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Abstract

Object Comprehension Translation for Object Oriented Databases

Alexander Lakher

Object Comprehensions are a new query notation introduced in 1994 by Chan
and Trinder to provide a declarative querv language for object-oriented databases.
Object Comprehensions allow queries to be expressed clearly. concisely. and processed
efficiently. while incorporating many features that are missing from or inadequate
in existing object-oriented query languages such as support of object-orientation.
computational power and support of collection. However there is no object-oriented
database (OOD) so far which incorporates Object Comprehension Language (OCL)
as a query interface. This paper introduces an experimental translator to translate
OCL into the O++ query language for Ode. an object-oriented database system from
AT&T.
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Chapter 1

Background

1.1 Introduction

There are many object-oriented query languages [2]. [7] that have been proposed in
recent years. Some of them are designed particularly for object-oriented databases
(OOD) and some adapted from other areas: the relational data model and its exten-
sion [9]. object-oriented programming languages [3]. According to [6] all of them are
inadequate in one way or another. These inadequacies are categorised in [4] into four

groups:

o Support of object-orientation. A few OO query languages do not capture the
class hierarchy which is defined by the [SA relationship between classes defined

in a database schema.

o Structuring power. It refers to the ability to explore and synthesize complex
objects that are the components of OOD. The creation of a new object may
require a collection of objects as a parameter. To do so a query language
must provide something like nested queries and allow orthogonal composition

of constructs.

o Computational power. Recursion and quantification are two examples that
characterise the computational power of a query language. Traversal recur-
sive queries as well as quantification are supported poorly. Recursive queries

with computation are supported even worse.



e Support of collection. Usually "Set” is widely supported and its operations are
well defined. It is not the case for other collection classes; interaction between

different collection classes is unclear.

Pointing out the above-mentioned inadequacies [4] introduces a new query nota-
tion called Object Comprehensions. which takes into consideration the fundamental
properties of object-oriented data models and eliminates above-named drawbacks.
Object Comprehensions Language (OCL) is based on List Comprehensions in [10]
which is clear. consize and powerful. The extention of List Comprehensions to Ob-
ject Comprehensions was done by consolidating and improving constructs found in

existing query languages.

1.1.1 Overview of the OCL project components

This report is a part of a team project work. the main idea of which is to test OCL,
the new powerful query notation. For that purpose OCL queries are to be translated
into O++. an interface language of the object oriented database Ode. Translated
O++ queries are to be run against a university database based on Ode. This idea
initialized a team work which consisted of three interrelated projects. First of all the
required database system is to be built and managed. This constitutes one of com-
ponents. the database project. Building a database system in turn requires a symbol
table for such a database. which describes a plot for another component. the schema
project. This project is responsible for the implementation of the above mentioned
symbol table. The third team work component is to provide the translation of user
specified OCL queries into an interface query language that could be recognized by
and run against the target database created in the database project. Now we can

have a closer look at each of these components and their mutual relationships.

The team work consists of the following three interrelated components:

o Creating an Ode-based university database as a target for the translation.
The essence of this project is to set up and manage the University sample
database. It is decided that the target database is to be based on Ode, experi-
mental object-oriented database system from AT&T. It is defined, queried and

manipulated in O++, the database interface programming language which is

(S



based on C++ programming language. The University sample database reflects
a university model, a schema. of interrelated objects of O++ classes such as De-
partment, Staff, Student, Course. etc. The O++ based queries are to be run
against the University sample database. The results are obtained by utilizing
the Ode built-in query facilities and implemented O++ classes to support OCL
concepts. so called data structure utilities for query processing such as Set. List
and Bag. The query results then would be printed in the form of collection of

solutions.

e [mplementation of a university database symbol table.
The purpose of the schema project is to implement a symbol table for the above
mentioned University sample database of the database project. [t is to look into
BNF grammar for the schema definitions and implement the facility to input
views described as schema's for those OCL queries which create objects of new

classes .

o [mplementation of the OCL-to-O++ translator.
Presented in this report this project is focusing on the translator implementation
and translation of the OCL queries into O++. an interface language for the Ode
database system. Those OCL-to-O++ translated queries are to be run against
the University sample database built in the database project. The scope of the
translation project is set to design and implement experimental OCL translator.
The issues of translator’s code optimization. error handling, user interface as
well as the topic of Object Comprehension queries optimization are not in the

scope of this project.

