
A HYBRID ABOX CALCULUS USING ALGEBRAIC

REASONING FOR THE DESCRIPTION LOGIC SHIQ

LALEH ROOSTA POUR

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

JANUARY 2012

c© LALEH ROOSTA POUR, 2012

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Laleh Roosta Pour

Entitled: A hybrid ABox calculus using algebraic reasoning for the Description

Logic SHIQ

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Chair
Dr. Brigitte Jaumard

Examiner
Dr. Leila Kosseim

Examiner
Dr. Nematollaah Shiri

Examiner

Supervisor
Dr. Volker Haarslev

Approved

Chair of Department or Graduate Program Director

20

Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

A hybrid ABox calculus using algebraic reasoning for the Description

Logic SHIQ

Laleh Roosta Pour

We present a hybrid tableau calculus for the description logic (DL) SHIQ. The presented

algorithm decides SHIQ ABox consistency and uses an algebraic approach for more in-

formed reasoning about qualified number restrictions (QNRs). Benefiting from integer

linear programming and several optimization techniques to deal with the interaction of

QNRs and inverse roles, our approach provides a more deterministic and informed calcu-

lus. In addition, a prototype reasoner based on the hybrid calculus has been implemented

that decides concept satisfiability for ALCHIQ. We provide a set of benchmarks that

demonstrate the effectiveness of our hybrid reasoner in comparison to other DL reasoners.

iii

Acknowledgments

I would like to express my deep and sincere gratitude to my supervisor, Dr. Volker Haarslev,

for his important support throughout this work. With his enthusiasm, inspiration, great

efforts to explain things clearly, and immense knowledge he guided me in all the time of

research and writing of this thesis. His unflinching courage and conviction will always

inspire me.

During this work I have collaborated with many colleagues and lab mates for whom I

have great regard. I wish to extend my warmest thanks to, Mahsa Orang, Iman Keivanlou,

Jinan El-Hashem, Kejia Wu, Ming Zuo, Amina Kane, Nasim Farsiniamarj.

I owe my deepest loving thanks to my husband, Amir, who was there for me during

the thesis. Without his support and understanding this thesis could not have been accom-

plished. This work is as much his as it is mine.

Lastly, and most importantly, I wish to thank my parents, Ziba and Rahmat and my

brothers, Amin and Vahid. They supported me, taught me, and loved me. To them I

dedicate this thesis.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Thesis Objectives and Contributions . 3

1.2 Thesis Outline . 4

2 Preliminaries 5

2.1 Description Logics . 5

2.1.1 DL ALC . 7

2.1.2 DL SHIQ . 9

2.2 DL Reasoning . 9

2.3 Reasoning Services . 11

2.3.1 Tableau Reasoning . 11

2.4 Complexity . 16

2.4.1 DL Reasoner . 19

2.5 Summary . 20

3 DL Reasoning with Qualified Number Restrictions and Inverse Roles 21

3.1 Standard Tableau . 22

3.1.1 Pair-Wise Blocking . 25

v

3.1.2 Optimization Technique . 27

3.2 Summary . 29

4 Hybrid Algebraic-Tableau Calculus for DL SHIQ 30

4.1 Pre-processing . 32

4.1.1 Re-writing ABox assertions . 32

4.1.2 Re-writing QNRs to NRs . 32

4.1.3 Atomic Decomposition . 35

4.2 Arithmetic Reasoning for SHIN \ . 36

4.3 Completion Rules for SHIN \ . 38

4.4 A Scenario for Application of Completion Rules 43

4.5 Adjusting Partitions . 46

4.5.1 Considering Implied Back Edges 47

4.5.2 Considering Implied Forward Edges 48

4.5.3 Propagation of new QNRs . 50

4.6 Correctness of the Hybrid Algorithm . 50

4.6.1 Completeness . 58

4.7 Summary . 63

5 Practical Reasoning 64

5.1 Complexity . 64

5.2 Optimization Techniques . 65

5.2.1 Variable Initialization . 67

5.2.2 Dependency Directed Backtracking (DDB) 69

5.3 Prototype Reasoner . 71

5.3.1 Logical Module . 72

5.3.2 Arithmetic Reasoner . 75

5.4 Summary . 79

vi

6 Evaluation 80

6.1 Choosing Benchmarks . 80

6.2 Evaluating Benchmarks . 81

6.2.1 Inverse roles and the value of numbers in QNRs 81

6.2.2 Back propagation of QNR . 82

6.2.3 Backtracking . 83

6.2.4 The number of QNRs . 85

6.3 Summary . 87

7 Conclusion and Future Work 88

7.1 Conclusion . 88

7.2 Future Work . 90

References 90

vii

List of Figures

1 Example of TBox and ABox (see below for syntax and semantics) 6

2 Syntax and Semantics for SHIQ . 10

3 Tableau Completion Rules for DL ALC 14

4 Application of completion rules without blocking 16

5 Impact of blocking . 17

6 Tableau Completion Rules for DL SHIQ TBox satisfiability [HST00b] . . 18

7 Complexity of different DL languages . 19

8 Tableau completion rules dealing with QNRs [HB91] 22

9 Impact of inverse roles interacting with QNR. A QNR is propagated back

to a node. 23

10 Impact of inverse roles interacting with QNRs. The IBE S− imposes a

numerical restriction on node y. 25

11 Applying subset blocking on Infinite model 26

12 Atomic Decomposition . 38

13 The complete tableaux expansion rules for SHIQ-ABox 40

14 Interaction of completion rules for C � � 2R�∀R.(� 1R−′�∀R′−.C� �

1R′′− � ∀R− \R′′−.¬C) . 44

15 The explanation of steps for Fig. 14 . 45

16 Considering IBE in the partitions. 46

17 Considering IBE in the partitions. 47

viii

18 Considering IFE in the partitions. 48

19 Considering IFE in the partitions. 49

20 The completion Rules and their represented functions. 73

21 Expansion Rules Strategy . 74

22 Categorizing variables. 76

23 Finding the don’t care variables (see section 5.2) 76

24 Applying role hierarchy. 77

25 (a) Algorithm for finding potential IBE variables. (b) Algorithm for finding

potential IFE variables. 78

26 A heuristic to prevent unnecessary application of resetIBE . The firstSub-

tract refers to a role like Si such that Si is equal or sub-rule of S in an

expression ∀(S \ L). 79

27 Exponential increase of k . 82

28 (a) Linear increase of k for unsatisfiable concept expression. (b) Linear

increase of k for satisfiable concept expression. 83

29 Complex backtracking vs simple backtracking 84

30 Increasing at-least QNR . 85

31 Increasing at-most QNR . 86

ix

List of Tables

1 Number of logical clashes and backtracks 84

x

Chapter 1

Introduction

It is well known that standard tableau calculi for reasoning with qualified number/cardinality

restrictions (QNR/QCRs) in description logics (DLs) have no explicit knowledge about set

cardinalities implied by QNRs. This lack of information causes significant performance

degradations for DL reasoners if the values of the numbers occurring in QNRs are in-

creased. Over the last years a family of hybrid calculi have been developed that address

this inefficiency by integrating integer linear programming (ILP) with DL tableau methods

[HTM01, FFHM08, FH10b, FH10a, Fad11]. ILP is used to express and reason about car-

dinalities implied by QNRs, i.e., a set of QNRs is satisfiable iff the corresponding system

of linear inequations has a non-negative integer solution. The hybrid calculus presented in

this thesis follows this methodology.

Inspired by the calculus for SHQ [FH10b] we present a novel algorithm that decides

ABox consistency for the description logic (DL) SHIQ [HST00b], which extends SHQ

with inverse roles. This new calculus is a substantial extension of the one for SHQ since

the interaction between inverse roles and QNRs results in back propagation of information

specifically QNRs, and the loss of the finite model property, and requires pairwise blocking

to deal with infinite models and cycles.

1

Inverse roles and qualified number restrictions increase the expressiveness of a lan-

guage. QNRs express number restrictions on relationships between individuals and by

inverse roles a relationship from one individual to another individual implies the inverse

relationship in the opposite direction. For instance, assume the following expressions:

DBKRLab �� 8 isOccupiedBy.(� 1hasSupervisor.(Supervisor)�

∀hasSupervisor.(KRProf � DBProf))

KRProf ≡ ∀supervises.(� 45hasCredit.(CS � SOEN)�

� 45hasCredit.(CS � SOEN)� � 16hasCredit.CS)

DBProf ≡ ∀supervises.(� 45hasCredit.(CS �MTH � SOEN)�

� 45hasCredit.(CS �MTH � SOEN)� � 16hasCredit.CS)

where occupies is the inverse of isOccupiedBy and hasSupervisor is the inverse of

supervises. Consider the two assertions: lab901 : DBKRLab and (mary, lab901) :

occupies. According to the inverse roles mary is in the relation isOccupiedBy with lab901

and considering the expressions, for mary we have � 1hasSupervisor.(Supervisor) �

∀hasSupervisor.(KRProf �DBProf). And due to the expression of the concepts KRProf

and DBProf , the QNRs such as:

(� 45hasCredit.(CS �MTH � SOEN)� � 45hasCredit.(CS �MTH � SOEN)�

� 16hasCredit.CS)

are propagated to the individual mary. The example shows how the combination of QNRs

and inverse roles adds more expressiveness to a language. Adding more expressiveness to

a language in general results in more complexity in solving the problem in that language.

As we will discuss later in Chapter 6, our reasoner can handle cases that current reasoners

cannot answer or might answer after hours of CPU time. Since our algorithm benefits

from ILP and handles QNRs by capturing all numerical restrictions, it shows a significant

improvement in case of large numbers occurring in QNRs.

2

1.1 Thesis Objectives and Contributions

Since existing approaches such as [HST00b, HS05] show a lack of efficiency in dealing

with qualified number restrictions and inverse roles, we propose a hybrid algorithm for an

expressive DL language SHIQ, using arithmetic (or algebraic) reasoning.

This research mainly pursues the following objectives:

• Designing a decidable tableau based algorithm which benefits from integrating inte-

ger linear programming (ILP) and featuring qualified number restrictions and inverse

roles.

• Evaluating such an algorithm for practical aspects. To this end, implementing a

prototype reasoner and evaluating the performance compared to existing reasoners.

The given objectives guided our research and led to the following contributions:

• A hybrid tableau-based calculus for SHIQ ABox consistency is proposed. The

algorithm uses arithmetic reasoning to capture the numerical restrictions.

• The termination, soundness, and completeness of the hybrid algorithm are proved.

• The worst-case complexity of the algorithm is analyzed.

• A set of optimization techniques and heuristics are studied in order to improve the

efficiency of the algorithm in practical.

• A prototype reasoner with proper optimization techniques is implemented and we

evaluated the effectiveness of the algorithm for practical purposes.

• The performance of the implemented reasoner is evaluated based on a set of synthe-

sized benchmarks, which depict the behavior of the reasoner according to different

parameters.

3

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 introduces DL, and specifically the DL

SHIQ and some preliminaries. In Chapter 3, the two features of this work, QNRs and

inverse roles, and the issues for the interaction between them are discussed. An ABox

calculus for SHIQ is presented in Chapter 4 with examples and the proof of complete-

ness, soundness, and termination of the calculus. Chapter 5 focuses on the analysis of

the algorithm’s complexity, and related optimization techniques, and includes a section

on the implemented prototype reasoner. In Chapter 6, a set of synthesized benchmarks is

presented. These benchmarks are tested against state of the art DL reasoners, and clearly

demonstrate the effectiveness of our calculus. Finally we present our conclusion in Chapter

7 followed by some suggestions for future work.

4

Chapter 2

Preliminaries

In this chapter we review some definitions and preliminaries to introduce Description Logic

(DL) and various DL languages. In section 2.1.2 we highlight the DL SHIQ which is the

focus of our work. The DL services are explained in section 2.3 and the tableau-based

reasoning algorithm for DL SHIQ are introduced. We also describe some well known DL

reasoners.

2.1 Description Logics

Description Logics (DLs) are a family of formal knowledge representation (KR) languages

which represent the knowledge of an application domain (the ”world”) [BCM+07]. The

three basic syntactic components of DL are atomic concepts, atomic roles and individuals.

Definition 1 (Concept). Concepts are subsets of the domain. A concept, represented by

a unary predicate symbol, is a set of domain elements with similar characteristics. For

instance in the domain of a family, Male, Female, Child, Mother, Father, and Family can

be concepts.

Definition 2 (Role). Roles are used to express binary relationships between concepts. For

instance, hasChild is a role that represents the relationship between two concepts, Mother

5

TBox ABox

Mother ≡ Female � ∃hasChild.Child 〈mary,mia〉 : hasChild
Father ≡ Male � ∃hasChild.Child mary : Female

Child ≡ (Female � Male) � ∃hasParent.(Female � Male) mia : Child

Female � ¬ Male

Inv(hasChild) = hasParent

Figure 1: Example of TBox and ABox (see below for syntax and semantics)

and Child.

Definition 3 (Individual). Individuals are instances of concepts. For example, if mary is

an individual that belongs to the concept Female, then mary : Female. Also a relationship

can be defined between a pair of individuals, for example 〈mary,mia〉 : hasChild where

mia : Child.

DLs languages feature reasoning as a central service which allows one to infer implic-

itly represented knowledge from the knowledge that is explicitly contained in the knowl-

edge base. For example, if a Mother is a Female which has a hasChild relationship with

a Child and we have mary : Female and 〈mary,mia〉 : hasChild, then the KR sys-

tem infers that mary : Mother. More complex descriptions can be built from these basic

concepts and roles, inductively with concept constructors.

DL was first introduced into Knowledge Representation (KR) systems to overcome the

lack of formal (logic-based) semantics of frames and semantic networks [BHS07]. The

first DL-based KR system was KL-ONE (by Ronald J. Brachman and Schmolze, 1985)

and later in early ’90s, a new tableau based algorithm paradigm allowed efficient reasoning

on more expressive DL.

A KR system presented in DL language cannot only store terminologies and assertions

in a Knowledge Base (KB), but also offers services that reason about it. A typical DL-based

Knowledge Base consists of two main parts, TBox and ABox.

Definition 4 (TBox). The terminological part of a DL knowledge base is called TBox which

6

includes facts about concepts and roles. A TBox T is a finite set of axioms in form of C � D

,called General Concept Inclusion axioms (GCIs), and/or C ≡ D which is a placeholder

for {C � D,D � C}.

Definition 5 (ABox). The assertional part of a DL knowledge base is known as ABox

which includes facts about individuals. An ABox A is a finite set of assertions of the forms

a : C, (a, b) : R, and a � .= b where a, b are the individuals occurring in A and R is a role.

An example of a TBox and ABox is shown in Fig. 1. Let NC , NR, and I be three

mutually disjoint sets of concept names, role names, and individual names. In the following

we refer to A,B as atomic concepts (A,B ∈ NC), R as a role name R ∈ NR, and C,D

as concepts expression (possibly not atomic concepts). I is the set of all individual names,

while IA ⊆ I is the set of individual names occurring in an ABox A. The set of roles

is defined as NR ∪ {R− |R ∈ NR}. We define a function Inv such that Inv(R) = R− if

R ∈ NR and Inv(R) = S if R = S−. For a set of roles RO = {R1, . . . , Rn}, Inv(RO) =

{Inv(R1), . . . , Inv(Rn)}.

2.1.1 DL ALC

[SSS91] introduced the DL language ALC, Attributive Concept Language with Comple-

ments, in 1991 which is the basis of many more expressive DL languages [BCM+07].

Concept descriptions in ALC 1 are formed based on the following grammar, where � and

⊥ denote respectively (C � ¬C) and (C � ¬C):

1In fact, the DL ALC corresponds to the fragment of first-order logic obtained by restricting the syntax to
formulas containing two variables. Description Logics are notational variants of certain propositional modal
logics [BCM+07]; specifically, the DL ALC is a syntactic variant of the multi-modal logic KM [HM92].

7

C,D → C | (atomic concept)

¬C | (atomic negation)

C �D | (conjunction)

C �D | (disjunction)

∀R.C | (universal restriction)

∃R.C | (qualified existential restriction)

We assume an interpretation I = (ΔI , .I), where the non-empty set ΔI is the domain

of I and .I is an interpretation function which maps each concept to a subset of ΔI and each

role to a subset of ΔI×ΔI . The interpretation function is extended to concept descriptions

by the following equations:

�I = ΔI

⊥I = ∅

(¬C)I = ΔI \ CI

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(∀R.C)I = {s ∈ ΔI | ∀t ∈ ΔI : 〈s, t〉 ∈ RI ⇒ t ∈ CI}

(∃R.C)I = {s ∈ ΔI | ∃t ∈ ΔI : 〈s, t〉 ∈ RI and t ∈ CI}

The expressiveness of a DL language depends on a set of constructors for building

complex concepts and roles. Adding more constructors to ALC results in more expres-

sive languages. The expressivity is encoded in the label for a logic using some letters.

Each ALC-language is named by a string of the form AL[C][E][N][U]. For instance, N

represents number restrictions. The DL ALC extended with transitive roles (S) is named

S .

8

2.1.2 DL SHIQ

In this work we focus on the expressive DL SHIQ which extends ALC with role hierarchy

(H), qualified number restrictions (Q), transitive roles (S), and inverse roles (I). The

Syntax and semantics of the DL SHIQ are shown in Fig. 2. Let �RI(x, C) denote the

cardinality of the set {x | (x, y) ∈ RI ∧ y ∈ CI} and (RI)+ the transitive closure of RI ,

the interpretation I must satisfy the concept expressions in Fig. 2.

A role hierarchy R is a set of axioms of the form R � S where R, S ∈ NR and �∗ is

transitive-reflexive closure of � over R ∪ {Inv(R) � Inv(S) |R � S ∈ R}. R is called a

sub-role of S and S a super-role of R if R �∗ S. A role R is called simple if R is neither

transitive nor has a transitive sub-role. NRS ⊆ NR and NRT ⊆ NR are respectively a set of

simple role names and a set of transitive role names with NRS ∩NRT = ∅.

The set of SHIQ concepts is the smallest set such that (i) every concept name is

a concept, and (ii) if C and D are concepts, R is a role, S is a simple role, n,m ∈

N, n ≥ 1,m ≥ 0, then C � D, C � D, ¬C, ∀R.C, ∃R.C, � nS.C, and � mS.C are

also concepts.

2.2 DL Reasoning

As mentioned in the previous section, a knowledge representation system based on DLs

consists of an ABox and a TBox, and has the ability to perform specific kinds of reasoning.

The various kinds of reasoning performed by a DL system are introduced in [BCM+07].

Different types of inferences are defined for concepts, TBoxes, ABoxes, and for TBoxes

and ABoxes together.

The basic form of reasoning is a concept satisfiability test. A concept C is satisfiable

w.r.t to a TBox T if there exists a model I of T with CI �= ∅ and I is called a model of C.

9

Constructor Syntax Interpretation .I

ALC

Top � ΔI

Bottom ⊥ ∅
Negation (¬C) ΔI \ CI

Conjunction (C �D) (CI ∩DI)
Disjunction (C �D) (CI ∪DI)
Value Restriction (∀R.C) {s ∈ ΔI | ∀t ∈ ΔI : 〈s, t〉 ∈ RI =⇒ t ∈ CI}
Existential Restriction (∃R.C) {s ∈ ΔI | ∃t ∈ ΔI : 〈s, t〉 ∈ RI ∧ t ∈ CI}

Transitive Roles

S Trans(R) RI = (RI)+, (RI is transitive)

Role Hierarchy

H R � S RI ⊆ SI

Inverse Roles

I Inv(R) {〈s, t〉 | 〈t, s〉 ∈ RI}

Number Restriction

N � nR.� {s | �RI(s,�) � n, n � 1, n ∈ N}
� mR.� {s | �RI(s,�) � m,m � 0,m ∈ N}

Qualified Number Restriction

Q � nR.C {s | �RI(s, C) � n, n � 1, n ∈ N}
� mR.C {s | �RI(s, C) � m,m � 0,m ∈ N}

Figure 2: Syntax and Semantics for SHIQ

• Regarding TBox

– Concept satisfiability test: A concept C is satisfiable w.r.t to a TBox T if there

exists model I of T with CI �= ∅ and I is called a model of C w.r.t T .

