INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smalil overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48108-1346 USA
800-521-0600

UMI






Development of a CAM Package for Robotic Deburring & Polishing of

Components with Intricate Geometry

JinLi

A Thesis
in
The Department
of

Mechanical Engineering

Presented in partial fulfillment of the requirements
for the Degree of Master of Applied Science
at
Concordia University

Montreal, Quebec, Canada

September 1999

© Jin Li, 1999



i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Waellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Waellington
Ottawa ON K1A ON4

Your file Votre référence

Qur filg Nove reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propnété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-436594

Canada






Abstract
Development of a CAM Package for Robetic Deburring & Polishing

of Components with Intricate Geometry

JinLi

This thesis deals with the development of a CAM package based on AutoCAD for
refurbished and new components with intricate geometry. By using a deburring robot
such as the Yamaha Zeta-1 Robot, deburring and polishing of a refurbished workpiece
involves analyzing the geometry of the workpiece, determining and designing tool path,
generating tool path data, animating the path traced by the robot tool and verifying the
tool path on the Yamaha Zeta-1 Robot.

The most popular PC-based CAD package, AutoCAD, is chosen as the
developing platform. A software package mainly programmed in AutoLISP, which is an
underlying software application of AutoCAD, functions as a processor of the solid
models of the workpieces and generates tool path data for the robot. The Yamaha Zeta-1
Robot, which is designed specifically for precision deburring, is chosen for executing the
generated tool path. The development is coined by exploiting the powers of AutoLISP, C,
C++ and DCL (Dialogue Control Language). This CAM package functions as an
interface between the workpiece and the user, and a postprocessor for the tool location
for the robot.

A kinematic model of the Yamaha Zeta-1 has been established and a commercial
virtual reality application software package, WorldToolKit, is employed in animating the

real robot based on the Yamaha Zeta-1's geometric parameters and kinematics. This



virtual robot serves as a virtual reality simulator to test and verify the machining path

generated.
Experimental verification of the post-processed data generated by the developed
software is presented for both deburring and polishing features. The results show the

successful implementation of this CAM software package.



Acknowledgements

I would like to extend my sincerest gratitude and appreciation to Dr. R. M. H.
Cheng and my thesis supervisors, Drs. H. Hong and R. Rajagopalan, for their insightful
guidance, encouragement, moral and financial support throughout the course of this
research. Especially, my thanks are due to Dr. R M.H. Cheng, who initiated this topic and
defined the methodology, and with whom I had a great deal of fruitful discussions. His
professional direction and research work has greatly helped in implementing this work.
My thanks are also due to Mr. Karun Thanjavur, who shared his invaluable experiences
and opinions helping me to start with this work. I also appreciate the time spent by Mr.
Gilles Huard for helping me with the experiment setup and technical support. I wish to
thank my colleague, Ms. Ye Su, with whom I had the fruitful discussions and cooperation

in the experiments of this work.

I am grateful to all my colleagues and staff at the Center for Industrial Control for

their help and friendship.

This work was supported by Strategic Grant STRO134360 from NSERC awarded

to Drs. R M.H. Cheng and R. Rajagopalan.



TABLE OF CONTENTS
List of Figures
List of Tables
Nomenclature
Acronyms
Chapter 1 Introduction
1.1 Robotic Deburring and Polishing
1.2  Previous Work in Tool Path Generation and Robotic Deburring
1.3 3D Mechanical Drawing - CAD Database
1.4  Scope of the Thesis
1.5  Thesis Outline
Chapter 2 3D Database and Reconstruction
2.1 Introduction
2.2  AutoLISP Language
2.3  Examining AutoCAD Database
2.3.1 Solid and Surface Database
2.3.2 Wirefame Database
24  Examining ACIS Database
24.1 Geometric information in ACIS file format
2.4.2 Geometry Components

2.5  Reconstructing Database

2.6 Summary

A - B - I - T~

10

11

11

12

12

13

14

18

19

20

23

27



Chapter 3
3.1

32

33

3.4
3.5
Chapter 4
4.1
42

43

Structure of the CAM Software Tool

Introduction

User Interface — Working Platform for CAM

3.2.1 Menu and Toolbars

3.2.2 New Commands

Features of the CAM Package

3.3.1 Re-constructing Wireframe 3D Model

3.3.2 Edge Cutting

3.3.3 Tool Path Generation
3.3.3.1 Local Coordinate System
3.3.3.2 Homogenous Transformation from LCS to WCS
3.3.3.3 Tool Path for Straight Edges
3.3.3.4 Tool Path for Circular Edges
3.3.3.5 Tool Path for Intersection Edges
3.3.3.6 Tool Path for Plane Surface
3.3.3.7 Tool Path for Cylindrical Surface

Robot Coordinate System

Summary

Computer Simulation of Tool Path Execution

Introduction

Virtual Reality Tool -— WorldToolKit (WTK)

Kinematics Model of Yamaha Robot Zeta-1

43.1 The Yamaha Zeta-1 Deburring Robot

29

29

29

29

33

35

35

42

42

47

50

53

56

63

67

69

70

71

71

72

74

76



4.4
4.5
4.6
Chapter 5
5.1
5.2
53
54
Chapter 6
6.1

6.2

References

Appendix 1

4.3.2 Assemble Virtual Robot

Inverse Kinematics

Executing Tool Path in Virtual Reality

Summary

Tool Path Verification and Conclusions
Introduction

Locating Workpiece

Tool Path Execution

Observations of Yamaha Zeta-1 Robot Tool Motion
Conclusions and Recommendations for Future Work
Conclusions

Recommendations for Future Work

User Interface Based on AutoCAD Platform

Appendix 2  Modules of the CAM Package

79

95

95

95

97

100

101

101

102

105

110

112



Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12

Figure 3.13

List of Figures

3D Wireframe Model 7
Solid 3D Model 7
A Typical Workpiece 11
3D Solid Model in AutoCAD 11
"Double Exploded” 3D-model (Wireframe) 15
Processing a 3D-model 24
Flowchart of the Filter Program 26
Reconstructed 3D-model (Wireframe) 27
User Interface in AutoCAD 32
Flowchart of the Re-constructor (in AutoLISP) 39
A Part of a Spline Curve 40
A Part of an Arc 40
Flowchart of the Cutting Program (in AutoLISP) 41
Local Coordinate System for a Straight Edge 44
Local Coordinate System for a Circular Edge 45

Local Coordinate System for a Spline Curve at Two Fitting Points 46

Establishment of the LCS for Spline Curve 46
Tool Angle in LCS B Transformed to WCS A 48
Tool Vector Rotating in the LCS 49

Flowchart of the Tool Path Generation for Straight Edge (in AutoLISP) 52

Tool Path for Straight Edge 53



Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26
Figure 3.27

Figure 3.28

Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Tool Path for Circular Edge

53

Flowchart of the Tool Path Generation for Circular Edge (in AutoLISP) 55

Divide a Spline Curve by 100 in AutoCAD
Error Lines between the Spline and the Tool Path
Tool Path Generated for Spline Curve

Tool Angle Difference

Flowchart of Tool Path Generation for Intersection Edge(in AutoLISP)

A Workpiece for Polishing
LCS for a Plane Surface
Polishing Direction Changing in the Plane

Tool Direction Changing in the Plane

Tool Path for Polishing a Plane Surface

Flowchart of Tool Path Generation for Plane Surface(in AutoLISP)
Tool Path for Polishing a Cylindrical Surface

Flowchart of Tool Path Generation for Cylindrical Surface
Virtual Yamaha Robot Zeta-1

Yamaha Robot Zeta-1

a and B Axes of Yamaha Robot Zeta-1

Same Tool Posture by Different A and B

Dimension of Robot Base, Body and Arm (in mm)

Elbow and Wrist-Tool

Assembly of the Elbow and the Wrist-Tool

Draft of the Elbow and the Wrist-Tool Assembly

56

59

59

61

62

63

63

64

65

65

66

67

68

74

75

78

79

80

81

82

82



Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4

Angle B, a and B

Derivation of Angle B

Inverse Kinematics of Yamaha Robot Zeta-1
Control Panel for Simulation

Simulation of a Machining Process
Flowchart of the Simulation Program
Position Hole of the Workpiece

Workpiece ready to be machined

Teaching Station of Yamaha Robot Zeta-1

Digimatic Indicator

85

86

87

90

92

93

96

97

98



Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 3.1
Table 3.2
Table 3.3
Table 4.1

Table 4.2

List of Tables

Database of a Solid Model

Database of a "Region"

Database of a "Body"

Database of a Circle from AutoCAD

Database of the same Circle Given by AutoLISP Command
Database of an Ellipse from AutoCAD

Database of the same Ellipse Given by AutoLISP Command
Text Format in ACIS File

New Commands

Mathematical Functions in mathbox.lIsp

Robot Data Format

Cartesian Coordinate System

Tool Posture

13

14

14

15

15

17

17

19

33

34

69

77

77



(6.R,2)

(o, B)
O,R,Za, B)

{x1, 1, Z1}
{x2, y2, 22}

{Xx, ¥ Z, A, B}

“BP
P

Ep
4 Pporc

Xz, Y8, 25

Nomenclature

Three joints of Yamaha Robot Zeta-1 analogous to a cylindrical
coordinate system

Wrist joints of Yamaha Robot Zeta-1

Machine Coordinates in Machine Coordinate System of Yamaha
Robot Zeta-1

Angle between the tool and the robot x-axis before turning of
Angle between the tool and the robot arm before turning of &
Three sides of the triangle formed by the wrist-tool from the top
view of the robot

Coordinates of the Machining Tool Tip

Coordinates of the Machining Tool End

World Coordinates in World Coordinate System of Yamaha Robot
Zeta-1

Measured Machining Tool Length

Tool vector in frame A

Vector P in frame A

Vector P in frame

Vector of the origin of frame B in frame A

Axes vectors of local coordinate system B

X1



B-Rep
CAD
CAM
CIC
CSG
LCS

MCAD

WCS

Acronyms

Advanced Modeling Extension
Boundary Representation

Computer Aided Design

Computer Aided Machining

Center for Industrial Control
Constructive Solid Geometry

Local Coordinate System
Mechanical Computer Aided Design
Tool Path Data

Virtual Reality

World Coordinate System



Chapter 1

Introduction

1.1 Robotic Deburring and Polishing

Deburring and polishing are secondary machining processes that remove the burrs
and finish the surfaces of a workpiece generated by primary machining processes. These
processes are essential from a safety point of view and are critical for mechanical parts in
order to satisfy their performance in cases of their mating with each other, when large
stresses result. Smooth surfaces and clean edges are always necessary for the workpiece
to operate efficiently, such as the case of turbine surfaces.

The use of a robot for deburring and polishing cuts down the cost and improves
the quality of the finished products. A robot can reproduce the same motions precisely
and exactly. In processing of very valuable components, such as an impeller blade used in
an aircraft engine, it takes a human operator very long time to remove the burrs and
polish the metal surfaces because of the geometrical complexity of the component.
Further, as humans are prone to errors, cost is far too expensive to allow a mistake. In
addition, working environments, where dust and noise are harmful, is not conductive for
the operator. In such cases a robot plays an important role in carrying out this time
consuming work while providing consistent finish all the time.

Deburring can be classified into 38 basic deburring operations [1]; these include
mechanical cutting, grinding, brushing and blasting. The term "robotic deburring"
concemns the automation of all 38 processes. Robotic deburring is typically used for long-

running parts and is not economical for one-time runs of very low quantities because the



engineering and programming time exceed the robotic savings. However, robotic
deburring is not the only solution to many deburring processes but a single answer to
some needs.

A robot chosen for deburring purpose should have characteristics such as
repeatability, accuracy, continuous path capability and self-calibration ability. Bearing
theses features, of many industrial robots used for machining, the Yamaha Deburring
Zeta-1 Robot [2] is a dedicated machine to carry out automatically deburring and
polishing processes. It is a teaching type robot and was developed exclusively for
deburring and polishing operations. It has S degrees of freedom with rigidity to withstand
the deburring or polishing load, which is comparatively much smaller than the primary
machining. It also provides a high repeatability accuracy and the consistency required for

deburring and polishing.

1.2 Previous Work in Tool Path Generation and Robotic Deburring

Basically, very little difference exists between the tool paths applied for NC
machining, which has been widely studied and literatures have been published in this
field, and robotic machining. The tool path for NC machining is classified into
continuous path and point-to-point path [3]. Continuous path is typically used for milling,
cutting, turning and grinding, while point-to-point path are usually employed in drilling,
spot welding, punching, tapping and so on. No matter what kind of tool path is needed,
the automatic generation of machining tool paths for computer based mechanical 3D
modeling is quite challenging. Numerous methods have been developed to solve the

problem of automatic tool path generation. Usually, a mathematical model generates the



Tool Posture or Cutter Location data directly and the data is then post-processed into a
form that is suitable for the machine (Robot or NC) to execute. This approach requires an
integration of CAM activity with CAD system and it shortens the product lead-time and
reduces the cost of production [4]. Indeed, many commercial CAD/CAM systems do
provide tool path generation algorithms. Various tool path generation algorithms are
described in many research literatures.

Loney and Ozsoy [5] have developed an interactive CAD system called CISPA
(Computer Interactive Surfaces Pre-APT). It uses a menu driven front end with graphical
feedback to guide a user through curve and free form surface definition resulting in a
mathematical model. It allows the user to create geometry, modify geometrical
component, define a surface, generate tool path and create tool location source files
needed to mill the surface. Another workcell developed by Selleck and Loucks [6]
processes the workpiece based on the CAD database of the workpiece. It comprises a
vision systemn to determine the orientation of the cylindrical component and inspect the
formed edge.

While assuming the dimensions of the workpiece match with the CAD database,
it does not hold true in many cases, especially in the case of the refurbished components,
which have usually been geometrically reconditioned. For instance, the impeller blades
and gas turbines used in aircraft industries may have as large as 2.0 mm of geometrical
variations from the original manufactured part errors [7]. Cheng et al [8] proposed an
approach that uses a series of probing and mathematical splining techniques to

reconstruct the distorted surfaces and edges of refurbished components.



The research work discussed in this thesis is based on the assumption that either
the CAD database matches the real workpiece, or the distortion of the workpiece has
been detected and its CAD database has been reconstructed so that the CAD database
describes the workpiece completely.

Although the current CAD/CAM systems help to program tool path. the user
needs to specify the geometry of the component or the boundary of the area to be
machined and the cutting parameters. Especially for the CAM purposes, users always
need to specify a constant lead angle or a tilt angle in order to define the tool orientation
[9]. Therefore, a user-interactive interface and an operative working environment are
usually required.

Many robots have been chosen to execute the generated tool path other than the
Yamaha Zeta-1 and NC machines. General-purpose industrial robots such as the PUMA
560 [10] and the GE P-50 [11] have been applied to robotic deburring. They are not
dedicated deburring robots and they lack flexibility and accuracy for the sake of their
multi-task abilities. Other robots used for deburring include a five axis SCARA type of
robot, Adept One robot [12], Panasonic HZL four-axis robot {13}, GE S-700 six axis
robot [14] and a four-freedom-degree IBM SCARA 7576 robot [15]. Their structures and
performances differ from one another. However, they do need something in common,

which is the tool path for machining.

1.3 3D Mechanical Drawing - CAD Database
Computer science today has made a major impact on the method of 3-dimensional

mechanical drafting and design. Designing methods have been drastically improved with



CAD, and three-dimensional modeling and analysis are widely used in mechanical
engineering. Based on computer aided design, virtual reality, which will be utilized in the
development of this work, emerges as a design and simulation tool.

This thesis is developed based on the technology provided by Spatial
Technology’s ACIS modeling strategy and the most widely used CAD tool, AutoCAD,
which is an affordable CAD software compared to many expensive commercial CAD
systems, such as CATIA, Pro-Engineering, CAD-Key and others. Although 3D modeling
is not the objective here, for our unique purpose, certain 3D modeling techniques are used
to help understand and to develop the CAM deburring/polishing system.