1.1.2 Organization

The organization of this report is as follows. The remaining sections of this chap-
ter provide a background of Comprehensions and an overview of Ode. Chapter 2
describes the sample data model, OCL and sample queries. Chapter 3 presents the
desired translations of the OCL queries. Chapter 4 outlines the implementation of
the translator. Chapter 5 concludes. Bibliography is followed by appendices which

contain the actual code of the translator.



1.2 Comprehensions

1.2.1 Set Comprehensions

The inspiration for comprehensions was the standard and convenient mathematical
notations for sets. For example in mathematics the set of squares of all the even

numbers in a set S would be written as:
{z*lr € S Aeven(z)}

Comprehensions first appeared as Set Comprehensions in an early version of the
programming language NPL that later evolved into Hope [11] but without compre-

hensions. They were followed by List Comprehensions [12].

1.2.2 List Comprehensions

A full description of List Comprehensions can be found in [10]. The above mathe-

matical expression written using List Comprehensions would have a look:
2
{e7le — Lieven(r)}

where L stands for a list.

List Comprehensions have been incorporated into several functional languages.
e.g. Miranda [13] and Haskell (8].

The syntax of list comprehensions is as follows. where E stands for an expression.
Q stands for a qualifier, P stands for a pattern, and O stands for an empty qualifier:

E = E | Q]
Qu=E|P~E[O0]Q:Q

The result of evaluating the comprehension [E | Q] is a new list, computed from
one or more existing lists. The elements of the new list are determined by repeat-
edly evaluating E, as controlled by the qualifier Q. A qualifier is either a filter or a
generator, or a sequence of these. A filter is a boolean-valued expression, expressing
a condition that must be satisfied for an element to be included in the result. An
example of a filter in the example above is even(z). A generator of the form T «
E, where E is a list-valued expression, makes the variable T range over the elements

of the list. An example of a generator is z «— L above. More generally, a generator
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of the form P « E contains a pattern P that binds one or more new variables to

components of each element of the list.

1.2.3 Object Comprehensions

The generalization of list comprehensions has brought collection comprekensions.
which provide a uniform and extensible notation for expressing and optimizing queries
over many collection classes including sets, lists, bags. trees and ordered sets. That
is what in [4] is called object comprehensions. The most significant benefit is that.
although each primitive operation will require a separate definition for each collec-
tion class. only one query notation is needed for all these collection classes. A single
definition is all that is required for high-level operations defined in terms of collection

comprehensions. [t significally reduces the syntactic complexity of the query notation:
{2}z « C:even(z)}

where (' stands for a collection. i.e. could be a bag, a set or a list. Here are some

examples of object comprehensions using the notation suggested in [4].

Example 1. Return a set of elements of the bag B. A bag allows duplicates however

they are to be eliminated in the resulting set.
Set [e<-B el

Example 2. Return a bag of elements of the list L. Possible duplicates are preserved

however the order of the elements is lost.
Bag [e<-L | e]

Example 3. Return a list of elements of the list L provided they comply with some

specific ‘condition’.
List [ e <- L ; condition(e) | e ]

It is worth mentioning that comprehensions are a declarative specification of a
query, and as it is shown in [4], are a good query notation for being concise, clear,
expressive and easily optimized. However the optimization was out of scope of this

project and left for the future work.

(S]]



1.3 Overview of Ode and O++

Ode is an object-oriented database based on the C++ object model. Ode is the
product of AT&T Bell Laboratories. The programming interface to Ode is the O++
database programming language. O++ extends C++ with facilities for creating and
manipulating persisting objects. organizing persistent objects into clusters. defining
and manipulating sets. querving the database. specifyving constraints and triggers.

and running transactions.

The Ode database is based on a client-server architecture. Each application runs
as a client of Ode database. Multiple Ode applications running as clients of the
database server can concurrently access the database. Ode also supports single user

applications that can run without a separate server.

Ode 4.0, the current release, consists of the O++ compiler (OO) and the object
manager library. Database applications are written on O++. The O++ compiler
translates an O++ program into a C++ code. which contains calls to the Ode object
manager library. The library provides facilities for creating and manipulating persis-
tent objects. The translated program is then compiled with the C++ compiler and

linked with the object manager library to form an executable program as indicated

in Figure 1.
Ode
Object
Manager
Library
O++ | O++ C++ | G4+ object Linker executable
compiler compiler | code code

Figure 1: Compilation of an O++ program.

