Towards First-Order Symbolic Trajectory
Evaluation using MDGs

Donglin Li

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

April 2006

© Donglin Li, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14270-7
Our file Notre référence
ISBN: 0-494-14270-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Towards First-Order Symbolic Trajectory Evaluation using

MDGs

Donglin Li

SoC design becomes more complex with the increasing amount of different kinds of IPs
on the chip. How to ensure correctness of functionality in an SoC chip is one of the
biggest challenges in SoC designs. Traditional BDD-based symbolic model checking
techniques are an attractive subset of formal verification methods because of their high
automation and little requirement for human effort to guide the proof process, whereas
they usually suffer from the state explosion problem. Symbolic Trajectory Evaluation
(STE) technique and MDG-based model checking technique improve the traditional
BDD-based symbolic model checking approaches in two different ways. In this thesis, we
investigate the possibility of combining STE and MDGs, for each of which we study the
underlying theory and methodology, discuss the verification tool, and provide a detailed
case study. The main purpose of these two case studies is to obtain an in-depth
understanding of the underlying theories and methodologies of these two model checking
techniques, which may facilitate the achievement of their combination. Two attempts to
combine the STE with the MDG are discussed: one in the STE verification environment
and the other in the MDG tools. We focus on the second attempt and propose a hybrid

approach of First-Order Symbolic Trajectory Evaluation using MDGs, which can not

il

only increase the scale of circuits verified using STE but also improve the performance of
STE by raising the level of abstraction. This study may also provide direction for further

research in the application of MDGs.

iv

To my family

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to my supervisor Dr.
Otmane Ait Mohamed for providing me the opportunity to work in this challenging but
exciting field and to be part of his research group, for his expert guidance, and for his
support and encouragement throughout my research and thesis process.

Thanks must also go to Dr. Sofiéne Tahar, who put great efforts to provide a truly
wonderful research environment. I benefited a lot from his inspiring lectures as well.

I also owe a debt of gratitude to all the members of the HVG group. They were
always friendly, supportive and encouraging to me. We really had a large group and it is
almost impossible to name them all. Special thanks to Haja and Nasser for their valuable
comments on the thesis.

I would especially like to thank Fariborz, his wonderful wife and lovely daughter.
They were like family to me, who brought me happiness and helped me out whenever I
was in difficulties.

Finally, acknowledgement and thanks to my parents and sister. I appreciate your

love, support and understanding.

vi

TABLE OF CONTENTS

LIST OF FIGURES X
LIST OF TABLES X11
LIST OF ACRONYMS XIII
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND.cotttiettteesirtrireenirneesssreessinresessssssessiosnssasseessonssssnsseseesarssesssasessssaseessssasaresssssansssanes 4
D11 MOAEl CRECKING ..ottt et en e e ah ettt st 4

1.2 BDDIS oottt e et et et ae e era e e e are e ae s eree s araasaaeeentaeenbes 8

1.1.3 Symbolic Model CRECKINGoocoeeeioniiiiiiiiitcirnct ittt et 9

J. 14 MDGS oooooiiiiiioiieec ettt e ettt e e e e e et a e tate e st e e e e ebaeeabsas e e e nreaaeaanrtaeeeen 10

1.2 THESIS CONTRIBUTIONSuvviiiivietvriereeeisresireesssrerasessssssesioseasssssssssesssssesssesessssessssssssssesssessnses 12
1.3 SCOPE OF THESIS ..vviiiiiittveureireieeisiasisrereeesssiisssessssssressssssssesesssessastessssesessssinssssnsssossessessnnssrssseeneeses 12
CHAPTER 2 SYMBOLIC TRAJECTORY EVALUATION 14
2.1 J 27N (0 R USRUPUPPRSPORPRIR 14
2.1.1 J 07711 772U PP PPURPR 15

2.1.2 Symbolic SIMUIGION.............ccoooveriiiiieeieieicet ittt ettt nee sttt st 18

2.2 IMIODELING ...vtvteiiuvttistarteeisirteeessaetssesssessesssessasssretessnsssessssssesssessssssessesisssssessussessassesessrssessesssnsssees 24
2.3 SPECIFICATION LANGUAGEuciiiiiieiritereesiiirereeerirnteeniaeesinsesissseeessrnssessanseesssnssessrsssensssssssaearanss 27
2.4 VERIFICATION METHODOLOGYcoivereiiereereeinisnreseisisesessresisssesessiseessesssesssssessssssosesssasssssessassasees 29
2.5 SYMBOLIC FORMULATIONooviiiiiiveeeiiireeeeriarreeessinineesisseriossesmsneessasessesissressssssssossnsssnnesssssnessnnes 32
2.6 TLLUSTRATIVE EXAMPLE.......cotirtiiiiirereinireersesisrrreesiniressisreesessnessassnssssereseesesseseesaseesesssssassessssennees 36
2.7 STE BASED VERIFICATION TOOL AND FL LANGUAGEccooiiviviieeeiinicinnieneee e ennnnnnenrnnneeeeseen s 40
2.8 SUMMARY L.tviitiiteiieiteeeiiressieteresssareessetseesssesnresessanssstssssasansateasssseessssneessnsssessssssesssesssnenseesasecnssss 43
CHAPTER 3 VERIFYING LOOK-ASIDE INTERFACE USING STE 44

vil

3.1 LA-1 INTERFACE SPECIFICATIONSeieiiiutereiiinreieiiresesisesssesssessissesosssssecssseseisenesnssssisesssonsnssrases 44

311 SIGRAI DESCEIPHIONSoo.oovvieieeieeee ettt sttt en et 45
3.1.2 Port Operation SPECIfICALIONS.ccoeeveveimiieiccrrcetee et e s ea s 45
32 RELATED WORKcoiimiiirrinerieintees ettt et esiesatsr s s e csas st seesenssesnesnensssssssssesesamsnssssssnns 47
33 VERIFYING AHMED’S LA-1 RTL DESIGN USING STE.......ccceoiiiiiiniiiciiieiin e 48
3.3.1 DIBSIGR..c.ooeeieee et bt st sb s i bttt n et e et e 48
3.3. 2 Ve IICAUON ..ottt sttt et ettt r et 50
3.3.3 EXperimental RESUILSccccooooviiiiciiiiiineeee et st 53
34 VERIFYING MODIFIED LA-1 RTL DESIGN USING STE ..ot s 55
341 MOGIfICALIONSccc.coveeveiiiiiieiieiee ettt et te sttt a e s e st e areereaseatastesaestesesressesre e s b nre e 55
342 MOIfled DESIGRccccveveeieeeieeee et ettt e e et 57
3.3 Ve IfICALONcooeeieiveciiieiee ettt ettt b ettt vt st a et e et st s re e satsebesbese e b b ee 60
344 EXPerimental RESUILScovecooveoeiieeeceeseeeee et s st 6!
35 SUMMARY ...ttt st bbb b s sh s bbb bbb bbbt bbb 62
CHAPTER 4 MDG-BASED MODEL CHECKING 63
4.1 MANY-SORTED FIRST-ORDER LOGIC.......ccconviiinmiininniiininiiics et s s esrsssanssnessneens 63
4.2 MULTIWAY DECISION GRAPHScoutiiriieiienriiiinienrcartsrisiesie st sttt et snesssnsssnssnssns s s 66
43 IMODELINGvvvtiuievreiessessecennieeressnenesssestenes sresnesssessessessessesnssreansssassnessessessessessanssntnnssnessesssssnesnanas 67
44 SPECIFICATION LANGUAGEcccrieniiririnie it sb bbb st bbb et s 68
4.5 VERIFICATION METHODOLOGY ...oeutnuteriiressrtnie sttt seesnesnsanesnsesnessessessesssnssssnnssusssesenssressessns 70
4.5.1 Reachability Analysis in MDG-based Model CRecking..............cooovoviiavvovnvoiioeinesieircnas 70
4.5.2 Model Checking of Lypg PrOPEFHESc.cocccnmimiriicniricrieieniot it 73
4.6 MDG-BASED VERIFICATION TOOLS........ccccoriiiriiinimiinintirenencin s sresnesns s sne s 73
4.7 SUMMARYocvvsectrveeeeetetereasesssesessetesenesbe st ssesesseseseessebeseneseseseseseatattassenesenseseseresssesssunseneasens 75
CHAPTER 5 VERIFYING LOOK-ASIDE INTERFACE USING MDGS 76
5.1 MAPPING STE ASSERTIONS TO Lypg PROPERTIESccoviivuiiiiiiinnniniienininnieeniensss e sncenes e 76
52 VERIFYING MODIFIED LA-1 RTL DESIGN USING MDGS.........ccoioiririnininninis s 80

viii

5201 MOEIING. ...ttt e bttt e 80

5.2.2 PFOPE@FHES ..ottt et ettt et et et er e ettt srens 83

5.2.3 EXPerimentQl RESUILScccooeveiieiiieie ettt sttt st ettt beb e e e ane 84

53 SUMMARY ..vvtiiiiitreiesiersiiissteenreeeessresssrenisssseeesisessseessreesrsnsenssassessssssessissseesssssessissssssssesssessnsssrens 85
CHAPTER 6 FIRST-ORDER SYMBOLIC TRAJECTORY EVALUATION USING MDGS.......... 86
6.1 PURPOSEvviiiiviecrtcctes e s itie et s seree st aae e e sntsaestaesebe s esasenses s saeasesaesaressbesarbsansbessssarssesssssassarsasssnenas 86
6.2 IMPLEMENTING THE COMBINATION IN FORTEcovviivrriiieiieieierieeiteee e esivtevaessanesenssssesseaseessane s 87
6.3 IMPLEMENTING THE COMBINATION IN THE MDG TOOLS.....cccceeiiirrivrree s eeer e sercen e e 90
6.3.1 LOZIC EXIERSIONcovveiiieiiriiiiisie e sttt sstas s ssse sttt et ebe et ess e sa e nenenesne s 90

6.3.2 Implementation 0f STE MOAEIINGcocvvviiiieeiesrieciininneieecites ettt 91

6.3.3 Implementation Of STE ASSEFHONSccoooovioreiieeeciiie et 94

6.3.4 Implementation of STE Verification Methodologyccccoveveimiacennoininecreenecneens 96

6.4 TLLUSTRATIVE EXAMPLE....cviiiiiiitieiesirienreeeeiereesiessreesinssers ansessesssesssnneressnsssessssnsssssesessisesssssneens 99
6.5 SUMMARY ...t cvvecvveetiecieettestearaeesteeresssaesereassaesssssbeassesssesnassaraseessessesssssssenssasseessnssesasssssensensasssees 102
CHAPTER 7 CONCLUSION AND FUTURE WORK 103
REFERENCES ..106

X

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

FIGURE 8.

FIGURE 9.

FIGURE 10.

FIGURE 11.

FIGURE 12.

FIGURE 13.

FIGURE 14.

FIGURE 15.

FIGURE 16.

FIGURE 17.

FIGURE 18.

FIGURE 19.

FIGURE 20.

FIGURE 21.

FIGURE 22.

FIGURE 23.

FIGURE 24.

FIGURE 25.

LIST OF FIGURES

MODEL CHECKING PROCESS0eutittiutrtenrisreesseriersessosemeessessesssssessanessssssessssassresmesessssssssensssensenes 4
BDD AND TRUE TABLE FOR FUNCTION F(A, B, C, D) = (AAB)V(CAD) ..covcvveeiieririeeeeree e 9
FROM BDDS TO MIDIGS....viiiiiiiiesieiestreeies e seeesiesis e e s e eresseasssasnansteeesanesnsnnsessesseansans 11
LATTICE STRUCTURE FOR THE POWER SET OF {A,B,C}.ccccervrrirrirniinrenrereesesmeenessensessesessenses 17
SIMULATOR FOR A 5-INPUT OR GATE .vveetevertiiiirieseniensesiesiesnsenssessesseesesneressassessessesseseessnsens 19
SYMBOLIC SIMULATOR FOR A S-INPUT OR GATE......ovtieeenieenienirerienrieniessresnresnesieeressresseonsenes 20
TRUE TABLES OF BOOLEAN OPERATIONS AND THE TERNARY EXTENSIONS.......cccoverervirererunnens 21
TERNARY SIMULATOR MODEL FOR A 5-INPUT OR GATE........ccccviiiirinrnriineesenireeesivesiesnenens 21
TERNARY SYMBOLIC SIMULATOR FOR A 5-INPUT OR GATE.....cccecivvrinrerieieneesisressnenneserecseenienns 23
SYMBOLIC TENARY SIMULATOR FOR A 5-INPUT OR GATE ...ccccoeviiierineireeee e cenesiieniesneacen 24
PARTIAL ORDERS OVER {0, 1, X} AND {0, 1, X}2 ..o seestensessesns e seennenns 25

HASSE DIAGRAMS OF COMPLETE LATTICES ({0, 1, X} U {T}, <) AND ({0, 1, X}? U {T},9)...26

DIAGRAM FOR A VERILOG MODEL OF A SEQUENTIAL CIRCUITccevuiieereereesernensessesressessensens 36
VERIFICATION USING FORTEoeiiiiiiiiieiiiiee ittt s e ten e st e st eseiesbeeesveeeneeenmenanne 41
LA-1 INTERFACE BUSES0eitteeuiiiecnerereeeresseressesenistrosassieessessssssasssesnsesssessesseessessssesssasnsnsesens 45
LA-1 PORT OPERATION TIMING DIAGRAM ..ccootivriiiireieieenieenmreinscieeseseesirnensesaesiesensesnnescesseenes 46
ARCHTECTURE OF AHMED’S LA-1 RTL DESIGNcccoiiiiiiiiniieniieeniceis e sinees e seee e 47
TIMING DIAGRAM FOR THE LA-1 INTERFACE WRITE PORTcccccoivriiieniiicniiiiene e 48
TIMING DIAGRAM FOR THE LA-1 INTERFACE READ PORT......ccccioiiiiinienicinicicencrecneecnenieens 49
TIMING DIAGRAM FOR THE LA-1 INTERFACE MEMORYccceeivmiiiirinnreceenerenerernesineseesensaens 49
MEMORY USAGE FOR AHMED’S LA-1 RTL DESIGN VERIFICATION USING STEc...c........ 54
MODIFIED LA-1 RTL DESIGN.....citioieiuriirrenieeniiieneentessneesicssescnssseensesinnonseseesaneessessnessessmenas 57
TIMING DIAGRM FOR WRITE PORT CONTROLLERcvevtiiieeienteinrieeeesreseesiernensensesieensesansees 58
TIMING DIAGRAM FOR READ PORT CONTROLLERoovttiitieirenicretieneeieenneesemsiessssesmeessesnresees 58
VIRTEX DLL BLOCK DIAGRAM ...cooiviiiieeiiieienieesicrnnesnneeseteessinesnsaasneesseneesenssaaseesasnsenseesones 59

FIGURE 26.

FIGURE 27.

FIGURE 28.

FIGURE 29.

FIGURE 30.

FIGURE 31.

FIGURE 32.

FIGURE 33.

REACHABILITY ANALYSIS ALGORITHM IN MDG-BASED MODEL CHECKINGcccovveriervereneee. 71
MDG-HDL MODEL FOR THE WRITE PORT OF THE MODIFIED LA-1 RTL DESIGNc0ccvune 81
MDG-HDL MODEL FOR THE READ PORT OF THE MODIFIED LA-1 RTL DESIGN........ccccveeins 82
MUDDY IN MOSCOW ML SYSTEM ..cociiiiiiiiirnicnnnriesesieeneeresiesieenesiesaeestestsenssesssesessessessesnes 89
PARTIAL ORDERS OVER {g,a,, X} AND {q q, X}-{b,by,by, X} -vereveeersenneescmssmmsininsisiisininns 92

COMPLETE LATTICES ({g,,a,, X}U{T}, <pae) AND ({ay,a,, X} {b),b,,b,, X} U {T}, Spgg) 93

MDG_STE ALGORITHM IN THE MDG-STE ENGINE.........eceitiiriirieicvciinirenrcnesnercsns e 98

DIAGRAM FOR A MDG-HDL MODEL OF A SEQUENTIAL CIRCUIT ...ccovviurevevivreeinreeserneeiineesans 100

xi

TABLEIL

TABLEIL

TABLEIIL

TABLEIV.

TABLEV.

TABLE VL.

LIST OF TABLES

DEFINING SYMBOLIC TRAJECTORY OF THE ANTECEDENT ...eccvviureeierreeinrieneeieeseanseeesnsseeneennes 39
SYMBOLIC DEFINING SEQUENCE OF THE CONSEQUENT AND COMPARISONcovvvvreerereeeennens 39
STATISTICS FOR AHMED’S LA-1 RTL DESIGN VERIFICATION USING STEcccoveirinreriienns 53
VERIFICATION STATISTICS FOR THE LG PROPERTIESc.c.veiviveeriiveriereeesteesieteseesnsessesessesnens 85
SYMBOLIC DEFINING TRAJECTORY OF THE ANTECEDENT........cccvivreiereeieeecineseescreensenseenienne 101
SYMBOLIC DEFINING SEQUENCE OF THE CONSEQUENT AND COMPARISONccovvvvevereennenees 101

X1l

ABV
AP
ASM
BDDs
CAM
CTL
DAG
DF
DLL
LA-1
LTL
MDGs
ML
NPU
PSL
QDR
SML
SoC

STE

LIST OF ACRONYMS

Assertion-Based Verification
Atomic Proposition

Abstract State Machine
Binary Decision Diagrams
Content Addressable Memory
Computation Tree Logic
Directed Acyclic Graph
Directed Formula
Delay-Locked Loop
Look-Aside Interface

Linear Temporal Logic
Multiway Decision Graphs
Meta Language

Network Processing Unit
Property Specification Language
Quad Data Rate

Standard Meta Language
System-on-Chip

Symbolic Trajectory Evaluation

Xiii

Chapter 1

Introduction

System-on-Chip (SoC) design becomes more complex with the increasing amount of
different kinds of IPs on the chip. How to ensure correctness of functionality in an SoC
chip is one of the biggest challenges in SoC designs. Any SoC verification plan must
cover the verification of the individual cores as well as that of the whole chip. The better
knowledge of the external interfaces of each IP and their interactions with the SoC, the
more complete the SoC verification will be. That is why people are putting more and
more focus on the verification of different interfaces for SoC design. As for the SoC
verification methods, basically there are no new relevant techniques which are different
from what we have applied to the ASIC verification but just some adapted
methodologies, like assertion based verification, theorem proving, model checking, etc.
In this thesis, we are interested in two model checking techniques: Symbolic Trajectory
Evaluation (STE) and model checking based on Multiway Decision Graphs (MDGs).
Model checking is a formal method for automatically verifying correctness of finite
state transition systems, which has been studied since early 1980°s and several important
results of which have been established [18] [8]. These early model checking techniques
were attractive because of their high automation and little requirement for human effort
to guide the proof process, whereas they usually suffer from the state explosion problem

and the size of the transition systems that could be verified were very limited. The

introduction of Bryant’s Binary Decision Diagrams (BDD’s) [20] into the original model
checking algorithms led to a breakthrough in the size of transition systems that could be
handled. A number of researchers have explored this BDD-based symbolic technique in
the field of model checking and have published results of separate studies
[17][24][13][14]. These symbolic model checking techniques provided exhaustive
verification of a system by implicitly representing a state space through the use of a
symbolic representation [12], and could deal with larger designs than traditional model
checking techniques. However these BDD-based techniques were still not powerful
enough for many real systems, when their models were larger than 100000 states [25],
due to the state explosion problem.

