INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormer and continuing
from left to right in equal sections with small overlaps.

Photographs inciuded in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0800

®

UMI

AN OBJECT-ORIENTED PARSER GENERATOR FOR LL(1)
GRAMMARS

Hassan MaNasrer

A THESIS
IN
THE DEPARTMENT
OF

CoOMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
Coxcorbia UNIVERSITY

MONTREAL, QUEBEC. CANADA

DECEMBER 1999
© Hassax MaxasFi, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationaie
du Canada

Acquisitions et
services bibliographiques

395, rue Waellington
Ottawa ON K1A ON4

Canada Canada
Your fiie Votre reférence
Our fle Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autonisation.

Canadi

0-612-47849-1

Abstract

An Object-Oriented Parser Generator for LL(1) Grammars

Hassan Manasfi

[n this thesis we investigate the use of Object-Oriented techniques to build both a parser and a
parser generator for an LL(1) attributed grammars.

When top-down parsing is being used. a node of the parse tree is expanded into several other
nodes. Thinking in terms of objects. an object in the tree constructs other objects. An object. which
is an instance of a class. on the tree corresponds to an instance of the corresponding svimbol in a
program. This means that cach symbol in the language corresponds to a class or an instance of a
class. So in order to parse a document and construct a parse tree for it. we begin by constructing the
root of that tree by creating an object representing the nonterminal start symbol. The constructor
of the root would in turn construct the subtrees of the root.

The attributes of a symbol correspond to data members inside the class representing that symbol.
[f we use objects to represent nodes of the parse tree (or abstract syntax tree). then these are the
natural objects to send messages to. A semantic action is a message sent to an object. and is
represented by a member function inside a class.

The parsing approach is explained. The design and implementation of key parts of the parser
are shown. Also the definition of the language’s grammar which contains regular expressions and
offer an easy notation to specifv semantic actions is documented.

Many parser generators that claimed to be object-oriented in the past wrapped up a finite state
machine. a push-down automaton. or a decision table in classes. Having those components wrapped
up in classes does not offer any boost to the comprehensibility of the parser generator. nor does it
reflect the relation between the parser generator and its product: the generated parser. which are of
the most important objectives of object-oriented programming.

A gramumar is nothing but a set of components: rules. terminals. nonterminals. regular expres-
sions. semantic actions. Classes represent very well a grammar’s components. By representing every
component with a class, the set of objects obtained can cooperate together on the generation of the
parser by each producing the code about itself. The set of objects representing the grammar relate
directly to the generated parser since there is a clear match between every object and a class of the
generated parser. The parser generator benefits from several advantages of QOP.

The design and implementation of the parser generator are explained and discussed. Sample

output from the parser generator is provided.

Acknowledgments

“And your Lord has decreed that you worship none but Him. And that you be dutiful
to your parents. If one of them or both of them attain old age in your life. say not
to them a word of disrespect. nor shout at them but address them in terms of honour.
And lower unto themn the wing of submission and humility through mercy. and say: "My
Lord! Bestow on them Your Mercy as they did bring me up when [was small.” Your
Lord knows best what is in your inner-selves. If you are righteous. then. verily. He is
Ever Most Forgiving to those who turn unto Him again and again in obedience. and in
repentance.” [Qur'aan. 17:23-25]

I know there are not enough words to thank my parents. But still. thank vou, [owe yvou
everything. [would like also to thank my brothers and sisters and their families. You complete me
and [complete you.

I would like to thank my thesis supervisor. Dr. Peter Grogono. for his valuable advice. and
guidance during my work on this thesis. His careful supervision and patience made this work

possible. My work with Dr. Grogono was a very pleasant and enriching experience. He is the only

teacher I know that all his students agree “Oh! Grogono. he is very nice™.

iv

Contents

List of Figures

1 Introduction

1.1 Phasesofa Compiler
1.2 Language Definition _ ...
L3 Parsingo
L4 Parser Generators
1.5 What Problems Are We Tryving to Solve?
1.6 Thesis Outline 00