O++ has the following features to facilitate a database access. Objects of class

types can be accessed by using the associative for loop as illustrated:

6



for ( s in STUDENTS )
{...}

This loop will iterate over all the s of type STUDENTS in the default database.

Another important feature is suchthat clause. It can be used to restrict the search

to objects that satisfy a boolean expression, e.g.:

for ( s in STUDENTS )
suchthat (s.age > 125)
{ ...}

We will use these two basic constructs to express our queries in O++. Here is the

the concrete query example.

Example.
Set<STUDENTS> tempSet; //result collection declaration: set, bag or list
for ( s in STUDENTS ) //‘for’ loop iteration
suchthat(s.address.city == "Montreal") //restriction applied
tempSet.add(s); //result is ready

For further O++ query examples please see Chapter 3. They are presented there

as the translations of OCL sample queries from Chapter 2.

1.3.1 Objects in O++

The O++ object facility is based on the C++ object facility and is called the class.
Volatile objects are allocated in volatile memory and are the same as those created in
ordinary programs. Persistent objects are allocated in persistent memory and they
continue to exist after the program creating them has terminated. that is objects
may exist between invocations of programs. In O++ persistence is a property of the
object instance. not the class. Objects of any class can be persistent. Some objects of
a class can be persistent, while others are volatile. In O++ the pnew operator creates
a new persistent object and is otherwise identical to new operator in C++ which is
to create a new volatile object. The pdelete operator deletes a persistent object.

Each persistent object is identified by a unique identifier, called the object identity

7



(oid). The object identity is referred to as a pointer to a persistent object. O++
provides facilities for associating constraints with an object. These are specified as
part of a class definition, and are treated as members of the class. The specified
constraint conditions are checked every time an instance of that class is updated
(through a public member function). a new instance is created. or an old one is re-
moved. If the constraint is found to be violated. the constraint ‘“fires’. executing the
action part associated with it. if any. After the action part is executed. the con-
straint is checked again. If it is still not satisfied. then the transaction attempting

the update causing the constraint violation is aborted, and all its updates are undone.

The constraint facility provided in O++ is intra-object in that when an object
is updated only the constraints associated with it, through its class definition. are
checked. This restriction is for the reasons of efficiency, as well as in accordance with
the spirit of localized processing of object-oriented programming. It is not practical
to check every constraint with every object. every time that any update is made in
the system. Note that there is no restriction on referencing or even modifying other
objects in the condition or action part of a constraint. Constraints can be hard or
soft. Hard ones are checked as soon as the object is updated, and must be satisfied
immediately. Soft constraints checking is deferred until the end of the transaction
causing the update. Inter-object constraints almost always must be soft since the
constraint may be violated after one object has been updated. but before the other

one has.

1.3.2 Transactions in O++

Transactions access and manipulate the objects in the database by invoking oper-
ations on the objects. They also invoke transaction management primitives. If a
transaction has invoked operations on an object but has not yet committed. then this

transaction is responsible for the uncommitted operations.

Each O++ source file that uses O++ database facilities must include ode.h file.
Class database is automatically available by including this header. This class provides
functions for manipulating (such as closing, opening, etc.) the database and naming

persistent objects. Only the following database operations



e open: opens the database identified by name. On successful completion, open

returns the pointer to the database object; on failure returns NULL.

e close: is used to close a database previously opened by calling database: : open.

Returns zero on success and non-zero on failure.

e remove: deletes a database previously opened by calling database: :open. Re-

turns zero on success and non-zero on failure.

can be invoked from outside a transaction body. All other operations must be in-
voked within the transaction body. Thus all code interacting with the database.
except database opening and closing, must be within a transaction block. By default
Ode uses 2-version 2-phase (2V2P) locking which allows multiple transactions to read

an object and one transaction to write an object.
There are three kind of transactions: update. read only. and hypothetical. Update
transactions have the form:
trans { ... }
Read-only transactions have the form:
readonly trans { ... }
Hypothetical transactions allow users to pose ‘what-if’ scenarios and have the form:
hypothetical trans { ... }

Here is an illustration of a transaction block in a database called coffee:

#include <ode.h>

main()

{
database *db;



if ((db = database::open('"coffee")) == NULL)
error("no coffee for today - cannot open database");

trans {

}
db->close();

Transactions are aborted using the tabort statement. The macro 01d(X) can be used
within a transaction to return the value of X at the beginning of the transaction.
where X is a persistent object. Similarly the macro changed(X) returns TRUE if
X has been modified from 01d(X) within the course of the current transaction. and
FALSE otherwise.