Two model checking approaches: Symbolic Trajectory Evaluation and MDG-based
model checking have been proposed to improve the traditional BDD-based symbolic
model checking approaches.

Symbolic Trajectory Evaluation is a symbolic simulation based bounded model
checking approach devised by Bryant and Seger [23]. By complementing the exhaustive
analytical capabilities of symbolic model checking with the circuit
modeling/manipulation methods of symbolic quaternary simulation, which gives STE the
desirable property that the number of variables needed for the BDD’s in an STE run
depends only on the assertion being checked, not on the size of the circuit, STE
effectively overcomes the state explosion problem and can verify much larger circuits,
although it has its own limitation on the kind of properties it can handle. It’s widely used

at Intel, Compaq, IBM, and Motorola. At Motorola, it has been used to verify several

memory units, some with millions of transistors [22]. Also in [16] [42] STE has been
used to verify CAMs (Content Addressable Memories) and PowerPC microprocessors.

The MDG-based model checking approach was proposed by Corella et al. in 1997
[10]. An MDG is an extended BDD-like data structure with arbitrary number of children
for each node and with much more powerful labeling capability for both the nodes and
the edges. BDDs can be viewed as a special case of MDGs. In this MDG-based approach,
data signals are denoted by abstract variables instead of Boolean variables, and data
operators are represented by uninterpreted or partially interpreted function symbols
instead of Boolean functions. Thus, the verification based on abstract implicit state
enumeration can be carried out independently of data path width, which therefore can
effectively alleviate the state explosion problem.

The Symbolic Trajectory Evaluation technique and MDG-based model checking
technique improve the traditional BDD-based symbolic model checking approaches in
two different ways: the first one can dramatically reduce the computations for the next
state space and enhance the computational efficiency, while the latter one can simplify
the data path operations and thus can effectively alleviate the state explosion problem.
This observation led to the idea of combining these two techniques, which makes it
possible for us to take the advantages of both of them. The basic idea of such a
combination is to replace the use of the BDDs with the MDGs for the encoding of the
symbolic expressions and to implement the STE algorithm at a higher level of abstraction
which can further alleviate the state explosion problem in STE. This combined approach

will be discussed in detail in a later chapter of this thesis.

1.1 Background

1.1.1 Model Checking

!
System model Yes!
T Model Checker
(Does M E y?)
o gw WO ;ng
Desired . No! +
specification i “counterexample”

Figure 1. Model checking process

Typically a model checking process involves three major aspects: system modeling, a
specification language and a model checking algorithm, shown in Figure 1.

The first step in model checking a design is to develop a formal model, usually
expressed as a finite state transition system, for the circuits under study. The desired
specifications of the design (properties) are captured by a specification language based on
temporal logic. A model-checking tool accepts the system model and specifications. By
exhaustively exploring the state space of the state transition system, the tool then returns
“yes” if the given model satisfies the given specifications and “no” with a

counterexample otherwise. The counterexample demonstrates how the error occurs. The

termination of model checking is guaranteed by the finiteness of the model.

1.1.1.1 Modeling

A finite state transition system can be described as a Kripke structure: M = (S, SI, T, L),

where

s S: afinite set of states,

o ST C §: the set of initial states,
e T C S§x§:atransition relation with Vs € §(3 5' € S((s.5") €),

e L: S — 2" a labeling function, associating each state with a set of atomic

propositions (APs).

Note that every state must have a successor in 7, which means that it is always
possible to have an infinite sequence of states in the Kripke structure.

A path is an infinite sequence of states such that each state is related to its successor
by the transition relation.

Atomic propositions represent the basic properties that hold in the associated states.
1.1.1.2 Specification Languages

The properties of a design are expressed as temporal logic formulas [2][15]. Temporal
logic is a kind of logic which views time as a sequence of states. Linear Temporal Logic
(LTL) and Computation Tree Logic (CTL) or branching time logic are two most
commonly used temporal logics in the context of model checking. LTL expresses
temporal properties over a linear execution sequence, i.e. a single sequence of states, of
the state transition system. CTL, on the other hand, can express properties across several

different sequences of states simultaneously.

Temporal logics use atomic propositions as their building blocks and combines
theses propositions into formulas using logical operators and temporal operators. Atomic

propositions (p, q, ...) are variables which can either be true or false. The logical

operators used in temporal logic formulas are the usual connectives: ViAy = and
The temporal operators are classified into two groups: state operators and path operators.
State operators are used to select states: Gp ("always p", “globally p”), Fp ("sometime p",
"finally p"), Xp ("nexttime p") and pUq ("p until q"). Path operators are used to select
paths: A (“all paths”), E (“there exists a path”).

Note that path operators are only applied to CTL formulas since in LTL there is no
concept of branching and hence no need for selecting paths. We can say that the absence
of A and E path operators in LTL formulas which reflects the linear-time paradigm (as
opposed to branching-time paradigm in CTL) is the major difference between LTL and
CTL.

The model M defined in previous section can be viewed as a temporal model where
each state represents a point in time. Within each state, atomic propositions are true or
false; hence a temporal logic formula can be evaluated to true or false from its
subformulas in a recursive fashion until reaching atomic propositions. Note that a
temporal logic formula that is true in some states might not hold in other states for a
given model.

A temporal formula p is satisfied by a model M = (S, SI, T, L) if it is true for all the

initial states S/ of the model, i.c. SIS {se S| M, s |=p}. The recursive definition of |=
for a CTL formula is as following:

e M,s |=p iff p € L(sp).

e M, sy |=—1p iff not M, s |=p.

e M, sp |= (p1 A p2) iff M, s¢ |=p1 and M, sg |=p2.

e M,sp |=AXp iff for all states so' with (sg, s¢") € T, M, s¢' |=p.

e M,sp [=EXp iff for some state sy’ with (sg, so") € T, M, s¢' |=p.

e M,sp |=A[p1 U p,] iff for all paths (sg, s1,...), there exists an j > 0 with M, s; |=p2, and
M, s; F p1 holds for all 0 <i <j.

e M, s |= E[p: U p.] iff for some path (s, si,...), there exists an j > 0 with M, s; |= P2,

and M, si |=p1 holds forall 0 <1 <.
1.1.1.3 Model Checking Algorithms

A Model checking algorithm is used to decide if a system satisfies a temporal property
and generates a counterexample otherwise. Different temporal logic model checking
algorithms have been devised to target LTL model checking and CTL model checking.

The complexity of model checking algorithms with temporal logics have been
studied since early 1980’s and several important results have been established.

In 1985 Pnueli and Lichtenstein [18] presented a model checking algorithm with
linear time temporal logic formulas and the complexity of this algorithm was shown to be
exponential in the length of the formula but linear in the size of the transition system.

Clarke, Emerson and Sistla [8] devised an algorithm for CTL model checking and
the complexity of the algorithm was proved to be linear in the length of the formula and
also linear in the size of the transition system.

Another type of branching-time logic is CTL*, introduced by Clarke, Emmeson and
Sistla[8], which combined CTL and LTL and could be checked with the same time

complexity as the LTL formulas.

These early model checking algorithms are so-called state exploration algorithms
which require explicitly constructing the state graph of the circuit under study and a
complete exploration of the state space. They were attractive because of their high
automation and little requirement for human effort to guide the proof process, whereas
they usually suffered from the state explosion problem and the size of the transition
systems that could be verified by them were very limited.

Several techniques were developed to overcome this problem in certain aspects,

among which symbolic algorithms have shown great success.

1.1.2 BDDs

A Binary Decision Diagram is a data structure which allows us to represent a Boolean
function as a rooted acyclic-directed graph where each non-terminal vertex is labeled by
a variable and has two directed edges, labeled 0 and 1, respectively. Terminal vertices are
labeled either 0 or 1. Figure 2 shows a BDD for the function f(a, b, ¢, d) = (aAb)v(cad)
with a truth table representing this function at the right.

To evaluate the represented Boolean function for a given valuation of the function
arguments, a path is traced in the BDD from the root vertex down to a terminal by taking
at each vertex the edge labeled with the value of the labeling variable of this vertex. The
value of the labeling variable of the terminal reached by this path defines the value of the
Boolean function under the current valuation. For example, to evaluate f(a=0, b=1, c=1,
d=1), start at the root a, traverse down the edge labeled 0 to c, then down two edges
labeled 1 until reach the terminal labeled 1, which means that the value of f is 1 with

respect to the valuation (a=0, b=1, c=1, d=1).

abcd |f

1 0000 |O
0001 {0

0 b 0010 |0
0011 |1

0 0100 |0
0101 1|0

. 0110 |0
0111 |1

1 1 1000 |0
1001 |0

1010 |0

0 0d1 1011 |1
1100 |1

1101 |1

1110 [1

0 1 1111 [1

Figure 2. BDD and true table for function f(a, b, ¢, d) = (aab)v(cad)

As shown by Bryant [20], a reduced ordered BDD offers a canonical representation
of a given Boolean function, in other words, every Boolean function can be represented
by a unique reduced BDD for a given ordering of the input variables. By using reduced
ordered BDD’s, a set of algorithms can be developed for manipulating Boolean functions

with a high degree of efficiency.

1.1.3 Symbolic Model Checking

The basic idea of symbolic model checking is to represent the state space symbolically.
Burch, Clarke, McMillan, and Dill [14] presented a symbolic CTL model checking
algorithm to verify sequential circuits, where the transition relation for the entire system
is represented symbolically as a characteristic function of all of state variables in the

system. By manipulating the BDD representations of the state space and the temporal

9

formula, model checking can be performed with efficient algorithms existing for BDD-
Based Boolean Manipulation.

The strength of this algorithm stems from the fact when this symbolic representation
captures the right structural uniformities in the graph, it is much smaller than an explicit
table of all of the states [13], and thus it can be applied to verify some very large
sequential circuits.

However, this method can not be generally applied to verify all the large circuits with
complex data paths, and in many cases it will still have the state explosion problem.
Another drawback of the algorithm is that it can be very computationally consuming to

generate this characteristic function [23].

1.1.4 MDGs

MDGs can be viewed as a generalization of BDDs. BDDs offer representations of
Boolean formulas. Graph D in Figure 3 depicts the BDD for the Boolean formula

(—x A Fy)v(x A F,), where F, and F| are the Boolean formulas represented by the sub-
graphs D, and D, respectively.

Alternatively, graph D can be viewed as representing a formula
((x=0)AFy)v{((x=1)A F)) in a many-sorted first-order logic. More generally, node a

can range over a larger set of values than {0, 1} and can even range over abstract terms. It
is also possible that a cross operator can be a decision node in a generalized decision
graph. The definitions of an abstract term and a cross operator can be found in Chapter 4

where more details about the many-sorted first-order logic and MDGs are presented.

10

D:
Boolean variable -——»

Sort a: [0,1,2,3,4]
«—— Concrete variable of «

Boolean constant—» 3 <— Individual constant of o

Sort 4: abstract D
Abstract variable of g—»

Sort a: [0,1,2,3,4]
<— Cross operator of «

Generic constant of g—» a f(a,y) 3 < individual constant of &

Do D1 Dz Do D1 D2

Figure 3. From BDDs to MDGs

Three possible generalizations of BDD D and the corresponding formulas are shown

in Figure 3 and below, where F,, F, and F, are first-order formulas represented by the
sub-graphs D, D, and D, respectively:
e FromDtoD": xe{0,1} > xe{0,2,3}, and Graph D' represents the formula
(x=0)AF)Vv(x=2)AF)v((x=3)AF,).
e FromDtoD": xe{0,1} > xe{a,y, f(a,y)}, and Graph D" represents the formula
(x=a)AF)V (=0 AF)V (= fa)AF).
e FromDtoD"": xe{0,1} - g(x) € {0,2,3}, and Graph D'" represents the formula
(X)) =0)AF)v(g(x)=2)AF)v(g(x)=3)AF,).

The above generalized decision graph D, D' and D' are examples of Multiway

Decision Graphs (MDGs).

11

1.2 Thesis Contributions

The main contributions of the thesis are as follows:

e We investigated the underlying theory and methodology of Symbolic Trajectory
Evaluation (STE) and MDG-based model checking techniques by a detailed case
study for each of them.

e We proposed a hybrid approach of performing first-order Symbolic Trajectory
Evaluation using MDGs, which can not only increase the scale of circuits that can be
verified using STE but also improve the performance of STE by raising the level of

abstraction.

1.3 Scope of Thesis

Symbolic Trajectory Evaluation (STE) and MDG-based model checking are two model
checking techniques which improve the traditional symbolic model checking approaches
in two different ways. The aim of this thesis is to investigate the possibility of using
MDGs to perform STE. The motivation of combining these two techniques is to develop
a more powerful model checking technique which will take the advantages of both of
them.

The rest of the thesis is organized as follows:

In Chapter 2, we study the underlying theory and methodology of Symbolic
Trajectory Evaluation, provide an illustrative example of this approach, and describe an

STE-based verification tool.

12

Chapter 3 provides a case study of STE. We first make a brief introduction to the
Look-Aside Interface (LA-1), and then, after the discussion of some related work
including a previous RTL design for the LA-1 interface, present a modified RTL design
for the LA-1 interface. Finally, the verification processes of both the designs using STE
are illustrated followed by experimental results.

Chapter 4 introduces the theoretical foundations and methodology of MDG-based
model checking followed by an illustrative example, and discusses MDG-based model
checking tools.

In Chapter 5, we use the MDG tools to verify the same properties of the LA-1
Interface. Our goal is to compare the two methods and prepare the ground for our
proposal to define a symbolic trajectory evaluation in MDG. This experiment involves a
mapping from STE assertions to Lypg properties. We will provide a method to perform
this mapping. Experimental results are given at the end of this chapter.

Based on the exploration of STE and MDG-based model checking through case
studies, in Chapter 6, we describe two attempts to combine these two model checking
techniques: one in the STE verification environment and the other in the MDG tools. We
focus on the second attempt and propose a hybrid approach of performing first-order
Symbolic Trajectory Evaluation in the MDG tools.

Finally, in Chapter 7, we conclude this thesis and present the future work.

13

Chapter 2

Symbolic Trajectory Evaluation

This chapter describes the underlying theory and methodology of Symbolic Trajectory
Evaluation (STE), a symbolic simulation based bounded model checking technique.
Firstly, lattice and symbolic simulation are described, which are the theoretical
foundations of STE. Next, the chapter discusses in detail the modeling, specification
language and verification methodology of STE, followed by an illustrative example. An

STE-based verification tool is described at the end.

2.1 Basics

Symbolic Trajectory Evaluation is a symbolic simulation based bounded model checking
approach devised by Bryant and Seger [23], which relates most closely to the symbolic
model checking algorithm proposed by Bose and Fisher [24]. In Bose and Fisher’s
algorithm, an explicit representation of the next state function for every state variable in
the system is extracted using symbolic simulation. In one simulation run, each state
variable and each input signal is represented by a distinct Boolean variable, and a
Boolean representation of the next state behavior is computed. A temporal logic formula
can then be checked using symbolic Boolean manipulation. This extraction process for

the explicit next state function can be quite costly [23].

14

What distinguishes STE from Bose and Fisher’s method and other symbolic model
checking algorithm is its representation of state space and the next state behavior.

o The state space is represented using a lattice-based model.

e The next state function is represented implicitly as a result of combining the circuit
structure and the simulation algorithm, and the next state behavior is computed only
for the particular patterns required for the verification of a given assertion.

These particular patterns involve far fewer variables than is required in Bose and Fisher’s

method [23]. The strength of STE comes largely from the fact that the complexity of an

STE run depends only on the complexity of the STE assertion itself rather than that of the

circuit being checked. STE offers an effective alternative to classical symbolic model

checking techniques which often suffer from state explosion and hence can verify much

larger circuits, although it has its own limitation on the kind of properties it can handle.

2.1.1 Lattice

In this thesis, we view a lattice as a partially ordered set. The discussion of other uses of
lattice is outside the scope of this thesis and will not be included here.
A partial order is a binary relation on a set which is reflexive, antisymmetric, and
transitive. Given a partial order R on a set S, for all g, b, ¢ € S, we should have:
* a R a (reflexivity),
e (aRbandbR a)— a=b (antisymmetry), and
e (aRbandbRc)— aR c (transitivity).

This partial order relation formalizes the intuitive concept of an ordering of the set
elements, which represents a hierarchy of information or knowledge. More specifically,

the higher order an element has, the more information it contains. The ‘partial’ here

15

indicates that such an ordering does not necessarily need to be total, that is, not all pairs
of elements in the set are mutually comparable.

We call a set with a partial order a partially ordered set.

Definition 2.1.1.1: A partially ordered set (L, <) [9] is a lattice if for any elements a
and b of L, the set {a, b} has both a least upper bound (join) and a greatest lower bound
(meet), where L is the so called ground set and < is the partial order.

The join of a and b is denoted by avb, and the meet is denoted by anb, where A and
v are binary operations.

Definition 2.1.1.2: A complete lattice is a partially ordered set (L, <) which has both
a greatest lower bound (meet) and a least upper bound (join) for every subset 4 of L,
denoted by glb(A) and lub(A) , respectively.

In other words, a complete lattice is a complete relation with a bound on every
subset. Note that each complete lattice has a unique greatest element (often called
universal upper bound) and a unique least element (often called universal lower bound).
A complete lattice is a special case of lattices.

The power set (the collection of all subsets) of a given set S forms a complete lattice
using “subset of” as the ordering relation <. Meet and join of subsets can be obtained by
the set operations intersection and union, respectively. In this class of lattices, the empty
set is least element, and S is greatest element. A lattice based on the power set of {a,b,c}
is shown in Figure 4. A diagram of a partial order that leaves out the transitive relations is
referred as a Hasse diagram. The ground set L of this lattice is {&J, S1, S2, 3, Sa, S5, S, S}.
The ordering of these elements is listed below:

o I<8,0L8,0<8;;

16

o 5158481585
o 5584 5586

o S53<Ss, 83<Ss;

b S4SS,
e S555§;
o Ss<8;

O 8= {a,b,c}

Si={a,b} (OSs={ac} Ss = {b,c}

XX

OSi={at O&K={} O 8=/{c}

Oo={}

Figure 4. Lattice structure for the power set of {a,b,c}

The ordering relation is represented by a directed edge pointing from the element
with lower order to the one with higher order. Note that there is no ordering relation
applied to the element pairs of {Si, $2}, {S1, S3}, {S2, S5}, {S4, S5}, {Ss, Ss} and {Ss, Se},
since the two elements in each of the above pairs are not mutually comparable under the
relation “subset of”’, which reflects the “partial” feature of this ordering.

