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Abstract

Feature Selection Strategies for Spam E-mail Filtering

Ren Wang

The spam e-mail (also known as junk e-mail) problem is rapidly becoming unmanageable.
According to a recent European Union study, junk e-mails cost all of us about 9.4 billion (US)
dollars per year, and many major ISPs say that spam adds about 20% to the cost of their service.

Feature selection is an important research problem in different text categorization
applications including spam e-mail filtering. In designing spam filters, we often
represent the e-mail by vector space model (VSM) in which every e-mail is considered as
a vector of word terms. Since there are many different terms in the e-mail, and not all
classifiers can handle such a high dimension, only the most powerful discriminatory
terms should be considered. Also, some of these features may not be influential and
might carry redundant information which may confuse the classifier. Thus, feature
selection, and hence dimensionality reduction, is a crucial step to get the best out of the
constructed features.

Many feature selection strategies (FSS) can be applied to produce the desired feature
set. In this thesis, we investigate the use of several classifier-dependent feature selection
strategies. We cast our feature selection problem as a 0-1 optimization problem and
different optimization techniques are compared. These techniques include several local
search optimization algorithms such as Hill Climbing, Simulated Annealing, Threshold

Accepting and Tabu Search. We also examine some other algorithms inspired by

iit



biological systems and artificial life techniques such as Genetic Algorithm, Particle
Swarm Optimization, Ant Colony Optimization and Artificial Immune Systems. The
performance of all the above algorithms is compared with some traditional
dimensionality reduction techniques such as Principle Component Analysis, Linear
Discriminant Analysis and Singular Value Decomposition.

Our experimental results show that all these techniques can be used not only to
reduce the dimensions of the e-mail VSM, but also improve the performance of the spam

filter.
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Chapter 1

Introduction to Spam E-mail

1.1 Introduction

Electronic mail (e-mail) has become extremely important in our daily life because of
its high speed and low cost. People are receiving an increasing amount of e-mail both on
the job as well as for personal communications. On the other hand, we also receive many
e-mails from some strangers we do not know. Most of these e-mails are commercial
advertisement useless to the majority of us and sometimes they are harmful messages
containing viruses or malicious codes. These e-mails are called Junk e-mail or Spam.

Junk e-mail is the electronic equivalent of junk paper-mail: unsolicited, and usually
of a commercial/advertising nature. In Internet terminology, we may also come across
junk e-mail described as UCE (Unsolicited Commercial e-mail), UBE (Unsolicited Bulk
e-mail) or Spam. Many people regard any unsolicited e-mail as junk, irrespective of its
source or contents.

Junk e-mails exist because vast amounts of e-mail can be sent for very low cost and

the sender will get some profits from such e-mails. This is in part due to the shared-cost



structure of the internet, which has each end of a communication pay the costs of their
end, but in truth, it is primarily because e-mail is a very efficient and very cheap
communications technology. For one to one communications, there has never been

anything anywhere near as cheap, which is part of the reason people like it.

1.2 A Brief History of Spam

When the internet first began, there was no such thing as spam. There was plenty of
e-mail, but none of it was of a commercial nature. The internet began as a military and
educational project. Making money had nothing to do with anything, so there was no
reason to send out commercial mailings.

Probably the first spam was written by an employee at Digital Equipment
Corporation [1]. It was intended to be sent to every e-mail address on the ARPANET, but
since space was limited the later names were truncated.

One of the first truly despicable spam messages came from Dave Rhodes [1]. Rhodes
wrote an e-mail advertising a pyramid scheme. This spam was not really an e-mail
message as it was posted to the Usenet (newsgroups) but the concept was the same. Lots
of people got to read an e-mail advertising a silly scheme with a subject of "MAKE
MONEY FAST!!”

In 1993, a man with the name of Richard Depew [1] decided to introduce a concept
known as retro-moderation. This would allow newsgroups to become a little bit more
controlled, by having a moderator who would cancel postings after they had been made.
While there were moderated newsgroups up to this point, Depew was suggesting

moderating after the fact. Depew wrote a program to delete these postings. Unfortunately,
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it had é bug and wrote 200 messages to the news.admin.policy newsgroup. This annoyed
a lot of people, who, for the first time, called the messages spam. This is the first known
time that this kind of thing was referred to as spam.

One of the first mass mailings on the Usenet was from Clarence L. Thomas IV [1].
The subject wés "Global Alert for All: Jesus is Coming Soon" and it was a long, boring e-
mail about the end of the world. This mailing occurred in January of 1994.

Spam in the modern sense began in 1994 when two men named Cantor and Siegel
[1] posted an advertisement for "Green Card Lottery”. They posted this message to 6,000
newsgroups at the same time. They continued posting for some time, and reportedly

made some money from their efforts.

1.3 The problems of Junk e-mail

The junk e-mail problem is rapidly becoming unmanageable, and threatens to
destroy e-mail as a useful means of communication.

We waste increasing amounts of our time deleting junk e-mails and sorting out these
e-mails from our e-mail box every day, otherwise junk e-mails will congest the e-mail
box and we can not receive legitimate e-mails anymore. We also have to pay the cost of
such messages. People pay for an e-mail mailbox for various reasons, but not because
they want to receive advertising. It costs the recipient reél money in terms of extra
connect-time charges, phone time charges, disk space, and lowered bandwidth. Some
kinds of spam are illegal in some countries. Especially with pornography, mere

possession of such material can be enough to put the recipient in jail.



Secondly, junk e-mails will occupy server storage space and consumes network
bandwidth. The mail server is one of the busiest servers in the enterprise network or ISP.
It receives many requests and delivery many e-mails every day. So the network recourses
and performance are very important for mail servers. But with junk e-mails? all the
recourses will be consumed quickly and they even block the whole network and shut
down the mail servers.

Finally, there is also the fear that such junk e-mails could hide viruses, which then
infect the whole network. Many viruses can be sent to everybody in the network within
the junk e-mails. Such e-mails with virus will infect the user’s coﬁputer even the whole

network if the e-mail receivers open the e-mails and run the virus programs by accident.

1.4 Anti-Spam Approaches

Many approaches can be applied to protect the e-mails system from junk e-mails.
However, none of the currently known approaches effectively copes with the huge
volume of traffic with sufficient accuracy. In practice, we often combine several
techniques together to solve this problem. We can divide these techniques into three main
catalogues: network level techniques, user level techniques and policy based techniques.

Figure 1.1 shows the three catalogues with some examples.



Anti-Spam Techniques

A 4

Network Level User Level Policy Based

-Challenge Systems
-Domain Verification

-White/Black List -Pricing E-mails

-Content Based Filter -Law

Figure 1.1: General classification of anti-spam techniques.

1.4.1 Network level Techniques

Because each e-mail will be sent via network systems, one may try to develop some
approaches based on the network to trace the junk e-mail and find out the spammers.
1.4.1.1 Domain Verification

One of the most difficult problems in dealing with spam is that we can not decide
accurately, who sent the message. The ability to trace e-mail reliably to a specific sender,
a specific sending domain, or a specific route through the simple mail transfer protocol
(SMTP) infrastructure would increase the effectiveness of many classification
mechanisms, and would also increase the feasibility and effectiveness of legal remedies.

Domain verification schemes, of which there are several proposals currently
outstanding, including SPF, Caller ID, and Domain Keys, all attempt the same basic task

[2]: choose an indication in the message of who the “sender” is (which choice varies



among the schemes), get information directly from that sender’s domain that helps verify
that this message really is coming from that domain, and use that as input to the decision
about how to handle this message. In theory, this means that a sender outside of “ABC”
could not send mail that appeared to come from ABC.com, without having that mail
flagged as suspicious. The recipient’s filtering system can then use the results of this
verification (“the domain is verified”, “the verification failed”, or “the sending domain
does not provide data”), along with some “reputation” of the sending domain, as a factor
in its filtering decision.

1.4.1.2 Challenge/Response Systems

A challenge/response system is a program that replies to an e-mail message from an-
unknown sender by subjecting the sender to a test designed to different humans from
automated senders. The system ensures that messages from people can get through and
the automated mass mailings of spammers will be rejected. Once a sender has passed fhe
test, the sender is added to the recipient's White list of permitted senders that won't have
to prove themselves each time they send a message.

Challenge/response systems take a number of different approaches to the task of
separating humans from machines. Typically, when a message is received, the system
sends a reply that includes a URL linking the user to a Web site. At the Web site, the user
is asked to perform some task that, while easy for a human, is beyond the capabilities of
an automated spamming program. The system might ask the answer to a simple question,
for example, or require the user to copy distorted letters or numbers displayed in an

image.



In the absence of adequate authentication mechanisms, challenge/response system is
a way to ensure that this message is not part of a mass-mailing. To be effective, a
challenge/response system must have a sufficient variety of challenges to provide a
strong defense against trial-and-error attacks. On the other side, such systems may cause
problems in certain contexts [2]. Recipients of business messages, particularly those who
will often hear from new or potential custorr;ers, may find that the challenges annoy

correspondents and result in lost business. Someone doing one a favor might not respond
| to a challenge. One should also note that there are reasons for an automaton to send e-
mail — not all of it is spam.

