The Study of Friction Variation with Temperature in A
Harmonic Drive System — Modeling and Control

Zhao Zhongyu

A Thesis
In The Department of
Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

August, 2006

© Zhao Zhongyu, 2006



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20770-3
Our file  Notre référence
ISBN: 978-0-494-20770-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

The Study of Friction Variation with Temperature in A Harmonic Drive
System — Modeling and Control

Zhao Zhongyu

This thesis studies the effects of temperature in friction modeling for a harmonic
drive. A mathematic model of how friction varies with temperature change is built based
on the exponential friction model. The mathematic model is then used in building the
nonlinear dynamic model of the harmonic drive. A Cascaded Fuzzy Model of friction
with temperature is proposed so that the friction experienced in the harmonic drive can be
modeled as a fuzzy combination of linear models at different operating temperature and
velocity. The fuzzy model is then integrated to the dynamic model of the harmonic drive
to build the fuzzy TS model which is used in the controller design.

The parameters in both mathematic model and the fuzzy model are estimated. The
estimation is formed into an optimization problem of minimizing the quadratic cost
function of estimation errors. Since the cost function is highly nonlinear, a new algorithm
of Evolutionary Parallel Gradient Search is applied to help the search escaping from local
minima.

The optimal controller for fuzzy TS system is proposed in the form of LMI based
optimization with new constraints and applied to the harmonic drive. In simulation, the
closed loop system shows the capability of accurately tracking large range of reference

signals even when the temperature is changing, either continuously or drastically.
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1 Introduction

1.1 Motivation

Friction is the resistance force to the motion during sliding or rolling. It is directly
opposite to the direction of motion and tangent to the contact surfaces [1][2]. Friction
exists in all mechanical systems. Although sometime it is desirable to have high friction
as in braking and coupling where friction is applied as driving force; in most cases, the
existence of friction will deteriorate the performance of mechanical system. Friction may
cause energy loss and lead to tracking errors, limit circle, stick-slip and dead band [3][4].
These undesirable effects of friction have to be compensated to meet the increasing
requirement of high accuracy and high precision control in mechanical system, especially
when the system has to be operated at low velocity near zero. In an application with such
a requirement, the technique of model based friction compensation can be applied to
counterbalance the effect of friction in a way that a counter force of same magnitude (but
in opposite direction) is fed forward to the system. Since the counter force is calculated
using the model of friction, the accuracy of the model is of key importance in the success
of this technique.

In the research of control engineering, the models of friction are normally taken as
function of only mechanical displacement and velocity. Although this kind of modeling
has a lot of successful applications [6-20], the phenomenon of friction is much more
complicated to be understood thoroughly. The magnitude of friction depends on a lot of
other conditions such as the asperity of the contact surface, the normal force, the material,

the lubricant condition [2]. Most importantly, when all other conditions are fixed after



manufactured, temperature becomes one of the significant conditions that may change the
value of friction.

To the author’s knowledge, the temperature effects have seldom been studied in
the context of control engineering. In the modeling of friction, most researchers treat the
temperature as a constant and ignore the friction change introduced by the temperature
variation. This is a reasonable assumption when the machine operates in certain
temperature. With the requirement of machine to operate in a larger range of temperature,
this kind of assumption will lead to the loss of accuracy in the model of friction and also
lead to the performance deterioration for the mechanical system.

In this thesis, we will study the effect of temperature in friction modeling for a
harmonic drive system. The study will start from the nonlinear mathematic model of how
friction changes with temperature and then continue with the fuzzy friction model that
can be taken as the local linearization of the nonlinear model. The mathematic model will
be integrated with the dynamic model of a harmonic drive to simulate the plant in the
simulation. The fuzzy TS model of the harmonic drive will be established to describe the
plant behavior varied with temperature. The parameters in both models are then estimated
using the proposed optimization algorithm- Evolutionary Parallel Gradient Search
(EPGS). In the controller design part, new constraints of LMI based optimal controller
for fuzzy system are proposed to deal with the control problem in a harmonic drive with
friction. In the thesis, we build a framework to deal with the control problem of a system

with friction: modeling, parameter estimation and controller design.



1.2 Background and Previous Work

The related background knowledge and previous related works are introduced in
this section including friction modeling, fuzzy logic system, gradient and evolutionary

optimization and LMI based controller design.

1.2.1 Harmonic Drive

The harmonic drive gearing is invented by C. Walton Musser in the mid-1950s
[81]. Because of their compact size and high reduction ratio, harmonic drives are often
favored for electrometrical system with space and weight constraints such as robot
system. With the advantages of zero backlash, high accuracy, fast response time and high
vacuum compatibility, the harmonic drive is also widely used in medical equipment and
high accuracy machine. The harmonic drive system in our research is an integral package
consisting of an encoder, a DC servo motor and a precision harmonic drive gearhead as

shown in following figure:

.

Figure 1: the Harmonic Drive System
Since the encoder and the DC motor are common to the mechatronic system, the

special advantage of the harmonic drive system comes from the harmonic drive gearhead



(also called harmonic drive gearing box). The mechanism of the gearing box is comprised
of three components: Wave Generator, Flexspline, and Circular Spline as shown in figure

2.

4’/ Circular Sgline
/ Flexspline

-~ Wa»e Genergtor

Figure 2: the Harmonic Drive System [80]

The Wave Generator is actually an assembly of a bearing and a steel disk which is
called a Wave Generator plug. The outer surface of the Wave Generator plug has an
elliptical shape that is carefully machined to a precise specification. A specially designed
ball bearing is pressed around this bearing plug causing this bearing to conform to the
same elliptical shape of the Wave Generator plug. The Wave Generator is typically used
as the input which is attached to the servo motor in our sysetem.

The Flexspline is a thin-walled steel cup. This geometry allows the walls of the
cup to be radially compliant, yet remain torsionally stiff since the cup has a large
diameter. Gear teeth are machined into the outer surface near the open end of the cup.
The cup has a rigid boss at one end to provide a rugged mounting surface. During
assembly, the Wave Generator is inserted inside the Flexspline such that the bearing is at
the same axial location as the Flexspline teeth. The Flexspline wall near the brim of the
cup conforms to the same elliptical shape of the bearing. This causes the teeth on the

outer surface of the Flexspline to also conform to this elliptical shape. Effectively, the



Flexspline now has an elliptical gear pitch diameter on its outer surface. The Flexspline is
usually the output of the mechanism which is mounted with the output shaft in our
system.

The Circular Spline is a rigid circular steel ring with teeth on the inside diameter.
The Circular Spline is usually attached to the housing and does not rotate. The Circular
Spline is located such that its teeth mesh with those of the Flexspline. The tooth pattern
of the Flexspline (which is now elliptical -as a result of conforming to the Wave
Generator's elliptical shape) engages the tooth profile of the Circular Spline (circular)
along the major axis of the ellipse. This engagement is like an ellipse inscribed
concentrically within a circle. Mathematically, an inscribed ellipse will contact a circle at
two points. However, the gear teeth have a finite height. So there are actually two regions
(instead of two points) of tooth engagement.

The principle of the gearing reduction is illustrated in figure 3 with the

descriptions.

Flexspline

The feeth mmplstsly disengage on

5%'16!‘ axis,

| | Wnen the cirélar Splie Is fived and
|| the Wave generator rotates clackwise,
| the Flaxspline is dlastically deformed

rmd mmtes counterclockwice na!ative 10

Figure 3: Operation principle [79]

| | For each 380 .degrees. . clogkwise
| | movement of the Wave' Generatorthe
) Flaxtpling moves  countarclockwiss by (||
| | tve teth relative’to the Cirular Bpling:




With all the aforementioned advantages, the harmonic drive system is also known
to suffer from friction problem. This thesis studies the effect of friction changing over
temperature in a harmonic drive system and the results are used in the high precision
control of the harmonic drive. The details on harmonic drive are found [17][19][82][83].
The specification of the harmonic drive in our research is in [79][80] (A simple

specification is listed in Appendix A).

1.2.2 Friction Modeling

Friction is the tangential force between two contact surfaces. The value of this
force depends on many conditions such as contact asperities, normal load, lubrication,
sliding velocity, temperature and others. This complication makes it impossible to have
an exact mathematical model of friction that covers all aspects. In control engineering,
however, an approximation model can be built based on the measurable and observable
kinetics variables, such as position and velocity. The reason for this kind of
approximation is that the objective of friction modeling in control context is to predict
and compensate friction with the knowledge of these variables.

In survey paper [3], the author enumerated the mathematic models available in the
control engineering for friction compehsation. In the class of static model, the author
introduced constant model, linear model, exponential model, Karnopp model and
Armstrong’s model. In these models, friction is calculated as a function of displacement
or velocity difference between the two contact surfaces. Different functions are applied to
focus on different friction behaviors. A common form of friction in these models can be
expressed as a combination of three components: static friction, Coulomb friction and

viscous friction. Another class of friction model in [3] is dynamic model. As stated in the



name, a dynamic model takes friction as a dynamic function of velocity and displacement
by introducing intermediate states and including the time derivative. The models
addressed include the Dalh model, the Bristle model, the Reset Integrator Model, the
LuGre model and others. Other models have also been presented recently based on or as
modifies of the models above [8][9][10][11][12] in order to have a more accurate
approximation presenting richer friction behaviors.

As an alternative to mathematic modeling, soft computing techniques have also
been found in the friction compensation. Neural networks are applied as a black box for
the friction model, where the mathematic function is replaced with layers of neurons and
the friction is calculated adaptively without knowing the physical meaning of neurons
and weights [13][14][16]. The applications of fuzzy modeling in friction compensation
can be seen in [22][23][24][25]. In these papers, the piecewise characteristic of fuzzy
logic system is utilized so that the friction can be compensated either directly by using
the fuzzy model or indirectly by building fuzzy controller.

In all these research work, the effect of temperature in friction modeling is
ignored even when friction does change with temperature in a lubricated system.
Although this change of friction has been introduced in the studies of tribology [2] as the
result of the lubricant character change, the mathematic model of friction changing over
temperature that can be used in control engineering is still absent. In this thesis, we will
first build the mathematic model of how the friction changes with temperature in a

harmonic drive.



1.2.3 Fuzzy Logic System and Fuzzy Modeling

FLS (Fuzzy Logic System) is a knowledge expression and inference system based
on Fuzzy Sets and Fuzzy Logic which simulates human reasoning process. Unlike the
classical crisp bivalent sets and logic where things are either true or false, FLS helps
model the ambiguous information by introducing the concept of membership and fuzzy
inference [26][27][28]. In the cases where sharp boundaries are difficult or even
impossible to get, as in the friction modeling where the exact temperature and velocity
boundary of different friction behaviors is unreachable, FLS is a powerful tool that we
can resort to.

Another advantage of modeling with fuzzy logic system is its universal
approximation capability. Kosko [29] showed that a fuzzy system can approximate any
continuous real function defined on a compact (closed and bounded in R) domain. It also
shows in [30] that: “with an essentially arbitrary choice of (sufficiently differentiable)
basis functions, the resulting fuzzy systems have the ability to approximate continuous
functions and their derivatives uniformly on arbitrary compact sets of to the desired
degree”. With the approximation ability, FLS is a suitable tool modeling the complicated
friction behavior.

In this thesis, FLS will be used to model friction with temperature variation in
such a way that the nonlinear character of friction can be expressed in a fuzzy

combination of linear fuzzy rules.

1.2.4 Optimization — Gradient and Evolutionary

In the research, optimization is used in parameters estimation to minimize the cost

function of estimation errors. The proposed optimization method, Evolutionary Parallel



Gradient Search, interweaves gradient search and evolutionary algorithm to help the
optimization process escaping from local minima.