It is not hard to tell from the diagram that each of the 2® subsets of L has a unique

least upper bound and a unique greatest lower bound.

17

2.1.2 Symbolic Simulation

In digital hardware verification, the term simulation is referred to a modeling technique
which describes the state transitions, inputs and outputs of a digital system. Simulators
are often used to test logic designs before constructing the real hardware.

Figure 5 illustrates a simulator example of a 5-input OR gate. During simulation, a
sequence of input patterns 01100, 10011, ... are fed into the input ports of the simulator
which models the behavior of the circuit, and the corresponding output response patterns
are sampled and checked against the expected values at the output ports of the simulator.
A single run of this simulator can only determine the behavior of the OR gate, that is the
output response in this case, for a single input pattern. In order to verify this 5-input OR
gate exhaustively, we need 32 (2°) test patterns to cover all the possibilities of the input
signals and, therefore, need 32 simulation runs

The number of the required test patterns for exhaustive verification will grow
exponentially with the number of input signals. In this case of sequential circuit
simulation, the situation will be even worse. We need to take into consideration not only
the input sequence but also the initial state of the system. Thus, simulation is only
applicable for verifying very small systems, the limitation of which comes from the
stimulus generation and simulation runtime.

Symbolic simulation is a promising method to generalize the traditional simulation
technique and make it feasible to larger systems. A symbolic simulator resembles a
traditional simulator, except that it simulates the design using Boolean variables instead

of constant binary values at the inputs of the circuit model.

18

0 l4
1 lo
5-Input OR Gate
1 ls Simulator o 1
0 l4
0 ls

Figure 5. Simulator for a 5-input OR gate

During simulation the values of the circuit state and the circuit output are represented
as Boolean functions over these initial variables. At the same time, logic operations, such
as AND, OR and NOT, should be refined to operate over Boolean functions rather than
over the constants 0 and 1. At the end of each simulation run, a set of Boolean functions
representing implicitly all set of states that are reachable by the current circuit state in one
clock cycle for the input variables can obtained by manipulating Boolean operations, and
so can the Boolean functions for the outputs. This method allows all the next state
behaviors of a circuit in a specific state under all possible inputs to be verified with a
single simulation run simultaneously. In other words, a single symbolic simulation run
can compute information that would otherwise need to be obtained by multiple traditional
simulation runs.

The symbolic simulator of the same 5-input OR gate is shown in Figure 6. The input
signals of the simulator are represented by Boolean variables a, b, ¢, d and e, respectively.
The output of the simulator is a Boolean function over these five variables. In this case,

we only need 1 symbolic test pattern, abcde, to verify this 5-input OR gate exhaustively.

19

a l1

b I

c I S-Input OR Gate avbvevdve
® Symbolic Simulator

d I

e |5

Figure 6. Symbolic simulator for a 5-input OR gate

One problem with symbolic simulation is that it needs to exhaustively manipulate the
circuit functionality and requires extensive manipulation of Boolean expressions.

Ternary simulation [21] is another generalized simulation approach, in which three-
valued logic is used instead of two-valued logic. Three-valued logic extends the existing
1 (true) and O (false) values in two-valued logic with an unknown or “don’t care” value
X. In order to perform ternary simulation, functions defined over Boolean values {0, 1}
need to be extended to ones defined over ternary values {0, 1, X}. The extensions should
obey the following rule: if a circuit node is computed to be either 0 or 1, this result will
not change if the X’s contained in the stimulus pattern are replaced partially or
completely by 0 or 1. This extension rule guarantees that the simulator of a circuit will
produce the same response to a certain input pattern even if some bits of it are set to X.
As an example, the truth tables of some Boolean operations and their ternary extensions
are shown in Figure 7.

Since each use of value X covers two cases of using 0 and 1 in ternary simulation,
the number of test patterns required to verify a circuit will be reduced dramatically by

introducing X’s when applicable. Take the same 5-input OR gate discussed above as an

20

example. The ternary simulator model and the corresponding truth table of it are given in
Figure 8. Compared with the 32 test patterns required by the traditional simulation, only
six test patterns, XXXX1, XXX1X, ..., 1XXXX and 00000 are needed to do the
exhaustive verification of this 5-input OR gate using ternary simulation. The strength of

this approach stems from its computational efficiency.

a a
b 0o 1 b 6 1 X
Ternary extension 0 0 0 0
0 0 O
1 0 1 for anb 1 0 1 X
X710 X X
a a
b 0 1 b 0 1 X
Ternary extension 0 0 1 X
0 o 1
1 " 1 for avb 1 1 1 1
X X 1 X
a 0 1 Ternary extension a 0 1 X
1 0] for —a 1 0 X

Figure 7. True tables of Boolean operations and the ternary extensions

00—l
li 1o 13 14 15 |O
00—k XX X X 1|1
XX X1 X |1
Kl SraOnCa ox X1 xX]
X1 X X X |1
0—ly4 1 X X X X |1
00 00O |O
0—ls

Figure 8. Ternary simulator model for a 5-input OR gate

21

Note that the use of X value may cause information loss of the circuit. Let us take a
look at the 5-input OR gate model in Figure 8 again. When four of the inputs are set to 0,
the attempt to set the left input to X will lead to an X value at the output of the simulator,
a meaningless result in verification. To avoid this, we have to be careful with our choice
of using X values in the simulation.

Symbolic simulation and ternary simulation improve the performance of traditional
simulation technique in two different ways. Symbolic simulation can dramatically cut
down the number of required stimulus patterns and, therefore, the number of simulation
runs at the price of increasing the computation complexity and the memory usage.
Ternary simulation, on the other hand, can significantly enhance the computational
efficiency, but may have the problem of information loss in some cases. If we can
combine these two techniques, it is possible for us to take the advantages of both of them.
A successful attempt was made by Beatty, Bryant and Seger [5], whose approach is
named ternary symbolic simulation.

The key idea of this ternary symbolic simulation approach is to parameterize ternary
values by Boolean variables, which can further reduce the number of required test
patterns. Figure 9 illustrates how the six test patterns required by the 5-input OR gate
ternary simulator are compressed to one symbolic pattern in ternary symbolic simulation.

First, we index the six scalar patterns with numbers from 0 to 5, which are then

encoded with three (]_log(S + 1)_1) Boolean variables ty, t; and t,. Next, for each input of

the 5-input OR gate, we represent the six ternary values gathering from the corresponding
bits of the six test patterns as a function pair (high, low) over these three variables.

Function “high” and “low” indicate the positions of value 1 and 0, respectively, and the

22

unrepresented positions are of value X. Thus, in our example, we have one symbolic test
pattern consisting of five function pairs over three variables to replace all the six scalar

test patterns. The output of the ternary symbolic simulator is also a (high, low) function

pair.
scalar patterns | symbolic pattern
(12;1;o,t2;1t0) =y 012345 hl-g-h I?W
- - LiX XX X110 | ttite 1,
(o, ,1t)) =12 | X X X 1XO0 | tats, L,
o 5-Input OR Gate o - -
(t2t,10,,118,) =13 Ternary Symbolic O (12 +1i%0,1,111,) B X X 1 X X0 | fanto 1t
. Simulator X 1 XX X0 |ttty tit,
(t20185,1,118,) ==l - -
Is|1 X X X XO0 t2tito 4t
(t2titot00,) —ls Ol111 110 | hhtnto LIty

Figure 9. Ternary symbolic simulator for a 5-input OR gate

Recalling the 32 test patterns required for the traditional simulator of 5-input OR
gate, 1 symbolic test pattern over 5 variables for the symbolic simulator and 6 ternary test
patterns for the ternary symbolic simulator, our ternary symbolic simulator has the best
performance among all these simulators.

Note that reduced ordered BDDs can also be applied in ternary symbolic stimulation,
since ternary values are manipulated implicitly via binary encodings mentioned above.

Note also that the above ternary symbolic simulation approach just shows us one of
the ways to combine ternary modeling technique with symbolic simulation and in
practice we may have our own ways to do the combination depending on the

applications.

23

.

5-Input OR Gate
——Jlg, Symbolic Ternary O—— avX
Simulator

xX X X
=

Figure 10. Symbolic tenary simulator for a 5-input OR gate

Another possible way to symbolize the ternary simulation is to partially symbolize
the test patterns using ternary variables and ternary constant. An example of a partially
symbolized test pattern for the 5-input OR gate is shown in Figure 10, where input signal
I, is represented by variable ‘a’ over ternary values {0, 1, X}, input I is represented by
ternary constant 0, and input I, 14 and Is are all represented by ternary constant X. This
partially symbolized test pattern covers three possible ternary test patterns: X0XXX,
00XXX and 10XXX, and the corresponding outputs of the circuit will be of values X, X
and 1 respectively.

Note that for some special simulators, the “don’t care” value X appearing at the
output of a gate may have specific meaning for the verification and should not be deemed

as meaningless.

2.2 Modeling

Symbolic trajectory evaluation (STE) extends symbolic simulation with some of the
analytic capability of temporal logic model checking techniques [6]. As in a model

checking approach, STE also develops a formal model for the circuit under verification,

24

but different from the temporal logic model checkers, it uses a lattice-based model
instead of a Kripke structure.

The lattice-based model in STE is a tuple M = [(S, <), Suc], where:
e Sis a set of finite states,
e <is a partial order over S,
e (S, <) isacomplete lattice,
o Suc: § — §is the next state function, monotone with respect to <.
A function between ordered sets is monotone if it preserves the given order. For function
Suc, whenever s, <s; and s,,s, € S, then Suc(s,) < Suc(s;) .

The state space S = {0, 1, X}" is a set of n-length vectors over ternary values for
some natural number n. The partial order < is defined over {0, 1, X} first and extended to

{0, 1, X}". Figure 11 illustrates the partial orders over {0, 1, X} and {0, 1, X}?.

11

O 10 O 01
X1

V=

O
XX

0X X

= O

Figure 11. Partial orders over {0, 1, X} and {0, 1, X}?

According to the definition of complete lattice, ({0, 1, X}, <) is not a complete
lattice, since not every subset of {0, 1, X}" has a least upper bound. In order to make (S,

<) a complete lattice, we introduce a top element T to the state set S. We use T to

25

represent a unique “overconstrained” state [4], where some node of the state vector is set
to both 0 and 1 at the same time. Thus, the state set S = {0, 1, X}" U {T} and the partial
order < form a complete lattice with T as the universal upper bound and L =X, ..., X as
the universal lower bound. The Hasse diagrams of complete lattices ({0, 1, X} U {T}, <)

and ({0, 1, X}* U {T}, <) are shown in Figure 12.

/\
\/

Figure 12. Hasse diagrams of complete lattices ({0, 1, X} U {T},) and ({0, 1, X}* U {T},<)

The next state function Suc: {0, 1, X}" U {T}—> {0, 1, X}" U {T} is used to compute
constraints on the possible values of the successor states of the current states. In other
words, for a given state s € S, function Suc(s) computes the least specified (most general)
successor state the system can be in one time step later. The “least specified (most
general)” is defined by the partial order < [4]. As mentioned in previous section, in a
partially ordered set, the lower order an element has, the less specified it is. In this sense,
for example, value X is less specified than values 0, 1 and T in the complete lattice ({0, 1,

X} U {T},). Note that the constraints computed by the next state function are the ones

26

imposed by the circuit itself and are irrelevant to the circuit inputs which are controlled
externally.

For a given state vector s =cyc,...c, ,c,, € S, the next state function Suc(s) is

actually a vector of next state functions for each node (component} of s, i.e., Suc(s) =

ty(et (e)...t, (¢,), (c,), where ci: {0, 1, X}" — {0, 1, X} for 1 <i<n-1.Ifnode
¢; is associated with an input of the circuit, the next state function #,(c;) = X, and
otherwise 7,(c,) is determined by the circuit structure. A constraint of value X indicates

that no constraint is imposed on that node. For the state vector T, the next function Suc(T)
equals T.

The next state function works like a filter that can filter out irrelevant sequences of
states which are not useful for reasoning about model behaviors. We call these useful
sequences trajectories. Formally, given a model M = [(S, <), Suc], an infinite sequence

(59,5,58,,...)of states of S is a trajectory iff
Suc(s;)<s,,, fori20.

The set of all trajectories of model M is denoted as J(M).

2.3 Specification Language

In STE, a design specification is expressed as a trajectory assertion in a restricted
temporal logic. A trajectory assertion is of the form [Ante — Cons], where both Ante and
Cons are trajectory formulas. The main verification task is to evaluate whether or not
every trajectory satisfying Ante (called the antecedent) also satisfies Cons (called the

consequent).

27

The basic component of a trajectory formula is a simple predicate. Given a model M
= [(S, S), Suc], a predicate over S is a function that maps S to a special complete lattice
containing only two elements false and frue, with element false as the universal lower

bound and element frue as the universal upper bound. A predicate p over S is called

simple if it is monotone and there exists a unique element d, in S such that forall s € §

with d <5, p(s) = true. The d, here is called the defining value of predicate p.
Definition 2.3.1: If we denote a set of simple predicates over S by P, a trajectory

formula of model M is then defined inductively as below:

e A simple predicate p € P is a trajectory formula.

e The conjunction (f; A f,) is a trajectory formula if both f, and f, are trajectory
formulas.

o The domain restriction (b — f) is a trajectory formula if b is Boolean constant 0 or 1
and fis a trajectory formula.

o The next time expression (Nf) is a trajectory formula if fis a trajectory formula and
N is the next-time operator.
If a trajectory formula f of model M is satisfied by a trajectory a = (a,,4q,,4a,,...) of

the same model, we write a |=M 1. The satisfaction relation |=M is defined as follows:

e g |=Mp iff p(ap) = true.

o aku(finf,) iff aky f, andaky f,.

o aku(l—>p iff afu £

e g |=M (0 >) always holds.

] a|=M(Nf) lff (al,azy-“) '=Mf

28

2.4 Verification Methodology

The definition of simplicity can be extended directly from predicates to formulas. A
formula f of model M is called simple if it is monotone and there exists a unique

trajectory o, in M, called defining trajectory of formula f, such that for all a € J(M) with

o,<a,a |=M fholds. We will see later that trajectory formulas are simple and we can

construct the defining trajectory for every trajectory formula. Thus, the main verification
task that checks whether or not every trajectory satisfying Anfe also satisfies Cons can be
implemented in this way: compute the defining trajectory for the trajectory formula Ante
first, and then verify that this defining trajectory satisfies trajectory formula Cons.

Before constructing a defining trajectory for a given trajectory formula fin M, we

will first show how to construct its defining sequence 5, . This sequence should be the

least possible sequence in M that satisfies f, i.e., for all sequence @ with S, <a, a |=M f

holds.
Definition 2.4.1: Given a model M = [(S, <), Suc] and a set P of simple predicates

over S, the recursive definition of the defining sequence B, of a trajectory formula f'in M

is as following:

e p,=d,LLl..ifd, isthe defining value of peP.
o B =lb(B,,B,), where lub is the lowest upper bound function.

* Bs.p=b?B,, where b is a Boolean constant, ‘?’ is an infix “multiplexing”

function, and 5?8, ={fi lfbh=1 o
otnerwise

29

e Sy f =L p Iz
It can be proved [4] that for any given trajectory formula f in M and its defining

sequence B, constructed as above,
afuf < B, <a, forall ae J(M).
Note that B, is not necessary a trajectory of M whereas our goal is to construct the

defining trajectory, that is the least possible trajectory that satisfies f, and therefore we
need to go one step further. One possible way is to combine the constraints on a sequence

imposed by S, and those from the next state function Suc to obtain the required

trajectory.
Definition 2.4.2: Given any trajectory formula f of model M = [(S, <), Suc],

assuming that B, =g, f, ... is the defining sequence for f, a sequence y , = 77 7, ... can

be defined inductively as follows:

4 =1Pr ifi=0
4 lub(,B},Suc(;(}“1) otherwise

For the sequence ¥, constructed as above, it can be proved [4] that,
* x,eJ(M),

* |=Mf, and

o al=Mf<:> X; Sa, forall ae J(M).
Thus, we can view y, as the defining trajectory of f and it is also safe to say that

every trajectory formula is simple.

30

More precisely, a trajectory assertion is defined as [Ante — Cons] with dep(4nte) =
dep(Cons), where Ante and Cons are trajectory formulas and dep(A4nte) and dep(Cons)
are the depths of formulas Ante and Cons Respectively. Generally, the depth of a formula
f, denoted as dep(f), can be defined recursively as below:

o dep(p) =1if peP isasimple predicate,
o dep(f, A f,) =max(dep(f,),dep(/>)),

o dep(b— f)=dep(f),and

* dep(Nf)=1+dep(f).

If all the trajectories of model M satisfy a trajectory assertion [4nte — Cons] of the
same model, we write |=M [Ante — Cons], where the satisfaction relation is defined as

follows:

|=M [Ante — Cons] holds iff a |=MAnte implies a |=M Cons for all a e J(M).

Finally, with the methods established for constructing the defining sequence and the
defining trajectory for a given trajectory formula, we can apply the theorem below [4] to
achieve our verification goal:

Theorem 1: Given y,, and ., as the defining trajectory and the defining
sequence of trajectory formulas 4nte and Cons in model M, respectively,

Fu [Ante — Cons] holds iff B, < X ie -

Note that although both the defining sequence and the defining trajectory are infinite

by definition, we need only to compute the bounded prefix of them, since it is easy to

show that for a given trajectory / with the defining sequence 8, =8, ... we have

B =L for i > dep(f).

31

2.5 Symbolic Formulation

In this section, we will first introduce symbolic methods for representing trajectory
formulas and trajectory assertions and then we will see how to verify these assertions
using symbolic simulation. With these symbolic extensions, we can effectively reduce the
number of required test cases and simulation runs.

Several ways can be used to realize the symbolization of trajectory formulas and
what we present here is the one described in [4].

Definition 2.5.1: Given a model M = [(S, <), Suc], a set U of Boolean variables, and
a set P of simple predicates over S, the recursive definition of a symbolic trajectory

formula of M is as follows:

e A simple predicate p € P is a symbolic trajectory formula of M.
e The conjunction (f’ A f;) is a symbolic trajectory formula if both f° and f, are
symbolic trajectory formulas of M.