Mechanical parts could be drafted, designed and modeled by a variety of CAD
software. There are three basic types of 3D (three-dimensional) models created by CAD

systems and used to represent actual objects. They are:

. Wireframe models
. Surface models
. Solid models

These three types of 3D models range from a simple description to a very complete
description of an actual object.

"Wireframe model" is a good descriptor and it represents every edge of an object.
The surfaces of the object are not defined. No wires exist where edges do not exist. This
kind of model is see-through since it has no surfaces to obscure the back edges. Although
3D objects are not very often modeled in wireframe for visualization purposes because of

“transparency”, wireframe model is extremely useful for the unique purpose of robotic



deburring, because it allows the access to the database of each edge. Figure 1.1 shows an
object modeled in wireframe.

"Surface model” provides a better description of an object than a wireframe in the
sense of computer aided drafting and designing. It gives a much better visualized view of
the object. Surfaces defined in such a model have complicated databases and complexity
is involved in the modeling. Also, edges in one surface can not be easily accessed
compared to the wireframe models. Surface models are not used in the research of this
thesis.

"Solid modeling” is the most complete and descriptive type of 3D modeling. It is
much simpler and faster to model a 3D object into a solid model than into a surface one.
Construction techniques in AutoCAD combine CSG (Constructive Solid Geometry) and
B-Rep (Boundary Representation) together and provides a simple and straightforward
construction method. That is, primitive shapes (boxes, cylinders, wedges, etc.) are
combined by utilizing Boolean operations (Union, Subtraction, and Intersection, etc.),
and the model is then bounded by the edges and surfaces. This approach is so-called
AME (Advanced Modeling Extension) in AutoCAD terminology that is mostly used in
3D object modeling. The database of a solid model is even more complicated because it
has a complete description of an actual object and it contains more geometric
information. As with a surface model, a solid model bears the same characteristic that it
does not allow the access to the constructing wires. This is because in AutoCAD the solid

model is considered as one entity. Figure 1.2 shows a rendered solid 3D model.



Fig. 1.1 3D Wireframe Model Fig. 1.2 Solid 3D Model

The 3D models are meaningful not only in the sense of mechanical drafting, its
database could also be managed for the purpose of numerical machining. There are two
main approaches [16] of manipulating the AutoCAD 3D model database. The first is with
AutoLISP, a programming language within AutoCAD that enable users to write programs
that manage and manipulate graphic and non-graphic data. The second approach is to
extract the desired data from the drawing file and organize it outside of AutoCAD with
external data management programs, such as Windows WordPad, Windows Excel,
dBases and etc. A CAM software based on the second approach is made by Su Ye 171,
who extracts geometric information from AutoCAD's 3D model database and
reconstructs the geometry outside of AutoCAD platform. As in the course of this work,
both approaches are employed so that the advantages of AutoCAD features could be used

to develop the CAM package.



1.4 Scope of the Thesis

A common requirement of all manufacturing systems is to generate coordinated
movement of the separately driven axes of motion in order to achieve the desired path of
the tool relative to the workpiece [18]. In the case of the Yamaha Zeta-1 Robot, in order
to process an actual mechanical part, the tool path data must be post-processed before
being fed to the five driven axes of the robot as command data. A communication
between the Yamaha Zeta-1 and an external workcell has been achieved by mimicking
the motion of the joystick of the teaching unit of the robot, by Ayyadevara (7]. To
provide the tool path, however, an approach was proposed and initiated by Cheng et al
[19], that the machining data could be generated based on the 3D model database of the
workpiece, which is constructed in the AutoCAD environment, taking advantage of an
underlay programming language of AutoCAD, AutoLISP.

This thesis focuses on detailing the development of the CAM software package.
The work includes:

i) Development of a filter and re-constructor for all kinds of 3D "solid” geometric
objects drawn by AutoCAD, which have been translated into ACIS file type, to
extract pertinent information. Information includes every geometric property of
the 3D model, and is used to rebuild a wireframed model.

i) Development of a "user interactive” interface between the 3D model and the user
in the AutoCAD environment.

iii) Development of software using AutoLISP for tool path designing and generation.

iv) Development of a virtual reality model of the Yamaha Deburring Zeta-1 Robot to

simulate the kinematics of the deburring and polishing processes.



v) Experimenting by feeding the post-processed data to the Yamaha robot and
verifying the generated tool path.

For some specific mechanical jobs, say robotic deburring or NC polishing, in the
small to medium sized manufacturing industry, the current commercial CAM software,
such as CATIA, Pro-Engineering, are way too perfect and too expensive. They are made
to be far more powerful that users hardly have a chance to meet and use those many
powerful but irrelevant functions and most of these functions are neglected. A toolbox
created in AutoCAD containing software tools specifically made for certain tasks could
achieve some savings and users could easily expand the toolbox by adding in customized
tools to meet their unique requirements. A main contribution of this research work lies on
the development of this CAM software based on AutoCAD.

The hardware chosen for verification of the generated tool path is the Zeta-1
Robot developed by Yamaha Corporation specifically for edge deburring and surface
machining tasks. This software tool has been developed based on Mechanical Desktop
2.0, which is basically an AutoCAD R13 with some add-on 3D modeling features, by
Autodesk Inc. However, the whole software package could be installed in the regular
AutoCAD R13 with some minor modifications, which are stipulated in Appendix 1.

The main contribution of this thesis is the generation of TPD (Tool Path Data) for
regular geometries based on an affordable, widely used CAD tool, AutoCAD. A CAM
toolbox is created and embedded inside AutoCAD so that the interactive user interface
between users and 3D models eases the communication between engineers and
mechanical drawings. A kinematic model of the Yamaha Deburring Zeta-1 Robot is also

built in a virtual reality environment so that a trial run of a real machining process is



made possible. Virtual Reality application for mechanical engineering is also illustrated
in this thesis.

Although this CAM software package is made for robotic deburring and
polishing, the work presented in this thesis illustrates the potential of using the AutoCAD
database. Therefore, it should not to be concluded that this approach is limited to the
deburring and polishing processes only. Similar processing like brushing, fettling and etc.
could also be considered. Also, it should not be concluded that this package could be
utilised on robot deburring only. Tool path generated by this package could also be used

for a NC machine.

1.5 Thesis Outline

Chapter 2 describes an overview of the methodology of this development and
features that have been developed in this CAM software package. Chapter 3 presents the
organization of the CAM software and the algorithm of each section of the software.
Chapter 4 deals with the kinematic simulation of tool path executing in Virtual Reality
environment. An experiment made on the Yamaha Zeta-1 Robot to verify the generated
tool path is stipulated in Chapter 5. Conclusions and recommendations for future work

are presented in Chapter 6.

10



Chapter 2

3D Database and Reconstruction

2.1  Introduction

Since the current CAD tools present very precise geometry, a CAM approach
based on a database of AutoCAD is proposed. One of the typical and simplified
workpieces that is chosen for the development of this CAM package is presented in
Figure 2.1. A 3D model of the same workpiece is presented in Figure 2.2. It consists of
most common geometrical components such as, straight edges, cylindrical edges,
intersectional edges, flat surfaces and cylindrical surfaces. These are all the components
that this thesis deals with. In this chapter, an investigation has been done on the CAD
database of these geometrical components and interesting geometrical information has

been extracted from the database.

\

-

s \_/'—'

T
/g//jk

\\\ \\/

Fig. 2.1 A Typical Workpiece [17] Fig. 2.2 3D Solid Model in AutoCAD

11



2.2 AutoLISP Language

AutoLISP is a unique language specifically designed for AutoCAD. It is one of
the first high-level programming languages invented for AutoCAD users to develop
programs using English-like expressions [20]. It lets users write customized programs to
control every aspect of the drawing, the database and third party applications [21]. It also
lets users draw in 2D or 3D and construct a 3D model, providing high efficiency and
productivity. In this research work, since it is desired to generate TPD based on the
database of AutoCAD drawings and take advantage of AutoCAD's CAD facilities,

AutoLISP is the only choice to enable easy programming in AutoCAD's platform.

23 Examining AutoCAD Database

The workpiece shown in Figure 2.2 is modeled in AutoCAD R13 with the most
common method, solid modeling. It is one of the easiest and fastest ways to draw a 3D
object and usually, workpieces are modeled into such a solid model. However, for such a
"solid" object that AutoCAD presents as one entity, the edges, which are presented as
line, arcs, circles and spline curves, can not be easily accessed. Edges are formed by
intersections and boundaries of surfaces. The databases of the edges are hidden behind
the logic of these boundaries instead of appearing in the solid model database.

In surface modeling, surfaces are presented as minimum units, which are entities
similar to a solid model, and one also can not access only one edge of a certain surface.
The database of the drawing in AutoCAD could be listed either by simply inputting an
AutoCAD command "list" or by an AutoLISP command “(entget (car (entsel)))". The
former command gives a simplified and clearer list of data while the latter a much more

detailed data with AutoLISP's internal code for the properties of the component. The data

12



coming out of the latter command could be stored in a user-defined variable and be
manipulated by specifying the internal codes of the properties. This is the data source

from the AutoCAD drawing.

2.3.1 Solid and Surface Database

The database of a solid workpiece is shown in Table 2.1, which does not show

any pertinent geometric information for the CAM package under development.

3DSOLID Layer: 0

Space: Model space

Handle = 42

Bounding Box: Lower Bound X =-99.8749 , Y = -100.0000, Z = 5.0000

Upper Bound X = 99.8749 , Y = 100.0000 , Z = 100.0010

Table 2.1 Database of a Solid Model

To access the database of every component for such a solid 3D model in
AutoCAD, a wireframed model with the same size and shape must be used to substitute
the solid one. Indeed, AutoCAD does provide a technique to transfer a solid model into a
wireframed one by "exploding” the solid model twice. "Exploding” the solid one time
gives a surfaced model that one can specify the surfaces that AutoCAD describes as
"regions" and "bodies". Alternatively, the AutoLISP's command "(entget (car (entsel)))"
presents a totally different format of the database and in case of solids, regions and
bodies, the output database by this command are hardly readable. Table 2.2 and 2.3 show
the database of a typical "region" and "body" respectively. Again, the data in the table
does not contain any pertinent geometric information for the CAM package under

development.

I3



REGION Layer:0

Space: Model space

Handle = 51

Area: 31938.9074

Perimeter: 1176.4908

Bounding Box: Lower Bound X =-99.8749, Y = -100.0000, Z = 5.0000

Upper Bound X = 99.8749, Y = 100.0000 , Z = 5.0000

Table 2.2 Database of a "Region”

BODY Layer:0

Space: Model space

Handle =53

Bounding Box: Lower Bound X = -99.8749, Y = -100.0000, Z = 5.0000
Upper Bound X = 99.8749, Y = 100.0000 , Z = 100.0010

Table 2.3 Database of a "Body”

2.3.2 Wireframe Databases

While "exploding" the "region" and "body”, lines with two end points, circles
with radius and center location, and spline curves with control points come up. Figure 2.3
shows a "double exploded" 3D workpiece. Table 2.4 lists the database of the bottom large
circle. Table 2.5 is the database of the same circle given by AutoLISP's command
"(entget (car (entsel)))". The database of all other components could be found by the

same method and they all appear similar to the ones shown in Table 2.4 and 2.5.

14



Fig. 2.3 *Double Exploded" 3D model (Wireframe)

CIRCLE Layer:0

Space: Model space

Handle = 6F

center point, X= 10.0887 Y=-18.0897 Z= 58.7473

radius 50.0000

Extrusion direction relative to UCS:

X= 0.2863 Y= 05133 Z= -0.8090

Circumference 314.1593

area 7853.9816

Table 2.4 Database of a Circle from AutoCAD

((-1 . <Entity name: 21e0738>) (0 . "CIRCLE") (5 . "6F™) (100 . "AcDbEntity")
(67 . 0) (8. "0") (100 . "AcDbCircle") (10 1.42109e-014 17.7738 -59.7022) (40

. 50.0) (210 -0.286296 0.513348 -0.809017))

Table 2.5 Database of the same Circle Given by AutoLISP Command

15



The pertinent geometric information shown in Table 2.4 are "center point",
"radius” and "Extrusion direction”. In Table 2.5, the important information are (10
1.42109¢-014 17.7738 -59.7022), (40 . 50.0) and (210 -0.286296 0.513348 -0.809017).
Carefully examining the circle's database, it is seen that data presented in Table 2.5 could
not be clearly mapped into the data in Table 2.4. For example, the coordinates of the
center point in Table 2.4 is "X= 10.0887 Y=-18.0897 Z= 58.7473" while in Table 2.5,
it is presented as (10 1.42109e-014 17.7738 -59.7022). Note the "10" is an internal code
in AutoCAD database, representing a center point and the data following it are
coordinates of that center point, x, y, z respectively. To understand the meanings of all
the internal codes used by AutoCAD, the reader is referred to the AutoCAD Reference
Manual [22] and AutoCAD database Book [16]. The reason for this matchless data set is
that AutoLISP presents and constructs circle database from a UCS (User's Coordinates
System) point of view so that the circle could be drawn and its properties could be
modified in two dimensional space. And the UCS is defined in respect to the tilting angle
of the normal direction of the plane formed by the circle. From the modeling point of
view, it is much easier to draw a circle in 2D space. However, difficulties are introduced
to find how the UCS is oriented. The logic determining the UCS is embedded in the
AutoCAD modeling system and could not be easily found.

AutoCAD provides an alternative to draw a circle by constructing the circle as an
ellipse with a radius ratio of 1.0. The ellipse could be drawn in the WCS (World
Coordinate System). From a geometry point of view, this ellipse possesses the same

geometrical properties in the space as a circle does under such circumstance that they

16



have the same radius, identical normal vector of the plane they form, and the same
location of the center point.

Since the database of the circles and arcs taken by "double exploding” the solid
model are not so simple and easy to use, instead of tracing the UCS of those circles and
arcs, reconstructing the circles and arcs into full ellipses and ellipse arcs becomes
necessary. Table 2.6 and 2.7 show an example database of an ellipse generated by
AutoCAD and AutoLISP respectively. The pertinent geometric information shown in
Table 2.6 are "Center", "Major Axis", "Minor Axis" and "Radius Ratio", while in Table
2.5, instead of giving the same information, Center (10 5.61425 -19.0544 58.0015),
Major Axis (11 2.45146 41.6799 27.5096), Extrusion direction (210 0.16211 -0.550191
0.819152), Radius ratio (40 . 1.0) are given sequentially. It is seen that data from the two

sources match each other.

ELLIPSE Layer:0

Space: Model space

Handle =90

Center: X=5.6142 ,Y =-19.0544,Z = 58.0015

Major Axis: X=24515 ,Y =41.6799 ,Z =27.5096

Minor Axis: X = -49.2777,Y=-2.4515 ,Z=8.1055

Radius Ratio: 1.0000

Table 2.6 Database of an Ellipse from AutoCAD

((-1 . <Entity name: 21¢0880>) (0. "ELLIPSE") (5 . "90") (100 . "AcDbEntity") (67 . 0) (8 .
"0") (100 . "AcDbEllipse®) (10 5.61425 -19.0544 58.0015) (11 2.45146 41.6799 27.5096)

(210 0.16211 -0.550191 0.819152) (40 . 1.0) (41 . -2.50111e-016) (42 . 6.28319))

Table 2.7 Database of the same Ellipse Given by AutoLISP Command

17



As to the straight edges of the solid model, they are reconstructed as straight lines
in the "double exploded" wireframe model. Since the database of the straight lines are
very simple (two end points are listed in the database and no UCS involved), there is no
need to reconstruct the straight lines. On the other hand, the database for a spline curve is
very complicated. Although AutoCAD's command "spline” provides a great tool for the
user to create 3D spline though a set of vertices [23], the spline yielded from the "double
explosion” does not provide those vertices or fitting points. It only includes the
constructing information of the spline, which are the control points of the spline, and can
not be directly used. A methodology is devised to extract the spline data and is detailed in

Chapter 3.