These effects can be mitigated by combining this technique with others. A challenge
might only be sent once a message is determined, by other means, likely to be spam. If
the classification is uncertain, or if the recipient’s preferences specify it, a challenge may
then be sent. The problem of having challenges sent to unwitting third parties, whose e-
mail addresses have been “spoofed” in spam, may at least partially be resolved with the
domain verification mechanism: the challenge is not sent if the domain fails to verify.
1.4.1.3 Other Examples for Network Based Techniques |

There are still some other approaches based on the network. Kang et al. [3]
introduced a framework named TCP damping that slows down the spammers by carefully
tuning e-mail delivery parameters, without changing the current e-mail delivery software.
The anti-spam mechanisms under this framework directly add delay to the e-mail
delivery process, and increase computation cost at the sender side for delivering e-mails.
Within the anti-spam framework, [3] use existing spam filters to generate a spam

likelihood value for each message at its delivery time. The likelihood information is used



by the recipient to drive the spam resistance mechanisms that control the delay and cost
of e-mail delivery. The mechanisms of adding delay and cost are implemented at the TCP
level. TCP is the transport protocol used by the Simple Mail Transfer Protocol (SMTP),
which is the protocol used by Internet e-mail. Slowing a TCP connection from the
receiver side can be achieved in many ways, such as postponing TCP acknowledgements
or injecting congestion notification bits to spoof congestion. To increase sender
computation cost, the receiver could force the sender to generate more packets to deliver
the same message. Since all e-mails are delivered over TCP, selectively delaying or
adding cost to a suspicious TCP sender would effectively slow down spammers. This
spam resistance effect is achieved based on the assumption that the TCP connections
carrying spam are more likely to be identified as suspicious connections by many users,
whereas the TCP connections for normal e-mails are unlikely to be misclassified by a

large number of users simultaneously.

1.4.2 Policy Based Techniques

Although some people choose to reduce the junk e-mails they are receiving by using
some technical tools, others may decide to fight back with spammers using other
approaches.

Existing examples of such anti-spam approaches include pricing e-mail and accuse
spammers by law. It increases the cost of delivering a message by requiring real money
from the sender and against the spammers based on the law.
1.4.2.1 Pricing E-mails

The financial truth that enables spam in the first place is that sending spam costs so

little that even a negligible response rate makes it worth the expense of sending. It is a big

8



social change to make, but a system of collecting payment for sending e-mail would turn
the financial model around, and would make an enormous difference in the amount of
spam sent, and in the content of it. Even a charging a small fraction of what is charged for
paper mail would make a large difference in how spam is paid for. Much of the debate
over postage schemes centers on who collects the postage. One scheme called charity
seals would let each user directs postage to charities of the user’s choice [2]. Another,
known as attention bonds, lets each recipient set a price for which an unknown sender can
post a bond to get e-mail through; for wanted e-mail, the bond is returned, but for spam it
is kept by the recipient as payment for time wasted. Two of the world's biggest e-mail
account providers, Yahoo Inc. and America Online, plan to introduce a service that would
charge senders a fee to route their e-mail directly to a user's mailbox without first passing
through junk mail filters. The fees, which would range from 1/4 cent to 1 cent per e-mail,
are the latest attempts by the companies to weed out junk e-méil. In exchange for paying,
e-mail senders will be guaranteed their messages will not be filtered and will bear a seal
alerting recipients they are legitimate. But we still consider it unrealistic to expect
payment systems to be part of the solution in the short term.

1.4.2.2 Law System

Another weapon in our anti-spam arsenal is the legal system, and the law is
beginning to be used in fighting the spammers. In recent cases in New York [4] and
Florida [5], spammers were sued under older fraud statutes, while a consortium of ISPs
filed six spam lawsuits in USA federal courts in four states against a number of
spammers [6]. On January 2006, America Online has won more than $5 million in a

judgment against a Minnesota spammer under the federal CAN-SPAM act. Spammer



Christopher William Smith is believed to be one of the world's most notorious spammers.
He was accused of sending billions of spam messages to AOL account holders in 2003,
promoting fake college degrees, cable descramblers, generic impotence drugs, and
explicit Web sites. AOL first sﬁed Smith in 2003, but refiled again in 2005 to take
advantage of 2004's CAN-SPAM federal legislation and this case helped spawn the
federal legislation. Some of the techniques already described, particularly those that
validate the sender and the message routing, can help support legal action, providing

evidence that may lead to convictions.

1.4.3 User Level Techniques

The popular means for solving the spam problem is to deploy an e-mail filter to
classify the spam and legitimate e-mails automatically at the user side. Other simplistic
approaches include black-listing and white-listing. In practice, effective spam filtering
uses a combination of these three techniques.

1.4.3.1 White/Black List

Two of the least effective methods for fighting spam are white lists and black lists. A
spam black list is a list of IP addresses and domains of known spam e-mail servers. Black
lists are used to block all e-mail that comes from certain servers on the Internet that has
been identified as being used to send spam. A well-known black list is hosted by
SpamCop, located at www.spamcop.net. Another one is Open Relay Database, located at
www.ordb.org. Many anti-spam products also maintain their own black lists and include
optional subscriptions to third-party black list services.

White lists are the opposite of black lists. They list trusted e-mail addresses and

domains that are always allowed to send e-mail, no matter what the content is. White lists
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are used to require that senders authenticate their identity prior to e-mail being delivered
to the recipient. White lists will definitely allow e-mail coming from a trusted site to
come through, but do not provide a solution for blocking spam. White lists require
constant maintenance to be very effective. If not properly maintained, the risk of losing e-
mail from legitimate sources is high.

1.4.3.2 Content Based Filter

The heart of any anti-spam system is the part that classifies messages, and filters
them. It is the filters that determine which mail should get through and which should be
considered spam, and a good set of filters provides a great deal of flexibility and
customization. The simplest and most common approaches are to use filters that screen
messages based upon the presence of words or phrases common to junk e-mail, but the
goal of all classifiers is to give the e-mail a score that can be used as input to filters.
Classifiers may analyze the e-mail’s headers, the body of the e-mail, its structure, or a’
combination of all. They may consider only this one e-mail, or may compare it to other e-
mails. They may give a numeric score that indicates how likely they determine this e-
mail to be spam, or they may attach a set of keywords or categories, highlighting aspects

of the message that might be considered by filters.

Mail SMTP | Mail K o
Server "| Server Filter eceiver

Figure 1.2: General model for e-mail filter system.
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But until today, the spam filters are less than perfect protection to our e-mail system.
Its less discrirhinating has the problem of false positives; they mistakenly block or
misclassify legitimate messages as spam. The damage of a single false positive can be
very serious, depending on the e-mail content. Because of its unsatisfied accuracy, we
still receive some junk e-mail also. So how to improve the accuracy of the filter is a big
challenge to the researchers. Many people focus on developing different algorithms based
on the e-mails content, others try to analyze the content of junk e-mails and legitimate e-
mails.

Early spam filters were instances of knowledge engineering using hand-crafted
rules. The process of creating the rule base requires both knowledge and time, and the
rules were thus often supplied by the developers of the filter. Recently, a shift towards a
more statistical approach has occurred as more focus has been put on machine learning
for the automatic creation of personalized spam filters. A supervised learning algorithm is
presented with e-mails from the user’s mailbox and outputs a filter. The e-mails have
previously been classified manually as spam or non-spam. The resulting spam filter has
the advantage of being optimized for the e-mail distribution of the individual user. It is
able to use also the characteristics of non-spam, or legitimate q-mail during classification.

From the machine-learning viewpoint, spam filtering based on the textual content of
e-mail can be viewed as a special case of text categorization, with the categories being
spam or non-spam. In text categorization, the text can be represented by vector space
model (VSM). Each e-mail can be transferred into the vector space model. This means
every e-mail is considered as a vector of word terms. Since there are many different

words in the e-mail and not all classifiers can handle such a high dimension, we should
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choose only the most powerful discriminatory terms from the e-mail terms. Another
reason is some of these features may not be influential and‘might carry redundant
information which may confuse the classifier. Thus, feature selection, and hence
dimensionality reduction, is a crucial step to get the best out of the constructed features

and improve the performance of the filter.

1.5 Outline of the Thesis

The rest of this thesis is organized as follows. In chapter two, we briefly review
some of the background related to content based filters and some other necessary
definitions required throughout the thesis.

Chapter three gives a review of some traditional dimensionality reduction techniques
for spam e-mails. We also report our experimental results based on these techniques as a
baseline to compare with our newly proposed approaches.

In chapter four, we introduce some new classifier dependent features selection
algorithms for e-mails filters and provide some experimental results for these new
techniques.

Finally, chapter five provides a summary of our results and some directions for the

future work.
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Chapter 2

Content Based E-mail Filtering

2.1 Introduction

To accommodate the growing need for spam classifiers, a variety of techniques have
been developed and applied towards the problem, both at the network and user levels.
The simplest and most common approaches use filters that screen messages based upon
the presence of words or phrases common to junk e-mail. So spam filtering can be
thought of as text categorization task where the classes to be predicted are spam and
legitimate. Most of the early spam filters were instances of knowledge engineering using
hand-crafted rules (e.g. the presence of the string “advertisement money” indicates
spam). The process of creating the rule base requires both knowledge and time, and the
rules were thus often supplied by the developers of the filter. This is appropriate when
few machine-readable texts were available and the computational power was expensive.
Recent trends in the text categorization community have shifted to building classifiers
automatically by applying some machine-learning algorithms to a set of pre-classified

documents (training data). This is also called the statistical approach, in the sense that
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differences among documents are usually expressed statistically as the likelihood of
certain events, rather than some heuristic rules written by human. This trend is reflected
in the goal of statistical spam filtering, which aims at building effective spam filters
automatically from e-mail corpus. A variety of supervised machine-learning algorithms
have been successfully applied to mail filtering task.

In this chapter, we begin with a formal definition of automated spam filtering task,
followed by a brief review for some spam filtering algorithms based on the features or
words in e-mails. We also analyze the header and body of e-mails which can improve the

accuracy of these algorithms.

2.2 Spam Filtering As Text Categorization

2.2.1 Definition for Spam Filtering

First, we give a definition of automated spam filtering followed by [7].