In gradient based methods, the search directions are calculated using gradient
information. The basic idea behind this kind of search is that, for a convex function to be
optimized in a convex domain, the unique optimum value will always be located at the
point where the gradient of the function equals to zeros unless it is on the boundary. For
all gradient based optimization methods, therefore, the ultimate objective of their search
is to find the point where the optimized function has its gradient as zeros. However, when
the convexity of the function can’t be guaranteed, these methods are blamed of being
stuck at local optima since the points with zero gradients, or local minima, are no longer
unique for non-convex optimization problems [32][33].

Parallel search is used in global optimization. In parallel search, the optimization
starts from several points simultaneously which means we can find multiple local minima
for one try. Although this method will definitely increase the opportunity reaching the
global minimum, it still largely depends on the initialization of the start points [31].

Evolutionary algorithms (EA) are parallel stochastic optimization methods
simulating the process of Natural Selection. In evolutionary algorithms, no matter what
the direction of search is and how the direction is calculated, the implementation of
“Fittest Survival” rule guarantees the optimization process improving over generations.
Local optima, or premature in the term of evolutionary algorithms, also exist for the
algorithms; however, with the parallel and stochastic characters inherent, EA is gifted
with the ability of finding global optimum. The computation complexity and convergence

time of EA are really large compared with the traditional optimization algorithms. The



reasons are its complicated calculations of search direction and large population of the
parallel search [31][34].

Salomen [46] discussed the similarities and differences between the two
optimization methods of gradient search and evolutionary algorithm. He also put forward
in the same paper an Evolutionary Gradient Search (EGS) procedure, in which
Evolutionary Strategy is used to calculate the approximation of gradient. Magoulas [47]
in his paper proposed another possibility of the hybrid of gradient and EA (evolutionary
strategy 1n his case), where Stochastic Gradient Descent is embedded as a sub step of EA.
The algorithm was used in the training of Artificial Neural Network with good results.

The above mentioned algorithms combined the search methods of gradient search
and evolutionary algorithm in the way that they took one as the main optimization
method and the other as embedded sub step. EGS is basically a gradient search where the
gradient is calculated using EA. This is inherently a method of local search although it
will help us when the gradient information is not available. Magoulas, on the other hand,
embedded gradient search into EA as a sub optimization for every generation. The
combination of other local search methods, such as Simplex and Pattern Search, with EA
can be seen in [35][36][37][40][45][48].

In Chapter 4, we will propose a new algorithm that interweaves the parallel
gradient search and evolutionary algorithm so that both gradient search and evolutionary
are carried out simultaneously to help the gradient search escaping from local minima.

This algorithm is used in the parameters estimation of the research.
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1.2.5 LMI Based Optimization and Controller Design

The stability of linear system can be determined by the existence of the Lyapunov
matrix that satisfies the Lyapunov equality or inequality. The development of Linear
Matrix Inequality based optimization, especially the appearance of its numerical solution
based on interior point method, helps build a framework of finding such matrices that can
guarantee stability of the linear system. In his book [54], Boyd showed that a wide
variety of problems arising in system and control theory can be converted to standard
convex and quasiconvex optimization problems that involve matrix inequalities. Recently,

different strategies of using LMI in quadratic optimal control, robust control, A, and H_

based control and others have been explored [55][56][57][58][59]. All control algorithms
based on LMI build their fundament on the Lyapunov inequality which will lead to a
quadratic Lyapunov function: by satisfying the inequality, the stability of the system is
guaranteed; by applying different additional constraints on the inequality and setting the
optimization criterions, some certain performance requirement can be met.

LMI also found its application in the control of a certain type of Linear Parameter
—varying systems where the systems can be described as a linear combination of LTI
(Linear Time Invariant) systems at some vertexes.[60][61][62] The stability and
performance criterion problems of LTI at each vertex can be formed into LMIs based on
the system equation of each LTI system. The feedback controller can be built for each
LTI by solving the LMIs. After finding controller for each vertex LTI using LMI, the
overall controller can be calculated using the combination of these local controllers.

As to a nonlinear system, it is not so convenient to apply LMI in the controller

design for the nonexistence of general form Lyapunov function. However, there are some
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ways to convert the nonlinear system in to the combination of piecewise linear system
[65][84]. One of these is to decompose a nonlinear system into Fuzzy TS system. Fuzzy
TS system is a special type of LPV system that, instead of using linear combination, it
applies fuzzy combination of different rules which represent local linear input-output
relations of a nonlinear system. Nonlinear system, therefore, can be modeled as Fuzzy TS
system by using local linearization. In [65], Tanaka addressed issues in control of TS
Fuzzy model such as stability analysis, systematic design, performance analysis problem
and how these issues can be reduced to the form of LMI optimization; on the top of that,
a framework of control strategies named Parallel Distributed Compensation (PDC) based
on LMI optimization are presented. Resent research of LMIs in Fuzzy TS system have

been found on more relaxed constraints and better performance.[68][69][70]

1.3 Overview of the thesis

The thesis will be organized as follows. The mathematic model of friction with
temperature consideration will be presented in chapter 2; the Cascaded Fuzzy Friction
Model is proposed in chapter 3; in chapter 4, the Evolutionary Parallel Gradient Search
algorithm is developed and applied to the parameters estimation problems for the model
built in chapter 2 and 3; details of controller design for the Fuzzy TS system using LMI
optimization technique are described in chapter 5; the controllers are built for the
harmonic drive and the simulation results of the closed loop system are given in chapter 6;

the thesis ends with conclusion and recommend future work in chapter 7.

12



2 Mathematic Model of Friction Variation with
Temperature

In this chapter, we will study how the value of friction changes with temperature
variation and build the mathematic model of the relations between friction and
temperature. The model is built based on the exponential model in the assumption that
the structure of the model does not change over temperature; what change are the

parameters in the model.

2.1 The Exponential Friction Model

A common form of friction model in control context ([3]) is:

F(v) if v#0

r = , @-1)
F -sign(F;) Otherwise

where F. is the magnitude of total friction experienced by the object; Fy 1s the
static friction (Stiction); v is the relative velocity between the two contact surfaces; F(v)

is a function that matches the change of friction at non-zero velocity; Fj is the external

force that drives the object to move.
The model takes the non-zero-velocity friction as a function of velocity; the
friction at zero velocity is taken as equal to static friction.

In the widely used exponential model F(v) is described as:

V. &

-
F(W)=[(Fs—Fc)e ™ +F.+F,|v]]-sign(v), (2-2)
where, F; is the static friction; F, is the Coulomb friction; F, is the viscous

coefficient that results in the proportional viscous friction; v, is the Stribeck velocity
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which is a small velocity near zero (20 RPM in our research); & is the constant mapping
the shape for friction curve, normally an even number. In our research it is taken as 2.

In the case of a rotary system, the friction torque is:

D \5

F(o)=[(Fs—Fy)e ® +F,+F,|ol-sign(o). 2-3)

@ is the velocity of rotation; the friction force in former equations is now
changed to friction torque. In the rest of the thesis, we make no difference between
friction and friction torque since all our research is carried on the rotary system.

Therefore, the overall friction model of both non-zero and zero velocity is:

F(w) if #0
Fr=
F; -sign(F;) Otherwise
-(_0)__‘5
F(o)=[(Fs-Fc)e ™ +F.+F, |l sign(o) . (2-4)

The value of friction in above model will change as shown in the curve of
following Figure 4. The nonlinéar curve in the figure is Stribeck curve of friction due to
the lubricating states changing from dry to mixed and then full lubricated [2]. From the
curve, we can see that the friction experienced by the system starts from static friction

then reduces nonlinearly at the velocity near zero, and finally increases proportional to

the velocity.
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Figure 4: Friction vs. Velocity
In our research, we will use this model to approximate the friction inside the
harmonic drive system at certain temperature; the variations of friction with temperature

are modeled as the change of the parameters in the model.

2.2 Friction Model with Temperature

Temperature is an important variable in the value of friction force. In our research,
we found that temperature play such an important role that model based friction
compensation works only at a certain range of temperature. Different control efforts are
required for different temperatures even when the system follows the same reference
trajectory.

The dynamic of the harmonic drive without load in our research can be

approximated by [78]:

Jo=T, ~F., (2-5)

where, J is the inertia of the system; 7, is the applied torque to the drive.
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Since the friction F, changes with temperature, the dynamic of the system will

also change with temperature. We can simply replace the friction F, with the model in

(2-3) to see the change in the dynamic of the system.

D \s5

Jo=T,~[(F;~FJe * +F.+F,|o|]-sign(e) (2-6)
In our research, we found that F, changes with temperature. This is consistent

with the character of lubricant that the viscosity of lubricant changes over temperature.

Therefore, even without considering the change of Fgand F, with temperature, the gain,

damping and time constant are all changed when temperature changes. The change of
such system with nonlinear friction is even more complicated.

To have a fully understanding of the friction change with temperature, we need to
build the relations between the aforementioned exponential model and temperature.

Here, we have some assumptions:

1. The form of exponential model of friction does not change over temperature;
that is, the friction model still has the same form as we described in (2-4) even at
different temperature;

2. The Stribeck velocity does not change with temperature;

3. F;, F, and F, are the parameters in the model that vary with temperature.

For the data showing such relations, we resort to the catalogue of the harmonic
system [79]. In the catalogue, we obtain the following graphic of the torque required to
drive the system at different velocities and different temperatures. When the system is
running without load, the torque driving the system at steady state can be taken as equal

to the friction experienced. The no load running torques varied with temperatures at
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certain steady velocities of 500, 1000, 2000 and 3500 RPM are shown in Figure 5. The
ambient temperature ranges from -10 to 40 °C. Among the different types of harmonic
drive shown in the figure, the harmonic drive in our research is size 17 (Item Number:
RHS-17-6006-TE100AL, for the details on the harmonic drive, please refers to the
catalogue [79] and the Item Details on [80]; the simple specification is listed in Appendix
A). The velocities are measured in the input (high speed) side; for the output (low speed)
side velocities, a gear ratio of 50 is considered. The lubricant used is harmonic grease.
The data table of torque in different temperatures is built based on the figure

below.
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Figure 5: Friction changed with temperature
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Table 1: Friction at different velocities and temperatures

Temperature | Torque at 500 | Torque at 1000 | Torque at 2000 | Torque at 3500
O] RPM (NCm) | RPM (NCm) RPM (NCm) RPM (NCm)
-10 11.487 16.3 28 40.05
-7.5 9 14 24 35
-5 7.9 12 20 30
-2.5 6.9 10.5 16.5 25
0 5.9 9.1 13.3 216
25 5.25 8 12 19.8
5 4.7 7 11.2 17
7.5 42 6.3 10 14.2
10 3.8 5.7 8.9 124
12.5 3.5 5.1 8 11.6
15 3.2 4.7 7.2 10.1
17.5 3 4.3 6.5 9.2
20 28 4 6 8.4
225 26 3.5 5.5 7.6
25 24 3.3 5.1 7
27.5 22 3.05 4.7 6.4
30 2.1 29 4.3 5.9
32.5 2 27 4 54
35 1.9 25 3.8 5
375 1.9 23 3.5 4.7
40 1.8 22 3.2 44

19




Since the torques and velocities are all from steady state, the value of friction
should be equal to the driving torque without load as in table 1. Following equation (2-4),
the friction torques at these velocities can be calculated as:

F,=F +F,|o|. | 27

The static friction and Stribeck curve in (2-4) are ignored since the data are

measured at the relative high velocity, where:

@2
mA‘

@
|—|>1=>e —0.
1)

s

Therefore, by fitting the data of driving torques in table 1 into the friction model,

we have the values of F, , F, and F; (calculated using the information in the catalogue
with the start friction) at different temperatures in the following table; the curves of F,,

F,. and F; with temperature are shown in Figure 6.
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Table 2: Parameters varying with temperature

Temperature F, F. F,

¢ 0 (NCm/RPM) (NCm) (NCm)
-10 0.0096198 7.1247 8.7247
-7.5 0.0086667 5.3333 6.9333
-5 0.0073571 4.6 6.2
-2.5 0.0059762 4.2667 5.8667
0 0.0051286 3.5 5.1
25 0.0047786 29 4.5
5 0.004081 2.8333 44333
7.5 0.0033095 2.8833 4.4833
10 0.0028381 2.7333 4.3333
12.5 0.0026857 2.35 3.95
15 0.0022762 2.3167 3.8167
17.5 0.0020476 2.1667 3.7167
20 0.0018476 2.0667 3.667
22.5 0.0016762 1.8667 3.4667
25 0.0015333 1.7667 3.3667
27.5 0.0013976 1.6417 3.2417
30 0.0012571 1.6 3.2
325 0.0011286 1.55 3.15
35 0.0010381 1.4833 3.0833
375 0.00095238 1.4333 3.0333
40 0.00087619 1.3667 2.9667
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Figure 6: Parameters varying with temperature

From the curves of F,, F, and F; changing over temperature in Figure 6, we

observed these parameters show some exponential characters. By choosing different
functions and comparing, the exponential form expressions of the parameters are

proposed as:

TI-5
_ T
F,=F,+F,e
T-Ty

T,
F.=F,+F.e

-1,

F,=Fg+ FSle_ Lo (2-8)

F

vl?

where, T is the ambient temperature; F

v0>

Feo, Foyy oo Fy, Ty and T, are

parameters of the friction model and will be estimated in the chapter 4 using the data

pairs in Table 2.
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Based on the analysis above, the overall model of friction with the consideration

of temperature variation is proposed as:

Ih

_ T
F,=F,+F,e

T-1

_ i
F.=F.,,+F.e

-5

_ T
Fy=Fg+ Fye

@ \5

F(@)=[(Fs~F)e * +Fo+F, |0 sign(a)

F(w) if w#0

F, = . (2-9)
F; -sign(F;) Otherwise

2.3 The Mathematic Model of the Harmonic Drive

In simple form, the harmonic drive actuator with friction can be modeled as [78]:

(1} 1

0==T,-F), (2-10)

where, J stands for the inertia of the system which can be found in the data

description of the harmonic drive; T,, is the mechanical torque fed into the system; F. is

the friction.

In our simulations in later chapters, the mathematic form of friction is used to
build the system to be controlled. Therefore, the model of the whole harmonic drive can
be described as:

oo 1
O=—(T -F
J(m -
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Ih

F,=F,+F.e "

-1

_ T,
Fo=F+Fye

Ih

— T,
Fo=F,+Fge

@D s

F(@)=[(Fg~F)e ™ +F,+F,|al]-sign(o)

F(o) if @#0

F,= : (2-11)
F, -sign(F;) Otherwise

2.4 Summary

In this chapter, the general form of friction model is shown and the exponential
model that the friction model with temperature is built on is introduced thereafter. The
importance of temperature in friction modeling is discussed. By observing and analyzing
the data of friction varying with temperature, the functions of how the parameters in
exponential model change are built. Finally, the overall mathematic model of friction
with the consideration of temperature is proposed and is applied to establish the dynamic

model of the harmonic drive.
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3 Cascaded Fuzzy Model of Friction Variation with
Temperature

In the former chapter, we have built the mathematic model of friction which is
difficult to be applied in the controller design due to its nonlinearity and complexity. In
this chapter, a Cascaded fuzzy model of friction with temperature consideration is
proposed so that friction and consequently the harmonic drive system with friction can be
described as fuzzy TS model. Since the fuzzy model is the fuzzy combination of different
fuzzy rules that can be taken as the local linearization of the nonlinear model at different
operation states, the control algorithms of linear system can be applied to the local

linearized model.

3.1 The Cascaded Fuzzy Friction Model

Fuzzy Logic System is gifted with the ability of processing incomplete and
ambiguous information which makes it a perfect tool in the modeling of friction.

By observing the change of friction in Figure 4 of chapter 2, we know that the
friction exhibits different behaviors at zero, low and high velocities. What makes it even
more difficult to model this character of friction is that there is no sharp boundary where
this kind of differences happens. With the consideration of temperature, the modeling can
be more complicated since the temperatures of the contact surfaces and lubricant have
complicated thermodynamics and can’t be measured directly. The only information we
can rely on is the environment temperature or the temperature from the skin of the system.

Although it is difficult to model friction in classical mathematics because of the
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incompleteness and ambiguity, it is easier to model it concisely with the linguistic
knowledge of fuzzy logic system.

In this section, a cascaded fuzzy friction model is proposed. At first, the second
layer fuzzy system with undetermined parameters is presented to estimate the friction at
certain temperature; based on temperature information, the first layer model estimating
the unknown parameters of the second layer model then follows. These two fuzzy
systems are cascaded to form an integrated model of friction vs. temperature-velocity.
Therefore, how friction changes over temperature and velocity can be deduced from the

model.

3.1.1 Friction model under certain temperature (the second layer model)

When the temperature is treated as constant, the friction can be normally modeled
as a function of the output of mechanical system - position or velocity - as shown in

equation (2-4) in chapter 2, which is rewritten here:

F(w) if o#0
E =
F -sign(F,;) Otherwise
F(@) = [(F, —FC)e—(ZJ +F.+F, |l sign(o). (3-1)

When the velocity of the system is zero, which means the system has not started,
the friction is equal to the drive torque applied to the system. The maximum of friction is

the static friction Fy when the system is just about to move. In friction compensation, the

friction at zero can be always modeled as the constant F§ since it is the torque to

27



overcome. At high velocity, the friction consists of Coulombs friction and viscous

2y
a,

friction which is totally linear with velocity since, when w0 >>w, , e * —0,
Flo)=[Fc+ F,|o|] sign (o). (3-2)
When the velocity is low, the friction of the system is a mix of that at zero and
high velocity. The gradually changing of friction can be expressed as the nonlinear
combination of friction at zero and higher velocity. This combination can be replaced
with fuzzy inference.
To sum up, the two simple rules of the TS fuzzy friction model (where the
velocity is divided into two levels) that takes the velocity as input and the value of

friction as output can be expressed linguistically as:

If o (velocity) is zero, the value of friction F, =Fy;
If w is high, the value of friction F, =(F.+F, | ®]);
With the singleton fuzzification in the fuzzifier, the input velocity is classified

into two fuzzy linguistic expressions: Zero and High; the memberships are () and
M, (o) respectively. The defuzzification method used in the defuzzifier is the weighted

center. Therefore, the output of the TS friction model can be calculated as:

F =ﬂv1(0))'Fs+/‘v2(w)'(Fc+E»|w|) (3-3)
' U (@) + i, (@)

where, F, is the friction experienced by the system; F; is the static friction; F,
is the Coulomb friction; F, is the viscous coefficient; F; is the driving force.
These parameters of F;, F, and F,are to be determined with the temperature

information in the first layer fuzzy model. The sign of friction is the same as that of the
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driving force (at zero velocity) or the velocity (non-zero) since the friction is considered
as resistant force and will be subtracted from the dynamic equation of the harmonic drive
system.

The membership functions are taken as the single side exponential function:

(o) 0>,
py(w)=4¢e ~ (3-4)
1 otherwise
__(Q’rwg)z 0 < w,
Hy(@)=5¢e , (3-5)
1 otherwise

where, w, and @, are the center of the membership functions that are defined as
Zero and High respectively in the linguistic expression; o, and o, are the distribution
width of the two membership functions. The values of @, and @, are set as 0 and 40

RPM (velocity at the high speed end) and the o, and o, are set as 40 and 80 RPM in this

study.
Remarks: The TSK friction model in equation (3-3) can be further expressed in
the form as:
R T L ey AL 56
by substituting,
F'=(l1- 4y, (@) )F,
T @+ p,(@)
we have:
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. C R : ]
= O (R ol )

Thus, the model has similar form as the exponential model in (3-1). The only
difference is that the nonlinear part of exponential function is replaced with the
normalized membership.

The fuzzy system becomes more accurate yet complicated when more fuzzy rules

are applied. With the two simple fuzzy rules shown as above, however, we can establish a

physically reasonable model.

3.1.2 Fuzzy model with temperature (the first layer model)

With fuzzy model under certain temperature, the friction can be determined if the

parameters F,, F,. and F, in (3-3) are known. The values of these parameters depend on

other conditions among which the most important one is temperature. However, the
mathematic models of these parameters vs. temperature are not available for use in
control engineering. Intuitively, the common sense such as “the higher the temperature,
the lower the friction” does exist. Therefore, it’s reasonable to use the following fuzzy
rules to estimate these parameters:

If the temperature (T) is T,,then F,, F, and F,are F,

si?

F,; and F,, respectively.
where, Fy,,F,, and F,, (i=1,2---N) are parameters in the ith temperature range
which are supposed to decrease when the temperature 7, increases; N represents the

number of fuzzy rules, which is five in our research.
By applying defuzzification, one obtains the values of these parameters in

different temperatures:
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ZﬂTi(T)'FSi

F(T)y=#"—wu«——
@ Zpr(T)
Z/uTi(T)'FCi
F(I=H——— 3-
@ S (T) ¢-8)
> 1n(T)-F,
fey DR M—
Zpy(T)

T-T,
(—L
a;

where, 1, (T) = e is the ith membership function of temperature.

3.1.3 The Cascaded Fuzzy Friction Model

With the two fuzzy models, second layer as in section 3.1.1 and first layer as in
section 3.1.2, the cascaded fuzzy friction model for a large temperature range can be
summarized as:

The first layer of the model supervises the change of temperature and determines
the parameters and corresponding rules for the second layer. Based on the rules from the
first layer, the second layer calculates the friction of the system. The structure of the

cascaded fuzzy friction model is shown in Figure 7.
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Figure 7: Structure of the Cascaded Friction Model

3.1.4 Remarks

The proposed model takes the measurements of temperature and velocity as
inputs for different layers. With the two layers of fuzzy inference, the model estimates the
friction experienced by the system.

An alternative method is to model the friction as a single fuzzy system with two
inputs of 7 and @ . The fuzzy rules of such model are described as:

IfTis low (T;) and @ is high (®,), the friction F,; = Fy(@,T),

where, i stands for the ith temperature range; j stands for jth velocity range.
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There are several advantages of the proposed cascaded fuzzy friction model over
the one above:

1. The proposed model decomposes the fuzzy system with two inputs into two
fuzzy systems each of which has only one input. This reduction of dimensions leads to
less parameters in the rules set.

2. The proposed model is more physically reasonable due to the decoupled effects
of temperature and velocity.

3. The fuzzy inference processes of the two layers can be carried out in different
time scales since the second layer of inference does not depend on that of the first layer
as long as the parameters are known. This saves the computational efforts in the case
where the change of temperature is slow since it is not necessary to calculate the

parameters at every sampling instance.

