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ABSTRACT

Critical Speeds and Unbalance Response of Cantilever-Sleeve Rotors Using

Finite Elements with Efficient Higher Order Basis Functions

Jeyaruban Selliah Amirtharajah
Concordia University, 1999

Design of industrial rotor-bearing systems requires an understanding of their
dynamic behavior, which involves the determination of their critical speeds and
unbalance response. Dynamic behavior of simple rotor systems can be studied using
analytical techniques. However, for complex rotor systems it is necessary to use
approximate techniques. The finite element method is one such approximate technique
and has been in use as a computational method for solving these problems. In most cases
finite element method requires a fine discretization of the rotor model and this leads to
setting up and solving a large number of simultaneous and coupled linear differential
equations for the unknown displacements. With such large systems the calculation
becomes very time consuming, which may not be economically feasible. The prime
objective of the present investigation is to develop an efficient and economical technique
for the determination of the critical speeds and the unbalance response of complex rotor-
bearing systems such as cantilever-sleeve rotor. The technique is based on higher order
finite elements. By using this technique the size of system equations can be significantly
reduced without affecting the dynamic characteristics of the system. The technique also
incorporates all the natural and essential boundary conditions right in the basis functions
at element formulation. Thus, this element adequately represents all the physical
situations involved in any combination of displacement, rotation, bending moment and
shearing force boundary conditions. The dynamic behavior of a cantilever-sleeve rotor
with a disk at the end is studied using such higher order finite elements. More accurate
results are obtained using a coarse mesh that has increased number of degrees of

freedom. Further no errors are introduced during post processing for stresses, strains, etc.
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CHAPTER 1

INTRODUCTION, LITERATURE REVIEW, OBJECTIVE AND SCOPE

1.1 Introduction

Rotor Dynamics is the study of the dynamic behavior of the machines and
components resulting from excitations originating from its rotating parts, and has a very
important role to play throughout the modern industrial world. Rotating machinery is
used in many applications such as in turbo-machines, power stations, machine tools,
automobiles and aerospace applications. The interaction of these machines with their
surroundings is of great importance due to the fact that if these machines are not
operating at the correct speeds, vibration can occur and may ultimately cause failure of
the machines. Many investigations in linear rotor dynamics deal with the problems of
natural, unbalance and transient vibrations.

Simple rotor systems may be analyzed using exact analytical methods. However,
complex rotor systems normally used in industries are not amenable to exact analysis. It
is necessary to follow some approximate methods to study the dynamic behavior of
complex rotor systems.

Powerful approximation methods, such as the finite element method, are available
for analyzing complex structures. In most cases, a fine discretization of the rotor model
is necessary which leads to a large set of simultaneous and coupled linear differential

equations for the unknown displacements. With such large systems the calculation is



very time consuming, which may not be economically feasible. Therefore methods are
needed which would allow a reduction and possibly a de-coupling of the equations. One
of the classical techniques used for calculating the response of non-rotating elastic
systems with symmetric and proportional damping is known as modal analysis. The idea
is to reduce a system of simultaneous and coupled ordinary differential cquétions into a
set of independent ordinary differential equations. The successful application of the
method requires the solution of an eigenvalue problem associated with the given system.
In rotor dynamics, the governing equations are non-self-adjoint as a result of the
gyroscopic effects, and the classical modal analysis fails to uncouple them. The system
matrices, when constructed in stationary (inertial) coordinates, are characterized by the
presence of skew symmetric parts due to gyroscopic effects and internal damping, and
non-symmetric terms due to journal bearing properties; this leads to non-self-adjoint
eigenvalue problems. On the other hand, when the system matrices are formed in
rotating (body fixed) coordinates, skew symmetric parts are introduced due to Coriolis
terms and external damping as well as gyroscopic effects, and there are periodic
parameters due to bearing properties; this makes the modal analysis even more difficult.
Another difficulty in modal analysis arises from the fact that the elements of system
matrices generally depend on the rotational speed. Reduction methods such as Guyan
reduction and component mode synthesis can also be used to reduce the number of

equations or to reduce the coupling between equations.



1.2 Literature Review

1.2.1 The Dynamics of Rotor-Bearing Systems

Typical analysis of rotor-dynamic systems includes the determination of the free
vibration natural frequencies, modes of whirl and the stability characteristics of these
modes. The critical speeds of a rotor system are defined as rotating assembly spin
speeds, which provide excitations that coincide with one of the system’s natural
frequencies, thereby producing a resonant condition.