Given e-mail dataset D={d,.d,..d, ,...,dl DI} and category

setC = {c, = spam, c, = legitimate} , where d;is the fh e-mail in D and C is the possible
label set. The aim of automated spam filtering is to build a Boolean categorization
function 0 (d;, ¢) : D X C — {True, False}. When 0 (d}, ¢;) is True, it indicates e-mail dj
belongs to category c;; and when 0 (d}, ¢;) is False, it means d; does not belong to c; .

For spam filtering there are two category labels: spam and legitimate. Each e-mail d;

can only be assigned to one of them, but not both. Therefore, we can use a simplified
categorization function Wyum(d) : D — {True, False} instead. A e-mail is classified as

spam when Wp.m(d)) is True, otherwise it is legitimate e-mail.
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Using the above notation, applying supervised machine-learning algorithms to spam
filtering consists of two stages: the training stage and the classification stage.

During the training stage, a set of labeled e-mails must be provided as training
dataset, which are first transformed into a representation that can be understood by the
learning algorithms. The most commonly used representation for spam filtering is vector
space model (VSM). Then we can run a learning algorithm over the training data to

create a classifier Wypam(d) — {True, False).

During the classification stage, the classifier Wpum(d;) is applied to the vector

representation of a new document d to produce a prediction whether d is spam or not.

2.2.2 Transfer E-mails to Vector Space

We first transform e-mail dataset into a representation that can be understood by the
learning algorithms. There are many ways to represent e-mails, but the most commonly
used representation for spam filtering is vector space model (VSM). The text can be
represented by vector space model #f =(tfi, tf5...., #f;) where ff; is the frequency of the i
feature (term) in the e-mail. It is clear that terms appearing frequently in many e-mails
have limited discrimination power (e.g., “the”, “is”, etc). We use Term frequency and

Inverse document frequency (TF-IDF) representation to represent the e-mail. There are

some different TF-IDF formulas and we choose following formula [8]

1 (t,d)xlogN/n, +0.01)

w(t,d)= ke
X CDxlog/n, +00DY

where W(t,d) is the weight of term t in e-mail d where #f(t,d)is the frequency of the

/" term in e-mail d, N is the total number of e-mails in the corpus, n; is the number of e-
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mails that contain the i term and the denominator is the normalization factor. By this
transformation, each e-mail can be represented as a vector. Accordingly, the more often a
term appears in the e-mail, the more important this word is for that e-mail. On the other
hand, the more often the word appears in the e-mail collection, the less informative this
word becomes. In our experiments, we sorted the features by its document frequency
(DF), i.e., the number of e-mails that contain the i* features to choose 100 features for
which DF range between 0.02 to 0.5 [10]. Thus the input to the feature selection
algorithm is a feature vector of length 100. We then applied the feature selection
élgorithms to find out the most powerful discriminatory terms from the 100 features and

test the performance of the e-mail filter.

2.2.3 Word Stemming and Stop-word

Word stemming and stop-word removals are two other issues that need to be
considered before we transform the e-mails into vector space.

In English words having the same stem are usually assumed to have similar
meaning, such as "walking", "walk", "walked”. Stemming is performed to remove the
affix and successor. Words which are very frequent and do not carry meaning (such as
"a", "the") are called stop-words. These words are assumed not to carry any important
information and so are usually ignored.

The main advantages of applying word stemming and stop-word removal are the
reduction of feature space dimension and possible improvement on classifiers’ prediction
accuracy by alleviating the data sparseness problem. Androutsopoulos et al. [11] have
investigated the use of word stemming and stop-word list on the performance of a naive

Bayes classifier. Their result shows that most of time stemming and stop-word removals

17



do not have a statistically significant improvement over the nonstemming, no-stop-word
removal filter. Furthermore, word stemming only applies to certain Latin-like languages,
and is nonsensical to Asian languages such as Chinese or Japanese. But apparently, such

process will reduce the feature space dimension.

2.2.4 E-mail Header and Body

Each mail consists of a header part followed by a body part and several oﬁtional
attachment parts. Previous research mainly focused on building “pure” content-based
filtering model that only uses features from message’s subject and body parts. Now, some
researches intend to figure out which parts of an e-mail have critical influence on the
classification results. The header contains many fields, for example, trace information
about which a message has passed (Received :), where the sender wants replies to go
(Reply-To:), ID of this message (Message-ID:), format of content (Content-Type :), etc.
Figures 2.1 illustrate the header of an e-mail. In [12], Zhang et al. show some particular
features in the header field of a mail can give strong evidence whether a mail is spam or
~ not. For instance, spam mails are seldom sent through normal e-mail client such as
Outlook Express. Instead, spammers prefer to use some group mail sending .software
specially designed for dispatching mails to a large amount of recipients. This can be
detected by looking at the X-mailer field in the header. If a mail has an X-mailer field
indicating some group sending software or does not have X-mailer field at all, it is véry
likely to be a spam.

Zhang et al. [12] also show that the combined feature sets yielded a consistent

improvement over feature sets that used either header or body feature alone. Therefore e-
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mail headers are as important as mail bodies in terms of spam-discriminating power and

should not be ignored by spam filter designers.

Received: from chen2 (localhost [127.0.0.1])
by ipx.ntntc.edu.tw (8.12.9+Sun/8.12.9) with
ESMTP id 1791mh4H028241;

Mon, 9 Aug 2004 09:48:49 +0800 (CST)
From: =7big57B?s6+pdrfX?=
<robert@ipx.ntntc.edu.tw>
To: <david@ipx.ntntc.edu.tw>
Subject: =7big5?7B?sOquyK Vku6Gp+g=—="7=
Date: Mon, 9 Aug 2004 09:50:07 +0800
Message-ID:
<000001c47db3$334b3000$2a8547cb@chen2>
MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary="----

_NextPart 000_0001_01C47DF6.416E7000"
X-Priority: 3 (Normal)
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook, Build 10.0.2627

Figure 2.1: The e-mail header.

2.3 Performance Measure for Spam Filters

There are many mechanisms used to measure the performance of the spam filter. In
here, we introduce the performance measures used through the thesis. Let N=4+B+C+D

be the total number of test e-mails in our corpus.
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Spam E-mail | Legitimate E-mail

Filter Decision: Spam E-mail A B

Filter Decision: Legitimate E-mail C D

Table 2.1: Confusion Matrix.

If Table 2.1 denotes the confusion matrix of the e-mail classifier, then we define the

accuracy, precision, recall, and F1 for spam e-mails filter as follows:

Accuracy =42,

PRECISION (P)= 4 ,
A+ B

A
A+C

RECALL (R)=

>

Flo 2PR
P+R

Similar measures can be defined for legitimate e-mails:

ACCURACY =A*D,

PRECISION (P)=—D ,
C+D

RECALL (R) = D s
B+ D

F1o 2PR
P+R
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2.4 Testing Corpora

Unlike general text categorization tasks where many standard Benchmark collections
exist, relatively few spam corpora are available, and the sizes are often small. This is
probably because while it is easy to collect spam e-mails, it is much harder to collect
legitimate mails for the reason of protecting personal privacy. A common approach to
compile spam corpus is to mix legitimate mails from one source with spam messages
collected from another place. This may lead to a bias when training the classifier: the
corpus compiled may not reflect the true distribution of spam mails and tend to be easily
separable. A better way may be collecting both legitimate and spam messages from the
same source (for instance, a publicly available mailing list that is heavily spammed). For
this reason publicly available spam corpora are used in this work. Among the popular
corpus are PU1 [13] and Ling-corpus [13].

PU1 corpus consists of 1099 messages; 481 of which are marked as spam and 618
are labeled as legitimate, with a spam rate of 43.77%. The messages in PU1 corpus have
header fields and HTML tags removed, leaving only subject line and mail body text. To
address privacy, each token was mapped to a unique integer. The corpus comes in four
versions: with or without stemming and with or without stop word removal.

The Ling-spam corpus was collected by the same author of PUI corpus, which
includes: 2412 legitimate messages from a linguistic mailing list and 481 spam messages
collected by the author with a 16.63% spam rate. Like PU1 corpus, four versions are
available with header fields, HTML tags, and attachments removed.

Since the Ling-spam corpus was compiled from different sources: the legitimate

messages came from a spam-free, topic-specific mailing list, and the spam mails were
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collected from a personal mailbox, the mail distribution is less like that of the normal
user’s mail stream, which may make messages in Ling-spam corpus easily separable. In
our experiment, we use Lemmatize enabled, stop-list enabled version from PU1 corpus.
We chose 62 legitimated e-mails and 48 spam e-mails for testing and the rest 989 e-mails

for training.

2.5 Spam Filtering Algorithm

The success of machine learning techniques in text categorization has recently led
researchers to explore the applicability of learning algorithms in anti-spam filtering. A
supervised learning algorithm is fed with a corpus of messages that have been classified
manually as spam or legitimate, and builds a classifier, which is then used to detect
incoming spam messages. Apart from collecting separately spam and legitimate training
messages, the learning process 1s fully automatic, and can be repeated to tailor the filter
to the incoming messages of particular users or groups, or to capture changes in the
characteristics of spam messages.

K-nearest neighbor classiﬁcatipn is an instance-based learning algorithm that has
shown to be very effective in text classification. The success of this algorithm is due to
the availability of effective similarity measure among the X nearest neighbor.