¢ The domain restriction (B— f°) is a symbolic trajectory formula if B is a Boolean
function over Uand f° is a symbolic trajectory formula of M.

e The next time expression (N /) is a symbolic trajectory formula if £ is a symbolic
trajectory formula of M and N is the next-time operator.
As we can see from the above definition, the only modification from the original
definition of trajectory formula is in the domain restriction part, where the domain
constraint is generalized from a Boolean constant to a Boolean function.
The definition of a symbolic trajectory assertion (shown as below) can then be easily

developed by simply replacing the trajectory formulas with the symbolized ones:

32

A symbolic trajectory assertion is of form [Ante’ — Cons’] with dep(dnte’) =
dep(Cons’), where Ante’ and Cons® are symbolic trajectory formulas and dep(/) denotes
the depth of a symbolic formula /.

For an assignment 77:U —{0, 1} to the Boolean variables in a given symbolic
trajectory formula £ of model M = [(S, <), Suc], the evaluation of f* denoted by
J° (1) is defined recursively as follows:

e p(m)=p,if peP isasimple predicate over S.
o (AL =LA f) (), if both £’ and f, are symbolic trajectory formulas

of M.

o (B> f)Yn)=Bm - f°(n), if B is a Boolean function over U and f’ is a

symbolic trajectory formula of M.

o (N)m)=(N(f"(m)), if f° is a symbolic trajectory formula of M and N is the
next-time operator.

Accordingly, the evaluation of a given symbolic trajectory assertion [Ante’ — Cons’]
of the same model for the assignment 77 :U —{0, 1}, denoted by [4nte’ — Cons’](n), is
defined as:

[4nte’ — Cons®(n) =[Ante’ (1) — Cons’(n)].

In the rest of this section, we will show how to verify these symbolic trajectory
assertions using symbolic simulation. A symbolic trajectory evaluation algorithm can be
easily developed by symbolically extending the functions and relations used in the scalar

trajectory evaluation algorithm discussed in the previous section.

33

Let H be the set of all assignments to the Boolean variable set U, i.e.,

H={n|n:U - {0,1}}. The state set S= {0, 1, X}" U {T} is extended to a symbolic state
set S(U)={glg:H— S} . Each symbolic state in S(U) is a function mapping a
Boolean assignment 77 € Hto a vector of ternary values (a scalar state) in S. For any

given state s € S, we let s° denotes the constant function that has s°(77) =s for any

assignment 77 € H . Particularly, .L°denotes the constant function for the state L. The
next state function Suc: S — § is then extended to the symbolic next state function
Suc’ : S(U) = S(U). The lowest upper bound function /ub, and the partial order < are
extended to their symbolic counterparts /ubd’ and <°, respectively.

Note that in order to apply BDD technique in the symbolic trajectory evaluation

algorithm, we need to represent the state space as Boolean functions. Thus, we treat the
symbolic state in S(U) bit by bit. Let X, 1°, and 0° be the constant functions for value
X, 1 and 0, respectively. Each bit of the symbolic state can be a constant function X /1

0°, a Boolean function, or a “mux” function taking either of them as the result by the

control of another Boolean function. Actually this “mux” function can also be viewed as

a Boolean function with a constant X °/1¢/ 0°,

Definition 2.5.2: Given a model M = [(S, <), Suc] and a set P of simple predicates

over S, the defining symbolic sequence of a given symbolic trajectory formula f° of

model M, denoted by ﬂ;: , can be defined as follows:
e f,=d; L°L°.. if d, is the defining value of p € P.

. ﬂ;,m P lub’ (B sls 0 52:), where lub’ is the symbolic extension of lub.

34

B, =B 7 ﬂ;s , where B is a Boolean function and ?° is the symbolic extension
of 2.

Byy =L By

The evaluation of the defining symbolic sequence ,B;_Y for any assignment n € H,

denoted by ,B;x (m),1s ,B;s m=p ;’('7) ‘

Definition 2.5.3: Given any symbolic trajectory formula f* of model M = [(S, <),

Suc], assuming that g’ = ﬂs?ﬂ;l ... is the defining sequence for f°, the defining

symbolic trajectory ;(;: = ;(;0 Z;‘ ... can be defined inductively as follows:

si ﬂs? !flzo
Xy =

lub® (B2, Suc*(;(;(f'l)) otherwise

The evaluation of the defining symbolic trajectory Z; for any assignment n € H,

denoted by x;, (1), is as below:

Xp 0D = Xy

We can also extend the satisfaction relations symbolically for a symbolic trajectory

formula and for a symbolic trajectory assertion, respectively.

Given a symbolic trajectory formula f* of model M, which is satisfied by a

trajectory a = (a,,q,,4d,,...) of the same model, we define the symbolic satisfaction

relation |=SM for the assignment 7 : U —{0, 1} as:

@Fuf)m=1iff akuf ().

Similarly, for a symbolic trajectory assertion, we have:

35

(FulAnte’ — Cons'))(m) =1 iff Fu([4Ante’ — Cons’](n)).
At last, we can apply the theorem below [4] to verify if a symbolic trajectory

assertion is satisfied by a model M:

Theorem 2: Given 7’ . and B; . as the defining symbolic trajectory and the

defining symbolic sequence of symbolic trajectory formulas Ante’ and Cons’ in model M,
respectively, for every n € H,
Fy [4nte’ > Cons'\(m) =1 iff B_.()) < ', . ().

For a given model M and a symbolic trajectory assertion of it, the symbolic
evaluation algorithm yields a Boolean function denoting the set of assignments under
which the assertion is satisfied as compared with the simple yes/no answer from the
scalar algorithm. Since the verification task requires that the assertion should hold under

all variable assignments, this Boolean function should simply be the constant function 1°,

i.e., the function that returns 1 for all assignments.

2.6 Illustrative Example

In this section, we will present an illustrative example for Symbolic Trajectory

Evaluation.

S \ D SET Q S5
s D SET Q S4
S3 > cr Q
car @

Figure 13. Diagram for a Verilog model of a sequential circuit

36

Consider the Verilog model of a sequential circuit shown in Figure 13. Signals s; and
s, are two inputs to the circuit. The other input s; severs as a clock signal. Signals s4
registers s, at the positive edge of clock s;. Finally, signal ss is the registered output of the
circuit, the value of which equals s, As,. The time unit we use here is half clock cycle
and we assume there is no time delay at the and gate.

We represent the circuit state as a 5-bit vector s =s,s,5,5,55. The next state function

Suc’® =t1,t,t,¢, is defined as follows:

1(s))=X%1,(s5,) = X°,1;(5,) = X°,1,(s4) = 535, +gs4,t5(s5) = 538,85, +ES5 .
As mentioned before, no next state constraint is imposed on a state vector component
associated with an input signal, that is, its next state function should be the constant
function for value X.
Assume that we want to verify the following symbolic trajectory assertion for the

above circuit model:

(s, =a)™® A (S, =) A(s3 =0) AN(s, =) AN’(s; =0) AN’(s, =1))
— (N*(s, = ab)) ’

where the expression (s, =a) stands for the symbolic trajectory formula
(a—> (s, =) (2 —(5,=0)) , (s,=b)" denotes (s, =b)AN(s,=b) , and N’
denotes 7 next time operators. Generally, we use (s, = B) as the shorthand for the
symbolic formula (B — (s, =1)) A (E — (s, =0)), and represent the symbolic formula
FEANS AN fT AN as ()", where f° is a symbolic trajectory formula.

The simple predicates involved in the above assertion and the corresponding defining

values are listed below:

37

o 51 =0 with defining value (0, X, X, X, X),
o 53 =1 with defining value (/, X, X, X, X),
o 5 =0 with defining value (X 0, X, X, X),
e 5, =1 with defining value (X, I, X, X, X),
o 53 =0 with defining value (X, X, 0, X, X),
o 53 =1 with defining value (X, X 1, X, X),
o 55 =0 with defining value (X, X, X, X, 0),
e 55 =1 with defining value (X, X, X, X, I).
From Definition 7, we get the defining symbolic sequence of symbolic trajectory
formula(s, = a), a shorthand expression for (a — (s, =1)) A (E — (s, =0)), as:
ﬂ(s(a——)(sl=l))/\(;—>(s1=0))) =(a, X, X, X XWX, XXX XXX, XX, X% ..

Similarly, we get the defining symbolic sequence of (s, = b) as:

B =(X 0, X, X, XN X, XXX XN XXX, XLX).

(b-(5,=N)A(b—(5,=0)))

Then the defining symbolic sequence of (s, = a) A (s, = b) is computed as:

ﬂ(ss, =a)A(sy=b) — lub* ('B (Ss, =a)? ,3 (sSz=b))
=(a,b, X, X, XWX, X, X, X, XWX, X, X, X, XV,

By recursively applying Definition 7, we can get the defining symbolic sequence of

the antecedent:
Ante’ =((s, =a) ¥ A(s, =b)P A(s, =0°) AN(s, =I) AN (5, =0°) AN’(s, =1°))
and then compute its defining symbolic trajectory according to Definition 8, the

procedure of which are shown in Table I.

38

TABLE L.

DEFINING SYMBOLIC TRAJECTORY OF THE ANTECEDENT

B Suc’ (X e) Lime'
i ST S2; S3 S4 S5 S S S3 S4 S5 S1 S2 Sz S4 Ss
0 a b | 0| X |X a b |0°] X |XE
e o x|l fxelxlxlx | x] T alb|1©]x]|x
2| fa|x|o|xix] Ix x|x|b|axcf Ty a|Xx |0 b ax
3 a x| x|l fxedxelx b laxcl Tub]a x| | b|ax
a | x| xe e | b xelxe fxe | ab | ub) o xe | x| x| | xe | ab
25 | x| x x| x| x| Lxe x| xe] xe jabx] o lubt o] X7 | X | X | X JabX]
TABLE II. SYMBOLIC DEFINING SEQUENCE OF THE CONSEQUENT AND COMPARISON
B . X g
i S1 S2 S3 S4 S5 S1 S2 S3 S84 Ss
0 X8| X XS X | x© <’ a b | 0°| X°| X
1 XXl xe x| xe < a b 1°] X°| X°
2 X XS x| x| xe <5 a | X |0| b [aX®
3 Xe | X X X | X <* a | X1 b |aX®
4 XXX X |ab < XX X | X ab
>5 Xl Xe x| x| x <5 XE | X X° 1 X® |abX®

Similarly, we can also obtain the symbolic defining sequence of the consequent

Cons® = (N*(s, = ab)) shown in Table II, compared with the result for the defining

trajectory of the antecedent. We can easily see from the table that: 47 .

< y° =
- 2‘,Am‘e’ 1

c

i.e., the symbolic trajectory assertion is satisfied by the circuit model under all variable

assignments.

39

2.7 STE Based Verification Tool and FL Language

Forte is Intel's custom-built verification environment, evolved from Carl Seger's VOSS
formal hardware verification system. Forte integrates model-checking engines (STE),
BDDs, circuit manipulation functions, theorem proving, and a functional programming
language called FL. FL is used in Forte as a programming language for application
development and fast prototyping, and also as an extension language for users to enable
writing flows and applications [32].

Devised by Carl Seger during the years 1990-1995, FL is a strongly typed, lazy,
functional programming language [33]. Functional programming is a programming
paradigm that treats computation as the evaluation of mathematical functions, which are
often defined by separation into various cases, each of which is separately defined by
appealing (possibly recursively) to function applications [19]. In contrast to imperative
programming, functional programming emphasizes the evaluation of functional
expressions, rather than execution of commands. The expressions in these languages are
formed by using functions to combine basic values. Functional programming languages
have no variables, no assignment statements, and no iterative constructs. The oldest
example of a functional language is Lisp, though not a purely functional programming
language, which introduced many of the features now found in modemn functional
programming languages. The modern canonical examples are Haskell and members of
the ML family including SML and Ocaml. FL is syntactically very similar to Edinburgh
ML (Meta Language), and semantically closely related to lazy-ML and Haskell.

What distinguish FL from other functional languages are the following VLSI CAD-

related features [32]:

40

o BDDs fully integrated into the language with every object of type ‘bool’ represented
as a BDD,

e VLSI modeling capability, and

e STE, a C based symbolic simulator, integrated into the language.

FL provides a flexible interface for invoking and orchestrating model checking runs
and serves as an extensible 'macro language' for expressing specifications, which makes
Forte a generic, open framework where solutions can be tailored to individual verification
problems [32].

The model to be verified in Forte must be in Exlif format [31], where the RTL design
is flattened to the gate level netlist. It was necessary to develop a converter which can
translate the Verilog RTL to Exlif format. The high level description of this translation is
illustrated in Figure 14. The Verilog code is first translated to Blif-mv format using the
VIS too}, and then we used a translator to convert the Blif-mv format file to an Exlif one.
This Blif-mv to Exlif translator was developed using Perl script by our group.

The converting is a straight forward process since the two formats Exlif and Blif-mv
are similar modulo certain syntactic differences. Therefore, it is safe to say that the

correctness of this translation is guaranteed by the VIS tool.

ort
WERILIG BLIBA EXLIF .
FOREE [T

ANTECEBENT...LONUEDLENY },:z,,”}

Figure 14. Verification using Forte

41

The properties of the design are captured by STE assertions generated in FL codes.
In the Forte environment, the syntax for STE invocation is:
STE <model> <weak> <antecedent> <consequence> <trace>
where the description of each object in the above syntax is given below:

» <model>: This is the model to be simulated. The model is an object of type fsm.

» <weak>: This is a list of 4-tuples of the following format: (<guard>, <node>,
<from>, <to>), where <guard> is of type bool, <node> is a node name, <from> and <to>
are integers. The semantics of such a tuple is such that if the condition <guard> holds, the
given <node> should be disconnected from the logic driving it in the model from time
<from> to time <to>. The <weak> list is usually used to solve the contradiction in node
assignment.

« <antecedent>: The antecedent is the input vectors to the simulator. It is a list of 5-
tuples of the following format: (<guard>, <node>, <value>, <from>, <to>), where
<value> is of type bool. The semantics of such a tuple is that if the condition <guard>
holds, the given <node> is assigned the value <value> from time <from> to time <to>.

* <consequence>: The <consequence> describes the expected result (consequence) of
the simulation. It is a list of 5-tuples of following format: (<guard>, <node>, <value>,
<from>, <to>). The semantics of such a tuple is that when the condition <guard> is T
then after running STE, the given node is expected to be equal to the given value from
time <from> to time <to>.

» <trace>: This is a list of triples of the following format: (<node>, <from>, <to>).
The semantics of such a triple is that STE records the value of the given node from time

<from> to time <to>.

42

After running the STE simulation, STE returns Boolean value T if the consequence is
realized, and returns the Boolean condition under which the consequence is realized
otherwise. If the consequence is never realized, STE returns Boolean value F.

Time-frame specified in <weak>, <antecedent>, <consequence> and <trace> is in
terms of the internal clock of STE that progresses tick by tick. Model clocks and model

timing should be translated in terms of the STE clock.

2.8 Summary

In this chapter, we presented the theory and methodology of Symbolic Trajectory
Evaluation and introduce the verification tool for STE. Then, in the following Chapter,
we will further investigate this technique by a case study of verifying the Look-Aside

Interface using STE.

43

Chapter 3

Verifying Look-Aside Interface using STE

In this chapter, we first present a brief introduction to the Look-Aside Interface (LA-1).
We then discuss some related work including a previous RTL design for the LA-1
interface. A modified RTL design for the LA-1 interface is described in detail after that.
Finally, the verification processes of both the previous RTL design and the modified LA-

1 interface RTL design using STE are illustrated.

3.1 LA-1 Interface Specifications

The LA-1 interface [34], developed by the Network Processor Forum, is a memory-
mapped interface based on QDR (Quad Data Rate) SRAM, targeted at devices (memories
or coprocessors) that offload certain tasks from a network processing unit (NPU). The
major features of the LA-1 interface include:

o Concurrent read and write.

e Separate unidirectional read and write data buses.

e Single address bus.

e 18-bit DDR data output bus transfers 32 bits plus 4 bits of data parity per read.

e 18-bit DDR data input bus transfers 32 bits plus 4 bits of data parity per write.

44

e Byte write control for writes.

3.1.1 Signal Descriptions

K

K#

Aln:2]

D[15:0]

Network DP{[1:0] caemory/
Processor R# ?Srclaacvees)sor
(Host) Wi#

BW#{1:0] |
DO[15:0] |
DPO[1:0]

Figure 15. LA-1 Interface buses

The LA-1 interface transfers data between an NPU and memory or coprocessors. Figure
15 shows the LA-1 interface bus signals. One LA-1 port consists of two input clocks (K
and K#), which are rising-edge active and should be ideally 180 degrees out of phase
with each other, one active-low write select input W#, one active-low read select input
R#, 2-bit active-low byte-write inputs BW#[1:0], single address bus A, 16-bit
synchronous data inputs D[15:0] plus 2-bit synchronous data parity inputs DP[1:0] for
write operations, and 16-bit synchronous data outputs DO[15:0] plus 2-bit synchronous

data parity outputs DPO[1:0] for reads.

3.1.2 Port Operation specifications

3.1.2.1 Write Operations

A write cycle is initiated by asserting W# low at the rising edge of clock K.

45

The write address should be ready at the following rising edge of K# and data is

captured at the rising edge of K and K# in the same cycle.
3.1.2.2 Read Operations

A read cycle is initiated by asserting R# low at the rising edge of K and the read address

is captured at the same edge. Output data is delivered after the next rising edge of K.

Rev. 6 Ne Op Wrils Read YWrite Read Write Read Vinte

K

" __/___/_

A —Gx Az A3 At As 6 #

TR I I ST,

Re W— BSOSO /m
/IO /OO0, /W

w ARG OO

Dé1 Dep

AN N
—O—0p—C—

Q << Q3o M Qit >§

Figure 16. LA-1 port operation timing diagram

The timing diagram for the port operation of the LA-1 interface is shown in Figure

16 [34].

46

3.2 Related Work

The LA-1 interface was first verified by A.Habibi et al. [1] at both the behavioral level
and the RTL level. That work, to our knowledge, includes behavioral designs in Abstract
State Machine (ASM) and SystemC, a RTL design in Verilog and the corresponding
verification approaches. The ASM level LA-1 design was verified using the AsmL tool to
model check a set of properties in Property Specification Language (PSL). The SystemC
level model was verified using simulation to perform Assertion-Based Verification (ABV)
of properties expressed in C# assertions. The verification of the Verilog RTL LA-1

design was performed using the RuleBase tool to model check PSL properties.

) Write Address Read Address
Address
27 27
- ‘7;-
BW 2 R
7 - ¥ Shi—
Wi
UP Parit Write SRAM Read | Data-Out
V12 Port Port 16
Memory
Data-lp 16
P Parity
: 36 : 2
__] 36 /\
Memory Data /\ jData to Read

K.K#

Vref

—» Clock Generator

74

—

Data Flows in one direction

-

Figure 17. Archtecture of Ahmed’s LA-1 RTL design

47

3.3 Verifying Ahmed’s LA-1 RTL Design using STE

3.3.1 Design

A synthesizable RTL design for the LA-1 interface was implemented in Verilog by A. 1.
Ahmed et al. [3] conforming to the above specifications. The architecture of the LA-1
interface RTL design is shown in Figure 17 [3]. Three main building blocks are used in
this LA-1 RTL design: Write port, Read port and Memory. Notice that the memory data
bus width is 36 bits. The timing diagrams for each of the three blocks are shown in Figure
18, 19 and 20 [3], respectively. Note that clock K and K# in the LA-1 interface

specifications are represented by CLK_K and CLK_K1 respectively in the design.