1.3.3 Events

Events can be bhasic and composite. The latter is composed from basic ones and other

composite events.

Basic Events

There are three sorts of basic events.

o member function call events: invoking public member functions on a persistent
object causes previously declared events to be posted to the object, e.g. the call
pObject->function1() where pObject is a persistent pointer and functionl
is a public member function causes the event before functioni to be posted
to this object before the call is executed and the event after functionl after

its execution.

e transaction events: the run-time system posts two types of transaction events.
l. before tcomplete posted just before completion of the transaction which
happens just before a transaction attempts to commit. Conceptually, after the
last action in a transaction unit has completed execution, before tcomplete
is posted to each object that was accessed by the transaction and is interested

in this event.
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2. before tabort: posted just before a transaction is about to be aborted. It
is posted to each object that was accessed by the transaction and is interested
in this event. The posting occurs immediately prior to the system rolling back
transaction actions in response to encountering a tabort, transaction abort

command. System aborts do not cause any events to be posted.

o user-defined events: users can define new events: such events must be posted
explicitly. For example. the event declaration ‘event gateClosing;’ defines
a new event which is not associated with any method. User-defined events are
posted to a persistent object by calling the function PostEvent. For example,
PostEvent(p, gateClosing);

posts the event gateClosing to the object referenced by the persistent pointer

P.

Composite Events

Composite events are composed from basic events using event composition operators.

o Sequence Operator: denoted by comma. parentheses must be used to delimit

the sequence expression. e.g. (after gateOpening, before gateClosing).

o Disjunction Operator: operator || is used to specify the occurrence of one of

two events, e.g. after gateOpen || before gateClosing.

e Conjunction Operator: Event A && B is satisfied if both A and B are satisfied
simultaneously by the posting the same basic event. [f A and B are both distinct

basic events. then the above composite event will never be satisfied.

o NVegation Operator: There are three operators used to specify an event that does
not satisfy the specified pattern.
L. The ~ operator. Event “before gateClosing is satisfied by any basic event
other then before gateClosing.
2. The ! operator. Event !A is satisfied by any sequence of events that do not
satisfy A.
3. The - operator. Event A - B is satisfied by any sequence of events that
satisfies A but not B.

11



o Repetition Operators: There are two repetition operators.
1. The * operator. Event *A is satisfied by a sequence of zero or more occur-
rences of A events.
2. The + operator. Event +A is satisfied by a sequence of one or more occurrences

of A events.

o Count Repetition Operators: There are three count-repetition operators.
l. The relative operator: Event relative(3, after f) specifies a composite
event which is satisfied by the third and succeeding occurrences of the event
after f.
2. The every operator: Event every(3, after f) is satisfied by the third. the
sixth. etc. occurrence of event after f.
3. The choose operator: Event choose(3, after f)— is satisfled just after

the third occurrence of event after f.

e Fvent Ordering Operators: Operator relativeis overloaded. Event relative(A, B)
is satisfied by every occurrence of a B event that begins and completes after an
A event has occurred. Events A and B cannot overlap in time. Operator prior

is like relative plus it allows overlaping.

o \Masking Events: A mask is a condition applied to an event to determine if the
event is of interest. A mask can be an arbitrary side-effect free O++ expression.

e.g. after gateClosing & (time > 10pm).

o Pipe Operator: Denoted as |. it is used to filter out uninterested events. e.g.
(dt 11 v2 [1 ... || bN) | E.

Events are inherited by derived classes. All basic events must be explicitly declared

in the following form:
event el, e2, ..., eN;

where the es are basic events.

1.3.4 Triggers

Triggers monitor the database for some conditions. When these conditions become

true the associated trigger action is executed. Triggers are associated with objects.

12



There are two types of triggers: once-only (default) and perpetual (specified using
the keyword perpetual. A once-only trigger is automatically deactivated after the
trigger has fired and must be reactivated explicitly if desired. A perpetual one is
automatically reactivated after being fired. Firing means that the action associated
with the trigger is scheduled for action. Triggers are specified within class definitions.
They are set by explicitly activating them after the object has been created. A trigger

T1 associated with an object whose id is objectID is activated by the call
objectID->T1(arguments)

The trigger activation returns a trigger id (value of predefined class TriggerId) if

successful; otherwise it returns a 0.

