployed at the gateway between two heterogeneous networks. One raw uncompressed
video at server X is compressed by an encoder at a bit rate R/. The encoded video is
converted to a bit rate R2 < R by the transcoder module when the transmission medium
has a lower capacity than the bitstream requires. The decoder at the end user Y

decompresses the transcoded video bitstream for display.

Server X

Encoder

v

R1 R2 ==
Transcoder { —> Network —_—> [-]

B decoder ﬁ—%

Figure 1.1 A scenario where the transcoder is deployed between two heterogeneous
networks



1.2. FIGURE OF MERIT

The process of converting a compressed high bitrate stream into a lower bitrate
stream introduces distortion. Conventionally, the distortion can be measured using one of
two schemes; subjective assessment and objective assessment.

Subjective assessment requires human perception and/or opinion about a group of
degraded target pictures evaluated based on a predefined scale to determine the quality of
the degraded pictures as compared to the original undistorted ones. While the result of
this scheme is generally more reliable than any objective assessment, the cost remains
prohibitively high and the process is extremely time-consuming as in all man-in-the-coop
processes. In this thesis, the formal subjective assessment method is not considered;
however, informal subjective evaluation is included in deciding the application of the
optimization technique.

Objective measurement provides a much cheaper and time-efficient means of
simulating human observer grading via mathematical models. The simplest objective
measure and yet the most popular method employed within the video/audio and the signal
processing community is known as the peak-to-peak signal-to-noise ratio (PSNR) and

defined as:

255°
22y ) =Y (G )

PSNR =10log,, 7

N

Where Y,(i j), and Y,..(ij), are the pixel values of the reference and reconstructed
images respectively. N is the total number of pixels in the image. The larger the PSNR
logically implies the better the reconstructed image; it is however not necessarily true at

all times. A case where image 4 has lower PSNR than image B with noise spreading all



over might yield a better subjective quality for human perception than an image B with
higher PSNR but having noise concentrated within a tiny area which can easily be spotted
visually.

In general, the gain of better PSNR for a reconstructed picture requires the
expense of computation complexity. In chapter 3, several factors to reduce the
computational complexity of the core module in the transcoding process are investigated
and analyzed in order to achieve a balance between the saving in computational load and

the cost in the objective PSNR measure.

1.3. THESIS ORGANIZATION

The organization of this thesis is as follows: in Chapter 2, an overview of video
transcoder architecture and MPEG-4 compressed video bitstream is provided. Chapter 3
reviews the pioneering work for Motion-Compensation in Discrete Cosin Transform
(MC-DCT) algorithm by Chang and Messerschmitt’s [20] and presents an optimization
based on a 3-2-1 partial information scheme. Chapter 4 illustrates the VHDL design to
implement the MC-DCT module via Xilinx FPGA technology. Chapter 5 summarizes the

proposed schemes and the contribution of this thesis. Future work is also discussed.



Chapter 2

AN OVERVIEW OF VIDEO TRANSCODER ARCHITECTURE AND MPEG-4

COMPRESSED VIDEO BITSTREAMS

Transcoders can be broadly classified into two types, open-loop and closed-loop.
The first, open-loop type of transcoder uses a straightforward requantization method
without compensating for drift errors. The drift error occurs when the reconstructed
pictures used for prediction in the encoder are not the same as the reconstructed pictures
in the decoder due to the loss of high frequency data. This error will propagate if the
reconstructed picture is to be used as reference for future pictures. In MPEG standard,
this error is terminated when the I frame is processed. This type of transcoder demands
little hardware, requires no frame buffer and is suitable for low cost and/or low delay
application [2][3].

The second type of transcoder is built with a feedback loop to compensate for
drift error. This approach provides a higher quality transcoding, but comes at the price of
more complexity and greater memory requirements.

In this chapter, we will examine each mainstream transcoder’s architecture
proposed in the literature, Open-Loop transcoder, Cascade Pixel Domain Transcoder
(CPDT), Fast Pixel Domain Transcoder (FPDT) and DCT Domain Transcoder (DDT) in
Sections 2.1, 2.2, 2.3, 2.4 respectively [4][5][6][7][8]. Section 2.5 discusses the video
signal streams compiled to the Moving Picture Experts Group Compression Standard
Version 4 (MPEG-4) under the context of transcoding. In this thesis, the MPEG-4

standard is the video compression scheme used for all the simulations.



2.1. OPEN-LOOP TRANSCODER

The open-loop transcoder architecture achieves the bit-rate reduction by
implementing the requantization process without feedback path for drift correction.
Conceptually, the transcoding process with this structure is done by first inversely
quantizing the encoded bitstream by mean of the finer quantizer Q1 and then heavily
compressing with the coarse quantization Q2 (i.e. the step size for the quantization of Q2
is larger than the step size of Q1) to achieve the lower target bit rate. The basic structure

is shown in Figure 2.1:

Motion Vector

——» VLD » Q' —» Q |—» VvIiC >
Rin Rout

Figure 2.1 Transcoder structure with no drift-error correction

While such arrangements will always lead to increased distortion due to the
lossy nature of quantization when the reconstructed values differ from the original ones
or when some nonzero coefficients in the input frame become zero after quantization, this
simple bit rate-conversion process may introduce an additional error which can be
avoided by directly quantizing the DCT coefficients with the same coarser step size. This
additional error is called Requantization Error (RE). Figures 2.2 and 2.3 below illustrate

the cases where additional requantization error may occur:



Original Value 4

Q
Recons}ructed valfe R,

L 4
Decision Level
Q2 .
Reconstructed Valug R;
|
|
iReconstructlon Level Coarser Quantizer

Figure 2.2 Cascaded quantization provides the same result as direct quantization

Finer Quantizer

Original Value B

Q; I‘\ Q

. Reconstructed value Rp;
! . i ] — .
Finer Quantizer

~

Reconstruction Level ) .

Reconstructed value R¢ s, Reconstructed value Rg;

! Ae |

| |
~ Coarser Quantizer
Decision Level

Figure 2.3 Cascaded quantization induces extra distortion

In Figure 2.1, the original value 4 is first quantized by a finer quantizer Q1, and
then heavily quantized with Q2 resulting in the final reconstructed value R; (paths
indicated by the two dash-line arrows). The same reconstructed R; may also be obtained
by directly quantizing 4 by the coarse quantizer Q2 (path indicated by the solid-line
arrow). In this case the direct coarse quantization and requantization distortions are equal.
However, in Figure 2.3, the reconstructed value R, of coefficient B resulted from

requantization is different from that of direct coarse quantization. This is caused when the



finer interval is completely contained by the coarse interval, no cascading error is
introduced. On the other hand, if the finer interval overlaps the decision level of the
coarse interval and if the original value falls into a coarse interval different from that of
the interval where the coarse quantizer will resolve the value to, the requantization error
subsequently becomes larger. In fact, by carefully selecting the ratio of Q2/Q1 to avoid
critical ratios of the cascaded quantizations during the transcoding process, the magnitude
of the requantization error could be greatly reduced [9][10][11].

The open-loop transcoder structure is straightforward and requires no frame
memory; it is recommended for low delay and low cost application in which minor drift
error is considered to be tolerable. It should be noted that having video stream with a

small group of pictures (GOP) may considerably reduce the effect of drift error.

2.2, CASCADED PIXEL-DOMAIN TRANSCODER (CPDT)

A simple drift-free transcoder can be produced by first fully decoding the video
streams into reconstructed pixels and then re-encoding them to a lower bit rate. The

structure can be built with a decoder cascading an encoder as in Figure 2.4:

DECODER ‘ Headers _ ENCODER
[T T T T T e e e e e ~
input bit streams|
P | RO L@ R,® v
——* VLD —> ;" [—*|IDCT — +() » DCT—> Q; » VL.C >
I + )
| Ref. frame 1 |
i 1 1 Ref. frame 1 QZ-] |
: P,V =MC[1,,M,V,) :
| ! P,® = MCIL,,®,V,] l
] IDCT| |
' MC '
; X LO=1,0E® |R,® +=E.."’
v Vn 1 + .
| | Ref. frame 1 [% 37 |
H | H MC AV H
! i 7 Ref. frame 1 [ !
! | " !
! ' : |
| !

Motion vectors

Figure 2.4 Cascade of decoder and encoder as a transcoder
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The structure Figure 2.4 is inherently drift-free due to the complete isolation of
the encoder loop from the decoder loop. Assuming the ideal environment of no
transmission noise, the reconstructed frame resulting from the decoding section of the
transcoder would be identical to the one generated by the front-encoder once motion
compensation is applied. Likewise, the reconstructed transcoded frame in the encoding
part of the transcoder would be the same generated by the end-decoder. Nonetheless, the
direct implementation of the CPDT is not attractive due to high complexity, high cost and
long delays. Knowing that the motion compensation is undoubtedly the most
computationally expensive process in the CPDT structure, Petro in [12] derived a step-
by-step simplification to realize the Fast Pixel-Domain Transcoder which reused the
motion vector to reduce the overall computational complexity and hence improve the

performance by an order of magnitude.

2.3. FAST PIXEL-DOMAIN TRANSCODER (FPDT)
Referring to Figure 2.4, let V, represent the motion vector field of thencurrent
picture », x be the position of a pixel in the picture, and the motion compensated signal

MC[I%,,V,] where MC[*] denotes a simple shift operation (in essence, Motion

Compensation (MC) can be understood as a space/time-domain operation to form an
estimate of the current frame by extracting the MC block from the location specified by
the Motion Vector (MV(‘s)) in the reference frame(s), refer to the detailed discussion in
Chapter 3), n-1 stands for the previous frame, superscript (/) indicates the decoding part

of the transcoder, and the encoding part of the trancoder is denoted as superscript (2). I

n—1



for example is the previous decoded signal from the decoder. Therefore, the current

predictive frame can be estimated as
PO = MC[I®,V,] 2.1)
Alternatively, it can be expressed per pixel as follows:
PO (x)= MCII,V,1(x) = I, (x +V,(x)) 22)

where ¥ (x)is equal to the displacement for each pixel within a Macroblock (In MPEG

standard, Macroblock is defined as a composition of four 8 x 8 blocks).
Since the Motion Compensation process is a linear operation, the predictive frame

of the encoding part of the transcoder is to be formulated by the following equation:

P® = MC[I{>, + E®,

@.¥,1= MCU®,V,1+ MCIEZ,V,]  (23)
where E is the requantization error caused by the second quantizer Q2. Thus the

2
n

residual R'“ can be written as:

R? =19 - MC[I® +E®,V.]

n—

=10 - MC[I®,V,]- MC[E®,V.] (2.4)

n-12 n-1>"n

And the decoded picture 7 can be written as:
I =R + MC[I3,V,] (2.5)
Substituting Equation (2.5) into Equation (2.4), we get:
R? =RY -~ MC[E(,V,] (2.6)
Equation 2.6 implies that the residual R can be computed directly by subtracting
@

the motion-compensated requantization error E) . Here, MC[E®),V.] is the so called

drift error in the transcoding process. Based on the Equation (2.6), only the previous

10



requantization errors £ need to be stored in frame memory and the frame storage

for IV can be discarded. This development leads to a simplified architecture for fast

transcoding. Figure 2.5 shows the block diagram of a Fast Pixel-Domain Transcoder
(FPDT).