The algorithm starts by calculating the similarity between the test e-mail and all e-
mail in training set. Then it picks the K closet instances and assigns the test e-mail to the

most common class among these nearest neighbors.
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This after transforming the training e-mails and test e-mails into their TD-IDF vector
representation, the next step is to find out the K vectors from training vectors which are

most similar to the test vector. In our work, we used the following similarity measure:

Sim (d,,d ;)= > (d, —d;)*
k=1

Here d; and d; are two e-mail vectors of dimension n. While the Euclidian distance is a

measure for the similarity between vectors in the formula above, other measures are also
possible.
Then we calculate the weight of the spam class and legitimate class based on the

formula [8]:

p(F,C)= ) Sim(%,d)yd,,C))

d;eKNN
where 3,. is one of the neighbors in the training set. % is the test e-mail. y(d,,C ;) is
equal to 1 if d, belongs to C n otherwise yd,,C ;)=0.

The final step is to compare the weight and classify the test e-mail.

Because K-nearest neighbor classification is a simple way to apply to our junk e-
mail problem, we use this filter algorithm in our experiment. If X is too large, big classes
will overwhelm small ones. On the other hand, if K is too small, the advantage of KNN
algorithm, which could make use of many experts, will not be exhibited [9]. Throughout
our experiments, we set K=30 (this value was chosen because our experiments show that

it provides a good compromise between performance and accuracy). Table 2.2 shows the

performance of the e-mail filter.
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Accuracy | Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall Fl Precision Recall Fl
88.1% 85.7% | 87.5% | 86.6% 90.1% 88.7% 89.4%

Table 2.2: KNN filter result without feature selection algorithm.

2.6 Conclusion

In this chapter, we presented some basic concepts related to content based e-mail
filters. We also introduced the dataset and performance measures used throughout our
thesis. The experimental results in Table 2.2 (obtained using a K-nearest neighbor filter
classifier without any feature selection algorithm) will be used as a baseline for

comparison with other feature selection based systems proposed throughout the thesis.
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Chapter 3

Some Traditional Algorithms for

Dimensionality Reduction

3.1 Introduction

There are many possible techniques for dimensionality reduction. Principle
Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are two commonly
used techniques for dimensionality reduction. Linear Discriminant Analysis easily
handles the case where the within-class frequencies are unequal and their performances
have been examined on randomly generated test data. This method maximizes the ratio of
between-class variance to the within-class variance in any particular data set, thereby
guaranteeing maximal separability. In PCA, the shape and location of the original data
sets changes when transformed to a different space whereas LDA doesn’t change the
location but only tries to provide more class separability and draw a decision region
between the given classes. In this chapter, we also present the results obtained using

Singular Value Decomposition (SVD).
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3.2 Principle Component Analysis (PCA)

Principle Component Analysis (PCA) [16] is a way of identifying patterns in data,
and expressing the data in such a way as to highlight their similarities and differences.
PCA is also an eigenvector method designed to model linear variability in high
dimensional data. In PCA, one computes the linear projections of greatest variance from
the top eigenvectors of the data covariance matrix. The first principal component
accounts for as much of the variability in the data as possible, and each succeeding
component accounts for as much of the remaining variability as possible. It is a common

technique for finding patterns in data of high dimension.

Dimension 2

Dimension 1

Figure 3.1: Principle Components.

The two lines denoted by PC-1 and PC-2 in Figure 3.1 represent 2 consecutive
principle components. Principle Components is a set of variables that define a projection
that encapsulates the maximum amount of variation in a dataset and is orthogonal and
therefore uncorrelated to the previous principle component of the same dataset.

PCA is a classical tool that has been used successfully for dimensionality reduction

in many applications including spam filters. First, we subtract the mean from each of the

26



data dimensions. Next we calculate the covariance matrix. Then we calculate the
eigenvectors and eigenvalues of the covariance matrix. Once eigenvectors are found from
the covariance matrix, the next step is to order them by eigenvalues, highest to lowest.
This gives us the components in order of significance. After this, we can ignore the
components of less significance. Although we may lose some information, however, if
the eigenvalues are small, we don’t lose much. If we leave out some components, the
final data set will have fewer dimensions than the original. To be precise, if we originally
have N dimensions in our data, and so we calculate N eigenvectors and eigenvalues, and
then we choose only the first M eigenvectors, then the final data set has only M
dimensions. The value of M was chosen by varying M between 1 to N and choosing the
value of N that corresponds to the best accuracy.

Table 3.1 shows the result obtained by our experiments using the features selected
with PCA for M=38 (Our experiments showed that this value of M obtained the best
classification accuracy). In this case, 5 spam e-mails out of 48 cases and 6 legitimate e-

mails out of 62 legitimate cases were misclassified.

Accuracy | Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall F1 Precision Recall F1
90.0% 87.7% | 89.6% | 88.7% 91.8% 90.3% 91.1%

Table 3.1: Experimental results for PCA-based features.
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3.3 Singular Value Decomposition (SVD)
SVD is an efficient algebraic feature extraction method and it is also a well-known

matrix factorization technique that factors a m x n matrix A into three matrices as follows

[18]:

A=USV "’ 3.1
where U and V are orthogonal matrices, and S is a diagonal matrix. The columns U; and
Vi of U and V are called the left and right singular vectors, respectively. The diagonal
elements of S; are called the singular values.

The SVD has a variety of applications in scientific computing, signal processing,
including spam filters. In our experiment, we neglect the small singular values in the
matrix S in the SVD, and hence we obtain matrix approximations whose rank equals the
number of remaining singulér values. Since the singular values appear in decreasing

order, the formula for the matrix approximation becomes:

where k is the number of retained singular values. Although we may lose some
information, however, if the singular values are small, we don’t lose much. If we leave
out some components, the final data set will have fewer dimensions than the original.

To be precise, if we originally have N dimensions in our data A, and so we
decompose A by equation (3.1). Then we choose only the first K singular values, and the
final data set has only K dimensions. The SVD results reported in our experiment
represent the best results obtained by the SVD by varying the number of selected features

K between 1 to N.
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Table 3.2 shows the best result obtained by our experiments using the features
selected with SVD. Five spam e-mails out of 48 cases and 6 legitimate e-mails out of 62
legitimate cases were misclassified based on SVD features.

Performing PCA is the equivalent of performing Singular Value Decomposition

(SVD) on the covariance matrix of the data.

Accuracy | Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall Fl1 Precision Recall F1

90.0% 87.7% | 89.6% | 88.7% 91.8% 90.3% 91.1%

Table 3.2: Experimental results for SVD based features.

3.4 Linear Discriminant Analysis (LDA)

LDA is a well-known technique for dealing with the class-separating problem and
also can reduce the dimensions of the dataset. LDA can be used to determine the set of
the most discriminate projection axes. After projecting all the samples onto these axes,
the projected samples will form the maximum between-class scatter and the minimum
within-class scatter in the projective feature space [17].

Let x, ={x]...x;} and x, = {x]....x,} be samples from two different classes. The

linear discriminant is given by the vector / that maximizes [19]

T
w Syw

T

J(w) =
) w S, w

where
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SB=(”?_”§)M_”§)T Sy = Zz (x —m)x-m)"

i=1,2xex,
are the between and within class scatter matrices respectively and m; is the mean of the

classes. The intuition behind maximizing J(w) is to find a direction which maximizes

the projected class means (the numerator) while minimizing the classes variance in this

direction (the denominator). After we find the linear transformation matrix W, the dataset
can be transformed by y = w” x x . For the c-class problem, the natural generalization of

linear discriminant involves c-/ discriminant functions. Thus, the projection is from a d-
dimensional space to a (c-1)-dimensional space [20]. For our case, we need to classify the
data into two classes, thus is projected into‘ a line.

Table 3.3 shows the result obtained by our experiments using the features selected
with LDA. Nine spam e-mails out of 48 cases and 2 legitimate e-mails out of 62

legitimate cases were misclassified based on LDA features.

Accuracy | Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall F1 Precision Recall Fl
90.0% 95.1% | 81.3% | 87.6% | 87.0% 96.8% 91.6%

Table 3.3: Experimental results for LDA based features.

3.5 Conclusion

In this chapter, we presented the results obtained using three traditional classifier

independent dimensionality reduction algorithms: PCA, LDA and SVD. Our
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experimental results show that all the above three algorithms not only reduced the
dimensions of e-mail vectors, but also improved the performance of spam filter. Figure

3.2 shows the best accuracy obtained by the approaches proposed in the chapter.

Accuracy comparison with features selections algorithms (%)

91

Accuracy

87

WFS PCA SVD LDA
Features Selection Algorithms

Figure 3.2: Accuracy comparison of traditional algorithms.
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Chapter 4

Feature Selection Based On Local

Search Algorithms

4.1 Introduction

Local search methods form a very general class of heuristics to treat discrete
optimization problems. Such problems are given by a finite set S of feasible solutions and
an objective function. The goal is to find a solution with a minimal or maximal objective
value [21]. For our e-mail problem, we consider maximization of the accuracy problems
of the e-mail filter.

Generally speaking, local search methods move iteratively through the solution set
S. Based on the current and maybe on the previous visited solutions, a new solution is
chosen. The choice of the new solution is restricted to solutions that are somehow close

to the current solution (i.e., in the neighborhood of the current solution).
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In this chapter, we present some algorithm based on local search and apply them to
our junk e-mail problem. First we introduce the traditional local search algorithm such as
Hill Climbing (HC), Simulated Annealing (SA), Tabu Search (TS). We then introduce
some techniques inspired by biological systems and artificial life, which can apply to
reduce the dimensions of the e-mail. These techniques include Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial
Immune Systems (AIS).

Our experiment result shows these techniques can not only reduce the dimensions of

the e-mail, but also improve the performance of the junk e-mail filter.

4.2 Hill Climbing (HC)

Hill-Climbing search always moves towards the goal. Using heuristics it finds which
direction will take it closest to the goal. The name "hill-climbing" comes from an
analogy: A hiker is lost halfway up/down a mountain at night. His camp is at the top of
the mountain. Even though it is dark, the hiker knows that every step he takes up the
mountain is a step towards his goal. So HC search always goes to the node closest to the
goal. The basic idea of HC is to choose a solution from the neighborhood of a given
solution, which improves this solution best, and stops if the neighborhood does not
contain an improving solution [21].

