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ABSTRACT

Nonlinear Dynamic Analysis of Electrostatically Actuated MEMS Structures

Rakesh Kalyanaraman

Micro Electro Mechanical Systems (MEMS) such as microsensors and microactuators
that use the electrostatic force between electrodes for sensing and actuation, have
numerous advantages over other actuation mechanisms due to their ease of operation,
simplicity and favourable scaling laws in the micro domain. One of the main
considerations while using electrostatic actuations is that the devices must be operated in
the safe working range as there exists the phenomenon of pull-in instability which leads
to the failure of the system. In the present work, the non linear analysis of
electrostatically actuated MEMS structures is carried out to predict the pull-in voltages
and frequencies in order to determine the range of operation for the system throughout

the life-cycle without damage.

An analogy between the electrostatic phenomenon in MEMS structures and the
aeroelastic phenomenon in aircraft wing structures has been inferred in this work.
Initially, a linear analysis is adopted to understand the phenomenon in both these fields
and their instabilities such as pull-in, divergence and flutter have been explained.
Different active and passive control methods adopted so far by various researchers to
avoid the instabilities in both the cases are presented. New terminologies have been

proposed for MEMS based on their similarity with the aeroelastic phenomenon.

i



The feasibility of microfabrication of the electrostatic MEMS structures based on
MicraGeM process is presented in this work. The conversion of a continuous cantilever
system into an equivalent lumped mass-spring model based on their energy has been
formulated and the equivalent stiffness, mass and electrostatic areas are found to perform
the nonlinear analysis of the system. The phase portrait techniques are adopted to find the
pull-in voltage and the natural frequency of the mass-spring system, and the significance
of the conservative energy value on the system behaviour are discussed. Hence a
comparision of this nonlinear approach with the linear case has been done and their

respective results are discussed.

A non-contact optical Laser Doppler Velocimetry (LDV) set-up is used for the dynamic
testing of micro cantilevers. Testing procedures along with the safe operating measures
have been presented in order to avoid the pull-in condition. The frequency plots héve
been drawn for different DC and AC voltages based on the spectral analyzer frequency
responses. Finally, the comparision of these frequency plots against the voltages from
both the experimental testing and the nonlinear theoretical prediction is carried out and

the percentage of accuracy of the prediction value has been found.
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Chapter 1

Introduction

1.1 Introduction to Micro Electro Mechanical Systems

Miniaturized devices or micro devices which consist of both electrical and mechanical
components are termed as Micro Electro Mechanical Systems (MEMS). The origin of
MEMS can be attributed to Richard Feynman, who mentioned about the possibility of
miniaturization [1]. Since then, there has been significant progress in understanding the

Micro Systems Technology (MST) more in detail [2-6].

(a) Circular type, diameter = 600um (b) Triangular type

Fig. 1.1 Examples of MEMS devices - Electrostatic actuators

Most of the MEMS structures are based on silicon and its derivatives. The properties of

silicon and its crystallographic orientation have helped tremendously in the synthesis of



MEMS devices. For example, high performance in silicon based sensors and actuators, is
due to the lack of mechanical hysteresis [7] in silicon. The usefulness of silicon in the
synthesis of microdevices is further highlighted by the feasibility of different
micromachining techniques employed for the microfabrication of MEMS structures using

silicon as the base substrate.

Through the different techniques available for fabrication, it is possible to realize
unlimited design geometries for the MEMS devices. Bulk micromachining and surface
micromachining are the two types of fabrication methods used in the MEMS industry.
Etching, a part of bulk micromachining process which involves ‘bulk’ removal of the
substrate, has resulted in the development of many MEMS devices [8]. The choice of
bulk microfabrication also depends upon exploiting the etching behaviour of silicon with
respect to its crystallographic planes. Whéreas the uniform etching in all directions is
produced with isotropic etching, the anisotropic etching is specific to the crystallographic
planes of the substrate. Isotropic etching has been demonstrated with XeF, [9] and
Petersen et al. [10] showed that properties of silicon and its etching behaviour on

different lattices facilitate it as a convenient material for MEMS structure.

Surface micromachining [11] is another microfabrication technique which is useful in
certain microfabrications. This technique involves building different material layers on
top of a bottom substrate. An example of surface micromachining process is MUMPs
[12] technology which has been used for the fabrication of many MEMS devices such as

micromirrors, microactuators etc. Apart from these techniques, there are some of the



other industry defined MEMS fabrication processes like MicraGeM [13], Protolyne [14],
SCREAM [15] etc. which are available. MEMS devices are delicate structures sensitive
to damage from handling or environmental effects. Their functionality depends on either
sealing the environment or being in direct contact with it. Stress, thermal load and
contaminants may change their characteristics. Hence, packaging technology is extended
from microelectronics towards MEMS and MOEMS (Micro-Opto-Electro-Mechanical
Systems) fields. Single chip packaging [16] and multi chip packaging [17] are the main
packaging techniques that are currently used in the MEMS industry for enabling safe and
easy device handling. Proper packaging is essential not only to connect a loose MEMS

device to external circuit but also enhance the longevity of the device.

1.2 Types of MEMS Actuation

Actuation can be defined as altering the mechanical state of a system by effectively
exchanging the energy level of that system with its surroundings [18]. Different types of
actuation principles are used in the MEMS structures so far and each of them has its own
advantages and its limitations. Some of the actuation types which are being used for the
MEMS devices are electrostatic, piezoelectric, magnetic, thermal, pneumatic/hydraulic,
chemical and biological methods. Even though all the above mentioned actuation
principles have been employed so far, the most widely used are the electrostatic,

piezoelectric, magnetic and the thermal actuation methods [19].



1.2.1 Piezoelectric actuation

When materials such as quartz, tourmaline and synthesized ceramics are subjected to a
mechanical force, an electric field is produced due to the polarization of these materials.
The reverse also holds true, that when an electric field is applied on these materials, (i.e)
a mechanical stress is developed. This phenomenon is called as the piezoelectric effect
and the materials which exhibit these properties are called piezoelectric materials. For
example, a micropump used for biomedical applications is shown in Figure 1.2 below.
An alternating voltage applied to the piezoelectric (PZT) component causes the
expansion and contraction along the horizontal direction which in turn induces a bending
stress in the diaphragm. This results in the pumping of the fluid from the inlet flap to the
outlet flap through the pump chamber [20]. The different applications of the piezoelectric

actuation include RF MEMS tunable capacitor [21] and microvalve [22] as well.

PZT Component

Diaphragm /

Fig. 1.2 Cross-section view of the micropump [20]



1.2.2 Magnetic actuation

Magnetic actuation is caused when an electroplated magnetic material, for example a
Permalloy, is subjected to an external magnetic field, thereby causing mechanical
actuation. As shown in Figure 1.3, a 3-dimensional hinged microstructure [23] is
subjected to a magnetic actuation and the flap can be rotated till 90° with respect to the
substrate based on the permalloy volume and also on the applied external magnetic field

Hext.

_ , Torque
Flap  Permalloy /&v
X!

. /"
Hinge Pin Vs ,
\ /ﬂ l H
A

(b) ©

Fig. 1.3 (a) An SEM micrograph of a hinged flap magnetic actuator. (b) Schematic cross-
sectional view (A-A) when there is no Hey applied. (¢) When Hey exceeds a threshold
value [23]

1.2.3 Thermal actuation

Thermal actuation is based on the principle that when an electric current is applied across
the actuator terminals, the heating up of the actuator and the resulting differential thermal
expansion causes a mechanical motion. Bimorph actuators are more common since they
use the difference in the thermal coefficient of expansion of the two materials for the

desired actuation. A bi-directional vertical thermal actuator [24] used in RF systems can



be actuated when the current is passed through the anchors of the hot and cold arms and
its direction of motion can be controlled based on which anchor the current passes as

shown in Figure 1.4.

hot 2rm

flexure

\\' 2

cold arm

o

"x.}} rd
anchor

Fig 1.4 A 3-Dimensional schematic view of a vertical thermal actuator [24]

Hydraulic actuation is also used nowadays as they have the ability to produce high force
actuations even though difficulties might arise in the choice of design parameters. A
microgripper [25] actuated hydraulically has been studied and is based on the principle of
a bourdon tube in which the liquid inside the tube is expanded thermally by means of
external heating source. These actuators show favorable results and they are compared

with shape memory alloy (SMA) actuators.

A combination of two or more actuating principles is also being used nowadays in the

case of more complex MEMS structures where one of the actuation types is dominant



over the others. Electro-Thermo-Mechanical (ETM) actuator [26] is one such type where
a thermal bimorph actuator is fabricated using poly-Multi User MEMS Process System
(poly MUMPS). The actuator is given an electric current or voltage producing Joule’s

heat which leads to a temperature rise and the subsequent mechanical force.

Each of the above mentioned actuation techniques have been employed successfully in
the MEMS industries based on their applications and suitability [27]. However, the
electrostatic actuation method is one of the most frequently used actuation methods. The
phenomenon of electrostatic actuation, along with its advantages, drawbacks and

applications are explained below in the subsequent section.

1.3 Electrostatic Actuation

Electrostatic actuation makes use of the Coulomb forces developed between two
capacitively coupled conductors across which a voltage is applied. Of all the actuation
methods in MEMS, electrostatic actuation is the most widely used because of the
following advantages [3]:

(1) Scaling laws favour electrostatic actuation rather than magnetic in micro range.

(ii) Simplicity in operation as it is actuated by just two electrodes and air gap.

(iii)) Lower weight and power consumption.

(iv) It is driven by voltage and voltage switching is easier compared to that of

electromagnetic actuation where current is used as the driving parameter. Electrostatic



actuation needs lower actuation voltage when compared to that of electromagnetic
actuation.

(v) The possibility of miniaturization is high and their IC compatibility is excellent.

Fig. 1.5 Principle of electrostatic actuation

As shown in Figure 1.5, when a voltage ‘v’ is applied between the two plates,
electrostatic actuation occurs which makes the movable plate to deflect towards the fixed
plate due to the attractive forces between them. The electrostatic force that attracts the

plates together is given by the Equation 1.1 as

P y?

= B8, AV 1.1
4 2(d - x)?

where

£, =8.854 x107"* F / m, permittivity of vacuum
g, =1. relative permittivity for air

A, area of the plate, m>



V, voltage applied between the moving plate and the bottom plate, volts
d, initial gap between the top and the bottom plate, m

x, displacement of the moving plate, m

From Equation 1.1, it is clear that the electrostatic force is nonlinear due to the nonlinear
deflection and hence a slight increase in voltage might result in a very large force and a
large resulting deflection. For smaller gaps between the top and bottom electrodes, the
deflection can be assumed to be linear and analysed accordingly. Even though linear
analysis would give only an approximate solution, the difference between the exact and
approximate solution is minimum such that it can be neglected. In the case of larger gaps
between the two electrodes, the deflection value is so large that it can no longer be treated

as linear for further analysis.

The better performance of MEMS structures when using electrostatic actuation also
depends on the selection of materials [28], device geometry and residual stress state
[29]. For example, the stiffness, mass, electrical resistivity, mechanical quality factor,
stiction, fatigue resistance and shock reliability are some of the material selection criteria
which have to be chosen accordingly for specific applications. The temperature during
fabrication may not be the same when the device is in operation and drastic variations

can cause low performance of the device [30].

Even though electrostatic actuation has certain advantages over other methods as

mentioned before, there are some limitations involved in using it which cannot be



ignored. For example, when the voltage applied across the structure increases, the
electrostatic force acting on it also increases and at a particular value of the voltage, the
structure fails. This voltage is called as the ‘pull-in voltage’ [31]. Hence electrostatic
actuation cannot be used for larger range of operation, in order to avoid this phenomenon.
This pull-in instability is one of the main limitations that the researchers have to keep in
mind while designing and operating structures using electrostatic actuation. The pull-in

phenomenon in MEMS 'structures and its effects will be explained in the next section.

Another limitation of applying electrostatic actuation on MEMS structures includes the
contamination of gap between the top and bottom electrodes as they are highly sensitive
to dust and humidity [32]. Hence various efforts have been taken so far [33, 34] to

prevent this contamination.

1.4 Pull-In Instability

In the model explained in Section 1.3, an electrostatic force is acting on the structure due
to the application of voltage. The electrostatic force is counteracted by the mechanical
force provided by stiffness properties of the structure. Hence the mechanical force
restores the static equilibrium of the structure and brings it back to its original position.
The electrostatic force is nonlinear as it is directly proportional to the square of voltage
and inversely proportional to the square of deflection or change in the gap which can be
seen from Equation 1.1. The stiffness of the structure times its deflection gives the

restoring mechanical force and hence it is linear with the change in deflection.
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When the voltage applied on the structure is increased, the deflection also increases and
the gap between the two electrodes decreases. The electrostatic force increases
nonlinearly to a higher value whereas the mechanical force increases in a linear fashion
for the same deflection as explained previously. As the voltage is increased further to a
particular value, both the mechanical and electrostatic forces seem to be equal and they
balance each other to maintain the static equilibrium position of the structure. When the
mechanical restoring force can no longer withstand the electrostatic force due to any
further increase in the voltage, the structure snaps with the bottom electrode. This
particular value of voltage is called as the ‘pull-in voltage’ and voltages above this pull-in

value leads to failure of the device.