2 Parsing

2.1 Early Attempts to Automate Parsing
2.2 Top-down Parsers. oL
2.2.1 Problems of Top-down Parsing
2.3 LL(1) Parser
23.1 Predictive Parsing,
2.3.2 Predictive Recursive Descent Parsing
2.3.3 Table-Driven Predictive Parsing
2.3.4 Characteristics of LL(1) Grammars
24 LL(k) . .o o,
2.5 Bottom-up Parsers,
26 LR Parsers
26.1 LR ParserDriver
2.6.2 Simple LR(1) Parse-Table Construction
2.6.3 LR(l) Parse-Tables.
2.6.1 LALR(1) Parse-Tables, .
2.7 Semantic Actionso,
2.8 Advantages/Disadvantages of Each Parsing Strategy
2.8.1 Table-driven Versus Recursive-descent LL(1) Parsing
2.8.2 LL(1) Versus LALR(1) Parsing

viii

=1 OO ke N e s

3.1 What Does a PG Do?
3.2 Approaches to Parser Generators
321 Yace,
3.2.2 Yace Meets C++ oL Lo,
323 Nace++ ...,
3.2.4 Eiffel Parse Library0 0L
3.2.5 Trends in Compiler Construction
3.3 Summary ..o,

4.1 Why a Recursive-Descent Parser”
4.2 Object-Oriented Parsing Strategy
4.3 Language Specification and Code Generated
4.3.1 Svmbols . . . oL,
4.3.2 Regular Expressions,
4.3.3 Awributes and Semantic Actions
44 Interfacing with a Lexical Analyzer
4.5 Problems and Solutions _ L,
4.6 Summary ..ol L,

5.1 Approach to Building a Parser Generator
5.2 Grammar Coustructs,
5.3 Phases of Parser Generation L.
5.3.1 Scanning L,
3.3.2 Parsing oL,
3.3.3 Nalidating the Grammar
5.3.4 Building the Inherited List
5.3.5 Checking the Validity of References in Actions
3.3.6 Code Generation
Seb SUIMINATY . oL Lo L

Conclusions and Future Work

6.1 Conclusionso
6.1.1 LL(1) Grammars,
6.1.2 Use of Object-Oriented Paradigm

6.2 Future Worko 0L,

G.3 Summary oL Lo

vi

43
43
44
44

51
32

2y

a9

60
60
63
64
61
3
80
81
81
86

112
114
118
119

A Samples Output from the Parser Generator 139
A.l OOParser.h

... 141
A2 OOParser.hpp.o 142
A3 OO0Pdechepp . . . oL 149
Ad OOParser.cpp oL 149

T TR R AR N AR S e A et R s R e b el A e

List of Figures

[}V

—

S L

~1

=2]

10

12
13
-4

Phasesof acompiler
Compiler tools _ L.,
CFG for simple arithmetic expressions.
BNF Grammar for simple arithmetic expressions.
EBNF Grammar for simple arithmetic expressions.
Tree structure for English sentence
Parse tree for -position := initial + rate * 60™
Pushdown automaton
A step by step leftmost derivation of ~a * (e +a)™
Parse Tree for "axaxa™.
Effect of left-recursive grammars on top-down parsing
Backtracking in top-down parsing
Pseudo-code for a predictive recursive-descent parser.
Predictive parsing table.o L0 0L
Nonrecursive predictive parser. L
Moves made by predictive parser on input “id s id +id™.
Predictive parsing table that have two entries inonecell.
Step by step right-most derivation of *a « (a +a)™
Actions taken by an LR parser on “id* (id +id)™

Modelof a LR parser.,

Configurations obtained during parsing due to the dot motion
LR(0) states for grammar GT,
LR(0) parse configurations for grammar G7
Goto table for grammar G7,
Action table for grammar G7,
SLR(1) parse configurations for grammar G7
Cannonical LR(0) collection of sets for grammar G8
LR(1) parse configurations for grammar

LALR(1) parse configurations for grammar G8

viil

—

St o W W0

QO LU

31 Syntax-directed definition of a simple grammar. £

32 Annotated parse tree for “2«4+3". e 11
33 Dependency graph e e e e e e e e e e e e e 40
34 Automatic parser gencration e e e e e Y X {
35 Yacc specification for the sequence of assignment statements. I8
36 Class representation of the various components of grammar. 33