– Subsumption test: An interpretation I satisfies a TBox T iff CI ⊆ DI for

every GCI C � D ∈ T . Such an interpretation is called a model of T . In other

words, there exists a model I of T which satisfies all the axioms in T and role

hierarchy R 2.
2An interpretation I holds for a role hierarchy R iff RI ⊆ SI for each R � S ∈ R.

10

• Regarding ABox

– Instance checking: instance checking answers the questions whether an ABox

individual a is a member of a concept C w.r.t the relevant ABox assertions as

well as the TBox.

– KB consistency test: The KB K = (A, T) is consistent if there exists a common

model for ABox A and TBox T . An Abox A is consistent iff there exists a

model I of A. An interpretation I satisfies an ABox A if it satisfies T and a

role hierarchy R and all assertions in A such that aI ∈ CI if a : C ∈ A and

(aI , bI) ∈ RI if (a, b) : R ∈ A. Such an interpretation is called a model of A.

2.3 Reasoning Services

A knowledge representation system based on DLs is able to perform specific kinds of rea-

soning. The purpose of a knowledge representation system goes beyond storing concept

definitions and assertions. A knowledge base comprising TBox and ABox, has a semantics

that makes it equivalent to a set of axioms in first-order predicate logic. Thus, like any other

set of axioms, it contains implicit knowledge that can be made explicit through inferences

[BCM+07]. For example, from the TBox and ABox in Fig. 1, one can conclude that mia

is in hasParen relationship with mary although this knowledge is not explicitly stated as

an assertion.

2.3.1 Tableau Reasoning

Among different DL reasoning approaches such as structural subsumption [BPS94], tableau-

based [SSS91], automata-based [BHLW03], semantic binary tree [Luk05], and resolution-

based [KM06], the tableau-based approach remains the most popular one. In the early ’90s,

11

the first tableau based algorithm was introduced for ALC which allowed efficient reason-

ing on more expressive DL [SSS91]. Afterwards, the DL-based systems have been imple-

mented using these tableau based algorithms, such as KRIS (1991) [BH91] and CRACK

(1995) [BFT95], and show acceptable reasoning performance on typical inference prob-

lems even though the worst case complexity is no longer PTIME but at-least NP- or PSPACE-

Hard.

Tableau algorithms use a set of expansion rules, so-called clash triggers, and possibly

a set of blocking strategies to decide the satisfiability of a concept expression in Normal

Negation Form (NNF) [BCM+07]. In order to test the satisfiability of a given concept

C, the tableau algorithm tries to construct a model for it. If there exists a corresponding

interpretation with CI �= ∅, then C is satisfiable.

Definition 6 (Negation Normal Form). The concept expressions are in negation normal

form, if the negation (¬) occurs only immediately in front of atomic concepts. In order to

obtain the NNF of concept expressions, the following equations are used:

¬(C �D) ≡ ¬C � ¬D , ¬(C �D) ≡ ¬C � ¬D

¬(� nR.C) ≡� (n− 1)R.C , ¬(� nR.C) ≡� (n+ 1)R.C

¬(∀R.C) ≡ ∃R.¬C , ¬(∃R.C) ≡ ∀R.¬C

¬(¬C) ≡ C

In order to test the satisfiability of the concept C, a model is constructed by the tableau-

based algorithm which is a data structure called completion graph. To each node in the

completion graph, a label will be assigned, which is a subset of possible concept expres-

sions. Therefore, we define clos as the closure of a concept expression.

Definition 7 (clos()). The closure for a concept expression E, denoted as clos(E), is the

12

smallest set of concepts such that:

E ∈ clos(E)

(¬D) ∈ clos(E) implies D ∈ clos(E)

(C �D) ∈ clos(E) implies C ∈ clos(E), D ∈ clos(E)

(C �D) ∈ clos(E) implies C ∈ clos(E), D ∈ clos(E)

(∀R.C) ∈ clos(E) implies C ∈ clos(E)

(�� nR.C) ∈ clos(E) implies C ∈ clos(E)

where �� nR.C represents � nR.C or � nR.C.

For a TBox T , if (C � D ∈ T) or (C ≡ D), then clos(C) ⊆ clos(T) and clos(D) ⊆

clos(T). Likewise for an ABox A, if (a : C) ∈ A then clos(C) ⊆ clos(A).

Definition 8 (Completion Graph). The completion graph G = (V,E,L) is a directed graph

in which V is a set of nodes representing individuals in the domain and E is a set of

edges representing the relationship between individuals. For each node x, a label L(x)

is assigned with L(x) ⊆ clos(C) and every edge 〈x, y〉 ∈ E between two nodes x, y, is

labeled by a set of role names, L(〈x, y〉) ⊆ NR.

Definition 9 (-successor, -predecessor, -neighbor). Given a completion graph, for nodes

x and y with R ∈ L(〈x, y〉) and R �∗ S, y is called S-successor of x and x is Inv(S)-

predecessor of y. If y is an S-successor or an Inv(S)-predecessor of x, then y is a S-

neighbor of x. Finally, ancestor is the transitive closure of predecessor.

Definition 10 (-filler). Given a completion graph, for nodes x and y with R ∈ L(〈x, y〉), y

is an R-filler (role-filler) for x. The R-fillers of x are defined as Fil(x,R) = {y | (xI , yI) ∈

RI}.

The algorithm starts with L(x0) = C for a given concept expression in NNF C. The

graph G is expanded by means of expansion rules. These tableau completion rules preserve

13

and build the dependencies implied by C. Tableau rules are defined based on the construc-

tors and semantics of the used DL language. Fig. 3 displays the tableau completion rules

for ALC. For example, the �-Rule imposes the semantics of conjunction, as shown in

Fig. 3.

�-Rule if (C �D) ∈ L(x), x is not blocked, and {C,D} � L(x)
then set L(x) = L(x) ∪ {C,D}

�-Rule if (C �D) ∈ L(x), x is not blocked, and {C,D} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {X} for some X ∈ {C,D}

∀-Rule if ∀R.C ∈ L(x), x is not blocked, and there exists an R-successor y of x with C /∈ L(y)
then set L(y) = L(y) ∪ {C}

∃-Rule if ∃R.C ∈ L(x), x is not blocked, and there exists no R-successor y of x with C ∈ L(y)
then create a node y and set L(〈x, y〉) = L(〈x, y〉) ∪ {R}, and L(y) = L(y) ∪ {C}

Figure 3: Tableau Completion Rules for DL ALC

Some completion rules such as the ∃-Rule create new nodes, and some others such as

the �-Rule extend the label of a node. There are rules such as the �-Rule, called non-

deterministic rules. The non-deterministic rules are built due to the non-deterministic na-

ture of particular concept expressions (e.g. C1 � C2). Therefore, the non-deterministic

rules yield more than one outcome. In other words, the expression C1 � C2 is satisfiable

if C1 is satisfiable or C2 is satisfiable. The �-Rule opens two branches to proceed in the

search space in order to test the satisfiability of the concept expression. Consequently, two

different completion graphs will be created.

When no more rules are applicable, then all implicit knowledge has been made explicit

and the completion graph is said to be complete. If all possible completion graphs lead to

the contradiction, known as a clash (see Def. 11), then the concept is un-satisfiable. How-

ever, only one complete and clash-free completion graph is enough in order to show that

the concept is satisfiable. The algorithm stops whenever the completion graph is complete,

or a clash occurs.

14

Definition 11 (Clash Triggers). A node x contains a clash if for a concept A ∈ NC ,

{A,¬A} ⊆ L(x).

Assume a TBox T and atomic concepts A and B occuring in T . If B occurs on the

right-hand side of the definition of A, then A directly uses B and the transitive closure of

the relation directly uses is called uses. If T consists of an atomic concept that uses itself,

then T contains a cycle; otherwise T is called acyclic. For instance, assume T consists of

axiom 1.

C � ∃R.C (1)

Then the application of completion rules in Fig. 3 leads to the completion graph shown

in Fig. 4 with an infinite number of nodes. In such a case (presence of cycles), blocking

techniques are needed to guarantee the termination of the algorithm. Without any blocking

technique, ∃R.C propagates through the nodes infinitely. If a proper blocking method is

used, the resuling model contains a cycle, as shown in Fig. 5. In such a case, the blocked

individual y can use the role successors of x instead of generating new ones.

Definition 12 (Blocked Node (subset blocking)). A node y is directly blocked by a node x,

if it has an ancestor node x such that L(y) ⊆ L(x). The node y is blocked if it is directly

blocked or one of its ancestors is blocked.

The blocking strategy varies depending on the DL language. The DL SHIQ which is

the focus of this work needs a more sophisticated blocking technique which is explained

in Def. 17. Also, a new clash trigger is necessary due to the algebraic reasoning, which is

explained in Def. 11.

Extending a DL language with a new constructor leads to a more expressive language.

Consequently, according to the characteristics of the new language extended clash triggers

and blocking techniques are inevitable. The standard tableau for SHIQ, presented by

[HST00b], is the focus of this work, as shown in Fig. 6. Our proposed tableau is demon-

strated in Fig. 13.

15

x
L(x) = {C, ∃R.C}

∃-Rule
x

L(x) = {C, ∃R.C}

y
L(y) = {C, ∃R.C}

R

∃-Rule
x

L(x) = {C, ∃R.C}

y
L(y) = {C, ∃R.C}

z
L(z) = {C, ∃R.C}

R

R

∃-Rule
x

L(x) = {C, ∃R.C}

y
L(y) = {C, ∃R.C}

z
L(z) = {C, ∃R.C}

l
L(l) = {C, ∃R.C}

R

R

R

Figure 4: Application of completion rules without blocking

2.4 Complexity

As mentioned before, a KR system is expected to answer the query in reasonable time

for a KB as input. Therefore, the reasoning procedures for a DL KR system from a deci-

sion procedure and should always terminate. Decidability and complexity of the inference

problems depend on the expressive power of the supported DL. The more expressive a DL

language is, the more likely it is that the DL reasoning is complex. Therefore, investigating

a trade-off between the expressivity of DLs and their reasoning complexity has been one of

the most important issues in DL research.

The complexity of a DL language is an inherent property of it. The complexity of a

decidable language is usually determined based on the size of the completion model and

the time needed to construct the model in the worst-case. The complexity of some DL

languages are shown in Fig. 7. The presence of GCI, results in the EXPTIME-complete

complexity for the DL languages which are extensions of ALC. The complexity of different

16

x
L(x) = {C, ∃R.C}

∃-Rule
x

L(x) = {C, ∃R.C}

y
L(y) = {C, ∃R.C}

R

R

Figure 5: Impact of blocking

possible DLs are represented in the DL Complexity Navigator3.

The complexity analysis related to a DL language can be considered from different as-

pects. On one hand, it is computing of the complexity of a DL language on worst case,

which preserves the theoretical aspect of DL reasoning. By complexity of a DL language

we mean the complexity of the given problem for the corresponding language, and usually

we talk about the satisfiability problem. On the other hand, it is the complexity of the rea-

soning algorithm in the worst case. There is a gap between these two aspects, and in order

to find a reasonable threshold, the average cases will be considered. For instance [DM00]

proposed a worst case optimal tableau-based procedure for the concept satisfiability prob-

lem of the DL ALC. The proposed tableau-based procedure reduces the worst case com-

plexity of 2EXPTIME-complete to EXPTIME-complete. It presented a global sub-tableaux

caching technique, which has a significant improvement on practical tableau-based DL sys-

tems. The main challenge in DL language reasoning algorithm is to achieve a reasonable

complexity for average cases in order to remain useful in practice.

3http://www.cs.man.ac.uk/ ezolin/dl/

17

�-Rule if (C �D) ∈ L(x), x is not indirectly blocked, and {C,D} � L(x)
then set L(x) = L(x) ∪ {C,D}

�-Rule if (C �D) ∈ L(x), x is not indirectly blocked, and {C,D} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {X} for some X ∈ {C,D}

∀-Rule if ∀R.C ∈ L(x), x is not indirectly blocked,
and there exists an R-neighbour y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

∀+-Rule if ∀R.C ∈ L(x), x is not indirectly blocked,
and there exists an S-neighbour y of x with ∀S.C /∈ L(y),

where Trans(S) and S �∗ R
then set L(y) = L(y) ∪ {∀S.C}

∃-Rule if ∃R.C ∈ L(x), x is not blocked,
and there exists no R-successor y of x with C ∈ L(y)

then create a node y and set L(〈x, y〉) = L(〈x, y〉) ∪ {R},
and L(y) = L(y) ∪ {C}

choose-Rule if (�� nR.C) ∈ L(x), x is not indirectly blocked,
and there exists an R-neighbour y of x with {C,¬C} ∩ L(y) = ∅

then L(y) = L(y) ∪ {E} for some E ∈ {C,¬C}

�-Rule if � nR.C ∈ L(x), x is not blocked,
and there are no y1, . . . , yn R-neighbours of x with C ∈ L(yi),
and yi � .= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {R}, L(yi) = {C},
and yi � .= yj for 1 ≤ i < j ≤ n

�-Rule if � nR.C ∈ L(x), x is not indirectly blocked,
and there are y1, . . . , ym R-neighbours of x with C ∈ L(yi), m � n+ 1,
and for yi, yj with not yi � .= yj and yj is not an ancestor of yi

then L(yi) = L(yi) ∪ L(yj), L(〈x, yj〉) = ∅,
and set z � .= yi for all z with z � .= yj

Figure 6: Tableau Completion Rules for DL SHIQ TBox satisfiability [HST00b]

18

DL Language Complexity

ALC,ALCQ PSPACE-complete

ALC + general TBox EXPTIME-complete

SHQ, SHOQ EXPTIME-complete

SHIQ EXPTIME-complete

SHOIQ NEXPTIME-complete

SROIQ 2 NEXPTIME-complete

Figure 7: Complexity of different DL languages

2.4.1 DL Reasoner

DL reasoning is known to be very complex and will usually not terminate in reasonable

time without a suitable set of optimization techniques. In order to improve the runtime

of a DL reasoning algorithm, various optimization techniques were proposed 4 [Hor03],

[THPS07].

In the following state of the art reasoners based on (hyper)-tableau algorithms are in-

troduced.

• FaCT++ 5, is a new generation of the FaCT DL reasoner, which supports SHF

and expressive language SHIQ 6. FaCT++ is a highly optimized DL reasoner that

supports OWL DL 7 and partially OWL 2.

• RacerPro 8 [HM01b], is a DL reasoner supporting the DL SHIQ. RacerPro is a

4http://dl.kr.org/dig/optimisations.html
5http://owl.man.ac.uk/factplusplus/
6http://www.cs.man.ac.uk/ horrocks/FaCT/
7http://www.w3.org/TR/owl-ref/
8http://www.racer-systems.com/

19

highly optimized reasoner that uses algebraic reasoning [HTM01] and also the sig-

nature calculus [HM01a] in order to deal with QNRs. We will explain these two

techniques in Chapter 4.3 and Chapter 3.

• Pellet 9 [SPG+07], is a DL reasoner supporting OWL 2.

2.5 Summary

In this chapter we introduced Description Logic languages and some basic definitions and

preliminaries. DL languages in terms of their syntax, semantics, and inference services

were defined. The impact of increasing the expressiveness of a DL language on the com-

plexity of the DL language was discussed. We distinguished between the theoretical com-

plexity (language complexity) and practical complexity (algorithm complexity to reason

the language). Some of the well known reasoners were introduced and it was explained

that the naive implementation of tableau algorithm led to unreasonable reasoning time. In

the next chapter we introduce more definitions required in order to present our algorithm.

9http://clarkparsia.com/pellet/

20

Chapter 3

DL Reasoning with Qualified Number

Restrictions and Inverse Roles

This chapter discusses the extension of DL language with qualified number restrictions

(QNRs) Q and inverse roles I.

Adding Number Restrictions N , to a DL language results in a more expressive lan-

guage. By means of number restrictions, the ability of counting is added to the language.

For instance, using cardinality restrictions these forms of axioms are expressible:

Child � � 1 hasParent.�

GraduateCSStudent � � 4 passCourse.�

By using qualified number restrictions (Q), the range of a role in number restrictions could

be qualified as follows:

Child � � 1 hasParent.(Male � Female)

GraduateCSStudent � � 4 passCourse.(SECourse � CSCourse)

Since qualified number restrictions are more expressive and complicated than unqualified

21

ones, we focus on QNRs which automatically cover unqualified number restrictions. Ex-

tending ALC to SHQ leads to a complexity increase from PSPACE-complete to EXPTIME-

complete. A DL reasoning algorithm for SHQ is studied in [FH10b], which uses algebraic

reasoning and a set of optimization techniques and shows significant improvement in ef-

ficiency of practical reasoning. We extend that work, considering inverse roles, which

complicates the reasoning due to its nature of back propagation. In contrast to SHQ, the

information may propagate back from a lower level of a tree model to a higher level.

3.1 Standard Tableau

The rules that deal with qualified number restrictions in standard tableau-based algorithms

[HB91, BBH96, HS05, HST00b] are shown in Fig. 8.

choose-Rule if (�� nR.C) ∈ L(x), x is not blocked,
and there exists an R-successor y of x with {C,¬C} ∩ L(y) = ∅

then L(y) = L(y) ∪ {E} for some E ∈ {C,¬C}

�-Rule if � nR.C ∈ L(x), x is not blocked,
and there are no y1, . . . , yn R-successors of x with C ∈ L(yi),
and yi � .= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {R}, L(yi) = {C},
and yi � .= yj for 1 ≤ i < j ≤ n

�-Rule if � nR.C ∈ L(x), x is not blocked,
and there are y1, . . . , ym R-successors of x with C ∈ L(yi), m � n+ 1,
and for yi, yj with not yi � .= yj and yj is not an ancestor of yi

then L(yi) = L(yi) ∪ L(yj), L(〈x, yj〉) = ∅,
and set z � .= yi for all z with z � .= yj

Figure 8: Tableau completion rules dealing with QNRs [HB91]

These three rules together satisfy the QNRs. The �-Rule preserves the at-least semantic

by creating n distinct (� .=) R-fillers for a corresponding node x and set their labels to C, if

� nR.C ∈ L(x). If � mR.C ∈ L(x), it means that the R-fillers of x with D in their

label should be counted and their number must be less than or equal to m. Due to the open

22

x
L(x) = {C,� 1R.(� 2S.∀S−.(� 1S.D))}

�-Rule
x

L(x) = {C,� 1R.(� 2S.∀S−.(� 1S.D))}

y
L(y) = {� 2S.∀S−.(� 1S.D)}

RR−

�-Rule
x

L(x) = {C,� 1R.(� 2S.∀S−.(� 1S.D))}

y
L(y) = {� 2S.∀S−.(� 1S.D)}

z
L(z) = {D, ∀S−.(� 1S.D)}

w
L(z) = {D, ∀S−.(� 1S.D)}

RR−

S

S−

S
S−

∀-Rule
x

L(x) = {C,� 1R.(� 2S.∀S−.(� 1S.D))}

y
L(y) = {� 2S.∀S−.(� 1S.D),� 1S.D}

z
L(z) = {D, ∀S−.(� 1S.D)}

w
L(z) = {D, ∀S−.(� 1S.D)}

R
R−

S

S−

S
S−

Figure 9: Impact of inverse roles interacting with QNR. A QNR is propagated back to a
node.

world assumption of DLs, and in order to be sound and complete, the choose-Rule non-

deterministically assigns C or ¬C to the label of R-fillers of x. If x has k R-fillers, this

semantic branching lead to 2k branches in the search space for � mR.C. [Hor02] explains

that this non-deterministic rule can be a major source of inefficiency in most DL-reasoners,

by showing sample ontologies derived from UML diagrams.