Nathanson [31] proved that for a simple mass-spring model, when the deflection is
around one-third of the total initial gap, the structure fails and termed that particular
voltage as the “pull-in voltage™ and beyond this voltage, the steady state solution ceases
to exist. Since then, different analytical, numerical and experimental works have been
done to study this pull-in instability. Bernstein et al [35] proved the existence of a
bifurcation point at pull-in, where the microdevice deflection becomes unstable. Pelesko
[36] proved that when the deflection of a device with complex geometries is plotted
against the applied voltage, the resulting plot is not the same single fold bifurcation
diagram that are obtained for systems which are no longer in their steady state. This is

shown in Figure 1.6.
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Fig. 1.6(a) Bifurcation plot for simple geometries [33]
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Fig. 1.6(b) Bifurcation plot for complex design geometries and electrode spacing [36]
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It is also shown that pull-in in the case of a fixed-fixed and fixed-free beams correspond
to 0.4 and 0.45 of the total initial gap and not one-third as in the case of mass-spring
model type structures as explained in previous papers [37]. Thus the effect of pull-in
instability on the actuation of electrostatic devices was shown. Different control
techniques are carried out to extend the travel range beyond the pull-in limit or even
avoiding the failure of the device when it touches the bottom electrode by various

researchers and will be explained later in the next chapter.

1.4.1 Linear analysis approach

Analysis of electrostatic MEMS devices is challenging because the classical structural
dynamics methodology is not easily applicable to the type of forcing and nonlinearities
encountered. A common approach in the literature is to assume a linear relationship
between the excitation force and the deflection. The linear equation is then solved by
numerical methods, such as the Galerkin method, Rayleigh-Ritz method, the finite-

element method.

Galerkin approximation has been applied to reduce the partial-differential equations of
motion into a finite-dimensional system of nonlinearly coupled second-order ordinary
differential equations for a microplate [38]. The developed linear model is then validated
by comparing the results with those obtained experimentally and with those obtained by
solving the distributed parameter system. The linear mathematical modeling of the

microdevices is also done using the normal mode approach obtained by applying
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boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method from which
the natural frequencies and mode shapes are obtained [39]. The comparison between
theoretical and experimental results shows a little deviation and has been attributed to the

microfabrication process limitations and foundry tolerances.

The pull-in behavior of a cantilever and fixed-fixed beam type electrostatic
microactuators is studied using the capacitance-based analytical method and FEM
simulations are also done to compare the pull-in position [40]. The normalized pull-in
position for cantilever beams is found to be 0.470 times the initial gap by capacitance-
based analytical method and 0.472 times the initial gap by finite element method. For the
fixed beams, they are found to be 0.42 of the initial gap from both these methods. A
linearized uniform approximate closed-form model is proposed to determine the pull-in
voltage of a cantilever beam under uniform nonlinear electrostatic pressure [41]. The
evaluated pull-in voltage for the cantilever beam has a maximum deviation of +2% for
wide beams, and a maximum deviation of +1% for narrow beams from the Finite

Element Analysis (FEA) results obtained from Coventor [42].

These are some of the methods that are used to linearize the electrostatic phenomenon.
Even though the results obtained using these methods are not exact. the approximation
holds good for structures undergoing smaller forces and hence smaller deflections. Linear
analysis can be applied mainly for mechanical and optical switching purposes as the
operation of the device for these applications do not have to deal with the stable and

unstable regions and their effects.
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1.4.2 Non linear analysis approach

The pull-in instability in MEMS structures is due to the nonlinear electrostatic force
acting on the system as discussed before. For cases where the gap between the two
electrodes are smaller resulting in smaller deflections, the nonlinearity can be ignored and
the system can be analysed based on linear methods as explained in the previous section.
But when the force applied and the subsequent deflection are larger, nonlinearity creeps
into the system so much that they have to be considered for understanding the behaviour
of the system. Significant work has been done so far using different methods to study the
nonlinearity due to the increasing use of electrostatic actuation for MEMS structures for

various applications.

The dynamic characteristics of nonlinear electrostatic pull-in behavior for a fixed—fixed
beam are studied [43] and its natural frequencies are calculated using the differential
quadrature method (DQM). This model included the nonlinear interaction between the
curved electrostatic field force and the shaped micro-beam, as well as the mid-plane
stretching, axial residual stress and electrical field fringing effect. The analytical results
and the measured data shows good agreement and the analytical results also show that the
shaped micro-beam with curved electrode can increase the working voltage range

approximately six times compared to the rectangular micro-beam and flat electrode.

A Finite Element Method (FEM) based on a Sequential Field Coupling (SFC) approach

in which electrostatic loads are gradually applied to the deformed shape of the micro



structure is proposed by Collenz et. al [44]. This model holds good for larger deflections
where the geometric nonlinearities are dominant and hence the electrostatic load
increments are given iteratively at different points of the deflection and an alternative
option has also been presented by increasing the applied voltage incrementally by

iteration.

A nonlinear modal analysis approach based on the invariant manifold method is applied
to perform the dynamic analysis of a micro switch [45]. Both the geometric nonlinearity
of the micro beam associated with large deflection and the nonlinear coupling between
the two energy domains are considered and the nonlinear partial differential equation is
decoupled into a set of nonlinear ordinary differential equations using the Galerkin
technique. The results obtained show agreement with the finite difference method results

and prove that accurate results are obtained without spending much computational time.

A nonlinear Mathieu equation is used to study the parametric resonance of an oscillator
whose nonlinearity is due to both the electrostatic force and the structural nonlinearity
due to the spring [46]. A two variable method has been applied to analyse the system and
the results are compared with the experiments and a significant change in the parametric
resonance has been observed due to the nonlinearity. Based on these results, an
appropriate working mode for the mass sensor has been found out with its sensitivity

independent of damping.

16



Period doubling and chaos in a simulated MEMS cantilever system with electrostatic
sensing and actuation, intended for a MEMS based mass storage chip has been found out
by [47]. A graphical interface has been used for the Poincare method to simulate multiple
initial conditions simultaneously. The stable operation range was significantly reduced,
by 25%, because of the chaotic response in a particular case. The dynamics of a
micromechanical switch based on the bistable Anharmonic Casimir Oscillator (ACO),
executing undamped periodic motion, are studied using numerical and analytical
solutions of the differential equation of motion [48]. The tremendous change in the
frequency and amplitude values due to the casimir effect has been explained and this
extreme sensitivity due to ACO has been given as a platform for designing sensitive

sensors and detectors.

The‘nonlinear dynamics of a mass-spring model has been presented based on the energy
analysis and an analytical AC pull-in condition has been achieved [49]. The stable and
unstable oscillations of the system has been studied by plotting the potential and kinetic
energy curves for varying values of AC and DC voltages. A combination of maximum
AC and DC voltages that can be applied to actuate the system without producing

snapping at resonant frequency has been evauated.

The nonlinear response of a micro tweezer has been analyzed by using a hybrid Boundary
Element and Finite Element Method (BEM/FEM) approach [50]. A modified Newmark
method has been proposed to give accurate results for performing the time integration to

obtain the nonlinear dynamic response of the system. The nonlinear behaviour of the
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system and its responses due to the application of both the DC and AC signals have been
obtained. The phase trajectories have been plotted and the three equilibrium positions

from the plot are analysed to understand the stability of the system.

The simulation of transient and steady-state dynamics of microbeams undergoing small
or large motions has been carried out in [51]. The frequency has been tuned in such a way
that the system is excited near both the sub harmonic and the super harmonic excitations.
The AC amplitude variation, DC bias and the damping has a significant effect on the
frequency response curve in the case of super harmonic excitations whereas they do not
have any effect for the case of sub harmonic excitations. The phase portraits are also
plotted for both the stable and unstable regions and the effect of the pull-in voltage value
on the plot has been studied. It has been concluded that the sub harmonic resonance of
order one-half (twice the fundamental frequency) has the potential of being used to

design a band pass RF filter with improved characteristics.

The transient dynamics of a micro beam under electrostatic actuation and squeeze film
pressure has been studied with a special emphasis on stability analysis [52]. A model has
been developed using the Galerkin procedure with normal modes as a basis and it
accounts for the distributed nonlinear electrostatic forces, nonlinear squeeze film
damping, and the rotational inertia of a mass carried by the beam. It has been seen that
the presence of a nonlinear damping increases the dynamic pull-in voltage since higher
initial energy required in order to cause instability and hence the velocity of the damped

system is found to be higher at the beginning of the motion. The stable and unstable
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regions due to the variation of the actuation voltage have been separated by a separatrix
obtained in the phase plot and different phase portraits have been sketched for different
voltage excitations close to the pull-in value and an extensive analysis has been done to

study the nonlinear dynamics near the pull-in.

The complete nonlinear dynamics of a micro-electro-mechanical system with a time-
varying capacitor has been investigated by Luo et al. {53]. The model analysed is the
resonant gate transistor developed by [31] and the dynamic analysis has been done based
on a specific conservative energy Eo obtained from the invariant integration of the
dynamic equation of the system and it has been used to find the natural frequency and
other solutions such as phase portraits and equilibrium states for the system. From the
phase portraits for different Eq values and different voltages, different equilibrium points
have been obtained and hence the pull-in voltage value (static analysis) has been

evaluated.

The dynamic analysis has been done and the different equilibrium points obtained from
the phase portraits have been used as the limits for the time integration where the elliptic
integral of the third kind has been applied to find out the time period for the closed orbit
and the frequency. The range of operation of the AC and DC voltages on the capacitor
has been predicted in this dynamic analysis and various phase and frequency plots for
different AC, DC voltages and E values have been plotted and found to be in agreement

with the experimental measurements. The dynamic analysis is also done for studying the
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chaotic motion and the conditions have been inferred for the appearance and

disappearance of the chaotic motion in resonant layers.

1.5 Objectives of the Thesis

The static and dynamic behaviour form the basis for designing the electrostatically
actuated MEMS structure in order to achieve the desired performance and hence the
necessity to understand the physical phenomenon. For highly sensitive applications such
as sensors, actuators and filters, the stable operation of the device has to be achieved and
the range of operation has to be predicted as accurately as possible. The pull-in instability
leads to the system failure and hence an accurate prediction of the pull-in voltage and the
dynamic frequencies are needed. Since the electrostatic actuation is a nonlinear
phenomenon, linear approximations will not yield accurate results. Thus a nonlinear

analysis is highly desirable for electrostatic MEMS structures.

The main objectives of this thesis are

(1) to study the electrostatic phenomenon and its pull-in instability in MEMS structures
based on linear analysis and to understand its analogy to the aero elastic phenomenon.

(i1) to convert the continuous systems such as cantilever beams into equivalent lumped -
mass-spring models based on their energy equations, since it is easier to perform the
nonlinear analysis on the lumped model.

(1i1) to perform the nonlinear static and dynamic analysis on the MEMS structures and

predict the pull-in parameters and frequencies based on the phase portraits.
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(iv) Microfabrication, experimental dynamic testing of the MEMS cantilever and

validation with the analytical results.

1.6 Organization of the Thesis

The thesis is organized as follows:

1))

2)

3)

4)

5)

Study on the electrostatic phenomenon in MEMS structures and the explanation
of its similarity to the aeroelastic phenomenon in aircraft wing structures is given
in Chapter-2.

Fabrication of the micro plates and micro cantilevers based on the MicraGeM
process and the conversion of a continuous cantilever system into an equivalent
mass-spring model are explained in Chapter-3.

An introduction to the nonlinear vibration analysis based on simple pendulum
followed by the nonlinear analysis of two MEMS cantilevers, one compared with
a published result and the other designed from the MicraGeM process, are
presented in the Chapter-4.

Experimental dynamic testing set-up for the MicraGeM cantilevers is explained
and the test results are presented in the Chapter-5 along with comparision.

The Chapter-6 presents conclusions based on the thesis work and future possible

extensions to the present work.
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Chapter 2
Analogy between Electrostatic MEMS

and Aeroelastic Wing Structures

2.1 Introduction

An introduction to the electrostatically actuated MEMS structures has been given and the
survey of work done about its mechanical performance and limitations, such as, pull-in
and other instabilities have been explained in Chaptef 1. In this chapter, the linear
vibration analysis of a simple mass-spring model of an electrostatically actuated MEMS
structure is explained to study the static and dynamic behaviour of the system. The
understanding of pull-in instability is done through the mathematical equations and its
physical significance is again emphasized. The instability phenomena occurring in
electrostatically operated MEMS structures is very similar to those encountered in
aeroelasticity. In order to benefit from the research on aeroelastic instabilities and their
control, the aeroelastic phenomenon occurring on the aircraft wing structures is explained
with a simple one degree of freedom wing model, and its divergence and flutter
instabilities are studied. An analogy between the instabilities explained above in two

different domains and the control methods adopted so far in both these fields are
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presented. It is concluded that new terminologies can be given to the electrostatic MEMS

based on the aeroelastic instabilities and control techniques.

2.2 Electrostatic Phenomenon: A Mass-Spring Model

As has been explained previously in Chapter 1, the electrostatic phenomenon in MEMS
systems is nonlinear and there exists some complexity in dealing with this nonlinearity.
Hence to understand the phenomenon initially, the nonlinear electrostatic force is
linearised to solve for the deflection and the frequency. A simple mass-spring model is

taken as shown in Figure 2.1 to understand the static and dynamic behaviour of the

device.
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Fig. 2.1 A simple mass-spring model under an electrostatic force

The design parameters taken for the demonstration and the properties such as stiffness

and mass are given in Table 2.1.
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Table 2.1 Design parameters of the mass-spring model

&, (F/m)

&

r

Li (um)

B (um)

d (um)

k (N/m)

m (kg)

8.85x107%

500

200

0.5

1x107°

The electrostatic force due to the voltage between the moving top plate and the fixed

bottom electrode is given by

g6, AV? (2.1)
T 2d -x)?