2.4 Examining ACIS Database

3D solid models in AutoCAD could be "exported” to 3D model types of other 3D
modeling engines, such as 3D Studio, ACIS, and so on. And the "exported” file types
includes DXF, 3DS and SAT. Most of the types of files are unreadable except for DXF
and SAT files, which stores the geometry information in ASCII code.

ACIS is an object-oriented geometric modeling toolkit designed for use as a
geometry engine within 3D modeling applications [24]. Taking advantage of the ACIS
file format, which stores a 3D-geometry model in ASCII codes, enables one to get every
detail of the 3D solid model. From 3D modeling point of view, it provides an open
architecture framework for wireframe, surface and solid modeling from a common

unified data structure. As an example, the following list is a part of an ACIS file.

18



105 219 2 O

body $2 $3 $-1 $-1 #

body $4 $5 $-1 $-1 #

f_body-lwd-attrib $-1 $6 $-1 $O0 #

lump $7 $-1 $8 $0 #

f body-lwd-attrib $-1 $9 $-1 $1 #

lump $10 $-1 $11 $1 #

ref_vt-lwd-attrib $-1 $-1 $2 50 $12 $13 #
ref vt-lwd-attrib $-1 $-1 $-1 $3 $12 $13 #
shell $14 $-1 $-1 $15 $3 #
ref_vt-lwd-attrib $-1 $-1 $4 $1 $12 $13 #

eeemoe

coedge $266 $154 $226 $253 $267 0 $129 $-1 #
epar-lwd-attrib $-1 $268 $-1 $155 #

vertex $-1 $267 $2695 #

vertex $-1 $203 $270 #

ellipse-curve $-1 0 =75 0 0 1 0 100 0 0 1 #
copar-lwd-attrib $-1 $-1 $-1 $158 #

coedge $271 $158 $182 $167 $221 1 $§129 $-1 #
color-adesk-attrib $-1 $-1 $159 $120 256 #
point $-1 97.979589711327122 75 20 #
epar—lwd-attrib $-1 $272 $-1 $163 #
straight-curve $-1 97.979589711327122 0 20 0 -1 0 #

Table 2.8 Text Format in ACIS file
Table 2.8 is a 3D-model database stored in ACIS file format, known as SAT file.
Each line represents a component or property of a component and ends with a "#" sign.
The first string in a line is an identifier denoting the class of the component, and the signs
and numbers that follow are the data associated with it. All of the lines are bounded by a
unique logic of ACIS. In a single line, the number followed by a "$" sign denotes a line
number where a certain property is described. The "—1" follows the "$" sign means that

there is no lines related to the component or property described by the line itself.

2.4.1 Geometric information in ACIS file format
The geometric entities are represented by different identifiers in the ACIS file.

They are body, lump, shell, subshell, face, loop, coedge, edge and vertex. Within each of

19



these entities, geometric components such as Points, Straight lines, Ellipse curves and
Intersection curves are defined. Since only the wireframe is of interest, geometric
components that construct the wireframe have been studied and extracted. Other data
such as body, lump, coedge, edge and so on are not relevant to the development of the

CAM package.

2.4.2 Geometry Components
The ACIS file defines some basic geometry as follows:
1) Points: In SAT file, points are presented in the form of :
point $-1xyz#
where, x, v, z are the coordinates in the world coordinate system.
2) Straight lines, in SAT file, are written as:
straight-curve $-1x0 yO z0 xn yn zn#
where, xO y0 20 are the coordinates of a point on the line and xn yn zn are the
vector elements of the line.
3) Ellipse and arcs are all in a ellipse-curve form as follows:
ellipse-curve $-1x0 y0 z0 xn yn zn xm ym zm r #
where x0 yO 20 are the coordinates of the center. xn yn zn are the normal vector
elements of plane that the ellipse forms. xm ym zm are the major radius vector
elements. r is the ratio of the major radius to the minor radius.
4) Intersection curves (by a default 4™ order spline) has long list of coordinates of the

control points. Here is an example.

intcurve-curve $-1 0 { surfintcur nubs 3 periodic 17
0 3 0.37724420556371729 2 0.75448841112743459 2 1.131727215958044 2 1.5089660207886535 2

20



1.8862048256192623 2 2.2634436304498711 2 2.6406878360135817 2 3.0179320415772923 2
3.3951762471410154 2
3.7724204527047385 2 4.1496592575353457 2 4.5268980623659534 2 4.9041368671965611 2
5.2813756720271678 2 5.6586198775908771 2 6.0358640831545864 3
*  6.4999999999999991 -2.5980762113533178 3

6.4999999999999991 -2.5980762113533178 2.8742519314787609

6.4906880451419964 -2.6217592102399325 2.7402414419277692

6.4514072357916072 -2.716983 1266064688 2.493914064862884 1

6.348177005947683 -2.9510329220558593 3.7957945373038515
6.42126838025567 -2.7884151810958322 3.618417755372433
6.4514072357916099 -2.7169831266064635 3.5060859351371061
6.4906880451419973 -2.6217592102399307 3.259758558072225

*  6.4999999999999991 -2.5980762113533178 3.1257480685212364
6.4999999999999991 -2.5980762113533178 3
0.001
cone 4.3301270189221928 -2.5000000000000009 3 0.8660254037844386 -
0.50000000000000022 0 0.50000000000000022 0.8660254037844386010-10
cone00300170010-10
nullbs
nullbs
} #

The line with * is the start point of the intersection curve and the second * line is
the end point. (“*" is not a part of the SAT file.) Notice that following the end point, there
are two lines that start with the word "cone". They imply that the intersection curve is the

intersection of two cones.

21



The topology of the data of this intersection curve, however, is not
straightforward. Comparing and investigating a variety of spline data, it is found that:

1) Intersection control points always end with a single data 0.001, followed by the
names of the constructing components.

2) In the beginning of the coordinate area, integer 2 is always inserted in between
some data, which are the slope values between two adjacent control points. When
integer 2 changes to integer 3, the coordinates of the spline begin.

Note that the control points are not the fitting points on the spline curve. They are
just intersecting points of the tangential lines at certain fitting point such that the ACIS
spline builder could find the fitting points by using those control points. A full
reconstruction of a spline curve will certainly make use of the control points, degree of
the spline and so on, and give a complete description of the spline, including all the
fitting points, which are of most interest. Logically, a conclusion can be drawn that
AutoCAD and ACIS 3D modeling engine must have the construction algorithm built into
their systems so that they can build a spline curve by taking certain control points.

Since AutoCAD presents a unique data form for circles and arcs, which are not
convenient to use, parameters of circles and arcs are to be abstracted from the ACIS file
and reconstructed by AutoCAD's "ellipse” command. Data concerning spline curves will
be discussed in Chapter 3. The two points itemized above concerning spline curves might
be meaningful for future work on ACIS database. However, they do not have particular
usage in this thesis. For further detailed information in ACIS database, the reader is

referred to the ACIS Geometric Modeler Format Manual [24].

22



2.5 Reconstructing Database

As far as the AutoCAD drawing is concerned, a workpiece is, within the scope of
this work, a combination of regular geometry such as straight lines, circles, arcs, sphere
surfaces, cylindrical surfaces and so on. Based on the assumption that the workpiece is
modeled by using AutoCAD 3D solid modeling techniques, the workpiece is always
presented as a solid model. By solid model, AutoCAD database defines it as one object
entity and does not provide the details of that object such as edges and surfaces. In other
words, the edges and surfaces are not accessible in the case of a solid model while those
of a model in wireframe are. In the development of this CAM package, it is assumed that
a solid model is given and the tool path must be generated based upon the given solid
model drawing.

It is desired, therefore, to rebuild the solid model into a wireframe one so that just
a mouse click could access each edge and surface. As mentioned before, by "double
exploding", the solid model could be transformed into a wireframed one. The datab#se of
a transformed drawing in wireframe has been examined. However, the database for
circles and arcs are not ideal for use. As previously mentioned, an alternative file type of
drawing, SAT file by ACIS, provides geometry details of each component of a solid
model in ASCII code, which is readable. Now, two types of database are available and
each type has its own advantages and disadvantages for our purpose, because the style
that AutoCAD and ACIS write their database are for the purpose of their unique 3D
modeling approaches. Therefore, it is desired to combine these two types of database for

reconstructing a 3D model.

23



3D solid model drawing in
AutoCAD

Exporting to SAT file

ACIS 3D model in ASCII codes

Filtering through the filter

Re-constructor generated written in
AutoLISP

Executing the re-constructor
in AutoCAD environment

Wireframe 3D model drawing
in AutoCAD

Fig. 2.4 Processing a 3D model

Given an object, the possible edges are straight edges, circular edges, and
intersection edges of cylinders, spheres and cylinders, cylinder and torus and so on. These
are the edges that have been so far studied. In AutoCAD terminology, a straight edge is
referred to as a LINE. A Circular edge is an ARC or CIRCLE, and the edge formed by
the intersection of circular geometry is referred to as a SPLINE because AutoCAD uses a
4th order spline function to generate the intersection curve by default.

A filter is programmed in C language and also functions as a re-constructor
builder. It scans the SAT file and takes the parameters of lines and ellipses out of the

SAT file and adds them into AutoLISP constructing commands. As a result, a constructor

24



written in AutoLISP will be generated. Those straight lines, circles and arcs of the
"double exploded” wireframe model will be replaced by simply executing the re-
constructor within the AutoCAD platform. A schematic chart that describes the
processing of a 3D-model database is presented in Figure 2.4. Note that the filter is run
under the DOS shell instead of AutoCAD environment. The flow chart for the filter is

presented in Figure 2.5.

25



v

{ Start J Point to the top of
the SAT file.
Input the SAT file _—___%
name. Search for identifier
¢ *ellipse-curve”.
Record the
Yes |ellipse data in an

Write AutoLISP
commands to erase
existing straight line @ AutoLISP
command, go to
next line.

and circular curves.

No

Input the SAT file
name. Yes

! o

Point to the top of
the SAT file.

—

Search for identifier
"straight-curve”.

Record the line
datainan
AutoLISP

command, go to

next line.

Fig. 2.5

Flowchart of the Filter Program

26



A wireframe model with reconstructed database is presented in Figure 2.6. It
looks no different from the one in Figure 2.3. However, the AutoCAD database of the

circular curves is described by "ELLIPSE" instead of the former *"CIRCLE" or "ARC".

Fig. 2.6 Reconstructed 3D-model (Wireframe)

The reconstructed database of the circular edges is found to be similar to the
formats shown in Table 2.6 and Table 2.7, which are desirable. Note that the database for
the intersection edge (spline curve) has not been altered while re-constructing the 3D

model. This will be further described in Section 3.3.3.5.

2.6 Summary

Two kinds of 3D model database have been investigated, ACIS model and
AutoCAD model. The ACIS model, which is written in ASCII code, is processed outside
of the AutoCAD environment so that useful geometrical information of the 3D model are

extracted and stored. Investigation on the AutoCAD 3D-model database draws the

27



conclusion that a reconstructed wireframe model is suitable for the purpose of processing
edge database. A 3D-model re-constructor is then made to rebuild the workpiece into a

wireframe model, which was originally modeled as a solid model.

28



Chapter 3

Structure of the CAM Software Tool

3.1 Introduction

The major objective of this work is to generate tool path for workpieces
containing "regular” geometric entities, based on their AutoCAD database. By "regular”
geometry, as mentioned before, straight lines, circular curves and the intersection curves
of objects that AutoCAD constructs as 4™ order spline curves are included. In order to
provide good utilities, flexibility and user-interactivity, which are emphasized in
designing this CAM package, a user-friendly interface has been built into the AutoCAD
platform so that AutoCAD facilities could be taken advantage of.

A customized AutoCAD working platform is created and is briefly introduced in
section 3.2. Feature designs of the CAM package are detailed in section 3.3. The results

yielded from those designed features are graphically presented in these sections.

3.2  User Interface - Working Platform for CAM
3.2.1 Menus and Toolbars

AutoCAD is known as an open architecture platform that enables users to
customize their own applications. Customized menus and toolbars could be added in by
modifying certain ASCII text files that are provided by AutoCAD. Command aliases
could also be included into AutoCAD by loading AutoLISP files, where the new

commands are defined, generated by the AutoCAD user.

29



In AutoCAD RI3 itself, pull-down menus, drawing window, command window
and over 45 named tool bars are available in its user interface [25]. AutoCAD allows the
user much more control over the command interface than most CAD tools. The
AutoCAD menu file is an ASCII file containing AutoCAD command strings and macros.
It also defines the type and appearance of the menu. For further details, the reader is
referred to the AutoCAD Customization Guide [26] and AutoCADI13 Secrets [21].

The user interface of this CAM package is embedded into the AutoCAD
environment, as shown in Figure 3.1. A pull-down menu named “ToolPath” is inserted in
front of AutoCAD's "Help" menu. It includes database reconstruction and TPD
generation for edging and polishing. Also, two toolbars are created corresponding to the
added menu and are named as "Edging"” and "Polishing”. Text files of ASCII codes that
are required to be modified are as follows:

1) ACAD.MNS

This is the AutoCAD default menu source file. The contents inserted into this file

are listed in Appendix 1. In Mechanical Desktop, the main menu source file is

named as MCAD.MNS. Basically, these two menus have the same text structures
and the customized content is to be inserted into the corresponding locations
respectively in ACAD.MNS and MCAD.MNS. Once the new menu source file

ACAD.MNS replaces the old one, it has to be re-complied in the AutoCAD

environment so that the new menu and toolbars can begin to function. In the

AutoCAD command prompt, giving the "menu” command and by selecting the

ACAD.MNS, AutoCAD will compile the new menu source file. Also, two toolbar

30



2)

names, "EToolPath" and "PToolPath", should be created in AutoCAD's command
" _tbconfig".

ACADLSP

This AutoLISP file is automatically loaded every time when the AutoCAD
application is started. The contents inserted into this file are listed in Appendix 1.
Text functions are added to generate two layers named "Tool" and "Arrow". The
AutoLISP file named "CIC.LSP", which is the mainstream of the developed CAM
package, is included to be loaded into the AutoCAD environment. By loading
"CIC.LSP", the newly created commands for robotic deburring and polishing

become valid.

31



;2:ﬁﬂﬁf:ﬁﬁ:.ﬂiﬂ,i:ﬁdﬂ.

O

¥

. . b s 9 ! ¥ K
\'A v«l A. 5 .«X& ..A Z. %e.o. .ou..o QO QLRI KN
SRS X SORPGT

QRS RN (hvv

PRSI o

from} qgvioiny NOISHIA 23_ :3::“_@.

32



3.2.2 New Commands

There are eight new commands that have been designed and created for the
robotic deburring and polishing. The AutoLISP programs that define those eight
commands are listed in Table 3.1 and they are loaded as a bunch when "CIC.LSP" is
loading. The eight commands could be executed by typing the command names to the

AutoCAD prompt or simply clicking on the icons appearing on the new toolbars.

AutoLISP Files
Developed for the Command Names Feature Description
Interface
CIC.LSP Not Applicable Loading the following 8 commands

CIC_EXPLODE.LSP | CIC_EXPLODE Convert solid model into wireframe

LISP.LSP REWIRE Reconstruct the database of the
wireframe model

CIC_CUT.LSP CIC_CUT Break entities in the wireframe model,
similar to AutoCAD's " break" command

CIC_LINE.LSP CIC_LINE Generate TPD for straight edges

CIC_CIRCLE.LSP CIC_ARC Generate TPD for circular edges

CIC_INTERSEC.LSP | CIC_INTERSEC Generate TPD for intersection edges

CIC_PLANE.LSP CIC_PLANESURF | Generate TPD for plane surface

CIC_CYLSURF.LSP | CIC_CYLSURF Generate TPD for cylindrical surface

Table 3.1 New Commands

"CIC.LSP" also loads another AutoLISP file named "mathbox.Isp" into
application. As its name implies, "mathbox.Isp" is a math box that contains mathematical
functions for 3D calculations and vector manipulations. Sixteen functions, which have
been used in the implementation of the eight main commands, are found in this box as

listed in Table 3.2.