Write C)‘czc

CLK K

CLK_K1
}
Address X :X

I
i
|
|
i
|
I
1
i \{\rc
i
i
i
i
i
i
i

LU
EnEnininEnEnE
 DOOOOOOOC
L.u IplpEnEnmis

e Y

BWO# 1

1
1
i
1
|

wr My—‘“ﬂ/ e

Construction of the memory data

Figure 18. Timing diagram for the LA-1 Interface Write Port

48

Read Cyele

ol | UL LT
as LML LT

Read Address !

wenoen Y YN

N

ne °“'m

DataIn [15:0] =~ - - « » == Datain [31:16]

Figure 19. Timing diagram for the LA-1 Interface Read Port

e | L] L] L L L L L

cuki_| I R

L
Address X % : ><
Write Address T '

I

[}

|

i

Read Address
Write Cycle

w L]

!
Read Cycle !

e |

R

¢S R S - SIS R R

|
|
|
T
|
1
1

t
¢
t
i
¢
P
t
t
.
'
i
i
i
|
|
i
| !

Data_in

i

g

l
Memory Data

— i l
— ‘

l
l
Memory Data Out !
(Data In Read Port)

Figure 20. Timing diagram for the LA-1 Interface Memory

=T

X

49

The following properties are extracted of the design specifications:

Property 1 (Write Port): by asserting W# low at the rising edge of CLK K, if the
byte-write control inputs BW#I and BW0# are set to low, the full data input D will
be captured, at the same cycle, at the rising edge of CLK K and CLK KI and sent

to the memory through Memory data at the next rising edge of CLK K.

Property 2 (Write Port): by asserting W# low at the rising edge of CLK K, the
active-low memory enable signal will be set to low at the next rising edge of

CLK K.

Property 3 (Read Port): by asserting R# low at the rising edge of CLK_K, the data
from the memory Data_In will be sent out sequentially two times with half a clock

cycle in between through D after the next rising edge of CLK K.

Property 4 (Memory Port): the data written to a specific address of the memory by
a previous write operation can be read out properly by a read operation to the same
memory location, provided that there is at least a two clock cycle delay between the

write operation and the read operation.

3.3.2 Verification

Now, we apply the STE model checking technique presented in a previous chapter to
verify the LA-1 RTL Design of A. I. Ahmed et al. using Forte. As mentioned previously,
we need the VIS tool and a Perl script to convert the RTL design from Verilog to Exlif,
the only format accepted by Forte. One limitation of this converting process is that VIS
does not support multiple clocks. Hence, one of the two clocks must be removed from the

design. We solved the problem by substituting the use of the rising edge of clock

50

CLK K1 (K#) for the use of the negative edge of the clock CLK_K (K), based on the fact
that CLK K1 and CLK K are ideally 180 degrees out of phase with each other. Thus we
have only one clock (CLK_K) left in the resulting Exlif format model.

The STE formulations of the four properties described above are given below:

e STE Assertion 1 for Property 1:

((CLK _K =0) A (W#=0) A (BWO#=0) A (BW1#=0) A (DI[15: 0] = d1{15: 0]))
AN((CLK _K =1) A(DI[15: 0] = d2[15 : 0]))

AN*(CLK _K =0)AN*(CLK_K =1)

— N*((Memory _Datd31:16] = d1[15:0]) A (Memory _Datd15 : 0] = d2[15 : 0])).

o STE Assertion 2 for Property 2:

((CLK _K =0)A(W#=0)
AN(CLK _K=1)AN*(CLK _K=0)AN*(CLK _K =1)
— N*(me =1).

e STE Assertion 3 for Property 3:

((CLK _K =0) A(R#=0))

AN(CLK K =1)AN*(CLK _K =0)

AN((CLK _K =1)A(Data_In[35:0]=d1[35:0)) AN*(CLK _K =0)
AN*(CLK _K =1)

S N*(DO[15:0] = dI[15: 0]) AN*(DO[15: 0] = d1[31: 16]).

e STE Assertion 4 for Property 4:

((CLK _K = 0) A(W#=0) A (R#=0) A (BWO#=0) A(BW1#=0)

A (DIN5:0]=d1[15:0]) A (Address[26 : 0] = al[26 : 0]))

AN(CLK _K =1) A(DI[15:0]=d2[15:0]))

AN?*(CLK K=0)AN*(CLK_K=1)AN*(CLK_K=0)AN’(CLK _K=1)
ANY(CLK K=0)AN"(CLK_K=)AN*(CLK_K=0)AN’(CLK _K=1)
— N¥(DO[31:16]=d1[15:0]). AN’ (DO[15 : 0] = d2[15 : 0)).

51

The FL code used to invocate the STE simulation to verify STE assertion 1 is as
follows:

1. letmy ckt =load exe "LAIl INTERFACE TOP.exe”,

2. letweak=1/[];

3. letwrite ant =

4. (gen_clock _cycles clk F (0 upto 1)) @
5. (ws is F in_cycles (0 upto 2)) @

6. (vassign_ v tl t2bwe F05) @

7. (vassign_ v w t1 t2din "dl” 151 2)
8

9. let write cons =

10. (vassign_v w_tl_t2 write nodes h "d1” 15 3 4)

11.

12. let write tr =

13. let watchn = (n, 0, 4) in

14. map watch write_nodes

15.

16. STE ” " my_ckt weak write_ant write_cons write_tr;

The first line of the code is used to load the model of our LA-1 interface design into
the Forte system. In line 2, we leave the <weak> list in the STE assertion blank since we
suppose that there is no node with contradiction assignment in our model and thus no
need to do any disconnection. Line 3 to line 8 specifies the antecedent of the property.

Two STE clock cycles, that is four STE clock ticks, are generated by line 4. W#, BWO#

52

and BW1#, the control inputs, are asserted low respectively for all those two clock cycles
in line 5 and 6. The data input is provided in the line right after. The consequence of the
property is defined in line 9 to line 11, which gives the expected results of the simulation.
Lines 12 to 15 specify a list of nodes which will be traced within specified time ranges.
With all these STE invocation object definitions ready, we can run the STE simulation by
calling the last line of the above code. This STE simulation will end up with a value T/F

to indicate the success/fail of the simulation.

3.3.3 Experimental Results

In this section, we describe our results on the verification of Ahmed’s LA-1 RTL design
using STE. Table III shows the statistics of verifying the LA-1 Interface design for 4 bits,
6 bits, and 8 bits data width combined with 12 bits and 16 bits address width using Forte.
The experiments were done on 2 X UltraSPARC-III+ machine with 2 900Mhz processors
and 4096M of RAM. In Figure 21, we can see that the memory usage grows pretty
nicely, though not linearly with respect to the width of the address bus. The BDD
complexity grows also quite acceptably. The time complexity is not an issue since all the
runs for the three different cases took less than one second. However, we could not

perform the verification for the full design with 27 address bits and 16 data bits.

TABLE III. STATISTICS FOR AHMED’S LA-1 RTL DESIGN VERIFICATION USING STE

Address Width Data Width Memory Number of
SRAM Memory SRAM Memory (in MB) BDD nodes
12 4 18 7491
8 20 14266
16 25 29489
16 4 20 12697
8 22 21578
16 27 43381

53

16-bit address

a 25’!’ /
2 20f
& 12-bit address
Q 157
£
2 107

54A

0 : :

4 8 16
Data Bus Width (bit)

Figure 21. Memory Usage for Ahmed’s LA-1 RTL design verification using STE

Our verification did successfully find some bugs for the design which were against
the LA-1 Interface specification. Those bugs were fixed in our RTL design. Then the
design was converted to Exlif, loaded and checked against all the STE properties again in
Forte. Finally all the properties passed for the updated design. The bugs for the read port,
for example, are listed below:

e Ifsignal READ SEL is asserted low all the time and never goes to high, then no data
is delivered at all. More specifically, only after signal READ SEL is asserted high at
least once at the rising edge of CLK K before it is asserted low at the rising edge of

CLK K, this read operation can be recognized and executed.
e Data is delivered one clock cycle earlier than specified with respect to CLK_K.

When an STE run returns a value other than T, it indicates that the consequence is
not realized and there should be some unexpected results of the simulation. By looking
into the STE return value which may give the Boolean condition under which the

consequence is realized or by checking the records of traced nodes, we may find out

54

where the problem exists and furthermore try to figure out how it can be solved. We can
also get some warnings in Forte when something unexpected happens and those warnings
can be helpful in problem solving. Here is an example of such a warning message from

the STE engine in Forte:

Warning: Consequent failure at time 6 on node
DATA WRITE MEM OUT w< 16 >

Current value:da0
Expected value:db16

This warning message alerts the user of a consequent failure happened on node
DATA_WRITE MEM OUT w<I16> at time tick 6 during the simulation and the reason
for this failure is shown in the second and the third lines. Finally, a Boolean condition is
provided under which this consequent failure will hold.

Finally, all the STE assertions listed in the previous sections have been verified in

Forte.

3.4 Verifying Modified LA-1 RTL Design using STE

3.4.1 Modifications

The purpose of the modification is to correct some misunderstandings of the design
specifications in Ahmed’s design presented above and to make the design more general
and adaptable to different verification tools.

Modification 1 (Architecture)

After reexamining the LA-1 interface specifications described in Look-Aside (LA-1)

Interface Implementation Agreement [34], we found that the Memory unit itself should

55

not be included as part of the LA-1 interface which works as the interconnection between
a network processor (host) and a memory/coprocessor (slave). Thus, we removed the
Memory block from our modified LA-1 RTL design.

Modification 2 (Memory interface)

As mentioned in section 4.4, the memory data bus width in the previous design is 36
bits which means that not only the 32 bits of data but also the 4 bits of data parity are
stored in the memory. However, from [34] we can see that, during a write operation, the 4
bits of data parity from the host should be only used by the interface to check against the
internal generated ones from the 32-bit data from the host and should not be put into the
memory; while during a read operation, the 4 bits of data parity to the host should be
generated from the 32-bit data stored in the memory by the interface but not be read out
directly from the memory. Hence, we reduced the memory data bus width from 36 bits to
32 bits and only the 32-bit data will be written into and read out of the memory.

Modification 3 (Clock frequency)

Two clocks CLK K (K) and CLK K1 (K#) are used in the previous design as shown
in section 4.4. Then in section 4.5, when verifying the design using STE, we met a
problem for the clocks because the VIS tool did not support multiple clocks and we
solved the problem by using the double edges of clock CLK K instead of using both the
rising edges of the two clocks and CLK K became the only clock in the design. Another
solution is to generate an internal double-frequency clock clk 2x from clock CLK K and
clk_2x is also used as the only clock for the LA-1 interface circuit. In this case, the rising
edge of CLK K and CLK K1 can be obtained by combing c/k 2x and a control signal

pflag which is used to indicate the positive edge and negative edge of clock CLK_K. The

56

second solution is a better choice for our verification purposes since it can not only avoid
the use of multiple clocks but also avoid the use of double edges of the clock which is not
supported by some verification tools. In fact, we will present another verification
methodology in a later chapter for the LA-1 RTL design where the use of double edges of
the clock is not allowed. Therefore, we will apply the second solution, that is, the double-

frequency clock scheme in our modified design.

3.4.2 Modified Design

LA-1 Interface
cik_k . clk_k
L Ciock F clk_2x me
ock Frequency >
Doubler pflag
ws d2m
dir! 16 Write Port 32
dpin -2 Controller bwe2r2
Network bwe - 2 4 Memory/
Processor addrin > addr_g Coprocessor
(Host) 24 28 (Slave)
Read Port 20
ead Po >
e Controller 28
_ dout 16 ~dm
' dpout 5 32

Figure 22. Modified LA-1 RTL design

By applying the modifications presented above to the previous LA-1 RTL design, we got
our modified design shown in Figure 22 which is also implemented in Verilog. Note that
we also increased the address bus width from 27 bits to 28 bits in the modified design.

According to the LA-1 interface specifications [34], the address bus width range is from

57

22 bits to 28 bits. We used the 28 bits because we wanted to verify the design in the

extreme situation. In this design, we use a Clock Frequency Doubler to take the clock

input clk k (CLK K) and generate an internal double-frequency clock c/k 2x which is

used as the only clock for the LA-1 interface circuit and a control signal pflag denoting

the positive edge and the negative edge of clock clk_k. The timing for the Write Port and

the Read Port are shown in Figure 23 and 24.

addrin

din

addr_w

d2m

|

LI

X

(

|

|
a

addrin

dout

1
1
I
i
H
i
i
i
i
]
]
]
'
V
em[a2] IXmem[a2];h
i
i
i

Figure 24. Timing diagram for Read Port Controller

58

The Clock Frequency Doubler is implemented using the built-in digital delay-locked
loop (DLL) of Xilinx Virtex devices. Xilinx Virtex Series DLLs provide precise clock
edges through frequency multiplication [37]. The diagram for Virtex DLL is shown in

Figure 25 [37]. The Verilog code for the Clock Frequency Doubler is as follows:

IBUFG CLK_ibufg_ A (
I(CLK_K),
.O(CLK _ibufg));

BUFG CLK_2x_bufg (
I(CLK 2x 1),
.0 (CLK 2x));

CLKDLL CLK_2x (
.CLKIN(CLK_ibufg),
.CLKFB(CLK_2x),
RST(1'b0),
.CLK2X(CLK _2x_1),
.CLKO(),

.CLK90(),
.CLK180(),
.CLK270(),
.CLKDV(),
LOCKED());

FLAG pos=~CLK_ibufg;

b

where CLKDLL is the DLL component, IBUFG and BUFG are Xilinx global buffer
components, signal CLK K is the input clock, CLK 2x is the output double-frequency
clock and FLAG pos is the output control signal used to denote the edges of CLK K.
The use of global clock buffers can take advantage of the low-skew, high-drive

capabilities of the dedicated global buffer tree of Xilinx devices [36].

Delay-Locked Loop

CLKIN CLKO -
CLKS0

CLKFE .. CLK180
CLK270

1T

Clk2x . —
CLKDV

RST LOCKED

Figure 25. Virtex DLL Block Diagram

39

Based on the design specification we draw out the following properties:

e Property 1 (Write Port): by asserting ws (W#) low at the rising edge of cl/k 2x
when pflag is high, if the byte-write control inputs bwe/1:0] (BW#[1:0]) are set to
low, the full input data din[15:0] will be captured at the current and the next rising
edges of clk 2x and sent to the memory through d2m/35:0] (data to memory) at

the next rising edge of c/k 2x.

e Property 2 (Write Port): by asserting ws (W#) low at the rising edge of clk 2x
when pflag is high, the active-low memory enable signal me will be set to low at

the next rising edge of clk_2x.

e Property 3 (Read Port): by asserting rs (R#) low at the rising edge of c/k_2x when
pflag is high, the data from the memory d m/35:0] will be sent out through

dout{15:0] (DO[15:0]) after the next rising edge of clk_2x.

3.4.3 Verification

We also use STE to verify the modified LA-1 RTL design in Forte.
The STE formulations of the three properties described above are given below:

o STE Assertion 1 for Property 1:

((clk _2x=0)A(pflag =) A(ws = 0) A(bwe[l: 0] = 0) A (din[15: 0] = d1[15:0]))
AN(clk _2x=1)AN?*((clk _2x =0) A (pflag = 0) A (din[15: 0] = d2[15 : 0]))
AN*(clk 2x=1)AN*((clk _2x =0)A(pflag =1))

— N*((d2m[31:16] = d1[15 : 0]) A (d2m[15 : 0] = d2[15 : 0])).

o STE Assertion 2 for Property 2:

60

((clk_2x=0)A(pflag=1) A(ws =0)

AN(clk _ 2x=1)AN*((clk _2x =0) A (pflag = 0))
AN’ (clk _2x=1)AN*((clk _2x=0)A(pflag =1))
— N*(me=1).

e STE Assertion 3 for Property 3:

((clk _2x=0)A(pflag =) A(rs =0))

AN(clk 2x=1)AN*((clk _2x =0) A(pflag = 0))

AN’ (clk 2x=D)AN*({(clk_2x=0)A(pflag =1) A(d _m[35:0]=d1[35:0])
AN’ (clk _2x=1) AN®((clk _2x = 0) A(pflag = 0))

AN (clk _2x=1)AN®*((clk _2x =0) A (pflag =1))

— N°(dout[15 : 0] = d1[15 : 0]) A N*(dout[15 : 0] = d1[31:16]).

3.4.4 Experimental Results

All the three STE assertions of the modified design were verified using Forte. Besides
those properties targeted for the 28 bits address width, we also verified the same three
STE assertions for the 4 bits address width in Forte. Firstly, in both cases, the memory
usages for each of the three STE assertions were almost the same. Secondly, it turned out
that the memory usage did not grow dramatically with the growth of the address bus
width but almost remained the same. In fact, all the memory usages for the three plus
three runs were less than 1M. Thirdly, the time complexity is also not an issue since all
the runs for the six different assertions took less than one second.

Compared with the experimental results of Ahmed’s design, in which the memory
usage were much larger and grew almost linearly with the width of the address bus, these
results were not surprising since we removed the Memory block from the modified

design which took most of the resources.

61

3.5 Summary

In this chapter, we performed a case study of verifying the Look-Aside Interface using
STE, through which we obtain in-depth understanding and practical experience of this
symbolic model checking approach. In the next two chapters, we will investigate the
MDG-based model checking approach in the same way: describing the underlying theory

and methodology in one chapter and presenting a case study of it in the next chapter.

62

Chapter 4

MDG-based Model Checking

To deal with the state explosion problem of traditional BDD-based symbolic model
checking methods, a new MDG-based model checking approach is proposed by Corella
et al. [10]. In this chapter, we first introduce the theoretical foundations of MDG-based
model checking in Section 4.1 and 4.2. After that, the modeling, specification language
and verification methodology of this approach will be described in detail in the following
sections. Finally, after providing an illustrative example of this approach, MDG-based

model checking tools are discussed.

4.1 Many-sorted First-order Logic

Whereas Boolean propositional logic is used in BDD-based model checking approaches
to model circuits at the bit level, a more expressive logic is needed in the MDG-based
method in order to represent the circuits at higher level of abstraction. A modified many-
sorted first-order logic is then proposed for this purpose.

