A MESSAGE-BASED MIDDLEWARE FOR ENTERPRISE
APPLICATION INTEGRATION

Sujoy RAY

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

MaAy 24, 2006
(© Sujioy Ray. 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20781-9
Our file Notre référence
ISBN: 978-0-494-20781-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

A Message-Based Middleware for Enterprise Application Integration

Sujoy Ray

In this thesis, we address Enterprise Application Integration (EAI) through the
presentation of a message-based middleware that we designed and implemented. Such
a multi-tier middleware allows for the seamless integration of information sources anti
applications with monitoring capabilities over remote events. More precisely, we pro-
pose an end-to-end, loosely coupled message-based system that is not only capable of
asvnchronously integrating information but also allow local application components
to be asynchronously notified of changes in distant sources with /without any user in-
tervention. Furthermore, we have designed and implemented various decision support
capabilities over this integrated platform that scrutinizes collected information and
helps to take judicious decisions through optimization and simulation procedures.
The thesis also elaborates a Java-based prototype implementation of the proposed
concept, called “Digital Cockpit”. Actually, Digital Cockpit implements a five-phase
paradigm that integrates, displays, monitors, analvzes and chtrols information inside

organization.

1i

To, My Parents.

iv

Acknowledgments

Several people helped me to make this research a success. First of all, T owe a great
debt of gratitude to my supervisor Professor Dr. Mourad Debbabi. T consider myself
fortunate working under his guidance and receiving affluent knowledge towards this
rescarch and discovery. I really feel privileged for his attention to complete a success-

ful research.

The research described in this thesis is the part of a major project on the elabo-
ration of Digital Cockpit for the Canadian National Defence. This project is a joint
collaboration of Defence Research and Development Canada Valcartier (DRDC) and
Computer Security Laboratory at Concordia University. 1 would specially like to
thank DRDC researchers namely: Mr. Bernard Deschenes, Dr. Abdeslem Boukhtouta
and Mr. Abderrazak Sahi, who provided ample opportunities for research. I do ap-

preciate their guidance, discussion and scientific comments.

I would also like to express my gratitude to colleagues in Computer Security Lab-
oratory in particular: A. R. Arasteh, A. Benssam, S. Dalouche, F. Guerroumi, O.
El-Hajj, H. Issa, A. Venkataiahgari and H. Yahyvaoui. They influenced me a lot in
this research. This work would not have been possible without them. It is not only
to provide a scope of work but also to encourage me day in and day out. Thank you
all for vour help and patience. Last but not the least, I remember my parents, sister,
family and friends, all who inspire me throughout my career, concealing real odds of

their lives.

Sujoy Ray
25.04.2006

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4

Motivation
Background Lo oL oo
Objectives e

Thesis Organization.

2 Information Systems Integration and Decision Support

2.1
2.2
2.3

2.4

2.5

2.6

Introduction Lo
Enterprise Application Integration
Data Integration Lo
2.3.1 Data Warehousing, ...
2.3.2 Federated Architecture L.
Service Integration
2.4.1 Integration Approaches L.
2.4.2 Service Oriented Architecture: Web Services
Messaging Service Lo
2.5.1 Classification of Messaging Services
2.5.2 Java Message Service L.,
2.5.3 JMS Properties e e e e e e e e
Decision Support Systems Lo
2.6.1 Model of Decision Support Systems
2.6.2 Classification of Decision Support Systems

vi

ix

xi

S B e e

10

16
18
19

2.7 Summaryo e e e

3 Approach
3.1 Introduction e
3.2 Overview
3.3 Middleware Modelo L
3.3.1 Unified Framework oL,
3.3.2 Integration Infrastructure00 0oL L.
3.3.3 User Application |
3.4 Performance Scenarios
34.1 RPC-Based Middleware versus Message-Based Middleware . .
3.5 Data Integration Architecture L.
3.6 Service Integration Architecture
3.6.1 Integration Components
3.6.2 Request Life-Cvele
3.6.3 Summary

4 Design and Implementation of Digital Cockpit

4.1 Imtroduction e e e e e e e e
- 4.2 Software Requirements, ..
421 Domain Model
422 UseCaseModel,

4.3 Software Design and Methodologyv
4.3.1 Assumptions and Policies
4.3.2 Methodology
4.3.3 Class Diagrams and Technology

4.4 Implementation
441 Datalntegration
4.4.2 Service Integration
4.4.3 Display and User Interface

5 Conclusion

Bibliography

vii

45
45
46
48
48
o0
52
54
57
59
61
61
63
65

66
66
67
67
70
72
72
74
75
77
77
78
82

90

94

A Use Cases of Digital Cockpit 99
B Class Diagrams 102

C Technology Stack 106

viii

List of Figures

O L =1 T W N

[N T N T NG T N T N T N T N R O N e T e T e e
= I L B U\ i =R~ T e <N B > B L ' - GURE NI N o]

Architecture of a Typical Middleware 9
Enterprise Application Integration 12
Data Warehouse: Logical View 15
Data Integration: Federated Architecture 17
Stack of Web Services L. 24
Architecture of Service Integration Model 26
JMS Messaging Model 35
General View of a Decision Support System Model 41
Layver-Based Integration Approach 49
High-Level Model of Integration 54
Architecture of Data Integration I 59
Architecture of Service Integration 62
Quality Functional Deployment of the Digital Cockpit 68
Domain Model of the Digital Cockpit 70
Use Case Model of the Digital Cockpit 71
Sequence Diagram of Display Module 73
Time-Based Analysis of a Set of Information 83
Simulation of an Analyzed Scenario. 83
Main User Interface of Digital Cockpit Systemy 85
Administrator’s User Interface of Digital Cockpit System 86
Overall View of Weather Scenario 87
“Drill-Down” Feature for Detailed Information 88
Specific Weather Component: Wind Forecast 88
Optimization Scenarios of Mission Planning 89
Class Diagram: Integrator Module 103
Class Diagram: Monitor Module 104

ix

27 Class Diagram: Display Module 105

List of Tables

S U W N

Federated Architecture vs Data Warehousing Approach 18
Java Code for a JMS “sender” Application 37
Advantages of Digital Cockpit Solution 7

Technology Stack of Digital Cockpit Implementation-1.| 106
Technology Stack of Digital Cockpit Implementation-I¥ 107
Technology Stack of Digital Cockpit Implementation-0H1. 108

xi

Chapter 1

Introduction

1.1 Motivation

Nowadays, information systems have penetrated almost every aspect of our lives.
Increasing trend towards economy and business automation has exhibited a major
concern for producing, collecting, processing and storing large volumes of informa-
tion continuously through computer-systems. These geographically distant systems
are disparate in terms of hardware, platforms, operating svstems and software ap-
plications. Such heterogeneity limits the scope of interchanging information inside
and outside the organizational boundaries. In the last decade, the problem of sharing
information and services has been significantly explored by the explosion of internet
technology and the emergence of new business initiatives such as e-commerce. Fur-
thermore, tremendous pace of evolution in the field of network centric communication
and the omnipresence of communication devices have exposed several limitations of

the existing information systems:

e Poor information and application sharing:

Almost all enterprise application integration systems collect information through

request-response oriented connection. These technologies, over a user request,
retrieve a static instance of a particular information from the resource. There-
fore, such a retrieved information may not reflect its real state inside the source,
in the case when data on this source change frequently. Moreover. there exists
only a limited number of ad-hoc methods (e.g. polling, traps etc.) to keep

displayed information synchronized to remote resources.

Poor sharing and presentation of information:

Displayed information does not reflect the actunal state of the information be-
cause the information is previously retrieved by request/response process of in-
formation retrieval. Provision of sharing is also very low among data and service
sources that may create inconsistency and limit the abilities of systems. Fur-
thermore, presentation of fresh information is implemented by periodic polling
from user’s side and thereby creating huge network-load. Besides. user applica-
tions suffer from poor user-interfaces that present a pile of information without
any meaningful insight. Moreover, menu-based user interfaces expect user to
intervene for viewing information details. It is not always possible from the
user-side, to understand a remote change in information. As a consequence
of such sharing and presentation, these enterprise applications may react only

after a significant delay.

Limated decision making abilities:

Some enterprise information systems are designed and implemented on top of
data-warehouses. Data inside data-warehouses do not reflect real-time infor-
mation due to long period of re-loading. Most of the state-of-the-art enterprise
information systems use primitive decision support capabilities such as: Tables,

graphs and curves. However, business process and analytic are more complex.

An enterprise information system uses a ‘large variety of networked computer systems
to collect, process and produce large volumes of information. The ability to trans-
form these data into deeper insights may provide the institution with a competitive
advantage in mission-critical situations. Decision makers, top management and lead-
ers need robust and efficient automatic and /or systematic tools to sense and respond
to real-time changes. Accordingly, there is an existing desideratum that consists in

providing software platforms that:

¢ Provide structured, regular and real-time communication of fresh information

inside and across the organizational boundaries.

e Keep multiple data and service sources synchronized and coherent in a loosely
coupled asynchronous architecture that leverages notification to users in case of

necessary changes of information in the sources.

o Present information to users, decision-makers in a graphical and user-friendly

way.

e Analyze collected information through different algorithms/processes and thereby

leverage generic structure for optimized decision support.
e Scrutinize to the desired level for past, ongoing and future activities/processes.

¢ Handle the required security services in terms of authentication, secrecy, autho-

rization and integrity.

We approach this integration problem by a middleware solution that reduces the
tight-coupling between user applications and remote resources. Consequently, it also
improves the sharing of information and services. Actually, the incorporation of a
middleware assures a stable vet flexible architecture on top of frequently changing

business-needs. As a downstream result, users and decision makers obtain critical

insight of information by a real-time big picture from heterogeneous, autonomous

and physically distributed information systems [3].

1.2 Background

Industrial and theoretical research towards a unified middleware-based information
| integration have been massively empowered by the large-cap corporations. A surge of
interest has also lately been expressed separately in data integration and web services.
In the year of 2002, a survey of CIO magazine on IT spending priorities revealed that
36% of the total software business budget went in integrated systems and processes
while over 50% of the multi-billion dollar software market expenditure went to solve

the legacy systems and data integration [23].

This example may better explain the problem of coupling in re_ality. Suppose that,
a decision support system (DSS) requires weather service to decide its flight schedules.
While a;x application requests current temperature or aviation information on a city
to an information source, it receives a set of values that corresponds to the state of
the information at the time of retrieval. However, these values change quite often
and remains unnoticed to the user unless the application or the user invokes the same
request recursively. This kind of limitation may critically affect flight operations. On

the other side, from the user’s perspective, there are two major challenges:

o First, it is hard for a user to judge the occurrence of a change inside a remote
server without resorting to polling of requests. Thus, it creates unnecessary

network load that is unacceptable.

e Second, complex client applications may require frequent distributed computa-

tion. Such distributed computation might need integration of remote services.

Therefore, it is clear that we need a software platform between user application and
information sources, to notify users with up-to-date information. A middleware plat-
form, in this regard, is very useful and convenient solution to integrate such data
sources and services. In what follows, this thesis clearly states the primary objectives

of our research.

1.3 Objectives

The aim of this work is to design a middleware platform for enterprise application
integration. Accordingly, such a middleware should achieve a synergistic integration of
various information systems. Moreover, it should facilitate writing of an application
that displays visual, structured, navigational and realtime big pictures that allows
decision makers to drill down into details, uncover relationships inside the information.

More explicitly, the objectives of this research are [3]:

e Provide capabilities that facilitate the integration of information sources, ensur-
ing real-time availability of updated, consolidated, structured and unified data

across the networks.

¢ Elaborate a digital cockpit platform that presents synthesized information through
dynamic and real-time visual objects with the possibility to customize the layout

and the access privileges according to different user profiles.

o Understand the security requirements, such as authentication, integrity, privacy,

non-repudiation, etc. to protect the middleware from possible security pitfalls.

e Propose a suite of procedures and tools that processes data from different

sources in order to create business intelligence capabilities (statistical analysis,

graphical techniques, simulation of what-if scenarios, trend analysis, compara-

tive analysis, etc.).

e Elaborate some optimization procedures that aim to enhance decisions of orga-

nizational processes and scenarios.

This thesis mainly e]aborates the proposed solution to achieve the previously stated
objectives assuming that information and service sources of the organization are iden-
tified with their underlying databases, data models, formats and protocols. Moreover,
the dependencies and relationships among these information sources have been al-

ready explored. Our approach follows a five-phases paradigm:

o Integration: The main intent of this phase is to connect all the sources of
information within and across the organization. This amounts to the integration

of all these sources for the purpose of information sharing.

e Display: The main intent of this phase is to take the data from different sources,
agegregate thern and present the synthesized information into a meaningful,
structured and big navigational picture that offers the ability to drill down

into the details.

e Monitor: The main intent of this phase is the design and implementation of the
capabilities that allows the active monitoring of the information system state
for the purpose of testing the organizations assumptions, reactive and proactive

measures, and response to dashboard thresholds etc.

e Analyze: The main intent of this phase is to bring the system to the business
intelligence level i.e. to design and implement the capabilities for pattern and

trend analysis, simulation of what-if scenarios etc.

e Control: The main intent of this phase is to design and implement optimization

procedures that will enhance the used processes, methods and strategies.

Recall that, in the last section, we proposed that a middleware solution may better
fulfill the aforementioned hmitations. In what follows, we briefly study the possibility

of a middleware solution to fulfill these objectives.

Actually, a middleware is a multi-tier software solution designed to manage the
complexity and heterogeneity that is inherent to distributed systems. It provides a
common programming abstraction between the layer of an application and operating
system. Therefore, the burden of application programmers significantly reduces. It
minimizes tedious programming and enforces implemented standards. Side by side, it
generates a higher-level building block over error-prone low-level programming aspects
of Application Programming Interfaces (APIs). Thus, a middleware meaningfully of-
fers a unified framework over complex connections, that are required to integrate the

multitude of data formats and services directly from client applications [10].

A middleware solution could be implemented in many ways, such as: The remote-
process-call based middlware, message-oriented-middleware etc. It is also important
to choose a particular middleware, solution for our purpose. A remote-process-call
(RPC) based middleware tightly couples the response with the request from a user ap-
plication. Therefore, when a client synchronously invokes complex processes and/or
services at the server’s end, the application stails till the response arrives. Incorpora-
tion of object brokers such as CORBA: Common Object Request Broker Architecture
from Object Management Group specification, solves only some of the related issues

of deploying distributed programming object in the network [11]. However, taking

deceptive nature of internet into account, that often suffers from packet loss, we ex-
clude the choice of an RPC-based middleware for our solution. This thesis proposes

a robust message-oriented-middleware (MOM) model that decouples:

e A user application, from the remote data sources and services.

e A user interface, from the communication layer by providing a flexible and

- reliable messaging layer between them.

Therefore, the proposed integration model fulfills technological necessities of syn-
chronous and asvnchronous high-performance operations, as required. This solution

leverages two major contributions:

e An asynchronous application/process does not wait for the response after send-

ing a request.

e The application stays loosely coupled and asynchronously up-to-date with re-
spect to remote sources i.e. it becomes capable of receiving notifications without

any recursive requests.

Moreover, an integrated enterprise system always requires a front-end system that
provides the users with a clear insight over up-to-date data. We have designed and
implemented a user interface, called “Digital Cockpit” to exhibit some capabilities
and features of the proposed middleware. Unlike presenting software features through
menu-bar of traditional user interfaces, the digital cockpit offers users well-presented
collections of highest level of information in hierarchy through a single layer and allows
navigation in detailed information by clicking on the desired components. Further-
more, this real-time information display is empowered by a monitoring mechanism
that runs in the background, listens to the changes in remote information sources and

service and notifies the user when required. We have also designed and implemented

Decision Support

Presentation

Client-tier

Increasing potentiality to Decision Suppoit

Amount of Information

Figure 1: Architecture of a Typical Middleware

a set of lightweight libraries with this proposed solution that analyzes and simulates
displayed scenarios dealing with dynamic data. The implementation is unique in a
way, as it takes dynamic changes of aggregated information into consideration during
analysis procedures.

Figure 1 represents the general notion of proposed middleware. It is expected that
this middleware implementation will better serve users and decision makers to access,
view, monitor and analyze data and services in order to take judicious and consoli-

dated decisions.

To sum up, the main contribution of this thesis may be considered as the propo-
sition of a loosely-coupled middleware solution that leverages an asynchronous mech-

anism to keep the displayed information consistent with the real state in the remote

sources. In this work, we address the architecture, the design and a pretotype im-
plementation of such a middleware. However, the discovery of the remote sources
and services is beyond the scope of this thesis. The fine-grained monitoring of these
integrated sources and services is also vet to be implemented. Moreover, the analysis

module is kept simple according to the requirements of the project.