The area of the plate (A) is A = Length (L;) x Width (B) of the plate. The equation of

motion of the system under the nonlinear electrostatic force is given as

m + c = F, (22)

or

it 4 o S0504 V? (2.2a)
2Ad—x)

For static equilibrium, the electrostatic force is balanced by the mechanical restoring

force which is given by the Equation (2.3)

o = g,€,AV? (2.3)
2(d —x)?

The Equation 2.3 is plotted as shown in Figure 2.2 which is a plot of mechanical and
electrostatic forces against the displacement. It is seen that for each voltage value, the
corresponding electrostatic force exactly balances the mechanical restoring force at two
values of displacement. The first point which is stable, is termed as ‘x,” and called as the
static equilibrium position. The second point is the unstable position termed as ‘x,’” and is

called as the pull-in position. At a particular voltage, both the positions ‘x,” and ‘x,’
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become a single point (i.e. the electrostatic curve just touches the mechanical curve at a
single point). This value of voltage is the pull-in voltage for the device. For the design
parameters taken to analyse, the pull-in voltage is found to be 1.157V.
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Fig. 2.2 Plot of mechanical and electrostatic forces against displacement

Even though the force balance plot can be used to see the pull-in voltage from the sketch,
the mechanical behaviour of the device such as the deflection of the plate with an
increase in voltage cannot be studied based on balancing the forces. Hence the static
equilibrium Equation 2.3 has to be solved for the deflection. Since the electrostatic force
on the right hand side of Equation 2.3 is nonlinear, the Taylor Series expansion with

respect to zero deflection condition [54] is used to linearise it as given below.
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£,8, AV’ g,6, AV 2x 3x? (2.4)
s = — | I+ —+—+..
2(d - x) 2d

Considering that the device is undergoing only small deflections, the above equation can

be approximated and introduced into the Equation 2.3 as

g6, AV gg AV? (2.5)
= + x

kx
2d° d’

The above equation is rewritten in terms of deflection as

£,6,AV? £,,4V? (2.6)
o 2d o
(k_ gogrAVZJ k—kxelec
d3

where k’u.cis the equivalent electrostatic stiffness at static deflection. The deflection
depends on the voltage and as the value of the voltage increases, the deflection also
increases since the denominator decreases and the numerator increases in the Equation
2.6. The plot of the change in the gap between the top and bottom electrodes against the
voltage for the design parameters taken for analysis is shown in Figure 2.3. It can be seen
that the top plate is attracted to the bottom electrode as there is an voltage applied
between them. As the voltage increases, the plate moves closer to the bottom electrode
and at a particular voltage, the denominator of the Equation 2.6 becomes zero. At this
voltage. the deflection becomes infinity which means that the top electrode touches the
bottom electrode and results in the failure of the device due to a closed circuit. Hence
there exists instability in the system which is called as the pull-in instability and the

voltage at which this instability occurs is called as the pull-in voltage of the system.
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Fig. 2.3 Variation of the change in the gap against bias voltage

The pull-in voltage obtained for this system is found to be 1.739V which is not the same
as that obtained from the force balance. This pull-in value is higher than the force balance
value which is 1.157V since this is calculated based on the linearised approximation of
the electrostatic force equation and a 33.5% reduction of pull-in voltage is obtained from
the non linear analysis. Hence the device operation at voltages close to the pull-in value
based on the linear model can cause the failure of the system even before the actual pull-
in value calculated. Thus the linear model can be useful only for small deflections of the

device for the safe operation as explained before.

The dynamic analysis of the mass-spring model is done to find the frequency of vibration

under the electrostatic force. The dynamic equation of motion is given in Equation 2.2a.
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By Taylor’s series expansion with respect to the static equilibrium point, the equation of

motion is reduced to the form

£,8,AV? L3 6,4 V? 2 (2.7)
@d-x,)) 2(d-x,)
where x, is the static deflection position obtained from the static equilibrium analysis, x

is the dynamic motion. The above Equation 2.7 is a forced vibration equation. After

substituting Equation 2.3, the free vibration problem can be considered as

2 (2.8)
mx + k—M x=0
(d-x,)

Thus the natural frequency is obtained as

[k g5, AV ) (2.9)
a)nz — (d_x.vl)3
m
or
. = k_kdelec (210)
g m

In the Equation 2.10, k“..is the equivalent electrostatic stiffness for dynamic motion
due to the electrostatic force. When the value of the voltage is increased, the electrostatic
stiffness also increases and hence the frequency is reduced. Thus, at a particular value of
the voltage, the electrostatic stiffness is equal to the mechanical stiffness and the value of
the frequency becomes zero. The plot of frequency against the voltage is shown in Figure
2.4. Thus the influence of electrostatic actuation on the MEMS structures has been
explained and the instabilities such as pull-in voltage and zero frequency voltage have

been emphasized based on performing the static and dynamic analysis. This electrostatic
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phenomenon is similar to the aeroelastic phenomenon in the case of aircraft wing

structures which is explained in the subsequent section.

S T T

T

10t

frequency (radis)

0 L L 1 1 ]
o 0.2 04 0B 08 1 1.2 14

voltage (V)

Fig 2.4 Frequency against voltage for the mass-spring model

2.3 Aeroelastic Phenomenon: 1-D Wing Model

Aeroelasticity is the discipline concerned with the mutual interaction of structural,
aerodynamic and inertial forces on a flexible solid body moving through a fluid [55]. The
aerodynamic forces acting on the aircraft wing structures cause vibrational instabilities
which in turn lead to the failure of the wing structure. This has been a major area of
research for the last 50 years and efforts have been taken to avoid these instabilities for
the safe operation of the aircraft. Static and dynamic analysis on a simple wing model is

given in this section to get an overview of the problem. It will be seen that there is a
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similarity between this aeroelastic phenomenon in wing structures and the electrostatic
phenomenon in MEMS structures. Hence in this section, the static and dynamic
vibrational instabilities occurring on the aircraft wing structures is explained based on a

single degree of freedom model [55].

A simple line diagram showing the cross-sectional view of an aircraft wing is given in
Figure 2.5 below. Here, only one degree of freedom is considered, the rotational degree
of motion (¢« ), as shown in the Figure 2.5. The horizontal line defined by point ‘O’ is the
elastic axis about which the rotation of the wing structure takes place. The elevated line is
the simple line diagram of the cross-sectional view of cantilevered wing structure with
" K, as the rotational stiffness of the wing structure acting at O. L is the aerodynamic lift
force acting on the wing at the aerodynamic center (A.C) which is the point about which
the pitching moment acting on the airfoil is constant regardless of the angle of the attack
(a ). The angle of attack o can be expressed as

a=a,+a, 2.11)

a, is the initial angle of attack and ¢, is the elastic twist due to the aerodynamic lift force.

o

Fig. 2.5 Cross-sectional view of a simple line diagram of an aircraft wing model
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The eccentricity e is the distance of the aerodynamic center from the point O. the fluid
acting on the wing surface which is air in this case, moves with a velocity U due to which
there is an aerodynamic lift force L acting in the upward direction at the point A.C.
Hence this aerodynamic moment due to the lift force acting on the wing has to be
balanced by the restoring moment due to the rotational stiffness of the wing. Hence for

moment equilibrium,

M -K,a =0 (2.12)
M, in the Equation 2.12 is the moment about the elastic axis, O, which is given below as
M, =M, +Le (2.13)
Mac is the moment about the aerodynamic center which is written as

M, =C,, qSc (2.14)
where Cmac 1s the moment coefficient about the aerodynamic center which reduces
10C, 4 = Cypye, » sSince Cyac does not change with a. S is the wing area and c is the mean

chord length. The dynamic pressure acting on the wing is denoted by ‘q’. The lift L in the
Equation 2.13 is written as

L=C,Sq (2.15)
where C, 1is the lift coefficient which varies with a. Using Taylor’s series expansion, the

lift coefficient is defined as

2.16
c :[ c L9 a] (2.16)
° Oa
2.17
Thus, L= [Cl + o, a}Sq @17
v Oda
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In the above Equation 2.17, q is the aerodynamic dynamic pressure acting on the wing
. . 1 . . .
which is written in terms of speed as g = 5 pU? where p, is the density of the fluid due

to which the aerodynamic lift on the wing occurs and U is the speed or velocity of the
fluid. In the aircraft structures, the fluid acting is the air or the wind flowing against the

wing surface as explained before. The initial coefficient of lift is termed as C, and the

lift curve slope asaa—c". For simple linear analysis, it is assumed that C 10 =Crac,= 0
a

which are the initial conditions. Hence Equation 2.12 reduces to the form,

Le-K, a,=0.
2.18
qSe &, a, +gSe—Lta, - K, a,=0 (-18)
0 oa
which can be rewritten in terms of the elastic angle of attack as
C C 2.19
qSe o, a, qSe o« a, (219)
_ oa _ oa
%= &, K, K
Ka _ qSe L o aero
oa

1L
a

where K, = ¢Se

aerao

. The denominator in the above Equation 2.19 reduces as the value

of the dynamic pressure acting on the wing surface increases and hence the elastic angle

of attack «, increases. At a particular value of the dynamic pressure (which in turn is

related to the dynamic speed), the rotational stiffness value is equal to the stiffness due to

the aerodynamic lift (K, ) and the denominator becomes zero. Thus the value of the

elastic angle of attack becomes infinity which means that the wing structure breaks. This

maximum dynamic pressure that can be applied on the system is called as the divergence
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pressure ‘¢q,,  and hence the corresponding maximum speed which can act on the wing

structure is called as the divergence speed ‘U, . Hence the divergence is a static

instability occurring on the wing structures and the failure of the structure happens when
the velocity of the air acting on the surface is above the divergence speed. An example of

the divergence curve is shown in Figure 2.6 which is plotted between the elastic angle of

attack («, ) against the divergence pressure (q) for the design parameters given in Table

2.2.

Table 2.2 Design parameters of the aircraft wing structure

S (m?) ¢ (m) aC, a, K,(Nm) | I(kg-m’)
o

1 0.1 6.28 5° 20 0.1

20 LI K] T T L] T
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14 |
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angle of attack (r
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Fig. 2.6 Variation of the elastic angle of attack (&, ) against dynamic pressure (q)
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The equation of motion under the aerodynamic force is written as

I, +K,a, =M (2.20)

In the above equation, I is the moment of inertia about the point O. Substituting for M,
from the Equation 2.13 into the above equation,

18/ 5, 2.21
Ia, + K a, —qSe €, a, = qSeiao (221)
oa oa

The above equation is a forced vibration problem. Hence to find the natural frequency,

the free vibration equation as shown below in the Equation 2.22 has to be considered.

2.22
Ia, + (K, —qgSe o, )a, =0 (2.22)
oa
Hence the frequency of vibration under the aerodynamic force can be obtained as
(2.23)
_ Ka Kaern
- I
2.5 LE T T ¥
\_““'H
2 I \\_x -
T
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g 1.5} \ ' .
Y
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Fig. 2.7 Variation of frequency against dynamic pressure
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One can see from Figure 2.7 that the increase in dynamic pressure or the speed results in

the increase of K, leading to elastic weakening similar to that of electrostatic softening.

aero

Large increase in speed could make the net stiffness zero (K, =K, ) leading to zero

aero
frequency condition. Hence the static and dynamic analysis of a single degree of freedom

wing model is analyzed and the instabilities are studied.

2.4. Flutter

In the case of two degree of freedom wing model as shown below in Figure 2.8, where
both the bending and twisting motions are considered, flutter types of instabilities are

caused.

U

Fig. 2.8 Two degree of freedom wing model
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The equations of motion for both the bending and twisting motions are

) : 224

mh+Sad+K,,h+ancl‘a:O 229)
oa

C, (2.25)

1,G+S h+K, a—gSe—Lta=0

oa

where ‘h’ is transverse displacement and ‘Ky,’ is transverse stiffness. ‘I, is the rotational
moment of inertia whereas ‘S, is the moment of area. Thus, flutter types of instabilities
are seen when solving for the translational and rotational motions. Similarly, in MEMS
structures, when the slenderness ratio (length to width) is small, (i.e.) when the rotational
motion is significant, flutter type of instabilities has to be considered. But, usually in the
case of micro cantilevers and microstructures, the slenderness ratio is quite large
compared to the wing structures, (i.e.) 1 / b>>>1, the flutter type of instability is not a
significant problem. In the next section, the control techniques that have been adopted in

both these fields to avoid their respective instabilities will be discussed.

2.5 Control Methods

Since these instabilities cause the failure of the structures, different control methods that
have been employed to avoid the instabilities so far in both these fields of MEMS and
aeroelasticity are explained in this section. First, the control methods employed so far for
the aeroelastic phenomenon are explained and then the methods in electrostatic

phenomenon are discussed.
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2.5.1 Aeroelastic control techniques

The efforts that have been taken so far to increase the divergence and flutter speeds or
even eliminating these instabilities can be broadly classified as (i) active and (ii) passive
control methods. Examples of these methods that have been explained by some previous

research works is discussed below.

2.5.1.1 Active control

Active control can be explained as the real time monitoring and control of the aircraft
wing vibrations by different techniques and feedbacks. The effective deployment of
control surfaces [56] and different techniques to employ these flaps to adjust the speed of
the aircraft are some of the common active control techniques. Also, the concept of
piezoelectric material being deposited on the surface of the wing to actively control the
wing deflections and their suppression of the instabilities has been studied [57] and

applied successfully.