HC can be used as a features selection for our spam filter problem as follows:

1) Randomly create an initial solution S/. This solution corresponds to a binary vector of

length equal to the total number of features in the feature set under consideration. The 1°s
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positions denote the set of features selected by this particular individual. Set /*=SI and
calculate its corresponding accuracy Y(S1).

2) Generate a random neighboring solution S2 based on /* and calculate its
corresponding aécuracy Y(S2).

3) Compare the two accuracies. If the corresponding accuracy of the neighboring solution
Y(S2) is higher than Y(S1), set I*=S2.

4) Repeat step 2 to 3 for a pre-specified number of iteration (or until a certain criterion is
reached.)

Although HC has been applied successfully to many optimization problems, it has
one main drawback. Since only improving solutions are chosen from the neighborhood,
the method stops if the first local optimum with respect to the given neighborhood has
been reached. Generally, this solution is not globally optimal and no information is
available on how much the quality of this solution differs from the global optimum.
Although iterative improvement chooses a solution from the neighborhood of a given
solution which improves this solution best and stops if the neighborhood does not contain
an improving solutjon, ‘but only for very special cases does iterative improvement lead to
globally optimal solutions. If the underlying neighborhood is exact, i.e., if each local
optimum is also a global optimum with respect to the neighborhood [22], then iterative
imprerment always leads to a global optimum, independent of the initial solution.

A first attempt to overcome the problem of getting stuck in a local optimum was to
restart iterative improvement several times using different initial solutions (multiple
restart). All the resulting solutions are still only locally optimal, but one can hope that the

next local optimum found improves the best found solution so far.
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In our experiments, we used 10 different initial solutions and 5000 iteration trying to
find the best solution as shown in Table 4.1 and Table 4.2. The average accuracy of the
10 group solutions is 90.9%. The max accuracy of the 10 group solutions is 93.6% and
the min accuracy is 86.4%. By different initial solution, we reached the best solution of
93.6% and 4 spam e-mails out of 48 cases and 3 legitimate e-mails out of 62 cases were
misclassified. For HC, the initial solution affects the final result very much. The accuracy
of group 7 even had a worse performance compared to original system without featureé
selection. Figure 4.1 shows how the accuracy of the spam filter varies with the number of
iteration of the HC feature selection algorithm (for the initial state that obtained the best

accuracy).

Group 1 2 3 4 5 6 7 8 9 10

Accuracy (%) | 90.0 | 90.0 | 92.7 | 92.7 | 92.7 | 93.6 | 86.4 | 91.8 | 88.2 | 90.9

Table 4.1: Accuracy with different initial solutions obtained by HC-based features.

Average | Minimum | Maximum | Variance

90.2% 86.4% 93.6% | 0.00053366

Table 4.2: Accuray result of HC.
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Accuracy [ Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall F1 Precision Recall F1
93.6% 93.6% | 91.7% | 92.6% | 93.7% 95.2% 94.4%

Table 4.3: Best classification result obtained by HC-based features.
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Figure 4.1: Accuracy of HC-based features versus the number of iterations.

4.3 Simulated Annealing (SA)

Simulated annealing is a generalization of a Monte Carlo method for examining the
equations of state and frozen states of n-body systems [23]. The concept is based on the
manner in which liquids freeze or metals recrystalize in the process of annealing. In an

annealing process a melt, initially at high temperature and disordered, is slowly cooled so
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that the system at any time is approximately in thermodynamic equilibrium. As cooling
proceeds, the system becomes more ordered and approaches a "frozen" ground state at
T=0. Hence the process can be thought of as an adiabatic approach to the lowest energy
state. If the initial temperature of the system is too low or cooling is done insufficiently
slowly the system may become quenched forming defects or freezing out in metastable
states.

Kirkpatrick et al. [24] prdposed SA as a local search technique in 1983. It merges
HC with the probabilistic acceptance of non-improving moves. Similar to HC, SA
iteratively constructs a sequence of solutions where two consecutive solutions are
neighbored. However, for SA the next solution does not necessarily have a better
objective value than the current solution. This makes it possible to leave local optimum.

First, a solution is chosen from the current solution. Afterwards, depending on the
difference between the objective values of the chosen and the current solution, it is
decided whether we move to the chosen solution or stay with the current solution. If the
chosen solution has a better objective value, we always move to this solution. Otherwise
we move to this solution with a probability which depends on the difference between the
two objective values. More precisely, if S/ denotes the current solution and S2 is the

chosen solution, we move to S2 with probability:

P(S s2)___e—max{Y(s,)—Y(sz),O}/T
1> >
where Y(S) indicates the cost function associated with solution S. Parameter T is a
positive control parameter (temperature) which decreases with increasing number of
iterations and converges to 0. As the temperature is lowered, it becomes ever more

difficult to accept worsening moves. Eventually, only improving moves are allowed and
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the process becomes 'frozen'. The algorithm terminates when the stopping criterion is met
[25]. Furthermore, the probability above has the property that large deteriorations of the
objective function are accepted with lower probability than small deteriorations.

SA based features selection algorithm used in this thesis can be summarized as
follows:
1) Randomly create an initial solution S/.This solution corresponds to a binary vector of
length equal to the total number of features in the feature set under consideration. The 1°s
positions denote the set of features selected by this particular individual. Set 7*=S/ and
calculate its corresponding accuracy Y(S1).
2) Create the parameter (temperature) T and constant cooling factor o in the range (0...1).
3) Generate a random neighboring solution S2 based on I/* and calculate its
corresponding accuracy.
4) Compare the two accuracies. If the corresponding accuracy of the neighboring solution
Y (S2) is higher than Y(S1), set [*=S2. Otherwise, generate U = rand (0...]). Compare U
and P(§1,82).If U> P(S1,52), I*=S2.
5) Decrease the temperature by 7=T'x a.
6) Repeat step 3 to 5 for a pre-specified number of iteration (or until a certain criterion is
reached).

To compare with the HC algorithm, we set the same 10 initial solutions. Four spam
e-mails out of 48 spam cases and 1 legitimate e-mail out of 62 legitimate cases were
misclassified based on SA features. From table 4.5, the average accuracy reached 92.2%
which is better than that of Hill Climbing and the max accuracy is 95.5% which is high

than the result of HC and that without FSS. Figure 4.2 shows the accuracy varies with the
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number of iteration. This figure is produced for group 3. At each temperature, we set the

iteration to 100. In our experiment, the temperature decreased 50 times.

The major difficulty in implementation of the algorithm is that there is no obvious

analogy for the temperature 7 with respect to a free parameter in the combinatorial

problem. Furthermore, avoidance of local optimization is dependent on the "annealing

schedule"”, the choice of initial temperature, how much iteration are performed at each

temperature, and how much the temperature is decremented at each step as cooling

proceeds.

Group | 2 3 4 5 6 7 8 9 10
Accuracy (%) | 88.2 [89.9 {955 |[955 |90.0 |93.6 |93.6 [92.7 |92.7 |90.9
Table 4.4: Accuracy of SA-based features for10 different initial solutions.
Average | Minimum | Maximum { Variance
92.2% 88.2% 95.5% | 0.00064630
Table 4.5: Accuray results of SA.

Accuracy | Spam Spam | Spam | Legitimate | Legitimate | Legitimate

Precision | Recall F1 Precision Recall F1
95.5% 92.2% | 97.9% | 94.6% 98.3% 93.6% 95.9%

Table 4.6: Best accuracy classification result by SA-based features.
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Figure 4.2: Accuracy of SA-based features versus the number of iterations.

Under certain conditions for the neighborhoods and the way in which the control
parameter T is decreased, it is possible to prove that SA is asymptotically an optimization
algorithm. The proof is based on results on Markov chains. If the neighborhood is .
connected, i.e. if it is possible to move from each solution via a sequence of neighbored
solutions to each other solution, and the control parameter T does not decrease too
quickly to 0, the SA algorithm converges to a globally optimal solution with probability 1
[26]. Ho-wever, this result is mainly of theoretical interest. Each concrete realization is
still a heuristic method, since it only runs a finite number of iterations. Furthermore, the
above result does not give a rate of convergence. Thus, no bounds on the quality of the

solution after a finite number of steps are known [21].
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4.4 Threshold Accepting (TA)

A variant of SA is the threshold accepting méthod. It was designed by Ducek and
Scheuer [21] as a partially deterministic version of simulated annealing. The only
difference between SA and TA is the mechanism of accepting the neighboring solution.
Where SA uses a stochastic model, TA uses a static model: if the difference between the
objective value of the chosen and the current solution is smaller than a threshold T, we
move to the chosen solution. Otherwise it stays at the current solution [21]. Again, the
threshold is a positive control parameter which decreases with increasing number of
iterations and converges to 0. Thus, in each iteration, we allow moves which do not
deteriorate the current solution more than the current threshold T and finally we only
allow improving moves.

TA based features selection algorithm used in this thesis can be summarized as
follows:

1) Randomly create an initial solution S/.This solution corresponds to a binary vector of
length equal to the total number of features in the feature set under consideration. The 1’s
positions denote the set of features selected by this particular individual. Set /*=S/ and
calculate its corresponding accuracy Y(S1).

2) Create the parameter (temperature) T and constant cooling factor a in the range (0 . .1).
3) Generate a random neighboring solution S2 based on I* and calculate its
corresponding accuracy.

4) Compare the two accuracies Y(S2) and Y(S!/). If the corresponding accuracy of the
neighboring solution Y(S2) is higher than Y(S1), set [*=S2. Otherwise, set f = Y (S2)-Y

(S1). Compare f# and T. If T> 8, [*=S2.
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5) Decrease the temperature by T=T"xq.
6) Repeat step 3 to 5 for a pre-specified number of iteration (or until a certain criterion is
reached).