The underlying premise for the simplification to achieve the FPDT architecture
makes use of the linearity of the Motion Compensation property such that the
requantization\transcoding error can be isolated out for the Motion Compensated
operation. The partial decoding methodology of reusing the Motion Vector (MV’s) also
contributes to simplifying the FPDT architecture since the process of Motion Estimation

is no longer required. By doing so, only one reconstruction loop and one DCT/IDCT pair

are needed.
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Figure 2.5 Fast Pixel-Domain Transcoder (FPDT)
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2.4. DCT-DOMAIN TRANSCODER

The DCT/IDCT modules would no longer required if the bitstream could be
transcoded entirely in the DCT domain. Figure 2.6 shows the architecture of this

conceptual design:

Motion vectors |

- —— — — —— — — el — — — — ——- —— — — — n——

Headers
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—{ VLD —* Q," > > Q, VLC —
| v o7
! Q' |
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! "':f‘ N I
| B S
| |
| et [ret |
| t MC-DCT “ I
' R ‘ Ref. F )
| f |
| I

Ficure 2.6 DCT-Domain Transcoder (DDT)

From Figure 2.6, the transcoding/requantization errors are accumulated in the
DCT domain and compensated in the DCT block of the current picture through the
module MC-DCT (Motion Compensation in Discrete Cosine Transform domain). In this

thesis, the MC-DCT module is to be investigated thoroughly in later chapters. Chapter 3
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will discuss in detail a step-by-step deviation for computing motion compensation in

DCT-domain.

2.5. TRANSCODING OF MPEG-4 BITSREAMS

A feature of MPEG-4 in contrast to MPEG-2 or MPEG-1 is its content-based
coding of images and video to allow the separate decoding and reconstruction of
arbitrarily shaped video objects. This thesis only considers rectangular shaped video
objects in the simulations, therefore the shape information is not specified and no shape
coding was developed. In essence, only the texture content of MPEG-4 compressed video
is transcoded.

For MPEG-4 visual bitstream syntax, similarin concept to MPEG-1 and -2, each
GOV (Group of Video Object Planes) may include three types of VOPs (Video Object
Plane), Intracoded (I-VOP), predictive-coded (P-VOP) and bi-directionally predictive-
coded (B-VOP). Since I-VOPs are self-sufficient with no need of prior information, no
Motion Compensation is applied. Given our choice of the transcoder architecture in
Figure 2.6, the requantization errors (the differences of DCT coefficients between
Quantizing parameters Q1 and Q2) are to be stored in the frame memory for
compensating the next P- or B-VOP. P-VOP is motion-compensated by using the same
Motion Vector computed by the front-encoder and its requantization errors are
subsequently saved for motion compensating the next P- or B-VOP. Since there is no
referrence for B-VOP, the requantization error was not calculated [13]. For simplicity,

only the IPPP...IPPP GOV structure was used for all the simulations in this thesis.
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With regard to transcoding of MPEG-4 compressed video bitstreams using a DDT
architecture, motion vectors of the input bitstream are reused to avoid the most
computationally intensive operation, motion estimation, of the MPEG-4 encoding

algorithm.

2.6. CHAPTER SUMMARY

In this chapter, an overview of video transcoder architectures was presented. Two
types of transcoders with different complexity and memory requirements were discussed.
The transcoder with no drift correction has a lower complexity and requires no frame
buffers. The more complex transcoder is structured with a closed loop to perform drift
compensation. A drift-free CPDT transcoder can be designed by cascading a decoder to
an encoder. While the CPDT design requires no special customization, this structure
suffers from long delay and high complexity. A more versatile DDT design was
addressed conceptually where DCT/IDCT modules are removed from the CPDT design
to gain substantial reduction in the architectural complexity. The chapter also discussed
the properties of MPEG-4 video stream used in the simulations completed as part of the

thesis.

14



Chapter 3
ALGORITHMIC DESIGN CHOICES FOR MC-DCT MODULE

In Chapter 2, the fast DCT-domain transcoder architecture was introduced by
removing the Inverse DCT and the DCT modules. The underlying premise is that Motion
Compensation (MC) can be done in the DCT-domain which would allow this simplified
architecture to be implemented without hampering the transcoder’s correct functionality.
In this chapter, the problem of MC in the DCT-domain (MC-DCT) is dealt with in full
detail.

The practice of manipulating video signals in the compressed/transform domain
originated over a decade ago [14][15][16][17][18][19]. With video compression systems
incorporating Motion Compensation (MC) such as MPEG, the major challenge in
providing common video editing functions in the compressed domain, including overlap,
translation, scaling, linear filtering, rotation, and pixel multiplication etc, is the
development of a fast algorithm. MC-DCT reconstructs the video in the compressed
domain by Inverse Motion Composition without requiring conversion back to the
time/spatial domain. In [14], it has been shown that compositing the DCT-compressed
images directly in the DCT domain can save computations for many of the compositing
operations mentioned above compared to the straightforward spatial-domain approach
which composites images pixel by pixel.

Several fast MC-DCT algorithms based on Chang and Messerschmitt’s [20] have
been proposed in the literature [21][22]. In [21], Neri use a factorization of computing 8-
point DCT to achieve 32% computational complexity savings compared to a spatial

domain approach., while 81% reduction of complexity was realized in [22] by
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approximating the translated matrices to binary numbers with maximum distortion of
1/32 to allow the execution of basic operations such as shift-right and add. In [23], Bovik
approached the problem by analyzing the statistical properties of natural video data to
avoid processing those DCT coefficients outside the estimated local bandwidth to gain
25%~55% computational improvement over the method proposed in [20]. They also
present a Look Up Table (LUT)-based implementation scheme to obtain another 31%~
48% improvements in computational complexity. Based on the fact that motion
compensation in MPEG is done on a macroblock basis, Song and Yeo [24] exploit the
shared information in the predictions of multiple neighboring blocks to speed up the MC-
DCT algorithm. Song and Yeo show that their method can be implemented on top of the
already fast algorithm proposed in [21] and [22], and provide incrementally about 19%
and 13.5% above these techniques respectively..

In Section 3.1, the operation of Motion Compensation in the spatial domain is
reviewed. The inherent obstacle to performing motion compensation in the frequency
(DCT) domain is then examined. One of the MC-DCT algorithms reported in the
literature, Chang and Messerschmitt’s algorithm [20], is presented in Section 3.2. Section
3.3 introduces the DCT-Coefficient-Translation-and-Truncation-Transformation-Matrix
based (DCTTTM) MC-DCT algorithm [25] which addressed the MC-DCT problem from
a different perspective.

The computational complexity of DCTTTM-based MC-DCT algorithm can be
dramatically reduced by considering only partial DCT information and quantizing the
constant transformed matrices to finite precision. Section 3.5 studies the impact of

applying these two maneuvers to the quality of five video test sequences.
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3.1. DCT-Domain Motion Compensation

Motion Compensation (MC) can be understood as a space/time-domain operation
to form an estimate of the current frame by extracting a MC block from the location
specified by Motion Vector (MV(‘s)) in the reference frame(s). In general, neither the
vertical nor the horizontal component of the MV is an integer multiple of the block size;
hence, it is likely that a MC block extracted from a reference frame straddles four
adjacent DCT blocks in the reference frame.

For Block Motion Compensation, the frames are partitioned into blocks of pixels
in the spatial domain (e.g. macroblocks of 16x16 pixels). Each block is predicted from a
block of equal size in the reference frame. These will be called Motion Blocks (MBs)
with their size (p = 8)x(¢ = 8) where p is the number of rows and ¢ is the number of
columns. The blocks are not altered in any way other than being shifted to the position of

the predicted block. This shift is represented by a motion vector.

Let ¢ be the current frame, » be the reference frame, cbe the estimated current
frame. When a superscript is attached to these symbols it represents one MB. Thus r°
represents the fifth MB in the reference frame. V is the vector field made up of all of the
MVs for one frame. For MB £, its MV has horizontal and vertical components MVmwk
and MV, " respectively. The MVs are the result of the Motion Estimation. The position
of a pixel in a frame is denoted by x and y. For example, assuming we a frame size of

(m=16)*x(n=24) where m is the number of rows and # is the number of columns, then, the

current frame c, the estimated current frame ¢, and the reference frame r can be

partitioned into (16x24) / (8%8) = 6 MBs as shown in Figure 3.1:
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Figure 3.1: Estimated current frame in (c) is motion-compensated from reference
frame in (b). Notice that the estimated current MBs are likely mapped
to reference frame in a non-block boundary fashion.

Figure 3.1: Estimated current frame in (c) is motion-compensated from reference
frame in (b). Notice that the estimated current MBs are likely mapped
to reference frame in a non-block boundary fashion.

~ — R
Each estimated MB c¢* has a particular MV associated to it. Therefore, its ¢ can

is determined:
¢ = MC[r,V] (3.0)
Essentially, the MC[*] operation is simply a shift operation for each MB. For an

MB, Equation 3.0 can be written explicitly as

k : ko k
c(,y)=r@+MV ,j+MV ). nlaWVealex 3.1
o= M T M) e, .

forx=0...p-1,y=0...¢-1,and k=0... [mxn)/(px ¢q)]-1
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where MVmwk and MVCO/‘ (for 0< Mka ,MVyk <7) are constant for each pixel in the same

MB k. Taking the above example withp=¢g=8, m=16,n=24, k=1, MV,,,,) =6 and

MV, =3, Equation (3.1) becomes,

9(x,y)=r(i+6,j+3)|,-,=g+x‘ forx=0...7andy=0...7 (3.2)
J=y

which graphically allows the estimated current block 21 to be depicted as the following

Figure 3.2:

0 T
r |Tr 7

///A—
1'3 1'4 / 1'5

Figure 3.2: Graphical interpretation of Equation (3.2) above where gl straddles four
adjacent MBs rl, rz, r", r’ in the reference frame.

For MPEG motion-compensated encoding, the previously reconstructed reference
frame r (either an I or P frame) is stored, in the spatial domain, in a frame memory for
use by the MC operation. In the transcoder proposed in this thesis, however, all
previously stored frame data are in the form of DCT-Requantization Error Blocks
(REBs). Given that the conventional mechanism of the MC operation only handles blocks
in the spatial domain, one way to motion-compensate current DCT-REB from the

reference DCT-REB can be achieved in the following manner:
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1. Perform Inverse DCT for each DCT-REB to transform it back to the spatial domain.
These are the REBs.

2. Motion compensate each REB as defined in Equation (3.1) above.

3. Perform the DCT operation for each REB to transform REB back to DCT domain.
These are the DCT-REB’s.

Because DCT and inverse DCT are linear operations it is possible to go directly
from the DCT-REBSs in the reference frame to correction factors for the DCT-REBs in the
current frame, via a linear transformation. The particular transformation depends on the
Motion Vector for each MB. In the next section, details of the appropriate linear

transformations are given.
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3.2. Chang and Messerschmitt’s algorithm

Chang and Messerschmitt’s algorithm [20] proposed that the MC could be
performed in the DCT domain by matrix multiplication with an appropriate 8x8
prematrix p; and postmatrix p, to eliminate the conversion process back and forth

between the DCT and the spatial domains.