The �-Rule preserves the at-most semantics. After counting k R-fillers, if � mR.C is

violated by k > m, the �-Rule merges two nodes in order to satisfy the at-most restriction.

Whenever the �-Rule cannot merge nodes due to assertions of the form y � .= z, and con-

sequently cannot relax the source of the violation, then a clash occurs. Otherwise, it will

non-deterministically try to merge k � 1 nodes. Since there exists (k−m) extra successors,

there are
(
k
2

)(
k−1
2

)
. . .

(
m+1
2

)
/(k −m)! ways to merge them. This number grows by a rate

of
(
k+1
2

)
/(k + 1−m) when (k −m) increases. Hence, the �-Rule can also be considered

as a significant source of non-determinism and consequently, inefficiency. We extend the

definition of clash triggers represented in Def. 11 to cover cases of violation in QNRs,when

merging is required, but the �-Rule (a.k.a merge-Rule) fails to merge. Therefore, a clash

occurs whenever for an individual x, an expression x � .= x is added. This is due to the fact

that, an at-most restriction forces merging between two individuals x and y with x � .= y, and

x � .= x implies that a merging is necessary but there exists no pair of nodes with required

precondition, hence an individual is merged with itself.

23

In case of inverse roles, only the phrase -successor in Fig. 8 will be replaced by -

neighbour and the condition for blocking distinguishes indirectly blocked nodes1. In other

words, the nature of inverse roles would be considered in the definition of -neighbour (see

Def. 9). Fig. 6 shows the rules in presence of inverse roles.

By adding inverse roles to the DL SHQ, more expressiveness is added to the result-

ing DL SHIQ, however, obtaining such an expressiveness comes with more complicated

problems to deal with. In the following, challenges regarding the interaction between in-

verse roles and QNRs are discussed. Inverse roles provide the capability of back propagat-

ing information to the nodes in the completion graph.

A possible information that can be propagated back is a QNR. Fig. 9 demonstrates an

example for the back propagation of a QNR. Assume the concept expression:

C � � 1R.(� 2S.∀S−.(� 1S.D)) (2)

Fig. 9 displays the steps of generating a model by the concept satisfiability test of (2). As

shown, the expression ∀S.(� 1S.D) in the label of z and w propagates (� 1S.D) back

to the node y. This new QNR may affect the previous state of node y. For instance, the

outgoing edges of node y may be affected due to the propagated QNR. In Fig. 9, (� 1S.D)

dose not violate any previous number restrictions and the related edges to y do not need

any changes. Assume that instead of (� 1S.D), concept expression (2) contained (� 1S).

In this case, the propagation of (� 1S) violates the previous QNR in the label of y (�

2S, ∀S−.(� 1S.D)) and makes the concept unsatisfiable. A new back propagated QNR

may force the outgoing edges of y to be merged. Also, if a QNR such as � 2T.D is

propagated back, then the new T -successors should be created. Various cases may happen

due to back propagated QNRs that the reasoning algorithm should deal with.

1A node y is indirectly blocked iff one of its ancestors is blocked, or it is a successor of a node x and
L(〈x, y〉) = ∅. The second condition avoids wasted expansions after an application of the �-Rule (see Fig. 6
for the explanation of the �-Rule).

24

x
L(x) = {C,� 1S.(� 0S−.C)}

�-Rule
x
L(x) = {C,� 1S.(� 0S−.C)}

y
L(y) = {� 0S−.C}

SS−

Figure 10: Impact of inverse roles interacting with QNRs. The IBE S− imposes a numerical
restriction on node y.

In order to address another challenge, assume the concept expression:

C � � 1S.(� 0S−.C) (3)

A model generated for this concept is shown in Fig. 10. The edge labeled with S from x to

y, implies the edge from y to x, called Implied Back Edge (IBE). Therefore the expression

(� 0S−.C) in the label of node y cannot be satisfied due to the existence of the S−-

neighbour, x, with C in its label. Therefore, the IBE imposes a numerical restrictions on

y.

3.1.1 Pair-Wise Blocking

The combination of inverse roles and qualified number restrictions in SHIQ adds the

infinite model property to the DL [HST99]. This means that there are satisfiable concepts

for which, there exists no finite model. For such a case, the blocking defined in Def. 12

would block incorrectly and not discover satisfiability. To this end, a blocking technique

called pair-wise blocking, is proposed by [HST00b], which requires two pairs of nodes and

the edge between them instead of only two similar nodes.

Assume a satisfiable concept expression:

¬C � (� 1S−.C) � (� 1S) � ∀R−.(� 1S−.(C � (� 1S)))︸ ︷︷ ︸
P

25

x
L(x) = {¬C, (� 1S−.C), (� 1S), P}

y
L(y) = {C, � 1S−.(C � (� 1S)), P}

S−, R−S, R

z
L(z) = {C, � 1S, � 1S−.(C � (� 1S)), P}

S−, R−S, R

t
L(t) = {C, � 1S, � 1S−.(C � (� 1S)), P}

S−, R−S, R

(a) Model without blocking

x
L(x) = {¬C, (� 1S−.C), (� 1S), P}

y

L(y) = {C, � 1S−.(C � (� 1S)), P}

S−, R−S, R

z
L(z) = {C, � 1S, � 1S−.(C � (� 1S)), P}

S−, R−S, R

R, S, R−, S−

(b) Blocking

x
L(x) = {¬C, C, . . .}

R, S,R−, S−

Clash

(b) Merging

Figure 11: Applying subset blocking on Infinite model

where R is a transitive role and S � R. A model for this concept is demonstrated in

Fig. 11. The expression S � R imposes the occurrence of R wherever S occurs. Since

R is transitive then R− is also transitive. Therefore the expression P and consequently

� 1S−.(C � (� 1S)) would be propagated along the model. As shown in Fig. 11(a),

the model of this concept contains an infinite sequence of individuals and all individuals

after z have the same labels. Considering the blocking preconditions in Def. 12, z blocks

its successor and all incoming and outgoing edges of the successor (blocked node) will

be transferred to individual z (blocking node). Existence of two edges with S in their

labels violates the expression � 1S (as demonstrated in Fig. 11(b)). In order to satisfy

� 1S, the S-neighbors of z should be merged (see the �-Rule in Fig. 6). Therefore, the

whole sequence collapses into a single node as shown in Fig. 11(c) and this results in a

contradiction as both C and ¬C will be in the node x’s label. [HST99] also explained a

case in which the algorithm with subset blocking defined in Def. 12 technique could not

26

discover the unsatisfiability of a concept.

In order to ensure that the algorithm terminates correctly even for a concept with

only finite models, a more sophisticated blocking technique is needed. For this purpose,

[HST00b] proposed the pair-wise blocking technique. The pair-wise blocking technique,

establishes blocks between pairs of nodes connected by the same role. Node y is blocked by

node x, also called witness, if L(x) = L(y) and for their successors y′, x′, L(y′) = L(x′)

and L(〈x, x′〉) = L(〈y, y′〉). To ensure that the blocked node is not expanded anymore, the

new strategy replaces the blocked node with the tree rooted at the blocking node recursively.

3.1.2 Optimization Technique

As it was mentioned before, a naive implementation for a DL reasoner even for not very

expressive DL languages leads to poor efficiency. In order to get an answer in a reasonable

time optimization techniques are necessary.

There exist various methods of optimization [BCM+07] for tableau-based reasoning

such as absorption, pseudo-model merging and caching. [KM06] proposes a resolution-

based reasoning procedure which is proven to be weak to deal with large numbers in QNRs.

Hyper-tableau presented in [MSH07], combines tableau and resolution-based [KM06] rea-

soning and were recently studied to minimize the size of created models and their degree

of non-determinism in DL reasoning with no special treatment for QNRs.

There are some techniques that have been aimed at non-determinism due to the han-

dling of disjunctions of concepts during a pre-processing phase. Pre-processing techniques

are performed directly on the syntax of the input to render it more amenable to reasoning

and processing. These techniques examine the syntactic structure of input concept ex-

pressions and exploit relations (tautology, clash) which are obvious, and can significantly

speed up subsequent reasoning. Some of the widely used pre-processing techniques are

lazy unfolding, internalization, and absorption [HT00]. First performance improvements

for tableau-based DL systems addressing QNRs have been reported in [HM01a, HTM01]

27

and more recently in [FFHM08] and [FH10b].

In the following, some well known optimization techniques more specified for numer-

ical restrictions will be described. [HM01a], presents the signature calculus to improve

the efficiency of the algorithm for the large values of QNRs. The algebraic reasoning

[HTM01, OK99, FH10b, Fad11], provide the ability of choosing an arithmetically informed

branch when creating successors. As opposed to the previous techniques, which optimize

the algorithm when creating successors, dependency directed backtracking presented in

[Hor02], detects the source of a clash in order to prevent the reproduction of the same clash

again.

• Signature Calculus. The complexity of the standard tableau algorithms is evidently

a function of the value of numbers occurring in QNRs; i.e., m and n in (� mR.C)

and (� nR.C) (see Section 3). Increasing n in (� nR.C), results in an increase of

the number of R-successors of the corresponding node and an exponential increase

of possible outcomes from the choose-Rule. On the other hand, the number of pos-

sible ways to merge n nodes into m nodes grows tremendously due to the increase

of m and n. One way to handle large numbers of successors is to create a proxy

individual to represent more than one R-successor when all the successors share the

same label. The signature calculus presented in [HM01a], similarly, creates proxy

individuals as role fillers. In other words, for each at-least restriction � nR.C one

proxy individual as instance of C is created, which represents n individuals. How-

ever, the calculus might later split the proxy individual into more than one proxy

individual, in order to satisfy the constraints imposed by the restrictions on the role-

fillers. For example, if (� mR.C) is in the label of a proxy individual x, where

m < n it non-deterministically tries to split x into more than one proxy individual.

In addition, it also requires a merge rule which non-deterministically merges extra

proxy individuals that violate the at-most restriction.

28

• Dependency Directed Backtracking. Another way to optimize reasoning, in gen-

eral, is dependency-directed backtracking (a.k.a. back-jumping) [Hor02]. By means

of back-jumping, an algorithm can detect the source of a clash and prune the search

space to avoid facing the same clash again. Note that the only source of branching in

the search space is due to the non-deterministic rules. Non-determinism is the reason

that makes tableau algorithms inefficient. Therefore, back-jumping can significantly

improve the performance of the highly non-deterministic calculi. The rules handling

qualified number restrictions are a considerable source of non-determinism; i.e., the

�-Rule and the choose-Rule. Therefore, dependency directed backtracking can opti-

mize these algorithms even in the absence of large numbers [Hor02]. The technique

described in [Hor02], records the sources of a clash and jumps over choice points that

are not related to the clash and tries to choose another branch at a non-deterministic

point that is related to this clash.

• Algebraic Reasoning. Combining algebraic methods introduced in [OK99] with

tableau-based approaches in [HTM01], a hybrid algorithm is proposed to decide con-

sistency of general SHQ TBoxes [FH10b]. This approach partitions the set of role-

fillers so that, successors are created in a more informed way in order to avoid merg-

ing them later. Therefore, merging, which is a significant source of non-determinism,

is prevented.

3.2 Summary

This chapter explained QNRs, and completion rules dealing with QNRs in tableau based

algorithms. Afterwards, the interaction between QNRs and inverse roles were discussed

and the challenges were described. We also discussed some well known optimization tech-

niques which we used in our work. In the next chapter, atomic decomposition, arithmetic

reasoning and finally the hybrid calculus will be introduced.

29

Chapter 4

Hybrid Algebraic-Tableau Calculus for

DL SHIQ

This chapter proposes a hybrid tableau calculus for the DL SHIQ which is introduced in

Section 2.1.2. The hybrid algorithm is a tableau-based algorithm which benefits from an al-

gebraic component, while still maintaining termination, soundness, and completeness. The

hybrid algorithm handles qualified number restrictions (QNRs) by means of an algebraic

component and ensures that the interaction with inverse roles is preserved. In addition

to QNRs, the algorithm captures other constraints that imply arithmetic constraints such

as implied inverse roles, which will be explained in the following. Therefore, it is a hy-

brid algorithm which is more informed about arithmetic constraints imposed by concept

descriptions.

The algorithm preserves the semantics of inverse roles as numerical restrictions. In

other words, whenever an edge has been created, an implicit inverse edge is implied. This

Implied Back Edge (IBE) is considered as a set of new number restrictions. For example, in

order to model the concept expression (� 1R.C), a node x will be created and (� 1R.C)

will be added to L(x). Then to satisfy (� 1R.C), an R-successor y for x will be generated.

Since R has an implied inverse role (R−), the edge from x to y imposes an R− edge from y

30

to x, which we refer to as an Implied Back Edge. We preserve this edge by a set of number

restrictions {� 1R−
yx, � 1R−

yx} related to node y. Therefore, the nature of inverse roles

is captured in the form of numerical restrictions which will be handled by the algebraic

component.

The tableau-based reasoning is based on a standard tableau for ALC [BS01] modified

and extended to work with an algebraic reasoning component. Algebraic reasoning is based

on the assumption that domain elements consist of a set of individuals divided into subsets

depending on their role-filler membership. QNRs represents number restrictions on their

corresponding sets, that is, QNRs represent at-least and at-most restrictions on the number

of corresponding sets of role-fillers.

The hybrid algorithm is designed for ABox satisfiability therefore the constructed model

will be a completion forest. Note that we refer to the tree model as a tree with specific char-

acteristics, such that a node in a lower level (near to the leaf) may have an edge to its creator

node.

Definition 13 (Completion forest). The algorithm generates a model consisting of a set

of arbitrarily connected individuals in IA as the roots of completion trees. Ignoring the

connections between roots, the created model is a forest F = (V,E,L,LE,LI) for a

SHIQ ABox A. Every node x ∈ V is labeled by L(x) ⊆ clos(A) and LE(x) as a set of

inequations of the form
∑

i∈N vi �� n with n ∈ N and ��∈ {�,�} and variables vi ∈ V .

Each edge (x, y) ∈ E is labeled by the set L(x, y) ⊆ RN . For each node x, LI(x)

is defined to keep an implied back edge for x equivalent to Inv(L(y, x)), where y is the

parent of x (see Def. 15). For nodes with no parents, LI will be the empty set.

31

4.1 Pre-processing

Before applying the completion rules, the algorithm modifies the input ontology in two

steps. One step would be re-writing ABox assertions in order to capture numerical restric-

tions in terms of number restrictions and the other one, re-writing QNRs to NRs.

4.1.1 Re-writing ABox assertions

ABox role assertions are translated into number restrictions since they actually impose

a numerical restriction on a node. The assertion (a, b) : R will be replaced by b : (�

1Rab) � (� 1Rab), and {Rab � R} since the assertion (a, b) : R means there exists one

and only one Rab-filler for b which is c. Since the hybrid algorithm needs to consider all the

numerical restrictions before creating an arithmetic solution and generating the successors

for a node, it is necessary to consider the ABox assertion as well.

4.1.2 Re-writing QNRs to NRs

Inspired by [OK99], we use a satisfiability-preserving rewriting to replace QNRs (Q) with

unqualified ones (N). This rewriting uses a new role-set difference operator ∀(R \R′).C

for which (∀(R \R′).C)I = {x | ∀y : (x, y) ∈ RI \R′I implies y ∈ CI}. We have

(� nR)I = (� nR.�)I and (� nR)I = (� nR.�)I . After this transformation, the

new language is called SHIN \, because of the number restrictions which are not qualified

anymore and a new role-set difference operator, ∀(R \R′). Considering ¬̇C as the standard

negation normal form (NNF) of ¬C, we define a recursive function unQ which rewrites

SHIQ concept descriptions and assertions into SHIN \.

Definition 14 (unq). Let R′ be a new role in RN with R := R ∪ {R′ � R} for each

transformation. unQ rewrites the axioms as follows:

unQ(C) := C if C ∈ NC

unQ(¬C) := ¬C if C ∈ NC , otherwise unQ(¬̇C)

32

unQ(∀R.C) := ∀R.unQ(C)

unQ(C �D) := unQ(C) � unQ(D)

unQ(C �D) := unQ(C) � unQ(D)

unQ(� nR.C) := � nR′ � ∀R′.unQ(C)

unQ(� nR.C) := � nR′ � ∀(R \R′).unQ(¬̇C)

unQ(a : C) := a : unq(C)

unQ((a, b) : R) := (a, b) : R

unQ(a � .= b) := a � .= b

Note that this rewriting generates a unique new role for each QNR. For instance, if there

exists an axiom D � � nR.C � � mR.C � � kR.D in TBox T w.r.t. role hierarchy R

after the application of unQ, we have D � � nR1 � ∀R1.C � � mR2 � ∀R \R2.¬C �

� kR3 � ∀R3.D and {R1 � R,R2 � R,R3 � R} ⊆ R.

According to [OK99], � nR.C can be converted to ∃R′ : (R′ � R) ∈ R∧ � nR′ ∧

∀R′.C and � nR.C to ∃R′ : (R′ � R) ∈ R∧ � nR′ ∧ ∀R′.C ∧ ∀(R \ R′).¬C. Then the

negated form of ¬(� nR.C) according to its converted form is ∀R′ � R :� (n − 1)R′ �

∃R′.¬C which is not expressible in SHIQ. In order to prevent such transformation, the

unQ must be applied to the NNF of its input. The axiom of the form ∃R.C is represented

as a cardinality restriction of the form � 1R.C.

As shown, the translation of � nR.C includes one more ∀ expression than the one we

defined in unq function. [FH10b] proved that this issue dose not violates the correctness of

our algorithm.

SHIN \ is not closed under negation due to the fact that unQ(� nR.C) itself creates

a negation which must be in NNF before further application of unQ. In order to avoid

the whole negating problem for the concept descriptions generated by unQ(� nR.C) and

unQ(� nR.C), the calculus makes sure that the application of unQ starts from the inner-

most part of an axiom, therefore such concept descriptions will never be negated.

33

Similar to [HST00b], the algorithm propagates TBox axioms through all the individu-

als, by defining CT :=
�

Ci�Di∈T unQ(¬̇Ci �Di) and U as a new transitive role in the role

hierarchy R. A TBox T is consistent w.r.t R iff the concept CT �∀U.CT is satisfiable w.r.t

RU := R∪ {R � U |R ∈ NR}. Hence, all the axioms in TBox T will be applied to all the

individuals.

Since the algorithm deals with inverse roles, and between two individuals there may

exist a pair of directed edges, it is necessary to distinguish between the level of nodes in

the constructed tree. To this end, a unique precedence is assigned to each individual.