Standard many-sorted first-order logic [11] is a very powerful language in terms of
expressiveness and it can be viewed as a unifying framework for all other logics,
including higher-order logic. By adding the notion of type (or sort) to the formalism of

first-order logic, it gains modeling flexibility and retains the tractability of first-order

63

logic, such as completeness, compactness, structural induction over terms and formulas,
and efficient matching and unification algorithms.
The logic used in the MDG-based verification modified the standard many-sorted

first-order logic by separating the set S of sorts into two classes: the set S, of concrete
(also called enumerated) sorts and the set S, of abstract sorts, which makes possible the

distinction between data path and control path in hardware verification.
Concrete sorts have enumerations, while abstract ones do not. The enumeration of a

concrete sort s €S, is a list of constants of sort s, called individual constants. The

constants that do not show in any enumeration are generic constants of abstract sorts.
Constants or variables may be of concrete sort or abstract sort. As a special case, the
Boolean logic may be included in this logic as a concrete sort with an enumeration over
{0, 1}.

Function symbols are classified into three categories according to the sorts of its
arguments and the result:
e concrete function symbol (with a concrete result and concrete arguments),
e abstract function symbol (with an abstract result),
e or cross-operator (with a concrete result and at least one abstract argument).
Both abstract function symbols and cross-operators are uninterpreted and they are used to
model data operations and feedback from data path to control, respectively. Concrete
function symbols are used to denote control path operations.

Terms and formulas are defined inductively in the similar way as in standard many-

sorted first-order logic. In short, terms are formed of sorts, constants, variables, and

64

function symbols, and formulas are defined using equations of terms, logical connectives
and quantifiers.

A term is said to be concrete/abstract if it is of concrete/abstract sort. A term is
concretely reduced if and only if it has no concrete sub-terms other than individual
constants, i.e., a concretely-reduced term is formed of either abstract terms or individual
constants. A cross-operator f(f,,t,,...,¢,) is called a cross-term if all the arguments

t,t,,...,t, are concretely-reduced terms.

An interpretation, J, is a mapping that assigns a denotation (a non-empty set) to

each abstract sort. A concrete sort or a constant is itself a denotation. Let V' be a set of
variables. A S-compatible assignment with domain V, @7, is a function that maps each
variable in ¥ of sort s to an element of the denotation of the sort 5. Let @ be the set of

all possible &compatible assignments to the variables in V.
The truth semantics of a formula is defined relative to an interpretation and an
assignment compatible to it. More precisely, given an interpretation § and a &

compatible assignment ¢ to the variables that occur free in F', the truth of a formula F,

denoted by 8,4 F F,is defined recursively as follows:

e 0,9 |= t, =t,,iff t, and ¢, are terms of the same denotation.

o S,pF—F iffnotS,gfFF.

o S,pFF AF,iff 6, Fand 5,6 FF,.

e S9FFVF,iffs,pFFord,¢FF,.

o 0,9 |= (3x)F iff there exists an assignment ¢ which is ¢ extended with an
assignment to variable x such that §,¢ |= F

65

e J,¢ |= (Vx)F iff for any assignment ¢ which is ¢ extended with an assignment to
variable x, 8,4 F F holds.
We use |= F to denote the case where J,¢ |= F holds for all § and ¢ e ®) with

variables in V' occur free in F .

4.2 Multiway Decision Graphs

Multiway Decision Graph (MDGQG) is a data structure representing a formula in the many-
sorted first-order logic described in the previous section.
Definition 4.2.1: Let X and A be two sets of variables such that X N A = . An
MDG of type X — A is a finite rooted directed acyclic graph (DAG) G, where
e Fach non-root leaf node is labeled by formula T (truth), and a root leaf node (in
which case G has only one node) may be labeled by formula T or L (falsity).

¢ For each internal node n, either

n is labeled by a cross-term of concrete sort ¢ with variables in X, and the

outgoing edged of » are labeled by individual constants of « , or

- nis labeled by a variable in X of concrete sort ¢, and the outgoing edges of »
are labeled by individual constants of « , or

- nis labeled by a variable in A of concrete sort «, and the outgoing edges of n

are labeled by individual constants of « , or

- nis labeled by a variable in A of abstract sort 4, and the outgoing edges of n are

labeled by concretely-reduced terms of £ with variables in X.

66

A well-formed (reduced and ordered) MDG [10] is a canonical graph representation
of a quantifier-free and negation-free many-sorted first-order formula, called Directed
Formula (DF) [7].

Note that a BDD is a special case of an MDG. More precisely, a BDD can be
transformed into an MDG by

e replacing the label 0 or 1 of a leaf node with T or L, and

e removing all the non-root leaf nodes labeled L and all the related incoming edges.

4.3 Modeling

In MDG-based model checking, digital systems under verification are modeled by

abstract descriptions of state machines (ASMs), where both sets of states and relations are

encoded by MDGs.
An abstract description of a finite state machine M is a structure

A=,V V,,v,8,,R,R,) , where

e V,,V, and V, are pairwise disjoint vectors of input, state and output variables
respectively.

e v is the function that maps each state variable in ¥ to the corresponding next state
variable. Thus ¥ =v(V,) is the next state variable set, which is disjoint from ¥,
Vs and V,.

e S, is the abstract description of the set of initial states encoded by an MDG of type

X >V, , where X is a set of abstract variables disjoint from V,, ¥, ¥, and V.

67

e R, is the abstract description of the transition relation encoded by an MDG of type
vV, OV, > V..

e R, is the abstract description of the output relation encoded by an MDG of type
vV, oV, =>V,.
Abstract descriptions of state machines describe state machines at a higher level of

abstraction. For each interpretation &, one and only one state machine M can be obtained

by applying & to the abstract description A4 , which is of the form
M=(®; ,®; @) ,Set; (S,),R,’,R,) such that
J (I),‘fl , d);fs and CD,’fO are the sets of all possible &compatible assignments to the

variables in V;, V; and V,, respectively, i.e., the set of input vectors, the set of states

and the set of output vectors respectively.

. Set,‘fs S))={ge CD,‘fs | 0,¢ F(EX)S,} is the set of initial states.
o RS={¢.4")e) x Dy xDy | 5,9 gU(g"v) E R,} is the transition

relation.

o R, ={(4¢.4")e®) x®) xD; |5,4upUg" ER,} is the output relation.
4.4 Specification Language

A specification language called L, . is used to express the properties to be verified in

the MDG-based model checking approach.

L, [29] is a CTL-like specification language based on many-sorted first-order

logic, which is used to describe properties for abstract description of state machines.

68

ASMs lift the system modeling in BDD-based approaches from the propositional level to
the first-order level. Similarly, L,, . lifts CTL (a specification language used in BDD-
based approaches) from the propositional level to the first-order level.

A Next_let formula is the basic building block of a L, property. Given an ASM
and a set of ordinary variables (not occurring in the ASM), the recursive definition of a
Next let formula is as follows:

e An equation u, =u, is a Next_let formula, if %, is an ASM variable and u, is an

ASM variable, an ordinary variable, or a constant.

e !f(otyf), f&g(fandg), flg(forg) and f— g (fimpliesg) are

Next_let formulas, if both f and g are Next let formulas.

e LET (v=u)IN f isaNext let formula, if v is an ordinary variable, u is an ASM
variable, and f is a Next let formula. We call this type of formulas LET-IN
formulas.

e X f is a Next_let formula, if f is a Next let formula and X is the next-time

operator.
Just like in the symbolic trajectory formulas, finite depth of nesting of the next-time
operator is also allowed in the Next let formulas.

Let p and g be Next let formulas. A L,, . property is defined of either of the

following forms:

e A(p),
e AG(p),
* AF(p),

69

o A(p)U(9q),
e AG((p)=(F(q))),

* AG((p)=«Up)U(g)).

The truth semantics of a L,,,. property is defined relative to an interpretation ¢ and

a J-compatible assignment ¢. A detailed description of the semantics can be found in

[28].

4.5 Verification Methodology

4.5.1 Reachability Analysis in MDG-based Model Checking

As mentioned previously, given an abstract description 4 = (V,,V,,V,,v,S,;,R;,R,) of
finite state machines, for any interpretation 6 , one and only one state machine
M =(®) @) @) ,Set; (S,),R;’,R,”) can be obtained by applying & to the abstract

description 4. We now show how to perform the reachability analysis of M using some
basic MDG algorithms.

The pseudo-code [7] shown in Figure 26 describes the algorithm ReAn for
reachability analysis, where R, O, I, P and N are MDG variables representing sets of
states, O is an MDG variable representing the set of output vectors, K is the loop counter,
Fresh is a local function, and RelP, PbyS and Disj are basic MDG algorithms which are
described in detail in [7]. Note that, an invariant condition C represented by an MDG is
checked against 4 during the reachability analysis.

In line 2, before the start of the loop, R that represents the set of reachable states

found so far and Q that represents the frontier set, that is, a subset of R containing at least

70

all those states entering R for the first time in the previous loop iteration, are initialized to
the MDG representing the set of initial states, and the loop counter K is reset to zero.
Lines 3 to 14 specify the body of the loop.
In line 5, function Fresh(V;, K) constructs an MDG representing the set of input

vectors which are fresh variables related to the value of K.

1. ReAn(4, C)

2. R=8S; Q:=8;K:=0;

3. loop

4, K=K+1;

5. I:=Fresh(V}, K);

6. O =RelP({I, O, Ro}, 1 W Vs, D),
7. P :==PbyS(0O, O);

8. if P # F then return failure;

9. N =RelP({l, O, Rr}, V1 U Vs, 1);
10. Q =PbyS(N, R);

11. if @ = F then return success;

12. R :=PbyS(R, O);

13. R :=Disj(R, Q);

14. end loop;

15. end ReAn;

Figure 26. Reachability analysis algorithm in MDG-based model checking

Lines 6 to 8 are used to check if the invariant C holds and to terminate the algorithm

and report failure if the check fails. In line 6, the relational product algorithm RelP

71

computes an MDG representing the set of output vectors produced by the states in the
frontier set O, which is assigned to O. In line 7, the pruning-by-subsumption algorithm
PbyS is used to remove from O any path leading to output vectors that satisfy the
invariant C, the resulting MDG of which is assigned to P. In line 8, if the set represented
by P is not empty which means not all the output vectors produced by the states in the
frontier set satisfy the invariant, the algorithm terminates, reports failure and provides a
counterexample.

Lines 9 to 11 compute the new frontier set and check if the fixpoint has been
reached. Line 9 computes an MDG representing the set states reachable in one transition
from the frontier set, which is assigned to N. Line 10 is used to remove from N the
current reachable states represented by R, the resulting MDG of which representing the
new frontier set is assigned to Q. In line 11, if the new frontier set is empty which means
the fixpoint has been reached, the algorithm terminates and returns success.

Lines 12 and 13 are used to compute an MDG representing the new set of reachable
states by unioning the new frontier set Q with R. First, in line 12, R is simplified using
PbyS by removing any path subsumed by Q. Then, in line 13, the disjunction algorithm
Disj computes an MDG representing the union of sets represented by R and (, and assign
the resulting MDG to R.

Note that, the reachability algorithm described above may produce false negative and
may not terminate, the discussion of which is beyond the scope of this thesis and the

detail of which can be found in [7].

72

4.5.2 Model Checking of Lyyc Properties

In general, the MDG-based model checking approach is based on abstract implicit state
enumeration (the reachability analysis algorithm described in the previous section).
Different property checking algorithms [28] are developed for Lypg formulas of various

forms. The basic idea is to use an automatic tool to build additional ASMs for the L,

property to be verified, connect the additional ASMs to the ASM model M representing
the design under verification to make a new composite ASM model M’, and then set an
invariant condition to be checked against M’ during the reachability analysis of M. If the
invariant holds in all the reachable states of M’, we then prove that model M satisfies the
L, property.

In this approach, data signals are denoted by abstract variables instead of Boolean
variables, and data operators are represented by uninterpreted or partially interpreted
function symbols instead of Boolean functions. Thus, the verification based on abstract
implicit state enumeration can be carried out independently of data path width, which

therefore can effectively alleviate the state explosion problem.

4.6 MDG-based Verification Tools

The MDG tools [30] are implemented in Prolog as our MDG-based verification tools.
The MDG tools, targeted to the verification of RTL designs modeled by ASMs, consist of
an MDG package, a reachability analysis algorithm, applications for RTL verification,
and a model checker for Lyps. The MDG package contains a set of manipulation
algorithms for MDGs, the details of which can be found in [10]. The reachability analysis

algorithm explores all the reachable states of an ASM and checks whether an invariant

73

holds in all those states. Four applications for RTL verification are provided in the MDG
tools: ASM state exploration, ASM safety property checking, ASM equivalence checking
and Combinational verification. The MDG model checker [27] performs checks on
properties expressed in Lypg against an ASM model. Our verification for the modified
LA-1 RTL design was performed using the MDG model checker in the MDG tools.

The MDG model checker accepts only design models in MDG-HDL [27], a Prolog-
style Hardware Description Language which allows the use of abstract variables and
uninterpreted function symbols. Therefore, a converter is needed to translate the Verilog
RTL into MDG-HDL format. Note that, in this case study, due to time limitation (not
technical limitation), we did not build the converter but did the translation for the
modified LA-1 RTL design manually. We will put the efforts of developing such a
Verilog to MDG-HDL converter as our future work. Besides the MDG-HDL description
of the design, a bunch of other information, such as sort and function type definitions and
user-defined symbol ordering, is also needed by the MDG model checker in order to
perform the verification properly. All the required information is arranged into four input
files: the algebraic specification file, the symbol order file, the circuit description file and
the invariant specification file. Detailed descriptions of these files can be found in [30].

Design properties are expressed in Lypg. Given a Lypg property, the property parser
in MDG model checker will develop an additional MDG-HDL code for the property,
merge the additional code with the original MDG-HDL code generated for the design
under verification, and set an invariant condition in the invariant specification file.

The new merged MDG-HDL code and the invariant are then sent into the MDG

model checker, where the MDG-HDL code is complied into an ASM encoded internally

74

by MDGs and the invariant is checked against the ASM model during the reachability
analysis of this model. If the invariant holds in all the reachable states of the ASM model,
we can then prove that the design under verification satisfies the L, property. When
the checking for the invariant fails at some stage of the reachability analysis procedure,
the procedure will be terminated immediately and a counterexample will be generated to

indicate the states not satisfying the invariant.

4.7 Summary

In this chapter, we presented the theory and methodology of MDG-based model checking
and introduce the verification tool for it. In the next Chapter, we will further investigate
this approach by another case study of verifying the same Look-Aside Interface using

MDGs.

75

Chapter 5

Verifying Look-Aside Interface using MDGs

In Chapter 3, we verified several properties of the Look-Aside Interface using STE. In
this chapter, we will make another case study of verifying the same properties of the
interface using MDGs. By comparing the syntax of STE assertions with that of Lypg
properties, we can see that Lypg properties are more powerful than STE assertions in
terms of expressiveness. More precisely, the properties that STE assertions can describe
are a subset of those that can be expressed by Lypg properties. Thus, we can easily get
the Lype properties to be verified against the interface model by mapping from of the
STE assertions. We will provide a method to perform the mapping from STE assertions

to Lmpg properties.

5.1 Mapping STE Assertions to Lypg Properties

We start from the normalized form of basic STE assertions

Ay AN(A)A...ANY(4) > Cy AN(C)HA...AN(C),
where 4; and C; are simple predicates or conjunctions of these or empty, A and — are
logic connectives “and” and “implication” respectively, N is the next-time operator, and

N; denotes i next time operators. For example, 4; can be D = d, a simple predicate which

states that node D of a circuit has the value of d at the present time and d can be a

76

symbolic variable or a constant or a vector of either of them. The antecedent instructs the
initialization of signals for the symbolic simulation in STE and the consequent defines
the expected response of the circuit which is then checked against the simulation result.

Note that the time unit in STE is half clock cycle, while MDG tools use one clock
cycle as the time unit. Thus, only those STE assertions that have no predicates at both
edges of the clock can be mapped to Lyvpg properties.

Before doing the real work, we need to check whether an STE assertion is suitable
for the mapping or not. If it is not, we need to redo the RTL design to remove the use of
both edges of the clock. One solution is to generate an internal double-frequency clock
clk_2x from the original clock clk and use c/k_2x as the only clock for the circuit. The
rising edge and the falling edge of the original clock cl/k can be obtained by combining
clk 2x and clk, in which case clk is viewed as a control input.

We then remove the predicates related to the clock signal in the STE assertion
because in the MDG tools the clock signal is implemented implicitly. The resulting STE

assertion should be of the following form:
Ay ANP (A A ANI(4,) > Co ANP(C) ALLANY(C)),
where j is the greatest even number that is equal or less than .
In order to ease the mapping process, we first transform the normalized form of an

STE assertion mentioned earlier into an equivalent formula by decomposing the

implication into a conjunction of sub-implications according to the consequent side as:

AOANZ(AZ)A...ANj(Aj)——)COANZ(CZ)A...ANj(Cj)=
(A AN (A) A ANT(4) > C) A

(4y AN* (A A ANY(4) > N2 (C) A

VAN

(A4 AN () A...AN’(4)) > N/(C)))

77

Next, we do the decomposition again for each of the sub-implications shown above,

according to the antecedent side, as below:

A AN (A AL AN (4) 5> NI(C) =
(4y > N(CHAN’(4,) > N(CHA...AN'(4;) > N(C) =
(4 > NECNAN (4, 5> NZHCN A AN (4, > N7(C)))

Then we start the real mapping process. The first step is to replace a state variable or
a vector of state variables with an ASM variable. Then we use the LET-IN formulas

mentioned above to rewrite the final sub-implications of form 4, - N"(cC,) as follows:
e Any predicate in 4; of form v, =v; or v, =v_[n:0] will be re-written as v, =v,,,

where vy, Vsi, vsi[n:0] and v,; are an ASM variable, a symbolic variable, a vector of
symbolic variable and an ordinary variable respectively.
e Any predicate in C, that uses vy; or vg[n:0] will use v,; instead.

The resulting sub-implication will be written as:

LET ((Va 1= Vq 1)& & (v0p=vap))
IN (((vacl':c])& - & (vacqch)) (Nm(cn ,)))

where v,; 1s an ASM variable in 4,, ¢; is a Boolean constant or a vecotor of Boolean
constants, and C,’ is the resulting consequent by replacing vy; or vy [#:0] in C, with v,;.
LET-IN formulas allow us to use ordinary variables to remember the current values
of ASM variables in the antecedent which are then used in the consequent. Note that the
predicates in the antecedent that have the state variables or vectors of state variables
assigned constant values should keep the same structure and not be transformed by LET-
IN formulas, since constant values do not change with time and therefore there is no need

to use LET-IN formulas to store the current values for them.

78

Thirdly, the logic connectives — and A should be mapped to their counterparts in
Lmpg which are — and & respectively and each two next time operators N* should be
replace by one X which is the next time operator in Lypg.

Next, we may do some compositions to get a more compact formula.

The last step is simply to add AG to the front of the resulting formula.