33




Maths Command Description
Commands

sgn Return the sign of a rational number, +1 for O or positive numbers, -1
represents negative numbers

rond Round a real number to the closest integer

rond1 Round a real number to the larger closest integer

ronvec Round a vector

mk_vect Make a vector, given the end points

neg_vec Make a negative vector of a given vector

mk_unit_vect | Make a unit vector from a given vector

mk_i_line Make a unit vector, given the end points

shl Shift a vector list left by one place

shr Shift a vector list right by one place

dotproduct Vector dot product (three dimension)

x_prod Vector cross product (three dimension)

rotrans Rotation transformation for coordinates of one point in UCS, given UCS
directions, returning coordinates in WCS

invmat Invert a 3X3 matrix

toolang Calculate the angle in XY plane of a straight line in 3D

tool_rot Rotate a straight line in 3D and return a vector of the line in current ucs

polish_dir Rotate a straight line in 2D and return a vector of the line in current ucCs

Table 3.2 Mathematical Functions in mathbox.Isp

Note that the commands that are listed in Table 3.1 and 3.2 could be run in

AutoCAD as well as those in Table 3.1, as the CIC.LSP is being loaded.

34




3.3 Features of the CAM Package

Features designed for the CAM package are classified into three classes:

. Database reconstruction
. Edge cutting
. Tool path generation for deburring straight, circular and intersection edges

respectively and tool path generation for polishing plane surface and

cylindrical surface.

3.3.1 Re-constructing Wireframe 3D Model

This feature transforms a 3D solid model into a wireframe model and enables the
access to the AutoCAD database of the constructing wires. In other words, it makes the
database of a 3D model accessible for programming. As mentioned in Chapter 2, a solid
3D model represented by ACIS and AutoCAD has different descriptions for the 3D data.
Basically, only those constructing wires such as lines, circles, arcs (include full circles)
and intersection curves (spline) are of interest.

In ACIS database, coordinates of the end points of a line are given for a straight
line. Circles and arcs are described as ellipse curves and the coordinates of the center,
major axis vector, minor axis vector, normal vector and axis ratio are given. The
information are sufficient to generate the tool path. However, for the intersection curve
(spline curve), only the control points are given. The control points of a spline are defined
as derivative factors of certain fit points on the curve. Using those control points, the
equation of the spline could be built and coordinates of every point on the curve could be

calculated by using certain spline approaches, such as parabolic spline, cubic spline and

35



even higher order spline. Implementing a spline technique to find the coordinates of
desired points is not complicated but would require a lot of programming, and it is not
necessary because that would be a repeat of what AutoCAD has done. AutoCAD itself
uses the 4th order spline to build spline curves by default.

On the other hand, a solid model could be transformed by AutoCAD's explode
function, into wireframe. And the database for line, circle, arc and spline are stored in
AutoCAD database form. For lines, the database has its two end points, layers, handles
and so on. For spline curves, same as ACIS, the database also provides control points
only. For arcs and circles, there is a small abnormality as discussed in Chapter 2.
AutoCAD was developed from 2D drawing to 3D drawing and it defines circular curves
as 2D drawing except for the ellipse. The database of arcs and circles present a “strange”
order of coordinate arrangement. For example, instead of giving the center coordinates, it
provides an offset point whose coordinates are derived by some formula in AutoCAD,
which is unknown.

The present objective is to rebuild a wireframe with the same edges as the solid
model such that the database of each edge could be easily accessed and utilized. Taking
the AutoCAD and ACIS database formats into consideration, it is seen that:

1) Database for straight lines are sufficient either in AutoCAD or in ACIS;
2) ACIS provides a better database for circular curves;
3) For spline curves, nothing can be done unless a spline function is to be made.

However, for an open spline curve, coordinates of two fitting points, starting point

and end point, are given by the AutoCAD database. This will be fully described in

section 3.3.3.5.

36



Based on 1) and 2), equations for straight lines and circular curves could be
established by using the AutoCAD or ACIS database. A filter has been designed to take
all the information of lines and circular curves from the ACIS type file and automatically
generate an AutoLISP file, where the reconstruction commands are defined and given.
Note that this filter command is to be issued in the DOS shell to manipulate the ACIS
text file. This is the first and the only step that is processed outside of the AutoCAD
environment in this CAM package. Exporting the 3D model to an ACIS file and running
the filter program, then the re-constructor, LISP.LSP file, will be generated.

Running the "rewire" command, which is defined in LISP.LSP, will explode the
solid model twice (exploding once gives surface boundaries) and will erase all the lines
and circles except the intersection curves. Lines, arcs and circles with the same
parameters as the removed ones will be redrawn by LISP.LSP. A similar model with the
same size and dimension but in wireframe is then built. The re-constructed wireframe
model is shown in Figure 2.5. Figure 3.2 presents the flowchart of the LISP.LSP, which
is automatically generated by the filter program.

As for the spline curves, coordinates of two end points are provided in the open
spline database. Based on this, all the fitting points could be found theoretically by
"breaking" the existing spline curve into a certain amount of pieces. Therefore, there is no
need to use the existing database, which provides all the control points, to build a spline
function and find the fitting points on the curve. There is another important and useful
property that the database of the open spline curve provides the coordinates of the control

points. The first two control points forms a tangential line of the spline curve at the

37



starting point and the last two at the end point. How to find the fitting points and make
use of the control points will be discussed later in section 3.3.3.5 of this chapter.

Up to now, a wireframe 3D model with a "better" database is established. The
wires that construct the model could be specified and the tool path along the wire could
be generated. As to the polishing process, which deals with surfaces, the database of a
surface is not involved in the tool path generation. The tool path for polishing could be
simply considered as a repetition of 2 deburring process and indeed, implementation of

the polishing tool path generation is done by repeating the straight edge tool path.

38



[ s ]
!

find m lines in current
window and number them

y

i=1

|

find k arcs in the current
window

l%

erase line no. i

y

i=itl

Yes

find n circles in the
current window and
number them

[ =1 ]

No

|

i=1

1

‘erase’ arcs no. i

‘erase’ circle no. 1

y

i=i+l

No

l

i=i+1

Yes

Construct lines and
elliptical curves

Zoom all

No

Fig. 3.2

Flowchart of the Re-constructor (in AutoLISP)




3.3.2 Edge Cutting

Although all the edges are ready for selection, one may want to machine only one
part of the selected edge. Therefore, a breaking feature must be provided. One can use
AutoCAD's "_break" function. There are two issues with the AutoCAD built-in break
feature: (1) one broken part will be erased once the entity is broken; (2) additional
commands must be issued to keep the broken part from being erased. Hence, a breaking
feature with flexibility has been developed. The newly created "cutting” feature enables
the users to break the wires more easily. The user could break the edge into two pieces by
pointing out one desired point. (For the closed edge, two desired points are expected to
break the edge.) A "broken” spline curve is shown in Figure 3.3 and a "broken” arc in
Figure 3.4. The entity broken by AutoCAD's *_break" looks no different from that by the
"cutting” feature. The advantage of this "cutting" feature lies on the flexibility and

simplicity of the commands issued by the user.

Fig. 3.3 APart of a Spline Curve Fig. 3.4 APartofan Arc
The flowchart that shows the implementation in AutoLISP of the *Cutting"”

feature is presented in Figure 3.5.

40




o

select an entity

entity selected?

Is it a rebuilt entity?

Yes

No

No

line

h 4
User: choose a point and ‘break’

l circular or spline

v

open curve

:

!

close curve

:

User: choose a point and ‘break’ copy the curve

v

User: choose start and end point,
'break’ the curve, reveres start and
end point, break again

!
()

Fig. 3.5 Flowchart of the Cutting program (in AutoLISP)

41




3.3.3 Tool Path Generation

The tool path is generated for the Yamaha Zeta-1 Deburring Robot to move the
tool along a pre-determined path. By feeding the coordinates of two set points to the
controller workeell of the robot, the workcell is able to move the tool tip along a straight
path, passing through a number of points calculated by linear interpolation. The linear
interpolation that is used for the Yamaha Zeta-1 Robot runs in 3D space, where the
combined motion of the five axes is required. However, in this work, only the generation
of the desired path of the tool is discussed and is verified by experiment. Once the desired
TPD is generated, the movement of the Yamaha Robot is then controlled by the workeell,
executing the data by linear interpolation. The error between the desired path and the
linear interpolated path by the Yamaha Robot Zeta-1 has been discussed by Ayyadevara

[7] and is not included in the scope of this work.

3.3.3.1 Local Coordinate System

The tool path generation includes not only the tool position but also the tool
direction. Dealing with edges, the position of the tool tip is the coordinates of the points
on the desired geometry component, assuming zero machining tool diameter offset for
simplicity. For polishing the surfaces, the tool is required to follow the desired polishing
direction along the surfaces. The customer or user will initially define the tool angel
based on their own request. Criteria have been established for deburring and polishing
processes. In most cases, the tool is designed to be normal to the edge or the surface to be
machined. And the user may somehow want to modify the tool angle to improve the

finishing quality, based on these normal directions. Instead of setting the normal direction

42



as a default tool posture, the normal vector is designated as one of the coordinate axes
such that this CAM package could provide more flexibility for the user to determine the
tool posture easily. The details will be stipulated later in this section.

Once the required tool angle is given, the generated tool path must have the
following property: The tool angles at different set point on the desired path should be
identical, from the geometrical component point of view, no matter how the tool position
changes. This is quite straightforward when dealing with a straight edge. Once the tool
angle is defined, the tool path is simply a set of parallel lines along the edges. However,
for circular edges and spline curves, a standard must be established for the tool angle to
be defined. To illustrate this, assume a circular edge is to be processed. The tool
trajectory will be a circular path but the tool postures would not be parallel lines any
more. At each set point, whose coordinates are fed to the robot, the angle of the tool must
be given as per the original user-defined tool posture. For example, suppose the angle is
defined such that the tool is 30 degree to the circular plane and perpendicular to the
tangential direction. Then, at every point on the circle, the tool angle will satisfy this
condition.

Now it is necessary to establish a local coordinates system so that at each point on
a certain component, this coordinates system looks "identical® from that component’s
point of view. Therefore, the following local coordinate systems are defined for different

-

geometry components.

43



1)

2)

straight edge

Fig. 3.6 Local Coordinate System for a Straight Edge

Local Coordinate System (LCS) for Straight Edge: Y-axis is defined by the two
end points starting from the one that the user defines. It is also necessary for the
user to select a neighbour edge so that the neighbour edge and the edge itself will
form a plane. The Z-axis is defined as the normal direction of the plane. Applying

the right hand rule, the direction of the X-axis can then be deduced.

Circular Edge: Circular edge includes arc edge and edge of circles. Since the
circular edge forms a plane itself, the Z-axis is defined as the normal direction of
the plane. The X-axis is defined as the tangential direction at each set point on the

edge. The Y-axis can then be deduced by right hand rule.



3)

Fig. 3.7 Local Coordinate System for a Circular Edge

Spline Edge: Figure 3.8 shows the local coordinate system established for a spline
curve at two different points on the curve. With reference to Figure 3.9, similar to
the circular edge, the X-axis direction is defined as the tangential direction at each
point. The Z-axis is defined as the normal of the tangential circle at fitting point
A, while one neighbour fitting point B and the tangential line form a plane that the
tangential circle of the spline at point A lies on. The Z-axis is usually called the
minor normal or bi-normal of the spline, while the major normal or the principle
normal is the one that lies within the circular plane and perpendicular to the
tangential line of the spline curve at that point. The major normal is then defined
as the Y-axis and its direction should follow the right hand rule.

One can see that, 1) and 2) are special cases of 3). Given certain limits in 3), the

establishment of the LCS for a straight edge and a circular edge could be deduced.

However, in this CAM package, straight edges and circular edges are treated as two other

45



kinds of geometric entities than the edge of spline curves because of the geometric

complexity involved in the latter.

Fig. 3.8 Local Coordinate System for a Spline Curve at Two Fitting Points
neighbor point B minor normal
A -~

tangential line
fitting point A\

tangential circle

major normal

Fig. 3.9 Establishment of the LCS for Spline Curve



Establishment of the coordinate system is embedded in the tool path generation
program and will be initiated immediately after a certain edge is selected so that the tool
path can be generated readily. Figures 3.6 to 3.8 show the definitions of LCS for three

different kinds of entity.

3.3.3.2 Homogenous Transformation from LCS to WCS

The tool path could be generated in various ways, such as using the parametric
method and cutting surface method. Since the AutoCAD database is available, the trace
of the tool tip is simply the curve that is to be machined. (Note that the tool diameter
offset is not considered here.) Taking advantage of the AutoCAD database, the tangential
direction, minor normal and major normal direction of each point on the curve could be
easily found and are taken as the local x, y, z axes respectively. By establishing such a
LCS at all selected machining points, only at one point should the user determine the
direction of the tool in the coordinate system and this direction is then kept "identical” for
all the other points. Knowing the coordinates of the machining points and each vector of
the local x, y, z, the tool vector is then calculated by a homogenous transformation.

Figure 3.10 shows the homogenous transformation for the tool vector BP. Local
coordinate system is given by {B} and the WCS is represented as {A} as shown. The
objective is to calculate the vector BP in {A}, knowing the tool vector defined in {B},

Bp and the position and orientation of frame {B} with respect to {A}, X5, Y5, Zp.

47



V78
AZ A
XB {B}
- B
APWQ/A"’ _—>»>° P
{(AY=—" > 2
A Y a Y B
¥ X a
Fig.3.10 Tool Angle in Local Coordinate System B Transformed to World
Coordinate System A [27]

The tool end vector “P is calculated as follows [25]:

1B] _[4R *Puonc | °P
AT

where A Pgorc represents the position of frame {B} with respect to {A}, and the rotation
transformation matrix

r=["%, 7, “Z,] (G.2)
represents the orientation of frame {B} with respect to {A}.
Then, the tool vector can be calculated by

ABP="P—"P;ops G3)
The tool path is calculated by using Equation (3.1) to (3.3) at every machining point. It

should be remembered that the 4x4 matrix in Equation (3.1) has been determined during

the establishment of the LCS as described in Section 3.3.3.1.

48



The most common edges that are to be machined are straight, circular and
intersection curves. As to the first two types of edges, determining the tool angle is quite
straightforward. As to the third type, except for those straight, circular and elliptical
intersection curves, AutoCAD constructs all the other types of intersection curves using a
4% order spline by default. And the AutoCAD database always provides its spline
function results, which consists of coordinates at every point on the curve. By choice of
the user, the spline curve could be modifiedtoa higher order.

Once the tool path generation feature is initiated, the LCS is immediately
established at a default point on the curve and a default tool angle is given. The user is
allowed to determine the tool angle at the default starting point by inputting a vector in
the LCS, or can be modified interactively by rotating the tool to a desired position. The
tool path is then calculated and drawn on the screen. Figure 3.11 illustrates a tool rotating

in the LCS.

Trace of Tool End

Fig. 3.11 Tool Vector Rotating in the LCS

49



Tool path generation for deburring straight edges. circular edges and spline edges,
and polishing planes and cylindrical surfaces are respectively designed and similarly
programmed by following the above-described algorithm. The generated tool path is

saved in ASCII code as off-line data to be fed to the robot later on.

3.3.3.3 Tool Path for Straight Edges

For straight edges, it is not necessary to break the edge in advance. Before the tool
path is generated for a designated straight edge, an option is provided to the user. When a
straight line is selected as the desired edge, two end points of the selected edge will be
provided as default processing end points. Different end points can be defined at this time
by inputting coordinates of start and end points. The user can also "break” this edge in
advance to specify the portion of the edge to be machined.