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces the concept of information
systems integration. Chapter 3 of this thesis presents the proposed approach i.e. a
message based middleware for enterprise application integration. A validation of the
proposed approach is presented in chapter 4 through a design and implementation of
the so-called digital cockpit platform. Finally, chapter 5 summarizes our contribution,
limitations of the approach and outlines future steps of research that may enhance

and consolidate this approach.

10

Chapter 2

Information Systems Integration

and Decision Support

2.1 Introduction

This chapter introduces the concept of information systems integration and decision
support. The set of common enterprise applications use various off-the-shelf software
packages over different heterogeneous and autonomous platforms. A flexible integra-
tion infrastructure is essential to these enterprise applications for retrieving informa-
tion. The information is stored within and outside enterprise information systems.
Such an integration infrastructure requires a flexible process-to-process communica-
tion to achieve adequate services from different domains. However, an efficient inte-
gration approach for performance critical distributed applications is one of the biggest
challenges inside any large organization. This chapter presents the state-of-the-art
in terms of integration approaches, underlying inter-proéess communication as well
as the existing decision support techniques that may endorse consolidated decisions

over integrated enterprise applications.

11

Entarprise Application Integration Business Usars

L 2 B R R R

Seodd

Cther
business

Figure 2: Enterprise Application Integration

2.2 Enterprise Application Integration

Enterprise Application Integration (EAI) pertains to the interconnection of the infor-
mation systems, internal and/or external to the enterprise. The information systems
refer to the sets of information sources and services that are scattered inside an or-
ganization. The interconnection of these systems aims to provide a better sharing of
data and services among enterprise applications [11].

Figure 2 illustrates a clear example of an enterprise system. An enterprise sys-
tem may have several applications (e.g. Customer Relationship Management (CRM),
Enterprise Resource Planning (ERP), third party software, etc.). These applications
run on different platforms and store data locally or globally within the domain of

the enterprise. Each of them, in general, has a set of users working on it. As shown

in figure 2, EAI provides RPC-based and/or message-oriented transaction of the in-
formation among application components. enterprise data-sources, core applications,
legacy systems; ete. Moreover, EAT leverages services that are stored in application

servers to provide information to the outside enterprise applications.

2.3 Data Integration

Data integration is only concerned with data retrieval. It allows companies to com-
bine data from disparate data sources. Within this approach, data sources are the
principle points of connections [22]. The interconnection of these data sources is
one of the longest standing problems in the industry. Previously, the data sources
were integrated according to the business requirements using different vendor-based
approaches [5]. However, these diversified and organization-specific approaches lack
standard guidelines for the cross-vendor extensibility. Therefore, these custom-built
integration approaches, commonly known as “in-house” development [9]. are not scal-
able. Actually, they were produced as temporary, cost-effective and undocumented
solutions. With the technological advancement, finally, they turned into legacy ap-
plications that require custom-built adapters with another phase of integration to be

compliant with the standard solutions.

This section presents two standard solutions to the data integration problem: The
data warehousing (materialized views) and the federated architecture (virtual views)
[5, 34]. Both of these approaches take a set of the pre-existing data sources and
develop a single unified (mediated) schema over the data sources. Then, a series of |
transformations or source mappings are specified to describe the relationship between
each data source and the mediated schema [33]. The following part of this section

details and compares these two approaches.

13

2.3.1 Data Warehousing

“A warehouse is a subject-oriented, integrated, time-variant and non-volatile collec-
tion of data in supporf of management’s decision making process” [43]. The data
warehousing solution requires an explicit database that copies data from multiple op-
erational data sources including RDBNMS, legacy systems, mainframes etc. Engineers
use commercial ETL (Extract, Transform and Load) tools to load and remove data
periodically after a certain interval [19]. ETL is a three-phase data l;)ader. First,
it retrieves data by copving them from the distant data sources. Second, it resolves
multiple syntax and semantics associated with the metadata that conforms a unified
schema of the target database. A series of transformation is also necessary to unify
and validate the accurate information. Finally, the transformed data are written into
a target database, a data warehouse, with appropriate summarization and aggrega-
tion. Figure 3 illustrates the logical view of a data warehouse. Data warehousing is a

widely adopted information integration concept famous for the following features [43]:

o Subject Oriented: The data warehouse is always arranged around high-level
entities of the business. As an example, a data warehouse of marketing contains

subjects, such as: Customers, products, sales ete.

o Integrated view: The data warehouse integrates the information from various
sources as the copies of the existing data. A series of transformation confirms
consistency (naming conventions, data constraints, etc.) and unified view to
the user. Integrity of each dataset is checked prior to the loading of information

into the warehouse.

o Non-volatile: Data are kept into the data warehouse for a certain period of time

and the stored information is not rewritten during that interval.

14

Figure 3: Data Warehouse: Logical View

e Distinctiveness: Distinct nature of the information integration perfectly reflects
the organizational requirements through the data warehouse that also keeps
historical information and always remain normalized in the third normal form

or higher.

Data warehouse is typically used by the Online Analytical Processing (OLAP) appli-
cations and tools to run complex queries over a large multi-dimensional collection of
data. It assists managers and decision makers to receive a global view on a particular
topic. Data mining and data analysis oriented decision making procedures are also
favored by this solution. Therefore several decision support systems are built on top
of the data-warehouse. However, the state of the analyzed information always corre-
sponds to the state of the data during last reloading. Thus, it reflects an older state
of the original information residing in the remote information sources. Furthermore,
the reloading of information to the data warehouse is typically expensive and slow
[34]. Therefore, while the information changes frequently, a data warehouse approach

is unable to reflect such changes to the user application.

15

2.3.2 Federated Architecture

The federated architecture is basically a mediator based data integration approach
[29]. 1t uses one or more data connectors at the remote end of the operational
databases. The mediator defines the schemas to represent each particular data for-
mat of the data sources. The aggregation of the mediated schemas creates the global
schema. The federated architecture is different from data warehouse as it does not
store data in a single storage. It queries directly the data sources from the application
end [3]. A query may be translated into several queries and retrieves sets of infor-
mation, on demand, without affecting the local autonomy of storage. Therefore, it
always accesses the current state of information. The federated architecture is capable
of responding to the frequently changing states of inforination or the global schema
itself. Moreover, it offers seamless integration of data sources with a fair trade-off of

additional connections.

In the past years, IBM and Sun Microsystems started this research on federated
architecture with the collaboration of several academic research. In 1994, Stanford
University introduced ‘The Stanford-1IBM Manager of Multiple Information Sources’,
a mediator based approach of integrating heterogenous, structured and unstructured
data sources through a common object model [36]. However, the initial implemen-
tations of these academic approaches suffered from high-level vendor lock-in and
inextensibility. Afterwards, Sun Microsystems successfully released Java DataBase
Connectivity (JDBC), the de-facto standard Java API for database connectivity [24].
JDBC implements the federated architecture approach. In this model, once a syn-
chronous connection is established, the fetched information is directly sent to its Te-
questor through a tightly-coupled communication protocol. However, it was realized

that data communication requires further flexibility from the coupling standpoint. In

16

Figure 4: Data Integration: Federated Architecture

addition, the integration of the legacy systems turned into another major concern.
Actually, 80% of the worldwide data is stored in mainframes. A report indicates that
almost 50% of the software market expenditure goes to integrate legacy applications
[23]. The flexible coupling in data retrieval was finally addressed by the release of the
Java Message Service (JMS) [40], in 1999. Afterwards, the Java Community Process
recently released J2EE Connector Architecture API (JCA) that is an open standard
solution to access almost all kind of standard enterprize information systems (includ-
ing legacy systems), in a tightly-coupled synchronous/asynchronous way [41]. Figure

4 illustrates a federated architecture of data integration.

The choice of an a integration approach always depends on organizational require-
ments. The proposed direction of our research aims towards an integration infras-

tructure that reflects the real-time change of information over frequently changing

17

business needs. Table 1 shows a comparisons among the data warehouse and feder-

ated architecture approaches based on certain criteria.

Approach Federated Archi- | Data Warehouse
tecture Solution Solution

Event notification Vv -

Real-time changes in data sources | / -

Strategic decision support - Vv

Easy extensibility v -

Easy access -

Shorter interval of time-to-market | |/ -

Economical solution Vv -

Table 1: Federated Architecture vs Data Warehousing Approach

We have chosen the federated architecture for the design of the proposed middle-
ware. The federated architecture exhibits a more sophisticated approach to represent
frequent changes of the remote information to the client side. However, the design
of the data analysis and the decision. support techniques are challenging in such a
virtually integrated environment of multiple resources taking frequent changes of in-
formation into account. Furthermore, the scope of transforming data into a unified
scherna is limited inside a client application. Finally, the applications on top of such
integration infrastructure should use lightweight decision support tools as the huge

memory load on a client machine is unacceptable.

2.4 Service Integration

The retrieval of data is not enough to design an enterprise application integration in-
frastructure in the absence of the service sharing. It is not always possible to process

a request by a single enterprise machine. Let us take an example. As we know, the

18

security is one of the major concerns of today’s industries. It deserves explicit servers
to authenticate the users and to encrypt or decrypt sensitive information. Similarly,
current business logics have typical computation complexity. Suppose that, in an
enterprise, the department of finance possesses certain service that calculates a spe-
cific output with respect to a request. Therefore, if the user of a remote enterprise
application requests such an information, the remote application component must
integrate that particular remote financial service to represent a meaningful view of

its user’s request.

In the past, the two-tier Electronic Data Interchange (EDI) was mostly used for
many years to perform business transactions between the partners [14, 15]. The EDI
transports data through formatted messages (based on defined standards) and propri-
etary network protocols. The companies were reluctant to invest in these technologies
due to the large underlying investments that are required in terms of software, hard-
ware and consultancy [14]. However, with the explosion of web technologies in early
90’s, the communication within application components turned into an inseparable
part in a distributed global environment. In the following, this section briefly illus-

trates few renowned process integration approaches.

2.4.1 Integration Approaches

Business Process Integration

The business process integration defines a common abstraction of a business model
that spans over the choreography engines and internal processes of local information
systems. These sub-systems satisfy various business requirements. The idea is imple-
mented by a single business process that controls interactions and information flow

between human and multiple systems inside the organization. Actually, this approach

19

allows a logical control layer that enables local systems to communicate through a
single process for their business operations and objectives. This main process con-
trols appropriate information, sequences, states, durability and exception handling
on top of the sub-processes [11]. Moreover, it addresses sequences, hierarchy, events,
logical execution and information transfer between systems within the same organi-
zation (EAI), and different organizations (Business to Business: B2B). As a result
of the underlying independence between the main business process and the other
sub-processes, the business process integration allows modification of processes and

business rules without affecting the overall systems.

Web Portals:

The web portal integrates a multitude of enterprise systems, internal and /or external,
through a single user interface, e.g. “Yahoo” portal. Actually, a portal is an interface
to access back-end services inside.an enterprise domain. The portal does not really
integrate the services from distant servers, rather it provides a layer allowing authen-
ticated clients to use several selected service/s. However, these services are unable to
automatically exchange information between themselves through the portal. More-
over, the portal based integrations are mostly proprietary solution, achieved by using
several technologies: Application servers and servlets, page servers (ASP, PHP, JSP,
etc.). Presently, most of the B2B information flows through the portal-based user

interfaces.

The web-portals are famous due to several advantages: It allows users to interact
with company’s internal systems through a user interface (generally a webpage). The
web-portal is easily implementable than implementing sophisticated process integra-

tion where integrated processes communicate with each other. In addition, the portal

20

based integration approach can be easily deployed to existing systems in less duration
of time without disturbing their functionalities [32]. The whole system follows a set

of common business rules.

On the other hand, the web-portal approach presents limitations as information
comes through a single server (or cluster). The incorporation of services are pre-
designed and it requires human interaction to retrieve the information from them.
Furthermore, the web-portal suffers from a single point of access. Besides, it uses re-
quest /response model of information interaction (tightly coupled to the application).
Therefore, the complex interaction with data sources (using JDBC, JCA or other

bridges) increases the delay to the main application {37].

Service Oriented Architecture:

The service oriented architecture (SOA) may be considered as the most sophisticated
software integration technique, typically empowered by the industries [30]. The SOA
is a software architectural concept based on agreed standards. The concept of the web
services is coined to this architecture in order to represent the enterprise applications
through a network independent service. The web services implement the inter-process
communication using standard web protocols, naming conventions, XML protocols

(SOAP), etc. In what follows, this section details a brief overview of the web services.

2.4.2 Service Oriented Architecture: Web Services

The service integration is an active research area that refers to the aggregation and
composition of the remote services from a platform in order to fulfill the user’s need.
It defines a generic model of inter-process communication inside and outside organiza-

tional domain. The SOA exposes a flexible way of communication among a multitude

21

of enterprize systems and their users by standard implementation of web services.
Each service is composed of few layers and each layer is independent of the others.
This independence helps in the deplovment of SOA in the commercial context of a

heterogeneous e-business environment.

In the past, inter-process communications were limited by proprietary processes,
messages and network protocols, examples: The Common Object Request Broker
Architecture (CORBA) from OMG [42], the Distributed Component Object Model
(DCOM) [7} from Microsoft, the Remote Method Invocation (RMI) from IBM and
SUN Microsystems, etc. These technologies allow organizations to integrate applica-
tions in a distributed infrastructure using tightly-coupled remote process calls {14, 15].
However, the inter-operability between these RPC-based mechanisms is complex and
limited. For instance, the CORBA and the DCOM cannot communicate directly
without software bridges [42]. This limitation is due to the fact that each model uses
its own communication protocol. CORBA uses Internet Inter-ORB Protocol (11OP)
while DCOM uses Object Remote Procedure Call (ORPC) and RMI relies on Java
Remote Method Protocol (JRMP).

With the increasing dependency among application sharing in e-comierce, the
companies were looking for a standard process to process communication model
among business applications. Moreover, I'T applications require automated, global
communication without any prior agreement or static connections. The SOA lever-
ages web services based architecture for e-business that successfully integrates these
IT applications hiding connection complexities from the application users. The

environment-Speak is the first implementation of SOA, introduced by HP in 1999

22

[30]. Shortly afterwards, many competing frameworks and proposals for the web ser-
vices have been provided such as Microsoft’s .Net, IBM’s webspheres, SUNs J2EE

application server, etc.

Web Services:

“A service is a self-describing, self-contained modular unit of application logic that
provides some business functionalities to other applications through internet.” Tech-
nically, web services use ancillary standard mechanisms, notations and naming con-
ventions for describing, registering and requesting services (W3C- world-wide-web
consortium) [11, 30]. The services are mostly written in the standard XML based

languages.

The idea of using a more expressive markup language came from World Wide Web
Consortium (W3C) as an extension to the Standard Generalized Markup Language
(SGML). The XML allows the designer in customizing tags, enabling definition, trans-
mission, validation, and interpretation of data among applications [1]. The XML’s
self-descriptive nature provides easy integrity to structured, semi-structured and un-
structured data overcoming the limitations of HTML. The legal building blocks of
an XML document are defined in: XML DTD (Document type Definition) and XML
schema. DTD is either a world-wide standard document definition or a set of defi-
nitions agreed by a group of people in order to exchange information. XML Schema
defines documents above and beyond the basic syntax constraints imposed by XML
DTD definition itself. Schema may specify new data type of the elements and the
content of documents of that type. Elements are written as compliant to that defined
class. ‘Furthermore, it may inherit and import elements from existing classes and

schemas using namespaces [12].

23

The web services model takes advantage of XML through a layer based implemen-
tation of its architecture as described below. From the functional point of view, this
model consists in three principle roles: The service provider, the service requestor and
the service registry. A service provider is the owner of a service. The service provider
describes the web services and publishes them in a host. A service requestor is either
a human driven application or another service that receives a processed output (in
XML format) in response to an XML request. Now in the global context, as the ser-
vice requestor and the provider are unknown to each other. Therefore, they require
a registry system that helps automatic binding of users to the pre-registered services
according to their choices, business logic and other limitations. In the case of static
binding, the service registry is optional because the provider and the requestor are
known to each other. However, in the case of dynamic binding, the service requestor
obtains the information about the services from a service registry and binds them to

the appropriate web services at run time [18].

v
Service Composition (BPEL4WS)
i ?e Mce D|sc°vew}(UDDI) iy Application
o sy e
Protocal
AR
. Proposed
Message Service (JMS...) Messaging Layer
Communication Pratocals (http...) C°'“",::;'f tion

Figure 3: Stack of Web Services

In the following, this section elaborates the layers of the web-services architecture.