2.5.1.2 Passive Control

The passive control of the instabilities in the wing is done based on the concept of
“aeroelastic structural tailoring” [58] which is the effective way of avoiding the
divergence and flutter instabilities so far in the aircraft wings. Aeroelastic tailoring can be

defined as the embodiment of directional stiffness into an aircrafi structural design to
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control aeroelastic deformation, static or dynamic, in such a fashion as to affect the
aerodynamic and structural performance of that aircraft in a beneficial way. In the
conventional wing, metallic surfaces are used such that their stiffness properties do not
vary throughout. But when a composite structural wing is used, their directional stiffness
varies according to the fiber alignment on the surface and hence an effective bending-
torsion stiffness coupling parameter can be obtained [59]. In the composite wing, both the
top and the bottom surfaces are laminated with fibers and called cover sheets. The
orientation of the fiber leads to a change in the torsional and bending stiffness properties
of the entire surface. The fiber angle variation with the reference to elastic axis over a
certain range can very well avoid the divergence phenomenon [60]. Figure 2.9 shown
below depicts the possibility of the divergence tending to infinity for a particular range of
fiber angle for a straight, back swept and forward swept composite wings. . At ply angles

in the range of 90-110°, the divergence tends to infinity as shown below.
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Fig. 2.9 Normalised divergence pressure against the fiber alignment angle [60]
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Hence, it is inferred that the structural geometries can be optimized to passively control
the instabilities. Thus an overview of both the active and passive control methods
employed so far to avoid the instabilities in the aircraft wing structures has been given. In
the section below, the control methods for avoiding the electrostatic structural
instabilities are explained and based on their similarities with the aeroelastic
phenomenon, they have been classified similar to the aeroelastic control methods, namely

the active and passive control methods.

2.5.2 Electrostatic control techniques

Based on the aeroelastic terming of the control methods, the methods applied to control
the pull-in instabilities in the electrostatic phenomenon can also be termed broadly as (i)

active and (ii) passive control methods.

2.5.2.1 Active control

Active control can be defined as the controlling of the pull-in voltage of the system when
the system is under the electrostatic actuation and also increasing the pull-in values
accordingly. Seeger et al. [61] showed that the pull-in can be avoided by the simple
addition of a series capacitance. This is the method called as “Capacitive control
mechanism” that has been applied commonly to avoid the pull-in by most of the
researchers so far. Also, a voltage control algorithm that has been applied by Chu et al.

[62] 1s based on the controlling of voltage based on a feedback loop that clearly monitors
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the pull-in. It is proved that the deflection can be as high as two or three times the
nominal gap when such a kind of feedback loop is used and the device being stable
throughout. These are the two widely used active control methods so far in the MEMS

structures.

2.5.2.2 Passive control

When the structural parameters of the designed structure are such that they increase the
pull-in limit or even avoid the instability, then that type of control can be called as the
passive control mechanism. The following are some of the important design
considerations that have been optimized to increase the pull-in voltage range by many
researchers: (i) aspect ratio (ii) varying electrode placement and also the spacing between
the bottom electrodes and (iii) varying dielectric properties. It is shown that pull-in in the
case of a fixed-fixed and fixed-free beams correspond to 0.4 and 0.45 of the total initial
gap and not as one-third for the mass-spring model type structures when the effective
stiffness of the beam is optimized by having smaller aspect ratios rather than the usual
values [63]. A novel external electrode configuration has been applied by Rosa et al. [64]
to avoid the pull-in voltage at any point of the deflection in the case of a cantilever beam.
In this model, in contrast to the traditional contiguration, the suggested configuration
consists of electrodes that are laterally offset from the actuated member. When a
dielectric isolating layer is coated on one or both the electrodes, the residual charges that
get deposited on the structure is a parameter that increases the pull-in voltage as shown

by Degani et. al {65]. In their work, it is also proved that pull-in can be avoided according
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to the residual charge distribution on the coated layer. Thus the above mentioned passive
control methods are some of the techniques that have been applied so far in avoiding

pull-in instabilities in MEMS structures.

Hence the control methods adopted to deal with the instabilities in electrostatic MEMS
structures have been discussed based on some of the work done so far. In the next
section, the analogy between the two phenomenon, electrostatic and aeroelastic
instabilities, is explained. The control methods employed in these fields are also
compared and new terming of the electrostatic instabilities and control methods are

proposed.

2.6 Analogy of Electrostatic MEMS and Aeroelastic Wing Structures

It can be inferred from the two previous sections that there is a similarity in the type of
instabilities occurring in two different fields. The similarity between the electrostatic
phenomenon in the MEMS structures and the aeroelastic phenomenon in the aircraft wing
structures 1s studied and compared in this section. The following are the points that are
summarized as shown in Table 2.3 which gives the analogy between the two

phenomenon.
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Table 2.3 Analogy between the electrostatic phenomenon and aeroelastic phenomenon in

MEMS and aircraft wing structures

S | Analogy Electrostatic phenomenon in | Aeroelastic =~ phenomenon  in
N MEMS structures aircraft wing structures
0
1 | Static When the voltage applied | When the aerodynamic velocity
instability between the electrodes 1is | acting on the wing is increased
increased beyond a particular | beyond a critical value called the
voltage called the “pull-in | “divergence speed”, the structural
voltage”, the structure fails. restoring force can no longer be
able to withstand the
L R aerodynamic force and the
e structure fails.
Foo e T .
3" - o
023 o - 7 :g : i
0 G2 0 08 l\]/i':gé{v' 2 16 8 : /}J
C T emeemeawms
2 | Phenomenon | Pull-in or touch down Divergence
3 Deﬂection £.E /41/'2 £.E AVZ aCl 6CL
equation T S qSe- -y gSe o
Y= 2d __ 2 a = _ oa
- 2\ r gt ¢ oC —
P BEAVTY k=R g g KoK,
d3 5(1
4 | Critical Voltage (V) Dynamic pressure (q)
parameter or dynamic speed (U)
5 | Frequency
equation K - K
o, - b
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2.7 Electrostatic Terminologies

Based on the similarities discussed between the two fields in the previous section and
shown in Table 2.3, new terms are proposed for the electrostatic instabilities and their
control methods based on the aeroelastic instabilities and their control methods
respectively in this section. The Table 2.4 shown below gives the new terminology that

can be given for the MEMS domain.

Table 2.4 Similar terminologies for MEMS based on aeroelasticity

SNo | Actual MEMS terminology Proposed  terminology  based on
aeroelasticity
1 “Pull-in voltage” from the static | “Divergence voltage”
analysis
2 “Zero frequency pull-in voltage™ | “Zero frequency voltage”
from the dynamic analysis
3 Control methods such as capacitive | “Active control methods”
and voltage control mechanisms
4 Control techniques based on design | “Passive control methods” and also
and geometric optimizations “Electrostatic structural tailoring”
2.7 Summary

In this chapter, the pull-in instability due to electrostatic actuation in MEMS structures is
explained based on the static and dynamic analysis of a simple mass-spring model. Then,
the aeroelastic instabilities such as divergence and flutter occurring on the aircraft wing
structures are explained for simple one and two degrees of freedom wing models
respectively. The control methods taken so far by various researchers in both MEMS and

aircraft wing structures to avoid the instabilities have been presented. Thus an analogy is
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found out between the electrostatic and aeroelastic instabilities and new terminologies
have been proposed for the electrostatic instabilities and their control methods based on

the aeroelastic phenomenon.
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Chapter 3
Microfabrication and Equivalent

System Formulation

3.1 Introduction

In Chapter 2, the linear analysis of electrostatic MEMS structures was carried out and the
analogy between the aeroelastic phenomenon and the electrostatic phenomenon were
highlighted. In the first half of this chapter, the feasibility of microfabrication of the
electrostatic MEMS structures is discussed. In the second part, the conversion of a

continuous cantilever system into a lumped mass-spring system has been derived.
3.2 Microfabrication: MicraGeM Process Overview

There are different methods of fabrication of MEMS structures, such as, isotropic dry
etching with Xenon difluoride (XeF2), anisotropic wet etching with Tetra Methyl
Ammonium Hydroxide (TMAH), Deep Reactive lon Etching (DRIE) etc. Herein, the
MEMS fabrication has been carried out on Silicon-On-Insulator material through

MicraGeM process technology [66]. MicraGeM is an acronym for Micralyne Generalized
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MEMS and is a technology offered to the Canadian Universities through the Canadian
Microelectronic Corporation [67]. Through this technology, different structures such as
microplates, micromirrors, microcantilevers etc. have been fabricated [68]. The following
sections present briefly the MicraGeM process overview and the results of the fabrication
have been presented through Scanning Electron Microscopy (SEM). MicraGeM is a
Micro-Electro-Mechanical Systems (MEMS) prototyping process developed at Micralyne
Inc [69]. This technology differs from traditional MEMS processes by the materials used
in the process, and by its variable geometry. Herein, SOI device is bonded on top of
pyrex substrate, with an option of designing an etch in the pyrex substrate, and metal
electrodes both on top of the SOI and in the pyrex etch. Thus, through this technology,
fully suspended MEMS devices can be produced and can be actuated with the presence of
the metal electrodes. A process overview [66] of this technology is shown in Figure 3.1
in order to understand the steps involved in fabricating the micro systems and structures.
A fabrication area of 9 mm x 5 mm was allotted for each of the designs submitted to the
CMC for fabrication. Herein, the MicraGeM process was used for fabrication of different
microplates under different boundary conditions. The different boundary conditions refer
to the clamping of the different boundary edges of the plate. Different cantilevers were

also fabricated on the same chip.

3.3 Fabrication Results

MEMSPro design tool is used for designing various micro plates and micro beams. The

design is then sent to CMC for microfabrication and it took around four months to get
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released micro devices in a packaged chip. The fabrication results of the electrostatic
MEMS structures are presented through Scanning Electron Micrographs. Figures 3.2 to
3.8 show the SEM of different microplates fabricated under different boundary conditions

and dimensions. The general

Metal Electrode §|

v

1.The process begins with a Pyrex wafer.
Metal electrodes and bond pads are patterned.

Glass Pyrex Wafer

Silicon

Handle '
2.The SOI wafer (device layer down)
anodically bonded to the Pyrex

Buried Oxide Layer
Single Crystal Silicon

3.The stlicon handle wafer and burted
oxide layer are etched away.

4 The metal layer 15 depostted and patterned lithographically
to release silicon microstructures.

Fig. 3.1 Steps involved in the microfabrication based on MicraGeM process [66]

overview of the microplates that are fabricated is seen in Figure 3.2 which shows the
array of plates from the top. In Figure 3.3, free and fixed boundary supports of the micro

plates have been captured through the SEM. Figures 3.4 and 3.5 show the variation in the
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dimensions of the microplates from that of previous Figure 3.3, and also similar
variations in the boundary supports. A cantilever type microplate is shown at the extreme
left of Figure 3.6 where three edges are free and one end clamped. An extreme close view
of the microplate showing a smooth surface finish is seen in Figure 3.7. The gap between
the top and bottom electrodes is seen clearly in Figure 3.8 showing a shadow of the top
surface falling on the pyrex wafer. In the following Figures, ‘F’ denotes the fixed end

and the ‘Fr’ denotes the free end.

Fig. 3.2 General overview of the microbeams
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Fig. 3.4 Cantilever beams with different dimensions

49



Fig. 3.6 Microplate at the extreme left having three free edges (cantilever type)
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Fig. 3.7 Extreme close view of the microplate, showing the thickness

Fig. 3.8 Side view showing the gap between the two electrodes
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3.4 Conversion of a Cantilever System to a Lumped Model

An electrostatically actuated micro cantilever beam is a continuous system, and it would
be more complicated to carry out the nonlinear analysis and solve for its velocity, phase
portrait and its pull-in phenomenon directly. In this section, the distributed system is
converted into an equivalent mass -spring model, thereby enabling the study of non-linear

behaviour of the system without complexity.

w(x)

Fig. 3.9 A cantilever beam model under an electrostatic force

The deflection shape of the beam. shown in Figure 3.9, is assumed as given in the

Equation 3.1 which satisfies the boundary conditions of the cantilever beam.

w(x) = a(6x? —4x® + x*) - (3.1)
Let the polynomial be taken as ¢(x) in the above Equation and it is written as

w(x) = a.g(x) 3.2)
where ais an arbitrary constant. Further, the second derivative of the above equation

leads to
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w'(x)=12a(1-2x +x?) (3.3)
or
w'(x) = a.¢"(x) 34

The potential energy of the beam is given by

U, =L 51 ooy s G-2)
== w'(x

h 2 ;
The above equation is reduced to the form
U, =C a’ (3.6)
where

- ) G.7)
C, = Bl 0j<¢ (x))” dx
The kinetic energy of the beam is given by

1 ) (3-8)
7, = plo’ [ow(x))dx

2 ¢
Similar to the Equation 3.6, kinetic energy also can be reduced to
T, =C,0°a’ (3.9)
where

(3.10)

T ! ,
C, = Oj(¢<x>) dx

The corresponding equations for an equivalent mass-spring system are given below. The

equivalent potential energy for a rigid plate would be

U =1k o (3.11)

rig 2 eq

Where K, is the equivalent stiffness of the lumped system.
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/ (3.12)
(w?) = ; sz (x)dx

0

is the mean square value of the deflection. Hence, Equation 3.11 can be written in the

form
w =K, a (3.13)
where
¢,= %;j(as(x))zdx o0
The equivalent kinetic energy of the system would be
1 (3.15)

T:EMM%ﬁ

rig
where M, is the equivalent mass of the lumped system. The above equation reduces to

T, =CM,wd’ (3.16)

and
L 2 (3.17)
Cy=5 Oj(¢<x)> dx

From Equations 3.6, 3.9, 3.13 and 3.16, the equivalent stiffness and mass are obtained as

qQ (3.18)
eq C?