Triggers may be deactivated explicitly before they have fired:

“trigger-id
“object-id->T(arguments)

13



Chapter 2

OCL

2.1 The Sample Data Model

The sample data model is a simplified university system which records information
about students. staff members of a university, its academic departments and courses.

Figure 2 presents the data model.

The class Person has two subclasses: Student and Staff. Visiting Staffis a subclass
of Staff. Tutor inherits from both Student and Staff to incorporate students doing
part-time teaching. The calculation of the salary of a tutor is different from that of
a staff member. The variation is captured by overloading Salary method to Tutor.
Every person has an address which is an object of the class Address. A student has
at least one superviser. This is modelled by the SupervisedBy method as a list of
staff members. Every and each student as well as a staff member is associated to
a department of class Department by means of Major and department accordingly.
Courses of class Course are runBy a department provided there is a staff member who
teaches this particular course which enables a student to take this course via takes.

A course may have a set of prerequisites. The schema definition is as follows:

Class Person isa Entity

methods
name : =~> String ,
address : ==> Address.

14
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Class Staff isa Person

methods

department : --> Department,
teaches : ==> Set of Course,
salary : ==> Integer.

Class Student isa Person

methods

major : ==> Department,
takes : ==> Set of Course,
supervisedBy : --> List of Staff.

Class Tutor isa Student, Staff
methods

salary : ==> Integer.

Class Course isa Entity

method

code : -=> String,

runBy : ==> Set of Department,
prerequisites: --> Set of Course,
assessments : --> Bag of Integer,
credits : ==> Integer.

Class VisitingStaff isa Staff.

Class Address isa Entity

methods
street : ==> String,
city : ==> String.

Database is
Persons : Set of Person,

Departments : Set of Department,

16



Courses : Set of Course,
StaffMembers: Set of Staff,
Students : Set of Student,
Tutors : Set of Tutor.

Using this model the next section describes OCL by presenting different kinds of

queries in OCL notation.

2.2 The OCL sample queries

Before starting the query examples we would like to elaborate on the grammar of

object comprehensions. That would be useful while examining the queries and also

later when discussing the implementation issues of the translator in Chapter 4.

Table 1: The OCL Grammar.

expression

collectionType::
qualifiers
qualifier
generator
localdef
filter
pathname
op

digit
integer
identifier
letter

pathname
| {collectionType "[" qualifiers "|" expression "]"}
"Set" I ”Bag" | "LiSt"

qualifier [ qualifiers ]

[ generator ] [ ; localdef ] [ ; filter ]
identifier "<-" pathname

identifier "AS" pathname

pathname { op ( pathname | integer ) }
identifier [ "." pathname ]

ny | ngn I ng=i I Hy=it ' Nt I ni=n

oli1l121314ls5]16l71819

= digit [integer]

letter [identifier]

alAlblIBlclcldlDIlelE]
fIFlglGIihIHILIITTIIFIII
k/KI1I|lLimlIMInlolplP]|
qlQlrlIRIsl|IsSlIt!ITlulUl
v iViwlWixIXlylYlz]|Z]

Presented in conventional BNF it still might need some explanation. The best

way is to do it by examples. The example of a typical pathname that is a compound

17



indentifier is s.address.city. A typical filter is s.address.city == "Vienna". A
generator example: s «— Students. A localdef example: a AS s.address.street.

A query then would be expressed in the following style:

Set [ s <- Students ; a AS s.address.city ; a == "Vienna" | s ]

2.2.1 OCL sample queries

The following novel features of OCL as a query language shouid be noted:

o a predicate-based optimizable language providing support for the class

hierarchy;
e numerical quantifiers for dealing with occurrences of collection elements:
e operations addressing collection elements by position and order:
e a high-level support for interaction between different collection kinds:
e recursive queries with computation.

Now we are to demonstrate object comprehensions by using queries posed against the
described university database. Queries Q1 - Q6 demonstrate the support of Object-
Orientation: Q7 and Q8 explore the result expression. Q9 - Q11 focus on generators.
Quantifiers are highlighted in Q12 - Q17. Support of Collection is emphasized in Q18
- Q27. The last query, Q28. is to reflect the ability of Query Functions and Recursion.
All queries demonstrate the declarative nature of object comprehensions as a query

notation.