—w—> :
0,0 : : '
________ T (MVWJ\AVMZ s P
E ! 7’ LR 5”1 LL
ol A 1] M
i P & H S R ?l_)‘é _____________
T ' P iPu
S e R
Figure 3.3(a): Figure 3.3(b):
In general, estimated ¢* MB is ¢* MB is made up of at most
unlikely to be mapped into fixed four neighboring MB in
block boundary position reference frame

In the Figure 3.3(a) and 3.3(b) above, the ¥ estimated block in the current frame,

—

c* is composed of parts of four adjacent 8 x 8 blocks, #°, 7, ¥, and /’ in the reference
frame, namely the lower-right corner (+*.z) of MB °, the lower-left corner (1) of MB

#!, the upper-right corner (+’yz) of MB ¥ and the upper-left corner (1) of MB . These
are exactly the parts of the 7 (i = 0 to 3) that should be used to form ¢* . Notice that the
formation of é; requires the translations of 7%, from lower right corner into upper left
corner of ;; , 1z from lower left corner into upper right corner of ;; , and similarly for

ur and Py as shown in the Figure 3.3(b). These translations can be mathematically
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achieved by pre and post-multiplying the , ¥, /#, and #’, by appropriate matrices, p;
(prematrix) and p;; (postmatrix) where the first subscript designates which » submatrix is
being multiplied (i.e. i = 0...3) and the second subscript indicates whether this is a pre (1)
or post (2) multiply matrix. Note that p;; and p;; also depend on the motion vector; this
dependence is suppressed in the notation for readability. These p;; and p;; are defined in

Equation (3.3) as follows:
(3.3)

where / are identity matrices with size specified by their subscript 2z and w (1 < hw < 8

are the number of rows and columns overlapped by part of ;; ). Also, 4 and w depend on

the motion vector and they are related to MV, and MV, as follows (refer to Figure 3.3):

w=T-MV_ +1, 0SMV_ <71<w<8 3.4

col col

{h=7—Aﬂ@w+L 0<MV, <71<h<8

As an example, for # = 6 and w = 5, the translations of 7',z from lower right

_—~ —

corner into upper left corner of ¢* (¢*,, ) can be formulated in matrix form as Equation

(3.4) below:

—_— 0 I 0 0
ckUL = rlLR = pmrlpoz = {O (;}rl [1 0] (3.5)
5

where
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the effect of premultiplying r' by po is to shift the bottom six rows up vertically and roll
in zeros for the two bottom rows while the postmultiplication by py, horizontally
translates the rightmost five columns to the left and zeros stuffs the remaining three most

right columns. This can be illustrated as in Figure 3.4 below:

pu()—> —> p2()—> H“

'0' 10'

Figure 3.4: Using matrix multiplication to extract r'Lr and translate it to upper right
corner

Thus, following the same convention as above, cin the spatial domain can be

computed by the matrix Equation (3.6)

—~ 4
ct =r1LR+r2LL+r3UR+r4UL =,-=21pﬂrlpi2 (3.6)
= Pyt Doy + Py’ Pro + Dot Do + Do Dy
For an 8 x 8 matrix x = x(i, j)|:j=0 , the 2D Forward DCT (FDCT) transforms x
from the spatial domain into the frequency domain X [24]

X = X(k, )|, ,_, where X = DCT(x) = DxD' (3.7)
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7
D=d(e,f)= f’—(zflcos(¥- )|

where 6 af=0 ‘ (3.8)

a(0)=——1——,a(e)=l for e>0

V2

The superscript ¢ denotes matrix transposition. Its counterpart 2D Inverse DCT
(IDCT) is then defined as
IDCT(X)=x=D"'XD" =D'XD (3.9)
where the second equality follows from the orthonormality of D (i.e. D'=D") [24].
Following from the orthonormal property:

DCT(a)x DCT(b) = DaD'DbD’ = DaD™'DbD' = DabD' = DCT(axb)  (3.10)

The DCT-domain of 2 can then be computed directly from r/, ¥, #°, and #* by the

following,

—_—~ P 3

3
C*=Dc*D' == D(p,r'p,,)D' = Dp,D'x Dr'D' x Dp,, D'
i=0 i=0
, (3.11)
= Z IJilRiBZ
i=0
where P;; and P;; are the DCT of p;; and p;; respectively. In the Messerschmidt and Chang
paper, they proposed, DCT(p;;) and DCT(p;;) for 1 <i <4 can be pre-computed at design
time. The straightforward implementation of Equation (3.11) requires 4*2*8> = 4096
multiplications and 4*2*(8-1)*8* = 3584 additions.
In this thesis, we apply this concept to MPEG-4 video transcoding, bit-rate

conversion from high bit-rate to low bit-rate in a heterogeneous networking environment.
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3.3. DCT-Coefficient-Translation-and-Truncation-Transformation-

Matrix (DCTTTM) based Motion Compensation

The development in Section 3.2 was aimed at generating the DCT coefficients of
a block from the DCT coefficients of four blocks which it straddled. In contrast, in
transcoding the important information from the four straddled blocks is requantization
errors, not DCT coefficients. That is, one must use the method of Section 3.2 to take
information from the reference DCT-REB’s and put it in a form to be used by the current
motion compensated DCT-REB. Unlike the algorithms [20] in Section 3.2, DCTTTM
motion compensation hides the shifting detail and puts an emphasis on the contribution of
each coefficient in the four DCT-REBs of the reference frame to that of one estimated
current DCT-REB via a linear operation of matrix multiplication.

Consider a DCT-REB called E. It is an 8 x 8 matrix of DCT Requantization

Errors (DCT-RE’s). The elements of E are e, for 1< ij < 8 which can be written as:

8
E= Zeijx . (3.12)
=1

8

i=l j
where Q; is an 8 x 8 matrix with only one non-zero coefficient ‘1’ designated by the
indices ij. For example, for the element in the third row and second column, /=2 and j=1

(index starts from zero):

Oy = (3.13)

SO O O O O O O
O O O O O O o O
O O O O O O O O
S O O O O O o O
O O O O O O o O
S O O O O O O O
O O O O O O o O

S O O O O = O O
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The IDCT of Equation (3.12), due to the property of linearity, can be written as:

7.7

IDCT(E)=)_Y% e, xIDCT(Q,) (3.14)

i=0 j=0
The DCT of the Q;; matrices can be pre-computed at design time.

Similar to the scenario illustrated in the Figure 3.3(a), four 8*8 blocks of DCT-
RE’s in the reference frame will contribute to the DCT-REB in the current motion
compensated block. Call these DCT-RE’s ej;(n) where n indicates which of the four

blocks the DCT-RE originated from (using the numbering convention of Figure 3.1) and i

and j indicate which DCT-RE. Given a specific MV'*, the motion compensated DCT-
REB, in the current frame (call it Ejc), can be written as a linear combination of the 256

DCT-RE’s in the four straddled blocks in the reference frame. That is:

3.7 1

Epe=2. 2.3 e,(m)x0, () (3.15)

n=0 i=0 j=0

where 0, (n) is called the DCT-Correction Matrix (DCT-CM).

In deriving the Qy (n) , three steps are followed. First, each of the four straddled

blocks of DCT-RE’s in the reference frame are put in the space domain via an IDCT.
(Note that this is a linear operation, and is independent of the motion vector). Second,
given the motion vectors, appropriate pieces of the four straddled blocks (now in the
space domain) are partitioned off and assembled to form an 8*8 block. This partitioning
is a linear operation. Third, the assembled block is returned to the DCT domain. This is,
of course, a linear operation.

Mathematically:
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Step 1:

4;(n) = IDCT(Q, (), . (3.16)

where g, (n) is the space domain representation of the Qy(n) via an IDCT. As mentioned
above, this operation is independent of the motion vector, therefore:
4,0)=4,()=,(2)=4,(3) 1j=0.7 3.17)

Step 2:

Given the motion vector (MV,0,,MV,,; ) and based on Equations (3.4) and (3.5),

the assembled block, call it g _ shif, (n) can be found as follows:

(3.18)

q _shift, (n)= Py * 94y (n)* DPn2) =07

As in Equation 3.3 pgiy is the matrix which when it pre-multiplying matrix
g, (n) effects the appropriate partition for the given motion vector. Thus p(y) is dependent
on the motion vector. Specifically, the motion vector generates # and w from Equation
3.4 and then these are used in Equation 3.3 to generate the appropriate pi). Similar
comments can be made for the post-multiply matrix p(y).
Step 3:

The assembled block g _shift,(n) is transformed back to the DCT domain via

linear DCT operation:

0, (m) = DCT(q _shift, (m).=0. (3.19)

4

Note that there are a total of 256 8 x 8 Q,j (n) which is referred to as DCT-CMs.
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3.3.1 Example Generation of a DCT-CM Qy (n)

Assume MV,,,, =0, MV, =4,i=2j=1and n =0, therefore Q21(0) can be

computed as below:

Step 1: Perform the IDCT on Q; .

[0 00000 0 O]
000O0O0O0OO0OQO
01 000O0CO00O0
000O0O0OO0CO0OQO
4,,(0) = IDCT(Q,,) = IDCT 0000000 0
0 000O0O0OO0OO
0000O0O0OO00O
000 0O0O0O0 0]

(02265 01920 01283 00451 -0.0451 -0.1283 -0.1920 -0.2265
0.0938 0.0795 0.0532 0.0187 -0.0187 -0.0532 -0.0795 -0.0938
-0.0938 -0.0795 -0.0532 -0.0187 0.0187 0.0532 0.0795 0.0938
-0.2265 -0.1920 -0.1283 -0.0451 0.0451 01283 0.1920 -0.2265
02265 -0.1920 -0.1283 -0.0451 0.0451 0.1283 0.1920 0.2265
0.0938 -0.0795 -0.0532 -0.0187 0.0187 00532 00795 0.0938

0.0938 00795 0.0532 0.0187 -0.0187 -0.0532 -0.0795 -0.0938 (3 20)

| 02265 01920 01283 -00451 -0.0451 -0.1283 -0.1920 -0.2265 |
Step 2: Translate the spatial-domain g,,(0) into the location specified by (MV,,.,MV¢) .

In the case of n=0, MV,,, = 0 and MV,,; =4 (i.e., h = 8, w = 4 from Equation 3.4),

g _shift, (0)using Equation 3.18 is:
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Step 3) Perform the DCT on g _ shift, (0):

QZ] (O) =DCT(q _ Shiﬁm (O))

0

0
-0.4531

0

o O O O

[-0.0451 -0.1283 -0.1920
-0.0187 -0.0532 -0.0795
0.0187 0.0532 0.0795
0.0451 0.1283  0.1920
T10.0451 01283 0.1920
0.0187 0.0532  0.0795
-0.0187 -0.0532 -0.0795
-0.0451 -0.1283 -0.1920
0 0 0 0
0 0 0 0
0.3266 0.2079 0.3266 0.0373
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0
")
02265 0 0 0 O]
0.0938 0 0 0 O
00938 0 0 0 O
02265 0 0 0 0
02265 0 0 0 0
00938 0 0 0 0
-0.0938 0 0 0 0
02265 0 0 0 0
0 0 0
0 0 0
-0.1353 0.0114 0.1353
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

(3.21)

(3.22)

Thus if the DCT-RE is 1 for the DCT position in the 3™ row (i=2) and 2™ column

(7=1) for the DCT Block in the reference frame that forms the upper left portion of the

estimated block (n»=0), the above QA2,(0) represents the resulting error in each of the 64

DCT coefficients of the residue. This can be seen mathematically in Equation 3.15. Thus,

given the (MV,,w ,MV,o ) pair, there are a total of 256 8 x 8 DCT-CMs (the Qy n))

generated in a similar fashion as QAZI(O) .
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Rearranging each of the 8 x 8 DCT-CMs into 64 x 1 vectors and making these
vectors the columns of a new composite matrix W of size 64 x 256. Converting the 8*8

matrix Ejyc (the motion compensated DCT-REB from Equation 3.15) into a 64 x 1

vector, called Z , Equation 3.15 can be rewritten as:
Z=Y e xW, (3.23)

where e; again for 0<i<255 are the DCT-RE’s of the four overlapped MB /° ' # ¥
and W, for 0<i<255 is 64 x 1 and the ith column of the 64 x 256 composite matrix W,

For all 64 combinations of MV,,, and MV, where0< MV

row?