Earlier work on the prediction of critical speeds of rotors was introduced by
Jeffcott [1], where the rotor system was modeled as a single mass mounted on a shaft
supported on identical bearings and the equations of motion were solved by the direct
method. The model was improved by Green [2] by introducing the gyroscopic effects on
the critical speeds of simple rotor systems. There has been an impressive progress in the
study of rotor dynamics in the past years. Current state-of-the-art methods for calculating
the natural frequencies and critical speeds are based on either a Holzer-Myklestad-Prohl
shaft model or a finite element model, both of which may be applied to quite general
shaft-disk systems.

The use of finite elements for the simulation of rotor systems makes it possible to
formulate increasingly complex problems, and the recent advances in digital computers
make the numerical solutions of large-order problems feasible. Flexible rotor-bearing
systems have been analyzed by various mathematical methods. Ruhl’s [3] contribution to

utilize a finite element model to a turbo-rotor system to study stability and unbalance



response was the precursor to many studies using finite element approach on rotor
dynamics problems. His model includes only elastic bending energy and translational
kinetic energy. In these early investigations the effects of rotary inertia, gyroscopic
moments, shear deformations, axial load, and internal damping were neglected.
Thorkildsen [4] included rotary inertia and gyroscopic moment, for the first time.

Polk [5] used a Rayleigh beam finite element in his work. Thomas and Dokumaci
[6] analyzed pre-twisted blade vibration using simple finite elements. Krishna Murty [7]
analyzed the rotating structure elements using finite element technique. Chivens and
Nelson [8] carried out studies to determine the influence of disk flexibility on the
transverse bending natural frequencies and critical speeds of a rotating shaft-disk system.

The use of finite elements for analyzing rotor-bearing systems and the basic
concepts and development of the equation of motion for a rotating finite shaft element
were presented by Nelson and McVaugh [9]. It includes the effects of rotatory inertia,
gyroscopic moments, and axial load using consistent mass matrix approach. In addition,
the element and system equations are presented in both fixed and rotating reference
frames. Zorzi and Nelson [10] used finite element modeling of rotor-bearing system to
establish the Lagrangian equations of motion in a fixed frame.

One factor that might need to be considered in the design/development stages of a
rotor system is the effect of axial torque. Krisha Murty and Sridhara Murty [11]
presented the finite element method for the natural vibration analysis of rotors with taper
and pretwist. Zorzi and Nelson [12] investigated the effect of constant axial torque on the
dynamics of rotor-bearing systems using the finite element model. The inclusion of the

axial torque gave rise to an incremental torsional stiffness matrix. The model was used to



determine the static buckling torque and the critical speeds of a uniform shaft for short
and long bearing. This paper presented a finite element model, which included axial
torque and thereby allowed for a more reliable prediction of lateral shaft dynamics. A
finite rotating shaft element using Timoshenko beam theory, which was developed by
Nelson [13] was used to find out the critical speeds and the system’s natural frequencies.
Ozguven [14] generalized the combined effects of rotary inertia, gyroscopic moment,
axial load, shear deformations and internal hysteretic and viscous damping in the same
model. Ozguven [15] developed an approximate method to find out the critical speed of
the shaft-disk system from a single degree-of-freedom model.

Most analyses utilize linear equations of motion based on amplitude motions in
the neighborhood of an equilibrium configuration. In some cases, however, the strength
of the nonlineartites is so large that linearization does not provide sufficiently accurate
simulations. In these cases, the most common approach is to integrate the nonlinear
equations of motion numerically either directly in physical coordinates or in modal
coordinates. Nelson, Meacham et al [16] analyzed this kind of problem in terms of
modal coordinates associated with some form of component mode synthesis. When the
set of differential equations is nonlinear, analytical solutions are generally not possible.
Those special cases with known closed-form solutions are usually weakly nonlinear and
of a small order. For large-order nonlinear problems, such as multi-shaft flexible rotor
systems, only a few options are available to the analyst for obtaining solution. Exact
solutions are not possible, except in very special cases, and approximate solutions can
only be obtained numerically. There are several procedures, other than numerical

integration, that have been utilized for searching for the possible response of large order



systems, and these are also briefly discussed by Padovan and Adams [17]. Although
several authors using the finite element method over the last 25 years have investigated
the effects of various factors on the dynamics of rotor-bearing systems, there is no
published work that could incorporate all the boundary conditions.