Then, within a LCS described in Section 3.3.3.1, a default tool shows up with a
default tool angle. Users are able to use the number pad on the keyboard to rotate the tool
about the local X, Y, Z axes. Also, users are allowed to use a vector in the LCS to define
the tool angle. Once the tool angle is set, the tool path will be generated and written into a
text file. Users have a final option to view the tool path on the screen.

To trace a straight-line path using the Yamaha Zeta-1 Robot, the coordinates of
the starting point and end point need to be specified. Linear interpolation is carried out to
calculate the intermediate points.

In the case of straight edges, the resulting errors due to this process depend on the

linear interpolation carried out by the robot controller only, provided that the coordinates

50



of the two end points that are provided by AutoCAD are accurate, and the robot is
accurate enough to reach these end points precisely.

Figure 3.12 shows the flow chart for straight edge tool path generation. Not only
does the chart present the programming steps, but also it indicates the operating
procedures of this feature. The tool path generated for a portion of a straight edge is

illustrated in Figure 3.13.

51



specify name of a file in
which thedatato be saved

| choosea lme entity |

—

ore start and end pom
of the line

[nputncw start

end points
change the 2 points?
No

[ calculate the length ]

=

[[user defines the step (for animation only) |

Yes

change step size?

No

[ calculate number of steps ]

v

mlculate ml step size that

v

find out the unit vector from the start point to end
point and set it as local x axis

F

User defines a neighbor edge to
form a normal vector

Yes

Change neighbor?

No

[ Set the normal vector as local zaxis |

!

[ calculate vector of local y axis |

[ choose local z as default tool angle ]

use num pad to rotate
the tool angle or input
tool vector

Yes

change the tool angle?

No

| record the tool vector in the I

culate the tool position by rota(i_on

. No
Want to view tool path?

[ drawthetoolpath |

Fig. 3.12

52

Flowchart of the Tool Path Generation for Straight Edge (in AutoLISP)




3.3.3.4 Tool Path for Circular Edges

There are slight differences between the tool path generated for straight edges and
circular edges. Once the circular tool path generation is initiated, by default, the starting
point and end point are chosen upon the database of the selected entity. Comparing to the
command for straight edges, the option of choosing end points is not allowed here
because usually it is hard for the user to specify a precise point on a circular curve. If
only one part of the edge is desired, users have to break it before initiating this function,

using either the AutoCAD's " break" or edge cutting mentioned in section 3.3.2.

1
tool path tool path

)
\ \ component

component

Fig. 3.13 Tool Path for Straight Edge Fig. 3.14 Tool Path for Circular Edge

The LCS for a circular edge is different from that of a straight edge. It is
necessary to specify the error limits that can be tolerated without specifying the
machining accuracy. This is necessary as the robot is moved along a straight segment
(resulting from linear interpolation) between adjacent set points thereby approximating
the curved path. This error determines how many set points or sets of data will be
calculated. The smaller the error, the more sets of data. There is another error produced

by the linear interpolation of the robot controller when real cutting is being done.

53




Therefore, the resulting error would be the later one superimposed on the former one. A
tool angle defined similarly to that in the straight edge processing is also provided. A
schematic for a circular tool path is illustrated in Figure 3.14 and a flowchart for circular

edge processing is presented in Figure 3.15.

54



n find out the unit vector from the center point to the

start point on the circle and set itas local y

specify name of a file in
which the data to be saved -
ﬁndwtthgtangentialun!tvector.

[ choose a circle or arc entity |

{Use right hand principle to define local 2}

No I
@ | [ choose local z as default toolangle |
Yes
ore start and end poin use the num pad to
of the entity rotate the tool angle or
' reverse the sart input tool vector

Yes

reverse the 2 points? change the tool angle?
Yes

No
rd the tool vector in the
[_calculaic the length | Lﬁmm%m:n:nm.l
F: calculate the tool posmon by rotauon
[ user defines an ervor_| S
No
Yes ( to view tool path?
change error? vantfo Pty
No
mlculate r&l error step number [ draw the tool path 1
End

change error?

Fig. 3.15 Flowchart of the Tool Path Generation Utility for Circular Edge

55




3.3.3.5 Tool Path for Intersection Edges

Two types of spline curves are constructed in AutoCAD: open spline and closed
spline. As mentioned before, database of spline curves remain untouched in the re-
construction process and AutoCAD itself constructs the spline curves when the 3D model
is being built. Using AutoCAD's command "divide” divides the spline curve by an integer
number n. The division does not break down the curve into pieces but draws n points on
the curve. Those n points are the fitting points or vertices on the curve and they divide the
curve in equal 3D lengths. By this approach, every fitting point on the spline curve could
be determined by dividing the curve with a large number. However, the larger the number
n, the longer the computing time. If the two adjacent points are close enough (depending
on the required tolerance), the tangential line and the tangential circle at a certain fitting
point could be approximated. Once the tangential circle is found, a LCS is then
established by assigning the tangential vector along the x-axis, major normal vector along
the y-axis, and minor normal vector along the z-axis. Figure 3.16 shows the points that

divides a spline curve by 100. The original curve is shown on the left side of the figure.

undivided divided

Fig. 3.16 Divide a Spline Curve by 100 in AutoCAD

56



An alternative approach is employed to improve the accuracy of the tangential
vector and the tangential circle. Based on the conclusion drawn in Section 3.2.1 that the
database of an open spline curve provides two fitting points. which are the starting and
the ending points, and the first and last two control points form a tangential line at those
points, "breaking” the spline curve into a number of pieces can also give every fitting
point on the curve. As well, the tangential lines on those fitting point are also found. The
tangential line at one fitting point on the curve and one neighbor fitting point form a
plane where the tangential circle lies on. The closer the two points, the more precise is the
location of the tangential circle. Taking the tangential line as the local x-axis and the
vector perpendicular to the plane, which is formed by the neighbor fitting point and the
tangential line, as the z-axis, a LCS is then built. Figure 3.9 shows the establishment of
the LCS on an open spline curve. Establishing such a LCS at every fitting point and
defining a tool vector within it, knowing the vectors of each coordinate axis in WCS, the
tool position and tool angle could be generated by a homogenous transformation.

There are two kinds of errors that are involved in this approach. First, given two
adjacent fitting points, the robot is supposed to move the tool along a straight line. The
maximum error between this straight line and the spline curve is still unknown. Secondly,
since the normal vector of the plane formed by the tangential line and a neighbor fitting
point approximates the local z-axis, this approximation could affect the accuracy of the
tool angle. In other words, the question is, at one fitting point, how close should the
neighbor fitting point be chosen such that the local z-axis is close enough to the bi-

normal? Actually, this error results when the LCS is being established for the spline

57



curve. Taking advantage of AutoCAD, this question can be answered by using some
AutoCAD techniques.

Consider a spline curve as shown in Figure 3.16. It is divided into 100 segments
by 100 fitting points. Taking one segment into consideration, as shown in Figure 3.17, it
is equally divided again into a number of sections. Note the term "divide” refers to
AutoCAD's command "divide” and after such a "divide” process, AutoCAD draws the
dividing points in the 3D space. From those dividing points, lines are drawn
perpendicular to a straight line, which has been constructed by connecting the two end
points of the segment.

The maximum length of those perpendicular lines represents the maximum error
between the spline curve and the tool path. The lengths of the errors could be read from
the databases of those lines by simply inputting an AutoCAD command "list”. Usually
this process needs to be done several times at those fitting points where the largest
curvature occurs on the curve. If the user is not satisfied with the maximum error, he/she
may want to divide the whole spline curve again by a larger number and then redo the
error lines. This is a trial-and-error process and it needs to be done before the tool path is
generated so that the user could have a segment number to divide the spline and get the

number of fitting points.

58



Error lines

fitting point (set point)

fitting point (set point)

Straight line connect two set points

spline segment

Fig. 3.17 Error Lines between the Spline and the Tool Path

\\\\\\\\“kt‘k}b

Fig. 3.18 Tool Path Generated for Spline Curve
Figure 3.18 shows the tool path generated by defining the angle of the tool as the
minor normal direction (left) and as the tangential direction (right). Similar to the circular
edge, coordinates of a number of points along the path are provided to the robot and the

robot will move along these points in the 3D space by linear interpolation. The error due

59



to the linear interpolation will superimpose on the tool position error that comes from the
tool path generation.

Since no spline equation is employed in the tool path generation process,
AutoCAD techniques are needed to find the error of the LCS Z-axis, which affects the
accuracy of the tool angle. Dividing the existing spline by a very large number, say
10,000, which is much larger than the segment number figured out from error analysis
before, the resulted tool path could be far more precise than the one by dividing the curve
by 100 in the sense of tool orientation. Comparing the tool angles generated at the same
fitting point, one can read the angle difference between the two sets of tool path by
different dividing numbers. Figure 3.19 shows the angular difference between two tool
angles generated by dividing the whole spline curve into 10 segments and 10,000
segments. The actual angle is measured as 3.1675°. This angular difference decreases
drastically when the dividing number increases. For example, the angle difference
between tool angles by dividing number 100 and 10,000 is as small as 0.105°. This small
angular difference could be observed by AutoCAD's zooming.

After such a comparison, the user could also figure out a dividing number that
would be utilized to generate the tool path. Although the actual angle error is not possible
to evaluate by this approach, one can always increase the dividing number to decrease the
angle error so that a certain error requirement is being met.

As a conclusion, two dividing numbers are found for the requirement of two
errors: one from the error lines and one from the tool orientation. The larger number is to

be chosen to generate that amount of tool positions and the tool angles at those positions.

60



/ 0.105°-angular difference

by dividing the curve into 10 segments

Fig. 3.19 Tool Angle Difference

These two error-finding processes are not incorporated into the tool path
generation program because of the complexity of the processes. One may find that it is
much more flexible to do this error-finding by AutoCAD commands instead of an
integrated command because it involves a lot redoes and undoes. Figure 3.20 is the

flowchart of the program that generates the tool path for spline curve.

61



specify name of a file in
which the data to be saved

[ choose a spline entity |

No

T pliner >

Yes

ore start and end point
of the entity

open or close?

cut the close curve into I

[User input a step number n |

v

Diyided the curve by n store the n »

calculate tangential unit vector,
‘ break the curve using first 2 points I

Calculate the unit vector of the end point

calculate the cross product of u
and v. w, set it as z-axis

v

Use right hand principle, calculate cross

fchoose local z as default tool angle|

1

use num pad to rotate
the tool angle or input
tool vector

Yes

change the tool angle?

record the tool vector in the

No
want to view tool path?

[ dmwthetool path |

product of u and w, define as local y-axis |

Fig. 3.20

Flowchart of Tool Path Generation for Intersection Edge (in AutoLISP)

62




3.3.3.6 Tool Path for Plane Surface

Polishing a plane surface is, basically, a repetitive process of deburring a straight
edge in the sense of tool path generation, although it does not hold true in polishing
complex surfaces. 3D solid models of workpieces are also rebuilt into wireframe models
by going through the filtering, double exploding, and reconstructing processes as
described earlier in this chapter. Therefore, the polishing feature deals with the same
reconstructed 3D models as in deburring. A LCS similar to the one shown in Figure 3.6 is
established. Figure 3.21 shows a workpiece that is used to illustrate the plane-polishing
feature. On one plane surface of the workpiece, a LCS is established and is shown in

Figure 3.22.

Fig. 3.21 A Workpiece for Polishing Fig. 3.22 LCS for a Plane Surface

In this feature, tool path is generated based on some conditions given by the user.
First, the user has to define a starting edge and the starting point on the edge. Also, the
step length between two polishing lines has to be specified. This length determines how

many passes the polishing tool should process on the plane. Afterwards, similar to the

63



tool angle changing feature, a line is shown up within the plane representing the polishing
direction. It could be rotated in this plane or changed by inputting a 2D vector to specify

the polishing direction. Figure 3.23 shows the polishing direction changing in the plane.

polishing Direction

Fig. 3.23 Polishing Direction Changing in the Plane

Once the polishing direction is determined, a step-out point on the extended line
of the polishing direction is calculated. The location of this point is outside of the plane
defined by the selected two edges. This is a step for the polishing tool to step out of the
surface in order to avoid scratching the surface during pass step-over. And the user then
could customize the tool angle at the step-out point. Figure 3.24 shows the tool angle
changing by the user.

Tool path generated for a plane is illustrated in Figure 3.25. The schematic chart

shown in Fig. 3.26 presents the procedures to generate the polishing tool path.

64



Polishing direction .

Fig. 3.24 Tool Direction Changing in the Plane

In the case of irregular plane surface where two straight edges are not easy to be
specified, the user can create two straight lines within the plane upon his/her own request

and then use this feature to generate the tool path.

Fig. 3.25 Tool Path for Polishing a Plane Surface

65



specify name of a file in
which the data to be saved

h

choose 2 straight line to

No

straight lines?

v

find out the unit vector from the start point to end
point and set it as local x axis

Yes swap starting edge]

swap the 2 lines?
Yes
No

store 2 ending points of
the starting edge

exchange the
No coordinates of the
2 ending points

swap the 2 pnts?
Yes

[ calculate the length ]

fuser defines the polishing step|

[ calculate number of passes |

calculate real step

[1C CVEI

size that divides the

change step size?

No

find out the unit normal vector of the
defined plane and set it as local z axis

[Giculate the local y axis by right hand law |

calculate the step-out point, draw as
default polishing direction

use num pad to rotate
the polishing direction

change polishing
direction?

[ choose local z as default tool angle ]

use num pad to rotate
the tool angle or input
tool vector

Yes

change the tool angle?

record the tool vector in the

culate the }ool position by rotation

. No
Want to view tool path?

[ draw the tool path ]

Fig. 3.26

Flowchart of Tool Path Generation for Plane Surface (in AutoLISP)




3.3.3.7 Tool Path for Cylindrical Surface

Similar to the tool path generated for circular curves, a LCS is established as the
one shown in Figure 3.7. The tool path is generated along the cylindrical surface and
parallel to the cylinder axis, as shown in Figure 3.27. Similar procedures as dealing with

the plane surface are employed and shown in Figure 3.28.

Fig. 3.27 Tool Path for Polishing a Cylindrical Surface

67



v

start - -
find out unit vector from center of the starting edge
and starting point and set it as local x axis
specify name of a file in ¢
which the data to be saved find out the unit normal vector of the plane defined
r by the starting edge and set it as local z axis

choose 2 circular curve

[ calculate the local y axis by right hand law |

calculate the step-out point, draw as
default polishing direction

[ choose local z as default tool angle |

swap the 2 curves?

use num pad to rotate
€ the ool angle or input
tool vector

store 2 ending points of

the starting edge Yes

1 ?
exchange the change the tool angle

coordinates of the
2 ending points

swap the 2 pnts?

Yes
r calculate the length J
Wser defines number of passes J
want to view tool path?
[ calculate the angular step J
Yes [ drawthe ool path |

change passage number?

- (=

Fig. 3.28 Flowchart of Tool Path Generation for Cylindrical Surface (in AutoLISP)

68



3.4 Robot Coordinate System

The tool path has been generated and the coordinates of the tool tip (xi, y1, z1) and
tool end (x2, y2, 2) have been calculated. They are absolute locations in the 3D space and
they have to be formatted into the data format that the Yamaha Robot Zeta-1 needs. Table

3.3 shows the data that are fed to the Robot.

x; (mm) | yy (mm) | 2y (mm) A () B8(°) V (mmv/s)
43.0565| -85.4545] 89.8211] 325.064] 60.4267 1.0
43.9565| -83.5654] 89.8211] 325.064] 60.4267 10
43.9565] -81.5675] 89.8211] 325.064] 60.4267 10
43.9565| -79.5654| 89.8211] 325.064] 60.4267 1.0
43.9565| -77.5453| 89.8211] 325.064] 60.4267 1.0
43.9565| -75.5754] 89.8211] 325.064] 60.4267 1.0
43.9565| -73.5754| 89.8211] 325.064| 60.4267 1.0
43.0565] -71.7876] 89.8211] 325.064] 60.4267 1.0
43.9565] -69.2576] 89.8211] 325.064] 60.4267 1.0
43.9565| -67.8455| 89.8211] 325.064| 60.4267 1.0
43.9565] -65.8565] 89.8211] 325.064| 60.4267 1.0
43.0565| -63.7555| 89.8211] 325.064| 60.4267 1.0
43.9565| -61.1246] 89.8211] 325.064] 60.4267 1.0
43.9565| -59.8665| 89.8211] 325.064] 60.4267 1.0
43.9565| -57.8454] 89.8211] 325.064] 60.4267 1.0
43.9565| -55.7645| 89.8211] 325.064] 60.4267 1.0

Table 3.3 Robot Data Format

In the above table, X1, y1 and z; are the coordinates of the tool tip while A and B
are two angles that defines the tool orientation. Angle B is defined as the angle between
the tool and the vertical axis and it is always given as a positive number. (There are
negative values of the angle B. In order to simplify the calculation of the tool orientation,
B is kept to be positive.) Angle A is defined as the angle between the projection of the
tool to the x-y plane and measured from the positive x-axis of the robot while B is
positive. The last column of the table is the linear velocity of the tool tip, V, and it is

always given a constant value 1.0 mm/s.