MV

2 ST, there is a
particular composite matrix W associated and hence 64 such composite matrices are
generated. The computational complexity of implementing Equation (3.23) requires
256%64 = 16384 multiplications and (256-1)*64 = 16320 additions for each motion
compensated block.

In comparison with Chang and Messerschmitt’s algorithm reviewed in Section 3.2
which requires 4096 multiplication and 3584 additions, the multiplication-and-add count
of the DCTTTM approach is greater. However, the e;’s are formed by the requantization
of already quantized (from the first compression) DCT coefficients. Many of these
already quantized DCT coefficients are in fact 0. Note that if a DCT coefficient was
quantized to 0 in the first quantization its e; is also 0. For example if it is known that, all
of the DCT coefficient in the 7" row and all of the DCT coefficients in the 7% column
were always (or almost always) 0 there would be no need to calculate the corresponding

terms in Equation 3.23. Thus we could replace the 256*64 composite matrix by a 256*49

composite matrix. This will result in a reduction of computation.
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In the second quantization, higher DCT frequencies will tend to be quantized
much more heavily than lower frequencies. This, coupled with the fact that these DCT
coefficients are small (even with the addition of the DCT-RE’s), means that one is likely
to end up with zero in these coefficients after the second quantization. This observation
suggests that we may neglect rows in the composite matrix W corresponding to higher
frequencies. This further reduces computation.

In the next section an analysis will be done to determine which rows and columns

of the composite matrix # may be neglected.

3.4. Analysis of computational complexity for DCTTTM-based MC-

DCT using partial DCT information

For Equation (3.17) to render one DCT-REB, all the correction factors of the
composite matrix W from every location of four overlapped DCT-REBs in the reference
frame are taken into account. Consequently, this approach induces a very high cost in
term of computational complexity. However, it is known that typically the low frequency
DCT coefficients contain most of the energy of the signal, and also that these frequencies
are most important for human perception [33]. Thus one may reduce the computational
complexity of the DCTTTM algorithm by using only partial DCT information.

For every coefficient discarded, the quality of the video sequence is expected to
be degraded. Consequently, it would be preferable to keep the most significant DCT
coefficients, with the others discarded to maximize computational savings.

Simulations were perfeormed on several video sequences in order to make

judgments of which coefficients should be kept. Table 3.1, 3.2, and 3.3 show the average
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percentage of non-zero DCT-REs for the video sequences of 150 frames, table-tennis,

flowergarden and Miss America respectively:

Table 3.1: Average Percentage of Non-Zero
Coefficient for Table Tennis

(Grid location below corresponding to actual
positioning of a 8x8 block)

71.2 1641|599 | 58.6 | 56.4 | 55.0 | 51.5 | 48.6
64.7 [ 58.2 | 55.3 | 53.5|52.3 | 50.1 | 47.3 | 44.2
61.3156.1|529|514|501|48.1 454|422
60.2 [55.6 | 5265101493 |474 1446|415
58.9 | 554 | 52.4 [ 50.6 | 48.8 | 46.6 | 44.0 | 40.6
582 (541 |51.1]|49.3|47.7 1 45.7 | 42.6 | 39.5
56.2 1529|504 1483 |46.2 445|415 38.3
5441515 |48.3 (46.2 | 446|427 ]| 399 | 36.5

Table 3.2: Average Percentage of Non-Zero
Coefficient for Flowergarden

(Grid location below corresponding to actual
positioning of a 8x8 block)

86.3]78.9]76.0|743|724(70.9|68.6|659
796 | 752|735 (719|702 | 68.7 | 66.8 | 63.7
76.1 734|721 |706|69.1|67.8|65.7|62.9
74.2 {720 {70.7 | 69.8 | 68.2 | 67.0 | 64.8 | 61.8
7271709 696 |68.7|67.5|66.2]63.9|61.1
71.2]169.7 | 685 |67.5|66.2 (650|628 |60.1
68.5 | 67.6 | 66.5 | 65.5 | 63.9 | 62.7 | 60.8 | 568.2
64.7 | 64.1 | 63.2 [ 62.3 | 60.8 | 59.8 | 58.0 | 55.7

Table 3.3: Average Percentage of Non-Zero
Coefficient for Miss America

(Grid location below corresponding to actual
positioning of a 8x8 block)

88.6 | 59.3 | 49.6 (42.2 |44.0 | 424|379 | 40.9
60.1|47.3 |41.8 (356314296 | 299 | 33.0
49.2 | 42.0 |37.6 | 326 | 28.8 | 271|264 | 27.7
43.1|371|33.1{29.0]258|241|227 218
374 (327 (2921261233221 720.3)|20.6
33.1(286|255|231(1209]196 {181 |17.8
296265 23.3(222(199 198 183|214
2431221192184 |16.2{16.3{15.2 |17.7

Notice that the average percentages of non-zero coefficients decrease as one gets

further from the top left corner of the DCT matrices. These are of course the low
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frequencies. Following on this observation, in this thesis schemes which preserve only
these coefficients are studied. Figure 3.5b-e) show four schemes labeled 4-3-2-1, 3-2-1,

2-1 and DC. A dot indicates that the corresponding DCT coefficient will be used.

e |o|o|jojeo o joile

2
o0
>

b) 4-3-2-1 ¢) 3-2-1

d)2-1 ¢) DC

Figure 3.5: Partial DCT-REs information. e refer to the locations of an 8 x 8 DCT
Requantization Error Block (DCT-REB) where values are taken into
account for the computation of motion compensation and assumed to be
non-zero. Non-marked locations are ignored and assumed to be zero-valued.

For example, in the case of Figure 3.5(c), we assume only the six RE’s on the top-
left corner are nonzero-valued and zero elsewhere and refer to it as the 3-2-1 scheme. For
the DCTTTM algorithm, the 3-2-1 scheme implies the computation of one motion-
compensated REB from six RE’s in each of the four overlapped REBs in the reference
frame. Thus, a total of twenty-four RE’s are used. Applying this scheme to Equation

3.15, Exc (now call it Eyc 32;) becomes:
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12 .
Eye = ZZ £ Cin X i (3.24)

For each RE, there is a () matrix associated to the transformation. Therefore,
rather than having a composite-matrix W of size 64 x 256 where all four REBs locations
are taken into account, the matrix W is shrunk to 64 x 24. Further computational
reductions can be achieved by applying the partial information scheme to the motion-
compensated REB; of the 64 REs coefficients, only the six located in the top-left corner
designated by the 3-2-1 scheme are assumed to be non-zero value. By doing so, the size
of the composite matrix # can be scaled down from its original 64 x 256 to 6 x 24. The
computational complexity of one motion-compensated REB is thus reduced to a simple

matrix-vector multiplication of 6 x 24 times 24 x 1. The Equation of (3.24) becomes:
. 23
Zy = zei XWayy; (3.25)
i=0
where ¢; again for 0<i<23 is the DCT-RE’s of the four overlapped MB #°, ¥/ /2. ¥ as
per 3-2-1 scheme, W3,y is the 6 x 1 DCT vector derived from the ith column of the 64 x

24 matrix Wsy; and Z,is the motion-compensated DCT-REB. The direct

implementation of Equation (3.18) matrix-vector multiplication requires 24*6 = 144
mults and 23*6 = 138 adds. Table 3.4 outlines the computational cost for the five

schemes:
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Table 3.4: Computation cost in term of mult-and-add count for different partial
information scheme

Size of the composite- Mult. Add % of Mult Count

matrix (row x col) Count Count | reduction relative to
8x8

8x8 64 x 256 16384 16320 N/A
4-3-2-1 10 x40 400 390 97.56%
3-2-1 6x24 144 138 99.12%
2-1 3x12 36 33 99.78%
DC 1x4 4 3 99.98%

This section has examined the potential savings in computation to be reaped by
neglecting the errors in some DCT-REs in the reference frame and in omitting the
calculation of the effect of all errors on certain DCT coefficients in the residue of the
current frame under different schemes. In the next section, the cost in both subjective and

objective quality implied by omitting these coefficients is examined.

3.5. SIMULATION STUDY ON THE IMPACT OF DIFFERENCE SCHEMES OF

PARTIAL INFORMATION USED TO VIDEO QUALITY

Both subjective measure and objective measure are used to assess the tradeoff
between computational cost and video quality, when one considers only partial DCT-RE
information, The video sequence Table Tennis is simulated. The MoMuSys MPEG-4
encoder and decoder software V1.0 [26] are used in the simulations. Only integer (full)
pixel motion estimation is employed limiting the motion vector to only 64 possible
displacements with respect to the top-left corner pixel location of the top-left block of the
four straddled blocks. IPP...IPP structure with M=1 (Number of B-VOPs [M-1] between

two consecutive P-VOPs) and N=15 (Number of P-VOPs [M-1] between two consecutive
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I-VOPs) transcoding from SMbps to 256Kbps for various cases. The transcoder software
was based on the work of Mr. Hong Quan Chen [25] and was modified to implement

different schemes of partial information. The same set of parameters is applied in all the

simulations for the rest of this chapter.

(a) Open-Loop (No )

(c) 2-1 scheme

(e ) 4-3-2-1 scheme (f) Full scheme (all 64 coeffs consdered)

Figure 3.6 (a)-(e): the 61" motion-compensated frame of video sequence Table Tennis
using different partial information scheme

36



Subjectively, the simulation suggests that for an open-loop implementation
(Figure 3.6(a)) without drift correction, the blocking artifacts are clearly noticeable,
severely degrading the visual quality when compared to full pixel drift error
compensation (Figure 3.6 (¢)). While there is still noticeable quality improvement by
employing the 3-2-1 scheme (Figure 3.6 (d)) over the 2-1 scheme (Figure 3.6(c)), there is
virtually no noticeable enhancement in the 4-3-2-1 scheme from the 3-2-1 scheme.

Figure 3.7 shows the average PSNR for Table Tennis using different schemes in
the transcoding process. The curve in Figure 3.7 exhibits an enhancement of around 1dB

as one moves from one scheme to the next.

Figure 3.7: Tennis 150 frames 5M->256K
Transcoding using different schemes for motion
compensation
28 ;‘
V4
~ 26 —
m 7
3 4
4 —— —
22
i
20 '
Open | DC only 2-1- 3-2-1- 4-3-2-1 Full
—— 21.22 21.86 22.62 23.53 2435 27.38
Scheme

Figure 3.7: Average PSNR for Tennis 150 frames Transcoding using different
schemes for motion compensation
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This section has examined the cost in quality, measured both subjectively and
objectively, in either neglecting the effects of errors in some DCT-RE coefficients in the
reference frame, or in omitting the calculation of the effect of all errors on certain DCT
coefficients in the residue of the current frame. Given our goal is to reduce the
computational cost to the greatest extent possible (99.12% gain in computational saving
when comparing with full 8 x 8 full information scheme) while minimizing video quality
degradation, the analysis in the previous two sections suggest that the 3-2-1 Scheme
provides a fair balance between these conflicting requirements. For the rest of this thesis,
the 3-2-1 Scheme is the algorithm used for implementing the MC-DCT module.

In addition to employing the 3-2-1 Scheme, further computational savings may be

achieved by reducing the precision of constants in the DCT Correction Matrices (DCT-
CMs) Q In the next section, an appropriate quantizer design and the effect of the

subsequent quantization inherent in transcoding on video quality are examined.

3.6 QUANTIZATION OVER CONSTANT TRANSFORMED COEFFICIENTS

The precision in bits is a very important parameter for hardware implementation.
Each additional bit of precision costs extra resources. To further reduce computations this
thesis considers heavily quantizing the constants in the DCT-CMs Q ,

3.6.1. Design of Quantizer for the elements of DCT-CMs

The design of an appropriate quantizer for these constant coefficients should
depend on the characteristics of these matrices. First, there are many zeros within these
matrices, thus a zero reconstruction level is required. This suggests a mid-step quantizer.