3.2 The Fuzzy Model of the Harmonic Drive

The fuzzy TS model of the harmonic drive is built based on the Cascaded Fuzzy
Model in this section. In our research, LMI technique is used to construct the controller
which means the differential equation form of system dynamic need to be converted to
state space expression. For the controller to be used in a digital control environment, the
model of the harmonic drive is discritized. Besides the second order system of harmonic
drive, a third order system with an integrator is also built for the controller design in the

future.

3.2.1 State space equations of the system

The dynamic of the harmonic drive can be described as:
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6 =T, ~F). (3-9)

Combined with the Cascaded Fuzzy Model, the dynamic of the system at certain
temperature can be expressed in fuzzy rules:
If o is zero, the system is:

6 =T, ~ Fy-sign(F,)); (3-10)

If w is high, the system is:

6 =17, ~ F. sign(6)~ F.| 6| 5ign(6) = (T, ~F, -sign(®)~F,6).  (-11)
Takes:

%, = 6; (3-12)
X, =w0=0, (3-13)

in the state space form, the system now is converted to:
Rule for zero velocity is:

If @ is zero, the system is:

X, =X, (3-14)
X2 = %(Tm —F, -sign(F,)) . (3-15)
Takes:

u=7T, —F;-sign(Fy) (3-16)
x=[x x,I, 3-17)

the system can be expressed as:
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x=A4,x+Bu ,

0 1 0
where, 4, = , B= .

0o o [/J
Rule for high velocity:

If w is high, the system is:

X, =X,5

Y 1 .

X, = 7(Tm — F,.-sign(x,)—F, x,).
Takes:

u=T, —F,- sign(x,)

x =[x, xz]T )

the system can be expressed as:
x=A,x+Bu

0 11_'0

where, 4, = 'O FJ

Therefore, the fuzzy rules for certain temperature are summarized as:

If wis zero, the system is:

x=A,x+Bu,

If wis high, the system is:

x=A,x+Bu;

(3-25)

1/J
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The model needs to be converted to the discrete time domain for the control

purpose. In our research, the model

x = Ax + Bu (A=4,, A,) (3-26)
is converted to difference equation as:

x(k+1) =(r, A+ Dx(k)+ 7 Bu, (3-27)
where, 7, 1s the sampling time; / is the identity matrix.

This is an approximation of the state space expression in continuous time domain,

since, when 7, is small enough, we use the finite difference method to approximate the

derivative:

© x(k+1)—x(k)

X = (3'28)
TS

By substituting the above equation into (3-26), one obtains:

;D =x0) _ 4y + Bu (3-29)

The above equation is rewritten as:

x(k+1)=(r, A+ x(k)+t,Bu (3-30)

The conversion may lose some accuracy; however, it is still a good approximation
when the sampling time is small enough.

The fuzzy model of the harmonic drive with friction in discrete time domain is
summarized as:

If @ is zero, the system is:

x(k+1)=(r,4, + I)x(k)+ 7, Bu

T, =u+F;-sign(Fy) ; (3-3D)
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If @ is high, the system is:

x(k+1) = (¢, 4, + )x(k)+ 7, Bu

T, =u+F,-sign(x,) , (3-32)

’AH= 7B= .

where, 4, =
0 O 0 -F/J 1/J

The control signal # will be calculated using the method introduced in chapter 5;

T, will be the final torque applied to drive the system.
Parameters of F,, F,. and F; are calculated from the first layer of the Cascaded

Fuzzy Model using the information of temperature. For 5 rules in the first layer and two
rules in the second layer, we will have totally one 4, and five A4,,. The system output
equations are the same:

y(k) = Cx(k)

where, C is an identity matrix.

3.2.2 State space equations of the system with integrator

The states in the fuzzy model of last section are position and velocity. In a
position control problem, the controller designed using state feedback of such a system is
equivalent to a PD controller. Without integrator, the closed loop system may have steady

state error if there exist modeling errors such as the inaccuracy of F, and Fy. An

augmented third order model is also built to include an integrator to the system.

Considering the system:

x = Ax+ Bu

y=Cx, (3-33)
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one extra state of x, is introduced to states vector x in the way:

Xo =X,
X =[x, x x] (3-34)

Thus, the system changes to:

x =Ax +Bu

* * ok

y =Cx (3-35)

*®

a

) ;and a" denotes vector [1  0].

3

« |0
where, 4 =l

In the simulation, the third order model is built based on the system in the former

section. 4° B" and C" are constructed using the 4,, 4,,, Band C for each fuzzy rules

and thus become AZ*, AH* , B'and C" for the new fuzzy model of the harmonic drive

with integrator. The system is converted to the discrete time domain using the same

method.

3.3 Summary

In this chapter, a Cascaded Fuzzy Model that describes the variation of friction
with environment temperature is proposed. The model simplified a two-dimensional
problem into two one- dimension fuzzy models so that the number of model parameters is
reduced. The model is then used in constructing the fuzzy TS model of the harmonic
drive in state space equations form for the control purpose. In order to use the model in

discrete time domain, the state space equations are discritized. An augmented third order
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system with integrator is also built to eliminate the steady state errors. The estimation of

parameters in the models will be addressed in the next chapter.
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4 Estimation of Parameters in the models

The parameters are still to be estimated for the models developed in the former
chapters. The parameters estimation is usually formulated as an optimization problem
that a cost function measuring the estimation errors is formed and minimized. For
nonlinear system, gradient based optimization methods are often used in searching the
minimum of estimation errors.[52][53] Local minima, however, exist in the nonlinear
optimization problem. In parameters estimation of the models, the existence of local
minima will lead to inaccurate estimation.

In this chapter, we will propose a new algorithm of optimization — Evolutionary
Parallel Gradient Search (EPGS) and use it to estimate the parameters of the models built.
The objective of the algorithm is to find the global minimum in the optimization problem
with multiple local minima. The Parallel Gradient Search enables the optimization
process to start multi-thread searching at different points simultaneously therefore the
opportunity of finding the global minimum is increased. The incorporation of
evolutionary concepts in the search helps the search process keep looking for better
solutions and ignore the unsatisfied ones. (A simple introduction of gradient search and

Evolutionary Algorithm can be seen in the Appendix. [31][32][33][34].)

4.1 The Evolutionary Parallel Gradient Search (EPGS)

In the gradient search, the updating direction is calculated using the gradient
information of the cost function without using the value of the cost function [33].
Evolutionary Algorithm, on the other hand, only uses the value of the cost function to

keep the best track of searching survive while the gradient information is ignored even
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when the gradient is available in the real number optimization problem of continuous cost

function [31]. While the value of the cost function tells us how good the current search is,

the norm of gradient tells us the expectation of the improvement in the next search at

current

step. In this study, the Evolutionary Parallel Gradient Search algorithm is

proposed to update its search using both the value of the cost function and the gradient so

that the optimization will keep the searches with best value of the cost function and the

best trend.

The basic idea of Evolutionary Parallel Gradient Search illustrated as follows:

The gradient searches start simultaneously from several points; selection, clone,

crossover and mutation are applied at each step thereafter to keep the optimization escape

from local optima.

Jf(X):

The optimization problem discussed is defined as:

Minimize f(X), 4-1)
Subjectto: x;, <X <ux,.

where, X eR” is the optimization variable vector of the problem;
R" —> R is areal-valued function of vector X that is continuous in R .

The gradient vector of the cost function is defined as:

Vi(X) = Qfa(TX) s (4-2)

and the norm of the gradient is denoted by || V/(X)||.

The optimization starts from multiple random points of parallel searches. In each

step, the value of the cost function and the gradient are calculated. For the searches with

best £(X), they will be updated using gradient search method and then copied directly to
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the next generation (Clone). In this way, we keep the best values to the next generation as
in EA and at the meantime we can guarantee the improvement with proper chosen step
size as in gradient search.

The searches with best trends of the optimization are also kept. A function that
estimates the trend of the optimization is defined as:

g(X) = f(X)=-IVf(X) . (4-3)

Since the larger the || V/(X) || is, the larger improvement we can expect after the

update using gradient search, we can keep the searches with best optimization trend by

selecting those with smallest g(X). The reason of including f(X) in this function is
that we want to ignore these searches with too large f(X) but with a large | V/(X) ||

since they are too far away from the local minima. The selected ones should have good

trend and reasonable value of cost function. Different weights of f(X) and || V/(X) ||
can be applied in the building of g(X) in defining different importance of these two
values in the trend. The ones selected by g(X) follow the same procedure: updated with

gradient and then copied to the next generation (Clone).

The searches already chosen from above two steps will be passed to the mating
pool as fathers of the next generation. Mothers will be chosen from the rest of the search
population. Mating of crossover will be applied to those parents to generate their
offspring. The reason of separating parents in this way is to prevent premature of the
population. Since the searches in the fathers group may be very close to each other after
generations, the optimization will be stuck at local minima if we only choose the parents
from the ones with best fitness (fathers group). Mutation happens to these offspring at

certain rate. These offspring will be filled into the population of next generation.
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The rest will be generated randomly if there are still vacancies in the population

of next generation.

The procedure of the algorithm can be summarized as following:

1.

Initialization. Choose parameters for the optimization process

including: learning rate of gradient search A, , population of the
searches N , clone rate A, by fitness function, clone rate A, by
combination of gradient and fitness function, crossover rate A_,
mutation threshold x . A function of g(X)= f(X)-||Vf(X)]| is
defined as second criterion of selection so that A, N individuals with

large gradient (better trend of the minimization) are also kept.

Start of the optimization: Randomly choose N points in the universe
of optimization variable X", X,°, .. X,° forstep k=0.

In each step k: Calculate the values of fitness function of f(X ,.k) ,
gradient Vf(X) and g(X,”) with X* (i=0...N).

Check if the end condition is met. If yes end; otherwise continue to 5.
Update the A,V individuals with best f(X ,.k) using gradient search
and then clone them directly to the next generation
XM =xr-avrx ), j=1.4,N

Update the A, N individuals with best g(X ,.k) using gradient search

and then «clone them directly to the next generation

xM=xr-avrx", j=1 4N
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7. Choose AN individuals randomly from the formerly selected
AN + AN as X1, and another A N individuals randomly from the

rest as X2 ; Mate the two groups with crossover at a random position

of rjk , Where rjk is a random value from 0 to 1:
VR ko k k k .
X' = XL+ (- X 2, j=1.AN
8. Apply mutation to the X' above in the rate of x : the mutation

happens when abs(m jk) < u where m jk is a random number form -1
to 1. The mutation is in the form: X jk“ =X jk+1+m jk(x2 — x,) where,
x,, x, are upper and lower bound of X . For the ones without

mutation, X' jk” is directly passed to the next generation as:

Xjk+1 - X'jk+1.
9. Generate the rest individuals randomly to make the total population as
N .
10. If X jk“ is beyond the bound x, or x,,set X jk“ equal to x, or x,.
11. Goto 3.

The end condition of the optimization process is normally taken as the non-
improvement of the fitness or the reach of maximum step. When the optimal value of the
fitness function is known, the error between the best value of fitness function of current

step and the optimal one can also be used as end condition.
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4.2 Parameters Estimation of the Mathematic Model

In this section, we will use the EPGS algorithm to estimate the parameters of the
mathematic model in chapter 2. The mathematic model of friction with temperature is

rewritten here:

IL
_ T,
Fv - FVO +Fv1e !
T-T,

F.=F,+Fqe "

T-T,
Fy=Fy,+Fge ™ . (4-4)
Define:
X=[Fvo Fvl Fco Fa Fso F31 To Ts]'

as the parameters to be estimated. The estimation criterion is to minimize the sum

of the overall error square as:
. 1 n A A A A A A
minJ = EZ {[F, 5, = Fon (XY +[Feg, = Fen (X)) +[Fyz, ~Fsn(X)I'} (4-5)
k=l

where n is the length of the data pairs; the subscript 7, stands for the value is
taken at the temperature of 7, .