Each query presented in the following format:

lQuery #. The text of a query

OCL version of a query
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Method Calling and Dynamic Binding.
Encapsulation protects attributes of an object from being accessed directly. An access
is to be made via a method. In Q! s.salary represents the calling of method salary on
a staff member object s drawn from StaffMembers. A method could be overloaded

as it as the case with tutor whose salary is calculated in a different way.

Q1. Return staff members earning more than $1000 a month.

Set [ s <- StaffMembers; s.salary > 1000 | s ]

Complex Objects and Path Expressions.
Support of complex objects implies that a method call may return an object which
can. in turn, receive another method call and so on. Such a sequence of method calls

is usually referred to as a path expression.

(Q‘Z. Return tutors living in Glasgow.

Set [ t <- Tutors; t.address.city = "Glasgow" | t ]

Object Identity.
[n object-oriented data models. objects are represented by object identifiers which are
essential for object sharing and representing cyclic relationships. Equality between

objects is defined by the equality between their object identifiers.

IQ3. Return tutors working and studying in the same department.

Set [ t <- Tutors; t.department = t.major | t ]

Class Hierarchy.
StaffMembers contains only members of the faculty. The only collection in the
database that contains all visiting staff members is Persons. The elements of Persons
can be of class Persons or its subclasses. In Q4 hastype returns true if person object

p is an instance of class VisitingStaff.

Q4. Return all visiting staff members in the university.

Set [ p <- Persons; p HASTYPE VisitingStaff | p ]
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In the following query the method salary is defined for visiting staff members but

not for persons in general. The filter is applied only if the object is of specified class.

[Q'Z). Return visiting staff members earning more than 1000 a month.

Set [ p <- Persons; p HASTYPE VisitingStaff WITH p.salary > 1000 | p ]

Local Definitions.
Local definitions simplify queries by providing symbolic names to expressions. They

are particularly useful when a path expression is used in more than one place.

[QG. Return students whose major departments are in either Hill st. or U ave.

Set [ s <- Students; a AS s.major.address.street; a == "Hillst"

OR a == "Uave" | s ]

The Result Expression.
Operation that create new objects should be allowed in the result expression. Method
new takes to parameters and creates a new object of class AClass for each object in
Students. In the next query the result is obtained by creating new objects using the

student objects and the sets of courses.

[QT. Return students and courses taken by them.

Set [ s <~ Students | ACLASS.NEW(s, s.takes) ]

Nested Queries.

The result is obtained by creating new objects using the student objects and the sets
of courses. Nested queries enable richer data structures to be returned and complex
selection conditions to be expressed. An inner query above is a parameter to the

method call in the result expression of the outer query.

Q3. Return students and courses taken by them with a credit rating over one.

Set [ s <- Students | ACLASS.NEW(s, Set[c<-s.takes;c.credits>1lc])]

Multiple Generators.

Multiple generators allow relationships that are not explicitly defined in the database
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schema to be reconstructed. Two variables can range over the same set independently.

LQQ. Return students studying in the same department as StevelJ.

Set [ x <- Students; y <- Students; x.name == "Stevel"; x.major == y.major | y]

Dependent Generators.
Dependent generator is used to facilitate querying over the elements in a nested col-

lection.

[QlO. Return courses taken by the students.

Set [ s <- Students; c <~ s.takes | ¢ ]

Literal Generators.

Collection literals can simplify queries by making them more concise and clearer.

Q11. Return those courses among C1,C2,C3 which have a credit rating over one.

Set [ ¢ <- Courses; x <- Set ["C1","C2","C3"]; c.code == x ; c.credits > 1 | c ]

Existential Quantifiers.
A restricted form of existential quantification is provided by some. which can appear
on either side of an operator. In Q12, the filter succeeds if course code is one of the
memberslisted. In Q13, the filter returns true if there is a common element between

the two sets; i.e. an non-empty intersection.

Bl?. Return those courses among C1.C2.C3 which have a credit rating over one.

Set [ ¢ <~ Courses; c.credits > 1;
c.code = SOME Set ["Ci", "C2", "C3"] | <]

Q13. Return students taking a course given by Steve Johnson.

Set [ j <- StaffMembers; j.name = "SteveJohnson";
s <- Students; SOME s.takes = SOME j.teaches | s]



Universal Quantifiers.
In the following query the keyword EVERY is the universal quantifier. The filter

succeeds if all the course elements in s.takes are also in the set j.teaches; i.e. subset.