MZQ (3.19)
g C4

Hence, the mechanical part of a continuous system is converted into an equivalent

lumped system and their stiffness and mass values are derived.
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Similar to the mechanical conversion, the equivalent electrostatic system can be obtained

as shown below. The electrostatic potential energy for a given voltage of V, is written as

r (3.20)
Uel.he, = —]_gogrbl/lz _[—-(1{*_
2 0 (d - w,\'r, (x))

where °1” represents a particular voltage V,. Also, w, (x) =a, ¢(x) is the corresponding
static deflection and a,, is obtained from the force balance plot for that voltage V. Hence,

Equation 3.20 is numerically integrated which results in a constant value such that

Ui, =Cs (3.21)

The equivalent electrostatic potential energy for a lumped system can now be expressed

as

g6, 4, V7 (3.22)

rveq, " i

U’ rt =
T 2d - w,,, (X))

Here, it should be noted that the equivalent area of the rigid plate changes when the

voltage changes due to the clectrostatic nature and hence the term 4, . Similar to the

mechanical part, there is an average deflection which is a constant value for a given

voltage.
Wy = Hw (x)ds 29
The potential energy in Equation 3.22 thus reduces to
Uy e =Co A, (3.24)
where

g€V} (3.25)

6

T 2d-w,,, ()
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Hence, the equivalent area for the lumped system is obtained from Equations 21 and 24
as

C, (3.26)

Thus the cantilever system 1s converted into an equivalent lumped mass-spring model

with Keq, Meq and 4, as shown in Figure 3.10 based on balancing the energy equations as

derived.

1 S
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x
~ T d
¥
7 7 7 7 7 7 / Vi

Fig. 3.10 Equivalent mass-spring model

The equivalent stiffness (K¢q), equivalent mass (M) and equivalent electrostatic area

A, are calculated and given below for the cantilever [70] whose dimensions and

properties that are used are given in Table 3.1.

Table 3.1 Design parameters of the cantilever beam [70]

E (kg/m°)

p(kg/m’)

1(mm)

b(mm)

t(um)

d(pm)

SO(F/ m)

155.8x10°

2.33x10°

20

5

57

92

8.85x107
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The values obtained from the analysis are
Equivalent Stiffness, K.q = 18.623 N/m

Equivalent Mass, = Mq = 1.3281 x 10°kg

Since the electrostatic area ( 4,, ) varies with the voltage (7)), it is given below in Table

3.2 for some particular values of the voltage. It could be seen that the equivalent area is
the same as the actual cantilever area which is 100 x 10°® m? when there is no voltage

applied.

Table 3.2 Equivalent electrostatic area variation with the voltage

Voltage Equivalent Area
v, (Volts) 4, x10°m’
0 100.0000
10 100.0020
20 100.0026
30 100.0204
40 100.0748
50 100.2273
60 100.7142
68.4 104.8800

When the voltage increases, the equivalent electrostatic area slowly increases and when it

is around the pull-in voltage, the equivalent area increases rapidly. The Table 3.2 values
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are plotted below in Figure 3.11 to see the rapid variation of the electrostatic area near the

pull-in voltage.
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Fig. 3.11 Variation of the equivalent area with the voltage

In the above mentioned equivalent electrostatic model for the beam, the electrostatic area
varies with the varying voltage while the gap between the top and bottom electrodes is
kept constant throughout. Another way of designing the equivalent system is by changing
the gap between the electrodes over a changing voltage while keeping the electrostatic

area constant. Thus, the cantilever system is effectively converted into a lumped mass-
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spring model with its equivalent values to study the nonlinear static and dynamic

behaviour.

3.5 Summary

The method of microfabricating the MEMS structures based on the MicraGeM
technology has been explained in this chapter. The fabricated devices were shown from
the Scanning Electron Microscopy (SEM) pictures taken. In the second part of the
chapter, the conversion of a cantilever system into an equivalent lumped mass-spring
model was done successfully and the final equations for calculating the equivalent mass,

stiffness and electrostatic area have been derived.
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Chapter 4
Nonlinear Analysis of MEMS

Structures

4.1 Introduction

For small oscillations the response of a deformable structure can be adequately described
by solving linear equations together with appropriate boundary conditions, but as the
amplitude of the oscillations increases, the nonlinear effects grlow and it is important to
consider them in the analysis. The sources of nonlinearities can be geometric, inertial,
phenomenological or material in nature. Geometric nonlinearities may be due to the mid-
plane stretching of the structure. Nonlinear inertial effects are caused by the presence of
concentrated or distributed masses. Material nonlinearities occur whenever the stress is a
nonlinear function of the strain [71]. Examples for phenomenological nonlinearity
include the systems behaving nonlinearly, such as, simple pendulum executing large
oscillations, a particle restrained by a nonlinear spring, a particle in a central-force field
etc. The electrostatic actuation in MEMS structures is a nonlinear phenomenon and an
introduction has been given in the previous chapters about its nonlinearity. In this
chapter, the nonlinear analysis is done on some of the electrostatically actuated structures

by solving the differential equation of the system. A brief introduction and an analysis are
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given for the case of a simple pendulum in the beginning and then the nonlinear analysis
for the electrostatic MEMS structures is done and its similarity with the pendulum is
observed. For both these cases, phase portraits are sketched and the behaviour of the
system is studied. The differential equation of motion is integrated and reduced to a form
suitable to find out the time period and hence the nonlinear frequency of vibration for the

electrostatic structures.

4.2 Simple Pendulum: Phase portrait

A simple pendulum consists of a particle mass swinging in one plane at the end of a light
string or rod. An ideal pendulum does not exist but a ball of lead with a diameter of about
half an inch swinging at the end of a light string about a yard long may be considered as a
close example. The Figure 4.1 shows such an example of a simple pendulum. When the
string makes an angle "6’ with the vertical, the equation of motion of the pendulum as

shown in Figure 4.1 can be written as

16 + mglL_sin@ =0 4.1
where ‘m’ 1s the mass of the bob attached to the string, ‘L;’ is the string length and ‘g’ is

the acceleration due to gravity. The Equation 4.1 can be rewritten as

0+w, sind=0 (4.2)

where

o =& (4.3)
L

or @, = f% (4.32)
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Fig. 4.1 A simple pendulum

The dynamic analysis of the pendulum based on the Equation 4.2 can be done in two
ways depending on the amplitude of oscillation. If the system undergoes small

oscillations, it can be considered to be linear and the Equation 4.2 reduces to

0=-0,0 (4.4)

since for smaller deflections, sin@ ~ @ . The solution of the above equation can be given
as

0=0_ sinwot (4.5)

where 6__ is the maximum amplitude of oscillation.

Thus the linear analysis of the pendulum is simple and approximations are acceptable for
small oscillations. The analysis of the pendulum becomes more interesting and complex

when the oscillations are no longer considered to be small and the Equation 4.2 cannot be
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reduced to a simple form. Different methods have been used so far to analyse such a case
of nonlinearity and some of them are listed below.

i) Exact method (time integral method using the elliptic integral approach)

ii) Perturbation method

ii1) Harmonic balance method (Fourier analysis)

iv) Phase portrait technique

In the time integral method, the equation of motion is numerically integrated and solved
for the response till a steady state is reached. Elliptic integral of the first kind is used in
the case of a pendulum while using this method and the time period of oscillation is
evaluated. Fulcher et al. [72] analysed the nonlinear pendulum both experimentally and
theoretically and compared their results. Both the exact method and perturbation methods
were used to solve for the solution theoretically. Perturbation methods are commonly
used if the nonlinearities of the dynamic system are of a small order. The nonlinear terms
are referred to as "perturbations” and are identified by means of a small parameter. The
solution is obtained in the form of a power series in this parameter. For example, time
period is calculated using the perturbation theory method given by Kryloff [73] and these
values were compared with the experimental time period and found to be in agreement
for the same case of a simple pendulum. The harmonic balance method is a simple,
systematic approach and is not restricted to weakly nonlinear problems. The technique is
based on a Fourier series residual approximation of the nonlinear terms, converting the
nonlinear differential equations of motion into nonlinear algebraic equations. Simon et al.

[74] solved for the time period using the above mentioned Fourier series analysis. For
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larger amplitudes, Fourier coefficients of the terms higher than fifth order do not have

significant impact on the solution such as the time period of oscillation.

Even though the phase portrait analysis cannot be considered as a method to solve for the
time period and for the response of the system, it can be used to study the motion and its
behaviour in the nonlinear range. The phase portrait for the motion of a simple pendulum
is done by integrating the equation of motion to obtain the velocity and by plotting this
velocity against a range of displacement or amplitude of oscillation. Different values of
initial amplitudes are taken and hence the different plots of velocity against the
displacement are obtained. Thus the solution for such a motion of the pendulum is given
below. The equation of motion from Equation 4.2 is

0+w,’ sind=0 (4.6)

This equation is multiplied throughout by 2.? to get
!

fiﬁ i(ﬁ) ﬁ a)o .sin@ =0 4.7)
dt dt dt dt
Integration of the above equation leads to
2 (4.8)
(ﬁ) =20, .cos0+C
dt

where C is the constant of integration. To find the value of C, the assumed initial

conditions are

0 =ajand ;g = 0. Hence, the value of ‘C’ is obtained as

C =-2.0,".cos o, (4.9)

where ‘ « ° is the initial amplitude of oscillation. Hence the velocity equation is

(4.10)

(f{?) a)o\/2 (cosf —cosq;)
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When the velocity (%) is plotted for various values of displacement (&), the plot

obtained is termed as the phase portrait of the system. Such a portrait is given below for

the following values:

o 1 . T .
Initial displacement, «, varying from 16 to xradians

Acceleration due to gravity, g=9.81m/s’

Length of the string, Li=1m

4 /f n/z s

1@\ ]
A\
2 ’/
s
°r "6 l

8 1 i L I I I 1
-3 2 1 0 1 2 3

displacement in radians

velocity in rad/sec
o
1

E-S
1

Fig. 4.2 Phase portrait of a simple pendulum
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The phase plot is done by plotting velocity (?) for the values of displacement (&)
t

ranging from 7 to -z radians which is shown in Figure 4.2. It can be seen that for

smaller values of initial amplitude («,) like % or even = radians, the phase plot takes

the shape of a circle which means that the system is behaving linearly. But for higher
values of initial amplitudes, the circular shape transforms into the shape of an ellipse or
oval. This is due to the nonlinear behaviour of the system when it undergoes larger
deformations or oscillations as explained previously. For higher values of initial
amplitudes, like more than 7 radians, the velocity of the pendulum becomes a complex
value and when are plotted over a range of displacements, it forms a separatrix and the
velocity does not become zero at any point of time. When initial amplitude is larger than
7 radians, the pendulum will start oscillations from the opposite field, and hence the
physical interpretation of the phase portraits is not obvious. These are termed as the
chaotic behaviour or simply chaos of the pendulum and they can be seen in other physical

systems also. An example of a similar behaviour {75] is shown in Figure 4.3.

Fig. 4.3 Example for the chaotic pendulum phase portrait [75]
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The nonlinear behaviour of the simple pendulum is thus studied and the various methods
used to solve either exactly or approximately for the solution were discussed. Also, the
phase portrait equations were derived and plotted for different initial angles or
displacements. Now, the nonlinear behaviour of the electrostatic actuation in the case of
MEMS structures will be analysed and the same approach as that of the pendulum will be

implemented which can be seen in the subsequent sections.

4.3 Nonlinear Phenomena in Electrostatic MEMS

The electrostatic actuation in MEMS structures as discussed earlier is a nonlinear
phenomenon and to obtain the exact solution is difficult. Hence, we employed the
Taylor’s series expansion on the electrostatic force and the system becomes linear which
is easier to solve. This linear analysis was explained previously in Chapter 2. But this
approximation holds well only when the deflection or the amplitude of vibration is small.
For cases when the gap between the top and bottom electrodes becomes significantly
large, the amplitude of vibration or the deflection also becomes large and the nonlinear
effect is more dominant and it has to be considered for the stable operation of the device.

In this section, both static and dynamic analysis, which is the pull-in voltage
determination and the frequency determination respectively, are done for electrostatically
actuated structures namely rigid micro plates and micro cantilevers. The analysis is done
for three different cases and the various results obtained are discussed below in the

subsequent sections.

67



The three cases that are analysed are:

(i) A simple mass-spring model where the basic phenomenon of phase portraits is
explained to understand the nonlinear behaviour of the system. This also forms the base
for the analysis of cantilever systems.

(i1) An equivalent mass-spring model of the cantilever system [70] based on the nonlinear
analysis using the phase portraits and time integration methods. The results obtained are
then compared with that of [70].

(111) An equivalent mass-spring model of the cantilever system fabricated using the
Micragem technology, whose design and fabrication methodologies were explained in

Chapter-3.
4.3.1 A simple mass spring model: phase portrait analysis

A simple mass-spring model, as shown in Figure 2.1 with design parameters as given in
the Table 2.1, is considered from chapter 2. A linear analysis has been done in Chapter 2
for this system and the pull-in voltage has been determined based on the approximation.
But in this section, nonlinearity in the system is studied by doing the phase portrait
analysis and the determination of pull-in voltage is carried out. The static and dynamic
analysis of the mass-spring model is done based on the phase portraits in this section. The

equation of motion 2.2 is reduced to a form of velocity equation to plot the phase
portraits and is given below. The Equation 2.2 is multiplied throughout by 2.;’— and is
4

rewritten as
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AV? (4.11)
m2 Ly g2 g & EeE AV
dtdr dr dt dt 2(d—x)

This equation is integrated throughout with respect to time and is reduced to the form

g,8,AV? (4.12)
iy o

d-x
In the Equation 4.12, E; is the constant obtained from integration and this constant is

mx’ + ke’ —

called as the conservative energy value available for the system. Based on this energy
value, the static and dynamic behaviour of the system varies which will be seen later in
the subsequent sections. Hence from the Equation 4.12, the velocity of the system is

obtained as

(4.13)

m
The phase portrait is obtained by plotting the velocity against the displacement from the

Equation 4.13. This can be done in two ways:

(1) Varying the value of the conservative energy level (E,), for a particular value of

voltage V.