Treating J as the function f(X) in (4-1) and following the procedure of EPGS

optimization in section 1, we have the estimated parameters listed in the following tables
(the optimized value of the cost function J equals to 0.93):

Table 3: Estimated parameters in the mathematic model

FvO E/l FCO FCI FSO FSl T;) TS
(NCn/RPM) | (NCn/RPM) | (NCm) | (NCm) | (NCm) | (NCm) | (°C) | (°C)
0.0011702 | 0.01181 1.5204 | 6.6525 | 3.1204 | 8.2525 | -12.803 | 11.28
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The estimated values of F,, F, and F based on above parameters and their real
values are compared in Figure 8, where the solid curves are the estimated values and the
dashed curve are the real values. Since the values are estimated using the data from high
speed end, the friction calculated using the model will be multiplied with the reduction

ratio of 50 when added to the lower speed end.
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Figure 8: Estimation results of the mathematic model
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4.3 Estimation of the parameters in the Fuzzy model

The EPGS is also applied to the parameters estimation of the Cascaded Fuzzy
Model we present in chapter 3. Since the rules in the second layer model (friction vs.

velocity) are the output of the first layer model, the parameters to be estimated are 7, and

o, in the membership function and Fg,,F,, and F,,, i=1,2---N (N=5 in this thesis) in

the rules of the first layer. In this section, we will estimate the parameters in the first layer
model using EPGS; as a comparison, the results of linear least square method are also

present.

4.3.1 Estimation using EPGS

The output of the first layer can be calculated after defuzzification:

Z/uTi(T) -F;
SO 5@

Z,UT:'(T) Fy
F(T)= G (4-6)

> 1, (T)-F,
F(T)="2

Zur,(T)
Ty

pr(T)y=e * (4-7)

where, i =1... N (N is the number of the rules, which is 5 in our research); u is
the exponential membership function; 7, is the center of the exponential function; o, is

the distribution width for the center 7. .
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In the estimation process, the above equation will be used to calculate the

estimated values of Fy, F,. and F,; the real values are shown in Table 2. The parameters
to be estimated include the parameters in the membership functions (7, o;) and the
parameters in the fuzzy rules (F,, F and F,). Let

X=[T, o F; F, F,] i=1...N

be the parameters to be optimized.

The cost function or the function to be optimized is defined as:
. 1 n A A A A A A
minJ = EZ {5, —For(X) +[Fep, = Fer (X +[Fyz — Fsr,(X)I'} (4-8)
k=1

where n is the length of the data pairs; the subscript 7, stands for the value taken
at the temperature of 7, .

Treating J as the function f(X) in (4-1) and following the procedure of EPGS

optimization in section 1, we have the estimated parameters listed in the following tables
(the optimized value of the cost function J is 0.13):

Table 4: Estimated parameters of fuzzy model

i I, °C) og;(°C) Fy; (NCm) F.,, (NCm) F, (NCm/RPM)
1 -12.266 1.106 8.8059 7.2059 0.0097752
2 -6.3269 1.0367 6.9638 5.3638 0.008942
3 -3.0956 2.1594 5.9136 43136 0.0063127
4 11.033 7.4413 4.560 2.960 0.004052
5 21.224 9.8052 3.1927 1.5927 0.0011374
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The membership functions are illustrated in the following figure:
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Figure 9: Membership functions with estimated parameters

The comparisons between the real values of F,, F, F and their estimated values

are shown in the next figure.
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Figure 10: Estimation results of parameters (fuzzy model with EGPS)
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the low speed end are listed in Table 5:

Table 5: Estimated parameters — low speed end

Since the data for estimation are taken from the high speed end, the parameters at

i T, (°C) o, (°C) Fgi; (NCm) F,, (NCm) ", NCm/RPM)
1 -12.266 1.106 440.295 360.295 24.44
2 -6.3269 1.0367 348.19 268.19 22.355
3 -3.0956 2.1594 295.68 215.68 15.78
4 11.033 7.4413 228 148 10.13
5 21.224 9.8052 159.635 76.635 2.845

These parameters at the low speed end will be used in establishing the fuzzy

model for controller design purpose since the dynamic of the harmonic drive is obtained

based on the output shaft.

4.3.2 Estimation with least square method

For the purpose of comparison, we also estimated the parameters in the fuzzy

model with least square method. In order to use this method, parameters in the nonlinear

parts of the model have to be fixed. By observing the curves of Fg, F, and F, over

environment temperature T as in Figure 6, the parameters in the membership function are

set as in the following table:

Table 6: Parameters of the membership function (LS)

T, (°C)

T,=-10

T,=-7.5

7,=0

T,= 10

o, (°C)

o,=1

c,=1.75

0,=3.5

o,=1.5
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The following figure shows the shape of the membership functions:
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Figure 11: Membership of the first layer model (LS)
Thus the memberships function can be calculated with the value of temperature.

The estimation process uses the data in Table 2 where the data pairs of F, F., F, and T

are available. The estimated values Fs, Fc and F, are calculated using the fuzzy
model (4-6).
Let X =[F, F, F,] (i=1...N)

The cost function are chosen as the Least Square of Error of estimation of F|,

F. and F,:

minJ = %Z {[F, 5, ~For (X)) +[Fe, = Fen (XY +[Fyp, — Fsn (X} (4-9)

k=1

where, F, stands for the value of F at temperature 7, ; and same for all other

expressions. n denotes the total available data pairs in Table 2. The parameters to be

estimated are different Fy;, F, and F,, that can minimize these cost functions. The

estimation problem is indeed a linear least square of error estimation of linear parameters.
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The values of the parameters from the estimation are shown in the Table 7 (the optimized

value of the cost function J is 0.79):

Table 7: Estimated parameters using LS

T (°C) -10 75 0 10 25

F, (Nem) 8.7122 7.4077 5.6062 4.5832 3.0639
F, (Nem) 7.1223 5.8077 4.1062 2.9832 1.4639
F, Nem/rpm) | 0.0086 0.0085 0.0060 0.0030 0.0009

The results are shown in the following figure.

»

Fv (NCm/RPM)
N

w

N
T

-3
x 10

)]
T

0 10

20

Temperature (° C)

a. F, and Estimated F, (Fvg)

54



Fc (NCm)

1 S i
-10 0 10 20 30 40
Temperature (° C)

b. F. and Estimated Fc(Fcg)

Fs (NCm)

-10 0 10 20 30 40
Temperature (° C)

c. F and Estimated F's (Fs;)

Figure 12: Estimation results of parameters (fuzzy model with LS)
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4.3.3 Analysis

The results of EPGS in Figure 10 are similar to the estimated results using least
square method. Both methods can model the friction changing with temperature
accurately. From the values of the cost function, the result from EPGS (0.13) is better
than that from least square method (0.79). The performance of optimization is improved.
Besides, the parameters in membership functions of least square are chosen after several
times of trial and error tests. In the method of EPGS, these parameters are chosen by the
program automatically. The only thing we need to do is to set the range of each parameter

to make the parameters physically reasonable.

4.4 Summary

In this chapter, Evolutionary Parallel Gradient Search has been proposed to
estimate the parameters in the models of former chapters. The objective of the algorithm
is to help the gradient search method finding global minimum. The estimations have been
done for both the mathematic model and the fuzzy model. As a comparison, the result of
estimation of the fuzzy model using LS method is also presented. The estimation results
show that the algorithm is capable of finding solution in the complicated nonlinear
parameters estimation problem of friction modeling. The estimated parameters are used

in establishing the model of the harmonic drive and designing the controller.
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5 Fuzzy Optimal Controller Design-LMI Approach

After building the fuzzy model in chapter 3 and estimating parameters in chapter
4, this chapter will discuss the controller design problem for such system. With the fuzzy
model of friction, the harmonic drive system can be modeled as a fuzzy TS system as we
discussed in chapter 3. The stability of the fuzzy TS system can be guaranteed if a
Lyapunov function can be found for the system. Since a fuzzy TS system can be modeled
as a fuzzy combination of linear system at different operation condition, the techniques of
Linear Matrix Inequalities (LMI) can be applied. In this chapter, we will study the LMI
based optimal controller of fuzzy TS system. In our study, new constraints are applied to
the design procedure in seeking better performance. The constraints are imposed in the
LMI form and will be shown in the proposed optimal controller. The proof of stability

and optimal criterion are given.

5.1 Problem Statement

The Fuzzy TS model of harmonic drive system to be controlled can be
generalized in the following form:
Model Rule i:

If ¢=¢ (i=1..N for all N rules of the system), then:

x(k +1)= Ax(k)+ Bu(k)

, 5-1
y(k) = Cx (k) G-

where, 4., B and C are the matrices in the fuzzy rules as we described in chapter

3: for the system without integrator, they are A4,, 4,, B and C respectively; for the
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system with integrator, they are 4, , 4, , B and C*. Therefore, the system dynamic

model can be obtained after applying fuzzy inference and defuzzification operation as:
N N N
x(k+1) =Y ax(k+1) =Y a,(4x(k)+Bu(k)) =Y a,4x(k)+ Bu(k)
i=l i=1 i=]

y(k) = Cx(k), (5-2)

where, ¢, is the membership of the ith rule and is the function of ¢ that satisfies:
N
Zaz’ (#)=1

a(4)20; (5-3)

and, ¢ is the vector of variables as the input to the fuzzy inference system.

For the system as (5-2), the controller design problem is defined as: Find a
feedback gain F at every sampling time thus the control signal can be calculated as:

u(k) = F(k)x(k) (5-4)

With this control signal, the stability of the closed loop system:
N

x(k+1) =) a,Ax(k)+ BF (k)x(k)
i=1

y(k) = Cx(k) (5-5)

can be guaranteed; meanwhile, certain performance criterion will also be
optimized.

In this study, the upper bound of following quadratic cost function is applied as

the optimal criterion:

7 =3 (" W)+ (k)Ru(k)}, (5-6)

k=0

where, W =W7" >0 and R = R" > Oare constant weights matrix.
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The reason of choosing such criterion is that, with proper chosen weight matrices,

both input and output of the system can be tuned and optimized.

5.2 The Optimal Controllers

In this section, a new LMI optimization constraint is proposed to solve the
feedback controller design problem of fuzzy TS system as described in section 5.1. The
constraint is then applied to design the optimal controller. (The simple description of LMI
and its implement in control are given in Appendix C. For more detail of LMI and it’s
application in control, please refer to [31][65]).

Theorem 1: For the fuzzy system (5-2) with initial states of x(0), the state
feedback controller designed as following will stabilize the system and minimize the
performance requirement stated in (5-6):

If there exist 4, F,,G,, Q;andQ, (j,/=1.. N, N is the number of the fuzzy

rules) that satisfy the following LMIs optimization problem:
min A (5-7)

with the constraints of:

0,=0" (5-8)
Q0,>0 (5-9)
r T
0
AoxXO) (5-10)
~x(0) Qj
(G, +G -0, (4,G,+BFG) G C" GF
G, +BF,G, 0
4,G,+BF,G, % WO“ " 150 (5-11)
CG,
FG, 0 o R
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or equivalently for LMIs, takes F, = M,G j_'

T T
G,+G, -0, (4,G,+BM) G/ CT
4,G,+BM, 0, 0

CG, 0 W
M, 0 0

J

M

J

0

>0, (5-12)

then, the controller designed using the solution of the LMIs in the way:

N
U= Z;a Fx(k)
=

(5-13)

will guarantee the stability of the fuzzy TS system as stated in (5-2) and set the

upper bound of the cost function as:

J= i{y(k)TWy(k) +u(k)” Ru(k)} < x(0)" Px(0) < A

N N 4
P=3aP =320
j=1 J=1

(5-14)

(5-15)

where: 4,, B C are the system, input and output matrix in the fuzzy rule as

stated in (5-1); W and R are the weights matrix in (5-6); a, is the membership of each

rule.