37 On the right Watson’s organization of a compiler construction. on the left traditional

organization. e e e e 1 1
38 A step by step un-parsing of the bottom tree representing =« [« [™ 38
39 A witty comparison between top-down and bottom-up parsing 6l
40 Grammar symbols inherit Construct e 1.
41 The use of BinaryOp to parse a repetitivesubrule 77T
42 Class Scanner implementation. &1
43 Example of an input file to our parser generator 88
4+t Grammar “G” specifying the set of input files acceptable by our parser generator . . 89
45 Classes representing constructs that can be found in a user’s input grammar file. . . 90
46 Phases of parser generation e ¢]
17 Class Parser declaration. O ¢ 13
48 Grammar G after adding semantics actionstoit. 96
49 The data structure obtained by parsing rule “selector0” of fig 43 104
50 The data structure obtained by parsing rule “operatorl” of fig 43 105
51 The data structure obtained by parsing rule “term™ of tig 43 105
52 The data structure obtained by parsing rule “ProcedureBody™ of fig43 106
53 The variations of “levels™ during the calculation of the FIRST set of A 109

Chapter 1

Introduction

The study of parsers and parser generators necessitates basic knowldge about the phases of compiler

and language definitions.

1.1 Phases of a Compiler

A typical decomposition of the phases of a compiler is shown in Figure 1. Many tools have been
invented to aid in the generation of compilers by producing some of the phases automatically. These
tools are often referred to collectively as compiler tools. Figure 2 shows us some compiler tools and
their connection with the compiler construction phases. For the front end of a compiler these tools
are often termed lexical analyzer generator. syntax analyzer generator (or parser generator). and

semantic analyzer generator. Some work has been done also on code generator generators.

Front End Back end
. Intermediate !
Semantic . Code Code
Scanner [Parser [] Code B
Analyzer Optimizer Generator Optimizer

Source

Program

Figure 1: Phases of a compiler

Machine and

Context Intermediate
Regular Free Attributes Representation Object
Expressions Grammars Grammars Description Code

Code
Optimizer
Generator

Code
Generator
Generator

Semantic
Analyzer
Generator

Parser

Generator

l

. Intermediate
Semantic Code Code
Scanner % Parser [—% = Code e - L
Analyzer o Generator Optimizer]
Optimizer

Target
Program

(—ﬁ
Source
Program ‘
Figure 2: Compiler tools

1.2 Language Definition

The definition of a programming language sets the ground rules on how to interpret programs: What
symbols form valid fragments. whether a program is legal. and what a program means in terms of
what it achieves.

The complete definition of a programming language consists of two parts: the syntax and the
semantics. The syntax defines the set of well-formed programs. and the semantics defines the
meaning of cach of these programs.

Natural languages such as English are often described by a grammar which groups words into
syntactic categories such as subjects, predicates. prepositional phrases. ete. The standard method
of defining the syntax of programming languages is the context-free grammar (CFG) that was
introduced by Chomsky [Cho36] {Cho59].

The CFG is a structure G = (N.T. P.S) . where

1. NV is a finite set of nonterminal symbols.

[§V]

T is a finite set of terminal symbols, where NNT = ¢.
3. P is a finite subset of N x (NUT)"
4. 5 is a symbol of N designated as the start symbol.

An element of P is called a production and is normally written as X — 5 instead of (X. 7). where

the arrow. — . means “is defined as™. Figure 3 shows a definition of a CFG for simple arithmetic

expressions.

G=({E. T.F}, {+. «.).(.number}. {
E — E + F

E— T

oo o
xy|

F — number

»E)

Figure 3: CFG for simple arithmetic expressions.

Productions with the same nonterminal on the left can have their right side grouped with the
alternative right sides separated by the symbol |. which we read as = or. ~

The Backus-Naur Form (BNF) notation was introduced in the Algol 60 report [BBGT60].
This was the first use of BNF for the purpose of defining languages. The BNF notation is a variant
of CFG. This form’s main properties are the use of angle brackets to enclose non-terminals and of
= to denote “may produce”™. In some variants. the rules are terminated by a semicolon. Since the
introdnction of BNF the theory of context free languages has become well understood and this has
led to better language design and better parsing algorithms. In turn. this has led to the development
of practical parser generators. A small example of a BNF grammar for simple arithmetic expressions

is shown in Figure 4.