The mapping process can be illustrated by the following example. Assume that we

want to map the following STE assertion to a Lmpg property:

((clk=0)A(en=D)A(din[15:0]=dI[15:0])) AN(clk =1)
ANZ((clk = 0) A (en = 0) A (din[15: 0] = d2[15: 0]))

AN (clk=1) AN*(clk = 0)

— N?(dout = d1) A N*(dout = d2)

B

where clk, en, din[15:0], and dout[15:0] are state variables or vectors of state variables
representing the clock signal, the control input, the 16-bit data input and the 16-bit data
output respectively.

First, by removing the clock related predicates, we get:

((en =D A(din[15: 0] = d1[15:0]))
ANZ((en = 0) A (din[15:0] = d2[15:0]))
— N*(dout = d1) AN*(dout = d2)

Next, we decompose the above formula as:

(((en =) A(dir15: 0] = d1[15 : 0])) — N*(dout = d1))
ANZ(((en = 0) A (dir15: 0] = d2[15 : O])) — (dout = d1))
A(((en =1) A (dir15 : 0] = d1[15 : 0])) = N*(dout = d2))
ANZ(((en = 0) A (dif15 : 0] = d2[15 : 0])) » N (dout = d2))

Finally, by applying the LET-IN formulas, we have the mapped Lmpg property as:

AG((LET (vl=din) IN ((en=1) > X(dout=v1)))
& X(LET (v2=din) IN ((en=0) — (dout=v1)))
& (LET (vl=din) IN ((en=1) — XX(dout=v2)))
& X(LET (v2=din) IN ((en=0) — X(dout=v2))));

79

where v1 and v2 are ordinary variables and the other three variables din, en and dout are
ASM variables . Note that vl, v2, din and dout should be of the same abstract sort and en
is of a concrete sort. Thus, vectors of Boolean variables (state variables) in STE
assertions are mapped to abstract variables in Lypg properties, which makes the

verification in MDG tools independent of data path width.

5.2 Verifying Modified LA-1 RTL Design using MDGs

5.2.1 Modeling

The MDG-HDL model for the Write Port of the modified LA-1 RTL design is shown in

Figure 27, where

e input signals clk 2x, pflag, ws, dpinl, dpin0, bwel and bwe0 are of type bool,

e input signals din and addrin are of abstract sort ‘wordn’,

e output signals me, bwe_m3, bwe m2, bwe _ml, and bwe_m0 are of type bool,

e output signals d2m and addr_w are of abstract sort ‘wordn’, and

e components make word, parityl, parity2, parity3 and parity4 are abstract function
symbols.

Note that signals dpinl and dpinQ are mapped from dpin[1] and dpin[0] in the Verilog

design respectively. Similarly, signals bwel and bwe(are mapped from bwe[l] and

bwe[0] respectively, and signals bwe m3, bwe m2, bwe _ml, and bwe _m0 are mapped

from bwe2m[3], bwe2m[2], bwe2m[1] and bwe2m[0] respectively. The function of

make_word is to merge two input data into one output data. The function of parityl,

parity2, parity3 or parity4 is to compute the parity of the input data.

80

ws [: ws_n ws_n1 ws_n2
ck 2x > > reg1 > reg2
pflag [l_‘
E pflag_n :1 >en2
D
din >
LI dp
2
T [make_word) d2m
reg3 dn
|| regd | BIS 3R
TR SR
| | Q1 [§ ®| |8
alla Q) fa
. addr_w
addrin ——>
Q. o o -
reg5 IR IR
2|18 2|2
+—| o e © o
dpint C——>—
R e TF>—
- reg7
|
dpin0 [
T 0o >
’ J
reg8 dp0_n
- reg9 bwe_m3
bwet >
l et | [
> reg10 bwe1_n
reg11 —D_ bwe_m2
e -
bwe0 > I bwe0_p bwe_m1
@ bwe_m0
reg12 bweO_n
reg13
correct_parity

Figure 27. MDG-HDL model for the Write Port of the modified LA-1 RTL design

The MDG-HDL model for the Read Port of the modified LA-1 RTL design is shown
in Figure 28, where
e input signals c/k 2x, pflag and rs are of type bool,

e input signals d m and addrin are of abstract sort ‘wordn’,

81

e output signals dpout! and dpout(are of type bool,

e output signals dout and addr_r are of abstract sort ‘wordn’, and

e components msw, Isw, parityl, parity2, parity3 and parity4 are abstract functions.

Note that signals dpoutl and dpout() are mapped from dpout[31] and dpout[0] in the
Verilog design respectively. The function of msw is to strip the most significant word
from the input data. The function of Isw is to strip the least significant word from the

input data. The function of parityl, parity2, parity3 and parity4 is to compute the parity

of the input data.
rs_n0 rs_n1 rs_n2 rs_n3
ck 2x [reg1 (reg2 J—v> reg3
rs_n
rs
pflag
dh c
d_m msw @
% d
g < dout
dl di_r
— Isw reg7
—> reg4 —
h1
parity1 dp ™~
‘;:w dp1
g <"1 dpout
dpit dpl1
—| parity2 P P / > reg8
—1> regs
dphO
parity3 P N
% dp0
g <] dpout0
d
" parity4 dpl0 PIO_r 7 reg9
> regé
addrin > addr_r

Figure 28. MDG-HDL model for the Read Port of the modified LA-1 RTL design

82

5.2.2 Properties

The Lmpg properties listed below are obtained by mapping from the STE assertions
presented in the previous section using the mapping procedure proposed earlier in this
chapter:

¢ Lmpc Property 1 mapped from STE Assertion 1:

AG(
(pflag=1 & ws=0 & bwel=0 & bwe0=0)->
(LET (vl=din) IN
(X(LET (v2=din) IN
(X(d2m = fmake_word(v1,v2)))
)
)
)
);

¢ Lwvpc Property 2 mapped from STE Assertion 2:

AG(
(pflag=1 & ws=0) ->
(XX(me=1)
)

¢ Lmpc Property 3 mapped from STE Assertion 3:

AG(
(pflag=1)&(rs=0))->
(XX (LET (vl=d_m) IN

(X ((dout=tmsw(vl))

& X (dout=flsw(v1))
)
)
)

&3

5.2.3 Experimental Results

During our verification using the MDG tools, we found some bugs in the MDG tools

which are listed below:

e The property parser does not support the nested LET-IN structure in the Lmpg
properties and only the last Let equation will be counted.

o The property parser cannot deal with the cross-terms in the Lypg properties properly.
More specifically, when generating the additional MDG-HDL code for a cross-term
in the property, the property parser will declare the output signal of the cross-term as
an abstract variable which contradicts the fact that the result of a cross-term should
be of a concrete sort.

e The property parser cannot build the symbol ordering for the resulting merged MDL-
HDL model correctly.

We fixed the problems caused by the above bugs for our modified LA-1 RTL design
verification manually.

All the three Lypg properties listed in the previous section have been verified in the
MDG tools. Note that MDG-based verification for the LA-1 Interface is independent of
address width since the address input is of abstract sort.

Table IV shows the memory usage, runtime and the number of MDG nodes used for
verifying each of the three LMDG properties. As can be seen, the memory usages were
very small and the time complexity is not an issue since all the runs for the three

properties took less than two seconds.

84

TABLE IV. VERIFICATION STATISTICS FOR THE Lypg PROPERTIES

Memory (MB) Runtime (s) Nodes
Lmpg Property 1 1.7 0.8 2300
Lypg Property 2 1.0 0.5 1019
Lypg Property 3 3.0 1.7 5210

5.3 Summary

After exploring the theories and methodologies of STE and MDGs through case studies,
it can be concluded that MDG algorithm is a complementary technique to STE, which
can lift STE to a higher level of abstraction and can therefore further alleviate the state
explosion problem of STE. In the following Chapter, we will discuss the possibility of

combining STE and MDGs.

85

Chapter 6

First-Order Symbolic Trajectory Evaluation

using MDGs

In this chapter, we investigate the possibility of using MDGs to perform Symbolic
Trajectory Evaluation. Two attempts to combine the Symbolic Trajectory Evaluation
with the MDGs are discussed: one in the STE verification environment and the other in
the MDG tools. We focus on the second attempt and propose a theory and methodology
of performing first-order Symbolic Trajectory Evaluation in the MDG tools. This study

may provide direction for further research in the application of MDGs.

6.1 Purpose

Symbolic Trajectory Evaluation technique and MDG-based model checking technique
improve the traditional BDD-based symbolic model checking approaches in two different
ways. The first one can dramatically reduce the computations for the next state space and
enhance the computational efficiency, while the latter one can simplify the data path
operations and thus can effectively overcome the state explosion problem. If we can
combine these two techniques, it is possible for us to take the advantages of both of them.

The basic idea of such a combination is to replace the use of the BDDs with the MDGs

86

for the encoding of the symbolic expressions and to implement the STE algorithm at a
higher level of abstraction which can further alleviate the state explosion problem in STE.
We can implement this combination either in the STE environment ‘Forte’ or in the

MDG environment ‘MDG tools’.

6.2 Implementing the Combination in Forte

Our goal of the first combination approach is to encode the symbolic expressions in Forte
using the MDG package. To achieve this goal, we need to integrate the MDG package
into Forte. A BDD package programmed in FL is used to encode symbolic expressions in
Forte. As mentioned in previous chapters, the programming language in Forte is FL,
while the MDG package that we have in the MDG tools is implemented in Prolog.
Hence, the MDG package in Prolog cannot be integrated into Forte system directly to
replace the BDD package. In order to solve this problem, we can either program the
MDG package again in FL or implement the MDG package in a language other than FL
assuming that Forte has a foreign language interface to that language. The procedure of
the first approach is somewhat straightforward provided that we have sufficient
background knowledge for the MDG package and FL. We now illustrate the basic idea of
the latter one using a well known Muddy example.

MuDDy [35] is a SML (Standard ML) interface to BuDDy, a Binary Decision
Diagram package written in C language by Jorn Lind-Nielsen [38]. The first usage of
MuDDy was in the Hol98 theorem prover to integrate the BuDDy BDD package. BuDDy
and a piece of C code ‘muddy.c’ associating the C functions called in MuDDy with the C

functions in Buddy form a new C library, which is then compiled into a dynamically

87

loadable library. MuDDy is used in the Moscow ML system where Moscow ML's foreign
function interface is used to call the C functions in the dynamic library. Moscow ML is a
proper extension of SML and every valid SML program should be a valid Moscow ML
program [26].

MuDDy makes BuDDy applicable in SML modules via three structures:

e bdd - defining an ML type bdd representing nodes in BuDDy’s BDD space, and
operations for creating and manipulating ML values representing BDDs,

e fdd - providing support for blocks of BDD variables used to encode values
representing elements of finite domains, and

e bvec - providing support for Boolean vectors.

Figure 29 shows an example of how to access BuDDy through MuDDy in the
Moscow ML system. When an SML function ‘funcl’ of structure ‘bdd’ is called from the
top level SML file, C function symbol ‘mlbdd funcl’ in the dynamic library associated
to ‘funcl’ by the SML function ‘appl’ in MuDDy will be accessed. Finally inside the
dynamic library, C functions in BuDDy associated to ‘mulbdd funcl’ in ‘muddy.c’ will
be accessed by the top level SML file.

From the illustration of the above example, we can see that the following steps
should be taken for the purpose of integrating the MDG package in Forte through the
foreign function interface method:

e Program the MDG package in a language, such as C, to which Forte has a foreign
language interface,

e Devise an FL interface to the MDG package, and

88

e Write a piece of code like ‘muddy.c’ in the same language as used for the MDG
package to associate the functions called in the FL interface with the functions in the

MDG package, and compile the code and the MDG package into a dynamically

loadable library.
4 Dynamicw
BuDDy Library
C fufctions
3 |
i muddy.c
EXTERNML valué mibdd_funcl(+-+)
{ -+~ C functions **+}
L | J
(\ 2 ~ Moscow\
e MuDDy ML

) } bdd.sml
val funcl : t1 -> 12 = appl (symb "mlbdd funcl")

\ .

N

-+ bdd funcl -+

Top level SML file

Figure 29. MuDDy in Moscow ML system

Theorically, it is possible to implement both the above methods to integrate the
MDG package in Forte either by programming the MDG package directly in FL or by
programming the MDG package in a language other than FL and accessing the MDG
package using FL’s foreign function interface. However, it is practically impossible for

us to do so because the FL source code for Forte is not yet open to the public and thus we

89

can neither modify it nor add more codes to the system. Therefore, we have to make
another try at combining these two techniques, detail of which will be discussed in the

next section.

6.3 Implementing the Combination in the MDG Tools

In this combination approach, we will develop an MDG-STE engine in the MDG tools
where the STE algorithm is implemented using the MDG package.

To do this, we need to first find out the features exclusive to STE and try to
implement them in the MDG tools. One such notable feature is the “don’t care” value X
in the logic of STE. Another important feature of STE is the concept of ‘lattice’.

Next, we will discuss respectively the implementations of STE modeling, STE
assertions and STE verification methodology using MDGs.

A detailed description of the STE algorithm and related terminology can be found in

Chapter 2.

6.3.1 Logic Extension

The underlying logic of STE is three-valued logic which extends the existing 1 (true) and
0 (false) values in two-valued logic with an unknown or “don’t care” value X. The X
value is essential to the modeling and symbolic simulation in STE, and is absent from the
modified many-sorted first-order logic used in MDGs. Hence, for the purpose of
implementing the STE algorithm using MDGs, we should also extend the modified
many-sorted first-order logic by adding the don’t care value X to the denotation of each

of the concrete/ abstract sort for each interpretation. For example, if the denotation of a

90

concrete/abstract sort s is set {a,,qa,,...,a,} under an interpretation &, the denotation of

s should be extended as {q,,q,,...,a,,X}.

6.3.2 Implementation of STE Modeling

In STE, a lattice-based tuple M = [(S, <), Suc] is used to model the system under
verification, where a partial order < is defined over the state space S = {0, 1, X}" U {T}
and (S, <) forms a complete lattice. Following the same structure, in the MDG-STE
engine, we should also define a partial order <pq; over the state space Smg; and make
(Smag, <mdg) @ complete lattice.

In MDG tools, an abstract description of the state machine (ASM) is used to model

the digital system. An abstract description of an STE model 4,,,, =(V,,,<,4 R,) can

mdg *mdg *
be built based on the ASM, where
o V.4 is a vector of state variables and each variable could be concrete or abstract,
e <nd is a partial order over the state space, and

e R is the abstract description of the next state function encoded by an MDG of type

v

mdg—>V

mdg *
Note that the state variable vector V.4 is actually a combination of variables representing
the input signals, the register output signals or the output signals. For a given state

variable vector V,, =v,v,...v,,v,, , the next state function R, (V,,) is actually a
vector of next state functions for each element of Vg, ie., R, (V,,) =

ty(v)t (v)...t, ,(v,,)t, (v,,). If element v; is associated with an input of the circuit,

91

the next state function #,(v;,) = X°, and otherwise ¢,(v;) is determined by the circuit
structure.
For each interpretation 6, one and only one STE model Mg, can be obtained by

applying o to the abstract description 4,, , which is of the form

M, =D} <,).RS.) such that

Vg > — mdg suc
e @Y isthe set of all possible S-compatible assignments to the variables in ¥, , i.e.,
V mig mdg

the set of states,

® <mq is a partial order over @} ,
mdg
o (D) > <mdg) is a complete lattice, and
mag

o R, ={(4¢4)e®) x®; |6,4U¢ FR,} is the next state function, monotone

with respect to <pqg.

ab;

alX Xb2 Xb]

"\\

O
XX

> O

Figure 30. Partial orders over {a,,a,, X} and {4 ,a,, X}-{b,,b,,b,, X}

Suppose that the length of the state variable vector Vg is nand V,,, =vv,...v,.

The state space Smag = CD,‘fMg of the model Mg, can be denoted as d, -d, -...-d,, where

92

d,(1<i<n) is a non-empty set representing the denotation of sort s,(1 <i < n) which is
the sort of variable v,(1<i < n). Note that the don’t care value X is an element to each of
the denotation, that is, X ed,(1<i<n) . The partial order <nq, is defined over
d -d,-...-d, . lllustrative examples for the partial orders over {a,,a,,X} and
{a,,a,,X} {b,,b,,b;, X} are shown in Figure 30.

Obviously, (d, -d, -...-d,,<,,) is not a complete lattice since not every subset of
d -d,-...-d, has a least upper bound. Therefore, in order to make (S,,,<,,) @

complete lattice, we introduce the top element T, representing a unique overconstrained

state, to the state space Smag. Thus, the resulting partial order set d, -d,-...-d, U{T},
<,) forms a complete lattice with T as the universal upper bound and L =X, ..., X as

the universal lower bound. The complete lattices ({a,,a,,X}U {T},) and

mdg

({a,,a,,X}-{b,b,,b,, X} U {T}, <,,,,) are shown in Figure 31.

T

AN

abs

/\
\/ \\

Figure 31. complete lattices ({a,,a,, X}U{T}, <) and ({a,,a,, X} {b;,b,,b,, X} U {T}, <

mdg

93

6.3.3 Implementation of STE Assertions

In the MDG-STE engine, an STE assertion is of form [4nte, ,, — Cons,,,,], where both

Ante,,, and Cons, , are MDG-based symbolic trajectory formulas.
The basic component of a MDG-based symbolic trajectory formula is the simple

predicate. Given an STE model M, , =({(®% ,<,.),R’) obtained by applying an

Vndg > — mdg suc

interpretation & to an abstract description 4, =, R) of the STE model, a

dg ° Smdg b
predicate over @9 _ s a function that maps @ _ to a special complete lattice containing
i (o

only two elements false and true, with element false as the universal lower bound and

element frue as the universal upper bound. A predicate p,,, over CD,‘fmdg is called simple if
it is monotone and there exists a unique element 4, in d),‘fmd such that for all s e CI),‘fMg

with d pog Smdg 5> Pomdg (s)=true . The d Do here is called the defining value of predicate
Py - We denote the set of all simple predicates over (ngdg by P, . A simple predicate

where V is the set

over ®° can be extended symbolically as p®, :®> —P
p mdg Vindg ym Yy p mdg Vimdg mdg

of all variables occurring in p,, and CI),‘imdg is the set of all &~compatible assignments to

the variables in V. The symbolic simple predicate p,, maps a 5-compatible assignment
to the variables occurring in it to a simple predicate in P, and works over V,, . The

symbolic defining value d;sd of p,, is the symbolic extension of the defining value

dpmdg of D g -

94

Definition 6.3.3.1: Given an STE model M, = (@5 ,<,..),R’) and a set P,

Vindg > — mdg suc
of simple predicates over C[D‘ﬁmdg , an MDG-based symbolic trajectory formula of model

M4 1s defined inductively as below:

e A symbolic simple predicate p,, is a MDG-based symbolic trajectory formula,
where p, . is the symbolic extension of one of the simple predicates in P, .
e The conjunction (f, .1 A fre:) 18 @ MDG-based symbolic trajectory formula if

both /., and f, ., are MDG-based symbolic trajectory formulas.