The main advantage of TA is its conceptual simplicity. TA simplifies SA procedure
by leaving out the probabilistic element in accepting worse solutions. Instead it
introduces a deterministic threshold, 7, and a worse solution is accepted if its difference
to the incumbent solution is smaller or equal to the threshold. Compared with SA, step 4
is different for the two algorithms.

To compare with the HC and SA. algorithm, we also set the same 10 initial solutions.
Three spam e-mails out of 48 spam cases and 3 legitimate e-mails out of 62 legitimate
cases were misclassified based on TA features. From table 4.8, the average accuracy
| reached 92.0% which is better than that of HC and the max accuracy is 94.6% which is
high than the result of HC and that without FSS. Figure 4.3 shows the accuracy varies

with the number of iteration. This figure is produced for group 3.

Group 1 2 3 4 5 6 7 8 9 10

Accuracy (%) | 91.8 | 92.7 | 94.6 | 91.8 | 92.7 | 91.8 | 93.6 | 90.0 | 90.9 | 90.0

Table 4.7: Accuracy of TA-based features for10 different initial solutions.

Avérage | Minimum | Maximum | Variance

92.0% 90.0% 94.6% | 0.00021715

Table 4.8: Accuray results of TA.
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Accuracy | Spam | Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall Fl Precision Recall Fi
94.6% 93.8% | 93.8% | 93.8% 95.2% 95.2% 95.2%
Table 4.9: Best accuracy obtained by TA based features.
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Figure 4.3: Accuracy of TA-based features versus the number of iterations.

4.5 TABU SEARCH (TS)

Tabu (or taboo) comes from Tongan, a language of Pdlynesia, where it was used by
the aborigines of Tonga island to indicate things that cannot be touched because they are
sacred. According to Webster's Dictionary, the word also means "a prohibition imposed
by social custom as a protective measure” or of something "banned as constituting a

risk." These current more pragmatic senses of the word accord well with the theme of TS.
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Glover [27] [28] proposed TS to evaluate better solutions in combinatorial
optimization problems. Many of the heuristic search algorithms have the drawback that it
can easily get stuck in a local minimum. TS avoids this problem using a very simple, yet
elegant, idea. In TS, an adaptive memory, called tabu list, is introduced into the search
method. TS continues the solution search process after storing some attributes in the tabu
list for a period, making them fixed and escaping from a local minimum. The length of
tabu list is called tabu length. The length of the tabu list may be fixed (static tabu list) or
may vary (dynamic tabu list) and a solution is declared tabu if it is an element of the tabu
list. Because of the finite length of the tabu list, the above realization of the idea to forbid
solutions already visited and, thus, to avoid cycling, cannot prevent cycling completely,
but at least it makes cycling unlikely.

Because the tabu list may eliminate some promising solutions from the search
process, other criteria, called aspiration criteria, are introduced. These criteria may
.overrule the tabu state of a solution.

In our work, we adapted TS for the e-mail features selection as follows:

1) Randomly create an initial solution 7 .This solution corresponds to a binary vector of
length equal to the total number of features in the feature set under consideration. The 1°s
positions denote the set of features selected by this particular individual. Set I*=1.

2) Define a first-in first-out (FIFO) tabu list of fixed length N. Push the initial solution I
into the Nth position in the tabu list.

3) Mutate the solution /* with a proper rate to find the neighbor solutions of the initial

solution.
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4) Sort the neighbor solutions based on their corresponding accuracy then select the
solution with the hig};est value.

5) Check if this best solution is in tabu list. If yes, choose the next. Repeat this selection
process until find out a solution which is not in the tabu list. Set /* equal to this solution.
6) Push /* found in 5 into the tabu list. If the length of the tabu list exceeds N, then the
first solution in the tabu list is dropped from it.

7) Repeat step 3 to 7 for a pre-specified number of iteration (or until a certain criterion is
reached.)

When the algorithm terminates, it reports the best individual and its affinity, i.e., the
accuracy of the classifier when using only the subset of features corresponding to this
individual. It also outputs the obtained accuracy when using the test corpus.

Table 4.10 shows the result obtained by our experiments using the features selected
with TS. In this case, we set the tabu list length to 20 and 3 spam e-mails out of 48 cases
and 3 legitimate e-mails out of 62 legitimate cases were misclassified based on TS
features. Figuré 4.4 shows how the accuracy of the spam filter varies with the number of

iteration of the TS feature selection algorithm.

Accuracy | Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall F1 Precision Recall F1
94.6% 93.8% | 93.8% | 93.8% | 95.2% 95.2% 95.2%

Table 4.10: Best accuracy results obtained by TS based features.
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Figure 4.4: Accuracy of TA-based features versus the number of iterations.

4.6 Particle Swarm Optimization (PSO)

PSO [29] is a new population based stochastic optimization technique developed by
Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or
fish schooling. Consider a group of birds are randomly searching food in an area where
there is only one piece of food in the area being searched. All the birds do not know
where the food is. But they know how far the food is in each iteration. So the best
strategy to find the food is to follow the bird which is nearest to the food [30].

PSO learned from the scenario above and used it to solve the optimization problems.
In PSO, each single solution is a "bird" in the search space. We call it "particle". All
particles have fitness values which are evaluated by the fitness function to be optimized,
and have velocities which direct the flying of the particles. The particles fly through the

problem space by following the current optimum particles.
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In our experiments, we define the fitness of each particle as the recognition accuracy
corresponding to the features selected by this particle using a pre-specified classifier. The
algorithm described in here is a slightly modified version of the PSO algorithm to fit the
binary nature of the feature selection problem.

Let v; and p; denote the j* component of the i particle velocity v; and position P;

respectively. The system is initialized with a group of random particles witho < pi; <1,

and then searches for optima by updating generatiohs. In each iteration, each particle
position is updated by following two "best" particles. The first one (denoted by Pbest) is
the best fitness it has achieved so far. The fitness value is also stored. Another "best"
value that is tracked by the particle swarm optimizer is the best vah;e (denoted by Gbest),
obtained so far by any particle in the population. After finding the two best values, the

particle updates its velocity and positions with following equations:

v,; =v,; tcen(pbest, ;- p, ) +c,r,(gbest, ;- p, ;) (4.1)
v,;=20(v;;)-1
Dij =fi(Pi,j +vi,j) 4.2)
Where 1<r,,r, <0 are uniformly distributed random variables, c; c; >0 are learning

factors and o(x) is the sigmoid function given by:

1
R Fya—
and £, =(7(p,y), T(p.)-T(P, - ,)) Where:
Ix) 1, x>0.5,
xX)=
0, x<0.5.
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The output of the above-adopted algorithm is a vector composed of ones that
correspond to the selected features.

Table 4.11 shows the result obtained by our experiments using the features selected
with PSO. In this case, 2 spam e-mails out of 48 cases and 7 legitimate e-mails out of 62
legitimate cases were misclassified based on PCA features. Figure 4.5 shows how the
accuracy of the spam filter varies with the number of iteration of the PSO feature

selection algorithm.

Accuracy | Spam | Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall F1 Precision Recall F1
91.8% 86.8% | 95.8% | 91.1% 96.5% 88.7% 92.4%

Table 4.11: Best accuracy classification results obtained by PSO based features.
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Figure 4.5: Accuracy of PSO-based features versus the number of iterations.
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A number of factors will affect the performance of the PSO. Firstly, the number of
particles in the swarm affects the run-time significantly, thus a balance between variety
(more particles) and speed (less particles) must be sought. In our experiment, we set the
number of particles to 300. Leamning factor C; C; are another important factors. C;is self
confidence factor and C;is swarm confidence factor respectively. Usually C; C; equal to

2.

4.7 Ant Colony Optimization (ACO)

Ant Colony Optimization [31] is another heuristic optimization method for solving
optimization problems which borrows ideas from biological ants. In 1999, the Ant
Colony Optimization metheuristic was defined by Dorigo, Di Caro and Gambardella [14]

[15].

Obstacle
¥

Figure 4.6: Example of real ants. [31]
Consider for example the experimental setting shown in Figure 4.6. There is a path

along which ants are walking from food source to the nests (Figure 4.6 (A)). Suddenly an
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obstacle appears and the path is cut off see Figure 4.6(B). While the ants walking from
food source to the net have to decide whether to turn up or down (Figure 4.6(C)). The
choice is influenced by the intensity of the pheromone trails by preceding ants. A higher
level of pheromone on the up path gives an ant a stronger stimulus and thus a higher
probability to turn up. The first ant reaching the obstacle has the sﬁme probability to turn
up or down (for there was no previous pheromone on the two alternative paths). Because
upper path is shorter than down path, the first ant following it will reach the nest before
the first ant following down path (Figure 4.6(C)). The result is that an ant returning from
the nest to the obstacle will find a stronger trail on up path, caused by the half of all the
ants that by chance decided to approach the obstacle via up path and by the already
arrived ones coming via up path: they will therefore prefer up path to down path.
Therefore, the number of ants following up path per unit of time will be higher than the
number of ants following down path. This causes the quantity of pheromone on the
shorter path to grow faster than on the longer one, and therefore the probability with
which any single ant chooses the path to follow is quickly biased toward the shorter one.
The final result is larger amount of pheromone will accumulate on the shorter paths to
good food sources because larger number of ants will cross it back and forth per unit time
as compared to longer paths and very quickly all ants will choose the shorter path.