Figure 5 describes different components of web services infrastructure.

e Service Protocol: The service protocol refers to a common standard application
protocol to communicate the request and the response over standard network
protocols. The specification of the implemented standard is defined as Simple
Object Access Protocol (SOAP) by W3C. Actually, the SOAP requests are XML
schema. It contains the envelope, the header and the body of a document-centric

‘message. The SOAP binds this message with remote procedure calls using
XML [18]. During the execution, the SOAP request binds with the methods of
communication protocols such as: HTTP GET/POST, MIME, etc.

e Service Description: The service description elaborates the interface of an im-
plemented service. It represents common business transactions (e.g. sending a
purchase order), common data-interchange formats and mechanisms to nego-
tiate business terms before commencing any transaction. As the services are
defined in an XML-standard, the global consumers may interpret and request
to a service automatically through this pre-defined service interface/s. The
web services description langnage (WSDL) is the de-facto standard for service
description, defined by the Organization for Advancement of Structured Infor-
mation Standards (OASIS) [21]. As a whole, a WSDL document describes what

a service can do, where it resides and how to invoke it.

o Service Discovery: As stated before, the discovery of the web services is im-
- plemented through a mechanism that lists organization’s capabilities for the
business transactions and provides an interface to lookup a company profile.
The service discovery registry may use its own XML repository system (ex-

ample: ebXML) or other repository (example: UDDI). Functionally, it binds

25

a producer with a consumer, while the requested features of a consumer per-
fectly matches to the provider’s service. A standard based open specification for

service description and discovery is achieved in UDDI (version 2) from OASIS.

The description of the web services is stateless as implemented in WSDL [21]. There-
fore, it offers the execution of a whole service in response to the user’s request. How-
ever, the human requests are often too complicated to be served by single service.
Therefore, it needs the composition of multiple services to accomplish a required work-
flow. WSDL being stateless is unable to capture intermediate states of the workflow
and a concurrent language turns up obvious on top of the WSDL for the execution
of the service sharing. This necessity introduces another layer on the web services
stack, called Service Composition. The software vendors implement a number of con-
current process execution languages. The most promising one is the Business Process
Execution Language for Web Services (BPEL4WS), implemented by IBM, Microsoft
and others [20].

Points to Description

| . Points to
] h Service
<JAXM API SOAP__(AXIS APY)
Digital Cockpit Communicates with XML
Server messages

Figure 6: Architecture of Service Integration Model

The initiatives are also taken to integrate these pieces of standards of into a single
standard infrastructure. OASIS has released the specification of Electronic Business

XML (ebXML) towards this aim. The Java Community Process has also adopted

26

ebXML as an emerging standard for web service implementation in e-business ap-
plications. ebXML uses its own registry-repository system, CPP/A architecture for
service description and ebXML MS messaging service to communicate between busi-
ness service interfaces [6]. Figure 6 shows a general architecture of the web-service
based service integration framework. As shown in the figure this thesis proposes the
use of a messaging service by decoupling the SOAP and the communication proto-
cols. Actually, the messaging of information holds the key of an efficient integration

infrastructure. In what follows, we discuss the issue of a messaging service.

2.5 Messaging Service

The software enterprise system consists of a set of cooperating processes connected by
the network. The unique challenges of EAI development include sharing information
among these distant processes that are running in a heterogeneous environment. A
middleware-based EAT system uses a variety of vendor-locked and home-grown solu-
tions that are physically independent and mostly tightly coupled in nature. These
tightly coupled remote procedure calls (RPC) block the requesting application un-
til the remote procedure returns the control back to the caller. Such a deliberate
synchronization results in an immediate impact over the performance of the whole

system. The messaging service provides a better alternative in this aspect.

The enterprise applications consider messages as lightweight entities that consists
of a header and a body. The header field contains the information related to the mes-
sage routing and identification while the message body illustrates the data to be sent.
By definition, a message is self-describing and must contain all necessary contexts
to allow the recipients carrying out their work independently. These messages are

generally created by an API as a payload (application data) on the communication

27

protocols with proper routing information. In addition, the messaging service layer
decouples the user application from the remote data sources and services. A message
oriented middleware exchanges the information in the form of messages. Therefore, it
leverages the seamless integration of information sources and the services inside and
outside the organization with a significant improvement over the quality of service

[35].

2.5.1 Classification of Messaging Services

Enterprise messaging is not a new concept. There are several existing messaging
products in the IT world, for example: IBM-MQSeries, Microsoft-MSMQ, TIBCO-
Rendevous, Open Horizon-Ambrosia, Modulus-InterAgent, etc. Comparatively, newer
generation of asynchronous messaging products are: Progress SonicMQ, Softwired
iBus and FioranoMQ. In general, messaging services may be classified from three

different perspectives:

e Messaging Architecture.
o Messaging Model.

e Messaging Style.

Messaging Architecture

The enterprise systems obey a distinguished framework. Some of them are centralized
while others are decentralized or hybrid. The architecture of messaging systems may
be classified according to these frameworks. In general, there are three messaging

architectures [35].

28

o Centralized Architecture: The centralized messaging svstem relies on a single
message server thatl routes messages and contains request /response brokers for
the implementation details of its messaging clients. Here, clients always post
messages to their associated server. A svstem, therefore, may add or delete
a particular client of a server without impacting others in the same architec-
ture. However, architecturally. a centralized server may be a distributed cluster

working as a single logical unit.

o Decentralized Architecture: The decentralized architecture does not posses any
message server. Each client is offered some server-like facilities (persistence,
transactions, security, etc.) and the router implements some IP multi-casting

functionalities to transport message requests to other messaging clients.

o Hybrid Architecture: The industrial messaging vendors often implement both
of the aforementioned architectures in a single messaging system. The central-
ized multicast is mostly implemented in TCP protocol while its decentralized

counterpart is implemented by IP multi-casting protocol.

The commercial messaging solutions are designed as per the average enterprise client’s
requirements. As of example, the messaging service of Sonic MQ series allows cen-
trally managed distributed messaging components [39]. TIBCO Rendezvous explores
a distributed architecture to eliminate bottleneck and single points of failure. Mi-
crosoft’s “Distributed interNet Architecture” (DNA) architecture contributes MSMQ
messaging service. MSMQ components are of two types: The MQ site controller
(SC), that stores read-only copies of messages inte a queue, located in client-side end.
Second, the primary enterprise controller (PEC) that resides in the central MQ server

side and keeps the broker and stores the queue details [28].

29

Messaging Model

The message information may be distributed according 1o two basic messaging models,

namely: The Point-to-Point model and The Publish-and-Subscribe model [39].

e Point-to-Point Model: The point-to-point (P2P) model uses a coﬁnection com-
ponent, called “queue”, that allows one-to-one delivery of the message. More
precisely, a message producer creates a message and puts it to a “queue” inéide
a messaging domain of the JMS server for a certain duration. Once the message
is in the queue, the queue allows only one consumer at a time, who may receive
that message from that gqueune. The point-to-point messaging confirms the loose

coupling between a producer and a consumer at a time.

o Publish-and-Subscribe Model: The publish-and-subscribe model is a one-to-
many message broadcasting model. The MOM uses this technique while one ap-
plication sends message to multiple other applications. Each consumer receives
a copy of the same message in nearly same time. In the publish-and-subscribe
model, this virtual repository channel of the messaging domain is called the
“topic”. The publisher application puts the information into a topic (with-
out any direct connection to the subscriber) and all the registered subscribers

receive a message from the topic.

The auction sites, the stock quote services, the security services often require to
push data to huge population of consumers that can be better implemented by the
publish-and-subscribe messaging. Messaging vendors favor different messaging mod-
els. MSMQ supports queue based one-to-one messaging [28], while SonicMQ and

TIBCO Rendezvous implements both of these messaging models [38].

30

Messaging Style

The significance of the messaging system lies in its capability to decouple applications
while they share information between themselves. The model of the RPC is strictly
synchronous. Messaging, in contrary, allows both synchronous and asynchronous

communication, as required by enterprise syvstems [35].

o Synchronous Messaging: It tightly couples the messaging component and the
receiving process. A synchronous consumer uses the “pull” technique to receive
messages from the destination. It proves advantageous in the case of fail-safe
communication and transaction processing. The receiver stays bound to the
messaging server until it finishes the processing of the sender’s request. How-
ever, the synchronous messaging requires both of the communicating processes

available in the presence of an available network.

o Asynchronous Messaging: The asynchronous messaging style uses “store and
forward’; mechanism while a message producer sends the messages to the re-
ceiver. A message may traverse through one/many connection component/s
between the sender and the receiver. An asynchronous consumer registers a
message listener to a “destination” inside the server’s messaging domain. This
procedure allows the sender and the receiver not to block each other. As the
message arrives, the listener model informs the registered consumer with the
message. Therefore, the client application remains loosely-coupled to the mes-
saging structure and any failure in a client application does not affect the whole

infrastructure. .

The business solutions favors asynchronous paradigm through a messaging solution.
However, certain situations do require a synchronous solution, while an information

is required to be compromised only between the sender and the receiver, such as in

31

transaction processing. Among several messaging vendors, TIBCO Rendezvous im-
plements both of the point-to-point and publish/subscribe messaging in synchronous
or asvnchronous mode via WAN or the Internet. Similarly, IBM Websphere MQ se-

ries, Sonic messaging products also implement both notions in their messaging styles.

The next subsection details the standard implementation of a messaging service
that includes all the aforementioned features. After a review of different messag-
ing technologies and judging commercial messaging products, we have chosen Java

Message Service (JMS) as the most prominent technology for this research.

2.5.2 Java Message Service

JMS is established as the Java messaging standard, released in 1999 and used by most
of the leading industries including Sun Microsystems, Sonic MQ, IBM (Websphere),

BEA (Weblogic). The aim of JMS consists of the following [40]:

e [lustrate a single unified messaging model that can be implemented as an APIL.

o Allow cross-vendor communication in the messaging service level with distant

applications that does not use JMS but supports a similar specification.

e Integrate multiple heterogeneous sounrces of information and services (includes
XML support) through a middleware based message communication of Java

objects.

e Implement a layer between application program and communication protocols
and thereby incorporate a magnitude of enterprise properties in the messaging

such as: Security, portability, reliability, etc.

e Elaborate a new notion of asynchronism in case of intra and inter organizational

business operations.

32

e Extend support to numerous Java based APIs, such as: Java DataBase Connec-
tivity (JDBC), Java Transaction AP (JTA), Java 2 Enterprise Edition (J2EE)

and Enterprise Java Beans (EJB) components.

There are several JMS components associated with JMS messaging. All the messaging

entities may be classified into four entities [4]:

e Provider: Each JMS application runs on a host application, called JMS provider,
that leverages administrative, functional and control capabilities. A “provider’
application runs inside the JMS server and hosts JMS components like a con-
tainer. This container hosts JMS “broker” and other JMS components that

hold the implementation details of a robust messaging service [27, 39].

e Clients: Clients are JMS applications that use the provider components to pro-
duce and consume the messages. A client may be synchronous or asynchronous
to the JMS destinations for sending or receiving the messages. JMS is imple-
mented in a way to support JMS and non JMS clients through Java applications

or other native client APIs that are running inside the messaging system [35].

o Messages: A JMS message facilitates applications with data and event noti-
fications. Unlike RPC, a message neither dictates the recipient nor it blocks
the sender. A message object consists of message headers and the message
itself, called “payvload”. Most of the message headers are automatically as-
signed as configured in the program, e.g. JMSDestination, JMSDeliveryMode,
JMSMessagelID, JMSTimestamp, JMSPriority, etc. Additional headers are also
assigned sometimes to the application, the provider or the messaging service
itself and are called “message properties”. There is also a “message selec-
tor” mechanism to filter out specific messages as desired by consumer. The

JMS message payload has the base interface defined in the Java library of

33

javax. jms.Message. The payload might be structured like StreamMessage

or fairly unstructured as TextMessage [40].

o Administered Objecl: The administered ohjects are pre-configured, administrator-
created JMS objects to control the message-based communication. The ad-
ministrator binds these objects to the Java Naming and Directory Interface
(JNDI) namespace prior to the messaging. The administered Objects are of
two types: ConnectionFactory and Destination. Once created, they leveragé
an abstraction to the namespace by hiding the implementation complexities
through a virtual interface. Therefore, the client program executes with a min-
imal programining that is required to lookup a specific JMS connection object.
Moreover, administered objects always implement the standard-based profile

and remain portable despite proprietary aspects of JMS providers [26, 35].

Apart from aforemnentioned components, JMS also uses a directory service for the
storage of the implementation-specific settings in the distributed -JNDI components.
A diré(:tory service is a file system that helps client application for the lookup to
a named, pre-configured ConnectionFactory or Destination as defined by the ad-
ministrator. Most of the JNDI is implemented by the Lightweight Directory Access

Protocol (LDAP) server to store and find the administered objects [8].

JMS Messaging

Figure 7 represents the JMS messaging models. JMS requires proper configuration of
the administered objects in JNDI prior to messaging. In general, a directory service
has its own domain, managed by a domain manager. The domain manager controls
the administered objects within multiple virtual containers and allows communica-
tion between them [39]. First, the administered objects are required to be bound to

JNDI using administrative tools. Once ConnectionFactory and Destination are

34

I ic
(D Publish Subscribe Messaging Ciert Application |

(@ Point-to-Paint Messaging Ctient Appiication |
Cllent Appllcation

Connection Factory

creatas
creates
Sassion

craates

Client Application

Connection Factory publishes,

axiract

@

Cllent Application

Connection Factory

Figure 7: JMS Messaging Model

created in a JMS server and all its implementation-specific information are kept in-
side the system, JMS is ready to start the communication. A developer should create
a JMS Connection initially from a valid and bound JMS ConnectionFactory. The
ConnectionFactory may handle multiple connections simultaneously. JMS messag-
ing is session-based. A Session object implements a particular valid Connection.
The interface Connection is also capable of handling multiple sessions at a time. The
objective of a session is to implement transactions in the synchronous or the asyn-
chronous messaging. However, there are strict restrictions imposed on the concurrent
access during the sessions. The JMS specification reserves the access to a session by a
single message consumer. However, a sophisticated design may allow multiple sessions
related to a single connection to process concurrent requests from the users. Each
application process runs under a particular session. The JMS user applications are of

two types: QueueSender/QueueReceiver and TopicPublisher/TopicSubscriber.

35

QueueSender/QueueReceiver application either sends message infornnation to the
queues or receives message information from them. Similarly, TopicPublisher/
TopicSubscriber either publishes message information to the topic or subscribes the
message information from it. The JMS implements one-to-one and one-to-many mes-
saging models through the same APIL The JMS point-to-point messaging paradigm
stores message in the queue that ensures single retrieval of message by a single receiver
at a time. The queues are also used for load-balancing while a mumber of diverse sys-
tems share processing operations thf()u gh a proper distribution of incoming messages.
The JMS publish-subscribe messaging, on the other hand, is implemented by the JMS
topic. A topic implements a multi-threaded architecture that is capable of notifving
a message object all to its subscribers. Table 2 shows a piece of code for the JMS

sender application that sends a message information to a JMS quene.

In the JMS, messages are communicated through a “store and forward” mecha-
nism. However, there exists different binding technigues between the JMS servers and
the clients. The message subscribers may be synchronous, asynchronous or durable

[26, 35]:

o Synchronous Consumer: A synchronous subscriber waits for a message always
or for a specified duration. As it receives the message, the JMS “listener”
sends it for processing and then blocks to receive again. JMS “listener” im-
plements the technique into an onMessage() method. The method calls are:
QueueReceiver.receive() or TopicSubscriber.receive() for synchronous
retrieval of message [35]. However, sophisticated programming may use dedi-

cated onTimeOut() method to deactivate such a listener.

o Asynchronous Consumer: An asynchronous receiver receives the message when

a message arrives but does not block the connection between the destination and

36

import javax.jms.*;
import javax.naming.*;

public class JmsQueue {

Context jndiContext=null;
QueueConnectionFactory qCF = null;
QueueConnection qC = null;
QueueSession gSess = null;

Queue queue = null;

QueueSender gqS = null;

TextMessage message =null;

public gSend() {

//Initial lookup to Administered Objects assuming they are
already //created.
try { jndiContext = new InitialContext();
gCF = (QueueConnectionFactory) jndiContext.
lookup(‘ ‘QueueConnectionFactory") ;
queue = (Queue) jndiContext.lookup(‘‘TestQ");
} catch (NamingException e) {}

//Creation of connection, session and message sender.

try { qC = qCF.createQueueConnection();

gSess = gC.createQueueSession(false,Session.AUTO_ACKNOWLEDGE) ;
gS = gSess.createSender(queue);

} catch (JMSException e){}

// Creation of message and sending it to the queue.
try {

message = queueSession.createTextMessage();
gS.send(message) ;

} catch (JMSException e) {}

b1}

Table 2: Java Code for a JMS “sender” Application

37

the application process. An asynchronous JMS message listener is programmed
with event-based notification inside onMessage () method. The programming is
done using receiveNoWait () method. Moreover, after receiving the message, it
may or may not use a message-selector to filter the incoming messages from more
than one topic. The loosely-coupled asynchronous consumer is more nseful for
free information exchange, except when there is a tyvpical need for synchronous

transaction.