Definition 15 (Precedence). Due to the existence of inverse roles for each pair of individ-

uals x, y, R ∈ L(〈x, y〉) imposes Inv(R) ∈ L(〈y, x〉). A global counter PR keeps the

number of nodes, and each time a new node x is created, the value of PR is increased by

one and PRx = PR. Hence, all nodes are ranked with a PR. A successor of x with the

lowest PR is called parent (or parent successor) of x and others are called its children.

Accordingly, a node x has lower precedence than a node y if x has lower rank compare to

y. Also, each node has a unique rank and no two nodes have the same rank.

For reasons of simplicity, to each role in the existing number restrictions, a set will be

assigned which contains a specific type of sub-role called proper sub-role.

Definition 16 (Proper Sub-Role). A proper sub-role �(R) for role R is defined as �(R) =

{Ri | (R ∈ NR ∪ Inv(R)) ∧ Ri � R}. This makes specializing the edges between nodes

possible. Therefore, in our algorithm, when α(v) is assigned to L(〈x, y〉) a new proper

sub-role Si will be created for each role S ∈ α(v), where �(S) = �(S) ∪ {Si}, and Si

will be assigned to the edge label. A role in �(S) cannot have any proper sub-role. Only

roles that occur in number restrictions can have proper sub-roles. Since these proper sub-

roles do not appear in the logical label of nodes, they do not violate the correctness of our

algorithm.

A blocked node is defined according to the pair-wise blocking technique presented in

section 3.1.1.

34

Definition 17 (Blocked Node). Node y is blocked by node x, also called witness, if L(x) =

L(y) and for their successors y′, x′, L(y′) = L(x′) and L(x, x′) = L(y, y′). Moreover,

unreachable nodes which were discarded from the forest (due to the application of the

reset-Rule or resetIBE-Rule) are called blocked. In order to detect blocked nodes, each

role that is a proper sub-role of R is considered equivalent to R.

4.1.3 Atomic Decomposition

[OK99] proposed a so-called atomic decomposition for reasoning about sets, which was

later on applied to DLs for reasoning about role fillers. Using atomic decomposition, all

possible disjoint subsets of a role filler are considered such that |A + B| = |A| + |B| for

two subsets A,B and | · | denotes the cardinality of a set. For instance, if there is an ABox

A, such that A = {a : (� 3hasComputer � � 5hasPC � � 4hasMac)}, using atomic

decomposition, we get the following disjoint partitions:

c = (computer, not Mac, not PC)
p = (PC, not Mac, not computer)

m = (Mac, not computer, not PC)
cp = (computer, PC, not Mac)

cm = (computer, Mac, not PC)
mp = (Mac, PC, not computer)

cmp = (computer, Mac, PC)

Due to these seven disjoint subsets, the implied cardinalities for the individual a can be

translated to the following inequations:

|c|+ |cp|+ |cm|+ |cmp| � 3

|p|+ |cp|+ |mp|+ |cmp| � 5

|m|+ |cm|+ |mp|+ |cmp| � 4

35

4.2 Arithmetic Reasoning for SHIN\

The hybrid algorithm benefits from an algebraic reasoning component. The atomic de-

composition defined in Def. 4.1.3 is the first phase in this method. In contrast to [Fad11],

the hybrid algorithm proposed in this work uses a local atomic decomposition. Due to

the global nature of nominals (O), [Fad11] provides a global atomic decomposition as a

pre-processing step, while our hybrid algorithm provides a local atomic decomposition for

each individual.

In the following, we introduce several definitions and show an example to explain arith-

metic reasoning more precisely.

Definition 18 (ξ). Let VR = {v ∈ V |R ∈ α(v)} be the set of all variables which

are related to role R. The function ξ maps number restrictions to inequations such that

ξ(R, ��,n) := (
∑

vi∈VR vi) �� n. (Assume that α(v) is a set of roles which are mapped to v,

in Def. 20 we will define it more precisely.)

Definition 19 (Distinct partitions). Rx is defined as the set of related roles for x such

that Rx = {S | {ξ(S,�,n), ξ(S,�,m)} ∩ LE(x) �= ∅}. A partitioning Px is defined

as Px =
⋃

P⊆Rx
{P} \ {∅}. For a partition Px ∈ Px, P I

x = (
⋂

S∈Px
FilI(x, S)) \

(
⋃

S∈(Rx\Px)
FilI(x, S)) with FilI(x, S) = {yI | y ∈ Fil(x, S)}. The definition clearly

demonstrates that the fillers of x related to the roles of partition Px are not the fillers of the

roles in Rx \ P (other partitions). Therefore, by definition the fillers of x associated with

the partitions in Px are mutually disjoint w.r.t. the interpretation I.

The arithmetic solution is defined using the function σ : V → N mapping each variable

in V to a non-negative integer. Let Vx be the set of all variables assigned to node x such that

Vx = {vi ∈ V | vi occurs in LE(x)}, a solution Ω for node x is Ω(x) := {σ(x) = n |n ∈

N, v ∈ Vx}. The lp-solver uses an objective function to determine whether to minimize the

solution or maximize it. We minimize the solution in order to keep the size of the forest

small.

36

Definition 20 (Variables). Assuming a set of variables V and a mapping α : V ↔ Px for a

node x, a unique variable v ∈ V is associated to a partition Px ∈ Px such that α(v) = Px.

Definition 21 (Node Cardinality). The cardinality associated with proxy nodes is defined

by the mapping card : V → N.

Due to the nature of inverse roles , a node can be a successor of two nodes (see Fig. 9

in which y is successor of x and z). As a result, a filler of a set of roles in partition Px, can

be a filler of a set of roles in partition Py. Therefore, partitions and variables are defined

locally for a corresponding node.

Since the hybrid algorithm required to have all numerical restrictions as a set of in-

equations, following functions are defined to transform the NRs to the inequations and/or

modify the variable.

Function ξ transforms the NRs to inequations and put them to the LE of a corresponding

node. It is used in the �-Rule and �-Rule as shown in Fig. 13 and will be explained in

Sec. 4.3. Function ζ and ς also add new inequations to the LE of a node and modify the

variables. The ζ and ς are respectively used in IBE-Rule and reserIBE-Rule as shown

in Fig. 13. The examples in Sec. 4.5.1 and Sec. 4.5.2 are explaining the task of these two

functions in more details.

Definition 22 (ζ). For a set of roles RO and k ∈ N, the function ζ(RO, k) maps number

restrictions to inequations via the function ξ for each Rj ∈ RO. ζ(RO, k) would return

a set of inequations such that ζ(RO, k) = {ξ(Rj,�, k) |Rj ∈ RO} ∪ {ξ(Rj,�, k) |Rj ∈

RO}. For v ∈ VRj if Rj ∈ α(v) ∧ α(v) � RO then v � 0 is returned too.

Definition 23 (ς). For a set of roles RO and k ∈ N, the function ς(RO, k) maps number

restrictions to inequations via the function ξ for each Rj ∈ RO. ς(RO, k) would return

a set of inequations such that ς(RO, k) = {ξ(Rj,�, k) |Rj ∈ RO} ∪ {ξ(Rj,�, k) |Rj ∈

RO}. For v ∈ VRj if RO = α(v) then v = k is returned.

37

P1

S

P2

R

P3

SR

P4

T

P5

ST

P6

RT

P7

STR

α(v001) = p1, α(v010) = p2, α(v100) = p4,
α(v011) = p3, α(v110) = p6, α(v101) = p5,

α(v111) = p7

v001 + v011 + v101 + v111 � 2
v010 + v011 + v110 + v111 � 1
v100 + v110 + v101 + v111 � 2
v100 + v110 + v101 + v111 � 3

Figure 12: Atomic Decomposition

The following example depicts the process of finding an arithmetic solution in more

details. Let L(x) = {� 2S,� 1R,� 2T ,� 3T} be the label of node x. Applying the

atomic decomposition for related roles Rx = {S,R, T} results in seven disjoint partitions

such that:

Px = {p1, p2, p3, p4, p5, p6, p7}where

p1 = {S}, p2 = {R}, p4 = {T}, p3 = {S,R},

p5 = {S, T}, p6 = {R, T}, p7 = {R, S, T}

as demonstrated in Fig. 12. In order to simplify the mapping between variables and parti-

tions, each digit of the binary coding of a variable index represents a specific role in Rx.

Therefore, in this example the first bit from right represents S, the second R, and the last T .

Since |Rx| = 3, the number of variables in Vx becomes 23 − 1. The mapping of variables

and the resulting inequations in LE(x) are shown in Fig. 12.

4.3 Completion Rules for SHIN\

The ABox completion rules for SHIN \ are shown in Fig. 13, listed in decreasing priority

from top to bottom. Rules in the same cell have the same priority. Rules with lower

38

priorities cannot be applied to a node x, which is not blocked, if there is any rule with a

higher priority still applicable to it.

Therefore the rules are applied according to the following priorities:

1. reset-Rule, resetIBE-Rule

2. merge-Rule

3. �-Rule, �-Rule, ∀-Rule, ∀\-Rule, ∀+-Rule, ch-Rule

4. �-Rule, �-Rule, IBE-Rule

5. BE-Rule

6. RE-Rule

7. fil-Rule

Among the completion rules in Fig. 13, �-Rule, �-Rule, ∀-Rule, ∀+-Rule are the same as

in the standard tableau. The merge-Rule, ∀\-Rule, ch-Rule, �-Rule, �-Rule are similar to

the one in [FH10b].

�-Rule and �-Rule: all number restrictions from L(x) are collected via these two

rules. ξ translates them to inequations according to the proper atomic decompositions and

adds them to LE(x).

In contrast to [FH10b] these two rules are not the only source of generating inequations

and consequently extending LE(x). In addition, LE(x) is modified by the IBE-Rule,

reset-Rule and resetIBE-Rule. we will explain these rules in the following.

Note that the idea of using atomic decomposition, inequation generation, and finally

an arithmetic solution is to create role fillers for a corresponding node according to all the

stabilized information gathered from lower priority rules. The issue in our case is that a

node may have a role filler, i.e., an element of a partition, prior to computing the atomic

decomposition and generating a solution. Therefore, this partition should be taken into

39

reset-Rule if {(≤ nR), (≥ nR)} ∩ L(x) �= ∅ and ∀v ∈ Vx : R /∈ α(v)
then set LE(x) := ∅ and

for every successor y of x set L(〈x, y〉) := ∅ and,
if y in not parent of x set L(〈y, x〉) := ∅

resetIBE-Rule if Inv(R) ∈ L(〈y, x〉) but R /∈ L(〈x, y〉)
then set LE(x) := LE(x) ∪ {ζ(L(〈x, y〉), card(y))} and,

for every successor y of x set L(〈x, y〉) := ∅ and,
if y is not parent of x set L(〈y, x〉) := ∅

merge-Rule if there exist root nodes za, zb, zc for a, b, c ∈ IA such that
R′ �∗ Rab, R

′ ∈ L(〈za, zc〉)
then merge the node zb, zc and their labels and,

replace every occurrence of zb in the completion graph by zc
�-Rule if (C1 � C2) ∈ L(x) and {C1, C2} � L(x)

then set L(x) = L(x) ∪ {C1, C2}
�-Rule if (C1 � C2) ∈ L(x) and {C1, C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {X} for some X ∈ {C1, C2}
∀-Rule if ∀S.C ∈ L(x) and there is an S-neighbour y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}
∀\-Rule if ∀R \ S.C ∈ L(x) and there is an R-neighbour y of x with C /∈ L(y)

and y is not S-neighbour of x
then set L(y) = L(y) ∪ {C}

∀+-Rule if ∀S.C ∈ L(x) and there is some R with Trans(R) and R �∗ S
and there is R-neighbour y of x with ∀R.C /∈ L(y)

then set L(y) = L(y) ∪ {∀R.C}
ch-Rule if there occurs v in LE(x) with {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅

then set L(x) = L(x) ∪ {X} for some X ∈ {v ≥ 1, v ≤ 0}
≥-Rule if (≥ nR) ∈ L(x) and ξ(R,≥, n) /∈ LE(x)

then set LE(x) = LE(x) ∪ {ξ(R,≥, n)}
≤-Rule if (≤ nR) ∈ L(x) and ξ(R,≤, n) /∈ LE(x)

then set LE(x) = LE(x) ∪ {ξ(R,≤, n)}
IBE-Rule if LI(x) �= ∅ and {ς(LI(x), 1)} ∩ LE(x) = ∅

then set LE(x) = LE(x) ∪ {ς(LI(x), 1)}
BE-Rule if there exists v occurring in LE(x) such that σ(v) = 1, R ∈ α(v),

R ∈ LI(x) and y is parent of x with L(〈x, y〉) = ∅
then set L(〈x, y〉) := α(v)

RE-Rule if there exists v occurring in LE(za)
such that σ(v) = 1, za, zb root nodes,
Rab ∈ α(v) with x, b ∈ IA and L(〈za, zb〉) = ∅

then set L(〈za, zb〉) := α(v),LI(〈zb) := Inv(α(v))
fil-Rule if there exists v occurring in LE(x)

such that σ(v) = n with n > 0,
x is not blocked and ¬∃y : L(〈x, y〉) = α(v)

then create a new node y and set L(〈x, y〉) := α(v),
LI(y) := Inv(α(v)) and card(y) = n

Figure 13: The complete tableaux expansion rules for SHIQ-ABox40

account when generating solutions. As a result, in order to consider this edge, we translate

it into a set of inequations, through the IBE-Rule, and ensure that the possible solutions

include this back edge.

IBE-Rule: this rule considers the implied back edge in LE and determines poten-

tial variables that can represent the IBE through elimination of the non-related variables.

Assume that for a node x a successor y has been created with L(〈x, y〉). This implies

a back edge for y with a label Inv(L(〈x, y〉)). This back edge is considered as a set of

NRs of the form � 1Ri,� 1Ri where Ri ∈ Inv(L(〈x, y〉)). The IBE-Rule transforms

the implied back edge into a set of inequations in LE(x) of the form (
∑

vj∈VRi vj) � 1

and (
∑

vj∈VRi vj) � 1 using function ς . Since the inequations representing the back edge

are restricted to the value one, only one common variable vk in these inequations will be

σ(vk) = 1. In addition, ς ensures that the potential variables for IBE include all the roles in

LI(y) (see Def. 23). See the example in section 4.5.1 for considering IBE which explains

the function ς (Fig. 16 and Fig. 17).

resetIBE-Rule: this rule extends LE as follows. If for a node y and its parent node x,

L(x, y) �= Inv(L(y, x)), then it implies that a new role should be considered in LE(x) of

the parent node due to the restrictions of its child. Therefore, the resetIBE-Rule fires for

x where ζ extends LE(x) to consider Inv(L(y, x)) and ensures that the specific variable

representing this implied forward edge (IFE) is included in the solution (see Def. 22). See

the examples in section 4.5.2 for considering IFE which explains the function ζ (Fig. 18

and Fig. 19).

Function ζ and ς are defined, as shown respectively in Def. 22 and Def. 23, in order to

transform number restrictions to inequations for a set of roles, and modify the boundary of

variables in order to impose specific answer. The difference between these two function is

due to the approach of initializing variables. ζ assigns a specific value greater than zero to

the variable representing IFE and make it as an answer as shown in Fig. 18 and Fig. 19,

while ς sets some unrelated variables to zero in order to limit the answer to the certain

41

variables, potential variables for IBE as shown in Fig. 16 and Fig. 17.

reset-Rule: if a new number restriction with a new role R is added to the logical

label of a node x, all its children that are not root nodes with lower precedence than x are

discarded from the tree and marked as blocked which makes them unreachable. In addition

LE(x) = ∅ and for a successor y, L(〈x, y〉) = ∅ and if it is not the parent of x, then

L(〈y, x〉) = ∅.

BE-Rule: this rule fills the label of the back edge to its parent due to the solution of the

inequations solver. If a variable v in a solution exists such that σ(v) = 1 and roles in LI(y)

are in α(v), then the variable represents the back edge and the BE-Rule fires. Checking

for one of the roles of LI is sufficient due to the fact than only one variable represents the

back edge in an answer. The IBE-Rule ensures this issue by function ζ before generating

a solution.

We adjust the edges between a pair of nodes to satisfy the nature of the inverse roles

between them. The interactions between IBE-Rule, BE-Rule, and resetIBE-Rule main-

tain this characteristic. Fig. 14 demonstrates the interaction of these rules to find a proper

model.

RE-Rule: this rule sets the edge between two root nodes. For nodes a, b ∈ IA, (a, b) : R

is considered as a : � 1Rab,� 1Rab and b : � 1Inv(Rab),� 1Inv(Rab), therefore, in a

solution for node a a variable with the value of 1, σ(v) = 1, Rab ∈ α(v) represents this

edge. The RE-Rule fires and fills the edge label, L(〈a, b〉) = α(v).

merge-Rule: the merge-Rule merges root nodes. Assume three root nodes a, b, c ∈ IA

where b, c are respectively R-successor and S-successor of a. These assertions will be

translated such that we have a : � 1Rab,� 1Rab,� 1Sac,� 1Sac. If there exists a variable

v in an arithmetic solution of node a with Rab, Sac ∈ α(V), it means that c and b need to be

merged. The merge-Rule merges b and c and w.l.o.g replaces every occurrence of b with c

and all outgoing/incoming edges of b become outgoing/incoming edges of c.

42

ch-Rule: this rule is necessary to ensure the completeness of the algorithm. The par-

titions provided by the atomic decomposition technique represent all the possible combi-

nations of successors of a corresponding node. If a partition is logically not satisfiable,

the corresponding variable should be set to zero. If it is indeed satisfiable, only the in-

equations’ restrictions may influence the number of successors in this partition. Besides,

the arithmetic reasoner does not have any information about the satisfiability of a concept

representing the partitions. Therefore, in order to organize the search space with respect to

semantic branching and to ensure completeness, the algorithm needs to distinguish between

these two cases: v � 0, v � 1. The ch-Rule is similar to the choose-rule in the standard

tableau in the sense that it considers two branches for each partition.

fil-Rule: fil-Rule has the lowest priority among the completion rules. This rule is

the only one that generates new nodes. Since this rule generates new nodes based on the

arithmetic solution that satisfies all the inequations, there is no need to merge the generated

nodes later.

It is worth mentioning that the algorithm preserves the role hierarchies when initializing

variables. If for a node x there exists a variable v ∈ LE(x) where R ∈ α(v) and S /∈ α(v)

and R �∗ S, then σ(v) = 0. Therefore the variables that violates the role hierarchy are set

to zero.

4.4 A Scenario for Application of Completion Rules

Fig. 14 demonstrates the process of adjusting the edges between a pair of individuals

through the completion rules. Assume again E � C � � 2R�∀R.(� 1R−.C� � 1R−.C).

After pre-processing we have E � C � � 2R�∀R.(� 1R′−�∀R′−.C� � 1R′′−�∀R− \

R′′−.¬C) with {R′− � R−, R′′− � R−} ⊆ R. The algorithm starts with A = {x : E}.

After all number restrictions have been collected, variables have been initialized, and the

arithmetic solution has been generated for x, the fil-Rule creates y with card(y) = 2.