However, the drawback to mid-step quantizer is that there is always an odd number of
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reconstruction levels. Thus, in a hardware implementation, the reconstruction levels can
not be economically represented in a base-two numerical system.

In the following, if there are n bits to the right of the binary point we say that we
are using n bit precision. Note that in fact, an extra bit is required. Specifically n bit
precision requires n+1 bits. For example, if 2-bit precision after binary point is used (ie.
Step size of 0.25) to quantize the DCT-CM constants, 7 < 20*D=g distinct elements
result; they are 1, 0, £0.25, 0.75, £0.5 (notice that -0.75 and -1 never appear in
examining all DCT-CMs). In other words, these quantized values can be encoded using 3

bits only. Table 3.5 shows one possible encoding scheme:

Table 3.5 Possible encoding scheme for DCT-CM
constants of 2-bit precision with one integer bit
Actual Quantized Value | Encoded Value in binary
0 000

-0.25 001

-0.5 010

0.25 011

0.5 100

0.75 101

1 110

Inside each of the 64 DCT-CM’s there are only a finite number of distinct values.
As these values are more heavily quantized, there will be fewer and fewer distinct values.

Figure 3.8 shows the result by exhaustively counting the number of distinct values in all

64 DCT-CM’s for different bit-precisions.
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1200

1000 r

800 /
600 /
400 A
200 /

dou

3|4 |56 |78 910111213 |14 15|16 |ble
(64)
| st Actual number of DCT-CMconstants | 4 | 7 | 14 | 24 | 43 | 76 (128195294377 | 436 | 465 | 488 | 497 | 498 | 498 )1103

Maximum number of encoding 3 | 7 | 15| 31| 63 | 127|255 511 [1023/2047|4095|8191|1638|3276|6553(1E+0/2E+1
element for mid-step quantizer 317|866 (89

n-bit precision after binary point

Number of distinct elements

Figure 3.8: The relation between the number of bit-precision (after binary point)
used and the number of resulted distinct quantized DCT-CM elements
It should be noted from Figure 3.8, with 24" -1 bit budget, (except for one bit
precision scheme), all other precision schemes could safely and economically encode the
quantized DCT-CM constants.
In the next section, different precision schemes are employed to run the
simulations against five video test sets to assess the impact of PSNR quality versus bit

precision.

3.7. SIMULATION RESULTS OF PSNR PERFORMANCE FOR DCTTTM-BASED MC-DCT

WITH N-BIT PRECISION AFTER BINARY POINT

40



Here simulation results are given that examine the various partial information
schemes (DC only, 2-1, 3-2-1 and 4-3-2-1), as well as different bit precisions. Figure 3.9
to 3.12 shows the PSNR video quality measure for five video sequences, Table Tennis,
Flowergarden, Football, Miss America, and Mobile. Note again the horizontal-axis

represents the bit precision used after the binary point.

i

X5

55

248

Luminance
PSNR (dB})

1B

eaegonnas O 21853 | 21861 2186 |21586 |21855 | 21850 | 2165 | 21850 | 21858 | 21850 | MED | 2185 (21850 | 2183 | 21580 | 185 | 2183
semethomn ] =1 RRG[2LBO52I60 [AI6L | NAW |2 FE 2250 [ IIE2 JA2ED [WEE | WA | 22B2 2221 | N ER | R EB 2268 12268
i (3 321, |2AAR 2300|235 23523 | 233 |23 D2 23524 | 23505 |3 RGPS DDA 2ISH PRI 3R/ B R |23 84 23825
oo 3 431 | Q4B | 2A2R 24335 | 2435 (2L T[40 | 20300 | 2432 [M 2| A B2 2AAS W 2430 [T T |2er 238
spoans. FY | FIN| ST 270 |27 295 | 22347 | 16 | 27364 (27363 |17 331 | 27301 | 27.383| 27,383 |27 360 | 27 354 | 27 362 | 27,351 21381

Bit Precision after Binary Point

Figure 3.9 PSNR measure on transcoding Table Tennis using different partial
information schemes for motion compensation
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Figure 3.12 PSNR measure on transcoding Flowergarden using different

partial information schemes for motion compensation
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Figure 3.13 PSNR measure on transcoding Mobile using different
partial information schemes for motion compensation
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Surprisingly the reduction in bit precision for the DCT-CMs do not severely affect
the PSNR measure among the five test sets. In fact, the only noticeable gain (around 0.1
to 0.2 dB improvement in PSNR) occurs in the most significant digits (up to three digits
after binary point) of the DCT-CMs constants. Further increases of the bit precision do
not yield any significant improvement in PSNR measure.

These observations construct a solid grounding to achieve considerable
computational savings in the hardware implementation by quantizing the DCT-CMs
constant to only the most significant digits.

On the basis of the analyses and simulation results from Section 3.4, 3.5, 3.6 and
3.7, the 3-2-1 partial information scheme along with the 2-bit precision for quantized
DCT-CMs constants will be used for the hardware implemetation of the MC-DCT

module in the next chapter.

3.8. CHAPTER SUMMARY

In this chapter, the MC-DCT algorithm introduced in the literature by Chang and
Messerschmitt’s was reviewed; a different approach, DCTTTM-based MC-DCT
algorithm by Hong Quan Chen [25], was also described. Based on the assumed sparse
nature of the Requantization Error Block (REB), the 3-2-1 partial information scheme
was integrated into the DCTTTM-based algorithm to process the MC-DCT operation.
Further reductions in computing power were achieved by the quantization of the DCT-
CM constants into two bit precision.

In the next chapter, details are given on the hardware design of the MC-DCT

module.
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Chapter 4

IMPLEMENTATION OF MC-DCT MODULE

In this chapter, the data-dependent processing concept is applied to implement the
MC-DCT module for the 3-2-1 scheme with the DCT-CM constants quantized to two bit
precision after binary point. Further reduction of power consumption can be achieved by
carefully designing the width of the data bus of the incoming coefficients - twenty-four
reference DCT-REs (DCT-Requantization Error). Since our focus is on the arithmetic
level and implementation level, no optimization on the circuit level or technology level is
made. The optimization of the implementation level is done on the code-level via the
VHDL hardware programming language and the Synopsys compiler was chosen as the
tools for ultimately synthesizing the module into a Xilinx FPGA Virtex II XC2V3000
model [27]. Notice that the choice of FPGA model is of little importance as the design
can be applied to different FPGA technologies.

Section 4.1 outlines the MC-DCT block diagram with the interconnectivity of all
the sub-modules. Detailed discussion of each component of the MC-DCT module takes
place in Section 4.2; optimization techniques applied to these components in order to
reduce power consumption are studied. In Section 4.3, the synthesized results of the
custom design with Xilinx FPGA device of the MC-DCT module are presented. These
results are to be compared to the standard design where the same MC-DCT unit is

implemented in a conventional multiplier and adder.
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4.1. Block Diagram of MC-DCT module

The core function of MC-DCT is to perform Motion Compensation in the DCT
domain. By applying the 3-2-1 scheme with the DCT-CM constants quantized to two bit
precision after binary point to the MC-DCT module proposed in Chapter 3, the

implementation can be modeled mathematically by Equation (4.1) as follow:

) 2
Zy = Zei XWa, 4.1)

i=0
where ¢; for 0<i <23 is the DCT-RE’s of the four overlapped MB #’, ¥ #* /’ as per the
3-2-1 scheme and W3y, is the 6 x 1 DCT vector derived from the ith column of the 64 x
24 matrix W3;;. Note that the derivation of Equation (4.1) can be referenced to Section

3.4. Alternatively, Equation (4.1) in its vector form can be expressed as

A

Zyy =Wy ¥XE 4.2)
where E is a vector of size 24 x 1 composed of twenty-four DCT-REs from the four
overlapped MB and W3;; is the DCT-CM matrix of size 6 x 24. The Z,,, is a MC-DCT

vector of size 6 x 1 corresponding to the six motion-compensated DCT-RE elements
from the top-left corner of a single block designated by the 3-2-1 scheme. Essentially,
Equation (4.2) is a matrix-vector multiplication and its execution involves two simple
steps. First, the elements in each row (from left to right) of W3, get multiplied to the
vector E (from top to bottom). Since the multiplication taking place from a given row
does not depends on the result of any other neighbouring rows, the multiplication for
each row can be carried out simultaneously. The second step is to generate the resulting
vector by summing all the intermediate products previously computed for each row. In

our case, such multiplication yields a resulting vector of size 6 x 1. It should be noted that
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this vector is essentially a single block of DCT-RE with the top left corner of six
coefficients and all others zero.

The hardware design of MC-DCT module follows closely these two execution
steps illustrated for Equation (4.2). Figure 4.1 shows the block diagram of the design. For
concurrent processing, the number of the MC-DCT modules needed to be deployed
depends on the size of the video frame. For example, a frame of 350x288 can be
partitioned into 1584 8 x 8 blocks, therefore a minimum of 1584 MC-DCT modules are
required. In addition, the design is intended to operate in synchronous clock-driven mode

to prevent any race condition from happening.
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Based on Figure 4.1, the MC-DCT hardware design can be divided into three
major units; they are:

1. Encoded DCT-CM Storage Unit (Section 4.2.1.)
2. Logic Multiplication Unit (Section 4.2.2.)
3. Logic Addition Unit (Section 4.2.3.)

These three units are discussed in more detail in the next Sections. Beside the
attempt at applying different optimizing techniques to these three primary units to reduce
power consumption, the width of the data bus for the sub-module interconnection is also
carefully designed to achiece resource savings. The first concern is to minimize the width
of the data bus used to route the twenty-four DCT-REs data inputs (Q; to Qx4 in Figure
4.1), in order to reduce the workload on the Logic Multiplication Unit and later Logic
Addition Unit and hence, to attain the goal of reduced power consumption.

The size needed to store a single DCT-RE’s is governed by the quantization error,
introduced from the Q; module due to a coarse quantization procedure. By exhaustively
going through all possible input values within the range from 0 to 2048 and extracting the
largest value (in an absolute sense) for each of step size QP from 1 to 31 using the H.263
quantization scheme from the transcoder software code introduced in Chapter 3, the
correlation between the maximum value of DCT-RE and corresponding QP can be

obtained. Figure 4.2 shows this relationship.
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Figure 4.2 Max DCT- ReQuantization Error vs StepSize QP for H.263
Quantization Scheme
Neglecting the overloading noise, Figure 4.2 suggests that the size of DCT-RE is
upper-bounded by 76. Table 4.1 shows the maximum magnitude of DCT-RE simulated

from the video sequences Football, Flower, Miss American, Tennis, Mobile and

Container respectively.

Table 4.1 Maximum DCT-RE for H.263 scheme
H.263
Intra Inter

Football 45 76
Flower 27 76
Missa 21 39
Tennis 16 76
Mobile 16 76
Container 45 31
Bit 7 bit required+1sign bit

Requirement:
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This analysis shows that a data bus width of 8 (7 magnitude bit with 1 sign bit) is

sufficient to ensure that no loss of DCT-RE precision occurs.