Durable Consumer/Sunscriber: Durable subscription frees the consumer from
staying continuously connected to the JMS server. The “Store and forward”
messaging mechanism also allows the server to store messages inside the server
on behalf of a subscriber while client program is not available. It allows guaran-
teed messaging so that consumer receives all the messages at the re-connection,
irrespective of the duration of staying disconnected [35]. A JMS durable-
subscriber is defined by a createDurableSubscriber () method within a ses-

sion.

2.5.3 JMS Properties

The Java messaging service leverages an established, secured, reliable loosely-coupled

integration of the information sources and services based on a common messaging

conecepts. According to JMS specification, it inherits a large number of properties

with enough scope of further development. The properties of the JMS API may be

classified into two categories:

e Architectural Properties: The JMS is a standard-based, robust and resilient en-
terprise messaging system. Architecturally, it is centrally managed distributed

sets of components, that are loosely coupled to each other. The JMS favors

38

significant performance improvement over the system using the asynchronous
retrieval of message. The messaging technique is reliable and durable due to
the “store and forward” mechanism of communication among the destinations.
The JMS ensures once-and-only-once message delivery [40]. It also strives to
maximize portability of messages within different cross-platform products in-
side same messaging domain. Besides, the JMS allows a seamless integration of
applications with high scalability. It supports a big number of market available
APIs (JDBC, Java Beans components, etc.) in different layers of the middleware

and realizes asynchronous messaging of serialized data object.

Message Properties: The Java messaging service allows more flexibility over
communication among distributed components. The messages are inter-operable,
structured, serialized object. The messaging properties admit two delivery
modes: The persistent (the message delivered once and only once) and the
nonpersistent (the message is delivered at most once, i.e. the message may
be lost if JMS server fails). The JMS also offers configurable properties for
message expiration, time-stamp, priority settings, etc. The Message properties
helps the message selector to retrieve the message from multiple topic and run
a filter program as specified by a developer. The JMS permits huge scope of
programming. Furthermore, the messaging provides acknowledgement mech-
anism to assure delivery. A message may even be read-only. A fair amount
of security policies is also deployed in relation to authentication, authorization

and confidentiality on JMS destination components [35].

Actually, the specification of JMS does not cover all the high-level properties, such as

load balancing, privacy, integrity, etc. The JMS is implenented as an open-standard.

1t inspires vendors with a big portion of implementation specific functionalities. There

is no implemented system-message for error notification also. The JMS specification

39

does not define administered objects and JNDI components for the administration of
messaging products. Actually, it is a high level specification that does not describe
low-level wire protocols or storage type [35]. After analyzing all these aforementioned
advantages and facilities we have chosen the Java message service to design and

implement the proposed EAI integration infrastructure.

2.6 Decision Support Systems

The aim of this research work also includes the design and implementation of an
indigenous user interface that exhibits certain decision support capabilities over the
proposed integration infrastructure. As mentioned before, the idea of the so-called
Digital Cockpit represents such a decision support system. Prior to the elaboration
of this digital cockpit platform, this section presents the state-of-the-art of existing

decision support systems.

In the past, several organizations used to run manual analysis and intérpretation
to turn data into useful knowledge, required to decision makers. However, the imme-
diate drawback of this decision making procedure is the proof of correctness. More-
over, manual analysis is impossible while dealing with large databases of terabytes
of information, example: In Europe Very Long Baseline Interferometry (VLBI) owns
16 telescopes, each of which produces 1 Gigabit/second of astronomical data over a
25-day observation session and requires in-depth analysis of the gathered information
[17] . As a part of their research in University of California-Berkeley Professor, Peter
Lyman and Hal R. Varian estimated that 5 exabytes (5 million terabytes) of new
data was created in 2002. Therefore, the need of an automated system turns obvi-
ous for the true analysis of this huge information [16]. The concept of the DSS was

first claimed by Peter Keen and Charles Stabell [13]. In the 70’s, business journals

40

emphasized more on management decision systems, strategic planning systems and
decision support systems. These first versions of DSS were developed to help decision
makers to take educated decisions in complex fields such as financial management and
strategic decision making. A few years after, DSS have been enlarged to support spa-
tial, multidimensional and unstructured data, example: GEODATA (GADS). With
the advent of web technologies, the data warehousing and the On-Line Analytical
Processing (OLAP) solutions became famous in 90’s. The OLAP software provides
fast, consistent, interactive access to shared information and exhibits analytical views

such as time series, trend analysis, etc.

2.6.1 Model of Decision Support Systems

Figure 8 represents a general model of the decision support systems. There are three

main architectural components:

% g
Databases é
el Y
Flat files 3
2
"]
o
=
H
Saervices
Data Managemant Model Management User Intaerface
Components Components Management Components

Figure 8: General View of a Decision Support System Model

e Data Management Component: The data management component stores and

41

maintains the information required for a standalone DSS system. This com-
ponent integrates the organizational, personal, external information kept inside
or outside the institution. Recall that, as discussed before, the proposed mes-
sage oriented middleware system implements a message-based data management
component that retrieves the information from the information sources and ser-

vices in the network.

o Model Management Component: This component is responsible for the execu-
tion of the business logic. While a user requests a decision, the model manage-
ment component calculates the merit of each possible solution and represents
the optimal solution as the output. These optimization techniques include ana-
lytical processing like the OLAP, statistical analysis like the time-series, mission

planning etc.

o User-Interface Management Component: A user interface is obvious that allows
users to communicate with the DSS. Traditional user interfaces with piles of data
and tables are frequently used in the industries although there exists several

disadvantages associated to it.

2.6.2 Classification of Decision Support Systems

The decision support systems belong to two big categories: The data-oriented DSS
and the model-oriented DSS. The data-oriented decision support systems focus on the
databases, e.g. file-drawer systems, access data systems data analysis systems, etc.
The model oriented decision support systems consist of vaious accounting, optimiza-
tion and suggestion model that provides analytical capabilities, e.g. OLAP. However,
note that the capabilities and objectives of DSS are different according to their use.

On the other hand, the decision making procedure consists of four steps:

o Intelligence: The intelligence helps to automate discovery of the problem, the

needs and the opportunity.

e Design: The design exhibits the ways of modeling all possible solutions of a

problem.

e Choice: The key of the decision support is its way of choosing a particular

solution by judging and comparing the merits the of each solution.

o Implementation: The implementation presents an optimal feasible solution and

produces it in the output.

The decisions may also be classified as structured or unstructured. A structured
decision indicates certain information in a specific way while an unstructured decision
presents multiple correct decisions according to their ways of calculation. A decision
may be a single decision, may be a crossover of combination of good outcomes in a
specific way or even a randomly chosen mutation solution where each combination is

evalnated. Decisions may also change recursively or infrequently.

2.7 Summary

This chapter presents the state-of-the-art of the notion of the enterprise application
integration. Actually, an EAI infrastructure offers to retrieve and store the infor-
mation kept in distant data sources and services so that the local application may
process a request without paying much attention to the connection details. The inte-
gration approaches are discussed in two sections: The data integration and the service
integration. The data integration aims to provide a uniform and transparent access
to the enterprise data sources. The service integration, on the other side, includes

communication between distant services inside or outside enterprises directly through

43

the web-based solutions. This chapter also includes a detailed discussion on informa-
tion communication through a messaging service. The incorporation of the messaging
service is the key idea for the proposed message-oriented-middleware. Finally, this
literature review provides a general idea of a decision support system that represents
the capabilities of the proposed integration solution. With knowledge of this literature
review, the next chapter elaborates the notion of the proposed middleware followed

by an implementation of this paradigm.

44

Chapter 3

Approach

3.1 Introduction

This chapter presents an end-to-end message-oriented-middleware solution for the in-
tegration of information sources and services. The intention of this proposed solution
is threefold: First, it elaborates a multi-tier software platform that integrates het-
erogeneous and autonomously-administered information sources and services inside
an enterprise. Second, it fulfills the long-standing organizational requirement for a
reliable message based middleware system that represents dynamic; nearly real-time
notification of changes in remote information systems. Finally, it elaborates a unified
platform to implement the decision support capabilities by providing real-time infor-
mation. After an introductory overview, this chapter presents a multi-tier message-
based model of the integration infrastructure. The performance of this model is vali-
dated and compared with similar synchronous RPC-based middleware. In addition,
this chapter describes an architecture to implement such asynchronous model for data
integration. This architecture is later extended for the purpose of service integration
and monitoring. Thus, the proposed solution succeeds to leverage a standard-based

integration for the heterogeneous information systems that may help to take sound

45

and consolidated decisions by providing accurate and up-to-date information.

3.2 Overview

Several standard commercial software so]nfions implement tightly-coupled RPC-based
middleware. However, this tight coupling between a request and a response restricts
the system to receive up-to-date information withoﬁt executing periodic process calls.
Furthermore, the remote process call suffers from several limitations while it travels
from one virtual machine to another. Let us take an example. Java servlet appli-
cations are often used for data retrieval from databases. While the user submits a
request to a server, the servlet application invokes a remote process call as a pay-
load over the communication protocol. This remote process call triggers a process in
the remote data-source that collects the parameters, performs specific operations and
finally responds to the requesting user through the server. The limitations of this
RPC-procedure are: First, the information retrieval is always bound to the request
from a user. Second, a process call blocks the caller application until it receives the
response. This decreases the overall performance of the system. Third, the user ap-
plication, the server and the information sources are required to be available in the
network. Finally, the server requires detailed knowledge of the properties and dis-
tribution of the remote data sources and services. However, the information sources
and the services are the properties of certain organizations or departments. These
organizations are run by their own policy of information classification and distribu-
tion. Therefore, such sharing of knowledge is sometimes unacceptable due to privacy

and security reasons.

The proposed model is carefully designed to overcome all the aforementioned

46

pitfalls that are associated with the existing technologies. This asynchronous multi-
tier model uses a message service instead of directly invoking process calls. The use
of the message, instead of process call, offers more flexibility to the solution. The

proposed model offers the capabilities listed below [2]:

e Integration of Information Sources: This model elaborates an infrastructure
that offers a user to request once for an information and subscribe to the state

of the information as long the user is registered to the message server.

e Real-time Notification: Whenever an event or a change of information occurs
in the information sources or services, this message-oriented-middleware model

is capable to readily notify about such a change.

o High Performance: The underlying asynchronism of this model is the key to its

higher performance over RPC-based middleware.

o High Scalability: This model supports the addition or removal of information
sources and services by using less number of connections and sharing minimum

knowledge about the sources.

o Autonomy of Informaiion: This proposed middleware solution is flexible as
organizations may independently apply their own rules and regulations to in-

formation sources and services.

In the following section, the proposed model is elaborated in three phases. Recall that,
as mentioned in the previous chapters, this integration infrastructure is distributed
among the information sources and servi-(:es, message servers and user applications.
However, during the implementation of this model, certain modules are reconfigured
according to the implementation specific requirements. Actually, the implementation

of the digital cockpit is one specific realization of this model.

47

3.3 Middleware Model

The presented message oriented middleware model is composed of four different tiers
as shown in the figure 9: The resource tier, the integration tier, the acceleration
tier and the presentation tier. The resource tier elaborates a unified framework over
the heterogenous information sources and services. The integration tier represents
a unique approach of using and extending JMS capabilities for the asynchronous
communication of messages inside the middleware. The acceleration tier and the
presentation tier are specific to a user. The acceleration tier includes a subscriber
application that receives the requested information and the notification of changes.
It also contains the monitoring mechanism. Furthermore, it includes the business
policies through analysis and controlling methods that are applied on collected data
as required in user system. Lastly, the presentation laver deals with the interface of
the user application that shows the capabilities of this middleware through graphs
and charts. Notice that the data flow, on the retrieval of a requested information, is
shown by directed arrows. In what follows, we detail the proposed layer-based model
in three sub-sections, namely: The unified framework, the integration infrastructure

and the user application.

3.3.1 Unified Framework

A generic business model consists of heterogenous data sources and services in the
resource tier. These data sources range from structural databases to unstructured
legacy applications. Similarly, the services use various XML compliant formats to
represent themselves. The data formats within these sources follow their own vendor-
specific semantics. The proposed model uses “wrapper” applications over data sources
and services that unify diverse structures of information into a homogeneous repre-

sentation.

48

/

Presentation
Tier

/

Acceleration .
Tier [Publisher

h

{

Integration
Tier g

Resource
Tier

Figure 9: Layer-Based Integration Approach

49

The implementation of such a wrapper application is resource specific. A wrap-
per is kept local to the data sources. The user request comes to the information
sources or services as an object message. The wrapper application receives the mes-
sage and converts it into local process/service calls. Therefore, such calls are specific
as required for the data sources or services such as: It may be an SQL query for a
relational database that uses JDBC connection or it 'may be a SOAP request to a
service. On retrieval of the information, the wrapper again transforms the response

into a standard message format common to the proposed middleware system.

The contribution of the wrapper application is twofold in the model: First, it
creates a uniform environment f{or message exchange on top of heterogeneons data
sources and services. Second, it ensures the local autonomy of the sources. As the
wrapper application resides in the information sources and services, the host may
change any data distribution inside the data sources or services and compliantly map

the changes to the wrapper application without affecting the whole infrastructure.

3.3.2 Integration Infrastructure

The presented model induces a flexible integration infrastructure that is based on the
Java message service. Actually, the message service decouples an application from the
remote source. The layer of the messaging service intercepts the user request, con-
verts it into a serialized object message and adds implementation-specific headers to
direct the message towards the target source. In the JMS server, a request-response
broker extracts the connection details from this message object. The JMS broker
stores this information through Java Naming and Directory Interface (JNDI). Such

a stored connection helps to notify a registered user on the occurrence of an event.

50

This middleware uses point-to-point and publish-subscribe communication of in-
formation as required. The Java message service implements the point-to-point con-
nection in the form of a queue while the publish-subscribe is implemented as a topic.
In the beginning, a client system requires a collection of information to start the dis-
play of components. The message service provides a specific connection component,
called queue, to retrieve such information. Once the client system starts display-
ing retrieved information, it only requires to gather real-time notification of changes. |
Figure 9 presents the data flow related to the propagation of changes into a user
application. With the update of data, the underlving infrastructure automatically
triggers a JMS publisher to publish information in a pre-existing JMS-Topic. The

registered user applications listen to the updates published in a topic.

The integration infrastructure offers multiple features to the proposed middleware

solution:

o Asynchronous and Loosely Coupled: The asynchronism allows a user application
to request an information without waiting for its response. The user application

may perform other tasks in this duration.

e Real-time Notification: The user application may bind itself to a JMS server
and stay connected to the remote sources. Therefore, once the user requests to
monitor a set of information it may automatically receive notification of changes

on that remote information.

o Flexibility: The message service offers flexible communication of information

51

among the virtual machines. In contrast, remote process calls limits communi-
cation between processes in different virtual machines due 1o security restric-

tions.

Quality Conirol: The message service provides more control on data communi-
cation. The developer may enforce several quality attributes such as reliability,

priority, secured messaging, etc.

Easy Erxtenstbility: The message service allows easy extensibility and scalability

of the infrastructure without affecting the performance of the system.

Message Storage: The message service implements the “store and forward”
mechanism. The information stays temporarily in the connection component
that allows for durable subscription and may serve even a group of clients si-

multaneously requesting the same information.

The following section illustrates the design of a user application in relation to the

proposed solution.

3.3.3 User Application

The user application of the presented middleware model depends on a unique sub-

scribing component to receive asynchronous message objects inside user application.

This component is referred to as the “subscriber” in this thesis. The subscriber plays

two major roles: First, the subscriber sends the request to JMS server and registers

to the request-response broker in an assigned namespace within the JMS server. Sec-

ond, the subsecriber invokes the JMS listeners to a particular JMS topic to receive

notifications from the remote events [2].

52

Figure 9 shows the subscriber modnle at the basis of the aceeleration layer inside
the user system. When an application user expresses her interest on a certain set of
remote information. the message service intercepts the request and creates message
objects that may travel asvnchronously. On the subscriber, these message objects
triggers the subscription methods. First, the subscriber creates a JMS queue inside
the JMS server to receive big amount of information from the remote information
sources or services. Second, it creates a specific JMS topic, if such topic does not
already exist. The subscriber component invokes JMS listeners to this topic. When a
new message arrives in the middleware, JMS server publishes it into the correspond-
ing topic and informs all subscribers, who are registered to those topics. Thus the
listeners receive notification using a publish/subscribe mechanism while the remote
sources are updated. Finally, it redraws the visualization of the respective visual-
ization component with modified information. As discussed before. these subscribers

can be synchronous, asynchronous or durable to the JMS topic.