Proof:

With 0, >0(Q, =0Q,"), we have:

©Q,-G)'Q,7(Q,-G)20
which means:
G,+G-0,<G/0,G,.

Thus the LMIs above will guarantee:
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T -1 T T T
G,'0,'G, (4G,+BFG) G,/ C" G/F,

A,G, +BF,G, 0 0
i 2 B % o [P0 (5-18)
J
F,G, 0 o R

With Schur Complement, the polynomial form of the LMI is:

GjTQj“‘Gj -(4,G, +BF,G) 0,(4,G, +BF,G,)) —GjT(CTWC+F}TRFj)Gj > 0.

(5-19)
Takes:
P =0
’ Q’_ s (5-20)
Pz = Ql

the polynomial is changed to:
G,"PG,~(4,G,+BF,G) B(A4,G,+BFG)-G (C'WC+FRF)G, >0.
(5-21)

By multiplying G j‘T and G j"l on left and right sides respectively, we obtain:

P, —(A4,+BF)"P(4,+BF,)" —(C"WC+F,RF))>0 (5-22)
and,
P,—(A,+BF,)" BR'P,(4,+BF )" —(C"WC+FRF,)>0. (5-23)

In matrix form, the above two inequalities are equivalent to:

P, (P(4,+BF) C" F/
.+ BF, P 0 0

P’(AJSB /) . o (5-24)
F, 0 0 R

J

By multiplying the matrix with «, then summing up for j=1... N ; and taking:
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P=>aP, (5-25)
j=
we have:
_ , i y )
P >a,(4,+BF)'B" CT Y aF
v Jj=l j=1
P> a (4, +BF) P 0 0
’%;f J j ! >0. (5-26)
C 0 w 0
N
Zaij 0 0 R
L J=1 a
We define :
N
A=) a,(4,+BF) (5-27)
J=1

as the system matrix of the whole closed loop system and

N
F=YaF, (5-28)

jal

as the state feedback gain. Thus the following inequality holds:

P A" " FT
PA P 0 0

C o w' o0

F 0 0 R

>0 (5-29)

Again, by multiplying the matrix with ¢, and summing up by /=1...N , one
obtains:

P AP C" FT
P4 P 0 O
c o0 w' o
F 0 0 R

>0. (5-30)

The above inequality can be written in polynomial form as:
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P—A"PP'PA-C"WC ~F"RF > 0. (5-31)

The stability of the system can be guaranteed from (Appendix C):

A"PA-P<-C"WC -F"RF <0. (5-32)

By multiplying x(k)" and x(k) on the left and right sides of (5-31) respectively,
we have:

xT (k) Px(k) - x" (k) A" PAx(k) — x" (k)C"WCx(k) — x" (k)FTRFx(k) > 0. (5-33)

Since the control signal:

u(k) = Fx(k) (5-34)
and the output signal:

y(k) = Cx(k) , (5-35)
we have:

x(k)" Px(k) = x(k)" AT PAx(k) - y(k)T W (k) y —u(k)” Ru(k)> 0 (5-36)
which means:

Y)Wk y +u(k)" Ru(k) < x(k)" Px(k) - x(k)" A" PAx(k) . (5-37)

For the closed loop system, where:

x(k +1) = Ax(k)

, 5-38
y(k) = Cx(k) -39

the inequality (5-37) can be reformulated as:
Y)Y W(k)y +u(k)" Ru(k) < x(k)" Px(k) — x(k +1)" Px(k +1). (5-39)

By summing up by k from 0 to o for the stable system, we have:
Z (Y)W (k)y +u(k)’ Ru(k)} < x(0)" Px(0). (5-40)
k=0

Since the following inequality is enforced:
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[’1 xT(O)}o (5-41)
X0 9, |7

we have:

A-x" (O)Qj"lx(O) >0, (5-42)
and, by replacing Q j‘l with P, :

A=x"(0)Px(0)>0. (5-43)
By multiplying the inequality with &, and summing up by j=1...N, we have:

A~ x"(0)Px(0)> 0. (5-44)

Therefore, the cost function is bounded as:

i () W (k) y +u(k)” Ru(k)} < x(0)" Px(0) < A (5-45)

k=0

By minimizing A, we can minimize the upper bound of the cost function.

5.3 Constraints on the Input and Output of the Controllers

The constraints can be applied to the input and output signal with LMI conditions.
1. Constraints on the input signal:

Theorem 2: Considering the state feedback controller design problem of the fuzzy
system (5-2), the constraint can be enforced on the control signal by adding the

extra LMI in the following form to the controller designed in the section 5.2:

T T
G,+G -0, GF")

0. (5-46)
2
FG, 79

With the LMI, the following constraint for the input (control signal) can be

guaranteed:
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Jod,” < 2 (5-47)
where, [Ju], is the norm of the input (control) signal; 4 is the constant of the

maximum norm of the control signal which depends on the design of the system.
Proof:
Since, the following inequality holds:

T T -1
G, +G, -0,<G,/0Q,G,, (5-48)
the inequality:

T T
G,+G -0, G/F,

, |20
F,G, 11

can be transformed to:

T -1 T =T
G'0'G, G/F"

>0. (5-49)
2
F.G, wul

-1
J

-T

By Multiplying the inequality with |/ on the left side, and on the

right side, the inequality is now changed to:
-1 T

o, 5

F, I

J

>0; (5-50)

or,

P FT

J J

>0 (5-51)
F 'l

by replacing Qj"1 with P;.

By multiplying the inequality with a; and summing for j =1...N , we have:
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have:

P FT

20, 5-52
For (5-52)

Using Schur Complement, the inequality can be expressed in polynomial form:

W1 >0, (5-53)

and,

P ——%FTF >0 (5-54)
y7,

Thus the following inequality holds:
WP>F'F. (5-55)

By multiplying the inequality with x(k)” on left side and x(k) on right side, we

12 x(k)" P x(k) 2 x(k)" F"Fx(k) = u(k)" u(k) = ul,” . (5-56)

Since the Lyapunov function is decreasing with k as we discussed in former

section about the stability of the system (see (5-32)), we have:

x(kY' P x(k) < x(k=1)" P x(k —1) < x(0)" P x(0), (5-57)

which means the norm of control signal is bounded.

From (5-44):

x(0)" P x(0)< A, (5-58)
we have:

lull,” < 122 (5-59)

2. Constraint on the output signal
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Theorem 3: Considering the state feedback controller design problem of the fuzzy
system (5-2), the constraint can be enforced on the output signal by adding the

extra LMI in the following form to the controller designed in the section 5.2:

T T ~T
G,+G'-0, G'CT| .
CG, ¥

J
With the LMI, the following constraint for the output can be guaranteed:

I, <72 (5-60)
where,

" y||2 is the norm of the output signal; y is the constant of the maximum norm of
the output signal which depends on the design of the system.

Proof:

Since, the following inequality holds:

T T -1
G, +G, -0,<G/ 9, G,, (5-61)
the inequality:

T T ~T
G,+G' -0, G,/C
CG, y2I

J

20

can be transformed to:

T -1 T
G076, G c

>0. (5-62)
2
CG, ¥

=T
J

-1

J on the

By multiplying the inequality with 0 on the left side, and

right side, the inequality is now changed to:
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have:

-1 T
, C
0 C s, (5-63)
CcC yI
or,
p. CT
77120 (5-64)
C yI

by replacing of Q j_l with P,.
By multiplying the inequality with a; and sum by j, then we have:

P CT

>0. 5-65
C ;/ZI ( )

Using Schur Complement, the inequality can be expressed in polynomial form:
y*I>0

1

P-—C'C>0. (5-66)

Therefore, we obtain the inequality:
y’P>C'C. (5-67)

By multiply the inequality with x(k)" on left side and x(k) on right side, we

72 x(k)" P x(k) = x(k)" C" Cx(k) = y(k)" y(k) = || y||22 . (5-68)
Since the Lyapunov function is decreasing with k (see (5-32)), we have:

x(k)' P x(k) < x(k—1)" P x(k —1) < x(0)" P x(0) (5-69)
which means he norm of control signal is then bounded.

From (5-44):

x(0)" P x(0) < A, (5-70)
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we have:

I, < w4 (5-71)

5.4 Remarks

The procedure of design controllers using the theorems above can be summarized

as following:

1.

With the fuzzy TS model of the system and chosen cost function, the
LMI based optimization as stated in the theorem is solved offline. Since

the solution of the LMI does not depend on the online information, F,

of each rule is available;

The membership a; of each rule in the fuzzy TS system is calculated at

each sampling time with the online information of the input variable of
the fuzzy TS system. This input variable or variables are what we use to
calculate the membership function, for example, temperature 7 and the
velocity w;

The overall feedback gain is then calculated as F(k) = a,F, ;

The control signal of current is calculated and applied to the system as

u(k) = F(k)x(k).

One assumption of this procedure is that the information of the input to the fuzzy

TS system is available at each sampling time. There are some occasions when this

information can not be obtained online. In such case, it is useless to calculate the

feedback gain F; of each rule since the fuzzy combination is unknown without knowing

the memberships. Instead, a single feedback gain without using online information is
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need. The design of the controller u(k) = Fx(k), where F is the constant state feedback
gain calculated offline, then can be formulated as following.

For the fuzzy system (5-2), the state feedback controller designed as following
will minimize the performance requirement stated in (5-6).

If there exist A, F,Gand Q as the feasible solutions for following LMIs
optimization:

min A (5-72)

with the constraints of’

Q=0" (5-73)
0>0 (5-74)
SO

X
(G+G"-Q (4,G+BFG) G'C" G'FT

AG+BFG 0 0

j cJ‘rG % w0 |0 (5-76)

| FG 0 0 R
then the controller:
u(k) = Fx(k) (5-77)

can guaranteed the stability of the system and minimize the performance

requirement stated in (5-6); however, the upper bound of the cost function (1) in this

case might be different from that of the controller designed in section 5.2.

Anther consideration is the use of x(0) in the LMI. It is unrealistic to recalculate

the feedback gain offline whenever the initial states changes; therefore, a reasonable

upper bound of the states of the system can be used instead.
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5.5 Summary

In this chapter, the optimal controller on Fuzzy TS System is proposed by solving
LMI based optimization problem. The proof of stability and optimal criterion are given.
The procedure of constructing controller with the LMI solution is also presented. In next

chapter, the controller will be applied to control the harmonic drive.
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6 Control of the Harmonic Drive

In this chapter, we will integrate the results of former chapters to the control of
the harmonic drive system with friction changing over temperatures: the mathematic
model of the harmonic drive in chapter 2 will be applied as the plant to be controlled; the
Fuzzy TS Model of the harmonic drive in chapter 3 will be used to design the controller.
The objective of the control is to tracking reference position signal in a temperature
varying environment. The controller is constructed using the LMI method proposed in
chapter 5 to meet the optimal criterion. Simulation and the results will be given to verify

the proposed controller.