The originally proposed ant colony optimization algorithm fits naturally in
optimization problems corresponding to the selection of optimum permutation (such as
the traveling sales person problem), i.e., we can apply it for the feature selection problem

if we fixed the size of the subset of features to be chosen.
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In here, we present a simple algorithm that borrows ideas from the real ant colony
but doesn’t have the above constraint, i.e., we don’t have to pre-determine the size of the
optimal feature subset.

The system is initialized with a group of ants moving across a full binary tree of
depth n and 2n leaves. Each leaf corresponds to one of the possible 2n feature subsets.
The root of the tree corresponds to the nest of the ants and the accuracy of the classifier
based on the feature subset associated with each leaf corresponds to the amount of food
found at the food source.

The algorithm proceeds by iterating through the following three basic steps:

1) Construct a solution for all ants: At each node, each ant has to make a (statistical)
decision whether to follow the up path or the down path. At the first iteration, all the ants
will move randomly. However, on subsequent iterations, the ants’ choices will be
influenced by the intensity of the pheromone trails left by preceding ants. A higher level
of pheromone on the up path gives an ant a stronger stimulus and thus a higher
probability to turn up and vice versa. Let Pher; (U) and Pher, (D) denote the value of the
pheromone accumulated at the up edge and the down edge of a given node at the " 1evel
of the tree. Then the ants’ behavior equivalent to having each ant choosing a uniformly
distributed random variable 1 <r <0 and choosing to follow the up edge at the I 1evel

Pher,(D)
Pher,(U) + Pher,(D)

of the tree if, r > and to follow the down edge otherwise.

2).Do a global pheromone update: For our problem, this step is also different than the one
proposed in the original Ant Colony Optimization algorithm. Instead of updating the
pheromone along the visited arcs only, we update all the corresponding 2" arcs at "

‘level of the tree. The amount of pheromone laid by each ant corresponds to the amount of
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food (i.e., the classifier accuracy) that the ant finds at the leaf of the tree at the end of the
path followed by this ant.
3). Evaporate pheromone: after each iteration, a portion of the pheromone of the edge is
evaporated according to a local updating rule, such that the probability of the selection of
that edge by other ants decreases. This prevents construction of similar paths by the set of
ants and increases the diversity of the system. The rate of evaporation provides a
compromise between the rate of convergence and reliability of convergence. Fast
evaporation causes the search algorithm to be stuck at local optima, while slow
evaporation lowers the rate of convergence. After enough iteration of the algorithm, the
pheromone of the g(;od edges which are used in constructing of low-cost paths will
increase and the pheromone of the other edges will evaporate. Thus, in the higher
iterations the probability of constructing low-cost paths increases.

Table 4.12 shows the result obtained by our experiments using the features selected
with ACO. In this case, 1 spam e-mails out of 48 cases and 4 legitimate e-mails out of 62
legitimate cases were misclassified based on ACO features. Figure 4.7 shows how the

accuracy of the spam filter varies with the number of iteration of the ACO feature

selection algorithm.
Accuracy | Spam | Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall F1 Precision Recall Fl1
95.4% 92.1% | 97.9% | 94.9% 98.3% 93.5% 95.8%

Table 4.12: Best accuracy classification results obtained by ACO based features.
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Figure 4.7: Accuracy of ACO-based features versus the number of iterations.

4.8 Genetic Algorithm (GA)

The earliest instances of what might today be called genetic algorithms appeared in
the late 1950s and early 1960s, programmed on computers by evolutionary biologists
who were explicitly seeking to model aspects of natural evolution. It first was introduced
by Holland [32].

GA is based on a biological metaphor: They view learning as a competition among a
population of evolving candidate problem solutions. A 'fitness' function evaluates each
. solution to decide whether it will contribute to the next generation of solutions. Then,
through operations analogous to gene transfer in sexual reproduction, the algorithm
creates a new population of candidate solutions [33].

GA used in our work can be summarized as follows steps:

1) Randomly initialize a population of individuals (). Each individual corresponds to a

binary vector of length equal to the total number of features in the feature set under
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consideration. The 1’s positions denote the set of features selected by this particular
individual.
2) The affinity of each individual is defined as the recognition accuracy corresponding to
the features selected by this individual using a pre-specified classifier.
3) Select the n best highest affinity solution of M. This “Selection” step mimics the
pﬁncipal of “Survival of the Fittest”.
4) “Crossover” the n best highest affinity solution. This operation mimics mating in
biological populations. The crossover propagates features of good surviving solutions
from the current population into the future population, which will have better fitness
value on average.
5) “Mutate” these solutions. This operation promotes diversity in population
characteristics. The mutation allows for global search and prevents the algorithm from
getting trapped in local search
6) Repeat steps 2 to 5 for a pre-specified number of iteration (or until a certain criterion is
reached.)

When the algorithm terminates, it reports the best individual and its affinity, i.e., the
accuracy of the classifier when using only the subsét of features corresponding to this

individual. It also outputs the obtained accuracy when using the test corpus.
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Figure 4.8: Crossover operation of GA.

Figure 4.8 illustrates the effect of crossover genetic operator on individuals in a
population of 8-bit strings. It shows two individuals undergoing single-point crossover;
the point of exchange is set between the sixth and seventh positions in the genome,

producing a new individual that is a hybrid of its progenitors.

Figure 4.9: Mutation operation of GA.

Fig 4.9 shows an individual undergoing mutation at position 4, changing the 0 at that
position in its genome to a 1. A mutation changes the given solution slightly. Mostly,
there are several alternatives in changing the solution and the choice for one of them is
done randomly. Thus, a mutation is nothing but a random selection of one solution in the
neighborhood of the given solution, whereby the neighborhood is defined by the possible

changes mutations can perform [21].
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Table 4.13 shows the result obtained by our experiments using the features selected
with GA. In this case, 5 spam e-mails out of 48 cases and 5 legitimate e-mails out of 62
legitimate cases were misclassified based on GA features. Figure 4.10 shows how the

accuracy of the spam filter varies with the number of iteration of the GA feature selection

algorithm.
Accuracy | Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall | F1 Precision Recall F1
90.9% 89.6% | 89.6% | 89.6% | 91.9% 91.9% 91.9%

Table 4.13: Best accuracy classification result by GA based features.
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Figure 4.10: Accuracy of GA-based features versus the number of iterations.
Some parameters of GA affect the final result very much. For example, the size of
the population, the rate of mutation and crossover must be also chosen with care. If the

population size is too small, the genetic algorithm may not explore enough of the solution
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space to consistently find good solutions. If the rate of genetic change is too high or the
selection scheme is chosen poorly, beneficial schema may be disrupted and the
population may enter error catastrophe, changing too fast for selection to ever bring about .

convergence.

4.9 Artificial Inmune Systems (AlS)

Artificial Immune Systems (AIS) [34] are computer algorithms inspired by the
principles and processes of the vertebrates’ immune system. The algorithms exploit the
immune system's characteristics of learning and memory to solve a problem.

The Artificial immune algorithms can be broadly categorized into three subgroups:
those using the clonal selection theory, those using negative selection and those using the
immune network theory as their main inspiration. In our work, the clonal selection
algorithm (CLONALG) [34], a recently proposed optimization technique developed on
the basis of clonal selection of the AIS, is adopted and used to select an optimal subset
from the constructed features. The set of selected features selected by our algorithm is
classifier dependant. This means that different possible feature subsets are examined by
the algorithm and the classifier performance is tested for each subset and-finally the best
discriminatory feature subset is chosen by the algorithm.

The CLONALG used in our work can be summarized as follows steps:

1) Randomly initialize a population of individuals (A4). Each individual corresponds to a
binary vector of length equal to the total number of features in the feature set under
consideration. The 1’s positions denote the set of features selected by this particular

individual.
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2) The affinity of each individual is defined as the recognition accuracy corresponding to
the features selected by this individual usiﬁg a pre-specified classifier.

3) Select the n best highest affinity elements of M and generate copies of these
individuals proportionally to their affinity.

4) Mutate all these copies with a rate proportional to their affinity with the input pattern:
the hi gher the affinity, the smaller the mutation rate.

5) Add these mutated individuals to the population M and reselect m of these maturated
individuals to be kept as memories of the systems.

6) Repeat steps 2 to 5 for a pre-speciﬁed number of iteration (or until a certain criterion is
reached.)

When the algorithm terminates, it reports the best individual and its affinity, i.e., the
accuracy of the classifier when using only the subset of features corresponding to this
individual. It also outputs the obtained accuracy when using the test corpus.

Table 4.14 shows the resﬁlt obtained by our experiments using the features selected
with AIS. In this case, 4 spam e-mails out of 48 cases and 6 legitimate e-mails out of 62
legitimate cases were misclassified based on AIS features. Figure 4.11 shows how the
accuracy of the spam filter varies with the number of iteration of the PCA feature

selection algorithm.

Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Accuracy | Precision | Recall F1 Precision Recall F1
90.9% 88.0% |[91.7% | 89.8% | 93.3% 90.3% 91.8%

Table 4.14: Best accuracy classification result by AIS based features.
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Figure 4.11: Accuracy of AlIS-based features versus the number of iterations.

4.10 Conclusion

In this chapter, we applied several local search techniques as feature selection
algorithms. Our experimental results show that all these algorithms obtained a better
performance compared with the ﬁlter performance without any features selections
algorithms. Figure 4.12 shows the best accuracy obtained by the traditional local search
algorithms proposed in this chapter. Figure 4.13 also shows the best accuracy obtained by
the artificial life algorithms in this chapter.

Our experimental results also show that all these local search techniques outperform

the three techniques discussed in chapter 3 (i.e., PCA, LDA, and SVD).
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Figure 4.12: Accuracy comparison for traditional local search algorithms.
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Figure 4.13: Accuracy comparison for artificial life algorithms.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we proposed the use of several optimization techniques as classifier
dependent feature selection algorithms for application in spam e-mail filtering. In
practice, we should combine éeveral techniques together to solve junk e-mail problem.
The performance of our proposed approaches was compared using a simple (KNN)
classifier.