Actually, the user application contains many other components like the monitor,
the analysis library, the display APIs etc. The implementation of such components
is based on the software requirements. This presented middleware model uses the
model-view-control (MVC) and the observer design pattern. The presentation tier
acts as a “view” while the acceleration tier requires a “controller” elemeni in the
form of “Monitor” module. The later is implemented as an observer that locally
controls the threads in the background of the user application. It selects active JMS
listener, sends requests to the subscriber component and finally observes, updates and
filters the real-time notifications received through the subscriber. The user interface

presents an interactive display of information through graphs and charts.

53

3.4 Performance Scenarios

This section illustrates the performance scenarios of the proposed integration ap-
proach. The proposed middleware improves the performance by three means: It
consumes shorter time of the information retrieval. It allows single retrieval of the
information in existence of identical user requests. Finally, it uses the notification
mechanism, which reduces the network load. In what follows, we corroborate these
claims by considering a high-level model of the presented middleware, as shown in

the figure 10.

Application 1

Application 2

00
I3

Figure 10: High-Level Model of Integration

Let us assume that the proposed message based middleware model is capable
of invoking N threads at a time. In other words, it is capable of serving up to N
simultaneous requests from user applications. We also assume that the middleware
invokes at most r requests to the resource tier in a single execution. Now if w
is the time required for the pre-request processing (i.e. queue and topic creation,

etc.) of these N threads and ¢ is the time taken by each request to retrieve the

54

information from information sources and services then the required time to retrieve

all information in a single execution is approximately {31}:
6 = Mat,_,(1x)

The retrieval of the information is asynchronous. Therefore, it does not wait
for the response in order to send another request to the information sources or ser-

vices. In what follows, we verify the the performance scenarios based on this outcome.

Information Retrieval: The proposed middleware model is asynchronous. There-
fore, it may receive requests from the user applications irrespective of providing re-
sponses to the preceding requests. It means that the middleware model continues to
receive user requests independently. So, we assume that each single thread is serving
¢ (¢ > 1) requests during the time taken by a single execution of N requests. There-

fore, the total time to serve R users’ requests is:

) ((Rdivex N)+ 1) x 6, if R is not divisible by N
timeyon =
(Rdiwvex N)Yx 6, if Ris divisible by N

where, div is the integer division without remainder.

Temporary Storage of Information: The proposed middleware solution allows
many user applications to request information from the information sources and ser-
vices. In reality, most of these user applications contain similar application compo-
nents being a part of a single enterprise solution. Therefore, it is expected that a

group of users issues identical requests in a small duration of time. The presented

55

middleware model may store information temporarily throngh JMS-connection com-
ponents i.e. the queue and the topic. Therefore, with an advanced implementation
technique this stored information can be reused to respond to similar user requests.
This technique leverages significant improvement in performance as the presented
model saves the duration of the information retrieval for the common requests. H
there exists g groups with ¢ requests in each of them, on average, then for R user

requests, the actual number of processed request is:
Number of processed requests = (R — (9 x (¢ — 1)))

Furthermore, thanks to JMS, these messaging connection components are always up-
dated to the current state of remote information. JMS guarantees that whenever a
change of information takes place in the remote information sources and services, cor-
responding message will be automatically generated and published to the respective

JMS topics.

Notification of Events: The presented middleware model leverages notification
thanks to an asynchronous messaging mechanism that is implemented in the JMS
topics. Recall that if a user subscribes to particular information, the server creates
a JMS topic with respect to this information. This middleware solution publishes
message notification on this respective topic if any update occurs in that remote in-

formation.

Let us consider the scenario of event notification that is initiated from the in-
formation sources or the services. Let us assume that such a source takes T, time
to process z events that occurred due to the change inside the source. Now, inside

the middleware, we assume that it requires 7; to process the message information

56

and to put it in the respective JMS topics. Suppose that, the communication time
between the source and the middleware is ¢; and the communication time between the
middleware and the user applications is 7; for each ¢ event. Therefore, the proposed

middleware model notifies z events only after the time:

Trom =T, + Mazi_,(t;) + T, + Mazi_,(7;)

3.4.1 RPC-Based Middleware versus MeSsage—Based Mid-

dleware

The proposed solution yields better performance than the RPC-based middleware
solution. A comparison is presented considering the same model in section 3.4. We
compare the performance scenarios of this model for the remote process calls and the

messaging service.

Retrieval of Information: In the case of RPC-middleware, each request waits for the
response of the preceding one. Therefore, if a request from the middleware to the
information sources or services takes t time, on average, to receive a response, an
RPC-based middleware solution serves N simultaneous threadé by r requests to re-
source and takes (r X ¢ + w) time. So, as a whole the time taken by the system to

serve R user requests is:

] ((R div N)+ 1) x (r x t+w), if R is not divisible by N
tlmeRpC =

(R div N) x (r xt+w), tf Ris divisible by N

where, div is the integer division without remainder.
As defined earlier, the time taken by the proposed middleware to serve R requests

is:

LY

) (Rdivex NY+1) x 6, if R is not divisible by N
timeyon =
(Rdiwex N)x 6, if R is divisible by N

where, 6 = Maz],_,(tx) and div is the integer division without remainder.

Hereby, it is clear that, with higher values of R, timey o is much less than timegp.

Existence of Common Requests: The RPC based middleware uses tightly-coupled
point-to-point connection. Such a process call does not compromise the information
irrespective of the existence of common requests. So, in reference to our proposed mid-
dleware model, RPC-based integration middleware would process all the R requests
separately while the message oriented middleware processes a much lower number of
requests to retrieve information from the sources. Therefore, the proposed message-
based middleware model improves the performance scenario as well as reduces the

possibility of bottleneck around the middleware.

Event Notification: The RPC-based middleware does not allow a notification mecha-
nism from the side of information sources and services. Therefore, a user application
requires the polling of requests to receive information about the changes. As discussed
in the previously presented model, let us assume that an RPC-based middleware re-
ceives z requests from the users and processes them in T, time. As a result, the
middleware creates process calls to the information sources and services. Now, if
these calls takes T time, in total, in order to generate Z responses, the RPC-based
middleware model receivesk notification after at least Tgpe time, where Tgrpe may be

defined as:

/

T T
Trre=2% 3 (1) +2xTr + 2% 3 (&) + Ty;

i=1 =1

58

Notice that, similar to the previous approach, the communication time between
the source and middleware is £; and the communication time between the middleware
and the user applications is 7; for each #" request. Furthermore, if we consider that
a successful change of information takes place after each P poll times, the network

will suffer a bottleneck of P x(z + z') requests.

3.5 Data Integration Architecture

Department 1 Department 2

JMSHTTPS
O
g

JNSTIPS

Integrator

| ams
Subscsibar

Publiisher

Figure 11: Architecture of Data Integration

Figure 11 depicts the operational view of the proposed middleware architecture
integrating data sources. This model illustrates transfer of information between two
departments maintaining users and databases that are local to the autonomous de-
partmental environments. The departmental user applications are integrated and
controlled through application server/s that are situated inside the department. This

architecture brings the enterprise system into a peer-to-peer asynchronous framework

39

to share information from the sources. Hereafter, this section details the components
and the flow of information inside this architecture. However, this discussion is lim-
ited to the retrieval of information from data sources. Service integration is detailed

in the next section.

More precisely, the middleware architecture includes a message server inside ap-
plication server/s. An implementation of it could be realized using the Java message
service and a JNDI namespace inside the server components. Each server contains an
“integrator” module that creates, updates and deletes JMS connection components
(i.e. the queue and the topic), which is necessary for information sharing. The user
applications are allowed to retrieve information locally or remotely according to their
privileges. Initially, when a user application starts, it requires a huge amount of data
to start each application component. This infrastructure provides a direct point-to-
point communication mechanism between the users and the server/s. The retrieval of
information is favored by the asynchronous architecture that might be implemented
through a JMS queue. As the user system starts displaying retrieved information,
it only requires to gather real-time notifications of remote changes. The integrator
module creates a JMS topic component for every requested application component
in the users’ side. An improvement has been achieved by optimizing creation of such
topics by judging dissimilarity in client request. It means that the similar users’ re-
quests may receive notification from a single topic. Afterwards, with the updates of
information, the integrator module automatically triggers a “publisher” method to
publish information on specified topic/s. Whenever a new event arrives to the topic,
all its registered subscribers receive notification by their own listening processes. As
discussed before, these listeners are implemented as JMS listeners. Finally, the dis-

play module of the user application updates the visualization of information on the

60

user’s side.

3.6 Service Integration Architecture

This section details a service oriented architecture to integrate and monitor remote
services into the proposed middleware model. The proposed architecture, so far,
is only suitable for integrating heterogenous data sources. Service integration and
composition is much more complex. Moreover, designing a monitoring mechanism, to
receive notifications from remote services, is challenging. This is true because most
of the service execution languages implements a one-time execution of web services.
The proposed service integration architecture focusses on two main concerns: First, it
allows synergistic integration over various services through an asynchronous loosely-
coupled architecture. Second, it allows for a notification mechanism to monitor events
from remote services, which in turn recomputes the middleware’s own business process
integration plan to keep users always updated with “fresh” information. Figure 12
presents the underlying detailed architecture. In what follows, we present a brief
elaboration of the service integration components followed by a presentation of a

request life-cycle.

3.6.1 Integration Components
Integration Container

The need of an integration container raises due to the limitations in the present
technologies that are used to compose web services. Web services are composed and
executed in one-time fashion. Therefore, the user cannot be notified of any change
that takes place after she receives a response from the target service. The present

solution to this problem is to keep on requesting the services constantly to display

61

msg. initial

Service
l Client | Execution
Engine

?changes

notifications

Weather Service

Integration container

Request response mechanism
...... Message based nctification mechanism

Figure 12: Architecture of Service Integration

updated results. The proposed architecture includes an “integration container” to
solve this problem. The integration container ensures that the user interacts only once
with the system indicating her interest in some services. After this point, the user is
automatically guaranteed to receive the result, followed by all the remote changes on
those services whenever they occur. Such an integration infrastructure helps to plug
various decision support capabilities and analytical methods over accurate and up-
to-date information. In addition, the integration container allows for the execution
of sophisticated business rules to re-execute the main service optimally that retains
the previous states of operations. Therefore, in case of any remote change in service
output, the integration container does not require the re-execution of the entire global

process.

Notification Manager

Once a user sends a request to the service(s), the integration container registers its

notification manager to all the participating services that are identified during the

62

design of the main business process execution plan. It is assumed here that services
exhibit a scheduling mechanism, which informs the notification manager that a ;:hange
oceurred in its previously requested information set. The notification procedure can
be better implemented using the message service. After receiving this notification,
the notification manager injects this information in the execution manager, which in
turn will initiate another re-execution of certain processes to update the output of
the global business process. Finally, this new global business process updates the
user again by using a message service based notification mechanism. Actually, the
notification manager is the component of the integration container that frees the user
from the burden of periodic polling to observe changes of data corresponding to a

service.

Execution Engine

The execution engine resides inside the integration container that contains business
logic of the service composition framework. Once the integration container receives
a service-request from a user, it passes the request to the execution engine. At this
point, the engine initiates a global planning of service composition though a main
process. The global planning identifies the sequence and the parallelism among the
target services. It may also decompose the user’s request into many smaller requests,

if needed. Afterwards, it executes the service composition plan.

3.6.2 Request Life-Cycle

The newly added integration container complements the existing architecture by pro-
viding means for service integration and monitoring. This container is the core,
providing the ability to detect and reflect real-time changes without user interven-

tion. The process of service integration is dynamic and initiated by a user request.

63

For the sake of illustration, a single user and a remote “weather service” is consid-
ered for the integration and monitoring purposes. The message request comes to a
binding component and is translated into a normalized message, as accepted by the
service execution engine. The engine starts a business process in response and de-
composes the request into one or many standard queries according to implemented
logic. These queries travel to the input of standard remote services and retrieve the
result in response. The business process captures the result in different states of its
logic and composes them towards the solution of client’s requesf. Finally, the output
is sent as a normalized message that is again converted to a message response by the
binding components and reaches to the user. Furthermore, the information at the
end of a remote service often changes with time. The proposed middleware ensures
to reflect this changed output through the active display component. The process
of notification, inside the container, is integrated into the service execution engine
by a notification manager. This component starts listening to the remote services
during the initial execution of the business process and notifies the business process
with updated information in an acceptable format. The retrieval of the notification is
assumed to be event-based and originating from the service. In figure 12 the weather
service runs scheduler/s that checks for any change of weather information and pro-
duce with an asynchronous message to a “message receiver” binding component for
any successful update. This component, in reply, informs the notification manager
that decides on the state of re-comnputation required in the business process and ﬁ—
nally the process notifies the user by partial regeneration of the output. It should be
noted that inner/outer interaction between the system components and the services

is modeled asynchronously using messages.

64

3.6.3 Summary

In this chapter, we presented the mod»e] underlying the proposed middleware soli-
tion. This message-based solution allows for the independent integration of data and
services across heterogeneous platforms and network, with ample scope of adopt-
ing organizational policies. The intended message-based middleware structure allows
flexible integration of multiple sources of information and services as the messaging
service pr()ﬁdes a uniform environment of information sharing. Unlike traditional
solutions, this model supports user applications always up-to-date in terms of the
state information into the remote sources. The proposed model is proven advanta-
geous than the mostly deployed RPC-based middleware. Furthermore, this chapter
included two integration architectures for data integration and service integration,
deduced from the presented model. The architectures are generic and efficient. How-
ever, they are described from a very high level without much elaboration of their
technologies and limitations. The details of the integration procedures are presented

in chapter 4.

65

Chapter 4

Design and Implementation of

Digital Cockpit

4.1 Introduction

The digital cockpit project is a proof of concept that implements the proposed
message-based middleware model, guided by specific organizational requirements.
The main objective of the digital cockpit solution is to enhance enterprise appli-
cations by executing high performance decision support techniques based on accu-
rate and up-to-date information through a message-based and integrated middleware
platform. The design and implementation of the digital cockpit is presented in three
sections: The first section elaborates on the software requirements, as have been ex-
posed in the requirements specification (SRS) document of the project. It presents
the high-level domain model and use case diagrams of this project. The second sec-
tion details on the software design phase. It I;resents the main approach, architecture,
class and sequence diagrams and the methodology to program such a system. The
final section details on the implementation. It includes short comparisons of different

commercial off-the-shelf technologies that may implement different modules of the

66

digital cockpit. Finally, this chapter presents few screenshots of the digital cockpit

nser interface.

4.2 Software Requirements

This section presents the requirements of the digital cockpit project after an analysis
of the identified functionalities and aspects. We used the “Six Sigma” methodo]ogy to
analyze the identified requirements into a “Quality Functional Deployment” diagram.
The figure 13 presents the “Quality Functional Deployment” diagram. It presents the
importance of different quality attributes. A considerable concern has been expressed
for a secured infrastructure. This requirements are further mapped through a high
level domain model of the system. Actually, as exposed, the digital cockpit solution
is an independent piece of software that runs on its own enterprise resources. The
user application of the digital cockpit solution is capable of integrating organizational
data sources and services. A sophisticated user interface is also required for such a
user application to reflect the accurate information of various decision parameters.
More precisely, this user interface presents an overview of the “combined picture”
ranging from monitoring the changes of data in real-time to perform information
analysis and optimization procedures. On the other side, the server applications of
the digital cockpit solution are integrated by a peer-to-peer asynchronous middleware
that follows the proposed paradigm. These servers allow to perform independent and

inter-dependent tasks.