[QH. Return students taking only courses given by Steve Johnson.

Set [ j <- StaffMembers; j.name = "SteveJohnson";
s <- Students; EVERY s.takes = SOME j.teaches | s]

Numerical Quantifiers.
In the following queries the keywords ATLEAST. JUST and ATMOST are the nu-
merical quantifiers. Numerical quantifiers are very useful in dealing with duplicate
elements in collections and the number of elements that are common between two
collections. i.e. the size of intersection. In Ql3. the filter turns true if there are two
or more elements that are common between specified sets. In Q6. the filter succeeds
if there are exactly two common elements. In QL7, the size of intersection must be

less than or equal to two.

LQ15. Return students taking two or more courses given by Steve Johnson.

Set [ j <- StaffMembers; j.name = “"SteveJohnson";
s <- Students; SOME s.takes = ATLEAST 2 j.teaches | s]

Q16. Return students taking exactly two courses given by Steve Johnson.

Set [ j <- StaffMembers; j.name = "SteveJohnson";
s <- Students; SOME s.takes = JUST 2 j.teaches | s]

QL7. Return students taking no more than two courses given by Steve Johnson.

Set [ j <- StaffMembers; j.name = "SteveJohnson";
s <- Students; SOME s.takes = ATMOST 2 j.teaches | s]

Aggregate Functions.
The aggregate function size returns the number of elements in a collection. It is de-
fined for all collection classes. For bags and lists duplicate elements are included in
the counting. Some aggregate functions are possibly defined only for certain collec-

tion classes.
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Q18. Return courses with less than two assessments.

Set [ ¢ <- Courses; c.assessments.size < 2 | c ]

Equality.
[t is quite a necessity to have an ability to compare two collections based on the
elements, occurences and their order. Thus two bags are equal if for each element
drawn from either collection there is equal number of occurences in both bags. For

the lists. number of occurences and the positions must be the same.

[QIQ. Return courses requiring no prerequisite courses. |

Set [ ¢ <- Courses ; c.prerequisites == Set [ ] | ¢ ]

Occurrences and Counting.
Bags and lists allow duplicates. The following two queries are to show how the oc-

curences of elements could be used.

Q20. Return courses with four 25% assessments.

Set [ ¢ <- Courses; JUST 4 c.assessments = 25 | ¢ ]

Q21. Return the number of assessments counted 25% in the course "db4".

Set [ i <- List{0..db4.assessments.size };
JUST i db4.assessments = 25 | i]

Positioning and Ordering.
A list allows duplicates and keeps track of the order of the elements. In Q22. the first
two elements of the list are returned and used in a generator. In Q23, a sublist whose
first element is Steve and whose last element is Bob is returned. It returns an empty

list if Steve does not come before Bob in a supervisor list.

Q22. Return the first and the second supervisors of Steve Johnson.

Set [ s <- Students; s.name = "SteveJohnson";

p <- s.supervisedBy.[1..2] | p ]

Q23. Return students having Steve before Bob in their supervisor lists.
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Set [ s <- Students; s.supervisedBy.[Steve : Bob] ~== List [ ] | s]

Union.
The union operator combines two collections to form a new collection of the same class
but having all the elements. The union of bags contains all the elements including the

duplicates. The union of a list to another one appends the latter one to the former one.

(Q?-’L. Return students in the CS and EE departments.

Set [s <- Students; s.major.name = "CS" | s ]

UNION Set [s <- Students; s.major.name = "EE" | s ]

Differ.
For the differ, the class of the result elements is determined in the same way as in
union. The number of occurences for an element in the result collection is the differ-

ence of that in the operand collections. For lists. differ will remove the last match.

{QQS. Return cities where students, but no staff, live.

Set [s <- Students | s.address.city ]
DIFFER Set [s <- StaffMembers | s.address.city ]

Converting Collections.
There might be a need to convert a bag, a list or a set one to another. Bag to set
conversion would eliminate duplicates while converting to a list would involve an ad-

ditional effect of assigning an arbitrary order over the result elements.

Q26. Return the salary of tutors and keep the possible duplicate values.