(1) Varying the voltage with a constant value of £, .

4.3.1.1 Phase portrait for constant voltage and varying energy

The phase plots for the mass-spring system considered are given in this section. In the

Figure 4.4, there is no voltage applied (V=0) to the system but the energy value (E,) is

varied to get different velocity curves. It can be seen from the figure that the phase plots

are circular throughout for any value of increasing £, . This is due to the fact that there is
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no nonlinearity in the system since there is no electrostatic force applied on the system
(voltage V=0). But when there is a voltage applied on the system, the nonlinearity can be
seen clearly as shown in Figure 4.5. The voltage applied is 0.7V which is constant

throughout for varying E, values. It is seen that as the value of E is increasing, the

velocity plot slowly changes from the shape of a circle into an ellipse.
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Fig. 4.4 Phase portrait for voltage V=0 and varying Energy value E,

The pointsx,, x,andx, ih Figure 4.5 are the displacement values at which the velocity

becomes zero. The first equilibrium position, called the static equilibrium position, is

between the points x, and x, while the second unstable equilibrium position is between
x, and x;. As the E value increases, the gap between the pointsx, and x, increases and

the gap between the pointsx, andx, decreases. After a certain £, value, the portraits do
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not cross the x-axis and the velocity increases monotonically as shown in Figure 4.5. This
means that the system has become unstable and the failure of the system has occurred for

that particular £, due to the excessive available energy.
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Fig. 4.5 Phase portrait for voltage V = 0.7V and varying energy values E,

Thus the energy level or range that ¢an be applied to the system, for a particular voltage,

has to be known for the safe operation of the system. Beyond a minimum £, value, the
stable limiting points x; and x, start separating or the gap between them widens as shown

in Figure 4.5. This is termed as minimum conservative energy value, El*, that has to be

given to the system for the initiation of its motion. Similarly, there is a particular value of
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E, at which both the unstable limiting points x, and x; become the same value as shown
in Figure 4.5. With any further increase in the E_ value, the velocity curve separates and
grows monotonically. This maximum value of E, corresponding to this condition is

termed as the maximum conservative energy value, E,’, beyond which the system is

unstable. Thus the possible range of energy level E (i.e. from E," to E;") which has to be

applied for the safe operation of the system can be found out.

4.3.1.2 Phase portrait with constant energy and varying voltage

In the section above, the nonlinear behaviour of the electrostatic MEMS structure with a

varying energy level E at a constant voltage has been shown. Similar analysis is done
with a varying voltage and at constant energy value in this section. When the E_ value is

kept constant and the voltage is increased, the shape of the velocity plot changes from
circle to that of an ellipse. As shown in Figure 4.6, there are three values of
displacements at which the velocity becomes zero for a particular voltage. The three

displacement values, as explained previously, can be termed as the pointsx,, x,andx;.

The first equilibrium position, called the static equilibrium position, is between the points

x, and x, while the second unstable equilibrium position is between x, and x;. As we
keep E, constant in this case, with an increase in the voltage, the gap between the
pointsx, and x, increases and the gap between the pointsx, andx, decreases. After a

certain voltage value, the separation of the velocity plot occurs as seen in Figure 4.6. This
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means that the system has become unstable and the failure of the system has occurred for

that particular E, due to the excessive voltage.
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Fig. 4.6 A phase portrait with constant £, and varying voltage V

Thus the amount of voltage that can be applied to the system has to be known when a

specific initial conservative energy value E is given to the system. There is a particular
value of voltage at which both the points x, and x,coalesce. With any further increase in

the voltage, the velocity curve separates and there are no separate x, and x, points. This

maximum value of voltage is termed as the pull-in voltage for that specific energy value

supplied to the system beyond which the system becomes unstable. Thus an idea of the
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maximum amount of voltage application with an initial particular conservative energy

value supplied to the system is obtained for the safer operation of the device.

The two sections explained above showed that both the application of voltage and the
conservative energy level are interrelated and has its minimum and maximum values. So
far in electrostatic MEMS devices, there is only one pull-in voltage value for a particular
device. But it is shown here that there can be different pull-in voltages for the same
device based on the conservative energy value supplied to the system. It is also shown

that the energy value E, varies from minimum to maximum based on the voltage

applied.

4.3.1.3 Phase portrait for varying voltage and varying energy

Phase portraits are plotted for varying values of voltage and E, simultaneously in this
section. The minimum and maximum values of E, for each voltage is known from the

previous section and hence the pull-in voltage of the device is obtained by plotting phase
portraits for different voltages at their respective maximum conservative energy value E,

as shown in Figure 4.7. It can be seen that for all the voltages there are only two points,

x, and ‘ x,- x;” together, at which velocity is zero since it is plotted for maximum energy

levels E,” for each voltage and at a particular voltage and its respective E, ", all the points

x,, x, and x, become a single value. This value of the voltage is the pull-in voltage for

the device. For the mass-spring system considered here, the pull-in voltage is found to be

1.157V as seen from Figure 4.7. Hence the pull-in voltage determination based on phase
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portrait technique is done and this technique can be applied for various electrostatic

MEMS structures to find their operating range and the pull-in voltage.

5 ¥ T Ll ¥ T T
voltage=1V pull-in volt i
Fys increasing voltage w=1.157¥ ’r'

Fig. 4.7 Phase portrait for varying voltages at their respective E," values

Thus the basic idea of applying the phase portrait technique to understand the nonlinear
influence on the electrostatic MEMS structures has been explained successfully for the
simple mass-spring model. The significance of E, on the system behaviour is presented
and the pull-in voltage determination is done based on phase plots. This method will be
studied more extensively for the continuous cantilever system [70] which is converted

into a mass-spring model based on Chapter-3, in the subsequent section.
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4.3.2 Lumped model of the cantilever

A continuous cantilever system [70] which is converted into a lumped mass-spring model
based on the energy equations as shown in the previous chapter is analysed considering
the nonlinearity in the system for its static and dynamic behaviour in this section based
on the phase portrait and time integration methods. The equivalent stiffness, mass and
electrostatic area were found out and given in Chapter 3. The design parameters were

also given in previous Chapter in Table 3.1.

The equation of motion of the equivalent system under an electrostatic force can be

written as

£,6,4,, V? (4.14)
2(d - x)?
For the static equilibrium, the electrostatic force is balanced by the mechanical restoring

M, x+K, x=

force as explained before. Hence the above equation reduces to

g,6,4, V' (4.15)

K) x= r<eq; " i
T 2Ad -x)

Thus the force balance is plotted for different values of voltage which is shown in Figure

4.8. From the force balance, it can be seen that for a particular voltage, both the stable

and unstable equilibrium positions, xs and x,, become a single point which is the pull-in

voltage of the device as explained before. This force balance plot will be used later in

finding out the energy levels E;" and E;  for any value of the voltage.
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Fig. 4.8 Force balance plot for the equivalent mass-spring system

4.3.2.1 Phase portrait analysis

Similar to the sections explained before, the phase portraits are plotted to study the
nonlinear behaviour of the cantilever system considered here. The equation of motion is

reduced to the form similar to Equation 4.12 as

£08, 4., V,2 (4.16)
Bl AR

-Xx
The above equation is reduced into the form of a velocity Equation 4.17 which is used to

-2 2
Mt,qx + K(,qx -

plot the phase portraits and it is given as

gogrAeq V,-2 7 4.17)
Ey+| ———— [- K, x"
d—x

M
eq
where ‘1’ varies from 1 to p and V,, being the pull-in voltage for the device.

x=%
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The two parameters that can be varied in the Equation 4.17 are the conservative energy

value E, and the voltage V. The variation in the phase portrait due to these two
parameters is shown in the sections below and their significance in affecting the
behaviour of the system is emphasized. The phase portraits are plotted as shown in Figure
4.9 for a constant energy value E,=0 and varying voltages. As explained in previous
section, when the value of the voltage increases, the gap between the points x, and x,
increases while the gap between x, and x; decreases. At a particular value of the voltage,
49.2V in this case, the points x, and x,coalesce. This is the maximum voltage that can be
applied to the system when the initial energy value E,, supplied is zero beyond which the

system becomes unstable. Hence the separation of the velocity plot occurs which is seen

for 60V in Figure 4.9.

Different cases of phase portraits can be drawn by keeping energy values E, as a
constant and by varying the voltages for each case. Hence the maximum voltage that can
be applied to the system for a particular value of E; is found out. Similarly, different

cases of phase plots are obtained by keeping a constant voltage and varying the energy

. . . . *
values E, for each case. In this case, the minimum and maximum energy values, E; and

E,", that can be given to the system for that particular voltage are found out. The

significance of conservative energy value E, and the determination of pull-in voltage by

means of the phase plot are discussed below in the next sections.
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4.3.2.2 Significance of £,

Varying the energy value E,can clearly affect the value of voltage that can be applied to

the system as was seen previously from different phase plots. Hence there is a need to

know the range of values of E, to be applied before applying the voltage and vice-versa.

It is always difficult and time consuming to know the El* and Ez* for each voltage if we
follow the hit and trial method. Hence an easier way of knowing these values is done by
means of using the force balance plot. From the force balance plot as shown in the Figure
4.8, there are two equilibrium points, x; and x,, for every voltage, except the pull-in
voltage. Hence an idea of the numerical values of El* and Ez* can be obtained by
substituting X and X, instead of x in the velocity Equation 4.17 and putting the velocity

as zero.
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Thus El* and Ez* can be expressed as shown in the Equations 4.18 and 4.19.

. . &84, V)] (4.18)
E =K, x —-——"—
- (d-x,)
. , E0E A,V (4.19)
EZ = eq p __—d——
(d-x,
x 107
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Fig. 4.10 Variation of voltage against the energy value

Thus the values of E;” and E,” can be plotted with varying voltages and is shown in
Figure 4.10. It can be seen from the figure that the gap between the two energy values,
El* and Ez*, reduces as the value of the voltage increases. Hence the range of the
conservative energy value that can be applied to the system is reduced as the voltage

increases. This can be clearly seen in Figure 4.11 which is plotted between the voltage
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and the difference between corresponding E, and E,” (AE) with E;” being taken as the
absolute value (i.e. y-axis starts from E,). As the voltage is increased, the value of AE

decreases and it becomes zero at the pull-in value.
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Fig. 4.11 Variation of voltage against AE

It is known that the range of energy value £, that can be applied to the system for any
voltage varies from El* to Ez* and there are three pointsx;, x, and x, at which the
velocity becomes zero at any E, other than E,” and E,” which is clearly shown in Figure
4.9. At any particular value of voltage, the points x,and x, start separating from each

other at E;” and the pointsx, and x, coalesce at E,". The path traced by these three points
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for a range of E, at a particular voltage is sketched below in Figure 4.12 and their
direction of travel is shown by the arrows. It is also seen that the range of E; reduces as

the voltage increases as explained previously from Figures 4.10 and 4.11. At voltages

very close to the pull-in, the gap between the points reduces similar to the range of E,
applied. At the pull-in voltage, all the three points meet at one for only one value of E,

and the system becomes unstable.
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Fig. 4.12 Variation of x, x, and x, for varying E; at different voltages

82



4.3.2.3 Pull-in voltage

The pull-in voltage obtained from the force balance plot can be validated by determining
the pull-in voltage based on the phase portrait method. Maximum energy value, E,", has
to be known for each voltage to find the pull-in voltage by this method as discussed
earlier for the mass-spring model. As the voltage is increased, the gap between the two

points (x; andx,, x,) at which the velocity is zero reduces which is seen in Figure 4.13.
At a particular value of voltage, 68.4V in this case, velocity just becomes zero at a single
point i.e.x,, x,and x, are all of same value. It is seen from published results [70] that the

pull-in value is 68.5V. Thus the pull-in voltage is determined by the phase portrait as

explained and is in close agreement with the published result [70].
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Fig. 4.13 Phase portrait for determining the pull-in voltage
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The points at which the velocity becomes zero in Figure 4.13 for different voltages are
plotted below in Figure 4.14. It is seen that the gap is reduced between the zero velocity
points as the voltage increases. At the pull-in voltage, the points converge to a single

point which indicates that the system becomes unstable at this voltage.
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Fig. 4.14 Variation of x,, x,and x, against voltage from the phase plot plotted at E,"

Thus the method of plotting the phase portraits based on the mass-spring model explained
before in Section 4.3.1 is adopted for the lumped model of a cantilever system [70] as

explained in this Section. The significance of the conservative energy level E,, its

variation and effects on the system behaviour is explained and the method of finding out

. . . * * . .
the minimum and maximum values, E, and E; respectively, are presented. The various

plots ofx,,x, and x, points against voltage and E, values are plotted to understand the
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phase portraits and hence the system changes have been inferred. Finally, the pull-in
voltage investigation is done based on the phase portrait and the pull-in value is
determined and validated with that of the force balance plot and also the published result

[70].