4.2.1 Domain Model

Recall that the intention behind the digital cockpit solution is to develop a real-time

monitoring mechanism that displays various kinds of information from diverse remote

67

® Sirong interrelationship (value = 5)
B Medium interrelationship (value = 3)

A Weak interrelationship (value = 1)

AV
— X+
+ X + > + — X+
Direction of improvement NINIDINIA h
STD) Design Complexity
-— [%2 4
Technical 215
. 3]
Requirements = sl 3
@
s »| s
< ol 2
" 2l 3l8 St 8
o Llelw 51 €
21| = o
c [} @ 1 = 153
£ S|E|< £l &
Customer e l3 ol |2 §_. >
Requirements Els|lolE]|8lE215|2]|5
1215l elzs1S]8elE
el2|5|18|8l<|S|{aels
Elslaoal=|8laclnls] e
clol=l9olSsiolwi8ls|_
- C Ned (] Q. [
als|lo|lalS|s|Ylas|w]E
dlaof<jojs]o|S|oj2]R
< |Performance 510| @ I B BN J 140
= ‘3 Security 5191 @ LR BN 115
St
2| E |Availability 4 o o 0 60
= o "
O| 2 [Functionality 410 ® A 36
g Usability 5 o|o|e Bl o
g g Modifiability 410 Al® Alm 60
= @ |Portabilty 2 | A ° 12
g Inter-operability 4| A oo m 56
‘E Integratability 3 n o0 39
2 |Reusabiiity 3| A o L 33
< Documentation EE B8 B A0 | ®| 51
(o]
2 Cost PR BN BN AN | 32
13
§ Project life-time slo|AlAlA ml 33
M [Training 3 ° ®| 30
Total 12511051 73] 73]134{146]| 86} 45

Figure 13: Quality Functional Deployment of the Digital Cockpit

68

information sources and services. By hosting this Digital Cockpit solution on the
customer’s systems, users will be able to access heterogeneous databases and services
seamlessly, monitor data in a real-time mode and perform various data analvsis and
optimization procedures. These customer’s expectations may be realized by providing
such functionalities through the distinguished packages inside a domain model. The

designed domain model is divided into seven components.

o Integration module: Provides a uniform access to local and remote data as

needed by the digital cockpit system.

e Display module: Visualizes digital cockpit components with a group of features,

e.g. “drill-down”, zoom etc.

o Subscription module: Handles the subscription to and un-subscription from data

and services according to interest of the user.

o Monitor module: Helps to identify active elements on the user interface and

retrieves their information changes.

o Analysis module: Analyzes displayed information to find trends, what-if scenar-
i0s, cause and effect and even probabilistic operations to compare information

to the past data.

e (Conirol module: Uses specific methods to optimize and compare possible ana-

lyzed scenarios and thereby supports accurate and consolidated decisions.

o Security module: Allows user authentication and authorization with necessary

event logging. -

These modules together provide for all the required features. The figure 14 represents

inter-relationships among these packages.

69

Display

g | e | S
Subscription

‘ i ;
4‘ Monitor.:.:1 Analysis - -Control
| !

—
J

Seicurity.

v
Integration

Figure 14: Domain Model of the Digital Cockpit

4.2.2 Use Case Model

The users of the Digital Cockpit system are of three types, as proposed. The first
type of users is the “normal user” who use the system as per their privileges. They
are capable of monitoring, analyzing and controlling different views generated from
the available data sources and services in their domain. The second type of users
is called the “power user”. The power users are able to track the previous and
present operations of the normal users based on their own privileges. A power user
also has all the privileges of a normal user. Finally, there is an “administrator” for
the whole cockpit system who is capable of exploiting all the features of the digital
cockpit solution including the creation of a connection to a new set of data sources
and services. Furthermore, a digital cockpit system may also connect and use the
information and services from another remote digital cockpit system by proving their

identity to the system. Figure 15 represents the overall use case model that illustrates

70

the capabilities of the users on the digital cockpit system.

Power User

<<extends>>

Administrator

]
I Display
pra \lse’,,” : :
1
_-="" <<yses>> .
Tmmm s >} Monitor k.
Sl Sy AN
N ~._ "Sg, v R
S8 ™ \ “%
NN \
N T3 Analysis NN
AN eéA \
~ A
\\\ \\
\\] AN
Y AN
\ Al Control
A0 7
\\ % \)Sas-:’ -
WY | e .
\ — .-~ Cockpit System
\ Integration p
\ : s
\\\ 44///
AY Qval
\\ 59//
% Subscription| ¢/
\\ Manager /
\ /
\\ —'l /’
\ \4/
Security

Figure 15: Use Case Model of the Digital Cockpit

For the lack of the space, it is impossible to report the domain model and the use
case model of each module. However, a further refined vision of this model may be
extracted from the class diagram. The names of all available use cases are listed in
the appendix. In the following, we attempt to explain an example sequence diagram
[c.f. Figure 16], to represent a possible interaction between two domain model com-
ponents. This sequence diagram presents the initialization of a display component
in the cockpit after verification and confirmation of the user privileges and the sub-
scription to that service. The system establishes a session with each service provider
and starts interacting with it. Afterwards, the system starts real-time monitoring of

the target data set. On successful execution of the information, the digital cockpit

71

system presents such an information through an application component.

4.3 Software Design and Methodology

This section details the software design of the digital cockpit system. First, it presents
the assumptions and policies of the software design based on the aforementioned re-
quirements. Second, it includes a five-phase implementation guidelines of our method-

ology followed by the design considerations and the class diagrams.

4.3.1 Assumptions and Policies

Architecturally, the proposed middleware deploys a distributed structure on top of an
existing client-server architectures which are common to intra-departmental network.

The design of the system is based on certain user assuinptions and policies, such as:

e The software is designed assmining the existence of two kinds of different data
sources, one kept in the Oracle and other in the Sybase database. The service
integration is implemented by integrating a cornmercially available free weather-

service information developed in DWML format.

e This software is meant to provide a prototype of the proposed solution. Each
part may be further refined for operational deplovment. The recommended
technologies are also mentioned in the appendix that can better fit for each of

these modules.

e The digital cockpit solution is designed in a way that all its corresponding
modules can be implemented using the standard based APIs. These APIs that
are well established in terms of technology, performance and other software

quality attributes.

woeedo 8jnoe

Koo ganes g_s oep possaond sy,

|
-
T
|

|
|
|
b
|
|
As

|

|

|

- — _ o possooa 5}
0 7L _ _
_ f Tﬁ% 9o} ssousng weped ;;
_ m A * { Buuopmon au =) saoned mjow)
_ W ~ IR BLQBE& s_mﬁ
_ v Em& :m_mn.m‘ws "2 #
| |
_ U0ISSas 23]8a10 .G A
| | |
* UOISSIS B USHRIS

| | =
| | -
7 saboiud Aen -} _
k3 RIS - BOEUER/ReS - 00 -

Figure 16: Sequence Diagram of Display Module

73

e The software design and implementation are provided considering known statie
sources of information. The dynamic integration of data sources and services is

bevond the scope of this implementation.

e The digital cockpit graphical user interface is quite different from traditional
graphical user interfaces. It shows most of the required information from a
single screen as well as allows users to navigate in to the information details by
clicking on a particular component. It monitors and represents changes of the

information under real-time inspection, without any user intervention.

e According to the requirements, the digital cockpit prototype supports math-
ematical analysis such as: statistical operations, time-based analysis, simula-
tions, etc. The implementation of a full-scale decision-support model is vet to

be realized inside the scope of implementation.

e The whole architecture of the system is planned keeping the security constraints
in mind. The TLS/SSL over HTTP is used as a crvptographic protocol for the

secure transfer of information as well as authentication.

e Being a prototype, this solution hardly has any scope to be widely tested and

verified for its performance properties.

The intention behind the digital cockpit paradigm is to display and to monitor remote
information sources and services directly from a software interface that also enables
performing various data analysis and optimization procedures to leverage better de-

cision support.

4.3.2 Methodology

Recall that, the high level design methodology of the digital cockpit project is realized

by a five-phase guideline as follows:

74

e Integration: to connect all information sources and services within and across

the organization, for information sharing purposes.

e Display: to take the data from different sources, aggregate them and present
the synthesized information into a meaningful, structured and big navigational

“picture” that offers the ability to drill down into the details.

e Monitor: to design and implement the capabilities that allow for the active
monitoring of the information system state for the purpose of testing the organi-
zation’s assumptions, reactive and proactive measures, and response to cockpit

thresholds, etc.

o Analysis: to insert the required business logic to the integrated system i.e. to
design and implement the capabilities for time and trend analysis, simulation

of “what-if” scenarios, etc.

e Control: to optimize procedures, events and scenarios that may enhance the

used processes, methods and sirategies. -

This five-phase design methodology provides a cost-effective; standard based solution

that is scalable, efficient and secure. Table 3 briefly illustrates these advantages.

4.3.3 Class Diagrams and Technology

The digital cockpit offers users an unprecedented level of information hierarchy through
a layer-based approach. It allows the access to the real-time information by readily
accepting changes in the remote information sources and services. The overall ar-
chitecture of the software is designed through three modules: The integrator, the
monitor, and the display modules. The integrator module implements the digital
cockpit server on top of the JMS enabled enterprise application server of the en-

terprise. 'This module deploys a namespace using JMS server that contains JMS

5]

Cost- The proposed solution is mostly based on free
effective | technological components.

Secure The proposed solution is designed with the in-
formation security in mind.

Standardst The proposed solution is based on published,
Based well-accepted and widely-adopted standard
APIs.

Scalable | The proposed solution is designed to meet the
current organizational requirements and also
scalable to support new functionalities in the
system.

Efficient | The proposed solution is efficient since it uses
performance-proven technological components.
Proven The proposed solution is proven since it has al-
ready been partially demonstrated.

Table 3: Advantages of Digital Cockpit Solution

connection components and helps clients to store necessary information and updates
during the process run. The digital Cockpit addresses two major concerns of infor-
mation sources and service integration. First, it achievgs a synergistic integration
of the various data/service sources in an asynchronous loosely-coupled architecture.
Second, this platform uses a notification mechanism from the integrated sources that
publishes the effect of changes of the information sources and services directly in
the JMS components. The monitor module, on the other hand, resides in the user’s
side that runs in the back-end and implements the JMS point-to-point and publish-
subscribe mechanisms with the server. As of its functionalities, the monitor module
sends the users’ request through the subscriber component and persistently monitors
changes that are published to the topics inside the server. The display module is local
to each client and is treated as a desktop application. Once the information changes
are received, this module ensures the redrawing of the particular digital cockpit user-

interface components that are currently showing such information. Moreover, the

76

design of the display module also includes analysis and optimization procedures that
take a set of the retrieved information as a parameter and process them to the user

desired outputs. A set of high level class diagrams is cited in the appendix.

4.4 Implementation

The use of efficient technologies is particularly crucial for a decision support system
‘that constantly evolves with ever-changing organizational information and business
rules. This section demonstrates precise comparisons among the market-available
APIs for each design module. Such a comparison offers a clear guideline, in terms of

technical choices, for further large-scale commercial implementations.

4.4.1 Data Integration

The middleware based data integration is already achieved using remote procedure
calls that are implemented in synchronous architectures. The digital cockpit pro-
poses an asynchronous middleware paradigm that implements message-based infor-
mation integration. More precisely, the software aims a semblance of end-to-end
inter-organizational communication as supported by the Java message service (JMS).
The information retrieval inside the data-sources is implemented by a wrapper ap-
plication through JDBC and/or JCA APIs. J2EE Connector Architecture (JCA)
and the Java database connectivity (JDBC) Java APIs implement the guerying of
information sources. Actually, JDBC and JCA are the de facto standard API from
the Java community. The JDBC is used for accessing relational databases. JCA is
suggested mainly to access legacy systems (e.g. mainframes), semi-structured (e.g.
web pages) or unstructured (e.g. flat files) information sources. The rationale behind

this choice of JDBC is for its merits in terms of performance. As of JCA, it grants

7

an asynchronous mode of fetching information and offers strong pooling mechanism
that significantly improves the scalability of the data integration with numerous re-
sources. Furthermore, both of these APIs (JDBC and JCA) are freely available as
reference implementations. This is another strong argument that supports the cost-

effectiveness of the proposed solution.

The JMS, on the other hand, allows the asynchronous exchange of these retrieved
information to the distant users and the other interested digital cockpit systems. The
choice of JMS is also motivated by: The cost-effectiveness (freely available API from
JCP); standard implementation (Java Specification Request 914); reliability (guar-
anteed delivery), performance (outperforms other communication solutions such as
RPC), etc. In particular, we used the JMS version 1.1 provided by Sun Microsystems

with J2EE software bundles.

4.4.2 Service Integration

The implementation of the service integration is comparatively complicated as im-
plemented in this project. The procedures are hereby described with the choices of

reference technologies.

Framework

The local communication between the classes for service integration is achieved by
interface contracts and the wiring is achieved using an “Inversion Of Control” (IoC)
container called Spring Framework. The IoC is an emerging paradigm that greatly
improves the reusability, flexibility, maintainability and unit-testability of compo-

nents. The localisation and instantiation of the classes are transparently achieved

78

through the “Singleton and Factory Design Patterns”. This allows for the full de-
coupling of the components and system events. There exists numerous open source
ToC containers available including PicoContainer, Avalon, NanoContainer, Excalibur
and HiveMind. However, “Spring” stands as the best candidate since it has rapidly
become the de-facto standard for enterprise application wiring and lightweight J2EE
development. Additionally, the Spring Framework provides helper classes that ease
J2EE development. Furthermore, Spring integrates with Java Connector Architec-
ture (JCA), Java DataBase Connectivity (JDBC) and other persistent frameworks to

provide declarative local or distributed transaction demarcation.

Integration Container

The Digital cockpit implements a standard-based integration using the Java Business
Integration (JSR 208) API [25]. The JBI container accomplishes the access to the
service in a transport independent manner. Therefore, the integration may take the
full advantages of the‘ asynchronous features that may be built into BPEL4WS. The
use of this container further improves the necessary asynchronism that are typically
absent in a classical SOAP over HTTP approach. The JBI standard being relatively
new, there are few Open Source JBI implementations available, e.g. CodeHaus’s Ser-
viceMix and Sun’s Reference Implementation (RI). Sun’s RI provides a more restric-
tive license than ServiceMix’s Apache license. It also has fewer community support
and provides a very limited set of Binding Components (BC). On the other hand, the
ServiceMix provides the support for Spring as well as JSR 208 deployinent unit. It
allows with a number of BC and embeds Fivesight’s BPEL Process eXecution Engine.
Furthermore, it is integrated with other CodeHaus projects such as ActiveMQ-JMS,
Jencks-Java Connector Architecture, etc. However, the ServiceMix documentation is

still in its infancy whereas the RY’s one is a little more complete. Since the BPEL4WS

79

support was necessary, as well as a JMS BC, the ServiceMix has been chosen.

Business Process

The execution engine runs the business processes that are capable of composing mul-
tiple services from distant locations. The “Business Process Execution Language
for Web Services” (BPEL4WS) provides a high-level language to compose web ser-
vices. This proposed middleware uses BPELAWS as it is a competing standard imple-
mentation for the service compoéition. There are several competing BPEL engines.
The most popular open source alternatives include ActiveBPEL, Apache Twister,
Fivesight PXE and IBM BPWS4J. The BPWS4J has never been updated and its
community support is nearly non-existing. The Apache Twister is still in its infancy
and does not provide a complete implementation of the BPEL standard yet. Ac-
tiveBPELs documentation and community support is excellent, but it provides no
other transport than SOAP over HTTP. Therefore, ActiveBPEL can not be easily
integrated inside a JBI container. Finally, Fivesight PXE has been chosen because
of its integration inside ServiceMix. It can be embedded as a Service Engine (SE)
inside a JBI container using its extensible architecture. The integration procedure is

also available with ServiceMix.

JMS Binding Components

The ServiceMix provides support to a number of binding components (BC) includ-
ing ActiveMQ-JMS, Jencks-JCA etc. The implementation of the asynchronous dis-
tributed communication is achieved using ActiveMQs JMS implementation that is
usually considered as the most flexible open source JMS broker. The Spring frame-
work provides helper classes for the JMS templates which help to avoid programming

and to maintain the ever-needed initialization and cleanup code. Furthermore, the

80

ServiceMix supports JMS binding component. However, there is a limitation in the
current implementation of Springs JMS template regarding asynchronous reception
of messages which can be easily circumvented by using Springs JCA support to-
gether with ActiveMQs JCA resource adapter. The JCA resource adapter offers

asynchronous receiving of the JMS messages.

Service Notification '

The proposed integration approach encourages the use of a “notification manager”
inside the JBI container that asynchronously informs the business process instances
of the newly available information from the remote services. It should be mentioned
that this approach assumes statically known locations of the remote services. An
extension of this approach could be realized to find the services dynamically by inte-
grating with an outside XML registry,. However such a discussion is out of the scope

of this thesis.

In particular, the digital cockpit project yields an infrastructure of decision support
through the integration of a frequently changing weather service. This weather service
is composed of a set of schedulers and parsers which aggregate weather data coming
from various sources and provided under both XML and legacy formats. The jWeather
package has been used to parse Meteorological Aviation Routine Weather Report
(METAR) legacy format, whereas the Java API for XML Processing (JAXP) has
been used to parse XML weather data available from USA’s National Oceanic and
Atmospheric Administration (NOAA). The integration container receives changes
in remote services data using internal schedulers and notifies the user though the
asynchronous JMS notifications. As a consequence, it re-calculates the necessary

part of the relevant business process, if required. Fiha]]y the integration container

81

and informs the user by binding component. the user application instantaneously
reflects the changes through the GUI. The Java3D and JFreeChart libraries are used

for visnalizing weather information in a user-friendly way.