69



In order to transform the tool ends coordinates into such data format. the

following calculation is incorporated into every tool path generation program.

A=r+ m-.(l_.y:_—__y._l) (G.4)

. - 2 - 2
B=tan_,[\ﬁ): ») +(x;,—x)) ] G.5)

One can see that angle B is always positive by the calculation above. Angle A is to be
determined by the location of the tool end relative to the tool tip. The data calculated by
the above equations are listed in the format shown in Table 3.3 and saved as a file. By
such a post-processing, the tool path is then revised into instructions for the Yamaha
Robot Zeta-1. This post-processing is programmed within the tool path generation

procedure so that the generated file could be directly used as command data for the robot.

3.5 Summary

The tool path generation algorithm is detailed in this chapter. All of the procedures
to perform tool path generation are carried out under the AutoCAD environment. A user
interface is incorporated into AutoCAD by adding customized commands, using
AutoLISP as a programming language. The generated tool path is post-processed into the
robot coordinate system and is to be fed to the robot. Although only regular geometry has
been studied so far, new features and new commands could be added into the interface by

the same programming strategy.

70



Chapter 4

Computer Simulation of Tool Path Execution

4.1 Introduction

Although most CAD/CAM systems can assist human operators to program tool
paths for robots or NC machines, detailed geometry analysis is needed to make a
“correct” decision that the tool path has been properly designed. However, the “correct”
decisions are mostly made based on operator experience, which may not always be
"correct” [28]. A trial cut or simulation is then a must to verify the cutter path and to
correct the errors.

This CAM package provides a simulation feature that runs the machining process
in a simulated, virtual reality mode, using an off-the-shelf graphical visualization package
in Virtual Reality (VR). This VR environment makes simulation possible in a short lead-
time.

In this VR environment, the user is able to "walk around” the machining setup,
say the Yamaha Zeta-1 Robot, to inspect it virtually and visually during a machining
production trial run. This simulation can also demonstrate the tool path generated by
using AutoCAD database, assist jig and fixture design and setup, and enable the user to
observe possible tool collisions with the workpiece and fixture [19]. It also demonstrates
the potential for utilizing the increasing graphics capabilities of PC-based platforms in the
field of mechanical engineering, especially in the visual display of information (generated

by established simulation outputs).

71



4.2 Virtual Reality Tool — WorldToolKit (WTK)

The term “Virtual Reality" (VR) was initially coined by Jaron Lanier, founder of

VPL Research (1989) [29]. Other related terms include 'Artificial Reality' (Myron

Krueger, 1970s) [29], ‘Cyberspace’ (William Gibson, 1984) [29], and, more recently,

"Virtual Worlds' and 'Virtual Environments' (1990s) [29]. The basic goal of VR is to

create the most realistic interaction between a human and an environment, which does not

exist, or, from the environment point of view, to simulate the behavior of objects in the
environment. VR creates interactive "worlds" which allow the user to explore and alter
the objects within it in real-time. Then, after creating a world in which everything feels,
smells, looks and sounds the same way as in real life, the programmers can change the
variables, to create worlds that were unattainable before. It is the most advanced
computer graphics technique and it is found to be applied in many fields. It provides the
user with many tools to animate the scene and react on user input.

Although there is no unique definition for Virtual Reality at this time, basically,
there are four fundamental and common concepts in Virtual Reality. They are:

1) Viewpoint - the calculations that the computer must make in order to determine
where exactly in space the simulated person (the user) is at, where he/she is
looking, and the proportion of all the simulated objects around that user, based on
distance, height, and angle from his/her Point Of View (POV). These calculations
are then used to "draw” graphics on the screen.

2) Navigation - the calculations that the computer must make, in real time, in order
for someone (the user) to move about the simulated environment that he/she find

him/herself in.

72



3) Manipulation - a process by which a person immersed in a virtual world can
interact with the imaginary, or simulated objects around him.

4) Immersion - the quintessential ingredient of virtual reality. To achieve the illusion
of immersion in the computer-generated environment requires some method of
putting pictures in front of your eyes so that your total view, no matter which
direction you turn, encompasses only the virtual world.

A virtual reality development toolbox, WorldToolKit (WTK) Release 6 [30],
developed by Sense8 Corporation, helps to provide a virual 3D environment in which the
robot model is built. Such an environment allows the user to "walk through”, "walk
around” and "look” around the machining scene and examine the machining process.

Written in C++ language, WTK is basically a function base or subroutine base in
which contains a large number of function calls for programmers to use. And those
function calls are to be used in order to create a virtual reality environment, load in 2D or
3D models, and make them move. The advantage of such a "tool box" is to save a lot of
programming on the calculations of screen updating, viewpoint switching, and
environment changing. Figure 4.1 shows a virtual environment in which a robot model is
built.

The advantage of using VR to simulate a manufacturing process lies on the fact
that evaluation and verification can be done with a virtual trial run of that machining
process. When evaluating the manufacturing process, if any part of the robot other than
the tool collides with the workpiece or the fixture, it could not only be visualized but also
be tested by a proper collision-detection function call from WTK. If the user is not

satisfied with the machining process, he/she would have a chance to go back to the tool

73



generation program in AutoCAD or other CAD package, go through the tool path

generation, and make another trial run with a redesigned tool path data.

Fig. 4.1 Virtual Yamaha Robot Zeta-1

4.3 Kinematic Model of Yamaha Zeta-1 Robot

In order to perform the same motion in VR as the real robot, a virtual Yamaha
Zeta-1 Robot, shown in Figure 4.1, has been modeled with the same size dimensions as
the real one with all the degrees of freedom. Inverse kinematics is used to derive the
movement of each joint of the robot from a certain tool posture. Figure 4.2 demonstrates

each joint movement of the Yamaha Zeta-1 Robot.

74



Tool

Fig. 4.2 Yamaha Zeta-1 Robot [2]

75




4.3.1 The Yamaha Zeta-1 Deburring Robot

The Yamaha Zeta-1 Deburring Robot (Figure 4.2) is a five axis manipulator with
three joints (6, R and Z) analogous to a cylindrical coordinate system and two wrist joints
(o and B). The robot could rotate the whole body about the z-axis (8), move its arm
vertically along the z-axis (z) and extend its arm (R). The tool holder is designed in such
a way that the tip of the tool (machining point) is held at the intersection of the two wrist
axes: o and B. Owing to this unique feature, the position of the machining point is kept
constant while the orientation of the tool can be changed by rotating the a and B axes
(Figure 4.3). This robot has a repeatability precision of +0.1 mm and its payload is 30 kg
[2].

Although it is structurally a cylindrical coordinates type robot, the commands
issued to the robot are in a Cartesian coordinate system or WCS, as {X, Y, Z, A, B}. The
Cartesian coordinate system is shown in Table 4.1 and Figure 4.2. The tool posture in the
Cartesian coordinate system is presented in Table 4.2. Note that the term "tumbling
surface” refers to the surface formed by the tool and the vertical axis going through the a
joint.

One can see from these tables that the data for the robot are the machining point
location and the tool orientation. The data are the input to the controller of the robot.
These data are transformed through inverse kinematics to joint signals (9, R, Z a and B),
by the robot controller. The inverse kinematic transformation is discussed later in Section

4.3 in this chapter.

76



Axis | Minimum 0 Point (origin) Positive Direction

Name | Setting Unites

X 0.0lmm Rotation center of 0 axis 90° to the right of the y axis

plus direction

Y 0.0lmm Rotation center of 0 axis Front of the robot
0.0lmm Bottom end of range of movement | Upward direction

A 0.01° The state where the tumbling | Tuming counterclockwise

surface® is matched with the x axis | when viewed from above

0.01° State where the tool is vertical B axis plus direction

Table 4.1 Cartesian Coordinate System

* Tumbling surface is defined as the surface formed by the tool and the a axis.

Axis Name | Meaning Description

X x coordinate of machining point Machining point position
Y y coordinate of machining point

YA z coordinate of machining point

A Tool turning angle Tool Posture

B Tool collapse angle

Table 4.2 Tool Location and Posture

The tool length is 150 mm as shown in Figure 4.3. The o axis intersects with the

B axis at the machining point or processing point and they form an angle of 45°. As this

figure shows, one can see clearly that the machining point stays constant no matter how

and 3 axes rotate.

77




L= 456

b= 150
Processing Point i

Fig. 4.3 a and B Axes of Yamaha Robot Zeta-1 (21

The o and B axes could turn either clockwise or counterclockwise so that the sign

of the resulted B is related to the sign of angle A, as shown in Figure 4.4. Two different

A-B combinations can achieve a same tool posture. However, to simplify the tool path

generation process, the angle B is always kept positive in this work.

78



A= -90.00 A= 90.00

B= 45.00 B8=-45.00
() ®)
Fig. 4.4 Same Tool Posture by Different A and B [2]

4.3.2 Assemble Virtual Robot

There are five geometry parts that assemble the virtual robot and simulate the
joints of the Yamaha Robot Zeta-1. They are called Base, Body, Arm, Elbow, Wrist, and
Tool respectively. They are constructed either by programming in C++ language using
WTK or by simply loading in AutoCAD 3D models. The parts such as the Base, Body
and Arm, whose shapes and sizes are less important, are portrayed by some simple
geometrical objects, which are created by C++ programming. Two cylinders represent the
Base and the Body and a rectangular box represents the Arm. Figure 4.5 shows the sizes

of the Base, Body and Arm. The Base is the only static object in the assembling and it

7



does not have any freedom of movement. The Body could rotate about its axis fully in
360 degrees. The arm has two freedoms of movement along the Body axis, which is the

z-axis of the robot, and R direction, which intersects with the z-axis.

A
UV \
S
?/QSK/
Z
mO
[
=
R
# 3]
<S5
Fig. 4.5 Dimension of Robot Base, Body and Arm (in mm)

The dimensions are of less importance and are just approximates of the real robot.
They only imply the range of movement of each part. The Arm is "attached” to the Body
and there is a parent-child structure between all these geometric objects. For example, the
Base is constructed based on the universe and is the root on which the Body is built. And
the Arm is planted on the Body. By such mattaching”, in the case of Body-Arm movement
relationship, a motion link is established so that the Arm follows every rotation of the

Body.




Using the modeling feature in AutoCAD, the Elbow, Wrist and Tool are created.
The Wrist and Tool are integrated as one object, which is then called Wrist-Tool object.
The Elbow and Wrist-Tool object have their unique shapes and sizes so that they form

the joints of a and B. Figure 4.6 shows a rendered picture of the Elbow (left) and Wrist-

Tool (right).

Fig. 4.6 Elbow and Wrist-Tool

The Elbow and Wrist-Tool are modeled into irregular geometrical shapes and it is
difficult to designate the rotation axes for them. Hence, two cylinders are creates by C++
programming and they function as parents of these parts. Figure 4.7 shows how the
Elbow and the Wrist-Tool are attached to their "parent” cylinders. This attachment is
achieved by C++ programming, using WTK functions, and functions the same way as
was explained for the Body-Arm attachment. By doing so, rotating of the joints o and B
are simplified to the rotating of these parent cylinders about their axes. An assembly

drawing of the Elbow and the Wrist-Tool is presented in Figure 4.8.

81



porent cylinder
of Wrist-Tool

parent cylinder of Elbow
to be attached to the Arn

——

AN

Fig. 4.7 Assembly of the Elbow and the Wrist-Tool

N
_/

1T}
1.1 ]

\%
Top View Side View
[ [
I /% 0
/
a1
(e
Front View Isometric View
Fig.4.8 Draft of the Elbow and the Wrist-Tool Assembly

82




The robot is therefore constructed piece by piece. Given each joint certain degrees
of freedom as the real one has, the freedom of movement of the real robot is then fully
replicated.

A coordinate system is established in the virtual space and is coincident to the real
robot. Also, the work piece is located at the same location as it is in the AutoCAD
coordinate system, where the tool path is generated and also, the two coordinate systems
are designated to be identical to the real robot. In other words, the reference systems for
Yamaha robot, virtual robot and AutoCAD drawing are kept unified through all the
procedures of 3D-model filtering, reconstruction, and tool path generation. Since the
AutoCAD constructed workpiece (to be saved in the format of DXF or 3DS) is usually
modeled under the reference at the origin of the AutoCAD coordinate system, the 3D-
model of the workpiece is relocated into the simulation environment.

The workpiece could be loaded into the virtual space as a solid model either in
3DS or DXF type. In WTK, loading in such a 3DS or DXF object does not change its
shape and size, which are modeled in AutoCAD or 3DSTUDIO. The workpiece is loaded
into the virtual environment as a separate object independent to the robot and neither
“parent” nor "child" object is attached to it. Therefore, movement commands will not
alter the location of the workpiece.

In order to run the virtual robot, commands are to be issued to each joint based on
the robot model. The commands are the joint coordinates, {6, R, z, a, B}. However, the
generated tool path is given by {X, Y. Z, A, B}. Inverse kinematic transformation is then
applied to the generated tool path such that the world coordinates be transformed into

joint coordinates.

83



4.4 Inverse Kinematics

In Chapter 3, the tool path including tool position and tool orientation is generated
and is given in the form of coordinates in WCS {X, Y, Z, A, B}, which is derived from
the coordinates of the two end points of the tool {x1, y1, z1} and {x2, y2, z2}. For the robot
model built in virtual reality, the movements of 6, R, z a and P need to be derived so that
the moving or rotating orders could be issued to each joint. In other words, knowing
coordinates in WCS {xi, y1. Z1, A, B}, a transformation in machine joint coordinate space
{6, R, z, a, B} needs to be found. This is called the inverse kinematic transformation of
robot coordinates.

In order to determine the relationship between {xi, yi, Z1, A,B}and {O,R, z a,
B}, a very important and interesting feature of the Yamaha Robot Zeta-1 is then
examined. The Elbow and Wrist-Tool shown in Figure 4.9 are used to demonstrate this
feature. The a and B axes intersect with each other and form an angle of 45°. Suppose the
Wrist has turned an angle B, the tool then tilts and forms an angle B with the vertical axis,
as defined. Now, let the joint Elbow, which is the o axis, turn 360° and the trace of the
tool is on a cone surface, keeping the same B angle. During all these turnings, the tool tip

remains constant.



Fig. 4.9 Angle B, a and B

Assuming a tool with its location in WCS {xi, Y1, Z1, A, B} or {x1, y1, z1}:{xz2, y2,
2,}, the angle B, which is formed by the tool and the vertical axis with a maximum value
of 90°, can always be determined by Equation (3.5) and it is only affected by the turning
of the Wrist (B axis). A simplified drawing demonstrates the derivation of angle B, shown

in Figure 4.10.

85



wrist

Tool at vertical State

Tool at Angle B

L

Tootl Tip

Fig. 4.10 Derivation of Angle B

Angle B can be seen and calculated as:

Lsin( E)

B =2sin™ (—32—-) @.1

where L is the length of the tool, which is 150mm, and D = Lsin -’2 .