43

Fig. 14 shows the process when the back edge is created for y. The cardinality for x is 1

and it is 2 for each of the individuals y, z, and t. The ∗ denotes the application of additional

rules, from bottom to top, prior to the application of the current rule. The steps of this

process are explained in Fig .15.

x
(1)

y

R

BE-Rule*

ch-Rule
IBE-Rule
≥-Rule
≤-Rule

�-Rule
∀-Rule

x
(2)

y

RR−
R′−

resetIBE-Rule
x

(3)

y

∅∅

fil-Rule*

ch-Rule

x
(4)

zy

R
R′

BE-Rule*

ch-Rule
IBE-Rule
≥-Rule
≤-Rule
�-Rule
∀-Rule

x
(5)

zy

R
R′R−

R′−

∀\-Rule*

∀-Rule

x
(6)

zy

R
R′R−

R′−

Clash

Backtrack
x

(7)

zy

R
R′

BE-Rule*

ch-Rule

x
(8)

zy

R
R′

R−
R′−
R′′−

resetIBE-Rule

x
(9)

zy

∅∅

fil-Rule*

ch-Rule

x
(10)

tzy

R
R′
R′′

BE-Rule*

ch-Rule
IBE-Rule
≥-Rule
≤-Rule

�-Rule
∀-Rule

x
(11)

tzy

R
R′
R′′

R−
R′−
R′′−

∀-Rule
x

(12)

tzy

R
R′
R′′

R−
R′−
R′′−

Figure 14: Interaction of completion rules for C � � 2R � ∀R.(� 1R−′ � ∀R′−.C� �
1R′′− � ∀R− \R′′−.¬C)

Note that in the hybrid algorithm the proper sub-roles are used in order to assign roles

to the edge labels. This is necessary in order to specify the back edges and also to consider

new roles in the resetIBE-Rule.

44

�−→ (1) The algorithm starts with A = {x : E}. Then the �-Rule puts all the ex-
pressions in the label of x, the �-Rule and �-Rule collect the number restric-
tions from the L(x) and the arithmetic reasoning part finds a solution with
Ω(x) = {σ(v) = 2} where α(v) = {R}. Therefore the fil-Rule fires and
generates an R-successor y with L(〈x, y〉) = {R} and a cardinality of 2. Con-
sequently LI(〈y, x〉) = {R−}.

(1)−→(2) The ∀-Rule adds expression (� 1R′− � ∀R′−.C� � 1R′′− � ∀R− \R′′−.¬C)
to L(y) and the �-Rule adds all the disjuncts to L(y). Then, all the NRs
will be collected via the �-Rule, the �-Rule, and the IBE-Rule and added
to LE(x). Afterwards, the ch-Rule fires to modify the variables and according
to a generated answer from the arithmetic reasoner (Ω(x) = {σ(v) = 1} where
α(v) = {R−, R′−}), the BE-Rule sets L(〈y, x〉) = {R−, R′−}.

(2)−→(3) Since R′− exists in L(〈y, x〉) but Inv(R′−) = R′ dose not exist in L(〈x, y〉), the
resetIBE-Rule fires to consider R′ in LE(x). The node y will be discarded and
the labels of the edges become empty.

(3)−→(4) The ch-Rule modifies the variables in LE(x) and a new answer is generated for
x. Then, according to the answer (Ω(x) = {σ(v) = 2} where α(v) = {R,R′}),
the fil-Rule creates a new R,R′-successor, z, with a cardinality of 2.

(4)−→(5) Similar to the (1)−→(2), at last the BE-Rule fires and sets L(〈y, x〉) =
{R−, R′−} according to an answer based on LE(y).

(5)−→(6) The ∀\ fires and adds ¬C to the label of x. Since both ¬C and C exist in L(x),
a clash occurs.

(6)−→(7) Because of the clash the algorithm backtracks to select another choice for the
answer regarding the cause of the clash.

(7)���(11) These steps are similar to the steps in (1)���(5).

(11)−→(12) After application of the ∀-Rule no more rules are applicable and the algorithm
terminates and returns satisfiable as the answer.

Figure 15: The explanation of steps for Fig. 14

45

R−

(a)

R− R′−

R′′−

R− R′−

R′′−

R− R′−

R′−

R− R′−

R′′−

(b)

Figure 16: Considering IBE in the partitions.

4.5 Adjusting Partitions

The main idea of using algebraic reasoning is to capture all numerical restrictions for a

node at once. By the phrase at once, we want to put an emphasis on the fact that the

process of atomic decomposition and assigning variables are performed for each node only

once, after all restrictions for a corresponding node are collected. The works presented in

[FH10b] for DL SHQ is based on this argument. However, in the presence of inverse roles

this argument no longer holds. There is always the possibility that a new QNR is added

to the label of a node for which the arithmetic reasoning has been applied before and the

related partitions have been build for it. In such a case the new QNR must be considered

in partitions and variables. Therefore, the atomic decomposition is performed for the node

again. Moreover since inverse roles are preserved as numerical restrictions, extra variable

boundaries should be enforced to impose some specific answers to the arithmetic reasoner.

In order to explain these cases more precisely some examples are demonstrated in the

46

R− R′−

(a)

R− R′−

R′′−

R− R′−

R′′−

(b)

Figure 17: Considering IBE in the partitions.

following.

4.5.1 Considering Implied Back Edges

Similar to the example in Fig. 14, assume a concept expression E � C � � 2R � ∀R.(�

1R−.C� � 1R−.C). After pre-processing we have E � C � � 2R � ∀R.(� 1R′− �

∀R′−.C� � 1R′′− � ∀R− \R′′−.¬C) with {R′− � R−, R′′− � R−} ⊆ R, Inv(R′−) = R′,

and Inv(R′′−) = R′′. A model for this concept is generated based on an individual x with

an R-successor y (see Fig. 14). This R-successor implies an IBE for y, which is the R−-

successor x and is represented as a set of inequations of the form {� 1R−,� 1R−}, and

as shown in Fig. 16(a) the only answer to satisfy this set is represented by a dot in R. By

collecting all number restrictions for y a set of inequations would be {� 1R−,� 1R−,�

1R′−,� 1R′′−}. Accordingly the three roles R−, R′−, R′′− should be considered in the

atomic decomposition as demonstrated in Fig. 16(b).

In order to impose the IBE in answers for node y, the algorithm determines the potential

partitions for the IBE (via the function ζ in the IBE-Rule). As shown in Fig. 16(b), there

would be four potential partitions to be considered for the IBE. The only condition for a

potential partition is that it must contain all the roles occurring in the IBE (see Def. 23 for

the function ς). Note that since the values of number restrictions for IBE are 1, only one

47

R

(a)

R R′

(b)

Figure 18: Considering IFE in the partitions.

partition could be selected as an answer for the IBE. This processing is performed by the

IBE-Rule in the step between (1) and (2) in Fig. 14.

Now consider the case in which there are more than one role in an IBE (the application

of the IBE-Rule between (4) and (5) or (7) and (8)). R−, R′− are the roles in the IBE for

node y. Fig. 17(a) shows that the partition which is the intersection of R−, R′− represents

the IBE which contains an answer. Now considering all QNRs, the potential partitions

for IBE would be the two cases that are demonstrated in Fig. 17(b). Both potential IBE

partitions contain all the roles occurring in the IBE. The whole process will be executed via

the IBE-Rule, in which the function ς (see Def. 23) would generate the inequations and

modify the variables.

4.5.2 Considering Implied Forward Edges

Assume that in previous examples shown in Fig. 16 and Fig. 17, a partition from a set of

potential IBE partitions was chosen as an answer, which contains at least one role more

than the ones occurring in the IBE of y, such as R−, R′−, see model (2) in Fig. 14. In such

a case the extra role Inv(R−′
) = R′ should be considered for node x in an implied forward

edge (IFE). Therefore, {� 2R′, � 2R′} will be added to the number restrictions for x

via the resetIBE-Rule and the function ζ (see Def. 22). Note that the values of number

48

R R′

(a)

R R′

R′′

(b)

Figure 19: Considering IFE in the partitions.

restrictions are 2 since the cardinality of y was 2, and the point of adding such NRs is to

recreate a proxy individual similar to y with the proper incoming and outgoing edges (see

the steps from (2) to (4) in Fig. 14).

Fig. 18(a) demonstrates the partitioning before adding the new IFE with R′ for node x

(it shows the partitioning for node x in Fig. 14 graph (2)). Two dots in Fig. 18(a) represent

the node proxy y with cardinality of two Fig. 14 graph (2). After having the IFE, the

related partition which includes all the roles in IEF, {R, R′}, will be selected as shown in

Fig. 18(b). It shows the partitions for node x in Fig. 14, graph (4). The resetIBE-Rule

performs this process via function ζ which modifies the variables to impose the IFE in an

answer.

Fig. 19(a) shows the partitioning for node x in Fig. 14, graph (8) before the application

of the resetIBE-Rule and Fig. 19(b) demonstrates the partitioning for x after the execution

of the function ζ through the resetIBE-Rule and considering IFE as shown in Fig. 14, graph

(10).

49

4.5.3 Propagation of new QNRs

Whenever new QNRs are propagated back to a node for which arithmetic reasoning has

been applied before, the atomic decomposition will be run considering new QNRs and all

the arithmetic reasoning will be applied again.

4.6 Correctness of the Hybrid Algorithm

In the following, we will show termination, soundness and completeness of the presented

hybrid calculus for SHIQ ABox consistency.

Lemma 1. For each SHIQ-ABox and a role hierarchy R the hybrid algorithm terminates.

Proof. Let n = |clos(A)| and m be the number of different number restrictions after the

pre-processing step. Then, the length of a concept expression in a label of a node is at most

m and the maximum number of roles which are included in the atomic decomposition is

denoted as m. The following facts result in the termination of the algorithm:

1. The merge-Rule is the only rule in this algorithm which removes a node (specifically

root nodes) from the forest. Considering the finite number of root nodes, which is

equal to the number of individuals in the ABox, and the fact that the algorithm never

generates root nodes, one can conclude that the merge-Rule cannot lead to any loops

of generating and deleting a particular root node. The maximum number of times

that it can be fired for a node is equal to the number of the root nodes.

2. The fil-Rule is the only rule in charge of creating nodes except for the root nodes.

Let Vx be the set of variables assigned to a node x, Vx = {v ∈ V | v occurs in LE(x)}.

For a node x, the fil-Rule generates at most |Vx| = k successors yi, 1 ≤ i ≤ k, based

on the solution of the lp-solver. Since the maximum number of roles is m then there

would be at-most 2m − 1 possible combinations for variables. Consequently, the out

degree of the forest is bounded by 2m, that is |Vx| ≤ 2m.

50

3. The reset-Rule, resetIBE-Rule, and merge-Rule are the only rules that modify

L(〈x, y〉) and set it to the empty set. Since adding a new number restriction in-

vokes the reset-Rule, the maximum number of times the reset-Rule can fire for a

node is bounded to the number of all number restrictions after pre-processing, m.

The resetIBE-Rule fires whenever a new role occurs in L(y, x) such that its inverse

is not included in L(x, y). In other words, the nature of the inverse roles has been

violated. The number of variables in LE(x) represents the number of different pos-

sible successors for a node x according to the number restrictions. Each of these

successors has a back edge to node x. One or more roles may occur in the labels of

these back edges L(y, x) while their inverse roles have not occurred yet in L(x, y),

therefore, the resetIBE-Rule for x is invoked. These roles only occur due to the

number restrictions in L(yi). Since m is the number of all number restrictions after

pre-processing and |Vx| = 2m − 1 = k, then the number of times the resetIBE-Rule

can be fired for x is bounded by 2k ∗ (m − 1). This holds due to the fact that in the

worst case only one role occurs in L(x, y) and the (m − 1) remaining roles invoke

reseIBE-Rule m− 1 times.

The fil-Rule, BE-Rule and RE-Rule fire to fill the edge labels due to the existence

of (possibly new) solutions. The number of times these three rules fire for a node

x depends on the number of possible answers for x and the number of times the

resetIBE-Rule and reset-Rule fire for x. Since the execution of these two roles re-

sults in the application of the fil-Rule and/or BE-Rule and/or RE-Rule, the number

of times they fire together for x is similarly limited to 2k ∗m. Together with the fact

that the fil-Rule fires a finite number of the times, one can conclude that the number

of times these nodes are generated and reset is finite.

4. Nodes can be labeled with at most |clos(A)| = n logical labels where edges can be

labeled with at most the number of all roles after pre-processing, m. Therefore there

are 22mn possible label combinations for two nodes and an edge. Considering the

51

pair-wise blocking condition, a pair of nodes and an edge with the same label cannot

be repeated in a path p from the root. In such a case the successor of the second pair

is blocked and is not expanded any more, limiting the length of a path from a root to

22mn.

5. lp-solver always terminates for a finite set of inequations.

Lemma 2. For a set of inequations in LE(x) the arithmetic reasoner generates a solution,

if there exists any, that satisfies all the inequations.

The arithmetic reasoner (lp-solver) uses the Simplex method which is a method to solve

problems in linear programming. For more details of this method, we refer the interested

reader to [CLRS01].

Lemma 3. The pre-processing step of the Hybrid algorithm preserves the semantics of

ABox assertions such as (a, b) : R and a � .= b.

Proof. The Hybrid algorithm transforms all ABox assertions of the form (a, b) : R to

a :� 1Rab� � 1Rab with b : � and Rab � R. Therefore, the algorithm collects all number

restrictions through the �-Rule, �-Rule and IBE-Rule ,including � 1Rab� � 1Rab, and

generates related inequations for the corresponding node and passes them to the lp-solver.

According to Lemma 2, the correct answer will be generated for some v ∈ Va with Rab ∈

α(v), σ(v) = 1. Consequently, the RE-Rule fires and satisfies (a, b) : R, hence Rab is

added to L(〈a, b〉). Since Rab � R and the role hierarchy is considered in the variable

initialization, (a, b) : R holds. Moreover, it is obvious that σ(v) = 1 with Rab ∈ α(v)

and � 1Rab is satisfied because for all other variables v′ �= v with Rab ∈ α(v′), we have

σ(v′) = 0.

The only way that the assertion of the form a � .= b may be violated is the application of

the merge-Rule. Assume that a � .= b is violated and aI = bI and the merge-Rule had been

52

applied. Then, there are a, b, c ∈ V such that w.l.o.g. Rca, Rcb ⊆ L(〈c, b〉) which means

(c, a) : R, (c, b) : R ∈ A. In this case in the process of the variable initialization, a variable

v ∈ LE(c) with Rca, Rcb ∈ α(v) is assigned to zero. After pre-processing and generating

the proper role hierarchy Rca, Rcb ⊆ L(〈c, b〉) holds. Together with the fact that based on

atomic decomposition all possible combinations are generated, one can conclude that there

exists a variable v which represents a merge of a and b. Since v ≤ 0 ∈ LE(c) the arithmetic

reasoner can never find a solution that allows the merging of a and b.

In order to simplify the proof of soundness and completeness of our algorithm we define

a tableau for a SHIQ-ABox A, which is an abstraction of a model of A but is still similar

to completion graphs.

Let IA be the set of all individuals in ABox A and RA be the set of all role names

occurring in A and the role hierarchy R together with their inverses. We define T as

follow:

Definition 24 (Tableau). T = (S,L, E ,J) is a tableau for A with respect to R iff

• S is a non-empty set of objects representing individuals,

• L : S → 2clos(A) maps each object of S to a set of concepts,

• E : RA → 2S×S maps each role to a set of pairs of individuals,

• J : IA → S maps each individuals occurring in A to objects in S.

In addition, for every s, t ∈ S, C,C1, C2 ∈ clos(A), R, S ∈ RA, T satisfies the

following properties:

P1. if C ∈ L(s) then ¬C /∈ L(s).

P2. if C1 � C2 ∈ L(s) then C1 ∈ L(s) and C2 ∈ L(s).

P3. if C1 � C2 ∈ L(s) then C1 ∈ L(s) or C2 ∈ L(s).

P4. if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R) then C ∈ L(t).

53

P5. if ∀R.C ∈ L(s) and there exists some S �∗ R with S ∈ NRT and 〈s, t〉 ∈ E(S) then

∀S.C ∈ L(t).

P6. if ∀R\S.C ∈ L(s) and 〈s, t〉 ∈ E(R) but 〈s, t〉 /∈ E(S) then C ∈ L(t).

P7. 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R)).

P8. if 〈s, t〉 ∈ E(R) and R � S then 〈s, t〉 ∈ E(S).

P9. if � nR ∈ L(s) then |ST (s)| � n.

P10. if � nR ∈ L(s) then |ST (s)| � n.

P11. if a : C ∈ A, then C ∈ L(J (a)).

P12. if (a, b) : R ∈ A, then 〈J (a),J (b)〉 ∈ E(R).

P13. if a ˙�=b ∈ A, then J (a) �= J (b).

Since after pre-processing QNRs are transformed to unqualified ones we have ST (s) =

{t ∈ S | 〈s, t〉 ∈ E(S)}.

Lemma 4 (Completeness). If expansion rules can be applied to a SHIQ ABox A and a

role hierarchy R in such a way that results in a complete and clash-free completion forest,

then A has a tableau w.r.t R.

Proof. Given that the DL SHIQ does not have the finite model property, to prove the

soundness of the algorithm, the fact that a blocked tree may be a part of an infinite model

must be considered. Inspired by [HST00b], we use a path construction to deal with infinite

models and to facilitate our proof.

A tableau T = (S,L, E ,J) from a complete and clash-free forest F is defined by

mapping the nodes in F to elements in T as follows. An individual in S represents a path

in F from a root node to a node which is not blocked via non-root nodes.

A path p is a series of pairs of nodes from F in the form of [(x0, x
′
0), . . . , (xn, x

′
n)],

for which Tail(p) = xn and Tail′(p) = x′
n hold. [p|(xn+1, x

′
n+1)] represents a path

[(x0, x
′
0), . . . , (xn, x

′
n), (xn+1, x

′
n+1)]. Therefore, the set of all paths Paths(F) is defined

as follows:

• For all root nodes xi
0 in F , [(xi

0, x
i
0)] ∈ Paths(F)

54

• For a path p ∈ Paths(F) and a node z ∈ F :

1. if z is a successor of Tail(p) and z is neither blocked nor a root node, then

[p|(z, z)] ∈ F , or

2. if there exist some y ∈ F where y is successor of Tail(p) and z blocks y, then

[p|(z, y)] ∈ F (z is the witness of y).

Consequently, for every p ∈ Paths(F), the following facts hold:

• Tail(p) is not blocked.

• Tail(p) = Tail′(p) iff Tail′(p) is not blocked.

• L(Tail(p)) = L(Tail′(p)).

According to the fact that a root node is neither blocked nor blocking any other nodes, it is

always placed at the head of a path, in the first place. For a path p = [q|(x, y)] we refer to

q as the back-tail of p with backTail(p) = q.

Assume a completion forest F = {V,E,L,LE,LI}, a tableau T = (S,LT , E ,J) is

defined as follows:

S = {p1, . . . , pm|backTail(p1) = · · · = backTail(pm) = backTail(p),
p ∈ Paths, card(p) = m}

L(pi) = L(Tail(p))

E(R) = {〈p, [p|(x, x′)]〉 ∈ S× S | x′ is an R-successor of Tail(p)}∪
{〈[q|(x, x′)], q〉 ∈ S× S | x′ is an Inv(R)-successor of Tail(q)}∪
{〈[(x, x)], [(y, y)]〉 ∈ S× S | x, y are root nodes and y is an (R)-neighbour of x}

J (ai) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[(xi
0, x

i
0)] if xi

0 is a root node in F corresponding to an individual ai ∈ IA

with L(xi
0) �= ∅

[(xj
0, x

j
0)] if xj

0 is a root node in F corresponding to an individual aj ∈ IA

with L(xi
0) = ∅,L(xj

0) �= ∅ and xi
0
.
= xj

0

Now we prove that T satisfies all the properties of a tableau in Def. 24 as follows:

55

• Due to the fact that F is clash free, P1 holds for T .