Table 5.1 shows the accuracy obtained by the spam filter using non-classifier based

dimensionality reduction algorithms; namely PCA, SVD and LDA.
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Without PCA SVD LDA
Feature Selection

Accuracy 88.1% 90.0% |90.0% | 90.0%
Spam Precision 85.7% 87.7% | 87.7% 95.1%
Spam Recall 87.5% 89.6% | 89.6% 81.3%
Spam F1 86.6% 88.7% | 88.7% 87.6%
Legitimate Precision 90.1% 91.8% | 91.8% 87.0%
Legitimate Recall 88.7% 90.3% |903% | 96.8%
Legitimate F1 89.4% 91.1% |91.1% | 91.6%

Table 5.1: Best classification results of traditional algorithms.

Table 5.2 shows the accuracy obtained by the spam filter using different local search

feature selection algorithms; namely HC, TA, SA, and TS.

Without HC TA SA TS
Feature Selection

Accuracy 88.1% 93.6% | 94.6% | 95.5% | 94.5%
Spam Precision 85.7% 93.6% | 93.8% | 92.2% | 93.8%
Spam Recall 87.5% 91.7% | 93.8% | 97.9% | 93.8%
Spam F1 86.6% 92.6% | 93.8% | 94.6% | 93.8%
Legitimate Precision 90.1% 93.7% | 952% | 98.3% | 95.2%
Legitimate Recall 88.7% 952% | 952% | 93.6% | 95.2%
Legitimate F1 89.4% 94.4% | 952% | 95.9% | 95.2%

Table 5.2: Best classification results of local search algorithms.
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Table 5.3 shows the accuracy obtained by the spam filter using different artificial

life techniques, namely ACO, PSO, GA and AIS.

Without GA AIS PSO ACO

Feature Selection ‘
Accuracy 88.1% 90.9% | 90.9% | 91.8% | 95.4%
Spam Precisioﬁ 85.7% 89.6% | 88.0% | 86.8% | 92.1%
Spam Recall 87.5% 89.6% | 91.7% | 95.8% | 97.9%
Spam F1 86.6% 89.6% | 89.8% | 91.1% | 94.9%
Legitimate Precision 90.1% 91.9% | 93.3% | 96.5% | 98.3%
Legitimate Recall 88.7% 91.9% | 90.3% | 88.7% | 93.5%
Legitimate F1 89.4% 91.9% | 91.8% | 92.4% | 95.8%

Table 5.3: Best classification results of artificial life algorithms.

Accuracy comparition with features selections algorithms (%)

98

Accuracy

86

84

WFS PCA SVD LDA GA AIS PSO HC TS TA ACO SA
Features Selection Algorithms

Figure 5.1: Accuracy comparison for all features selection algorithms.
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Figure 5.1 compare the accuracy obtained by all the algorithms in this thesis. In
Figure 6.1, WFS denotes the system without any feature selection step. From Figure 5.1,

it is clear that the accuracy ordering is as follows:

SA>ACO>TA>TS>HC>PSO>GA=AIS>PCA=SVD=LDA.

One should note that the above accuracy ordering should be interpreted with care
since it may vary depending on the dataset. However, the conclusion that feature

selection strategy improves the spam filter performance should remain unchanged.

5.2 Future Works

Throughout our experiment, we used a simple KNN classifier. We believe that
better accuracy can be obtained by the use of a more powerful classifier such as support
vector machines. In fact, even the use of Naive Bayes algorithm may dramatically
improve the performance of the spam filter (see appendix I).

Since a typical e-mail user may tolerate some spam e-mails, but is not willing to
loose any legitimate e-mails, the work in this paper can also be extended by assigning a
different weight to different classification errors, i.e., assigning a high penalty to
legitimate e-mails classified as spam e-mails.

Other promising techniques such as non negative matrix factorization can also be

used. Appendix II shows some preliminary results obtained using LLE.
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~ In order to improve the statistical significance of our results, one may examine the
proposed approaches on a larger (unbalanced) database.

Another important problem that needs to be addressed is how to overcome the
spammers’ trick of modifying the spam terms. For example, several spammers may
easily confuse traditional spam filters by using the word “vlagra” instead of “Viagra”.

One main disadvantage of these local search téchniques (as compared to PCA,
LDA, and SVD) is the sensitivity of these techniques to the initial solution and the
number of iterations. Further research is required to determine some more guidelines

regarding the optimum number of required search iterations.
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Appendix |

Naive Bayes Algorithm

Naive Bayes (NB) classifier is a probability-based approach. The basic concept of it
is to find whether one e-mail is spam or not by looking at which words are found in the

message and which words are absent from it.
Given a feature vector d ;= Wi, Wi . -W,;,} of a message, where W}; is the

weight of feature i, and let ¢ denotes the category to be predicted (c € (spam, legitimate)),

by Bayes law the probability that d ; belongs to cis:

P(c).P(d,|c)
Pd))

P(c|d))=
Where P(d ;) is the probability that a randomly picked document has vector d ; as its
represéntation, P(c) is the prior probability of a randomly picked document with label c,
and P(d ;| ¢) denotes the probability of a random picked document with label ¢ has d ;
as its representation.

The denominator P(d ;) 1is the same for all categories under consideration and can

be dropped safely. The parameter P(c) can be estimated from training data through
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relative frequency. However, it is usually infeasible to compute the term P(d ;o)

directly. Since the number of possible vectors d ; 1s too high. In order to alleviate this

problem, it is common to make the assumption that any two coordinates of the document

vector are, when viewed as random variables, statistically independent of each other. So
P(d ;1¢) can be decomposed to:

- I
P, 10=][POF, 10)

This is where the name “naive” comes frdm. Despite the fact that this kind of
assumption is often violated in real-world data, naive Bayes classifier performs fairly
well on spam filtering task [35] [36] and is already applied in practice.

Table 1.1 shows the results obtained by Naive Bayes spam e-mail filter without any
features selection algorithms. The accuracy is very high and only 2 legitimate e-mails out

of 62 cases were misclassified.

Accuracy | Spam Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall F1 Precision Recall F1
98.2% 96.0% 100% | 97.9% 100% 96.8% 98.4 %

Table 1.1: Accuracy of the Naive Bayes filter.
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Appendix Il

LLE-based Feature Selection for

Spam E-mail Filters

In this appendix, we present some preliminary results obtained using the local linear
embedding algorithm when applied to the spam filter feature selection problem.

LLE [37] is an unsupervised learning algorithm that computes low dimensional,
neighborhood preserving embeddings of high dimensional data. LLE attempts to discover
nonlinear structure in high dimensional data by exploiting the local symmetries of linear
reconstructions. LLE maps its inputs into a single global coordinate system of lower
dimensionality, and its optimizations do not involve local minima. The LLE algorithm is
based on simple geometric intuitions and can be described as follows:

Suppose the data consist of N real-valued vectors each of dimensionality D. It is
expected that each data point and its neighbors lie on or close to a locally linear patch.
The local geometry of these patches is characterized by linear coefficients that

reconstruct each data point from its neighbors. In the simplest formulation of LLE, one
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identifies nearest neighbors per data point, as measured by Euclidean distance.

Reconstruction errors are then measured by the cost function:

2

(A

g(W)=zi:‘X,. —;W,.jxj

This adds up the squared distances between all the data points and their
reconstructions. The weights summarize the contribution of the j* data point to *
reconstruction. To compute the weights, the cost function should be minimized subject to
two constraints: first, that each data point is reconstructed only from its neighbors;
second, that the rows of the weight matrix sum to one: The optimal weights subject to
these constraints are found by solving a least squares problem. In the final step of the
algorithm, each high dimensional observation X is mapped to a low dimensional vector ¥
representing global internal coordinates on the manifold. This is done by choosiﬂg d-

dimensional coordinates to minimize the embedding cost function:

2

(42)

¢(Y)=Z‘Y.- -2 WY,

This cost function is based on locally linear reconstruction errors, but the weights
are fixed while optimizing the coordinates Y. The LLE algorithm is simple to implement
and is summarized as follows [38]:

1) Compute the neighbors of each data point X;
2) Compute the weights W that best reconstruct each data point JX; from its neighbors
minimizing the cost function in (A1).

3) Compute the vectors ¥; by the weight #; minimizing the quadratic form in (A2).
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Table II.1 shows the result obtained by our experiments using the features selected
with LLE. In this case, five spam e-mails out of 48 cases and 5 legitimate e-mails out of

62 legitimate cases were misclassified based on LLE features.

Accuracy | Spam | Spam | Spam | Legitimate | Legitimate | Legitimate
Precision | Recall | F1 Precision Recall F1
90.9% 89.6% |89.6% | 89.6% | 91.9% 91.9% 91.9%

Table II.1: Experimental result obtained using LLE based features.

It should be noted that there are some practical problems associated with LLE. The
typical application of LLE is for data visualization in which the data is mapped to either 2
or 3 dimensional spaces. However, when applied as a part of a classification system,
there is no clear way to determine what dimension to project to. There is also no clear
way to determine the number of neighbors. In this work, these two parameters were
varied and we chose the values that optimized the classification performance. Also, the
LLE doesn’t provide an explicit mapping between the original space and the reduced
dimensional space. However, since the LLE is unsupervised, in this work, we decided to
follow a very simple approach by performing the embedding process for every additional
test case. Since the whole process is computationally inexpensive, this doesn’t provide
any practical problem in our proposed system and the whole embedding process can be
performed in few seconds using any reasonable personal computer. However, this simple

approach may not be practical for very large sets of data.
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