6.1 Controller Design

The objective of the controller design is to find a feedback gain so that the control

signal at each sampling time can be calculated asu(k) = F(k)- x(k). The control signal at

every sampling time should guarantee the stability of the harmonic drive system and
tracking the reference position signal.

The reference signal in our simulation has two forms:

1. Step signals range from 0.001 rad to 10 rad with temperature varying
from -10 to 40 °C in a sine form of frequency 1 Hz. This is to simulate
the machine tracking a large range of different signal in an environment
with temperature variation.

2. Constant signals range from 0.001 rads to 1 rad with temperature

increasing from -10 to 45 °C in a step of 5 °C every second
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Both types of state space expressions of the fuzzy TS model in chapter 3 are used
in the controller design: the model with the integrator and the one without. With the
consideration of the availability of the temperature information, two controllers are

designed for each model. Therefore, totally four controllers are designed in the study.

6.1.1 Controller without temperature information

We will develop a controller without using the information of temperature first
because the temperature information may not be available all the time yet the controller
has to be working in the whole temperature range. In the case where the measurement of
temperature can not be used in the controller, the memberships in the Cascaded Fuzzy
Model of friction can not be built online. Thus, a single feedback gain for all rules is
needed. This gain is calculated offline with the solution of LMI optimization and used as
the feedback gain of the controller. The controller is designed using the method (5-77)
discussed in section 5.4. The block diagram of the closed loop system is shown in

following figure, where r is the reference signal; y is the output of the system.

Figure 13: Closed loop system — Controller without temperature

6.1.2 Controller design with temperature information

When the temperature information is available, the memberships in the fuzzy
system can be calculated online; therefore, the feedback gain of the controller can be

calculated as a fuzzy combination of the feedback gains of all rules, which are obtained
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by solving the LMIs offline. The block diagram of the closed loop system is shown in
following figure, where r is the reference signal; y is the output of the system; T is the

temperature.

Membership Fi for the ith

< Controller

F) = a(bF,

Figure 14: Closed loop system — Controller with temperature
The design of controller follows the technique introduced in theorem 1 of chapter

5. In the controller design of the harmonic drive, 4; is the system matrix of discrete state

space expression in each fuzzy rule (A4, 4, at different temperature of the rules); B is

the input matrix; C is identity matrix since all the states are measurable and become

outputs.

6.2 Simulation Results and Analysis of Step Input Tracking

In this section, the simulation results for the controllers are presented. The
position output of the harmonic drive will track the steps signals in the range of 0.001 rad
to 10 rad. Different step sizes are applied at different position range: 0.002 rad for range
0.001 rad to 0.01 rad, 0.02 rad for range 0.01 rad to 0.1 rad, 0.2 rad for range 0.1 rad to 1
rad and 2 rad for range 1 rad to 10 rad. The temperature of the system will change from -

10 to 40 °C as a sine signal at frequency of 1 rad/s (T =sin(¢), where T stands for
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temperature, ¢ stands for time in second). Four controllers are designed using LMI
technique: two without integrator (one with temperature information and the other
without) and two with integrator (one with temperature information and the other
without). To compare the performance of the closed loop, the results from PID controller

are also present.

6.2.1 LMI Controller without using temperature information

The results are shown in Figure 15, where r stands for reference signal; and the
theta is the position of the harmonic drive.
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Figure 15: Simulation results — LMI Controller without integrator and temperature

6.2.2 LMI Controller using the temperature information

The results are shown in Figure 16.
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Figure 16: Simulation results — LMI Controller without integrator but with temperature
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6.2.3 LMI Controller with integrator and without using temperature
information
The results are shown in Figure 17.
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Figure 17: Simulation results — LMI Controller with integrator but without temperature
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6.2.4 LMI Controller with integrator and using the temperature information

The results are shown in Figure 18.
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Figure 18: Simulation results - LMI Controller with integrator and temperature
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6.2.5 PID Controller

The parameters of PID controller are optimized using Simulink toolbox of System
Response Optimization (the values of these parameters are: 430.1 for P, 1430.1 for I, and
7.95 for D). The reference signal is chosen as a step input of 0.1 rad for the optimization.
Other reference signals at different magnitude such as 0.01 and 1 rad are used as well.
Since the system is nonlinear, the parameters optimized for one signal in our research is
not suitable for others. The results show here are with the parameters having best results

when following the step signal form 0.01 rad to 10 rad.
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Figure 19: Simulation results - PID controller

6.2.6 Analysis of the Results

The reason for designing 4 controllers is that we have two conditions to consider:
with or without temperature information and with or without integrator. The fuzzy model
of the harmonic drive is used to find the feedback gain of each fuzzy rule offline. With
the information of temperature, the feedback gain of the system at current temperature
and current velocity can be calculated online. However, when the measurement of
temperature is not available, the proposed Cascaded Fuzzy Model can still help us to find
the feedback gain without using the online information of temperature. The present of
integrator is to reduce the steady state errors. When the nonlinear system is modeled as

fuzzy TS model, inaccuracy of the modeling will lead to errors. For position control, the
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introducing of integrator to the system dynamic equation will reduce the steady state
error.

The graphic of the simulation results are shown in section 6.2.1 to 6.2.5. To have
a deeper understanding of the simulation results, two Performance Indexes are defined.

Performance Index 1:
PI1=Y"e’,
k=1

where, k is the step of simulation; n is total steps of simulation; e, is the error in

each step.

Performance Index 2:

N &
PI2=3 |51,

k=t T

where, k is the step of simulation; n is total steps of simulation; e, is the error in
each step; 7, is the reference signal in each step.

The first PI is the accumulated square of error in the whole simulation process.
Since the reference signal to follow is from 0.001 rad to 10 rad in our simulation, the
value of this PI may not represent the performance accurately because of the magnitude
change in reference signals. The second PI is introduced so that the relative errors can be
shown. The PIs of both four controllers are shown in the tables below. Following the
sequence of graphic results in this section, the controllers listed as 1, 2, 3, and 4 in the
tables stand for the LMI controllers without integrator and temperature, with temperature
without integrator, with integrator but without temperature and with integrator and

temperature.
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Table 8: Performance Index 1 — Step reference

Range (Rad) 0.001 -0.01 |0.01-0.1 0.1-1.0 1.0-10
Controller 1 0.0372 0.0666 8.2523 3.18E+03
Controller 2 0.0436 0.0536 7.9018 2.36E+03
Controller 3 0.0071 0.1498 15.8546 1.82E+03
Controller 4 1.56E-04 0.0457 14.9184 1.81E+03
PID Controller 0.0088 0.0267 3.528 1.09E+04
Table 9: Performance Index 2 — Step reference
Range (Rad) 0.001-0.01 |0.01-0.1 0.1-1.0 1.0-10
Controller 1 3.61E+03 382.3288 267.1309 530.5198
Controller 2 1.28E+03 368.393 83.118 455.7531
Controller 3 7.02E+02 434.3771 347.6903 356.1562
Controller 4 109.7897 86.9482 282.2239 347.2837
PID Controller 1.78E+03 201.346 106.626 1.70E+03

From the graphic results and the Performance Index results of the simulation, it is

position following.
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noticed that the controller with integrator and temperature (controller 4) has the best
performance in all four LMI controllers and the PID controller when tracking the signal
in range 0.001 rad to 10 rad. For both PI 1 and PI 2, controller 4 has minimum values in
three ranges. It should be note that when following large position signals such as from 1.0

rad to 10 rad, the results for all controllers are similar. The main difference is in small




The analysis in this section will show how and why the performances of these
four controllers are different from each other.

1. The use of temperature information:

The feedback gain of controller without using temperature information is
calculated offline based on the solution to the LMI problem. As we can see from Figure
15 and Figure 17, the performance of such controllers varying with the operation points
since their feedback gains are totally calculated offline and cannot adapt with the change
of operation condition. The other two controllers are also calculated based on the offline
solutions to the LMIs; however, they use the information of temperature to calculate the
membership and feedback gain online adaptively. From the results of Figure 16 and
Figure 18, we can see the performances of the controllers using temperature information
are better than those of the controllers without using the temperature information as in
Figure 15 and Figure 17.

2. The integrator

The present of integrator to the system will help reduce the steady state error. For
the position control problem, a state feedback controller of the second order system of the
harmonic drive is equivalent to a PD controller. As we can see from Figure 15 and Figure
16, the tracking errors, especially for a small position, can not be compensated properly.
With the integrators, the results are improved greatly especially in the tracking of small
signals.

3. Compared to PID controller

When introducing integrator to the harmonic drive system, the controllers

designed using LMI are equivalent to PID controllers since the states used in the
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controller are velocity, position and integrator of position. However, the gains in the
controllers are adaptively changing with the information of the system temperature and
velocity. Since the nonlinear character of friction is mainly in the low velocity area, the

loss of performance will happen in the low velocity (when tracking small position change)

for improper gain. In the PID controller, the parameters are optimized for following the
step signal of 0.1 rad. From the results of Figure 19, we can see that the PID controller
performs best when tracking the signals range from 0.1 rad to 1 rad and 0.01 rad to 0.1
rad; for range 1 rad to 10 rad, the system has large overshot and even unstable for some
signals; for range 0.001 rad to 0.01 rad, the system cannot follow the reference. For a
nonlinear system, especially in the case of friction modeling where a constant resistant
exists, different gains of the controller will be needed for different conditions. The
feedback gain in the LMI controller with temperature is calculated online using the

information of the operating condition thus a better performance can be guaranteed.

6.3 Simulation Results and Analysis of Temperature Change

To further verify the proposed controller, we have done simulation for sudden
temperature change when the system following a constant signal. The results of the two
LMI controllers with integrator are presented. The reference input of the system is
constant position signal from 0.001 rad to 1 rad. The temperature increases 5 ° C per

second from -10 ° C in a step form.

6.3.1 LMI Controller without Using Temperature Information

The results are shown in Figure 20.
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Figure 20: Simulation results (with temperature step changing) — LMI Controller with

integrator but without temperature
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6.3.2 LMI Controller using Temperature

The results are shown in Figure 20.
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6.3.3 Analysis

The Performance Indexes as defined in 6.2.6 are listed in the following tables.

Table 10: Performance Index 1 — Constant reference

Signal (Rad) | 0.001 0.01 0.1 1.0
Controller 3 | 4.30E-03 0.0104 0.7448 160.3481
Controller 4 | 5.36E-06 1.60E-03 0.6245 160.1289

Table 11: Performance Index 2 — Constant reference

Signal (Rad) | 0.001 0.01 0.1 1.0
Controller 3 | 6.86E+03 | 798.3793 205.0648 250.8786
Controller 4 | 32.8214 27.2289 100.151 245718

Simulation results show that the performance of the controller with both
integrator and temperature (controller 4) is almost unchanged when the environment
temperature changes; the other controller with integrator and without temperature
(controller 3) has been effected largely by the temperature especially when tracking small
reference. This is reasonable since controller 4 calculate the feedback gain online with the
information of both temperature and velocity. As a result, the controller using
temperature information will be our first choice in control of such a nonlinear system; the
other one will work only in the occasion when the temperature information is difficult to

get.