• Assume C1 �C2 ∈ L(p) then C1 �C2 ∈ L(Tail(p)) and for Tail(p) = x, C1 �C2 ∈

L(x). In such a case, �-rule fires and adds C1 and C2 to the label of x. Since F is

complete, P2 holds for T and likewise P3.

• For P4, consider p, q ∈ S, ∀R.C ∈ L(p) and 〈p, q〉 ∈ E(R). According to the

definition of E(R):

– If q = [p|(x, x′)] then x′ is R-successor of Tail(P) and since F is complete,

the invocation of ∀-Rule yields C ∈ L(x′) = L(x) = L(q).

– If p = [q|(x, x′)] then x′ is Inv(R)-Successor of Tail(q) and since F is com-

plete, C ∈ L(q) = L(Tail(p)).

– If p = [(x, x)] and q = [(y, y)] for two root nodes x and y, then y is R-neighbour

of x and since F is complete C ∈ L(y) and consequently C ∈ L(p)

For similar reasons the ∀+-Rule ensures P5 for T .

• Let ∀R \ S.C ∈ L(p), 〈p, q〉 ∈ E(R) but 〈p, q〉 /∈ E(S). Assume that P6 does not

satisfy T , then C /∈ L(q). If q = [p|(x, x′)] then x′ is R-successor of Tail(P) and the

∀\-Rule is applicable, therefore C ∈ L(x′) = L(x) = L(q) which is contradiction to

our assumption. Likewise for other types of paths P6 holds for T .

• P7 holds for T because of the symmetric definition of the mapping E .

• P8 is taken into account when initializing the variables. If R ∈ α(v) and S /∈ α(v)

then v ≤ 0. Moreover, the role hierarchy �∗ is captured in Def. 9, hence the ∀-Rule,

∀+-Rule and ∀\-Rule deal with role hierarchy correctly.

• Since all numerical restrictions are handled by the arithmetic reasoning part, the hy-

brid algorithm treats both P9 and 10 in the same way. The �-Rule and �-Rule col-

lect all number restrictions from the logical label of a node after all other rules with

56

higher priority have been applied. Note that the assertion (x, z) : R for root nodes

x, z is preserved in the form of � 1Rxz,� 1Rxz ∈ L(x) in the pre-processing phase.

Therefore, the �-Rule and �-Rule capture them. In order to consider the implied

back edge’s roles, the IBE-Rule fires and imposes that edge to LE(x). Similarly,

the resetIBE-Rule may extend LE(x). Then proper partitions are created and the

arithmetic reasoner creates a solution which satisfies all the inequations in LE(x).

Assume that � nR ∈ L(pi), therefore � nR ∈ L(Tail(pi)) and since Tail(pi) = x

then � nR ∈ L(x) for a corresponding node in F . Due to the atomic decomposition

and consequently proper partitions and variables for x, the �-Rule adds Σvi � n to

LE(x) with R ∈ α(vi) and 1 � i � k. The arithmetic reasoner generates a solution

Ωj(x) which satisfies all the inequations in LE(x). Therefore, if R ∈ α(vji) and

σ(vji) � 1 then we have
∑

1�i�k σ(v
j
i) � n. k � n holds because of the fact that the

arithmetic reasoner satisfies the inequation Σvi � n, hence the number of variables

that are greater than zero are less than or equal to n. This is due to the fact that in

the worst case there would be n variables vi = 1 with the sum equal to n. For each

σ(vji) = ni, we distinguish three cases:

- Due to the precondition of the BE-Rule, if σ(vji) = 1 and vji represents the

back edge to the parent of x, the BE-Rule fills the label of the back edge with

α(vji). This R-successor will be mapped to a path q of the form p = [q|(x, x′)].

- According to the precondition of the RE-Rule if σ(vji) = 1 and vji represents an

edge to a root node (which is not parent of x due to the priority of the BE-Rule),

then the RE-Rule fills the label of the edge with α(vji) which is an R-successor

of x and is mapped to a path q of the form q = [(xj
0, x

j
0)].

- Otherwise, the fil-Rule creates an R-successor yi for x with cardinality ni.

Therefore yi will be mapped to ni paths of the form q = [pi|(yi, y′i)] in tableau

T . yi is an R-successor of Tail(pi) with pi ∈ S.

57

Assuming that P10 is not satisfied, then � n(R) ∈ L(pi) but �RT (pi) > n. Hence
∑

σ(vji) > n leads to the conclusion that the arithmetic reasoner does not satisfy the

inequations and the generated solution violates the inequations and that is a contra-

diction to Lemma 2. Therefore P10 holds for T and likewise P9.

• P11, P12, and P13 hold because of Lemma 3. P10 satisfies T , since the cardinality

of each individual xa where a ∈ IA is set to one and L(xa) = {C | (a : C) ∈ C}

Lemma 5. The application of the reset-Rule or resetIBE-Rule for a node x will not result

in a loss of information.

Proof. Assume that a new number restriction (�� nR) is added to the logical label of node

x for which a solution was generated before. This invokes the reset-Rule which sets LE(x)

to the empty set, but L(x) remains unchanged. Due to the type of number restriction, the

�-Rule or �-Rule fires and collects number restrictions from L(x), and generates new

partitions and variables. Hence the reset-Rule never eliminates anything from the logical

label of a node. In other words, by applying the reset-Rule more constraints are added to

LE(x). Similarly the resetIBE-Rule ensures that newly acquired number restrictions are

taken into consideration by extending LE(x). Note that the IBE-Rule may also extend

LE(x) with inequations representing a back edge of x. Since the forest extension is based

on the logical labels of nodes and the resetting rules never modify them, they maintain the

information in the forest.

4.6.1 Completeness

For completeness we have to show that if there exists a model (tableau) for the given ABox

A, the completion rules can fire in such a way that they find this model. To this end, we

first prove some lemmas.

58

Lemma 6. If a non-negative integer solution Ω(x) based on the set of inequations LE(x)

with defined variable boundaries causes a logical clash, all other non-negative integer

solutions also trigger the same clash.

To be more clear, this lemma highlights the necessity and importance of the ch-Rule in

assigning � 0 or � 0 to the variables in LE .

Proof. Let Ω(x) be a solution with {σ(v1) = m1, σ(v2) = m2, . . . , σ(vn) = mn} ac-

cording to the set of inequations and their variable boundaries assigned by the ch-Rule.

Therefore, we have vi � 1 and all the other variables are zero. Having the same variable

constraints the arithmetic reasoner may generate another solution Ω′(x) with {σ(v1) =

p1, σ(v2) = p2, . . . , σ(vn) = pn}. For both solutions we know that vi � 1 but only the

value of mi may be different from pi. Consider three cases as follows.

• If the BE-Rule is applicable, due to its preconditions σ(v) = 1 represents a back

edge to the parent of x, p, which contains Rxp ∈ α(v). When initializing the vari-

ables, we consider that if a variable represents a back edge to the parent of x it must at

least include the inverse of all roles in the label of the implied back edge to guarantee

that the characteristic of inverse roles holds. Unless a unique variable in different so-

lution represents this implied back edge and a clash occurred via this edge (according

to the expression ∀ or ∀\) before, the same clash still occurs. Therefore the results

dose not changes unless the ch-Rule selects another potential variables as an answer

for implied back edge. Note that value of a variable representing the implied back

edge in each solution is one, σ(v) = 1.

• If the RE-Rule is applicable, then zx and its successor zy are root nodes. Therefore

no matter what the solution is, there would be a role Rxy in the solution that represents

this edge and since σ(v) = σ′(v) = 1, the assigned value α(v) of LE(x, y) depends

on the partitioning and not on the particular solution Ω(x) or Ω′(x).

59

• If the fil-Rule is applicable, then a successor y of x is created and similar to the

previous case the assigned value α(v) of L(x, y) depends on the partitioning and not

on the particular Ω(x) or Ω′(x).

In all three cases, if a clash occurred due to a role in a partition, changing the value of a

non-zero variable corresponding to that partition still leads to the same clash, since the role

exists in the partition. Hence solutions with similar the same but different values for the

variables do not change the result. In order to catch (possibly) different results, different

partitions should be selected.

Lemma 7. Let A be a SHIQ-ABox and R a role hierarchy. If A has a tableau w.r.t R,

then completion rules can be applied to A in such a way that they yield a complete and

clash-free completion forest.

Proof. Let T = {S,LT , E ,J } be a tableau for A then we claim that the algorithm creates

a forest F = {V,E,L,LE,LI} from which T can be derived. Now we show that for a

node x in F the application of each completion rule results in a forest which still can be

mapped to T . To accomplish this purpose, we consider each completion rule as follows:

• The �-Rule: if C1 � C2 ∈ L(x) then C1 � C2 ∈ LT (x). In this condition the �-

Rule applies and adds C1, C2 ∈ L(x) which implies C1, C2 ∈ LT (x) due to P2.

Other rules such as �-Rule, ∀-Rule, ∀+-Rule and ∀\-Rule are similar to the �-Rule

according to the fact that all of them are defined on the corresponding properties in

T .

• The ch-Rule steers the arithmetic reasoner to obtain the proper solution by modifying

the boundary of variables. Assume that t1, t2, ..., tn represent successors of s in T .

We define a set CLti = {R|R ∈ NR, 〈x, ti〉 ∈ E(R)} for each successor ti of s. Such

a set represents an edge label between two individuals x and y in the forest F that

60

are mapped to s and ti. The successors may have the same CL. These successors

are intuitively clustered in the groups of elements with the same CL. For a set of

equal CLs we define a variable with α(v) = CL. The ch-Rule must impose v � 1

so that we have T as the mapping of F . Due to the P9 and P10 of T the � nR and

� mR holds for T . Therefore the arithmetic reasoner will find a non-negative integer

solution based on these variables. Although a solution may vary for a set of variables

with defined boundaries, according to Lemma 6 the forest will end up with the same

result (clash or not) for any solution with the same variable constraints.

• The merge-Rule may only merge root nodes. Let b and c be the R-successors of a

with a, b, c ∈ IA and according to an at-most restriction a : (� nR), b and c must

to be merged. Due to the fact that T is a tableau � nR ∈ LT (J (a)) imposes that

J (b) = J (c). Besides, for the root nodes xa, xb, xc which represent respectively

a, b, c, the merge-Rule merges xb and xc based on a solution for LE(xa). Therefore

xb and xc from F are mapped to the same element in T which does not violate the

structure of T .

• The fil-Rule generates successors for a node x based on a solution which the arith-

metic reasoner created for LE(x). Due to the priority of the fil-Rule, all number

restrictions in L(x) are collected and also the effect of the back edge (inverse of

the incoming edge for x) is taken into consideration by the function ξ in the IBE-

Rule. Together with the fact that the ch-Rule modifies the boundary for each vari-

able, one has to conclude that the solution satisfies T . Note that each node x with

card(x) = m > 1 will be represents by m elements in S.

• The �-Rule, �-Rule only set LE(x) according to the number restrictions included in

L(x). Therefore these rules never violate the mapping from F to T .

• The IBE-Rule extends LE(x) with the implied back edge from x to its parent. Since

P8 holds for T there is a back edge from s to its parent p which is the only successor

61

of x with a lower precedence in S, that must be considered in LE(x). Therefore,

the IBE-Rule adds all the roles in the implied back edge as a set of inequations to

LE(x). The function ζ of this rule also changes the variable constraint to ensure the

existence of back edge in the solution for x. See Fig. 13 for an explanation of the

IBE-Rule and for more details on the function ζ see Def. 22 and the examples in

Sec. 4.5.1. Since this rule only modifies LE(x), it will not affect the mapping F to

T .

• The reset-Rule and resetIBE-Rule remove the label of outgoing edges for a node

x and modify LE(x). According to the fact that later the BE-Rule, RE-Rule, and

fil-Rule with lower priority fill the label of outgoing edges, the mapping from F to

T is not violated.

• The BE-Rule fills the label of a back edge for node x to its parent node p. Since the

implied back edge is considered in LE(x) and due to the fact that the IBE-Rule with

a higher priority represents this IBE in the set of inequations, and the ch-Rule sets

the variable constraints and the arithmetic reasoner satisfies all the ineqations with a

non-negative solution, there will be a variable vbe = 1 that represents the back edge

(there exists only one such edge for each node in F). Therefore, the BE-Rule only

sets the edge label to α(vbe), which does not violate the mapping.

• The RE-Rule fills the edge label between two root nodes. Like in the previous case

it satisfies the mapping from F to T .

Hence the F is a complete forest and also clash free due to the following facts:

• F cannot contain a node x with {C,¬C} ∈ L(x) since L(x) = LT (s) and hence P1

would be violated.

• F cannot contain a node x for which LE(x) is unsolvable. In such a case there

should exist a number restriction in the form of (� nR) or (� mR) in L(x) and

62

consequently LT (s) which cannot be satisfied. This violates P9 and/or P10 of a

tableau.

4.7 Summary

In this chapter the hybrid algorithm was introduced. Since the algorithm benefits from

algebraic reasoning, the atomic decomposition technique and the arithmetic reasoning was

explained. Then, the completion rules were introduced and termination, soundness and

completeness of the algorithm were proved. The main difference with [FH10b], in the

partitioning technique, was shown in Section 4.4 and a couple of examples are presented in

order to explain the algorithm and partitioning technique.

63

Chapter 5

Practical Reasoning

In this section, we discuss the practical aspect of our work by explaining the complexity

of our algorithm in section 5.1 and introducing optimization techniques that our reasoner

benefits from in section 5.2. Then we will briefly explain our implemented reasoner in

section 5.3.

5.1 Complexity

After a pre-processing step (see section 4.1) and transforming all QNRs to unqualified NRs,

(p + q) new number restrictions, and consequently new roles, are introduced in the form

of {� n1R1,� n2R2, . . . ,� npRp,� m1S1,� m2S2, . . . ,� mqSq}. In the worst case,

considering inverse roles, this will result in 2(p+ q) = k roles.

The search space of the hybrid algorithm depends on the number of variables in LE .

Since there are k roles, the number of possible partitions and their related variables is

bounded by |Vx| = 2k − 1. The ch-Rule creates two branches for each variable: v � 1

or v � 1. Consequently, 2k cases will be examined by the arithmetic reasoner and the

complexity of the algorithm is a double exponential function of 2(p + q). Moreover, the

Simplex method which is used in the hybrid algorithm is NP in the worst case. However,

[Pap81] shows that if the number of variables is bounded, then the Simplex method is P in

64

worst case.

The implemented lp solver minimizes the sum of the variables that occur in the inequa-

tions. In addition, we use several heuristics that can eliminate branches in the search space,

therefore, avoiding unnecessary invocations of the ch-Rule. These heuristics dramatically

improve the average complexity of the hybrid algorithm over the worst case of 22k .

5.2 Optimization Techniques

In most cases, in order to utilize these theoretical algorithms in practice, optimization tech-

niques are required. Due to the complexity of the algorithm, achieving a good performance

may seem infeasible. However, experiments with early DL systems such as KRIS, and

lately with state of the art DL systems have shown that applying suitable (even simple)

optimization techniques could lead to a significant improvement in the empirical evalua-

tion of a DL system. The optimization techniques dramatically decrease the size of the

search space by pruning many branches. For instance, [HT00] uses axiom absorption for

TBox services in order to improve the reasoner by preventing several unnecessary steps.

In the following, the optimization techniques used in the hybrid algorithm are explained.

The worst case complexity of the hybrid algebraic tableau-based satisfiability algorithm has

been shown in Section.5.1 as being double exponential. The theoretical complexity result

is not surprising because the satisiability problem of expressive DLs is usually inevitably

at-least exponential. However, the algorithm might be considered theoretically inefficient

because the complexity of the satisfiability algorithm (double exponential) came out greater

than the complexity of the satisfiability problem itself (single exponential). Such a gap be-

tween the complexity of an algorithm and that of the problem might be due to the fact that

the algorithm was designed in such a way to facilitate proofs of its soundness and complete-

ness without much consideration to its worst case complexity or practical implementation.

One may find it discouraging to consider the practical implication of an algorithm

65

with a high theoretical worst case complexity. However, a high worst-case complexity

is not uncommon with practical DL systems. For example, the hyper-tableau satisfiabil-

ity algorithms [MSH07], [MSH09] designed to handle general concept inclusion axioms

(GCIs) more efficiently with the DLs SHIQ and SHOIQ share a double exponential

worst case complexity, whereas satisfiability with SHIQ is EXPTIME-complete and that

with SHOIQ is EXPTIME-complete. Moreover, the algebraic tableau reasoning algorithm

[FH10b] and [Fad11] designed for the DL SHQ and SHOQ run in the worst case in double

exponential time whereas satisfiability with SHQ and SHOQ is EXPTIME-complete. On

the other hand, systems based on optimized implementations of these algorithms demon-

strate significant performance improvement showing their practical impact in solving spe-

cialized problems. So far, no better way has been reported in solving QNRs other than

through algebraic reasoning. Also, Hermit is the first reasoner able to classify ontologies

which had previously been proven too complex for any available reasoner to handle.

Various optimization techniques were developed, targeting various reasoning services.

Absorption [HT00] and lazy unfolding [BHN+92] address classification and subsumption

as TBox services. These optimization techniques facilitate subsumption testing by avoiding

unnecessary steps in TBox reasoning.

The main feature of our hybrid algorithm is to address the performance issues regarding

reasoning with QCRs independently from the reasoning service. In other words, by means

of hybrid reasoning, we want to improve reasoning at the concept satisfiability level which

definitely has an impact on TBox and ABox reasoning.

At the concept satisfiability level, the major source of inefficiency is due to the high

nondeterminism in completion rules such as the �-Rule in Fig. 3 and the choose-Rule

in Fig. 8 that create several branches in the search space. In order to remain complete, an

algorithm needs to explore all of these branches. Optimization techniques mainly try to

reduce the size of the search space by pruning the non-related branches. Also, heuristics

can help the algorithm to guess which branches to explore first. When the algorithm is

66

more informed, it would explore branches that have a lower probability of failing.

Considering a practical implementation for the hybrid algebraic algorithm, another

source of inefficiency is partitioning which determines the number of variables for which

the non-deterministic ch-Rule can fire. Although the hybrid algorithm is worst-case double-

exponential and the large number of variables seems to be hopelessly inefficient, there are

some heuristics and specialized optimization techniques which handle those inefficiency

sources and make the calculus feasible to use. These techniques are discussed in the fol-

lowing.

5.2.1 Variable Initialization

In case of ordering non-deterministic expansions for a concept expression that includes a

disjunction (C � D � E � . . .), there are two possible technique to explore all possible

models: syntactic branching, and semantic branching. In syntactic branching, one non-

deterministically chooses an unexpanded disjunction (C �D � E � . . .) in the label L(x)

of a node x and add each of the disjuncts in (C � D � E � . . .) to L(x). Therefore, due

to the different cases, the algorithm might need to explore the various completion graphs

before it terminates. Moreover, completion graphs corresponding to each of the disjuncts

are not disjoint and exploring them non-deterministically can result in the recurrence of an

unsatisfiable disjunct in more than one graph which is a major cause of inefficiency.

In contrast, in order to improve this inefficiency, semantic branching opens two branches,

based on a single unexpanded disjunct C in L(x), one model C and the other ¬C (added

to L(x)). The choose-Rule, provides this semantic branching for the QNRs in the tableau

algorithm (see Fig. 8).

The hybrid algorithm explores the branches for QNRs, via the ch-Rule (see Fig. 13)

for variables. Then there would be v � 1 in one branch and v � 0 in the other branch.

In contrast to concept branching provided by the choose-Rule, in variable branching the

existence of the variables that are less or equal zero can be ignored, since the arithmetic

67

reasoner only considers the variables that are greater or equal to one.