The other common approach for analyzing the dynamics of rotor-bearing systems
is called the state vector transfer matrix method or simply the transfer matrix method.
This method is particularly well suited for “chainlike” structures such as large-order
multi-shaft rotor systems. The first use of this method is usually attributed to Holzer in
the area of torsional vibrations. Subsequent contributors to such formulation are
Myklestad, (18] and Prohl [19] who adapted the procedure to lateral vibrations of beams
and rotor systems. Prohl extended the direct method and presented the first calculation of
synchronous whirling of complex shafts consisting of variable shaft sections with
multiple disks. Prohl’s method is still considered as one of the best in the general class of
transfer matrix method and also one of the most practical and widely used solution
schemes for today’s complex rotor-bearing systems. Lund [20] has presented procedures
for the use of this method for almost all aspects of rotor dynamic analysis. Kikuchi [21]
solved a multi disk rotor system using the transfer matrix method. Most recently Rao
[22] analyzed the rotor systems using time marching transfer matrix technique. Other
refinements have made this a reliable and widely used analytical procedure for engine
manufacturers and rotor dynamics experts throughout the world. Murphy and Vance [23]
have shown that by rearranging the calculations performed in the transfer matrix method
that it is possible to calculate the coefficients of the characteristic polynomial directly.

Another most widely used method by several investigators to study the behavior



of rotor-bearing systems is the experimental modal analysis. In experimental modal
analysis the modal properties of the system such as mass, stiffness and damping are
determined experimentally, which are used to obtain the dynamic characteristics of the
rotor. Gunter, Choy and Allaire [24] used the planar modes of the rotor system without
the effects of disk gyroscopics, damping of rotor and cross-coupled bearing properties.
Berthier, Ferraris and Lalanne [25] have studied the behavior of rotor systems using finite
element model employing modes of the rotor at rest. Glasgow and Nelson [26] presented
the so-called modal component mode method in conjunction with complex model
analysis. Bhat [27] developed the complex modal analysis technique for simple rotor
systems supported on fluid film bearings with the absence of physical damping. All
modal reduction techniques reduce the size of system matrices. Round-off errors
associated with extensive system mass and stiffness matrix reductions are very high in

these operations.

1.2.2 Higher Derivatives as Nodal Degrees of Freedom

In 1744 Euler obtained a differential equation for the lateral vibration of bars and
determined the functions known now as normal functions and the equation we now call
the frequency equation for beams with free, clamped, or simply supported ends.

The first systematic treatise on vibration was written by Lord Rayleigh [28]. He
formalized the idea of normal functions, as introduced by Daniel Bernoulli and Clebsch,
and introduced the ideas of generalized forces and generalized coordinates. He further

introduced systematically the concepts of energy and approximate methods in vibration



analysis, without solving differential equations. Rayleigh improved the classical theory
by allowing for the effects of rotary inertia of the cross-sections of the beam.
Timoshenko [29] extended the theory to include the effects of shear deformation. The
resulting equations are known as the Timoshenko beam equations.

Prescott [30] and Volterra [31] suggested, by independent reasoning, various
Timoshenko-type beam models. Solutions of Timoshenko equations for a cantilever
beam of rectangular cross section have been given by Sutherland and Goodman [32] and
also by Huang [33]. Anderson [34] and Dolph [35] gave a general solution and complete
analysis of a simply supported uniform beam. Huang [33] gave frequency equations and
normal modes of vibration for various cases of a beam using homogeneous boundary
conditions. Ritz and Galerkin methods were used by Huang [36] to obtain frequencies of
simply supported beams. The finite difference method was used by Thomas [37] to
obtain frequencies of vibration of uniform, tapered and pretwisted Timoshenko beams
with fixed-free end conditions.

A number of finite element models have been presented for the analysis of Euler-
Bernoulli and Timoshenko beams by various investigators. Many of them experienced
difficulties in incorporating all the boundary conditions. Although some authors claimed
that their finite element model was designed to incorporate all the boundary conditions,
none of them so far have been able to apply them in practice. The various possible true
boundary conditions are as follows: (a) free end--zero bending moment and zero shear
force; (b) hinged end—zero total deflection and zero bending moment; (c) fixed end—
zero total deflection and zero bending slope. The conditions of deflection and slope are

caused by restraints or external forces applied and can be referred to as forced boundary



(or displacement or geometric) conditions while the others can be referred to as the
natural boundary (or force) conditions.