4.4.3 Display and User Interface

The digital cockpit solution leverages an indigenous graphical user interface (GUI)
to its users. It presents the integrated and synthesized information in a meaningful,
structured, navigational and graphical way. The display phase is in charge of pro-
viding the dynamic and graphical views to the users decision-makers that may help
them to quickly grasp the meaning of the presented data. Furthermore, a permitted
user is offered with the capabilities to click on high level summary of information
and to view more details of it. The user-interfaces are implemented by dynamically
changing graphical objects and representations such as charts, curves, knobs, his-
tograms, reports, animmated maps, etc. The dynamic aspect of these views makes the
digital cockpit display module much more complex than a simple elaboration of a
conventional and static graphical user interface (GUI). As proposed earlier, this dis-
play module is much more sophisticated as the decision maker requires to view almost
real-time reflection of the changes in the organizational key indicators through the
relevant graphical objects. Technologically, such a display module possesses several
challenging and interesting problems such as: The listening to the messaging compo-
nents, triggering and delivery of remote events, binding graphical objects to threads,
thread management, animation and rendering of graphical objects based on remote
events, etc. Furthermore, it also provides a lightweight library of analytic procedures
to analyze information | ¢. f. figure 17] and to simulate on such analyzed scenarios

[c. f. figure 18].

82

Figure 17: Time-Based Analysis of a Set of Information

Figure 18: Simulation of an Analyzed Scenario.

83

The digital cockpit introduces a unique notion of displaying the synthesized in-
formation into a meaningful, structured and big navigational picture that offers the
ability to drill down into the details. A traditional menu-based user-interface is not
enough to represent the real-time changes of information on every application com-
ponent under active display. This research favors a single layer of the user interface
to present the information through various application components. Each applica-
tion component contains graphs and charts that meaningfully represent a huge set of
information in a small place. An interested user may view the details of a pafticu]ar
set of information by clicking on these charts inside the graphical component. There
are several available libraries of charting, for example: EsspressChart, JCLASS, and
JFREECHART. The EsspressChart is a Java-based charting toolkit that allows the
users to build charts easily, interactively and programmatically. JCLASS, on the
other hand, is a suite of Java components that help to build applications quickly and
easily with charts, tables and reporting/printing features. JFREECHART is a Java
open source library that is meant for the generation of charts (e.g. pie charts, bar
charts, line and area charts, scatter plots, bubble charts, time series, candle stick
charts). There exists some general-purpose visualization tools also in the software
market. The examples of these tools are: ADVIZOR, OpenViz, NetChart Reporting
Suite, Xcelsius, etc. The ADVIZOR toolkit provides a presentation of business data
along with a query capability. The OpenViz is a suite of software components that en-
ables the development and deployment of interactive 2D and 3D visual presentations.
The NetCharts suite allows the embedding of charts and graphs into a web-based
applications. The Xcelsius suite is a windows application that allows users to create
dynamic, interactive reports based on Excel spreadsheets. After a careful review on
all aforementioned charting solutions, we have chosen JFREECHART and Quadbase

EsspressChart APIs for the implementation of our proposed user-interface.

84

Figure 19: Main User Interface of Digital Cockpit System

In addition, the scope of the display module literally depends on the clients re-
quirements. As for this related project, it implements a big variety of military appli-
cations that represent their resources, planning for further missions, GIS maps with
required information for military wings, etc. [c. f. figure 19]. Besides, the digital
cockpit means for displaying service monitoring as proposed during the implemen-
tation. The screenshot presents a weather service integration scenario, in figure 22,
that integrates XML weather data, freely available from USA’s National Oceanic and
Atmospheric Administration (NOAA). A mission planning tool has been shown in the
figure 24 that shows how the solution decides on the feasibility various missions. As
presented in the user interface, the “plus” sign shows positive feedback over the exe-
cution of a mission while the “minus” sign means such a mission is undergoing with

high risks. The “exclamation” sign demonstrates the indecisiveness of the tool that

may occur due to less information. It should be mentioned that all this representa-

tion is generated in almost real-time and changes with the fluctuations at remote end.

Figure 20: Administrator’s User Interface of Digital Cockpit System

The development of this solution strictly follows an “Observer-Ohservable pat-
tern” inside the Monitor module so that any change of information triggers an up-
date to the corresponding display component. The digital cockpit user interface also
contains some typical GUI utilities that are common to the screen elements, such as:
Saving, zooming, navigating, etc. Moreover, digital cockpit user interface is customiz-
able for the visualized cockpit components. The decision makers and the users may
customize the active display components among the available cockpit-components.
Such a customization also depends user’s preferences and permission, as set by an
administrator [c. f. figure 20]. We used EspressChart API from Quadbase Inc., Java
3D API from Sun Microsystems and JFreeChart API from SourceForge project. The

Espresschart API is specially useful for dynamic rendering. The Java3D provides a

86

high-level programming interface for rendering three dimensional scenes whereas the
JFreeChart is the most widely used open source charting library. Some snapshots of

the user interfaces are presented from the digital cockpit project in this section.

Figure 21: Overall View of Weather Scenario

Figures 21, 22, 23 represent a ‘drill down’ scenario through the digital cockpit
implementation. An integration scenario of the weather service, in figure 21, shows
an overall weather map representing certain weather information. An interested user
may focus on a specific region of interest and request more information as shown
in figure 22. The sufficient service integration successfully enables the platform to
represent bulk of information from the remote services. Finally, the figure 23 shows

a specific wind condition, that presents the lowest layer of drilled down information.

87

Figure 22: “Drill-Down” Feature for Detailed Information

Figure 23: Specific Weather Component: Wind Forecast

88

Figure 24: Optimization Scenarios of Mission Planning

89

Chapter 5

Conclusion

The demands of the software industries are proven in the matter of middleware based
enterprise application integration. However, most of the large-cap corporations still
use RPC-based middlware for the information retrieval from the data sources. These
middleware infrastructures are unable to reflect the real state of the retrieved in-
~ formation, especially when the original information changes in the source after the
retrieval. Similarly, the present service integration approaches use a one-time exe-
cution of a multi-task business process. So, the business process languages compose
remote services but the end-result, once again, corresponds to a static instance of
the information received during the time of retrieval. This technology exhibits a cru-
cial drawback since the infrastructure lacks the guarantee on the freshness of data.
Therefore, decision support systems (DSS), that are implemented on top of such in-
tegration infrastructure, often provide wrong judgements. Our research explores a
message-based, asynchronous middleware solution that may improve the integration
of the remote information sources and the services by constantly providing up-to-date
information to the users. Such a solution will better help to take accurate decisions

in an opportune time.

90

The main contribution of this thesis mav be considered as the proposition of a
loosely-coupled middleware solution that implements an end-to-end integration plat-
form for heterogeneous information systems. The middleware model leverages an
asynchronous mechanism to keep the displaved information consistent with the real
state in the remote sources. In this work, we address the architecture, the design
and a prototype implementation of such a middleware. As of the validation of the
capabilities of such a middleware system, we jointly programimed the Digital Cockpit
software solution thaf relies on the proposed message oriented middleware and ex-

plores some of its capabilities.

The monitoring of information systems is a necessity to gather accurate informa-
tion and to take decisions that span over a long time. This thesis presents an interest-
ing concept of monitoring remote information sources and services. The present RPC-
based middleware infrastructures “refresh” information using polling of requests. The
presented message-based middleware is a better alternative to provide the solution
that accepts real-time notification of remote changes during a process mun. Conse-
quently, the output complies with up-to-date scenario of remote information systems.
Furthermore, this thesis identifies the scope of the re-computation independently
from the integration style. This re-computation mechanism is necessary to deliver
up-to-date information. However the details of the re-computation mechanism is
complex especially in the context of the service monitoring. The elaboration of these

re-computation procedures is bevond the scope of this thesis.
The notion of decision support systems is brought to elaborate the underlying

potential of the asynchronously integrated platform to take consolidated, quick and

correct decisions using available information and services. Actually, this thesis does

91

not cover all the possible aspects of the decision support techniques. Furthermore
such a decision support system is typically iimplementation specific. We implemented
the digital cockpit solution with some decision support techniques that covers time
and trend analysis of collected information, weather scenario, mission planning, etc.
However, this thesis contributes a direction of further research to improve the present

strategic systems by reflecting more accurate decisions with “fresh” information.

The implementation of the digital cockpit includes an innovative graphical user in-
terface to display information. Instead of using traditional menu-driven user interface
the digital cockpit graphical user interface presents the information in a priority-based
hierarchy from several sub-components. Such a graphical user interface allows users
to see all the desired information without a lot of interaction. Furthermore, the users
may view the fluctuations of the presented information due to changes in the remote
sources with/without their intervention. Besides, the users may view detailed infor-
mation from any sub-component by clicking on its information set. The information
sets are shown by graphs and charts to present the values. The graphs and charts

may meaningfully represent piles of information through a small component.

The digital cockpit software solution still requires fine-grained monitoring of in-
formation and automatic discovery of sources and services. The analysis module also
needs more statistical, analyzing and optimizing algorithms to be incorporated into
it. One possible direction of the future work may also include investigating each as-
pect of the integration in details, especially from the qualitative point of view. We
are still working on the composition and re-computation logic of data sources and
services that may provide up-to-date and accurate notification faster in less duration.

Second, the idea of decision support system requires further enhancement to deal with

92

the real complex enterprise sitnations. A direction of future work could be oriented
towards a more formal definition of the system components and use of theoretical
artifacts to optimize the goal. Finally, the digital cockpit is a robust and distributed
solution. Therefore, the information sharing should be protecied from unauthenti-
cated and unauthorized users inside the enterprise. The detailed understanding of
the security requirements for such asynchronous and distributed digital cockpit plat-
form will certainly bring more focus on large-scale, real-life implementation of such

systems.

93

Bibliography

[1]

(3]

[5]

Claudio Sacerdoti Coen, Paolo Marinelli, Fabio Vitali. Schemapath, a minimal
extension to xml schema for conditional constraints. In Proceedings of 13th
international conference on World Wide Web, Session: XML, pages 164--174.
International World Wide Web Conference, ACM Press, 2004. ISBN-1-58113-
844-X.

A Benssam, A.Boukhtouta, M. Debbabi, H. Issa, S. Ray and A. Sahi. A Message-
Based Middleware for Asynchronous Operations: Issues and Experience. In
Proceedings of NOTERE-05, pages 51-60, Ottawa, Canada, August-September
2005.

A.Benssam, S.Ray, A.Boukhtouta, F.Guerroumi, C.Assi and M.Debbabi. A new
Paradigm for Information Systems Integration. In Monireal Conference Proceed-

ings on eTechnologies, pages 63-72, Montreal, Canada, January 2005.

A.Boukhtouta and M.Debbabi and N.Tawbi. A new paradigm for decision mak-
ing: a synergy between business intelligence and digital cockpits. In 10th ISPE
International Conference on Concurrent Engineering: Research and Application,

Portugal, 2003.

Alon Halevy. Data Integration: A Status Report. In Proceedings of the German
Database Conference, BTW-03, 2003. Invited paper.

94

[6] Business Process Project Team. ebXML Business Process Specification Schema
6 Version 1.01. OASIS, [online], http://www.ebxml.org/specs/ebBPSS.pdf,
May 2001.

[7] C.Davis. Distributed objects and components. UCL Computer Science, [on-
line], http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/3C05~02-03/

3

aswel9-essay.pdf, May 2003.
[8] Daniel Drasin. Get the message? IBM developer Works, February 2002.

[9] DataMirror Corporation. Benefits of Transformational Data Integration. [online],

http://www.grcdi.nl/benefits.pdf, 2000.

[10] David E. Bakken. Middleware. [online], http: //moab.eecs.wsu.edu/ bakken/

middleware.pdf.

[11] David S. Linthicum. Next generation for application integration: from simple

nformation to web services. Addison Wesley publications, August 2003.

[12] Dianne Kennedy. From SGML to XML; From DTD to Schema; Making the
Choice. XML 2002 Proceedings by deepX, 2002.

[13] D.J.Power. A Brief History of Decision Support Systems. [online], http://

3

DSSResources.COM/history/dsshistory.html, May 2003.
[14] E.Cerami. Essentials of web services. OReilly publications, 2002.

[15] F.Coyle. XML, web services and the data revolution. Addison-Wesley Informa-

tion Technology Series: Addison-Wesley Professional, 2002.

[16] Fred M. Heath. ACLS Commission on Cyberinfrastructure for the Humanities

and Social Sciences. Technical report, University of Texas at Austin, Baltimore,

Maryland, October 2004.

95

[17] G.Piatetsky-Shapiro. Machine Learning and Data Mining: Course Notes,
KDnuggets. [online], http://wwu.kdnuggets.com/dmcourse/data_mining_

7

course/course_notes.pdf, 2003.

[18] Heather Kreger. Web Services Conceptual Architecture. IBM Software Group,
[online], http://www-306.ibm.com/software/solutions/webservices/pdf/

WSCA.pdf, May 2001.

[19] Hyperion Solutions Corporation. An Overview of Hyperions Data V\"arehousing
Methodology. [online], http://dev.hyperion.com/resource_library/white_

papers/data_warehousing_methodology.pdf, October 2001.

[20] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Business
Process Exeeution Language for Web Services version 1.1. Specifica-
tion Release, [online], ftp://www6.software.ibm.com/software/developer/

3

library/ws-bpel.pdf, May 2003.

[21] IBM Research, Microsoft. Web Services Description Language >(WSDL) 1.1.

Specification Release, [online], http://www.w3.0rg/TR/wsdl, March 2001.

[22] TPEDO Inc. Guide to Enterprise Information Integration (EII). [online], http:

7

//wwv .dmreview. com/whitepaper/WID1011596.pdf, August 2004.

[23] Jack McCarthy. Special Report: Six great myths of IT. Technical Report Issue
33, InfoWorld, August 2004. Page 35.

[24] Java Community Process. JavaT™DataBase Connectivity 3.0 [jsr 054]. [online]

3

http://jcp.org/en/jsr/detail?id=54, 2002.

[25] Java Community Process. JavaT™™DataBase Connectivity 3.0 [jsr 208]. Specifi-

cation Release, [online|, http://jcp.org/en/jsr/detail?id=208, 2005.

96

[26]

[27]

[28]

[29]

130]

31]

[32]

Jim Farley. Java Enterprise Breakthroughs, Part 1. ONJava.com:O’REILLY,
May 2002.

Lev Kochubeevsky. Generic Request Response Broker for JMS. JAVA DEVEL-
OPER’S JOURNAL, 10(4), April 2005.

Liviu Tudor. MSMQ Part 1/2: Architecture and Sim-
ple Implementation Using VB. Dev Articles™, [on-
line], http://www.devarticles.com/c/a/Visual-Basic/

MSMQ-Part-1-Architecture-and-Simple-Implementation-Using-VB/,

March 2002.

L.M.Haas,E.T.Lin and M.A.Roth. Data integration through database federation.
IBM Systems Journal.

M. Myerson. Web service architectures. Technical report, Technical Teport,

Tect(©), 29 South LaSalle St.Suite 520, Chicago, Hlinois 60603 USA, 2002.

Brian Maso. JMS: A Solution in Search of a Problem? Blumenfeld & Maso
Inc., [online], http://archive.devx.com/java/free/articles/MasoJMS02/

Maso02-5.asp.

Microsoft Corporation MSDN Library. Integrating Layer: Portal Integration.
[online], http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/dnpag/html/archprocessintegration.asp.

R.Hull. Managing semantic heterogeneity in databases: a theoretical perspective.

Proceedings of PODS, pages 51-61, 1997.

R.Hull and G.Zhou. A framework for supporting data integration using the
materioalzed and virtual approaches. Prac. Of SIGMOD, pages 481-492, 1996.

97

[35]

(36]

[37)

[38]

[39]

[40]

[41]

[42]

[43)

Richard Monson-Haefel, David Chappell. Java Message Service. O’Reilly &

Associates Inc., Java Series, 1st Edition edition, December 2000.

S.Chawathe, H.Garcia-Molina, J.Hammer, K.Ireland, Y.Papakonstantinou,
J.Ullman and J.Widom. The TSIMMIS Project: Integration of Heterogeneous

Information Sources. Proceedings of IPSJ Conference, pages 7-18, October 1994.

S.Haag, M.Cummings and Donald J McCubbrey. Management Information Sys-

tems for the Information Age. McGraw Hill, 4th Edition edition, 2004.

Sonic Software Corporation. JMS Performance Comparison: Publish
Subscribe Messaging. Whitepaper, [online], {http://www.sonicsoftware.
com/products/whitepapers/docs/ jms_comparison_tibco.pdf}, vear = 2003,

month = November,.