Observing the Yamaha Robot Zeta-1, one can see that the position of the
machining point is only affected by the joints 6, R, z, because rotation about a and P axes
does not change the position of the tool tip. This effect is then given by the

transformation from a cylindrical coordinate system to a Cartesian coordinate system.

86



Wrist

/}'oce of Tool End

Tool Posture before
turning of a

(®)z|¢0.0.0>

Fig. 4.11 Inverse Kinematics of Yamaha Zeta-1 Robot

Figure 4.11 shows a top view of the movements of the Yamaha Zeta-1 Robot. The
Tool Tip and Tool End of a randomly chosen tool posture are pointed out in the figure as
the "Final Tool Posture". For such a tool posture, note that the B axis had to be rotated
otherwise the top view of the tool would only be seen as a point instead of a line. The
movement of the robot has been divided into S processes in order: R, z, 0, B, a, knowing
the coordinates of WCS {x1, y1, z1, A, B} or {x1, y1, z1}:{x2, y2, z2}. Assuming the robot
completes each of these movements one by one, following the order of R, z, 6, B, a. The

value of 8, R and z can then be easily derived as:

9 =tan"' (2} 42)
X,

87




R=—x—‘b- or R=-2 4.3)

z=2 4.4)

And B is calculated by Equation (4.1). Derivation of machine coordinate a is not
straightforward because both turnings of the joints a and B are involved and contribute to
the angle A value. Examining the top view in Figure 4.11, supposing the robot has
completed the movements of R, z, 6, and B, the tool tip, tool end and the joint Wrist
forms a triangle with each side shown as a, b, c respectively (shown with dashed-lines).

During the final « turning, this triangle remains constant, as shown.

Let

Ax =[x, — x|
Ay =|y, - | @4.5)

Az =|z, - z)|

and
a=1L
2

b=V - (L-az) =2LAz - A @6)

c= ‘/sz +Ay?

Solving the triangle Aabc, angle § is found as

88



2ac

2 2 _p2
.f:cos"(a +c*-b )

p
[? +Ax? +Ay* +Az? —2LAz
=cos”™ ——————— (CX))
| 2LAC+ sy }
(
=cos™ L-4:
L Ax? + Ay
where
JAX® +Ay* +Az% =L
And
5 =(%-9)—¢ (4.8)
Then a is found as
—ean ' Y
a =tan Ar +0 (4.9)

=A+6

Finally, « is derived and depicted by Ax, Ay and Az. The relationship between angle {A,
B} and {Ax, Ay, Az} are described by Equation (3.4) and (3.5). {Ax, Ay, Az} can also be
depicted by angle {A, B}as follows:

Ax =|Lcos A4

Ay = LV1-cos* A—cos® B (4.10)
Az =|LcosB|

89



Knowing {xi1, y1, z1, A, B}, the variables {8, R, z, o, B} is then given respectively by
Equations (4.2), (4.3), (4.4), (4.9) and (4.1), and the inverse kinematics transformation of
the robot is completed.

Deriving the inverse kinematics of the robot is totally based on the geometric
structure of the robot. Different approaches to derive the forward and inverse kinematics

have been achieved by Ayyadevara [7] and Y. Su [17].

4.5 Executing Tool Path in Virtual Reality

P led

e oo ———————————————

Fig. 4.12 Control Panel for Simulation
A Control Panel is created for animation purposes, as shown in Figure 4.12. This
Panel is a simplified Teaching Unit, similar to that used in the real robot. There are 11
push-on buttons created for the tool path verification and robot manipulating. The tool
path animation starts when the "Start" button is pushed. The other 10 buttons are created
for the user to change the robot coordinates: 6, R, z, B respectively without the need to

read a data file.



There are two data files that are generated by the tool path generation program in
AutoCAD. One data file lists the coordinates of the two end point of the tool, {x1, y1, 21}
and {xz, y2, z2}, while the other one provides robot coordinates to run the robot, {xi1, Y1,
z1, A, B}. When the simulation starts to run, by using the first data file, a trace of the tool
is created at the location according to the coordinates of {xi, y1, z1} and {xs, y2, z2} by
putting small dots at those locations. By doing so, the tool postures achieved by rotating
and moving the robot joints could be verified by observing the two ends of the tool
following the tool trace. The second data file contains the commands {xi, y1, Z1, A, B},
which are to be fed to both the virtual robot and the real robot. The simulation program
will transform the commands {x,, y1. 1, A, B} into {8, R, z «, B}, by which each
variable actually moves or rotates the robot joints. Therefore, the two data files are
independently used. Data provided by the second data file runs the robot and simulates

the VR machining process while data from the first data file verifies the simulation.

91



©) @

Fig. 4.13 Simulation of a Machining Process

92



create a Control Panel with
on-off buttons

v

define functions of on-

[ creatc universe |

y

[oad work_pieoe. (3DSorD

[ create Base cylinder 1

[ create Body cylinder |

[attach Base and Body |

[ create Arm box |

[ attach Body and Am |

[ create elbow joint cylinder |

[attach Arm and elbow joint |

[ load Elbow object |

[ atach elbow joint and Elbow |

[ create wrist joint cylinder |

[attach Eibow and wristjoint]
L

| load Wrist-Tool object |

[Tattach wrist joint and Wrist-Tool |

b zoom all ]

Yes
[ Readdatasetxy.zAB |

[ calculate R,z .8 |

[ Rotate Body: A8 |

[ Extend Arm: AR |

[ MoveArm:Az |

[ Rotate elbow joint: Aa |

[ Rotate wrist joint: AB |

end of data file?

No
[ Read nextdataset: x,y.z A B |—

Fig. 4.14 Flowchart of the Simulation in Virtual Reality

93




The simulation process in Figure 4.13 shows the tool is machining the intersection
edge of a workpiece, following the tool path generated by the CAM package, from 4
different points of view. A schematic flowchart of the simulation program is presented in

Figure 4.14.

4.6 Summary

The kinematics of the Yamaha Zeta-1 Robot has been studied and explained in
detail. With the help of WTK, VR is introduced as a simulation tool. A kinematic robot
model has been developed, fully replicating the inverse kinematics of the Yamaha Zeta-1
Robot. The potential of applying of VR in the field of robotic simulation has been
demonstrated. Although only kinematics of the robot has been studied, the current model
can be further extended to simulate a dynamic robot by applying the equations of motion

to the model.

94



Chapter S

Tool Path Verification

5.1 Introduction

The previous three chapters discussed and focused on the development of the
software that provides the post-processed data or command data for simulation in a VR
environment and the real robot. The experiments described in this chapter show that the
tool path designed by the user and generated by the CAM package is verified by running
the Yamaha Zeta-1 Robot with the generated data. Since a zero radius cutter has been
assumed when the tool path data is generated and oniy kinematic transformation is
involved in this work, the experiments are carried out without any real machining or
cutting being performed. The trajectory tracking performance of each axis of the robot is

not within the scope of this thesis and has been discussed and conducted by Ayyadevara

(7.

5.2 Locating Workpiece

The workpiece chosen for the tool path verification is shown in Figure 2.1 and the
tool path data have been generated for different edges on it. The workpiece is to be
placed on a horizontal surface of the working table. There are two position holes
purposely designed for locating the workpiece on the working table of the robot. Figure
5.1 shows the locations of the locating holes. The centers of the locating pins on the
working table are measured with respect to the robot WCS. In AutoCAD 3D modeling
environment, the workpiece model has been moved and rotated until the two centers of

the holes are located at those two points. An alternative approach to locate the workpiece

95



in AutoCAD is to model the workpiece starting at the location of the position holes. The

tool path is then generated based on the location of this re-located 3D model.

locating holes

Figure 5.1 Position Hole of the Workpiece

Figure 5.2 Workpiece ready to be machined



On the working table for the robot, the workpiece is located by fixing the
workpiece on the table where the locating pins have already been placed. Additional
clamps have been added in order to make sure that the workpiece has been fastened.

Figure 5.2 shows the workpiece is fixed on the working table.

53 Tool Path Execution

In teaching mode, the Yamaha Zeta-1 Robot accepts instruction from the teaching
station, shown in Figure 5.3. The teaching unit station consists of five joysticks. Each of
them manipulates the motion of one axis in the Machining Coordinate System {X, Y, Z,
a, B}. The teaching unit also has a keypad and LCD (Liquid Crystal Display) which not

only can be used to manipulate the motion of each axis, but also allows the user to input a

listing of point sequences.

1058 {41477 Inch}

Fig. 5.3 Teaching Station of Yamaha Robot Zeta-1 2]

97



Instead of using the real cutter, a digital displacement probe is mounted in place
of the cutting tool so that the actual cutting error can be measured. It is a contact type
sensor called Digimatic Indicator, shown in Figure 5.4. It converts the linear

displacement to a digital signal by a capacitance type encoder [31].

\ _ *.33" (8.9)

_ \ AY

gl

E. : Oﬂqg;
B0OIC5 1 1) addimo

@i

F13 TCH

sk 75~

Uik

Rl .
{6.35,

:
|
-
;

Fig. 5.4 Digimatic Indicator [31]
Experiment procedure:

1) The workpiece in AutoCAD is modeled based on the mechanical drawing of the
workpiece. A reference point is chosen as the origin of the 3D model. The 3D
model is "exported” to produce a "3DS" file of the object.

2) The AutoCAD 3D model of the workpiece is repositioned to the locating holes
which are at coordinates (-833.45, 139.47, 56.40) and (-795.03, 263.76, 56.40).

The change of the reference point is then found and recorded for step (7).

98



3)

4)

5)

8)

9)

In AutoCAD environment, the 3D model is rexported” to produce a "SAT" file of

the object.

In DOS shell, filter.exe is run to produce the re-constructor by inputting the

exported SAT type file name. The re-constructor is automatically generated.

Back in AutoCAD environment, the 3D model is "double exploded”. The re-

constructor is loaded and run under AutoCAD. A wireframed 3D model is then

constructed.

In AutoCAD environment, the tool path generation command, *cic_line" or

"cic_intersec” and etc. could be run to generate tool path for a certain edge.

Run the simulation program. The change of the reference point from step (3)

should be input as the location of the workpiece in the simulation environment.

The 3D model in "3DS" file type is then located. Also, the generated data file

name is input. While running the virtual robot, observe carefully the tool posture

when the virtual robot is maneuvering during the machining.

If tool postures in the simulation is not as desired, step (6) and (7) should be

repeated.

Experiment the tool path data with the Yamaha Robot Zeta-1.

i) Turn on the Yamaha Robot Zeta-1 set it in Teaching Mode.

i1) Use joysticks to move the machining point, angles A and B close to the
coordinates and angles of the first set of tool path data.

iii) Using the keypad on the Teaching Unit, input the first set of data so that
the robot will move to this point. Observe the final tool posture.

iv) Go to the next set of data, repeat ii) and iii).

99



v) After going through all the data manually, if all of the data give the correct
tool posture, switch to the workstation, input the data file name and run
the robot automatically and continuously.

In step (9) (v) of the experiment, to avoid the tool collision with the workpiece,

the digital probe is preset to -5 mm by pushing in the probe upwards. In the manually
running of the robot (step (9) (ii) and (iii)), the probe is released to measure the actual

displacement point by point.

54  Observations of Yamaha Zeta-1 Robot Tool Motion
The tool path generated by the developed CAM package is tested on the Yamaha

Zeta-1 Robot. By feeding the data script file to the Teaching Unit of the robot, it is
observed that the trajectories of the machining points do coincide with the desired edges
of the workpiece. Although only one workpiece has been tested and the location of the
workpiece is not altered during the experiment, by verifying tool path on different edges
of the workpiece, the robot successfully tracks the geometry, such as straight line, arc,
and spline curve. It is difficult to measure the tool angle directly from the robot.
However, the data of the tool angle is fed to the robot by the interface workcell and the
Teaching Unit could display such data all the time, which means the actual angle

coincides with the data.

100



Chapter 6

Conclusions and Recommendations for Future Work

6.1 Conclusions

An automated robotic deburring & polishing CAM software package has been
successfully developed. It allows the user to interactively specify desired edges and
surfaces, design tool posture, generate tool posture data and post-process the generated
data for the Yamaha Zeta-1 Robot. It provides an interactive designing environment built
on the most popular CAD software, AutoCAD, which eases the communication between
the user and the 3D models of workpieces. It has been demonstrated that there is a viable
approach to take advantage of AutoCAD and AutoLISP to process the solid model
representation of the geometry of a workpiece.

The main contribution of this work lies on the CAM features developed based on
AutoCAD. A solid 3D model of a workpiece is processed and reconstructed into a 3D-
wireframe model by abstracting necessary geometric information. Straight edges, circular
edges and intersection edges are then accessed and tool paths are generated for deburring
purposes. Also, tool path for plane surfaces and cylindrical surfaces could also be
generated by selecting edges that form the surface. In the procedures of tool path
generation, the user is allowed to design, determine and modify the tool path.

The simulation environment in virtual reality successfully simulates a kinematic
model of the Yamaha Zeta-1 Robot and is used to verify the generated tool path data. It is
implemented by taking advantage of the virtual reality toolbox, WorldToolKit Release 6,

which is one of the leading software packages in the field of virtual reality programming.

101



An inverse kinematic model of the robot has been derived. The model is incorporated
into the virtual robot model and enables the virtual robot to accept the robot command
data and simulate the machining. The running of the simulation demonstrate the
correctness of the derived inverse kinematics.

The experiment with the Yamaha Zeta-1 Robot has verified the generated tool
path. It demonstrated that the AutoCAD database provides a precise description of the
workpiece and the database is usable for CAM purposes. The results have been compared
to the one yielded by another approach that generates tool path for the same edges by
establishing geometrical equations and calculating all the geometrical properties for the
edges [17]. Data points selected from the two approaches used for comparison show
exact conformity. However, the advantages of the approach by this work lies on the facts
that 1) a complete description of the geometric database is presented by AutoCAD and
ACIS: 2) flexibility is provided to switch the workpieces or the geometric entities from

one to the other; 3) user interactivity presents a pleasant working platform for the users.

6.2 Recommendations for Future Work

The work demonstrated the use of AutoCAD database in Tool Path Generation.
Though AutoCAD provides a good interactive working environment, it is not a CAM
software that is used to facilitate the manufacturing processes. By using AutoLISP, this
research work starts a CAM toolbox for the purpose of tool path generation. More and
more CAM tools could then be designed, created and added into the toolbox other than
the existing ones. Also, other CAD databases could also be investigated and taken

advantage of.

102



When dealing with spline curves. the error estimating process for the tool path
generation stipulated in this thesis becomes tedious if high precision is required. The
work only provides a technical solution for the error estimation and it requires the user be
skillful in AutoCAD techniques. However, the error could be fully solved mathematically
by programming the spline equation into the tool path generation process. It will consume
a lot of computing time because a reconstruction of a 4™ order spline is needed.

Although the simulation and animation are based on the kinematics of the robot,
dynamic properties of the robot could be added and simulated in the virtual reality
environment. If the simulation is based on a dynamic model of the Yamaha Zeta-1 Robot,
the forces, torque and other robot arm reactions could then be simulated.

Collision detection is not such a significant feature in the simulation part because
the workpieces that have been dealt with are all "regular" geometries. However, this
collision detection feature provided by WTK will be more critical when machining
"irregular” surfaces or workpieces with more complicated geometry, say, free form
surfaces or sculpture surfaces. In such cases, machine tool collision with the workpiece is
usually expected in the trial run.

The data produced by this interface is formatted specifically for the Yamaha Zeta-
1 Robot. Since the tool path is also saved in absolute coordinates in the 3D space, the tool
path could also be used for NC machines by applying NC kinematics.

The highlight of this thesis is making use of AutoCAD as an interactive interface
between the engineer and mechanical drawings for manufacturing. This approach and its
potential have been demonstrated and the interface has been successfully established.