N

e The next time expression (N f,,) is a MDG-based symbolic trajectory formula if

Sooae 15 @ MDG-based symbolic trajectory formula and N is the next-time operator.

In Forte, STE assertions are provided as an input in FL to the STE engine where the
STE algorithm is implemented. The original MDG tools take as input only properties in
Lypg format. Therefore, an extra input port for the MDG-based STE assertions should be
built for the MDG-STE engine in the MDG tools. As mentioned before, in Forte, the
syntax for STE invocation is:

STE <model> <weak> <antecedent> <consequence> <trace>,
where the <antecedent>/<consequence>, representing a symbolic trajectory formula, is
both of form a list of S5-tuples of the following format: (<guard>, <node>, <value>,
<from>, <to>). The MDG tools may follow the similar format to specify the MDG-based
STE assertions under the logic and the internal time-frame (clock) of the MDG-STE

engine.

95

6.3.4 Implementation of STE Verification Methodology

In MDG-STE, the main task of verifying an assertion of form [A4nte, ., — Cons’

mdg mdg] 18 to

check whether or not every MDG-based symbolic trajectory satisfying MDG-based

5

niy also satisfies MDG-based symbolic trajectory

symbolic trajectory formula Ante
formula Cons,,, and it can be implemented in this way:

o first compute the MDG-based defining symbolic trajectory z° . and the MDG-

based defining symbolic sequence B; . for Ante,, and Cons,,, respectively, and
onsmdg

s

over the symbolic partial order <’

e then check if x° . is no less than S Sinde

g Conspg,
(symbolic extension of <, ,) for any assignment to the symbolic variables.

Note that the above computation is bounded since it is easy to show that for a given

MDG-based symbolic trajectory f,, with the defining sequence ﬂsxd =p° B

s ... WE
g " Fmdg

have ,B;';d =L° for i 2 dep(f,4) -

In STE, function lub’is used in the definitions of the defining symbolic sequence

s
mdg

and the defining symbolic trajectory. Similarly, in the MDG-STE engine, function lub
is used in the definitions of the MDG-based defining symbolic sequence and the MDG-

K
mdg

based defining symbolic trajectory. The function lub’ , is the symbolic extension of the
MDG-based lower upper bound function lub,,, . Under the definition of the complete

lattice (S, ,< .), itis straight forward to implement the function lub_, .
mdg mdg g p mdg

96

Definition 6.3.4.1: Given an STE model M, = (D% ,<)RS

Vindg = mdg suc

)and aset P, .
of simple predicates over (D,‘fmdg , the MDG-based defining symbolic sequence ﬂ;x of a

MDG-based symbolic trajectory formula £, of My, can be defined as follows:

o B =4d°, L°1°...if d;:d is the symbolic defining value of p, , , where L°

s s
P mdg p mdg mdg

denote the constant function of L and p,, is the symbolic extension of one of the

simple predicatesin P, ,

s _ s s s
¢ ﬂfrzdgl/\frzdgl - lub'"dg (ﬂfm:dy ’ﬂ g 2) > and

dg
s c K
[] :J_ R
ﬂ N Jmdg Sondg
s

Definition 6.3.4.2: Given any MDG-based symbolic trajectory formula f;, of an

STE model M,,,, = (D) ,<,4)R0.), assuming that B = 0Bt ... is the MDG-

Vipag > = mdg suc Sodg " Foag
based defining symbolic sequence for f,, , the MDG-based defining symbolic trajectory

;(;;dg = ;(;gdg ;(;Edg ... of f,, canbe defined inductively as follows:

s0 O
si = ﬂfrsdg lf‘l - 0
Tt | Tub?, i (B s,l:,,g R (Z;,E;:,;I)) otherwise’

where R, as defined previously in 4, = (V4 >S4 Ry) > i the abstract description

of the transition relation, i.c., the symbolic extension of R?, .

The pseudo-code shown in Figure 32 describes the algorithm MDG_STE for
implementing the STE algorithm in the MDG-STE engine, where B,, B, C,, and N are
MDG variables representing sets of states, K is the loop counter, dep is a function to

calculate the depth of a MDG-based symbolic trajectory formula, lub, DSS and ParO are

97

MDG algorithms developed for MDG-STE, and RelP is a basic MDG algorithm which is

described in detail in [7]. The inputs of the MDG_STE algorithm are an abstract

description 4= (V,,,,,< 4> R,,.) of @ STE model and an assertion [4nte, , — Cons,, 1,

and the algorithm will return success/failure as a result.

1. MDG_STE(4, Ante® — Cons®)

2. loop (K = 0; K > dep(dnte’); K++)

3. B, .= DSS(K, Ante');

4. if (K=0)

5. then C, := B,

6. else begin

7. N :=RelP({C,, Ry}, Vindg: BJ;
8. Ca = lub(B,, N))

9. end;

10. B. :=DSS(K, Cons®);

11. P :=ParO(B,, C,);

12. if (P = F) then exit and return failure;
13. end loop;

14. return success;

15. end MDG_STE;

Figure 32. MDG_STE algorithm in the MDG-STE engine

Lines 2 to 13 specify the body of a loop. The loop will stop when the loop counter K
is larger than the depth of the antecedent Ante’. Note that the definition of depth of an

MDG-based symbolic trajectory formula is similar to the one defined previously for an

98

STE formula and the antecedent Ante’ and the consequent Cons’ should be of the same
depth.

In line 3, algorithm DSS constructs an MDG B, representing the K-th element of the
defining symbolic sequence of the antecedent Ante’.

Lines 4 to 9 are used to compute the K-th element of the defining symbolic trajectory
C, of the antecedent 4nte’. The 0-th element of C, equals B,, and the other elements of
will be computed using algorithm ReIP and lub. In Line 7, the relational product
algorithm ReIP computes an MDG N representing the set of states reachable in one
transition from C,. In line 8, function lub computes the least upper bound of MDGs B,

and N over the partial order <, and assigns the result to C..

In line 10, algorithm DSS constructs an MDG B, representing the K-th element of the
defining symbolic sequence of the consequent Cons’.
Lines 11 to 12 check if the assertion is violated at the K-th stage. In Line 11,

algorithm ParO is used to compare B, and C, over the partial order <, , . Then in line

12, if the assertion is not satisfied, the whole algorithm will stop and returns failure.

In line 14, if no violations occur during the loop, the algorithm will return success.

6.4 Illustrative Example

We now present an illustrative example for the above algorithm of First-Order Symbolic
Trajectory Evaluation using MDGs.

Consider the sequential circuit modeled in MDG-HDL shown in Figure 33, where
e input signals s; and s, of abstract sort ‘wordn’,

e output signal s, is of abstract sort ‘wordn’,

99

e components regl and reg?2 are registers, and

e component abs_and is an abstract function of type ‘wordn * wordn — wordn’.

Note that in the MDG tools the clock signal is implemented implicitly and no input clock

signal is needed.

S1

abs_and
S3

S2

(clock) reg1

reg2

Figure 33. Diagram for a MDG-HDL model of a sequential circuit

S4

We represent the circuit state as a 4-bit vector s = s,s,s,5,. The next state function

R, =tt,t,t, 1s defined as follows:

L(s) =X 4(s,)=X°, t;(s8;)=s,, t,(s,)=abs_and(s,s;).

As mentioned before, no next state constraint is imposed on a state vector component

associated with an input signal, the next state function of which should be X".

Assume that we want to verify the following symbolic trajectory assertion for the

above circuit model:

((s, =a) A (s, =b)) AN(s, =a) > N’(s, = abs _and(a,b)).

By using Definition 11 and 12 in the previous section, we first show in Table V the

computation process for the symbolic defining sequence and the symbolic defining

trajectory of the antecedent:

Ante,,, =((s, =a)n(s, =b)) AN(s, = a).

100

TABLE V. SYMBOLIC DEFINING TRAJECTORY OF THE ANTECEDENT

si i) si
Antepy, REW Antd, . X Ante g,
i S1 S Sz S84 S1 S2 S3 S4 S1 Sz S3 S4
0 a|b|X|X a|b|X X°
1 a Xc Xc Xc Xc Xc b abs_and | »l A a Xc b abs_and
@Xx) lub; , {™ (@ X%
P WP IR NN IS N T T o -] mdg
C c c c C c C abs_and c c c abs_and
2 L Ixe x| xe] x| x| x| e Il e XT | X X | e
] N I T ITEY] mdg
c c c c c c c abs_and |, c c c abs_and
23] | X XXX)X X)X e Jlubs o K| X X e

TABLE VI SYMBOLIC DEFINING SEQUENCE OF THE CONSEQUENT AND COMPARISON

Bones, Xomer
i S1 S S3 S4 Sy S S S4
0 xlx x| x sty alb | x| x
1 x| x| X peslsi el a | X b | g
2 X¢ | x¢ | x¢ atz:y_z;ld an o [X | X | x° at():’_g;ld
>3 XXX X et f] XXX R

The computation process for the symbolic defining sequence of the consequent

Cons,,, = (N*(s, = abs _and(a,b)) is then shown in Table VI, compared with the result

for the defining trajectory of the antecedent. We can easily see from the table that:

iy Sode X =175 1.€., the symbolic trajectory assertion is satisfied by the circuit
Nt gy

s
Conspag

model under all variable assignments.

101

6.5 Summary

In this chapter, we investigated the possibility of integrating Symbolic Trajectory
Evaluation and MDG-based model checking. Two attempts to combine these two
techniques have been discussed and finally we proposed a hybrid approach of performing
first-order Symbolic Trajectory Evaluation using MDGs. In the next and last Chapter of

this thesis, we will conclude and discuss our future work.

102

Chapter 7

Conclusion and Future Work

Traditional BDD-based symbolic model checking techniques are an attractive subset of
formal verification methods because of their high automation and little requirement for
human effort to guide the proof process, whereas they usually suffer from the state
explosion problem. Symbolic Trajectory Evaluation technique and MDG-based model
checking technique are an improvement over the traditional BDD-based symbolic model
checking approaches in two different ways. The first one can dramatically reduce the
computations for the next state space and enhance the computational efficiency, while the
latter one can simplify the data path operations and thus can effectively overcome the
state explosion problem. If we can combine these two techniques, it is possible for us to
take the advantages of both of them.

In this thesis, we investigated the possibility of integrating Symbolic Trajectory
Evaluation and MDG-based model checking. For each of the approaches, we studied the
underlying theory and methodology, offered an illustrative example, discussed the
verification tool, and provided a detailed case study. The main purpose of these two case
studies is to obtain an in-depth understanding of the underlying theories and
methodologies of these two model checking techniques, which may facilitate the

achievement of their combination. Two attempts to combine the Symbolic Trajectory

103

Evaluation with the MDG were discussed: one in the STE verification environment and
the other in the MDG tools.

The goal of the first hybrid approach is to encode the symbolic expressions in Forte
using the MDG package. We proposed theorically two methods to integrate the MDG
package in Forte, either by programming the MDG package directly in FL or by
programming the MDG package in a language other than FL and accessing the MDG
package using FL’s foreign function interface. However, it was practically impossible for
us to implement the above two methods because we didn’t have the access to the FL
source code.

In the second hybrid approach, we developed an MDG-STE engine in the MDG tools
where the STE algorithm were implemented using the MDG package. We first extended
the many-sorted first-order logic underlying MDGs by adding the feature of “don’t care”
value X and then discussed respectively the implementations of STE modeling (including
the construction of a complete lattice), STE assertions and STE verification methodology
using MDGs. An illustrative example for the algorithm of First-Order Symbolic
Trajectory Evaluation using MDGs was given at the end. This proposed hybrid approach
can not only increase the scale of circuits verified using STE but also improve the
performance of STE by raising the level of abstraction.

As future work, we consider the following research directions:

o fixing the bugs found in the MDG tools during our case study discussed in Chapter 5;
e implementing the algorithm of First-Order Symbolic Trajectory Evaluation in the

MDG tools;

104

proving the correctness of our proposed first-order Symbolic Trajectory Evaluation
algorithm;

developing a RTL level Verilog to MDG-HDL converter to facilitate the verification
using the MDG model checker;

performing equivalence checking between the RTL level and the gate level MDG-
HDL models of the LA-1 Interface, which may involve the development of a gate

level Verilog to MDG-HDL converter.

105

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

A. Habibi, A.I. Ahmed, O. Ait-Mohamed, and S. Tahar. On the Design and
Verification of the Look-Aside Interface. In Proc. IEEE/ACM Design Automation
and Test in Europe (DATE’05), pages 649-654, Munich, Germany, March 2005.

A. Pnueli. The temporal logic of programs. In 18th IEEE Symposium on
Foundation of Computer Science, pages 46-57, 1977.

Al Ahmed and O. Ait-Mohamed. Assertion-Based Verification of Look-Aside
Interface (LA-1 Standard). Technical Report TK 7887.5 A36, Concordia University,
Department of Electrical and Computer Engineering, June 2004.

C.-]1.H. Seger and R.E. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. In J. Formal Methods in Syst. Design, vol 6, pages
147-189, Mar. 1995.

D.L. Beatty, R.E. Bryant, and C.-J.H. Seger. Synchronous circuit verification by
symbolic simulation: An illustration. In Sixth MIT Conference on Advanced
Research in VLSI, pages 98-112,1990.

D.L. Beatty, R.E. Bryant, and C.-J.H. Seger. Formal hardware verification by
symbolic ternary trajectory evaluation. In Proc. 1991 IEEE/ACM Design
Automation Cont, pages 397-402, June 1991.

E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar and Z. Zhou. Automated

Verification with Abstract State Machines using Multiway Decision Graphs. In

106

(8]

9]

[10]

[11]

[12]

[13]

[14]

Formal Hardware Verification: Methods and Systems in Comparison, T. Kropf
(eds.), Springer Verlag, pages 79-113, 1997.

E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. In ACM Transactions
on Programming Languages and Systems, vol 8(2), pages 244-263, April, 1986.
E.W. Weisstein et al. Partially Ordered Set. From MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/PartiallyOrderedSet.html.

F. Corella, Z. Zhou, X. Song, M. Langevin and E. Cerny. Multiway Decision
Graphs for Automated Hardware Verification. In Formal Methods in System
Design, vol 10(1), pages 7-46, February 1997.

J.H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem
Proving. Harper & Row, 1986.

J.M. Scott. Efficient Verification of Multi-Processor Real-Time Systems Using
Symbolic Methods. PhD thesis, Vanderbilt University, Nashville, Tennessee, 2003.
JR. Burch, EM. Clarke, K.L. McMillan, and D.L. Dill. Sequential circuit
verification using symbolic model checking. In Proceedings of the 27th ACM/IEEE
Design Automation Conference, pages 46-51, IEEE Computer Society Press, June
1990.

JR. Burch, EM. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of the Fifth Annual IEEE

Symposium on Logic in Computer Science, pages 428 — 439, June 1990.

107

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L. Lamport. Sometimes is sometimes "'not never" - on the temporal logic of
programs. In Proceedings of 7th ACM Symposium on Principles of Programming
Languages, pages 174-185, 1980.

M. Pandey, R. Raimi, R.E. Bryant, and M.S. Abadir. Formal verification of content
addressable memories using symbolic trajectory evaluation. In Annual ACM IEEE
Design Automation Conference, pages 649-654, Las Vegas, Nevada, United States,
1996.

O. Coudert, C. Berthet, and J.C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In J. Sifakis, editor, Automatic Verification
Methods for Finite State Systems, International Workshop, Grenoble, France,
Springer-Verlag, June 1989.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, pages 97-107, Association
for Computing Machinery, January 1985.

R.A. Finkel. Advanced Programming Language Design. Addison-Wesley
Publishing Company, 1996.

R.E. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE
Transactions on Computers, pages 677-691, August 1986.

R.E. Bryant. Formal Verification of Memory Circuits by Switch-Level Simulation.
In IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol 10(1), pages 94-102, January 1991.

108

[22]

[23]

[24]

(23]

[26]

[27]

[28]

[29]

[30]

R.E. Bryant. Symbolic simulation-techniques and applications. In Annual ACM
IEEE Design Automation Conference, pages 517-521, Orlando, Florida, United
States, 1991.

R.E. Bryant, C.-J.H. Seger. Formal Verification of Digital Circuits Using Symbolic
Ternary System Models. In Proceedings of the 2nd International Workshop on
Computer Aided Verification, pages 33-43, June 1990.

S. Bose and A. Fisher. Automatic verification of synchronous circuits using
symbolic logic simulation and temporal logic. In IMEC-IFIP International
Workshop on Applied Formal Methods for Correct VLSI Design, 1989.

S. Gnesi. Model checking of embedded systems. http://www.ercim.org, 2003.

S. Romanenko et al. Moscow ML Language Overview, Version 2.00 of June 2000.
http://www.dina.kvl.dk/~sestoft/mosml/mosmlref.pdf.

Y. Xu. MDG Model Checker User’s Manual, Dept. of Information and Operational
Research, University of Montreal, Montreal, Canada, September 1999.

Y. Xu. Model checking for a first-order temporal logic using multiway decision
graphs. Ph.D. Thesis, Universite de Montreal (Canada), 1999.

Y. Xu, E. Cerny, X. Song, F. Corella, and O. Ait-Mohamed. Model checking for a
first-order temporal logic using multiway decision graphs. In Proc. of the
International Conference on Computer-Aided Verification (CAV'98), Lecture
Notes in Computer Science 1427, pages 219-231, 1998.

Z. Zhou and N. Boulerice. MDGs Tools (V1.0) User’s Manual, D’IRO, University

of Montreal, June 1996.

109

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Intel Corporation. EXLIF: Extended Logic Interchange Format Syntax.
http://cc.usu.edu/~saraswat/exlif syntax.pdf, 2003.

Intel Corporation. Forte/FL User Guide, Version 1.0. Intel Technical Publications
and Training, Jan 2003.

Intel Corporation. Introduction to Forte Verification Environment.
http://www.intel.com/technology/silicon/scl/fortefl htm.

Network Processing Forum. Look-Aside (LA-1) Interface, Implementation
Agreement, Revision 1.1. Kluwer Academic Publishers, April 15, 2004.

IT University of Copenhagen. Research project description of Muddy.
http://www.itu.dk/research/muddy/.

Xilinx, Inc. Synthesis and Simulation Design Guide. Xilinx Manuals Online.
http://toolbox.xilinx.com/docsan/xilinx4/data/docs/sim/vtex5.html.

Xilinx, Inc. Virtex Delay-Locked Loops. Virtex Tech Topic VIT003 (vl.1).
http://www xilinx.com/products/virtex/techtopic/vtt003.pdf, August 7, 2000.

Webpage for Jorn Lind-Nielsen. http://www.itu.dk/people/jln/.

110