The arithmetic reasoner starts with the default value of zero for all the variables and

later sets some to be more than zero to satisfy inequations, according to given at-least re-

strictions. Therefore, by setting the default value to v � 0 for every variable, the algorithm

does not need to invoke the ch-Rule |Vx| times before starting to find a solution for the

inequations.

Since the ch-Rule is invoked 2|Vx| times in the worst case to check the variables for

v � 1 or v � 0, default zero setting of variables prevents unnecessary invocations of the

ch-Rule.

After setting all the variables to zero, the algorithm must decide to set some variables

greater than zero in order to satisfy the at-least restrictions and find an arithmetic solution.

The order in which the algorithm chooses these variables can help the arithmetic reasoner

find the solution faster.

• Don’t care variables: The boundary value of some of the variables can be determined

from the beginning according to the occurrence of the variables in at-most or/and

at-least restrictions. For example, if a variable occurs in an at-least restriction but

not in an at-most restriction, then it does not have any arithmetic restrictions, other

than logical restrictions which later on will be processed by the algorithm. Such

variables are called don’t care variables [FH10b] and according to the arithmetic

limitations, any non-negative integer value can be assigned to these variables. Hence,

the algorithm let them exist in all of the inequations unless they trigger a logical clash.

• Satisfying variables: The satisfying variables are defined as the set of variables that

occur in an at-least restriction and are not don’t care variables. Since they occur in

an at-least restriction, assigning them to be greater or equal to one, the arithmetic

reasoner is guided to a solution. Whenever a node that is created based on v causes

a clash, by means of dependency-directed backtracking (explained in the following),

it will be set to zero v � 0 and removed from the satisfying variables set. When

68

the satisfying variables set becomes empty the algorithm concludes that the set of

qualified number restrictions in L(x) is unsatisfiable.

• Non-IBE variables: In order to avoid unnecessary application of resetIBE-Rule ad-

ditional heuristics are applied. For a node x in L(x), if a role occurs in an at-least

restrictions but not in any at-most restriction and it is not a sub-role of any role R in

concept of the form ∀R \ S.C ∈ L(x), then it cannot be in a variable that represents

a back edge for node x.

Note that the number of variables that can be decided to be greater than zero in an

inequation is bounded by the number occurring in its corresponding numerical restriction.

For example, in the inequation v1 + v2 + · · · + vi � 5, although we have 100 variables in

the inequation, not more than five vi can be greater or equal than one at the same time.

In addition, the resetIBE-Rule specifically determines the value of a single variable,IFE1,

(see Def. 22 and section 4.5.2). Similarly, IBE-Rule modifies the value of a set of vari-

ables to zero, add them to the non-IBE variables, and enforces a set of variables to be

the potential choices for the answer, named IBE variables (see Def. 23 and section 4.5.1).

These rules also reduces the solution space by setting variables to zero.

It is worth to mention that one of the interesting characteristics of the variables is the

way of encoding. As it was explained in section 4.2, the indices of the variables are encoded

in binary format in order to simplify the process of retrieving the role names related to them.

On the other hand, there is no need to assign any memory space for them unless they have

a value greater than zero based on an arithmetic solution.

5.2.2 Dependency Directed Backtracking (DDB)

DDB techniques find sources of logical clashes and then consider the cause of the clash in

setting the boundaries of variables in new solutions. This results in the algorithm pruning

1Implied Forward Edge

69

the branches which lead to the same clashes. [Hor02] introduces DDB and demonstrates

how this method significantly improves the performance of the FaCT system to deal much

more effectively with QNRs.

DDB adapted to the hybrid algorithm, similar to [FH10b], also remarks a considerable

improvement in algebraic reasoning. In the hybrid algorithm, whenever a logical clash

occurred for a successor y of x, one can conclude that the corresponding variable vy for

the partition that includes y must be zero. Therefore, all branches with vy � 1 could

be ignored. This Simple DDB can exponentially decrease the size of the search space by

pruning half of the branches each time the algorithm detects a clash. For example, in the

general case of L(x), by pruning all the branches where vy � 1, 2|Vx|−1 = 22
p+q−1 branches

w.r.t. the ch-Rule which is half of the branches.

A more sophisticated DDB technique, Complex DDB, if the algorithm encounters a

clash because of {A,¬A} ∈ L(x), then the source for propagation of these two concepts

could be the roles in ∀R.A and/or ∀(S \ T).¬A. In this case, the variables which contain

all these roles (Ri ∈ α(v) ∧ (Sj ∈ α(v) ∧ Tj /∈ α(v))) are set to zero. It is shown in

[FH10b] that with complex DDB, the number of branches will be reduced from 2|Vx| to

23/4|Vx|. These techniques eliminate many branches in the search space and consequently

improves the average complexity of the algorithm.

Benefiting from all these heuristics and optimization techniques, the atomic decompo-

sition will be a method to organize the search space and at the same time by means of

numerical reasoning and proxy individuals remain independent from the value of numbers.

As it was shown in Lemma 6 in Chapter 4.6, for a set of inequations with the same

boundaries for the variables all the solutions lead to the same situation, if a clash occurs

due to a solution for a set of inequations, without changing the boundaries of variables all

other answers would result in the same clash. In other words, the algorithm will create

successors with the same logical labels but different cardinalities based on these different

70

solutions. Since all the solutions minimize the sum of variables and satisfy all the numer-

ical restrictions, they do not make any logical differences (as long as the set of zero-value

variables is the same). Moreover, backtracking within arithmetic reasoning is not trivial

due to the fact that the cause of an arithmetic clash cannot be easily traced back. In other

words, the whole set of numerical restrictions together causes the clash. In the same sense

as in a standard tableau algorithm, if all the possible merging arrangements end up with a

clash, one can only conclude that the corresponding numerical restrictions are not satisfi-

able together.

5.3 Prototype Reasoner

This chapter represents the implemented prototype reasoner based on the hybrid algorithm

presented in Chapter 4 and benefits from optimization techniques defined in Chapter 5.2.

The architecture and the main modules of the reasoner will be explained.

In order to evaluate our hybrid algorithm, a prototype reasoner is implemented. We used

the prototype reasoner from [FH10b] and extended it to handle inverse roles. The reasoner

decides the satisfiability of ALCHIQ concepts. ALCHIQ is equivalent to DL SHIQ

without transitive roles. Since, the interaction of transitive roles with qualified number

restrictions results in undecidability [HST00a], only simple roles NRS can have number

restrictions except � 1R.C. To this end, it is not usual to consider an unrestricted combi-

nation of transitive roles and QNR. Therefore, in order to have a minimal work prototype,

the reasoner is implemented without transitive roles.

The main focus of this implementation is to demonstrate how the hybrid reasoner ex-

hibits stable behavior while other reasoners become dramatically slow as the number of

qualified number restrictions and the complexity of combinations of them w.r.t. a role hi-

erarchy and presence of inverse roles increases. The reasoner is implemented in Java using

71

Web Ontology Language (OWL) API2 typically used to represent Semantic Web ontolo-

gies.

The system consists of two main modules, a logical module and an arithmetic module

(lp-solver). The logical module, as the main part of the system, performs the completion

rules and calls the arithmetic module when needed. After a call the arithmetic module gets

all the number restrictions, applies atomic decomposition, generates variables according

to the partitions, creates the proper set of inequations, applies the ch-Rule and finds the

answer for the set. These interactions continue until a clash occurs and no more branches

remain meaning the concept is not satisfiable, or it reaches the point that no more rules

are applicable meaning the concept is satisfiable. Then the output of the reasoner would

be either a complete and clash-free completion graph, if the input concept expression is

satisfiable, or otherwise it returns unsatisfiable. Note that since the input of the reasoner is

not an ABox, the algorithm constructs a completion graph rather than a completion forest.

As a pre-processing step, the logical module transforms the input concept expression

according to the function unQ defined in Def. 14. It also provides the arithmetic module

with a set of unqualified number restrictions (NRs). The arithmetic module either returns

an arithmetic clash or a non-negative integer solution based on which the logical module

generates the new successors for an individual, or modifies the edge to the existing succes-

sor (parent). In the following sections we describe applications of both modules in more

details.

5.3.1 Logical Module

The logical module is the main part of the hybrid reasoner which includes the pre-processing

component, clash strategy component, some auxiliary components. It also performs a set

of expansion rules (except ch-Rule) and interacts with arithmetic modules according to the

2http://owlapi.sourceforge.net/

72

QNRs. The input ontology file (.owl3 file) is processed with the pre-processing compo-

nent and all qualified number restrictions are replaced with equisatisfiable unqualified ones

which are also transformed to NNF. As explained in Chapter 4, the DL SHIN \ is not

closed under negation. Hence, the reasoner never negates a concept expression which is a

direct or indirect output of the pre-processing component.

Reasoner Completion Rule Algorithm Completion Rules

ResetRule() reset-Rule
ResetIBERule() resetIBE-Rule
AndRule() �-Rule
ForAllRule() ∀-Rule
ForAllSubtractRule() ∀\-Rule
Or-Rule() �-Rule
BERule() BE-Rule
BuildResultInSiblingRule() backtracking
CollectAndInitiateArithmeticRule() �-Rule, �-Rule, IBE-Rule, ch-Rule

Figure 20: The completion Rules and their represented functions.

The output of the pre-processing step is the input of the expansion rules component,

based on which the completion graph is generated. The algorithm constructs a tree of

states. Each state is a completion graph and represents the state of the constructed model.

The application of each deterministic completion rule results in one new state and the appli-

cation of non-deterministic rules leads to more than one state. For instance, if the ∀-Rule is

applied on a node x in state1 based on ∀R.C ∈ L(x), then state2 includes the completion

graph of state1 with C added to the label L(y) where y is R-successor of x. Therefore,

state2 would be added as a child of state1 in the tree. If the reasoner fires the �-Rule,

based on C1 � · · · � Cn ∈ L(x), then n statei will be generated as children of state1 and

for each state, one of the conjuncts Ci will be added to L(x).

Each state, contains a unique completion graph with all related information of the cor-

responding graph such as individuals, cardinalities, labels. Recording all the states as a

tree data structure, simplifies to find the source of creation of each state and consequently

supports backtracking on states.
3http://www.w3schools.com/rdf/rdf-owl.asp

73

A set of completion rules represented in Fig. 20 are implemented in the reasoner to

consider the concept satisfiability of a SHIN\ TBox. The RE-Rule, and merge-Rule are

not included since they are build in order to deal with the individuals in the ABox.

Expansion Rules Strategy

canApply(State s) {
if (s contains an individual for which this-Rule is applicable) :

return true
else

return false
end if

}

apply(State s) {
newState ←− Copy(s)
newState.parent ←− s
for all individual in s such that this-Rule is applicable do :
newInd ←− apply this-Rule on individual
replace individual with newInd in newState

end for

return newState

Figure 21: Expansion Rules Strategy

As it is demonstrated in Fig. 21, all individuals in the current state are checked to see

if any of them has the required conditions (see the rules condition in Fig. 13), for the

application of a rule. If a rule is applicable, it modifies a copy of a current state and puts

it as a new state and child of the current state. An applicable rule is applied on all the

individuals that satisfy the preconditions of the rule. The Rule Expansion Strategy ensures

that the rules are applied according to their priorities, from top to bottom as listed in Fig. 20,

to every state that is not closed. If no rule is applicable to a state, it will be closed. If all of

the states are clashed and closed the input concept expression is unsatisfiable. Whenever a

rule is applicable to a state, the logical module ensures that no rule with higher priority is

applicable to it.

Using backtracking, the reasoner does not find all the solutions in one try. In other

words, if a generated solution is end up in a clash, the algorithm backtracks to the choice

74

point and generates a new solution considering the cause of the clash (modifying variables).

There are two rules specified to handle these tasks (see Fig. 20): CollectAndInitiateArithmeticRule()

and BuildResultInSiblingRule(). The CollectAndInitiateArithmeticRule(), collects

all number restrictions for each individuals in a state1 and calls the arithmetic reasoner,

with a set of inequations as input. Afterwards, it generates new successors based on the

given solution (if there exists any) in the state2.

BuildResultInSiblingRule() is applicable to a clashed closed state, which is a clashed

state that is not expandable w.r.t the OrRule. When the rule finds a clashed individual y in

a state2, it retrieves the parent of state2, state1, and calls the arithmetic module, sets the

variable represented y to zero and gets a new solution.

All other rules shown in Fig. 20 are implemented similar to their related completion

rule in the tableau (see Fig. 13).

Clash Strategy Component is implemented in order to detect the clashes. It triggers

a clash for an individual x, either when for a concept name A, {A,¬A} ⊆ L(x) or an

arithmetic clash is detected in the arithmetic component (i.e. there exists no solution).

Blocking Strategy Component is called after each rule fired. This component searches

the completion graph in the current state to check if blocking is needed. Also, it rechecks

the blocked nodes and the witnesses and if the blocking condition is violated, it unblocks

the nodes.

5.3.2 Arithmetic Reasoner

One of the major and also time consuming function of the hybrid reasoner, is the arithmetic

module, which generates arithmetic solutions. Also, the ch-Rule is implemented in the

arithmetic modules. The arithmetic module benefits from some heuristics, which improve

the process of finding a non-negative solution.

For n NRs with roles R1, R2, . . . , Rn, the arithmetic reasoner generates 2n−1 variables.

The encoding is similar to the one explained in Section.4.1.3 for atomic decomposition.

75

freedom(v) Category

2 v must be zero according to logical reasons
0 v must be zero according to the ch-Rule choice
1 v must be greater or equal to 1 according to the ch-Rule choice
-1 v is a don′tcare variable and can have any value

Figure 22: Categorizing variables.

The ith digit of the binary coding of m represents Ri where Ri ∈ α(vm) For instance, with

n = 5, we have α(v5) = {R1, R3}.

All the variables are classified according to the values they can take. In order to perform

this classification, the notion of freedom of variables is defined. For each variable v,

freedom(v) express the value assigned to the related classification. The classification of

variables is demonstrated in Fig. 22.

Algorithm findDontCare()

for i = 1 to n :
if NR[i] is an at-least restriction :

for all vj j = 1 to 2n − 1 such that its ith digit in binary coding is equal to 1 :
if (kth digit of j) = 1 AND NR[j] is not an at-most restriction :
freedom(vj) = −1

end if

if freedom(vj) �= −1 AND freedom(vj) �= −2 :
add vj to satisfyingV ariablesList

end if

end for

end if

end for

Figure 23: Finding the don’t care variables (see section 5.2)

Note that the assigned value to the freedom of an individuals may change handling

unless it is equal to 2. The techniques discussed in section 5.2 regarding categorizing

variables are all implemented in order to guide the arithmetic reasoner to find a solution.

The heuristic mentioned in section 5.2 was also implemented according to the explanation.

76

Algorithm fixRoleHierarchy()

for i = 1 to n :
for j = 1 to n :

if Rj � Ri AND i �= j :
for all v such that Ri related to v AND Rj not related to v :
freedom(v) = 2

end for

end if

end for

end for

Figure 24: Applying role hierarchy.

The two function ζ (described in Def. 22) and ς (described in Def. 23) which respec-

tively are used in the resetIBE-Rule and IBE-Rule (Fig. 13), also modify the variables.

They are implemented according to their definitions. Fig. 25(a) shows the algorithm for the

function ς and Fig. 25(b) shows the algorithm for the function ζ .

The heuristic which is mentioned in section 5.2 is implemented as shown in Fig. 26. It

prevents unnecessary applications of the resetIBE-Rule.

After finalizing the satisfying variables list, the main function starts the application

of the ch-Rule. The branching function starts letting the satisfying variables to have the

freedom of 1 (i.e., being greater or equal 1). If there exist k variables in the satisfying

variables list, in order to be complete, the algorithm must try all the 2k cases regarding the

freedom of the variables. Benefiting from backtracking, the algorithm returns to the logical

module the first non-negative integer solution it finds. If the found solution logically fails,

at least for one variable v, freedom(v) = 1 changes to freedom(v) = 2 which later will

result in a different solution and the algorithm cannot compute the same solution again and

falling in a cycle. If branching does not return any solution, the arithmetic module returns

an arithmetic clash.

The integer programming or the inequation-solver component gets a set of linear in-

equations as input. The goal function is always set to minimize the sum of all the variables,

77

Algorithm findIBE(roleSETRS)

findIBE (roleSETRS){
for all vi: i = 1 to the number of all variables:

for all Rj ∈ RS: j = 1 to |RO|:
if Rj is related to vi :

for all Rk ∈ RS: k = 1 to |RO|:
if Rk is not related to vi AND j �= k :
freedom(vi) = 2
break

end if

add vi to potentialIBEVList
end for

end if

end for

end for

}

(a)

Algorithm findIFE(ROLESRO, k)

findIFE (roleSETRS){
for all vi : i = 1 to the number of all variables

for all Rj ∈ RO: j = 1 to |RO|
if Rj is not related to vi AND i �= j :

break

end if

add vi to potentialIFEVList
end for

end for

for all vi : i = 1 to |potentialIFEVList |
for all Rj: j = 1 to the number of all roles

if Rj is related to vi AND Rj /∈ RO :
remove vi from potentialIFEVList

end if

end for

end for

v ←− the first element of potentialIFEVList
v = k
}

(b)

Figure 25: (a) Algorithm for finding potential IBE variables. (b) Algorithm for finding
potential IFE variables.

while all of the variables are greater or equal zero. The set of constraints imposed by the

freedom of the variables will also be part of the input in form of inequations. In other

words, if freedom(v) = 1 for a variable, then v � 1 as a part of the input. Notice that in

the cases where freedom(v) = 0 or freedom(v) = 2, v never appears in the set of input

inequations. The integer programming component is composed of a linear programming

algorithm according to the Simplex method presented in [CLRS01] and branch-and-bound

to obtain integer solutions when the linear solution contains fractional values.

One of the major issue with this choice of language was the representation of float num-

bers. In other words, floating point numbers as a result of linear programming cannot be

represented precisely. Therefore, sometimes rounding errors can result in a wrong solution.

Especially when having a large number of variables, the sum of the errors may exceed 1

and may result in a wrong answer. This problem can be solved when representing fractional

numbers by two integers: numerator and denominator. Unfortunately, these integers grow

dramatically fast and use dynamic memory. Also, objects as float numbers can become

78

Heuristic 1

findnotIBE() { isInF irstSubtract(R, forAllSubE) {
if R occurs in at-least restriction AND S ←− firstSubtract of forAllSubE
R does not occur in at-most restriction if isSubproperyOf(R, S):
for all forAllSubE i in a label: return true

if isInF irstSubtract(R,mathitforAllSubEi): else

for all vj in IBEVariableList return false
if R is related to vj end if

freedom(vl) = 2 }
end if

end for

end if

}

Figure 26: A heuristic to prevent unnecessary application of resetIBE . The firstSubtract
refers to a role like Si such that Si is equal or sub-rule of S in an expression ∀(S \ L).

very expensive in terms of time and memory. This is expected to be unlikely and basically

never happened in any of the sample ontologies we used.

5.4 Summary

In this chapter we discussed the implemented prototype reasoner and also the optimization

techniques provided for the reasoner were explained. In the next chapter we will evaluate

our algorithm by comparing it to other reasoners.

79

Chapter 6

Evaluation

In this chapter we evaluate the practical performance of the hybrid reasoner. To this end,

we compare the hybrid reasoner with state of the art reasoners such as, Pellet, FaCT++,

and Hermit. In addition, the improvement by the optimization techniques represented in

Chapter 5.2 is measured.