Bag [ t <- Tutors | t.salary ]

Mixing Collections.
Object-oriented data model supports more than one kind of collection. Hence the
corresponding query notation should support not only different collection classes but
also the mix of them in the same query. In the following query, s.supervised By returns
a list and is mixed with two generators drawing from sets. It should be mentioned

that swapping of generators will not be allowable if the result collection is to be a
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list.

LQ'ZT. Return courses taught by the supervisors of Steve Johnson.

Set [ s <- Students; s.name = "SteveJohnson";

sup <- s.supervisedBy; c <- sup.teaches | c]

Query Functions and Recursion.
[t is natural to find the cyclic relationships in object-oriented data models. This im-
plies recursion support. The recursive queries can be expressed in object comprehen-
sions via query functions. In the following query the result is generated by retrieving
elements from a collection returned by a recursive function. f(c.prerequisites). This
function takes a set of courses and returns a set of courses. For each element drawn
from the input collection. f is applied recursively on the prerequisite courses. and the
result is then used as a part of the input. The recursion terminates when f is passed

an empty set.

Q28. Return all direct and indirect prerequisite courses for the "DB4” course.

let f(cs : Set of Course ) be
cs UNION Set [x <- cs; y <- f(x.prerequisites) | y]

in Set[c <- Courses; c.code = "DB4"; p <- f(c.prerequisites) | p]



Chapter 3
Translation of OCL queries

This chapter provides manual translations of object comprehensions queries into O++

queries of ODE. The OCL sample queries are from chapter 2.
1. Set [ s <- StaffMembers ; s.salary > 1000 | s ]
Set<StaffMembers> tempSet;

for s in StaffMembers

suchthat (s->salary > 1000)
tempSet.add(s);

2. Set [ t <- Tutors ; t.address.city == "Glasgow" | t ]
Set<Tutors> tempSet;
for t in Tutors

suchthat (t->address->city == String("Glasgow") )
tempSet.add(t);

3. Set [ t <- Tutors; t.department = t.major | t ]



Set<Tutors> tempSet;
for t in Tutors

suchthat (t->department == t->major)
tempSet.add(t);

4. Set [ p <- Persons ; p HASTYPE VisitingStaff | p ]
Set<Persons> tempSet;
for p in Persons

suchthat (p is VisitingStaff *)
tempSet.add(p);

5. Set [ p <~ Persons ; p HASTYPE VisitingStaff WITH p.salary > 1000 | p ]
Set<Persons> tempSet;
for p in Persons

suchthat ((p is VisitingStaff *) && (p.salary > 1000))
tempSet.add(p) ;

6. Set [ s <- Students ; a AS s.major.address.street ; a = "Hill st"

CR a = "U ave" | s ]
Set<Students> tempSet;

for s in Students

String("Hill st") ||
String("U ave") ) )

suchthat ((a = s->major->address->street) =

a

tempSet.add(s);



7. Set [ s <- Students | ACLASS.NEW(s, s.takes) ]

Set <AClass> temp;

for s in Students
temp.add( new AClass(s, s->takes));

. - > - — - " - — - - - - - WD D D = D - ——— P - — - —— - -

8. Set [ s <~ Students | ACLASS.NEW(s, Set[c<-s.takes;c.credits>1lc])]

Set <AClass> templ;

for s in Students

{

Set <Course> temp2;

for ¢ in s->takes
suchthat ( c->credits > 1 )
temp2.add(c);

templ.add( new AClass(s, temp2))

9. Set [ x <- Students ; y <- Students ; x.name == "Stevel" ; x.major == y.majo
Set<Students> tempSet;
for x in Students, y in Students

suchthat (x->name == String("Stevel") && x->major == y->major)
tempSet.add(y) ;



10. Set [ s <- Students; ¢ <- s.takes | c ]

Set<Courses> tempSet;

for s in Students
for ¢ in s->takes

tempSet.add(c);

- > - - - - ——— — - ——— - — - - — ——————

11. Set [ ¢ <- Courses ;
X <~ Set [ e Ll , "c2" , nean ] ;

c.code == x ; c.credits > 1 | ¢ ]

Set<String> tempSet;

for ¢ in Courses

{

Set<Courses> tempSetl;

tempSet1.add("C1i");
tempSetl.add("C2");
tempSet1.add("C3") ;

for x in tempSetl
suchthat (c->code == x && c->credits > 1 )
tempSet.add(c);

12. Set [ c <- Courses ; c.credits > 1 ;
c.code == SOME Set [ "C1" , "C2" , "C3" ] | ¢ ]
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