SonicMQ, Sonic Software Corporation. Getting Started with SonicMQ®V6.1.
Documentation, [online], http://www.sonicsoftware.com/products/

documentation/docs/mq_getstart.pdf, September 2004.

SUN Microsystems. Java™™ Message Service [jsr 914]. Specification Release,

[online], http://java.sun.com/products/jms/docs.html, 2000.

Sun Microsystems. J2EE™Connector Architecture [jsr 016]. [online], http:

//jcp.org/aboutJava/communityprocess/final/ jsr016/index.html, 2001.

S.Vinoski. CORBA: Integrating diverse applications within distributed hetero-

geneous environments. IEEE Communication Magazine, 35(2), February 1997.

W.H.Inmon. Building the Data Warehouse. Wiley, 2nd Edition edition, 1996.

98

Appendix A

Use Cases of Digital Cockpit

o Display Module:

— Use Case: Initialize components in the Digital Cockpit.

— Use Case: Add new component(s) to the Digital Cockpit.

— Use Case: Move component(s) on the Digital Cockpit.

— Use Case: Change properties of the Digital Cockpit.

— Use Case: Change data representation inside a Digital Cockpit component.
— Use Case: Drill into component details.

— Use Case: Drill out of component details.

— Use Case: Data import.

— Use Case: Data export.
¢ Integrator Module:
— Use Case: Access local data.

— Use Case: Access local service.

— Use Case: Access remote data.

99

Use Case: Access remote service.

Use Case: publish data.

Use Case: Subscribe data.

Use Case: Retrieve data for remote requestor.

Use Case: Add data hook (pre-defined access permission to remote data

sources)

Use Case: Add service hook.
— Use Case: Remove data hook.
— Use Case: Remove service hook.

— Use Case: Save to local information source.
e Analysis Module:

— Use Case: Request data for analysis

— Use Case: Pattern identification analysis.

— Use Case: What-if analysis.

— Use Case: Probability and statistical analysis.

— Use Case: Cause and effect analysis.
e Control:
— Use Case: Optimize data

e Nonitor:

— Use Case: Monitor real-time changes(local/ remote).

— Use Case: Notify update.

100

e Subseriber:

— Use Case:

— Use Case:

e Security:

— Use Case:
— Use Case:
— Use Case:
— Use Case:
— Use Case:

— Use Case:

Subscribe information and service.

Unsubscribe information and service.

Log-on/Authenticate user.

Log user / administration operations:
Log system events.

Privileged update of user information.
Update of User privileges.

Retrieve logged events.

101

Appendix B

Class Diagrams

INTEGRATOR MODULE

CLASS COMPONENTDATAMESSAGE, CLASS DATA_CONN, CLASS DCCLOSETHREAD, CLASS
DCSERVERTHREAD, CLASS FILEREADER1, CLASS INTEGRATOR1, CLASS MSGRDR, CLASS
OBJECTLISTENER, CLASS READ _MMA, CLASS REQUESTOR, CLASS RESULTSETSENDER,
CLASS SERIALIZEOBJ, CLASS SERVICEPROVIDER, CLASS SERVICEPUBLISHER, CLASS

SHUTDOWN, CLASS TOPICQUEUEMANAGER, CLASS UPDATETRACKER, CLASS XLIST.

MONITOR MODULE

CLASS COMPONENTCONNECTIONCLOSE, CLASS COMPONENTCONNECTIONREQUEST, CLASS
DCMONITOR, CLASS MONITORCOMPONENTTHREAD, CLASS QUEUELISTENERTHREAD, CLASS
TOPICLISTENERTHREAD.

DISPLAY MODULE:

CLASS CHARTDATA, CLASS COMPONENTPAGE, CLASS DRDCOMP, CLASS DCPLIBRARY,
CLASS DISPLAYMODULE, CLASS EXPORTTOEXCEL, CLASS IMPORTEXCEL,

CLASS INTERNALLISTEN, CLASS LOGIN, CLASS MONITORTHREAD, CLASS NUI, CLASS
OBSERVABLEOBJECT, CLASS PREFERENCES, CLASS SERIALIZEOBJ, CLASS SERIALI-

ZEDRESULTSET, CLASS TREE, CLASS TREEDATA, CLASS USER, CLASS XLIST.

102

i1 DCCloseThread Integratort 1.4
Integrator) inputline : string -startFlag : bool -
"' 1.4 -siopFlag : bool
[+onStar() : bool 1.1
B +onStop() : bool
R -db : string 11 +main() - int
ShutDown | _ [+ initg) - -run()
+close() : bool
+DCCloseThread() I
v closeAll() - int +run() -
1. 1.1
MsgRadr Requestor v - v

i-lag : bool ” "
reaohisgl TBoal 1.1 [answer - char ServicePublisher Read_MMA
+delete_Data() [-post : int
t-getArray{) : string +start() +publishMsg() : in +init()

+stop() Hiclose() : boot

+main() 1.1 |-read_MMA() : object

+run()
ComponentDataMessage
i int 1.1 1.1
-Message - object y
*getid)) : int ServiceProvider ComponentUpdateMessage

+getMessage() © object
+ setld() : bool

) - bool

1.1

ResultSetSender

+sendresultset() : object

1.1

-usT_name : string
Fpasswd : string
-desttype : string
Hims_name . string

-id © int
[-message : object

+setid() : bool

+create_jms_des() : bool
+delete_jms_des() : bool
l-rnanagetopic()
-managequeue()

#create_jms_phy_desi() : bool
#delete_jms_phy_dest() . bool

+setMessage() . bool
+getid() int

+ComponentUpdateMessage()

+getMessage() : object

1.:

Data_Conn

[+ data_conn()
+query() : object

XList

+XList()

[+countitem() : int
Hgetiterator() : object
[+searchCol() : string
[+addlem(} : bool
+replaceltem() : bool
+searchitem() : ebject
+deleteltem() : bool
+isEmpty() : bool
+clearlist() : boot
+processNames() : string

+recordCount() : int
1.1 [+ first() : boo}
[+last() : bool
+getField() : object
[+setField() :
[+deleterow() : boo!
+appendrow(} : bool
[+getString() * string
+getDateTime() : string
+9etObject() : object
+getinteger() : object
+getiong() : fong
+getDouble()
*+getTimestamp() : string
+getint() ©int
+getColumnName() : string
+getColumnData() : object

ool

+addColumn() ©
+getNames() : string

ount() : int
ool

-DescriptionT{] : string
-DescriptionQ : string
+Qstatusf] : bool

-countT : int
|-countQ : int
[-dirStr : string

r

DCServerThread

Finputline : string
|-outputline : string
int

-db : string

Sinit)

+close() : int
(+DCServerThread()

-+ rund)

-match_iIP() : boo!
-match_DB() : boel
+QueueName() : string
-+ TopicName() : string

+settopiclist() : bool
+setqueuelist() : bool
[+verifylopic_desc() : bool
+verifygueue_desdy() : bool
+delete_queue() : bool
+onQueueClose() : bool

+onTopicClose() : bool

+ReceiveTopic() | string
1.1
l 1.1
1 1
SerializedObj A 2 \ 4

-1stColumnData : object TopicQueueManager Update Tracker
-currentRecord : int = -1 topiclist] - st 3
HotalRecords : int = 0 -topic! |s“[] - string [eount it

— - q [: string l-rs_count : int
+ Serializeobij() -comp_id{] : int T 0 : string
+next() : bool fir

|- Topic_namef] : string
Feolumn_count © int
Fecounter(] : int

D0 : int

-Queryf] : vint
|-databasel] . string
+return_count() : int
+verify_count() : bool
+insertinfo() : boot
+Desiroyinfo() : bool
-changeVal() : bool
+WriteUpdate() : string
-TableName() : stiing

Figure 25: Class Diagram: Integrator Module

103

1

Monitor

|+getidy) : int

+setid() : bool

+getlp() : string

+seltip() : bool
+getQueuveName() : string
+setQueueName() : boot
+getSqlQuery() | string
+setSqlQueryl) : bool
+getTopicName() : string
+setTopicName() : boot

QueuelistenerThread

-OQueueName : string

FileReadert
- 1.1 1.1 T etn
ComponentConnectionClose DCMoritor [gwon - sking
1.1 1.1 U sinng
-1d : long - CreadFilel) : string
-TopicName : string »1+oreate_jms_resq) : bool [+ Sun_Usr) : string
_OueueName : string +detete_jms._res() : boot .+ Sun_pwd() : siring
[+ ComponentConnectionClose() ‘m'“,) +Mon_Serv_Port{) : int
L+ getid() : long *main() +1p_addr() : string
+setld() : boot +close_port() : int
+getQueveName() : string 1.1 +disp_port{) : int
+connection_factory() : string
+getTopicName() : string +()
»setTopicName() : boot
P "
id : long 1.3
-ComponentName : string
-ip : string
- TopicName : string 1.1
-QueueName : string v
-SqlQuery : string
-DBUserName : siring C P it oMp Thread ComponentUpdateMessage
-DBPassword : string -1d - int ~TopicName : string -id : int
-OBPort : int : object -QueueName : string l-message : object
+ComponentConnectionRequest()() | {rgetia() - int Lid : long FComponentUpdotehessage()
+getComponentName() : shing +getMessage() : object +getid()() - long +setld() : bool
+setComponeniName() : boat +setld() : boot +setid(){) : bool +setMessage() : boot
+getDataBaseName() : string)) : boot +MonitorComponentThread(} +getid() : int
+setDataBaseName() : boo! Y +run(} +getMessaged) : object
+geIDBPassword(} ; string 1.1 y
+setDBPassword() : bool 1.1
+getDBPort() : int 3. 1.1 -
+setDBPori() : bool
+getDBUserName() : string 1.1 -
+setDBUserNamel() : bool -

o | TopiclistenerThread

1.1

+getField() : object
+setField() : boot

S XUist()

wcountltern() : int
+getiterator() : object
+searchCol() : string
+additem() : bool
+reptaceltem() : bool
+searchitem() : object
+deteteitem() : bool
+isEmpty() : boot
+clearlist() : bool
+processNames() : string

: bool
+appendrow() : bool
+getString() : string
[+getDateTime() : string
+getObject() : object
+getinteger() : object
+getlLong() : long
+getDouble()
+gelTimestamp() : string
+getint() : int
+getColumnNamey) : string
+getColumnData() : object
+columnCount(} : int
+addColumn() : bool

() : string

1.1 -FopicName : string
+Ouevelistener Thread{) “TopicListenerThread()
+run() -+ run(}

[]
1..1
1.1 1 1.1
1.1 1
y
SerializedObj TopicQueueManager
LisiColumnDala - Ftopichst) : string
f-currentRecord l-gueuelistf] : string
I-totalRecords : ind lFcomp_id[} : int
+Serializeobi() [DescriptionT]) : stiing
H+next() : bool - 'DBSC'IDbDl:lQ & string
+recordCount() : int +Qstatus] : boot
+first() : bool 1.1 [Fcount¥ ,'Int
+last() : boot f-countQ @ int

|-dirSYr : string

+settopiclist() : bool
+setqueuelisi() : bool
+verifytopic_desc() : bool
+verifyqueue_desd() : bool
+delete_queue() : bool
+onQueueClose() : bool
+onTopicClose() : bool

Figure 26: Class Diagram: Monitor Module

104

1

login 1.1 i1
-isAdmin : boot .)
-user | string A4 .
Display passwd : string - . LS
|-data(} : string " c.ock’m‘ ceDats obmot i TreeDatas
mtComponentl) [-identity : string celata : objed
+1loging) - boot +main(} +Tree()
+maint) +getSelectedNodel)
11 +createTree()
1.1 1.1 1.9
Préferences y 4
-dataf] : string NUL ACLPage User
inComponent() 1.3 Pos Tt Satel : string »{-dataf) : string
+reset() : boot -yPos @ int +ACLPage() 1.1 1t [+reset()
*+connectDBY() : bool [-monitorView : boot +connectDB() : bool +refreshMe()
-analysisView : boo! +initComponents{) +initComponents()
-weatherView : bool +save() : bool +save()
RO +getData() - object
1.1 +initComponent() .
+main{) 1.1
5 ~—J+internalFrameActivated () : bool
Display iy +vatueChanged() : string . ComponentHandler
. - +activate() : bool - -id
+ DisptayModule() . +deactivate() : bool I-TopicName
+writeLogt) - boot -QueueName
+regComponent() : bool 1.1 1.4 -SgiQuery 1.1
+addComponent() : book 1.1 -DBName
+initComponent) : bool 1.1 1.1 -passwd
v o +getld() : long
+selld() : boot
11 Internaltistener —j*ComponentHandier()
1.1 +onDataMessage() : object
- - +onlUpdateMessagel) : object
:::::gf:::()) bool +sendCompConnRea() : object
+frameActivated{) : bool
+framelconified() : bool 1.1
0. 1.1 +Internaflisten() 1.1 MonitorThread
~m-{-dataf] : st
\ 4 DBComp g oo - sing
Component 1 -3 +initClient() 1.1 ComponembDataMessage
-+ listentoUpdate() 1.1 -1d © int
Y er onnreqg() -Message : object
1.1 0. 11 +Monitor Thread() 1.4 Fgetio() : int
1.1 - +run() [+ getMessage() : object
1.4 1.1 1.1 +setld() : boo!
11 1. \ 1.1 1.1 +setMessage() : bool
y r CharData SerializedObj
Export Analyze HstColumnData : object
l-currentRecord @ it = -1
Sint= O 1.1 ComponentUpdateMessage
[+Serializeobj() 1.7 p-i-id © int i
[+next() : bool ~message : object
1.1 +recordCount() : int +ComponentUpdateMessage()
*:irsl()) B :oo: OSe::‘:() H booi) boot
-+iast() : bool {rsetMessage() : bool
L +getField() : object 4.1 [rgetid(y :int
+setField() : bool y +getMessage() : object
+deleterow() : bool
Data +appendrow() : bool XList
+getString() - string
l+getDateTime() : string -
+gelObject() : object :XL'S'&)‘ Lint
+getinteger() : object counthtem() : int
rgetlong() : fong L+ getiterator() : object
 aetDouble() +searchCol() : string
+getTimestamp() : string [+additemy) : boot
- getint() - int +replaceltem() : boot
+getColumnNarme() : string ::e.a'f';"e"‘()_':";fc‘
'+ getColumnData) : object [dotete '9‘““{)- o
+columnCount() : int e mpty() : hool
+addColumn(} : bool clearlist() : bool
+getNames() stiing +processNames({) : string

"Figure 27: Class Diagram: Display

105

Module

Appendix C

Technology Stack

Modules Challenges Technologies
Information
sources and services . .
Hrees and servi e Heterogeneity of sources. e Data Integration.
e Distant location of stor- — Oracle database.
age of information. _ Svbase database
e Absence of an integrated — Legacy System.
platform.

e Service Integration.

— WSDL descrip-
tion.

— XML schema.
* Digital
Weather
Markup

Language
(DWML).

Table 4: Technology Stack of Digital Cockpit Implementation-I

106

Modules Challenges Technologies
Information
sources and services e Service Integration.
— XML schema.
*
METeorologica
Aerodrome
Report
(METAR)
data.
Integraion of infor-
matTon sources and e Choice of application o Application Server.
services
server.
- Sun J2EE.
. Dlstant-, location of Tn- — Apache Gerenimo.
formation and service
sources. e Data integration
e Establishing an asyn- — J2EE APl from
~chronous paradigm Sun Microsys-
through JMS. tems.
s Lack of multi-purpose in- - JCA AP]. from
tegrated middleware. Sun Microsys-
tems.

— ActiveMQ JMS.
e Service Integration.

— BPEL4WS
plementation:
Fivesight PXE

— JBI implementa-
tion for Integra-
tion Container.

m-

— ServiceMix imple-
mentation from
Codehaus.

Table 5: Technology Stack of Digital Cockpit Tmplementation-11

107

Display and Moni-
toring

e Graphical representation.

o Real-time view and noti-
fication.

e Performance.

Spring lightweight con-
tainer : Inversion of
Control (IoC) paradigm

AXIS and XFire SOAP

Weather METAR /
TAF (Legacy Data)
Parser.

JFreeChart, Java3D
and Espresschart
(Quadbase Inc.)

JMS API: Msg. comm.

Modules Challenges Technologies
Analysis and Con-
trol ¢ Understanding Scenarios. o JFREEChart analysis

e Suitable analysis and op-
timization algorithms.

lib.
Jakarta POL.

Game theory based de-
cision support mecha-
nism.

Security and Relia-
bility

e Distributed nature of ap-
plications.

e Military applications.

e Traceability.

Network and authoriza-
tion protocols.

Crypto-protocols.

JSSE APL

Table 6: Technology Stack of Digital Cockpit Implementation-111

108