However, this CAM package is not so professional in the sense of computer science. To

103



make it more functional and even a commercial product, effort and future work should be
focused on the understanding of AutoCAD graphics. AutoCAD database, AutoLISP and
DCL programming to improve the user interface. These commercial CAD tools could
facilitate the user to design and generate machining tool path for complex surfaces and
geometry.

There are many CAD/CAM systems, such as CADKEY, Pro-Engineering. Cartia
and etc. They are powerful but expensive. However, leaming to use these software
packages could also be a great help to improve the interface of this AutoCAD-WTK

CAM package.

104



References

Gillespie L K., King RobertE., "Robotic Deburring Handbook", SME 1987

YAMAHA Zeta-1 Deburring Robot: User 's Manual, Version 1.2, YAMAHA

Corporation, Hamamatsu, January 1990

Kral Irvin H., "Numerical Control Programming in APT", Prentice-Hall 1986.

Chang, C.H., and Melkanoff, M.A,, "NC Machine Programming and Software

Design", Prentice-Hall, New Jersey, 1989

Loney, Gregory C. and Ozsoy, Tulga M., "NC machining of free from surfaces”,

Computer-Aided Design, Vol. 19, No. 2, pp- 85-90, 1987

Selleck, C.B., Loucks, C.S., "A system for Automated Edge Finishing", Proc.
1992 IEEE international Conference on Systems Engineering, Pittsburgh, pp. 423-

429, 1992

Ayyadevara, V.R., "Development of an Automated Robotic Deburring Workeell”,

Master's thesis, Department of Mechanical Engineering, Concordia University,

1996

105



10.

11.

12.

13.

Cheng, RM.H,, Rajagopalan, KR, Temple-Raston, M., "The Differential
Geometric Modeling of Compressor Blades®, Proc. American Control

Conference, Baltimore, Maryland, pp. 1913-1917, June 1994

Kruth, Jean-Pierre, Klewais, Paul, "Optimization and Dynamic Adaptation of the
Cutter Inclination during Five-Axis Milling of Sculptured Surfaces", Annals of

the CIRP Vol, 43/1, pp 443-448, 1993

Murphy, K.N., Norcross, R.J., Proctor, F.M., "CAD Directed Robotic Probing”,
Send International Symp. On Robotics and Manufacturing Research, Education,

And Application, Albuquerque, November 1988.

Kramer, B.M., Bausch, J.J,, Gott, RL,, Dombrowski, D.M., “Robotic Deburring"®,
Robotics and Computer-Integrated Manufacturing, Vol. 1, No. Y, pp- 365-374,

1984
Kramer, BM., Shim, S.S., "Development of a system for Robotic Deburring”,
Robotics and Computer-Integrated Manufacturing, Vol. 7, No. %, pp- 291-295,

1990

Stauffer, R.N., "Sensor Simplifies Changeover in Deburring Operation”, Robotics

Today, Vol. 9, No. 4, August 1987

106



14.

15.

16.

17.

18.

19.

Decamp, W.H., “Breaking the Edge", Manufacturing engineering, July 1989

Shoham, M., Srivatsan, R., “"Automation of Surface Finishing Processes”,
Robotics and Computer-Integrated Manufacturing, Vol. 9, No. 3, pp. 219-226,

1992

Jones, Frederic H. and Martin, Lloyd, "The AutoCAD Database Book, Accessing

and Managing CAD Drawing Information", Third Edition, Ventana Press, 1989

Su, Y., "Development of a User Interface for Processing Geometric Data from
Off-the-shelf CAD Packages and Motion Planning for Yamaha Zeta-1 Deburring
Robot", Master’s thesis, Department of Mechanical Engineering, Concordia

University, 1999

Koren, Yoram, "Computer Control of Manufacturing Systems”, McGraw-Hill,

Inc. 1983

RMH. Cheng, J. Li, R. Rajagopalan and H. Hong, “"Development of The
Concordia SeMAST Program — A secondary Machining Automation Software
Tool", Conference on Applications of Automation Science and Technology, 4-26

Hong Kong, November 1998

107



20.

21.

22.

23.

24.

25.

26.

27.

Head, George O., "AutoLISP In Plain English, Fifth Edition", Ventana Press, Inc.

1995

Walsh, D., Kinght, R. L., Valaski, W. R., "AutoCAD 13 Secrets”, IDG Books

Worldwide, Inc., 1996

Auto Reference Manual, Autodesk, Inc. Publication 100752-01, August 6, 1992

Mechanical Desktop Student Guide, Autodesk Inc., 1996

ACIS Geometric Modeler Format Manual, Version 2.1, 9/96, Spatial Technology

Inc., Copyright © 1996

Soen, F., Pitzer D., Fulmer, H. M., Boyce, J, McWhirter, K., Peterson, M. T,
Gesner, B. R, Beck, J., Coleman, K, Morris, A., Boersma, T., Fitzgerald, J,
"Inside AutoCAD Realease 13 for Windos and Windows NTTM", New Riders
Publishing, 1995

AutoCAD Customization Guide, Autodesk Inc., 1994

Craig, John J., "Introduction To Robotics: Mechanics and Control", Second

Edition, 1989

108



28.

29.

30.

31.

Lee, Yuan-shin and Chang, Tien-Chien, “2-Phase approach to global tool
interference avoidance in S-axis machining", Computer-Aided Design, Vol.27,

No. 10, pp. 715-729, 1995

Beier, K. P., "Virtual Reality: A Short Introduction”,  Web page at
www. vrl.engin.umich.edu/intro.html, Virtual Reality Laboratory, University of

Michigan, June S, 1999

WORLD TOOLKIT Reference Manual & Hardware Guide (Release 6), Sense 8

Corporation, 1996

Operation Manual for IDC Series 543 Digimatic Indicator, Manual No. 3041,

Mitutoyo Corporation, Tokoy, Japan

109



Appendix 1
User Interface Based on AutoCAD Platform
The following texts are inserted into the files of AutoCAD.

ACAD.MNS (in AutoCAD) or MCAD MNS (in Mechanical Desktop)

*++pPOP15S
ID Toolpath [T&oolPath]
[{4CIC Features]”~Z(load "cic.lsp")
(--1
{-> Edging Features)
ID Wireframe [Construct &Wireframe ]~C~C_cic_explode
ID_Rewireframe [Reconstruct Weireframe ]~C"C_rewire
ID cicut [Csutting Entity]~C~C_cic_cut
ID_GToolpath [->Toolpath]
{sLine] ~C~"C_cic_line
(&Arc }~C*C_cic_arc
[&Circle]“C”C_cic_circle
[<-<-&Intersection]“C“C_pic_intersec
[(—-1
[-> Polishing Features]
ID_Surface [Construct &Surface ]~C"C_am2sf; face
ID_GToolpath [->Toolpath]
{¢Plane surface] “C~C_cic_planesurf
[<-<-&Cylindrical surface]“c“c_ciq_cylsuzf
(--1
ID_TAbout [ &About...]~C~C_tabout
--1
[ &Experiment]‘c‘c_expe:iment

**CIC_Edging

ID_cictb [_Ioolbar(“Edging", _Floating, _Hide, 10, 38,
ID_cicload [_Button(“Load My Lisp", cpysktlé.bmp,
cpyskt32.bmp)]1~2Z(load "cic.1lsp™)

ID conswire [_Button(“Constzuct Wireframe", wrvall6.bmp,

wr7a132.bmp)]“C‘C_cic_gxplode

ID_reconswire [_Button("Rewire“, cicwfl6.bmp, cicwf32.bmp) ] "C C_rewire

ID_cicut [_Button(“Cutting", cicwfl6.bmp,
cicwf32.bmp)]~C"C_cic_cut
ID TBtlpth [_Flyout(“Toolpath Generation", cictpl6é.bmp,

ciEtp32.bmp, _OtherIcon, ACAD.EToolPath)]

*+*CIC Polishing

ID_cictb [_Toolbar("Polishing", _Floating, _Hide, 10,
ID_consurf (_Button("Construct Surface”, survfalé.bmp,
survfa32.bmp) ] ~C*C_am2sf; face

ID consurAll [_Button("Convert All", survallé6.bmp,
suzval32.bmp)]“C‘c_astf;_pbjects;_all;

ID_consurAll {_Button ("My surfacing", cicsfl6.bmp,
cics£32.bmp) ) ~C~C_surface;

ID_TBtlpth [_Flyout("Toolpath Generation", cictpl6.bmp,
cictp32.bmp, _OtherIcon, ACAD.PToolPath)]

110

1)]

38,

1)}



**EToolPath
*+*EDGING
ID_TbEdging
ID_tpLine

[ Toolbar("Edging Tool™, _Floating, _Hide, 10, 280, 1)]

[:Button(“Select a Line"™, cictplé.bmp,

cictp32.bmp) ]*C*C_cic_line

ID_tpArc

[_ﬁttton("Select an Arc", cicsfl6.bmp,

cics£32.bmp) ]~°C*C_cic_arc

ID tpCir

[_3utt3h("$elect a Circle", cictplé6.bmp,

ciEtp32.bmp)]“C“C_cic_circle

ID tpint

[_Button("Select an Intersection”, cictpl6.bmp,

cictp32.bmp) ]*C~C_cic_intersec

**pPToolPath
*+*POLISHING
ID_TbPolishing
1)1}
ID_planesurf

[_Ioclbar("?olishing Tool", _Floating, _Hide, 10, 280,

[_Button("Polish Plane Surface", cictpl6é.bmp,

cictp32.bmp) ]~*C~C_cic_planesurf

ID_cylsurf

[_Button("?olish Cylindrical Surface", cictplé6.bmp,

cictp32.bmp) ]~C~C_cic_cylsurt

ID_Toolpath
ID Wireframe
ID_Rewireframe
ID cicut
ID_surface
ID_GToolpath
ID_TAbout
ID_cictb
ID_conswire
ID_reconswire
ID_consuzf
ID_;onsurfALL
ID_TBtlpth
ID_TbEdging
ID_tpLine
ID_tpArc
ID_tpCir
ID_tpint

ID_cicload
ID_planesurf
ID_cylsurft
ID_TbPolishing

[(Reconstruct 3D model and find toolpath for Yamaha]
{Construct wireframe]

[Reconstruct wireframe]

[Cutting Entity]

{Reconstruct surfaces]

[Generate toolpath]

{About the toolpath generation]

[CIC Tooclbar]

[Explode command. Please Explode the solid twice.]
[Reconstructing wire]

[{Select solid objects to convert into surfaces]
[Convert all into surfaces]

[Generate toolpath]

(Find the tool path for Edging]

[Generate the tooclpath for a straight line]
[Generate the toolpath for an arc or ellipse arc]
(Generate the toolpath for a circle or an ellipse]
[Generate the toolpath for an intersection curve]

[Load cic Lisp file]

[Polishing plane surface]
[Polishing cylindrical surface]
{Find the tool path for Polishing]

ACAD.LSP (in AutoCAD) or MCAD.LSP (in Mechanical Desktop)
{setvar "cmdecho" 0)

(comand l'layerll "nl' llToolIl llcll IOSII I'T°°l“ " " )

( comnd lllayer“ Nn'l llArrowl! llcll l!lll llArrow” " )

(load "cic.lsp"”)

{PRINC)

111



Appendix 2

Modules of the CAM Package

Modules written in AutoLISP:

1. CIC.LSP: The function of this file is to load in all the developed CAM modules in
AutoCAD platform. This is file is located in the subdirectory ¢:\mcad\win. It can not be
loaded unless the following AutoLISP code is written in mcad.Isp file, which is load
automatically every time when MCAD is launched.

(load "cic.Isp")

Same as in mcad.lsp, the cic.lsp is constructed as:

(load "c:\\filter\\debug\\lisp.Isp")

(load "c:\\mcad\\win\\cic_dialog.lsp")

(load "c:\\autolisp\\mathbox.Isp")

(load "c:\\autolisp\\cic_line.lsp™)

(load "c:\autolisp\\cic_circle.lsp®)

The file listed in cic.lsp are those modules which construct the tool path generation part
of the CAM package. Each of them defines a specific command for user to call in the
MCAD platform, such as cic_line, cic_circle and etc. Once the cic.lsp is loaded in, all

those commands could be called to implement their unique tasks.

2 LISP.LSP: This is the AutoLISP file that is generated by the filter. It will re-construct
the 3D model so that the database of every line, arc, circle, intersection curve and

surfaces could be accessed. Similar reconstruction can be done by using AutoCAD

112



command “explode” and MCAD command “am2sf”. However, the resulting database can
not be conveniently accessed because of AutoCAD’s unique database structure. It may be
convenient in 3D modeling but not for our case. Hence, a C program will do the filtering

and automatically write a AutoLISP sequence to reconstruct the 3D model. This has been

detailed in the previous section.

3. MATHBOX.LSP: It consists of many subroutines for vector and matrix calculation. So
far, it has functions as follows:

(rond real_arg): function to round a real argument to the closest integer.

Example:

(rond -5.5) returns -6

(rond -5.499) returns -5

(mk_vect ptl pt2); function to generate a vector given the end points in cartesian
coordinates.

Example: (mk_vec ‘(23 4) ‘(15 7)) return (-1 2 3)

(mk_unit_vect v1): function to generate a unit vector from a given vector.

Example: (mk_unit_vect (-1 2 3) returns (-0.26726 0.53452 0.80178)

(mk_i_line ent_det): function to make the unit vector in the direction of a given line, the

input ent_det list should be formatted as "LINE" <st pt> <end pt>, the output is the unit

direction vector in WCS.

113



Example: (mk_i_line (“line” ‘(2 3 4) “(1 5 7)) retumns (-0.26726 0.53452 0.80178)

(shl v1): function to shift a list left by one, place appending the erstwhile first atom as the
last atom of the new list.

Example: (shl (2 3 4)) returns (3 4 2)

(shr v1): function to shift right by one, place with the last atom becoming the first

element.
Example: (shr <(2 3 4)) returns (4 2 3)

(x_prod v1 v2): function for vector cross products.

(rotrans pnt Xdir Ydir Zdir Origin): function to do the rotation transformation for a point
from some ucs to wcs. Arguments are: ucs coordinates pnt A (Xues, Yucs, Zucs),, UCS Uit
vector X, ¥, Z, which are (xx, yx, zx), (Xv, Yv, zy), (Xz, yz. 2z), and ucs original point P
(Xp, Yp» Zp), returning the wcs coordinates (Xucs, Ywss, Zwes),- In fact, this function is doing a

homogeneous transformation as follows,

x X, Xy X, I X x

wes ucs 4
ym = Yx Yr yZ yua + yp
zm:t zx zY ZZ zua zp

(invmat v1 v2 v3): function to inverse a 3x3 matrix, return the inversed matrix.

4. CIC_LINE.LSP: In this module, a cic_line command is defined and will be later called
in the MCAD platform. This function call enables the user to pick one of the lines in the

3D model that is to be processed and generate tool path based on user’s request.

114



5. CIC_CIRCLE.LSP: This module generates a circular tool path. The defined command
is “cic_circle’. Not only could it do the circles, it also applies to arcs. The structure of this
module is quite similar to CIC_LINE.LSP, however, since the circle or arc itself could

form a plane and the local z axis is then defined.

6. CIC_INTERSEC.LSP: Tool path generation for an intersection curve is defined here.
The command name is "cic_intersec”. This program can recognize open spline or close
spline itself. When it is dealing with close spline, AutoCAD command is used to break

the close spline curve into two open spline curve and then generate the tool path.

7. CIC_PLANE.LSP: This module generates tool path for a plane surface. Two straight
edges should be specified such that the plane is then defined within the two straight lines.
In the cases of irregular shape of plane where difficulties involved in selecting two
straight lines, users can create or build two straight lines themselves by using AutoCAD

techniques.

8. CIC_CYL.LSP: This is the module that generates tool path for cylindrical surface. The

polishing direction should be parallel to the cylinder axis and along the surface.

115