MeCalley [38] derived consistent mass and stiffness matrices by selecting total
deflection, w, and total slope dw/dx, as nodal co-ordinates. Archer [39] used these
matrices to obtain frequencies of a cantilevered Timoshenko beam, using the boundary
conditions at the fixed end to be w = dw/dx = 0. The condition dw/dx = O at this end is
not valid as only bending slope is zero and not that due to shear deflection. Boundary
conditions at the free end were not and could not be applied in this model.

Kapur [40] improved on this model by taking bending deflection, shear
deflection, bending slope and shear slope as the nodal co-ordinates, and derived the
stiffness and mass matrices. Frequency parameters also were obtained for cantilevered
and simply supported beams. The true boundary conditions were applied only at the
fixed end. At the free end the shear force is assumed to be zero but the condition of zero
bending moment could not be imposed. For the hinged end the bending deflection and
shear deflection were assumed zero but again the zero bending moment condition could
not be applied. Although it is an improvement over Archer’s [39] model it still lacked the
facility of applying the true boundary condition in all the cases.

Carnegie, Thomas and Dokumaci [41] presented an internal node element
considering the total deflection and bending slope as the co-ordinates at the two terminal
nodes and two internal nodes, thus giving eight degrees of freedom element. This,
however, lacked the facility to impose the natural boundary conditions at the free end.
Egle [42] presented an approximate Timoshenko beam theory designed to eliminate the

coupling between shear deformation and rotary inertia. He postulated a constraint,



consistent with Euler—Bernoulli theory, that the shear force be given by the first
derivative of bending moment. This constraint implies that this theory is valid only when
shear deformation is negligible in comparison to the bending deformation.

Nickel and Secor [43] derived stiffness and mass matrices for what they called
TIM7 element, using total deflection, total slope and bending slope as the nodal co-
ordinates and the bending slope at mid point, giving rise to matrices of order seven. The
boundary conditions used for a cantilever beam were the same as Kapur’s [40], and thus
again the zero bending moment condition at the free end was missing. Nickel and Secor
[43] further reduced the order of the matrix from seven to four by using the constraint
postulated by Egle [42]. This element was referred to as TIM 4. The natural boundary
conditions at the free end could not be applied to this element.

Davis, Henshell and Warburton [44] used an element model similar to TIM 4 with
the same approximation and constraint postulated by Egle [42]. The stiffness matrix was
obtained from the static equilibrium condition based on a cubic polynomial for total
deflection. This has the same limitations as TIM 4 model in that the natural boundary
conditions at the free end or hinged end could not be applied. Thomas and Abbas [45]
developed an element model with total deflection, slope, bending slope and the first
derivative of bending slope as nodal co-ordinates. This model is capable of incorporating
all the forced and natural boundary conditions associated with various end conditions.
Then again this model is proven for dynamic analysis of Timoshenko beam element only.

The development of higher order tapered beam element was carried out to study
the axial vibration of a bar by Yang and Sun [46], transverse impact problems by Sun and

Huang [47] and vibration analysis of uniform beams by Fried [48]. They all claim that
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improved accuracy can be obtained more efficiently with an increase in the number of
degrees of freedom in the element.

To [49] had developed expressions for mass and stiffness matrices of two higher
order tapered beam elements for vibration analysis. In his paper, the element properties
(namely, the mass and stiffness matrices) of a beam finite element are presented in which
a seventh degree polynomial displacement function is used. Representing four degrees of
freedom per node (the transverse displacement w, the slope w/x, the curvature Fw/d’,
and the gradient of curvature Fw/ax’) are derived and the explicit expressions for the
mass and stiffness matrices are given. These element properties are subsequently used
for the vibration analysis of mast antenna structures individually treated as a tapered
cantilever beam with a mass, incorporating rotary inertia, attached to its free end. Hou,
Tseng and Ling [50] developed a new finite element model of a Timoshenko beam to
analyze the free vibration of uniform beams. An important characteristic of the model is
that the natural boundary conditions are included in the element formulation. Houmat
{51] presented a 2-node Timoshenko beam finite element with variable degrees of
freedom. Comparisons are made with exact Timoshenko beam finite element solution.
Comparison shows that using one or two variable order Timoshenko beam element with a
few trigonometric terms yields better accuracy with fewer system degrees of freedom
than using many polynomials.