4.3.2.4 Frequency determination

The nonlinear dynamic analysis is done in this section to study the frequency variation
with the energy value E, . The velocity Equation 4.17 is rewritten in the form of the time

equation to obtain the time and hence the frequency which is explained below. The

velocity equation is inverted and written as

a _ 1 (4.20)
dx 2
g AV
E, +[MJ‘KM"2
d—x
M

eq
The above equation is represented in the integration form as

< 4.21
' z_[ dx (4.21)
] gOgrAeq,-V12 2
E,+| 2l UK x
d—x !
M

eq

In the above equation, the limitsx; and x, are obtained for each value of E, and voltage

from their respective phase portrait. The time that is found here is for half the cycle of
motion or it is the half-period. Hence the time period of oscillation is T = 2t, and the
frequency of vibration is given by

27 (4.22)
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Fig. 4.15 Variation of frequency against the energy level E, for varying voltages

Thus the frequency is calculated and plotted as shown in Figure 4.15. From the figure, the

frequency curve starts at E;  and reduces slowly for increasing E, and drops rapidly for

small changes of E, when it is close to E," and suddenly the frequency becomes zero at

E, fora particular value of voltage. It is seen that the frequency curve on the top starts at

E," and slowly reduces with increasing E, and at E, value of 13x10® which is the E,”,

the frequency becomes zero with a rapid reduction for the voltage of 0.1xV,. where V, is

the pull-in voltage obtained from the phase portrait. Similar curves are plotted for varying
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voltages expressed as a parameter normalized with pull-in voltage. As the voltage is

increased, the range of frequency reduces similar to the E, value and at values of voltage
very close to pull-in voltage, 0.98xV,, in this case, the frequency curve is very steep due

to a very small range of £ . At the pull-in voltage, the frequency is zero since the device

is already snapped.

Thus the frequency calculation or the dynamic analysis of MEMS cantilevers undergoing

electrostatic actuation is done using the nonlinear method as explained above. The

frequency plot can also be plotted against voltage for different values of E, which will be

explained in the next section for the MicraGeM cantilever case.

4.3.3 MicraGeM cantilever converted to a mass-spring model

So far, the nonlinear analysis has been done for the mass-spring models whose design
parameters will not be used for testing purposes as they were taken only for theoretical
analysis. Hence, a microfabricated cantilever from the MicraGeM technology which has
to be tested later is analysed in this section based on the nonlinear methods explained in
previous Sections 4.3.1 and 4.3.2. The MicraGeM cantilever is converted to a simple
mass-spring model similar to the cantilever. As explained in the previous chapter, the
equilvalent stiffness, mass and electrostatic areas are found out. The design parameters of
the cantilever which is used for analysis is given below in Table 4.1. As the phase portrait

techniques, its significance and the importance of E,, pull-in voltage investigation and the

frequency determination were all explained in the previous sections for the cantilever
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system [70], the results and plots obtained for the MicraGeM cantilever analysed are just

shown rather than explaining their significance again. Hence the Figures from 4.16 to

4.20 are obtained for the MicraGeM cantilever and they are briefly discussed below.

Table 4.1 Design parameters of the MicraGeM cantilever

E p L B t d €0
(kg/m*) (kg/m’) (um) (um) (um) (um) (F/m)
1.29x10° | 2.32x10° 1000 100 10.7 10.5 8.85x1072

In Figure 4.16, a simple phase portrait is given for varying energy level £, at a constant

voltage. The displacement valuesx,,x, and x,at which the velocity becomes zero for

varying E, values at a constant voltage is traced and is shown in Figure 4.17. The

significance of the range of F,that can be applied for different voltages is studied by

plotting the minimum and maximum energy values E;” and E," for varying voltages

which is shown in Figure 4.18. The next plot in Figure 4.19 is drawn between the voltage

and the difference between E,and E,” (AE) (E," being taken as the absolute value) to

understand the reduction in the range of E, values that can be applied to the system when

the voltage value increases. The phase portrait shown in Figure 4.20 is plotted for

different voltages with their respective E;” values to determine the pull-in voltage of the

system.
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Fig.4.20 Pull-in voltage determination based on the phase portrait

4.3.3.1 Frequency analysis

Hence the pull-in voltage determination and the significance of energy level E, plots

were plotted for the MicraGeM cantilever as shown in previous section. In this section,

the frequency plots are plotted for varying voltages and at different energy values E,. The
equation for selecting the £ is given as

AE= E,-E," = a constant value (4.24)

While selecting E, value, care is taken to maintain the AE constant throughout. There is a

value of voltage for every E, value at which the frequency becomes zero which can be
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seen in Figure 4.21. When the frequency is plotted with voltage while E, being just the

E,” value at different voltages, the frequency value becomes zero at the pull-in voltage

which is the same as obtained from the phase portrait i.e. 77.8V. Similarly, at different E,
values, different pull-in voltages can be calculated. When the same plot is plotted with E,

value as Ez*, the frequency obtained will be zero for all value of voltages. Hence the

frequency curves are obtained for varying voltages and at different energy values E,.

Different pull-in voltages are obtained at different £, values.
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Fig. 4.21 Frequency against voltage for varying energy values E,
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4.3.3.2 Validation

In this section, the nonlinear dynamic analysis employed in the present work is compared
with the results obtained from the linear analysis adopted by Rinaldi et al. [76]. The

dimensions taken for both the cases are given below in Table 4.2.

Table 4.2 Design parameters taken for the comparision between linear and nonlinear

analysis adopted for finding the frequency of a MEMS cantilever

E p L B t d )
(kg/m®) | (kg/m’) (um) (um) (um) (pm) (F/m)
1.29x10° 2.32x10° 1000 100 10 11.5 8.85x107"?
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Fig. 4.22 Comparision of frequency against voltage based on linear and nonlinear

analysis
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It can be seen from Figure 4.22 that the frequency for both the cases is almost the same
value till 75V. But for voltages above 75V, the frequency reduces drastically for the non
linear method than that of the linear method. The pull-in voltage is 80.5V from the
nonlinear analysis while it is 88V from the linear analysis based on [76]. Thus there is a
reduction in the value of the pull-in voltage obtained by the method employed in this
work compared to the linear method [76] as seen in Figure 4.22. This is physically
meaningful because the electrostatic force increases rapidly when the gap between the
electrodes becomes small in a highly nonlinear fashion. It can be inferred that the linear
analysis does not hold good for larger deflection ranges since it is an approximate method
compared to the non linear method employed in our case. Also, it might lead to the
failure of the device if it is operated for larger deflection purposes as the device might be
already pulled-in even though it is in a safe region of operation based on the linear
methoa. Hence, the non linear method employed in this work is suggested for finding the

accurate pull-in voltage and the operation range of the MEMS devices.
4.4 Summary

In this chapter, an introduction to the non-linear analysis is given and different methods
used to analyse the nonlinearity of the pendulum has been explaine(i. The phase portraits
have been plotted for the pendulum at different initial conditions to understand the
nonlinearity. Similarly, these phase portrait techniques were employed for the simple
mass-spring model undergoing electrostatic actuation and the pull-in investigation has

been done and the pull-in voltage value has been evaluated. A cantilever system
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converted into a lumped mass-spring model has been taken, the pull-in investigation is
done and the results are compared successfully with the published results. The
significance of the energy value E has been explained to understand the system
behaviour. The dynamic analysis is done based on the time integration and the frequency
plots have been sketched with a constant voltage and varying energy value F,. Similar
analysis is done for the MicraGeM cantilever and various plots similar to the previous
case were plotted. In this case, the frequency plot for varying voltages and at different
energy values E;is shown. Also, the comparision of the nonlinear method is done with a

linear analysis method and the results have been discussed. Thus the nonlinear analysis of

MEMS structures has been done successfully in this chapter.
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Chapter 5

Dynamic Experimental Testing

5.1 Introduction

In the previous chapter, the nonlinear analysis of both the simple mass-spring model and
the cantilever system converted into a mass-spring model has been described and their
pull-in voltages and frequencies have been evaluated. In this chapter, experimental
testing methods, the test set-up and the test results for a MEMS cantilever
microfabricated through the MicraGeM process technology will be discussed. The main
objective of testing devices is to validate the design and simulation process in the
developmental phase. Theoretical methods alone cannot be relied upon for doing the
performance analysis of the system since a number of constraints are involved in the
analysis. The mathematical approach employed for analyzing the system is important
since different methods can predict different behaviour of the system. Also, the size of
the MEMS devices, microfabrication techniques and the tolerances that are provided will
affect the real-time system behavior tremendously. Hence, experimental testing method
for the dynamics of MEMS devices is necessary for developing reliable and mar'ketable
working systems. The main consideration is how to perform the measurements on the
micro devices and represent its micromechanical elements. Different testing methods
have been developed so far by various researchers to test these microdevices and have

obtained their own results [77].
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5.2 Different Testing Techniques

There are two main techniques [78, 79] that have been adopted so far for the testing of
MEMS devices and they can be generalized as contact and non-contact testing methods.
In case of finding the mechanical properties of the MEMS structures such as the Young’s
modulus and fracture strengths, different non-contact testing methods such as micro
tension test [80], microbeam bend test [81], axisymmetric plate bend test [82], M-test
[83] and dynamic tests [84] are carried out to test various clamped and free standing
structures. By using contact methods, deflections of the MEMS devices are found out by
means of using microprobe [85], a stylus [86] or a nano indenter [87]. Even though these
contact techniques can give accurate results, the use of this technique might often result
in the destruction of the devices. A non contact testing technique is adopted often since it
is simple in terms of setting up the equipments and also, avoids causing any damage to
the devices which is the case in contact methods. For example, interferometry principle is
used in non contact testing methods which are based on the principle of measuring the
deflections of micro beams by inferring the variations of optically induced fringe patterns
[88] and hence there can be no possibility of the micro device to be in contact with any
physical structure which might lead to its destruction. Although this method has various
advantages, the main drawback of non contact optical method is the alignment of the
light source, optical devices and the micro device. Also, the light scattered from the
device and other equipments can also create a problem since the optical detector might

detect light from various sources which will not yield correct results. After taking all the
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positive and negative factors into consideration, a non contact optical testing method

developed by Gino et. al [76] is adopted to test the micro cantilevers.

5.3 Test Set-up

Figure 5.1 shows the schematic representation of the dynamic testing set-up used for the
measurement of the natural frequencies of the micro cantilevers which are excited by
means of an electrical excitation. The experimental testing set up consists of a
commercially available Bruel and Kjaer [89] Laser Doppler Velocimetry (LDV) with
HeNe laser and a photodiode detector. LDV is the point measurement of the velocity by
means of laser light and it is based on the principle of Doppler effect. The shift in the
laser light frequency due to the change in the surface velocity of the micro device is
called as the Doppler shift and the measurement of this shift leads to the measurement of
the frequency of vibration of the device which is the principle of LDV. The micro
cantilevers are actuated with both AC and DC voltages using a 5V power source and an
AC/DC amplifier. The signal detection system consists of an oscilloscope for the time-
domain reference and a spectrum analyzer for the frequency domain measurements. The
entire test set-up is mounted on an optical table for the accurate measurement and for

ease of operation since the table is a perfectly flat surface.

The nominal beam diameter at the output of the laser source is approximately 1mm.

Since this value is too high to have the laser focused accurately on the micro cantilever

device, a diverging-converging lens optical system is used to reduce the laser light spot
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size according to the desired diameter. The adjustment between the two lenses towards
and away from the microdevice and also from the laser source is done by the fine-tuning
of the micro positioners. Also, a beam splitter is used between the two lenses to adjust the
intensity of reflected laser light falling back on the laser source. The complete optical
system comprising of the laser source, a divergent lens, a beam splitter and a convergent

lens is shown below in Figure 5.1.

Spectrum Analyzer Oscilloscope

Microdevice
to be tested

photodetector
diode

converging lens diverging lens

HeNe Laser

Fig. 5.1 Schematic representation of the experimental set-up

The excitation of the MEMS device can be done by both mechanical and electrical
sources. The mechanical excitation is done by means of mounting the device on a flat
acoustic speaker and based on adjusting the vibrations from the speaker, the intensity of
the device vibration can be varied. The other way of exciting the micro device is by

electrical excitation which is carried out by using an electrical power supply. This is the
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type of excitation which is used to carry out our experiments as explained before. An
AC/DC amplifier which is used to apply both AC and DC voltages to the micro device
simultaneously is connected to the power supply. The micro device is mounted on a
vertical clamping stand in such a way that the pins for the electrical connections of the
packaged micro device chip comes on the back of the clamping stand for the ease of the
connection purposes. A close-up view of the microchip clamped on the vertical stand

with the help of an insulated tape is shown below in Figure 5.2.

MicraGeM packaged

A‘g/ chip

Fig. 5.2 A close-up view of the MicraGeM chip taken during the testing of the cantilevers

The laser light from the laser source is focused on the micro cantilever which is to be
dynamically tested. The light is directed with the help of the convergent- divergent lens
and the beam splitter for getting the required beam diameter focused on the device as

shown in Figure 5.3. An optical microscope and a reflecting mirror set-up is employed to
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have an enlarged view of the micro cantilever. This is done to have a clear view on the
adjustment of the mirror set-up in the x, y and z-directions for the correct alignment of
the laser light on the cantilever. Also, this microscopic image can be connected to a
computer to view the direct image of the device movements in the monitor. The

microscopic set-up with the MicraGeM chip is shown in Figure 5.4.

LDV
converging
lens
diverging
lens
beam
splitter

Fig. 5.4 Microscopic set-up for an enlarged view of the micro cantilever
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5.4 Testing Procedure and Test Results

The Figure 5.5 (a) gives the overview of the set-up that is used for the dynamic testing of
the micro device. The pins of the micro cantilever are connected to the AC/DC amplifier
which in turn is connected to the 5V power supply. When the required AC voltage is
applied, the actuation of the cantilever occurs and hence the light reflected from the
device suffers Doppler shift due to the surface velocity of the vibrating device. As
explained before, the LDV measures this Doppler effect. The LDV is connected to the
oscilloscope which in turn is connected to the spectral analyzer from which the amplitude

and frequency responses of the vibration of the cantilever are obtained, respectively.