6.1 Choosing Benchmarks

The main goal of implementing the hybrid reasoner is to address the improvement on the

effects of inverse roles and QNRs using algebraic reasoning in one hand, and show the

effect of optimization techniques on the other hand. To this end, we focus our evaluation on

concept expressions containing QNRs and inverse roles. For all roles in the test cases their

inverse roles are also considered, therefore, the impact of inverse always is demonstrated.

In order to meet these objectives, we designed various test cases that include pattern of

problems encountered in the presence of QNRs and inverse roles and evaluated the hybrid

reasoner with TBox consistency tests.

In order to study the behavior of the hybrid reasoner, we developed a set of synthetic

benchmarks and identify the following parameters that may affect the complexity of rea-

soning:

80

• The value of the numbers, (m,n), occurring in QNRs, (� mR.C,� nR.C), in pres-

ence of inverse roles.

• The back propagation of QNRs via inverse roles.

• The number of QNRs (at-least vs at-most).

The algebraic method has been adopted and studied previously in [HTM01, FH10b] to

handle QNRs. Also [Fad11] benefits from the algebraic method to deal with QNRs and

nominals and for both cases it shows a significant improvement on reasoning time. There

are no well known ontologies addressing specifically the interaction between inverse roles

and QNRs, therefore we synthesize test cases to show the weakness of state of the art

reasoners and shows how our reasoner can overcome this weakness.

6.2 Evaluating Benchmarks

We will show the performance of the hybrid reasoner by a set of benchmarks. The test

cases and results of evaluating the reasoner will be discussed. The demonstrated numbers

are calculated considering the average of 10 executions of each test case. We run test cases

on a system with AMD 3.4GHz quad core CPU and 16 GBs of DDR3 RAM.

6.2.1 Inverse roles and the value of numbers in QNRs

Consider (� nhasComputer.PCand � mhasComputer.), we refer to n,m as the value

of QNRs, which may vary according to the modeling domain. For example if the given do-

main is a person then n and m will be relatively small like 1 or 2, but considering modeling

a big computer company or computer company, the value can easily increase to the value

of (more or less than) several hundred thousand.

Assume the concept TestSat, which is the same as the example in Fig. 14, such that:

TestSat � C � � 2kR � ∀R.(� kR−.C� � kR−.C) where k = 2i, i ∈ {0, . . . , 10}

81

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

22 23 24 25 26 27 28 29 210

R
ea

so
ni

ng
 T

im
e

(m
s)

Value of k

Hermit
Pellet

FaCT++
Hybrid

Figure 27: Exponential increase of k

Fig. 27 compares the reasoning time of our hybrid reasoner to Pellet, FaCT++, and

Hermit. As demonstrated in the diagram, all three reasoners determine the satisfiability

of the concept in less than 100(ms) before reaching k = 24. While the hybrid reasoner

is able to maintain this reasoning time (constantly under a 100(ms)), Pellet, Hermit, and

FaCT++ exhibit exponential growth in the reasoning time for values higher than k = 24,

k = 26, and k = 27 respectively. For example, for k = 29 Pellet’s reasoning time is

more than 18(mins) and for k = 210 it was not able to execute in a timely manner. This

example demonstrates the independent behavior of our hybrid calculus in the presence of

high number value of QNRs interacting with inverse roles.

6.2.2 Back propagation of QNR

Assume the unsatisfiable concept TestUnsat such that:

Test �� 8S.A� � 9S.A � ∀S.(� kR.C � � 6T.D� � 5T.D)�

∀S.∀R.(� 2T.D� � 3T.D) � ∀S.∀R.∀T.∀T−.∀R−.P)

with {R � M} ∈ R and k ∈ {100, . . . , 1000}

82

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 100 200 300 400 500 600 700 800 900 1000

R
ea

so
ni

ng
 T

im
e

(m
s)

Value of k

Hermit
Pellet

FaCT++
Hybrid-S
Hybrid-C

(a)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 100 200 300 400 500 600 700 800 900 1000

R
ea

so
ni

ng
 T

im
e

(m
s)

Value of k

Hermit
Pellet

FaCT++
Hybrid-S
Hybrid-C

(b)

Figure 28: (a) Linear increase of k for unsatisfiable concept expression. (b) Linear increase
of k for satisfiable concept expression.

Fig. 28(a) demonstrates the reasoning time for satisfiability test of Test, where P =

(� (k − 2)M.(C �D). In this example � (k − 2)M.(C �D) propagates back and makes

the concept unsatisfiable. Fig. 28(b) shows the reasoning time for satisfiability test of Test

where P = (� (k+ 1)M.(C �D). In this example � (k+ 1)M.(C �D) propagates back

and makes the concept satisfiable. As expected the Hybrid reasoner remains stable while

the execution times of the other reasoners depend on the values in number restrictions.

As shown in Fig. 28(a) and Fig. 28(b), Hermit’s behavior is the worst among all the

reasoners. Hermit and Pellet show a rapid exponential growth in their reasoning times

as a function of k. FaCT++ solves the problem in a more reasonable time, however, it

demonstrates its dependency on the value of k as its runtime increases.

6.2.3 Backtracking

In order to analyze the impact of backtracking we focus on the hybrid algorithm in a sepa-

rate graph. Fig. 29 shows the behavior of the hybrid algorithm using complex and simple

dependency directed backtracking techniques regarding the previous test case, TestUnsat.

Complex backtracking outperforms simple backtracking techniques since it prunes more

83

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 100 200 300 400 500 600 700 800 900 1000

R
ea

so
ni

ng
 T

im
e

(m
s)

Value of k

Hybrid-S
Hybrid-C

Figure 29: Complex backtracking vs simple backtracking

branches that lead to the same sort of clashes. The number of logical clashes and back-

tracks for this case are shown in Table 1.

Hybrid-S
Logical Clash 8 9 9 9 8 8 9 8
Back-Track 7 8 8 8 7 7 8 7

Hybrid-C
Logical Clash 4 5 5 5 4 4 5 4
Back-Track 3 4 4 4 3 3 4 3

Table 1: Number of logical clashes and backtracks

The number of backtracks presented in Table 1, highlights the improvement that us-

ing the complex backtracking method results in a smaller number of backtracking steps

and consequently the algorithm terminates in less time compared to simple backtracking.

According to the explanation given in Chapter 5 for these two techniques, simple back-

tracking only set one variables to zero, while complex backtracking sets all the variable

that are causing the same clash to zero and obviously the complex technique can prune

more branches from the search space. In addition to improving the performance of the

reasoner the optimization techniques used in our hybrid reasoner can make its performance

more stable.

84

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13

R
ea

so
ni

ng
 T

im
e

(m
s)

Value of i

Hybrid-C

Figure 30: Increasing at-least QNR

6.2.4 The number of QNRs

There is no doubt that the arithmetic reasoning has a significant improvement for the cases

with large values in number restrictions. However, this component can incur a higher pro-

cessing cost. The run time to find an answer for a set of inequations depends on the number

of variables occurring in the inequations and the number of inequations. As mentioned in

section 4.1.3 and Section 4.2, if there exists m NRs then there would be 2m − 1 partitions

for all possible combinations of the NRs, and consequently 2m − 1 variables. Therefore by

increasing the number of NRs, the number of variables exponentially increases. Since the

ch-Rule should consider two branches for each variable as v � 1 or v � 1, the number of

time that the ch-Rule is applied dramatically increases. In fact the worst-case complexity

of the hybrid algorithm is characterized by a double-exponential function of the number of

cardinality restrictions.

Assume a concept Test such that:

85

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 1 2 3 4 5 6 7 8

R
ea

so
ni

ng
 T

im
e

(m
s)

Value of i

Hybrid-C

Figure 31: Increasing at-most QNR

Test �� 1S.A � ∀S. � 1R.B � ∀S.∀R.∀S−.P

where P = {� �� 1Mi.Ci | 1 � i � k}

The diagrams in Fig. 30 and Fig. 31 show the effect of increasing the number of at-least

and at-most restrictions in reasoning for the concept Test. Fig. 30, shows the reasoning

time for concept Test where �� is replaced with � and k = 14. Fig. 31, shows the reasoning

time for concept Test where �� is replaced with � and k = 8. In a model for the concept

Test, the concept expression P is propagated back and will be added to the label of a

node which already has � 1R.B, therefore, we have (k + 1) QNRs. Since for each node

which has a parent, an IBE will be considered as a set of two inequations and consequently

two more QNRs will be added to the LE of the node. At last we have (k + 1) + 2 QNRs.

Accordingly there would be 2(k+2)−1 variables to be considered in the arithmetic reasoner.

A large number of roles in the QNRs may affect the performance of the hybrid calculus

since it increases the number of variables and the size of the search space. Moreover, since

the arithmetic always searches for a minimal solution, significantly affects the complexity

86

of the reasoning even when no at-most restriction exists Comparing these two diagrams

shows that by increasing the number of at-most NRs the reasoning time for the arithmetic

reasoner increases faster than for at-least restrictions. The reason is the heuristic that we

explained in section 5.2. By means of this heuristic (see Fig. 26), if a role occurs in an at-

least restriction and not in any at-most restriction and has pre-conditions that are mentioned

in section 5.2, then the potential variables for IBE which contain this role are set to zero.

Therefore, the number of variables in search space is decreased.

6.3 Summary

In this chapter the implemented prototype reasoner was compared with state of the art

reasoners. The effectiveness of reasoner in handling large values of number restrictions

in presence of QNRs and consequently back propagation of QNRs are shown. Also the

inefficiency of algorithm in dealing with large number of QNRs and consequently large

number of variables was demonstrated.

87

Chapter 7

Conclusion and Future Work

The presented hybrid calculus in this thesis decides the satisfiability of SHIQ concepts.

The implemented hybrid reasoner demonstrates the improvement on reasoning time fea-

turing QNRs and inverse roles. Utilizing algebraic reasoning and applying optimization

techniques, the hybrid calculus can be a good solution in case of large numbers for qual-

ified number restrictions. In addition SHIQ can be further extended with nominals to a

more expressive DL SHOIQ.

7.1 Conclusion

Our presented approach uses algebraic reasoning which makes the reasoning time indepen-

dent from the value of number restrictions. While other reasoner’s reasoning time expo-

nentially increases due to the exponential increase of cardinality value, our approach shows

a stable behavior for some test cases. In absence of inverse roles the hybrid algorithm col-

lects all the numerical restrictions before expanding the completion graph. Therefore it will

generate a more informed solution with a good chance of survival. Therefore there is no

need to merge as in standard tableau algorithms. The latter issue holds in the case of inverse

roles. This is due to the fact that we still consider this edge as a numerical restriction before

finding an answer for a node and generating new individuals. Therefore we never merge

88

the proxy individuals, but if a modification is needed the algorithm recompute the atomic

decomposition (see section 4.4). In case of back propagation of QNRs, our algorithm re-

sets the arithmetic label of a corresponding node, discards its children and recalculates the

atomic decomposition and finds a new answer.

In addition, benefiting from the atomic decomposition (see section 4.1.3), the search

space can be modeled as a set of variables. This well structured search space, simplifies the

process of backtracking in case of a clash. In other words, information is well presented

as a set of variables and tracking become much easier. However, these variables are the

source of inefficiency, since the algorithm introduces an exponential number of variables.

As shown in Fig. 30 and Fig. 31 a large number of QNRs results in a large number of

variables and the search to find a model (via ch-Rule) can become expensive.

The simplex method uses an objective method, which determine whether to minimize or

maximize a solution [CLRS01]. As mentioned before, in the hybrid algorithm we minimize

a solution in order to have a smaller completion graph. This issue can be considered as a

benefit, since the size of a graph becomes smaller but, since it searches for an optimum

solution, it can cost more processing time. Hence, the usefulness of the algorithm depends

on the domain of the problems.

Considering all benefits and costs of the hybrid algorithm, for problems with large

values for QNRs, and the presence of inverse roles the hybrid algorithm makes a significant

improvement. According to the test cases demonstrated in Chapter 6, there exists cases

such that the hybrid algorithm is necessary compute an answer in a short time. Obviously

the whole argument depends on the application’s domain and how it is used.

89

7.2 Future Work

One of the challenging extension for DL languages, is the combination of Nominals (O),

and Inverse roles (I). The interaction between O and I results in higher level of com-

plexity. Note that, by only adding O to the DL ALCO with the complexity of PSPACE-

complete, leads to the DL ALCOI with the complexity of EXPTIME-complete. Moreover,

if the DL SHOQ with complexity of EXPTIME-complete will be extended with I, the new

expressive DL SHOICQ has the complexity of NEXPTIME-complete. This is obviously

highlights that the combination of the two constructors, O and I, provides a significant

increase in the complexity of the corresponding DL language. Therefore, this combination,

would make a challenging topic, which may interest the DL researchers to overcome the

problem of high complexity in practical reasoning for an expressive DL language. [Fad11]

proposes a hybrid algorithm for the DL SHOQ using algebraic reasoning. Due to the

nature of nominals, [Fad11] uses global partitioning in which by benefiting from several

optimization techniques partitions are calculated on demand. In contrast, our hybrid algo-

rithm performs local partitioning to avoid the calculating partitions as a pre-processing step

and unnecessary partitions. An approach based on both SHIQ and SHOQ could be de-

veloped that benefits from optimizations presented in each DL, supporting DL SHOIQ.

90

Bibliography

[BBH96] Franz Baader, Martin Buchheit, and Bernhard Hollander. Cardinality restric-

tions on concepts. Artificial Intelligence, 88(1-2):195–213, 1996.

[BCM+07] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and

Peter F. Patel-Schneide. The Description Logic Handbook: Theory, Imple-

mentation, and Applications. Cambridge University Press, 2nd edition, 2007.

[BFT95] Paolo Bresciani, Enrico Franconi, and Sergio Tessaris. Implementing and test-

ing expressive description logics: a preliminary report. In Knowledge Re-

trieval, Use and Storage for Efficiency: Proceedings of the First International

KRUSE Symposium, pages 131–139, 1995.

[BH91] Franz Baader and Bernhard Hollunder. Kris: Knowledge representation and

inference system. SIGART Bulletin, 2(3):8–14, 1991.

[BHLW03] Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter. From tableaux to

automata for description logics. In Moshe Vardi and Andrei Voronkov, editors,

Proceedings of the 10th International Conference on Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR 2003), volume 2850 of Lecture

Notes in Computer Science, pages 1–32. Springer, 2003.

[BHN+92] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jürgen Profitlich,

and Enrico Franconi. An empirical analysis of optimization techniques for

91

terminological representation systems, or making kris get a move on. In KR,

pages 270–281, 1992.

[BHS07] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. In Frank

van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of

Knowledge Representation. Elsevier, 2007.

[BPS94] Alex Borgida and Peter F. Patel-Schneider. A semantics and complete algo-

rithm for subsumption in the classic description logic. Journal of Artificial

Intelligence Research, 1:277–308, 1994.

[BS01] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for de-

scription logics. Studia Logica, 69(1):5–40, 2001.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Second Edition. The MIT Press, 2nd edition,

September 2001.

[DM00] Francesco M. Donini and Fabio Massacci. Exptime tableaux for alc. Artif.

Intell., 124:87–138, November 2000.

[Fad11] Jocelyne Faddoul. Reasoning Algebraically with Description Logics. PhD

thesis, Department of Computer Science and Software Engineering, Concordia

University, 2011.

[FFHM08] Jocelyne Faddoul, Nasim Farsinia, Volker Haarslev, and Ralf Möller. A hybrid

tableau algorithm for ALCQ. In Proceedings of the 18th European Conference

on Artificial Intelligence (ECAI 2008), Patras, Greece, July 21-25, pages 725–

726, 2008.

92

[FH10a] Jocelyne Faddoul and Volker Haarslev. Algebraic tableau reasoning for the

description logic SHOQ. Journal of Applied Logic (Special issue on Hybrid

Logic), 8(4):334–355, December 2010.

[FH10b] Nasim Farsiniamarj and Volker Haarslev. Practical reasoning with qualified

number restrictions: A hybrid Abox calculus for the description logic SHQ.

AI Commun., 23(2-3):205–240, 2010.

[HB91] Bernhard Hollunder and Franz Baader. Qualifying number restrictions in con-

cept languages. In KR’91, pages 335–346, 1991.

[HM92] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity

for modal logics of knowledge and belief. Artificial Intelligence, 54:311–379,

1992.

[HM01a] Volker Haarslev and Ralf Möller. Optimizing reasoning in description logics

with qualified number restrictions. In Proceedings International Workshop on

Description Logics (DL-2001), Stanford, USA, 1.-3. August, pages 142–151,

2001.

[HM01b] Volker Haarslev and Ralf Möller. Racer system description. In IJCAR, pages

701–706, 2001.

[Hor02] Ian Horrocks. Backtracking and qualified number restrictions: Some prelim-

inary results. In Proc. of the 2002 Description Logic Workshop (DL 2002),

volume 63 of CEUR, pages 99–106, 2002.

[Hor03] Iian Horrocks. Implementation and optimisation techniques. In Franz Baader,

Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider, editors, The Description Logic Handbook: Theory, Implementa-

tion, and Applications, chapter 9, pages 306–346. Cambridge University Press,

2003.

93

[HS05] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ.

In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),

pages 448–453, 2005.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. A description logic with

transitive and converse roles role hierarchies and qualifying number restric-

tions. Technical report, 1999.

[HST00a] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very

expressive description logics. Logic Journal of the IGPL, 8:2000, 2000.

[HST00b] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individuals

for the description logic SHIQ. In Proceedings of the 17th International Con-

ference on Automated Deduction, CADE-17, pages 482–496, London, UK,

2000. Springer-Verlag.

[HT00] Ian Horrocks and Stephan Tobies. Reasoning with axioms: Theory and prac-

tice. In Proc. of the 7th Int. Conf. on Principles of Knowledge Representation

and Reasoning (KR 2000), pages 285–296, 2000.

[HTM01] Volker Haarslev, Martina Timmann, and Ralf Möller. Combining tableaux

and algebraic methods for reasoning with qualified number restrictions. In

Proceedings of the International Workshop on Description Logics (DL’2001),

Aug. 1-3, Stanford, USA, pages 152–161, 2001.

[KM06] Yevgeny Kazakov and Boris Motik. A resolution-based decision procedure

for shoiq. In Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR

2006), volume 4130 of LNAI, pages 662–667. Springer, 2006.

[Luk05] Alena Lukasová. Reasoning with semantic tableau binary trees in description

logic. In Description Logics, 2005.

94

[MSH07] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in descrip-

tion logics using hypertableaux. In Proc. of the 21st Int. Conf. on Automated

Deduction (CADE-21), volume 4603 of Lecture Notes in Artificial Intelligence,

pages 67–83. Springer, 2007.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning for de-

scription logics. J. of Artificial Intelligence Research, 36:165–228, 2009.

[OK99] Hans Jürgen Ohlbach and Jana Koehler. Modal logics, description logics and

arithmetic reasoning. Artif. Intell., 109:1–31, April 1999.

[Pap81] Christos H. Papadimitriou. On the complexity of integer programming. J.

ACM, 28:765–768, October 1981.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and

Yarden Katz. Pellet: A practical owl-dl reasoner. Web Semant., 5:51–53,

June 2007.

[SSS91] Manfred Schmidt-Schau and Gert Smolka. Attributive concept descriptions

with complements. Artificial Intelligence, 48(1):1–26, 1991.

[THPS07] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing ter-

minological reasoning for expressive description logics. J. of Automated Rea-

soning, 39(3):277–316, 2007.

95