6.4 Summary

In this chapter, the LMI based fuzzy controllers have been designed for a
harmonic drive system based on the fuzzy models proposed before. Extensive simulations

have been carried out to test the performance of the proposed controllers on the model of
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the harmonic drive with friction. The simulations include tracking step signals of
different magnitudes with environment temperature changing in sine form and tracking
step signals under step changing temperatures. The results of simulation shows that LMI

based controller with both integrator and temperature information performs the best

compared with other controllers.
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7 Conclusion and Future Work

7.1 Conclusions

In this thesis, we have studied the phenomenon of how friction changes with
temperature in a lubricated system of harmonic drive. The mathematic model of such
phenomenon is built and the dynamic of the harmonic drive is expressed with the
consideration of temperature. Fuzzy model of friction is developed to convert the
nonlinear system as a fuzzy combination of linear system. EPGS algorithm has been
proposed to estimate the parameters in the fuzzy model. Optimal Controllers of the fuzzy
model are built using LMI optimization technique. The main contributions of the research
are as follows:

1. The mathematic model of friction with temperature is established:

Temperature plays an important role in the accuracy of friction modeling. In most

case, however, temperature is taken as constant and its effects are ignored. The

proposed model considers the information of temperature and takes the
parameters in the model as functions of temperature. The friction at different
temperature, therefore, can be estimated with the information of temperature and
velocity. The estimation result of the model is consistent with the real values of

friction.

2. The Cascaded Fuzzy model of friction is proposed:
The Cascaded Fuzzy model of friction is proposed to convert the nonlinear mode]

of friction to a fuzzy combination of linear functions. The model utilized two
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layers of structure so that the parameters in the rules of the second layer can be
determined by the first layer with the information of temperature. The value of
friction is then calculated by the second layer with these parameters and the
information of velocity. With this model, not only we can estimate the value of
friction accurately but also we can apply the linear controller design technique to

the system with such nonlinear friction.

3. The EPGS algorithm is proposed for the parameters estimation.

Evolutionary Parallel Gradient Search algorithm is proposed to help the gradient
method to escape from local minima in optimization problem. The algorithm
starts multi-thread gradient search at random points and applies the concepts in
Evolutionary Algorithm such as Selection, Clone, Crossover and Mutation to each
search. With parallel search, the algorithm increases the opportunity of hitting the
global minimum; with the evolutionary technique, the algorithm guarantees the
improving of the searching over steps. The algorithm is applied in our problem of
parameters estimation. For both mathematic model and the fuzzy model, the

algorithm succeeds in finding the proper values of the parameters.

4. An LMI based Fuzzy controller is designed.

A new constraint is applied to the LMI optimization based controller design
procedure. By applying this constraint, an optimal controller design method of the
Fuzzy TS system is proposed with the proof of stability. The proposed controller

calculates the feedback gain of each fuzzy rule offline; by utilizing the online
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information of temperature and velocity, the feedback gain of the whole system is
calculated online in each sampling time as a fuzzy combination of the offline

feedback gains.

5. Application to the harmonic drive

The controller is applied to the control problem of the harmonic drive with
friction. From the simulation results, the proposed controller shows excellent
performance in tracking a large range of position signal from 0.001 to 10 rad with

temperature variation in both sine form and step form.

7.2 Recommendations for Future Work

1. Experiment setup for the harmonic drive system

To test the previous results in the real system, the experiment hardware for the
harmonic drive system should be prepared including: the mechanical setup for the
harmonic drive; the chamber simulating the temperature changing environment;

data acquisition system; sensor system; temperature regulation system and others.

2. Experiments on the test bed of harmonic drive system
Data collection for the real system is needed in order to have the accurate
parameters of the friction models. The controller is also to be tested in the test bed

that simulates the real environment with temperature change.

3. Experiments in larger temperature range
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The models in the thesis are built for the system operating in a large temperature
range. The temperature range is from -10 to 40 ° C for the data collected from the
catalog of the manufacture. With experiment setup, this range should be enlarged

with the data collected in the experiment environment.

4. Test on other systems
The friction models built in this thesis are supposed to work for all lubricated
mechanical system with friction. Therefore, the test and justification for the

models in other systems are needed.
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Appendix A: Specification of the Harmonic Drive

Specifications

Rated Output Power (W) 62
Rated Torque (Nm} 9.8
Rated Output Speed {1pm) 60
Reduction Ratio (R:1) 50
Size 17
Output Configuration Shaft
Maximum Output Speed (rpm) 80
Encoder Resolution {ppr) 1600
Encoder Oufput Circuit Type Line Driver 5V
Tach-Generator Option Yes
Tach-Generator Cutput (V/ 1000 rpm) 7 H-10%
Special Options No Special Options
Rated Current {A) 1.7
Mazx. Cont. Stall Torque (Nm) 11
Maximum Output Torque (Nm) 34
Maximum Current (A} 43
Rated Voltage (V) 75
Torque Constant (Nm/A) 9.6
BEMF {V/rpm) 1.0
Motor Resistance {Ohms) 4.8
Motor Inductance (mH) 23
Electrical Time Constant (ms) 0.5
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Mechanical Time Constant {ms)

Power Rate (KW/sec)

Moment of Inertia at Output (kgm”2)
Thermal Resistance {deg C/W)

Thermal Time Constant (min)

Actiator Accuracy (arc-min)

Actuator Repeatability {arc-sec)

Insulation Class

Insulation Resistance

Insulation Voitage

Lubrication Type

Minimum Ambient Operating Temperature {C)
Maximum Ambient Operating Temperature (C)
Minimum Ambient Storage Temperature (C)
Maximum Ambient Storage Temperature (C)
Minirmum Ambient Operating Humidity (%6)
Maximum Ambient Operating Humidity (%)
Vibration

Shock Resistance

Torque-Speed Gradient (in-1b/rpm)
Torque-Speed Gradient (Nm/rpm)

Viscous Damping Constant (in-Ib/rpm)

Viscous Damping Constant (Nov/rpm)

4.7
1.1
0.089

1.2

16

1.5

+/-5
F

100 MOhms at 500 VDC
1000 VAC (1 min)
Grease {SK-2)

-10

40

=20

60

20

80

5-400Hz max. 2.5G
30g, 11lms

18

2.1

0.48

0.054
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Maximum Radial Load (N} 784
Maximum Radial Load (Ib) 176
Maximum Axial Load (N) 784
Maximmm Axial Load {1b) 176
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Appendix B: Optimization — Gradient Search and EA

The optimization problem discussed in this thesis has the following form of
searching X" that:
X" = argmin f(X)

where f(X):R" — R: is areal-valued function of vector X e R".

B.1 Gradient Based Search

Optimization methods based on gradient information include methods such as
Gradient Descent, Newton, Conjugate and many others. These methods differ in the way
how the gradient and gradient related information are used in the calculation of the
searching direction and step size. In our research, we choose the Gradient Descent
method over others because of its simplicity so that we can focus on the interaction
between local search (gradient) and global search (EA) instead of the gradient methods
themselves.

Simply, the Gradient Descent methods for the optimization problem above can be
described as:

With an initial X°, iteratively at current step of k, the update of X* can be
calculated as:

X4 = X V(X"

This update k& — oo will lead to the local minimum X" of f(X) that V£ (X*)=0.

Where, 7 is the step size of update; V£(X*) is the gradient vector of f(X) over

X at current step k.
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vraey=L2)

The end condition of the iterative process is normally taken as non-improvement

of the function value of f(X) or the (near) zero value of V£ (X*).

B.2 Evolutionary Algorithms

Evolutionary algorithms mimic the process of natural evolution, the driving
process for the emergence of complex and well-adapted organic structures. Depending on
the methods of encoding, mating and reproducing, EA can be further subcategorized into
Genetic  Algorithm, Evolutionary Programming and Evolutionary Strategy™!).
Nevertheless, the same concept is “Survival of the fittest” which means the candidates
(parameter values in the domain of optimization) with better fitness (value of the cost
function to be optimized) have better chance to be chosen in the reproduction.

The basic concepts used in our algorithms of Evolutionary Algorithms include
Selection, Clone, Crossover and Mutation.

1. Selection: Evolutionary Algorithms is a parallel optimization process where a
large number or populations of search are carried out simultaneously. In each
iterative step, those search or individuals in the term of EA will be justified by
the fitness values (value of the cost function) and only the ones with better
results will be allowed in the next generation (step) of the search, either
directly or through some kind of reproducing. Therefore, at each generation,

the fitness value of all searches must be evaluated and sorted to make the best

through. This is the process of selection.
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2. Clone: There are ways of how the selected individuals represent themselves
and pass on their information in the search process of next generation. One of
them is Clone. In clone, all the information contained in the current search
will be simply passed to the next generation as the start point of further
searching.

3. Crossover: Another way of passing information to the next generation is
mating. In mating, different individuals exchange their information through
the technique of Crossover to generate their offspring. These offspring will be
the start points of the further searching.

4. Mutation: In the process of optimization, the individuals may contain similar
information so that the further searching is stuck in the local minimum
(Premature in terms of EA). The introducing of Mutation keeps the
individuals different from each other by randomly changing parts of the

information in some individuals when necessary.
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Appendix C: Linear Matrix Inequalities (LMI)
A standard linear matrix inequality has the form *!1, to find x to satisfy:

F(x)=F,+) xF, >0, (0-1)

i=l
where xe€ R™ is the variable to be solved and the symmetric matrixes

F=F"eR™, i=0,.,m, are given function of x in matrix form. The inequality

symbol in the above equation means that F(x) is positive definite, i.e., u” F(x)u > 0 for
all nonzero u € R”. The problem of negative definite, F(x) <0, can be transformed to
standard LMI in — F(x)>0.

Multiple LMIs, where F(x)>0,...,F, >0, can be expressed as a single diagonal
LMI,

F(x)
F,(x)

F(x)= >0 (0-2)

F,(x)

where, the blanks in the matrix are all filled with zero or zero matrices.
In the domain of control engineering, the variables of LMI are often taken as
matrix form in which a variable of matrix P normally means all elements of P are

variables.
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Besides the linear combination of variables stated in the LMI problem above,

another problem often encountered in control is the convex quadratic inequality as

following:
R(x)>0,
0(x) = S(x)" R (0)S(x)> 0 (0-3)

where, Q(x)=0(x)" , R(x)=R(x)" and S(x) are of the form of (0-1) and
depend affinely on x.

The convex quadratic inequality can be converted to LMI using Schur
Complements which states the following two expression of matrix inequality are
equivalent:

1. The polynomial form:

R(x)>0,

0(x) - S()" R (1)S(x) >0 ; (0-4)

2. The matrix form:

R(x) >0,
0(x) S|, ©-5)
S(x) Rx)|

Therefore, the nonlinear matrix polynomial in (0-4) can be converted to the
standard LMI in form (0-5).

The LMI based optimization extends the problem of solving LMI to an
optimization criterion with LMI constraint, normally in the following form:

Minimize ¢’ x

Subjectto F(x)>0, (0-6)
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where, x are variables to be solved and F(x) > 0 is the linear constraints on x as
we described in (0-1).

The basic LMI problem in control engineering is the Lyapunov Inequalities in the
following forms:

P>0

A"P+PA4<0 (0-7)

for continuous time domain; and,

P>0

ATPA-P<0 (0-8)

for discrete time domain,

where, P is the matrix to be solved; A is the system matrix for linear system.

The existence of matrix P will guarantee the stability of the linear system since
the quadratic Lyapunov function can be built as:

for continuous system with nonzero states:

V)= x(H)" Px(t) >0

I;'(t) = (Ax()" Px(?) + x(t)" P(A4x(®)) = x(£)" (A" P+ PA)x(t) < 0; (0-9)
for discrete system with nonzero states:
Vk)=x(k)" Px(k)>0

V(k+1)-V(k)

= x(k + )T Px(k +1) = (k)" P x(k)

= (Ax(k))" P (Ax(k)) - x(K)" Px(k) -
= x(k) (ATP A-P)x(k) <0

(0-10)
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Different optimization criterion can be applied to meet different performance

requirements.
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