A number of Timoshenko beam finite elements in which only polynomial terms
are used to describe the element degree of freedom are available in the literature. Dawe
[52] presented a new Timoshenko beam finite element and reviewed the other existing

elements. Dawe [52] suggested that an increase in efficiency would result if finite
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element of order higher than those used in previous Timoshenko beam models were
utilized. Many authors have shown the desirability of using higher order finite element
for vibration problems. Quintic displacement function was first considered by Handa
[53]. Thomas and Dokumaci [54] have shown that the higher order finite element yield
improved results for the vibration of tapered beams. In their work two improved tapered
elements for vibration analysis were derived using quintic polynomial displacement
function. Results are compared with those given by the basic cubic polynomial
approximation and analytical solutions for various end conditions. Pestel [55] on the
other hand, studied the effect of imposing nodal continuity of successively higher
derivatives of deflection and noted that such family of elements can be formulated simply
by the use of Hermitian polynomials of orders higher than the fourth. The fourth order
Hermitian leads to the basic elements.

Cook, Malkus and Plesha [56] have mentioned that for achieving the minimally
acceptable degree of inter-element compatibility, it is necessary to define “essential”
degrees of freedom (d.o.f) as the particular nodal d.o.f. More details about essential
nodal d.o.f are discussed in chapter 3: for example, u; and v; for bars and plane elements,
w; and ; for beam elements. We define a “higher derivative” as one that is not needed to
define inter-element compatibility. Thus, in the axial deformation of a bar or in plane
stress, all derivatives of u and v would be considered “higher.” In bending of a beam or a
thin plate, higher derivatives are second and higher order derivatives of lateral
displacement, which are the force and moment. The author further says that those
elements with higher-derivative d.o.f. have certain advantages. They are based on fields

having many generalized coordinates, and hence they provide good accuracy in a coarse
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mesh. However, elements having higher-derivative d.o.f are sometimes awkward to use.
At an elastic-plastic boundary, or where there is an abrupt change in stiffness or material
properties, continuity of higher derivatives d.o.f. must not be enforced. For example, if
two beam elements of different stiffnesses are joined, they have the same moment but
different curvatures at the node they share. A maneuver appropriate to such a situation is
to release the curvature d.o.f in one of the elements before assembly. But by doing so,
we reduce the benefit of these d.o.f where it is most needed-near a high-stress gradient.

To seek for a more accurate solution Akin [57] and Reddy [58] have developed a
fifth order Hermite polynomial. The Hermite family includes members with additional
derivatives at the two ends. This has three variables per node: deflection, rotation and
moment. For a two node finite element, the equation of deflection, the shape function
(C?) and the element stiffness matrices are given. A comparison of result is presented.
Also the author had developed the Hermitian interpolation in unit coordinates for a 7-th
order polynomial (C%). In the work by Reddy [58] it is said that, if higher order (higher
than cubic) approximation of w is desired, one must identify additional dependent
(primary) unknowns at each of the two nodes. In addition to that we must note that the
cubic polynomial that interpolates w at four nodal points (two internal and two end
nodes) of the element in not admissible, although the continuity condition are met,
because the polynomial does not satisfy the second set of end conditions.

Shames and Dym [59] have gone one step further and given a common form to
develop C' or higher connectivity between elements for a one-dimensional element.
They suggest further that one may use the Hermite polynomial element, where w(x) as

well as derivatives dw/dx, dw/d’x,...d w/dx at the nodes can be considered as degrees of
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freedom, and not just the field variable as was the case of Lagrange interpolation
functions. First consider a linear element with ends 1 and 2 of length r. The field
variable w and its derivations up to (m-1) are to be degrees of freedom at the ends of the

element. Then

(L.1)

where the N’s are the Hermite polynomials. To construct the proper interpolation
function, they use a polynomial representation for each N; of order 2m-1 and having 2m

constants. That is, using normalized coordinates s =x/r, we have

N, =(C) +(C.)s+(C)s" + ot (Cp ) 5™ (12)

1.3 Objectives of the Thesis

The objectives of the present investigation is primarily to develop an efficient and
economical method to obtain the critical speeds and the unbalance response of a
cantilever-sleeve rotors using higher order finite elements. By using this technique the
size of the system equations of such complex rotor can be reduced without affecting the
dynamic characteristics of the system and allow the use of all the natural and essential
boundary conditions right in the basis functions at the time of element formulation.

This thesis presents a finite element model with nodal degrees of freedom that can
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