4.2, CusTOMIZED COMPONENT FOR LOW POWER MC-DCT DESIGN

To achieve a low power implementation of the MC-DCT module, the design of
each component is targeted to minimize the number of dynamic operations as possible.
4.2.1. Encoded DCT-CM Storage Unit

In Section 3.6, it is shown that we can safely and economically use a 3-bit budget
to encode a single DCT-CM constant with the scheme of 2-bit precision after binary point
which normally requires a 4-bit budget. Table 4.2 shows the pre-defined map between the

actual value of the DCT-CM elements and the encoded one:

Table 4.2: Element of DCT-CM (DCT-Constant Matrix) in 2-
bit precision after binary point map
Decimal 2-complement | Encoded in Encoded in 2-
binary Decimal complement binary
0 0.00 0 000
-0.25 1.11 1 001
-0.5 1.10 2 010
0.25 0.01 3 011
0.5 0.10 4 100
0.75 0.11 5 101
1 N/A 6 110

The encoded DCT-CM elements are to be hard-wired in the internal RAM of the

device and loaded into registers. Following the steps outlined in Section 3.6, one of the
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DCT-CM matrix, assuming MV,o, = 0, MV,,; = 2, is composed of elements shown in

Table 4.3

Table 4.3: DCT-CM matrix for MVrow =0 and MVcol =2

1 0 0 -0.25 00256 0 0 0 0 00 025 0 0 025 0 025 0 0 0 0 0 O
0 075 0 0 -0.25 0 0 00 00O 0 0 0 0 025 000 0O OO
0 01 0 0 0 0 00 0 O00O0 0 0 0.25 0 0 0 00 0 0 OO
0.26 00 075 0 05 0 0 0 0 00 -0.25 0 0 -025 0025 0 0 0 0 0 O
0 025 0 0 075 00 00 0 Q00 0 -0.25 0 0 -0.25 00 00O OTUWO
-0.25 00 05 0 05 0 0 0 0 00 025 0 0 025 0 025 0 0 0 0 0 O

In VHDL, these elements are defined as a constant array of standard logic vector
type. As an example, the second row of the above matrix based on Table 4.2 map is

encoded as

constant TCM 1 1 : ty24 3 :=
("OOO"’ "101", IIOOO"’ "OOO", "001", "OOO", "000", "OOO",
"000", "000", IIOOO", "OOO"’ IIOOO"’ "OOO", "000"’ llOOO",

"Oll"' "OOO", "000", "OOO", "000", "OOO", "OOO", "OOO") ;
according to Table 4.2 where ty24 3 is defined as
type ty24_3 is array (0 to 23) of std logic_vector(2 downto 0);

The selection of a single DCT-CM (contain 6*24 elements) among a total of
sixty-four DCT-CMs is driven by the MV(motion vector). Since the subsequent
multipliers and adders are customized to work with the encoded values, therefore there is

no performance penalty incurred for later the decoding process.
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4.2.2. Logic Multiplication Unit

Multiplication is indisputably one of the most basic yet power-demanding
arithmetic operations. Optimizations subjected to different aspects of performance
improvement (i.e. area, speed) to implement multiplier modules have been researched for
decades [28][29][30][31]. In this thesis, the multiplier unit is tailored specifically to the
nature of the operands (both DCT-CM elements and DCT-REBs) which are either in a
finite range (one out of seven possibility for the encode DCT-CM elements) or contain
substantial zero elements (DCT-REs). This data-dependent design concept is applied to
the multiplier unit by means of logical data routing as opposed to performing the
conventional shift-and-add multiplication and thus supporting the power reduction goal.

In Section 3.4, it was found that the average percentages of non-zero coefficients
decrease as the location of the coefficients moves away from the top left corner of the
DCT-REB. With this anticipation, several data analyses for both DCT-CM’s and DCT-
REB are conducted to quantify the occurrence of zero coefficients. Figure 4.3, 4.4, 4.5
shows the histograms of DCT-CM’s constants, the intra frame and the inter frame of
DCT-RE’s coefficients from the video Table Tennis respectively. Table 4.3, 4.4, and 4.5
tabulate the result to show the percentage of occurrence of the associate values from

Figure 4.3, 4.4 and 4.5 correspondingly.
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Table 4.4 Percentage of occurrence of the associated values for
DCT-CM’s constants

VALUE FREQUENCY % OF FREQUENCY (%)
-1 0 0

-75 0 0

-0.5 103 1.23

-0.25 1223 14.64

0 5609 67.16

0.25 1232 14.75

0.5 142 1.7

0.75 31 0.37

1 12 0.144




Table 4.5 Percentage of occurrence of the associated values for DCT-RE’s
coefficients Intra frame

VALUE FREQ % FREQ VALUE FREQ % FREQ
-16 305 0.022 0 1282594 92.013
-15 0 0.000 1 403 0.029
-14 5564 0.399 2 10506 0.754
-13 0 0.000 3 892 0.064
-12 14931 1.071 4 5861 0.420
-11 152 0.011 5 233 0.017
-10 2680 0.192 6 4921 0.353

-9 433 0.031 7 595 0.043
-8 8578 0.615 8 8701 0.624
-7 131 0.009 9 666 0.048
-6 4113 0.295 10 2729 0.196
-5 366 0.026 11 56 0.004
-4 5205 0.373 12 15943 1.144
-3 1028 0.074 13 0 0.000
-2 10203 0.732 14 5455 0.391
-1 369 0.026 15 0 0.000

16 307 0.022
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Table 4.6 Percentage of occurrence of the associated values for DCT-RE’s

coefficients Inter frame

%

%

%

VALUE | FREQ FREQ VALUE FREQ FREQ VALUE FREQ %FREQ | VALUE FrReQ FREQ
-76 816 | 0.0047 -38 8996 0.052 0 7287865 | 42.057 39 8615 | 0.050
-75 877 | 0.0051 -37 9587 0.055 1 623957 3.601 40 7797 | 0.045
-74 927 | 0.0053 -36 10428 0.060 2 483491 2.790 41 7483 | 0.043
-73 997 | 0.0058 -35 13461 | 0.078 3 436051 2.516 42 6863 | 0.040
-72 1090 | 0.0063 -34 11415 | 0.066 4 286076 1.651 43 6533 | 0.038
-71 1080 | 0.0062 -33 13586 | 0.078 5 562096 3.244 44 5943 | 0.034
-70 1147 |} 0.0066 -32 13724 | 0.079 6 215329 1.243 45 7035 | 0.041
-69 1269 | 0.0073 -31 15119 | 0.087 7 170363 0.983 46 5247 | 0.030
-68 1280 | 0.0074 -30 17946 | 0.104 8 161655 0.933 47 4880 | 0.028
-67 1380 { 0.0080 -29 19677 | 0.114 9 451864 2.608 48 4606 | 0.027
-66 1565 § 0.0090 -28 21315 0.123 10 131764 0.760 49 4246 0.025
-65 1534 | 0.0089 -27 30227 | 0.174 11 204189 1.178 50 4102 | 0.024
-64 1713 | 0.0099 -26 28065 0.162 12 99957 0.577 51 4083 0.024
-63 1800 | 0.0104 -25 27079 0.156 13 112959 0.652 52 3494 0.020
-62 1890 ¢ 0.0109 -24 33426 0.193 14 92798 0.536 53 3327 0.019
-61 2019 | 0.0117 -23 32344 0.187 15 107415 0.620 54 3164 0.018
-60 2139 | 0.0123 -22 38862 | 0.224 16 62118 0.358 55 2946 | 0.017
-59 2352 | 0.0136 -21 64754 0.374 17 79157 0.457 56 2785 0.016
-58 2280 | 0.0132 -20 60436 0.349 18 75839 0.438 57 2636 0.015
-57 2617 | 0.0151 -19 71739 | 0.414 19 72498 0.418 58 2507 | 0.014
-56 2754 | 0.0159 -18 74612 0.431 20 59564 0.344 59 2352 | 0.014
-55 3050 | 0.0176 -17 79862 | 0.461 21 65664 0.379 60 2170 | 0.013
-54 2993 | 0.0173 -16 61721 0.356 22 39360 0.227 61 2061 0.012
-53 3322 | 0.0192 -15 106087 | 0.612 23 32675 0.189 62 1851 | 0.011
-52 3527 | 0.0204 -14 92815 | 0.536 24 33955 0.196 63 1848 | 0.011
-51 3940 | 0.0227 -13 113671 | 0.656 25 27627 0.159 64 1701 0.010
-50 4215 | 0.0243 -12 98560 | 0.569 26 28742 0.166 65 1611 | 0.009
-49 4081 | 0.0236 -11 202918 | 1.171 27 31559 0.182 66 1608 0.009
-48 4560 | 0.0263 -10 130399 | 0.753 28 22031 0.127 67 1359 | 0.008
-47 4907 { 0.0283 -9 451746 | 2.607 29 20141 0.116 68 1370 | 0.008
-46 5259 | 0.0303 -8 161807 | 0.934 30 17729 0.102 69 1296 0.007
-45 6817 | 0.0393 -7 166815 | 0.963 31 15076 0.087 70 1157 | 0.007
-44 6010 | 0.0347 -6 214862 | 1.240 32 13789 0.080 71 1131 0.007
-43 6502 | 0.0375 -5 562754 | 3.248 33 13904 0.080 72 1035 | 0.006
-42 6759 | 0.0390 -4 284761 | 1.643 34 11686 0.067 73 991 0.006
-41 7282 | 0.0420 -3 434884 | 2.510 35 13590 0.078 74 981 0.006
-40 7730 | 0.0446 -2 482793 | 2.786 36 10656 0.061 75 920 0.005
-39 8668 | 0.0500 -1 623719 | 3.599 37 9513 0.055 76 828 0.005

38 9100 0.053
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From Table 4.3, 4.4 and 4.5, it should be noted that the percentages of zero
coefficients occurrence are 67.16%, 92.013% and 42.057% for DCT-CM elements, Intra-
frame, Inter-frame of Table Tennis respectively. From these results, we may infer that
there is a near 50% probability that one of the operands, either the incoming DCT-RE’s
coefficients or the DCT-CM’s constants, is zero. Thus, the first power consumption
optimization of the Logic Multiplier sub-module is to implement zero bypassing logic to
detect occurrences of the zero coefficients for both operands. In VHDL, the zero detector

is performed in bit-wise gate-level comparison as shown below:

is zero <= (((Q(0) NOR Q(1)) AND (Q(2) NOR Q(3))) AND ((Q(4) NOR

Q(5)) AND (Q(6) NOR Q(7)))) OR ( NOT(sel(0) OR sel(l) OR sel(2)));

where is_zero is of type std_logic to signify no multiplication should be preformed if
one or both of the operands is/are zero. Q is the eight-bit incoming DCT-RE of type
std_logic_vector (7 down to 0) and sel is a single three-bit DCT-CM element of type
std_logic_vector(2 downto 0).

The second optimization for the Logic Multiplier sub-module, as its name
suggests, is to implement a multiplication-free logic based multiplier. The premise of
such a design comes from the fact that the DCT-CM’s constants are within a finite set of
seven elements according to the 3-2-1 2-bit precision scheme. That is, the incoming
DCT-RE’s coefficients, call it the multiplier, are to multiply with one of the seven DCT-
CM'’s elements, call it the multiplicand, fed from the storage unit. Also notice that the
seven elements are, in fact, the reconstruction levels of 0, 0.25, 0.5, 0.75, -0.25, -0.5 and
1 and the multiplication of such operands requires no more than three basic operations;

shift, two-complement and add.