Consider Figure 5.5 (b) as the scheme for electrostatic testing. In this testing scheme,
both AC and DC voltages are applied. The DC voltage provides the electrostatic bias
while AC (Apsinmt) voltage excites the cantilever. The AC voltage with a peak-to-peak
amplitude is applied on the system and hence the amplitude of vibration is dependent on
the AC voltage. The DC voltage is a bias input that is given to the system and hence it
leads to the bending of the cantilever beam. When both these voltages are applied as
shown in the Figure 5.5 (b), the cantilever undergoes both the bending and the vibration
at the same time. Thus the system is given a sweeping frequency over a range of 0-25kHz
and the increase in the amplitude of vibration for frequencies close to its natural
frequencies can be seen in the oscilloscope. Thus the peak in the frequency curve at their

natural frequencies can be estimated using the spectral analyzer.
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Spectral
analyzer

(a) Complete overview of the experimental setup
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I >

Microcantlever
msulation
electrode

(b) Electrostatic testing scheme for the microcantilevers

Fig 5.5 Test setup and testing scheme

Then, the DC voltage is applied beginning from a zero value and slowly increased and
when the voltages are close to the pull-in value obtained theoretically and no further
increase in the voltage was applied. Also, when there is a huge reduction in the value of
the frequency for a very small increase in the voltage, utmost care is taken in increasing
the voltage further as the cantilever is close to the pull-in condition. The next step would

be to increase the AC voltage and keep it at another higher fixed value and similar set of
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values for increasing DC voltages are taken. Thus the frequency measurements are done
for varying AC and DC voltages. Varying DC bias creates different nonlinear
electrostatic condition, while varying AC amplitude represents the initial offset from the
static equilibrium and thereby representing the value of E,. Here, the different E,
conditions were created by varying the amplitude of AC excitation signal while varying
bias voltage of ‘V’ was created by changing the value of DC bias. By different
combination of AC amplitude and DC value, one could create different nonlinear

situation of electrostatically actuated structures.

The experiment is conducted on the MicraGeM cantilever whose dimensions were shown
in Table 4.1. Other devices such as fixed-fixed beams are not tested since the theoretical
prediction of their natural frequencies are found to be more than 25 kHz which is out of
range of measurement using the current set-up. The values of AC voltages that are
applied for the entire testing are 2,4,8,12,16 and 20V. For each set of readings, i.e. for
each AC voltage, the DC voltage is varied from 0 to a value at which the frequency
seems to reduce drastically compared to the previous value. Shown below in Figures 5.6
to 5.10 are the sample plots obtained from the spectral analyzer for particular values of
AC and DC voltages. The frequency range which is swept is taken in the x-axis while the
amplitude of vibration is taken in the y-axis. The peak values obtained are the natural

frequencies of the cantilever beam at different voltage conditions.
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Fig. 5.6 Frequency response of the cantilever for constant AC = 2V and different DC

voltages
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Fig. 5.7 Frequency response of the cantilever for constant AC = 4V and different DC

voltages
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Fig. 5.8 Frequency response of the cantilever for constant AC = 8V and different DC

voltages
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Fig. 5.8 Frequency response of the cantilever for constant AC = 8V and different DC

voltages
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Fig. 5.9 Frequency response of the cantilever for constant AC = 16V and different DC

voltages
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Fig. 5.10 Frequency response of the cantilever for AC = 20V and different DC
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For a particular AC voltage, different natural frequencies (peak values) are obtained for
different DC voltages close to the pull-in voltage values. Similarly, for various AC
voltages, various sets of readings of the frequency values are taken. It is absolutely
necessary to stop applying the voltage when the reduction in the frequency value is too
large for a very small increase in the DC voltage. For example, in the case of 4V AC
voltage, for initial smaller values of DC voltage, the frequency reduces by 10Hz for an
increase of 10V DC approximately. But at 67.5 V DC, the frequency reduced by 100Hz
for a further increase of 0.5V DC. Hence no further increase in the DC voltage is done

since it might damage the cantilever due to the pull-in condition. Small value of AC

amplitude is assumed to provide a condition of E, = E,". The higher value of AC

amplitude is expected to move closer to the condition £, = E;. The Figures 5.11 to 5.16

show the plot of natural frequency against the DC voltage for different AC voltages.
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Fig. 5.11 Variation of experimental natural frequency against DC bias voltage at 2V AC
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Fig. 5.12 Variation of experimental natural frequency against DC bias voltage at 4V AC
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Fig. 5.13 Variation of experimental natural frequency against DC bias voltage at 8V AC
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Fig. 5.14 Variation of experimental natural frequency against DC bias voltage at 12V AC
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Fig. 5.16 Variation of experimental natural frequency against DC bias voltage at 20V AC

The obtained results are extrapolated till the frequency becomes zero since it is not
achieved experimentally due to the pull-in constraint as explained before. This
extrapolation is done using the fifth order polynomial and is shown below in Figure 5.17
which has all the curves from Figures 5.11 to 5.16. The fifth order polynomial is chosen
for the extrapolation of experimental frequencies since the theoretical frequency
prediction at very close to pull-in conditions were also extrapolated with the fifth order
polynomial. It can be seen from Figure 5.17 that the frequency becomes zero at different

DC voltages for different AC voltages.
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Fig. 5.17 Combined variation of tested natural frequency against DC bias voltage for

2,4,8,12,16 and 20V AC

5.5 Validation
5.5.1 MicraGeM cantilever

In this section, a comparision between the experimental frequency and the nonlinear

predicted frequency is done for the MicraGeM cantilever whose dimensions are in Table

4.1. The frequency curve obtained against a varying DC voltage when a 2V AC voltage is
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applied during the experimental testing is compared with the frequency curve obtained
against a varying voltage with the energy value at E," from the non linear analysis

adopted in Chapter 4. The Figure 5.18 shows the comparison between the two curves.
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Fig. 5.18 Comparision between the experimental and nonlinear analysis frequency curves

From Figure 5.18, it is seen that the frequency values are almost the same for small value
of voltages applied to the cantilever. After a voltage of around 50V, the gap between the
frequency curves widens. Also, the voltage at which the frequency becomes zero from
the non linear analysis is 77.8V while from the experimental testing, the zero frequency

voltage value is extrapolated to be around 80V. Thus a difference of approximately 2.5%
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in the accuracy of the pull-in voltage is found between the experimental results and

theoretical prediction while doing the dynamic analysis.

5.5.2 AFM cantilever

In this section, the frequency validation of an Atomic Force Microscope (AFM)
cantilever experimentally tested by Rinaldi et al. [76] is done. The frequency results
obtained based on the nonlinear analysis is compared with both the theoretical (linear
analysis) and experimental results of [76]. The dimensions of the cantilever taken by [76]

are given below in Table 5.1. The gap between the top and bottom electrodes is 51.2pum.

Table 5.1 Design parameters taken for the comparison of frequency obtained from

experimental [76], linear [76] and nonlinear analysis of an AFM cantilever

L (um) B (um) t (um) E (10°N/m?) p (kg/m’)

351 345 0.95 169.5 2330

The comparison of the frequency for different cases is done by plotting the natural
frequency values against the voltage. It can be seen from Figure 5.19 that the frequency
curve obtained from our nonlinear analysis is in very close agreement with the
experimental [76] and theoretical [76] curves. The normalized plot of Figure 5.19 is
shown below in Figure 5.20 and the close agreement of the values is clearly seen. The
frequency values are normalized based on their maximum value as it can be inferred in

Figure 5.20 that all the curves start at 1 in the y-axis. For very small voltages, the
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nonlinear frequency values seem to be almost the same as that of the theoretical values
[76] rather than the experimental [76] values as can be seen from Figure 5.19. For

voltages close to the pull-in voltage, the nonlinear curve seems to be in close agreement
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Fig. 5.19 Comparison of frequency obtained from experimental [76], linear [76] and

nonlinear analysis of an AFM cantilever

with the experimental curve [76] rather than the theoretical curve [76]. The pull-in
voltage value from our nonlinear analysis is less than that of experimental [76] whereas
the theoretical [76] seems to be higher. Hence it can be inferred that it is always
necessary to apply the nonlinear analysis for larger deflection ranges rather than the

linear analysis to avoid pull-in and for the safe operation of the device. The difference
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between the experimental and theoretical results can be attributed to the differences in
dimensions, material properties and structural deviations between the design intent and
that of the real device. In order to compare the variations clearly, the normalized
‘frequencies are given in Figure 5.20 against the bias voltage. One could see a sudden

decrease in frequency near pull-in condition with the nonlinear modeling.
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Fig. 5.20 Comparison of the normalized frequency curves
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5.6 Summary

The experimental methods that have been adopted so far for MEMS structures have been
discussed and a non-contact optical Laser Doppler Velocimetry (LDV) set-up that is used
for the testing of micro cantilevers is explained. Then the testing procedure has been
discussed and the safety measures taken to avoid the pull-in voltage have been given. The
| frequency plots have been drawn for different DC and AC voltages using the spectral
analyzer frequency responses. The comparison of dynamic frequency plots against the
voltage between the experimental test results and the nonlinear theoretical prediction was
carried out and the percentage of accuracy of the prediction value has been found. Also,
the comparison was carried out for the AFM cantilever [76] and the nonlinear frequency
curve seems to be in very close agreement with both the experimental [ 76] and theoretical

[76] curves.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

An introduction to the electrostatic actuation and the pull-in instability in MEMS
structures were given and the work done so far in employing both the linear and non
linear methods for doing the static and dynamic analysis was discussed. Then the linear
analysis of a simple mass-spring model of an electrostatically actuated MEMS structure
was done and the significance of the pull-in instability was understood. Similarly, the
linear analysis of 1-D aeroelastic wing structure was presented to understand the
divergence and flutter instabilities. Thus a comparision between the electrostatic MEMS
structures and the aeroelastic wing structures was performed to infer the analogy between
the two fields. Also, the control methods employed so far in both the fields to overcome

their instabilities were discussed.

The method of microfabricating the MEMS structures based on the MicraGeM
technology was explained and the released microstructures such as microplates and
micrcantilevers were presented. Then, the conversion of a cantilever system into an
equivalent lumped mass-spring model was done and the final equations for calculating

the equivalent mass, stiffness and electrostatic area were derived.
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An introduction to the non linear analysis using the phase portraits was explained in the
case of a simple pendulum. Similarly, a simple mass-spring model of an electrostatically
actuated MEMS structure was taken and the non linear analysis based on the phase
portraits were done to understand the nonlinearity of the system. Then a cantilever system
converted into an equivalent mass-spring model was taken and the similar phase portrait
analysis was done to investigate the pull-in instability. The significance of the
conservative energy value on the system behaviour was presented and the pull-in voltage
values were calculated. Then the dynamic analysis was done based on the time
integration and the frequency variation against the conservative energy values was
plotted. Similar results were discussed for a cantilever designed using the MicraGeM
technology and the frequency curve against the varying voltage was plotted and

compared with the result from the linear analysis.

A non-contact optical Laser Doppler Velocimetry (LDV) set-up that was used for the
testing of micro cantilevers was explained. Then the testing procedure was discussed and
the method of application of both the DC and AC voltages to find the frequency was
given. Finally, the frequency plot was compared with the non linear theoretical
prediction. The conclusions that can be inferred from the work done in this thesis are

presented as follows:

1) A comparision of the electrostatic MEMS structures with the aeroelastic wing

structures show that there is a considerable similarity between the instabilities and

their control measures in these two domains. .
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2)

3)

4

3)

6)

Non linear analysis of the electrostatic MEMS structures is done and the pull-in
voltages are calculated based on the phase portraits. The results are compared
with the published results and they are seen to be in close agreement.

From the previous works, it is only the voltage which has a considerable effect on
the pull-in phenomenon. In the present work, it is seen that the conservative
energy values also seem to influence the system behaviour considerably along
with the voltage as different pull-in conditions are achieved based on different
energy values.

The dynamic analysis is done based on the time integration technique. The
frequency values obtained are compared with the linear analysis and it is proved
that the linear analysis does not hold good for larger deflections as the pull-in
voltages are higher than that of the values from the non linear methods. Hence a
safe operation range of the micro devices is found based on the non linear
method.

The dynamic testing of microcantilever is done successfully using the optical
LDV set-up and the frequency values against the varying voltage seem to be in
agreement with the non linear theoretical prediction. Thus for applications like
optical mirrors, filters and detectors, the non linear method employed in this thesis
work can be used for the prediction of the operation range of the MEMS devices.
Since various results seem to be in agreement with previously published
continuous systems results, it is concluded that the equivalent lumped mass-spring

model is adequate for the nonlinear analysis of any continuous systems.
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6.2 Future Work

The field of MEMS is multidisciplinary in nature with various possibilities of
miniaturization in different areas of engineering. The present work was done mainly for
estimating the safe operation of the electrostatic MEMS structures and it was based on
the non linear analysis. The following points are formulated that can be considered in the

future for research and development purpbses:

1) The analogy between electrostatic MEMS structures and the aeroelastic wing
structures can be used to improve the static and dynamic performance of both
these fields.

2) Non linear analysis based on the phase portraits and the time integration
techniques can be done directly on the continuous systems such as cantilever
beams instead of converting them into an equivalent mass-spring model.

3) A mathematical relation between the conservative energy value from the non
linear analysis and the AC voltage applied from the experimental testing can be
derived for the understanding of their similarities in affecting the system

behaviour.
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