<expr> n= <tlerm> | <expr> + <expr>

<term > n= <factor> | <term> * < factor>

<factor> = (<expr>) | < number > | < ident >

<number> = <digit> | <number> <digit>

<ident> = <letter> | <ident> <letter> | <ident> < digit>
<letter > = Al Bl Cl ' VA

< digit > =0 ' I l 2 I ' 9

Figure 4: BNF Grammar for simple arithmetic expressions.

Extended BNF Grammars(EBNFG) arc a more compact and more readable form of CF
grammars. EBNFGs introduce special short-hands for frequently used constructions. Braces. { }.
are often used to represent 0 or more occurrences of items on the left-hand side of a rule. and
brackets. []. to represent optional items. Sometimes [}* is used in place of { }. Other notations also
allow for the specification of one or more iterations such as { }+. Figure 5 shows how to represent

the grammar in figure 4 as an EBNFG.

< expr> = <term> { + <term> }

<term > = < factor> { . <factor> }

<factor> = (<expr>) l < number > | < ident >

<number> = {<digit> W

<ident> = <letter> | <ident> <letter> | <ident> < digit>
< letter > = Al BICI l VA

<digit> == ol 1 l21---l9

Figure 5: EBNF Grammar for simple arithmetic expressions.

1.3 Parsing

Parsing is the process of determining if a string of tokens can be generated by a grammar. Therefore.
the string of tokens has to be examined to determine whether it obeys certain structural conventions
explicit in the syntactic definition of the language. The syntactic structure of a given string provides
invaluable information for the computation process. For example. the syntactic structure of the
expression A + B * C reflects that B and C are first multiplied and then the result is added to A.
No other ordering of the operations will produce the desired calculation.

If one were to check whether this English sentence
~The student is in the class™

is grammatically correct. one would draw the parsing diagram shown in Figure 6. Similarly. the
output of parsing an expression is a tree which represents the syntactic structure inherent in that
expression. Even though the tree may not be actually constructed. it is helpful to think of such a
tree as being constructed.

For example. Figure 7 shows us the syntax tree corresponding to parsing the expression

position := initial + rate * 60.

The direction of the arrows in the productions of a CFG implies a method for generating or
deriving valid sentences. which is represented by a syntax tree. A parser is an acceptor for the
language. While analysing the input string, the parser attempts to find a syntax tree. Therefore.
in some sense. parsing reverses the derivation process in that we have an input string and have to
“discover™ the parse tree for it.

Parsing is one of the best understood branches of computer science. It has been so since the
carly 70’s when Aho and Cllman [AUT2]. Knuth [Knu71l] [Knu74]. and many others put various
parsing techniques solidly on their theoretical feet. Today, parsing is being used extensively in a
number of disciplines: in computer science (for compiler construction, database interfaces. artificial
intelligence). in linguistics (for text analysis. machine translation). in document preparation and

conversion. to name a few. They are used by many other and still can be used in more disciplines.

<sentence>

/\

<noun phrase> <verb phrase>
<adjective> <noun> <verb> <phrase>
: <preposition> <noun phrase>
the student is /\
<adjective> <noun>
in

the class

Figure 6: Tree structure for English sentence

assighment statement

identifier = expression
position expression + expression
identifier expression * expression
initial identifier number
rate 60
Figure 7: Parse tree for “position := initial + rate * 60"

This widespread use of parsing techniques is due to several reasons. One reason derives from the
fact that parsing or the structuring process helps us to process the parsed object further. When we
know that a certain segment of a sentence in German is the subject of the sentence. that information
helps in translating the sentence.

A second is the completion of missing information that parsers can provide. Given a reason-
able grammar of the language. an error-repairing parser can suggest possible words for missing or

unknown words.

1.4 Parser Generators

A parser generator is a program which compiles a syntax definition. usually in the form of a grammar.
into a parser for the language defined. The parser must accept any sentence of the language. and
reject any other input string.