58



The multiplication of an n-bit binary number with an m-bit binary number results
in a product that is up to m + n bits in length for both signed and unsigned representation.
In Section 4.1, it was shown that at least eight bits are required to store a single DCT-
RE’s element. Thus, with the two-bit precision scheme used for a DCT-CM element, a
data bus width of 8+3=11 bits is needed. The width of the data-bus for the product has,
however, been designed to be twenty bits wide by appending an extra bit, call it is_zero
bit, at the MSB of the product to signify whether the result product is zero or not. This
manoeuvre is intended to bypass any dynamic operation and reduce the dynamic power
usage in the expense of maintaining the state of an extra bit for later logic addition
processing. Table 4.6 indicates the operations required to achieve the multiplication in

bit-level. Figure 4.6 outlines the implementation detail of the logic multiplier graphically.
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Table 4.7 Operations required to achieve the multiplication for different DCT-

CM Multiplicand

Let the multiplier be 4 = aya,a,a,a,a,a,a, [8 bits]and the product be
P = p\,Ds Dy 1 PsPsPsPs P2 Py ® PP, [11 bits + 1 is_zero bit]

where o is the binary point

Multiplicand | Operations required Result Product
[3 bits]
0 None DPy=P,=DP,=D,=P,=D, =
:p4 =p3 =1)2 =pl =1)_l =p_2 =0
0.25 Shift 4 right by two p,=1 p,=0 p=0 p =0
by=a, p;=a, p,=a;, p,=a
p,=a, p =4, p,=a, p,=4q
0.5 Shift 4 right by one =1 p,=0 p,=0 p =a
p6=a7 p5=a6 p4=a5 p3=a4
p,=a p=4 p,=a p,=0
0.75 Shift 4 right by two plus Not immediate available
Shift 4 right by one
-0.25 Shift A4 right by two, Not immediate available
then XOR each bit and ADD
ONE
-0.5 Shift 4 right by one, Not immediate available
then XOR each bit and ADD
ONE
1 None pm=1 p9=0 P, =G, p, =aq,
p6=a6 p5=a5 p4=a4 p3=a3
p,=a, p=a p,=0 P, =0
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8
Logic Multiplier Unit

3
Selectine [2:0} -—7L' 1_1

IS_ZERO Detection for both operands (Q and X)

IS_ZERO is asserted to '1' when either Q is zero or selLines is "000"

(zero-bypassed)

MULT_REG: Qint[7:0]
Input will be latched when

REG_RESULT [9:0]

The multiplexor in actual implementation

IS_ZERO='0' is done in bit-wise

"00000000.00" \/

SelLines

ShiftR(2,Q") & 2-Comp — | 1 Tﬁiﬁiﬁfﬁiﬁfnw
ShiftR(1,Q") & 2-Comp ——— | 2 10
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'1'=> NonZero
'0'=> Zero

one extra Encoding bit to signify if the result is zero or not

Figure 4.6 Overall design for the Logic Multiplier module
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As we can see in Table 4.6, the multiplication is trivial when the multiplicand is
either 0, 0.25, 0.5, or 1. No real operation is required except to “wire” the value properly
to the output register. In the case where the multiplicand is -0.25 or -0.5, the multiplier
needs to be two-complemented by negation and then add one. The negation is achieved
by XORing every bit of the multiplier with ‘1’ and the add-one operation uses the carry
look-ahead algorithm with the prior knowledge that one of the operands is 1. The
implementation of this adder can be found in Appendix A. For the multiplicand of 0.75,
the operation involves the addition of half of the multiplier and a quarter of the multiplier.
This addition is performed with a ripple-carry adder.

4.2.3 Logic Addition Unit (LAU)

For power efficiency, an effective strategy is to minimize the amount of hardware.
This implies spreading the computation over a longer time interval through serialization
in order to reduce the power consumption. On the other hand, a reasonable time
performance is also required since the carry propagations are critical in the performance
of the overall architecture. To gain a balance between these constraints, we decide to opt
for the carry-save methodology in performing the arithmetic addition. This methodology
regulates all carry propagations, sums three or more operands in a redundant and carry
propagate free manner, and delivers a very short critical path delay, thus rendering a
considerable high limit for the operating frequency. By applying the carry save adders
(CSAs also called as full adders or 3-2 counters) in a Wallace tree structure [32], any
number of operands can be added and reduced to 2 numbers without carry propagate
adder. A single carry propagate addition is needed only in the final stage to sum two

numbers into a final result.
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Figure 4.7 The deployment of summing 24 operands via customized 3:2 CSAs in a carry
propagate free manner

From Figure 4.7, notice that seven stages of 3-2 compressor is required to produce

the final two operands for the last summation. The final two operands are then added via
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the pseudo 10-bit carry-propagation adder to render the result. The name ‘pseudo’ come
from the analysis done in Section 3.7 indicating that the range of a single DCT-RE is
limited to a maximum value of 76, hence, the MSB possibly resulting from the addition is
neglected. Since the operation of MC-DCT is targeted to full-pixel resolution for motion
compensation, the fractional part is truncated from the final result to yield an 8-bit
outcome.

Logically, the probability of hitting a zero operand is reduced as CSA compresses
the operands into lower stages. Under this premise, Logic Addition Units are only
deployed on the first stage to maximize the diminishing return.

A Logic Addition Unit is composed of one 3-2 counter, two zero-detection units

and two 8-to-2 multiplexers. Figure 4.8 shows the LAU design.

/‘/ 3-bit

"00000000.00™

o
Encl Enc2 Enc3 1
OP 2 2
OP1 OP2 OP3
3
OP1 _ |4
o— |5
3:2 CSA 6 zero
Adder Carry  10-bit *—— detection +

|7

o ———@—— | 0

o— |1

o— |2

OP 3 3

Aout2
1 4 [10:0)
*o—- |5
zero
OP2 6 detection +
g L=

Figure 4.8 Logic Addition Unit design
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The deployment of the two multiplexers is to implement the designs zero-bypass
logic as of the Logic Multiplication Unit. Table 4.7 shows the function table of the MUX
design with 3-bit select line, eight inputs and two output registers, 4Outl, AOut2. The

MSB of AQutl and AOut2 are the encoded is_zero bit.

Table 4.8 The function mapping for the two MUX inside the LAU design

is zero bit
Operand #1 | Operand #2 | Operand #3 AQutl AQu2
0 0 0 000000000.00 000000000.00
0 0 1 000000000.00 Operand #3
0 1 0 Operand #2 000000000.00
0 1 1 Operand #2 Operand #3
1 0 0 Operand #1 000000000.00
1 0 1 Operand #1 Operand #3
1 1 0 Operand #1 Operand #2
1 1 1 Carry of Sum of

(Op#1+O0p#2+0p#3) (Op#1+Op#2+0p#3)

The formation of the is_zero bit is again constructed by ORing all the bits of the
Aoutl and Aout2 respectively. The catry-propagation paradigm is not only implemented
in the operand level as shown in Figure 4.7, but also employed to carry out the 3:2 CSA
adder within each LAU in bit level. By using a dot diagram, Figure 4.8 shows the
graphical representation of compressing three 10-bit inputs into two via ten full adders
with no carry-prorogation delay.

10 9 8 7.6 6 4 3 2 10
oo (nlefe oo |e|s s |e Operand A
¢|o w (oo (oo o|e s OperandB

LI

Full Adder

Figure 4.9 dot-diagram of 10-bit 3-2 CSA
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4.3, SYNTHESIS RESULTS OF MC-DCT COMPONENTS

The VHDL code of the proposed MC-DCT module was synthesized using
Synopsys in Xilinx 5.2 source environment with the target device Xilinx VirtexII 3000
series. It is always difficult to compute the dynamic power consumption accurately based
on solely the synthesis tools, the attempt here is to attain some level of understanding and
to obtain the quantitative measurement for the design. Future work may include actually
setting up a testing environment by downloading the design to a Xilinx board and using
an appropriate device to probe the current usage so as to compute the power
consumption.

In order to obtain some comparative measurement, the MC-DCT sub-modules
are also implemented in a conventional standard approach. Under this approach, the
multiplication is carried out by the shift-and-add logic combined with the signed
detection. In the case one or both two operands being are negative, they will be two-
complemented to carry an unsigned multiplication and the final result is to be
complemented to obtain the right sign. As to the addition part of the MC-DCT unit, the
twenty-four-twelve-bit operands are to be summed via ripple-carry adder in five stages in
which each stage reduces half of the operands from the previous stage in succession, the
final output is truncated to render an 8-bit final result.

The synthesis result indicates that the proposed MC-DCT module consumes
545.34mW at 20MHz. The specification and power consumption reported by the
Synposys tool after the synthesis process for the sub-modules of MC-DCT design is

tabulated in Table 4.9.
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Table 4.9 Specification and power consumption of MC-DCT design |
Specification
Operating Voltage 4.75 Volt
Synthesis Library xdc virtex2-6
Proposed data-dependent design
Logic Multiplication Unit Count 144
Logic Addition Unit Count 8
Carry Save Adder Count 14
Power Consumption 545.34mW
Data Arrival Time 13.10ns
Number of Cells 1275
Standard Conventional design
Unsigned Multiplier Count 144
Ripple Carry Adder Count 23
Power Consumption 621.57mW
Data Arrival Time 14.41ns
Number of Cells 1451

From Table 4.9, the proposed design for the multiplication consumes 76.23mW

as time delay reduction, 9.9% and 12.13% respectively.

less power than the conventional scheme, in other word, a 12.26% reduction in power

saving. The proposed design also outpreforms the conventional approach in area as well

The other factor that can affect the power consumption of the module is inevitably

the operational frequency. Table 4.9 illustrates the direct proportionality with the

operational frequency and power consumption for the proposed MC-DCT design.

Table 4.10 Power consumption of MC-DCT module under different

operational frequency

Clock Period (ns) | Operational Frequency (MHz) | Power Consumption (mW)
50 20 545.34
25 40 1090.7
10 100 2743.7
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4.4. CHAPTER SUMMARY

In this chapter, different strategies for minimzing the power consumption of the
MC-DCT module were investigated. Detail design procedures for all the sub-modules
were described. Based on the data-dependant process concept, the zero-bypassing logic is
inserted into the sub-modules of the MC-DCT to reduce the volume of data to be
processed, thereby also reducing the power consumption. Further power saving is
achieved by careful planning of the data-bus width required to ensure the integrity of the
module connectivity while reducing the hardware.

The synthesized result of VHDL code using Synopsys shows the hardware
optimization used in the proposed MC-DCT design is superior compared to the
conventional implementation in all three critical aspects of power, area and time delay,

when both designs are based on the optimized algorithmic approach studied in Section 3.
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5. CONCLUSION AND FUTURE WORK

In this thesis, a data-dependent low-power MC-DCT design is presented. Low
power is achieved by performing optimization on both algorithmic and architectural
levels.

The MC-DCT design is built based on the Hong algorithm for the DDT
transcoder structure with special treatment of the selection of information included to
perform the Motion-Compensation in the DCT-domain. In addition, the design of the
quantizer for the elements of DCT-CMs is also considered to reduce the bit-budget to
perform the MC-DCT operation.

The MC-DCT design is coded using VHDL, and synthesized using Synopsis. No
transistor-level circuit optimization is made. Operating at 4.75V and 20MHz, the MC-
DCT design consumes 545.34mW. Low-power operation is achieved through the
customized design of the internal databus, the implementation of a multiplication-free
module, the 3-2 Wallace tree propagation-delay-free addition map and the logic-based
addition module.

S5.1. CONCLUSION
From the analysis and simulation results, the following conclusion can be drawn about
this thesis:

The reduction of computation complexity for the MC-DCT operation can be
achieved by using only partial DCT-REs information via the DCT-Coeffficient-
Translation-and-Truncation-Transformation-Matrix ~ (DCTTTM)  based  Motion

Compensation algorithm. The employment of the 3-2-1 partial information scheme,
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which takes into account only the top left corner of six coefficients (three from first row,
two from second row and one from third row of a 8 by 8 Requantization Error Block
(REB)) for both the input (the four straddling REBs) and the output (the resulting motion-
compensated REB), appears to render a fair compromise between loss of video quality
and increasing computational load.