Typically. the output of a parser generator is source code for some programming language (such
as C. C++. or Java). which can then be compiled and linked to the client application. Semantic
actions defined within the grammar are used to control how the client application processes data
clements as they are parsed. by binding specific symbols from the grammar to programmer-written
application code. When a given symbol is parsed by the parser. application code corresponding to
the semantic action for that symbol gets executed. Semantic actions are usually defined directly
within the grammar definition and consist of compilable statements from the target programining
language. In many cases. semantic actions are used to construct internal representations of the

parsed data for subsequent use by the application.

1.5 What Problems Are We Trying to Solve?

There are already a number of parser generators. such as lex/yacc and their gnu versions flex/bison.
They are not written in an object-oriented way and they do not generate an QO parser. In addition.

these parser generators have three kinds of problems :

1. Learning how to use these parser generators is not an casy task. Including semantic actions is

complicated.

(V]

Difficulty understanding the parser generator itself and how it is generating the parser.

3. The generated parser is not easy to understand. Standard parser generators. such as Yacc.
have awkward features and do not conform to the goals of software engineering such as ease

of use. modularity, information hiding. etc.

Our parser generator reads a grammar that is LL(1) and constructs a C++ program from it.

The generated parser is a top-down recursive-descent parser.

The idea of representing a node in an annotated parse tree with a record with different fields is
an old concept. Our generated parser contains a class for each symbol of the grammar. Every node
on the parse tree is an instantiation of the corresponding class.

The class provides a function for parsing the syvmbol and other functions for processing the
symbol. Since in object-oriented programming the idea of using global variables is discouraged. all
the data needed to perform the parsing were kept within the classes. hence semantic actions are
specified as member functions inside the class. The body of these functions are left to the user of

the parser generator to complete.

1.6 Thesis Outline

There are five additional chapters. Chapter 2 gives an overview about parsing. It introduces top-
down parsing. bottom-up parsing. and attribute grammars. It also presents a comparison between
bottom-up and top-down parsing. Chapter 3 explains the role of a parser generator. [t explains
how Yace can be used. It also presents the work of other researchers on object-oriented parsers and
parser generators. In chapter 4 we justify our selection for a recursive descent parser. We also present
our approach to building an object-oriented parser. Chapter 3 contains the explanation about the
design and implementation of the parser generator. Chapter 6 contains the conclusion and future

work. The thesis also contains an appendix containing output samples from the parser generator.

=1

Chapter 2

Parsing

2.1 Early Attempts to Automate Parsing

In 1962. Chomsky introduced a pushdown automaton (PDA) [Cho62] that serves as a recognition
device for context-free languages. This was the earliest automation of the parsing process. The basic

idea of a pushdown automaton is as follows. It consists of:

e An input tape: the tape is divided into squares which contain the symbols of the input string:

the tape can move to the left. a square at a time: each symbol can be read only once.

e A storage tape: this potentially infinite tape is called the pushdown stack: only the top symbol

of the stack can be read: symbols can be added to or erased from the top of the stack.

¢ A finite control and a finite set of instructions: the finite control can be in one of finitely many

states.

Depending on the input symbol. the state of the finite control and the top symbol on the push-
down stack. the machine performs its actions. Figure 8 shows a pushdown automaton.

[nstructions have the form
(a.p.b) — (q.u)

with the interpretation that when in state p. if the input symbol is @ and the top pushdown symbol
is b. then the next state is ¢, the input tape moves one position to the left, and symbol b is replaced
by the string «. The leftmost symbol of u will be on top of the stack. Notice that if u is the empty
word. then symbol b is in fact removed from the pushdown stack. Also. the empty word does not
cause the input tape to move.

We say that a string is accepted by a PDA if it causes the automaton to empty its pushdown
stack when all the input has been read. On the other hand. a language is said to be accepted by a

PDA if it consists only of strings that are accepted by the automaton.

—=— input tape

finite S pushdown
control stack

Figure 8: Pushdown automaton

PDAs define the same languages as context-free grammars. There exists methods to convert
a context-free grammar to an equivalent PDA. and vice versa. In the early 1960. however. these
methods were not clear. This is why PDAs are not popular. Moreover. for some languages. there
are no deterministic PDAs that can be given for their grammars. Parsing methods that are based
on a non deterministic PDA are too slow and thus not desirable.