The reduction in the bit precision of the constant transform matrix DCT-CM does
not severely degrade the PSNR measurement. Simulations among the five video test sets
show there is virtually no loss in PSNR improvement except when the reduction in the bit
budget occurs in the most significant digits of the DCT-CMs constants. Considerable
computational savings in hardware implementation is achieved by heavily quantizing the
DCT-CMs constant to only the most two significant bits.

Low-power design of the MC-DCT module is achieved through both design and
run time optimization. The integration of the 3-2-1 partial information scheme along with
the 2-bit precision for quantized DCT-CMs constant into the DCTTTM-based algorithm
in processing the MC-DCT operation renders a fair enhancement toward the power
reduction strategy at design time. The run-time optimization is achieved by implemeting
data-dependent bypass logic coupled to a customized logic module to reduce the number
of operations, which in turn reduces the power consumption.

By comparing the data-dependent design with the standard conventional approach
in implementing the MC-DCT module, the synthesized results indicate the proposed
design outperforms the conventional approach by achieving 12.26%, 9.9% and 12.13%

reductions in power, time, and area respectively.
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5.2. PoOSSIBLE IMPROVEMENTS FOR FUTURE RESEARCH

The following lists some of the directions and future work that are considered and

recommended to supplement this research paper.

o Study the effect of the selection scheme for the partial information: The 3-2-1
partial information scheme was chosen based on the study of average percentages
of no-zero coefficients among the five video test sets. In practice, this selection
may well be sub-optimal for any given type of motion picture; a dynamic scheme

selection mechanism would provide the design a wider applicability.

® Setup up a study board to analyze the dynamic power consumption using data-
dependent logic: As discussed in Section 4.3, the accuracy of the power
consumption for a data-dependent design can rarely be obtained through
simulation and synthesis tools. A more representative result should be collected

via a study board with real time data load-in.

® Study possible alternative technology for hosting the proposed MC-DCT design:
Among all the possible strategies to implement a hardware circuit design, the
mainstream remains implementations based on ASICs or FPGAs. In this thesis,
FPGA technology was selected mainly due to its availability. It would be
worthwhile to contrast the design implemented in ASICs to gain a better
understanding of the correlation between the choice of technology and the power

consumption of the design.

71



REFERENCES

[1] S. F. Chang, A. Vetro, “Video Adaptation: Concepts, Technologies, and Open
Issues”, Proceeding of IEEE, Vol. 93, No. 1, Jan. 2005, pp. 148-158.

[2] A. Vetro, C. Christopoulos, and H. Sun, “Video Transcoding Architectures and
Techniques: An Overview”, IEEE Signal Processing Magazine, Mar. 2003, pp18-
29.

[3] S. Notebaert, J. D. Cock, “Bitrate Transcoding Architectures for H.264/AVC
Bitstreams”, Sixth FirW PhD Symposium, Faculty of Engineering, Ghent
University, Nov. 2005, pp. 108-109.

[4] G. Keesman, R. Hellinghuizen, F. Hoeksema, and G. Heideman, “Transcoding of
MPEG bitstreams”, Signal Processing: Image Commun., vol.8, Sept. 1996, pp. 481-
500.

[5] J. Xin, C.W. Lin, and Ming-Ting Sun, “Digital Video Transcoding”, Proceedings of
the IEEE, Vol. 93, No. 1, Jan. 2005, pp. 84-97.

[6] N. Bjork and C. Christopoulos, “Acoustics, Speech, and Signal Processing, Vol 5,
May 1998 pp. 2813 - 2816.

[71 J. Youn, M.-T. Sun, and J. Xin, “Video transcoder architectures for bit rate scaling
of H.263 bit stream”, Proceedings of ACM Multimedia, Nov. 1999, pp. 243-250.

[8] L. Yuan, E. Wu, Q. Chen, S. Li and W. Gao, “The fast close-loop video transcoder
with limited drifting error”, ISCAS ’04 Proceedings of the 2004 International

Symposium on Circuits and Systems, Vol. 3, May 2004, pp23-26.

72



[9]

(10]

H. Sorial, “Thesis Paper: Transcoding of MPEG Compressed Video”, Concordia
University, Montreal, 2001.
Y. Nakajima, H. Hori and T. Kanoh, “Rate conversion of MPEG coded video by re-

quantization process”, IEEE Int. Conf. Image Processing, vol. 3, pp. 408-411, 1995.

[11] O. Werner, “Requantization for transcoding of MPEG-2 intraframes”, , IEEE

[12]

[13]

[14]

[15]

[16]

[17]

Transaction on Image Processing, Vol. 8, Issue 2, Feb. 1999 pp. 179-191.

P. Assuncao and M. Ghanbari, “Post-processing of MPEG2 coded video for
transmission at lower bit rates”, IEEE Int. Conf. Acoust., Speech, Signal
Processing, ICASSP’96, vol. 4, May 1996, pp. 1998-2001

“MPEG-4 Version 2 Visual Working Draft Rev2.0”, ISO/IEC JTC1/SC29/WG11
N1993 Feb. 1998.
J.B. Lee and B.G. Lee, “Transform Domain Filtering Based on Pipelined Structure,”
IEEE Trans. On Signal Processing, pp.2061-4, Vol. 40, No. 8, Aug. 1992

S. F. Chang and D. G. Messerschmitt, “Compositing motion-compensated video
within the network”, in IEEE 4™ Workship Multimedia Commun, Monterey, CA,
Apr. 1992

S.F. Chang, W.L. Chen, and D.G. Messerschmitt, “Video Compositing in the DCT
Domain”, IEEE Intern. Workshop on Visual Signal Processing and
Communications, Raleigh, North Carolina, Sept. 1992.

S. Wee and B. Vasudev, “Compressed-domain reverse play of MPEG video
streams,” SPIE International Symposium on Voice, Video, and Data

Communications, Nov. 1998, pp. 237-248.

73



[18] S.Wee and V. Bhaskaran, "Splicing MPEG video streams in the compressed-
domain", IEEE Workshop on Multimedia Signal Processing, Jun. 1997.

[19] K. Wang and J. W. Woods, “Compressed Domain MPEG-2 Video Editing”,
Proceedings 2000 International Conference on Image Processing, Vol. 1, Sept. 2000
pp. 1016-1019.

[20] S.-F. Chang and D. G. Messerschmitt, “Manipulation and Compositing of MC-
DCT compressed video”, IEEE J. Select. Area Commun., vol 13 Jan. 1995. pp. 1-11

[21] N. Merhav and V. Bhaskaran, “A fast algorithm for DCT-domain inverse motion
compensation,” IEEE Int. Conf. Acoust., Speech, Signal Processing, Atlanta, GA,
May 1996, vol. 4, pp. 2307-2310.

[22] P. Assuncao and M. Ghanbari, “A frequency-domain video transcoder for dynamic
bit rate reduction of MPEG-2 bit streams”, Trans. On Circuits Syst. Video Technol.,
vol. 8, no. 8, Dec 1998, pp. 953-967.

[23] S. Liu and A. C. Bovik, “Local Bandwidth Constrainted Fast Inverse Motion
Compensation for DCT-Domain Video Transcoding”, IEEE Trans. on Circuit
Systems and Video Technology, No.5, Vol. 12, May 2002.

[24] J. Song and Bo. L. Yeo, “A Fast Algorithm for DCT-Domain Inverse Motion
Compensation Based on Shared Information in a Macroblock”, IEEE Transaction
on circuits and system for video technology, Vol. 10, no. 5, August 2000

[25] H. Q. Chen, “Thesis Paper: Transcoding of MPEG-4 Compressed Video”,
Concordia University, November, 2003.

[26] MoMuSys Codec, “MPEG4 Verification Model”, ISO/IEC JTC1/SC29/WG11

Coding of Moving Pictures and Associated Audio MPEG 97, March 1997.

74



[27] Xilinx Cooperation, “Virtex-II Complete Data Sheet”, Version 3.4, Mar. 2005.

[28] Gary.W.Bewick, “Fast Multiplication: Algorithms and Implementation”., PhD
Thesis, Department of Electrical Engineering: Stanford University, February 1994.

[29] M. Ito, D. Chinnery, and K. Keutzer, “Lower Power Multiplication Algorithm for
Switching Activity Reduction through Operand Decomposition”, Proceedings of the
21* International Conference on Computer Design, 2003, pp. 21-27.

[30] P.-M. Seidel, “Dynamic Operand Modification for Reduced Power Multiplication”,
Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers,
2002, pp.52-56.

[31] A. A. Fayed and M. A. Bayoumi, “A Novel Architecture for Low-Power Design of
Parallel Multipliers”, Proceedings of the IEEE Computer Society Workshop on
VLSI, 2001, pp.149-154.

[32] C. S. Wallace. “A Suggestion for a Fast Multiplier,” IEEE Transactions on
Electronic Computers, EC-13:14-17, February 1964.

[33] N. Jayant and P. Noll, “Digital Coding of Waveforms: Principles and Applications

to Speech and Video”, Englewood Cliffs, NJ: Prentice-Hall, 1984.

75



Appendix A: Implementation of Incrementor using Carry Look-Ahead (CLA)
scheme

The truth table of a full adder is:

x |y | cn(ci) | Coulcint) | S
0/(0]0 0/0
0101 01
0110 0|1
0j1]1 110
1100 01
1101 110
11110 1{0
1]1]1 11

From the truth table, the sum of product function for sum s and carry-out ¢, by using
distributive property can be expressed as follows:

s=x'y'c, +x'yc, '+ xyc, +xy'c,’
=(x'y+)c, +('+x'y)e, ' =(xDy)'c, +(xDy)c, '
=x®y®c,
and
Cou = X' Yy + Xp"C,, + X3, '+ XYC,,
=(c, +¢, Y+ (x'y+xc,
=xy+¢,(xDy)

If we define two new binary variables:
pi=x9y & =XV

then the output sum s and carry ¢, become
5, =p;®g ¢ =8 tpPc
where g; is called a carry generate and it produces an output carry when both x; and y; are

one, regardless of the input carry. p; is called a carry propagate because it is the term

associated with the propagation of the carry from ¢; to ¢;+;. The output sum and the carry-
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out equations in term of carry generate and carry propagate form the basis to construct n-

bit carry look-ahead adder.

Consider the special case of addition of X +Y =S8 in which Y is always one, the

operands in n-bit binary numbers are expressed as, x,_,...x,to y, ;, =0y, =0...y, =1which

results ins, ,...s,. By using the basic equations s,=p,®c, & ¢, =g +pc, we

have

Po=%@l=x'

=x,-1=x
Eo=% 0 First Bit
Co=8oTC 1 Py =89=%
So=c®x,'=0®x,'=x,’
p=x®0=x

=x,-0=0
=% Second Bit
=8, 1t¢ P = XX
5 =¢,®p=x,Ox
P,=x,®0=x,

=x,-0=0
£2=%5 Third Bit
C, =8yt Py = XXX,
5, =69 p, =(xx)®x,
p,=x,®0=x,
8 =%,0=0 n Bit

cn = gn +cn—1 'pn = xO‘xl"'xn

s, =¢,, @ p, =(xx..x,,)Dx,

n-1

Depend on the implementation goal, the incrementor can be realized straight from the

deviation above if time is critical

77



. > so

X; 9 \ Sy

& /D %2
I o s e [ S

Or cascading half-adder one after the other if area is more important.
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In the thesis, our target is to optimize power consumption, thus the regular structure of
cascading half-adder design is more favourable due to the structure rendering a constant

gate fan-out of two.
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