Most parsing methods fall into one of two classes. called the top-down and bottom up methods.
These terms refer to the order in which nodes in the parse tree are constructed.

The popularity of top-down parsers is due to the fact that efficient-parsers can be constructed
more easily by hand using top-down methods. Bottom-up parsing. however, can handle a larger
class of grammars. so software tools for generating parsers directly from grammars have tended to

use bottom-up methods.

2.2 Top-down Parsers

Top-down parsing can be viewed as an attempt to find a leftmost derivation for an input string.
Equivalently. it can be viewed as an attempt to construct a parse tree for the input starting from
the root and creating the nodes of the parse tree in pre-order.

Top-down parsers are often referred to as predictive parsers since at any stage. they try to predict
the next lower level of the parse tree. This prediction is done by examining the next token in the
input (the input is being scanned from left to right), and the current tree and then choosing the
production to try next. Thus the tree is built from the top down trying to construct a leftmost
derivation.

Figure 9 shows a step by step leftmost derivation of “a * (a + a)” from grammar G1 :

E - E + F | T
T - T x F | F
F = (E) | a
h 2) 3) C))] (&) (6)
E i b i |
l H ¥ 7 3 .
T ‘ =; :
A‘. ;' 4 PR] K] - y e
T *F ! , : ¢
l ‘ i A\ oy -
F i £ E) /R
Y v P /k
a i E +T
(7 (8) (©))] (10) (o
i 1" I8 H
. [' , .
- N
rox « P - < CN F A L N
i i i t
LN P . . -
5 {\ ; RAFERWN . TN ’ VRN ; EE BN
i i H t i ¢ i i i i
3 . 2
AR AR ’ FARIR ' A ’ 77 ‘ g I i“‘.
itoe i . s R <
l' ¥ ! i l Voo
T f | F HE
' : x
F - v
l
a W o

Figure 9: A step by step leftmost derivation of “a = (a + «)”
The algorithm below gives a systematic approach for generating leftmost derivations:

L. Begin with the start symbol for the grammar as the root for the parse tree.

2. As loug as it is possible. replace the leftiost nonterminal §7 by u in the current sentential form

r V7 y ., where there is a production V' — u , so that we have r u y

10

In general the selection of a production for a nonterminal may involve trial and error. that is
to try another production if the first is found to be unsuitable. A production is unsuitable. if after

using the production. we can not complete the tree to match the input string.

2.2.1 Problems of Top-down Parsing

Top-down parsers run mainly into two major problems: left-recursion and backtracking.

Left Recursion

Consider the grammar we used earlier. and suppose we were parsing the expression a = a ¥ a. The

parse tree for this expression is shown in fig 10.

E
\
T
T . F
T * F

a

Figure 10: Parse Tree for “a «a = a”

[t is possible for the top-down parser of this grammar to keep trying to grow the parse tree for
ever. The problem arises with left-recursive productions like T — T+ F in which the leftmost symbol
on the right side is the same as the nonterminal on the left side of the production.

Let us suppose the top-down parser for this grammar started expanding the tree exactly as
already shown in figure 10, i.e.. with productions : E - T, T — T « F.andT —» T = F. At
this moment. instcad of choosing T — F. the parser triecs T — T * F. The parser has no way
to know that this is not the right production. A parser bases its decisions on the grammar and the
input token string. which has not changed. The input token string. changes only when a terminal
in the right side is matched. Since the production begins with the nonterminal T. no changes to the

input take place. thus causing the parser to try growing the tree for ever as shown in figure 11.

1t

) R |
y
. w——> i
L]

os e ~

Figure 11: Effect of left-recursive grammars on top-down parsing

In a production of the form 4 — A« left recursion is obvious and therefore called immediate
left recursion. There is another form of left recursion. called non-immediate left recursion. that is

not as immediately apparent but is equally dangerous. In the latter. productions have the form:

A - B a | ---
B - 4 3 |

The problem occurs when A uses Ba and B uses 4.3 and so forth.
The only solution to both immediate and non-immediate left recursion is to rewrite the grammar

in such a way as to eliminate the left recursions. There are systematic algorithms to do this [ASU86].

Backtracking

One way to perform a top-down parse is to begin with the start symbol. examine the incoming
input token. and select an applicable production. An applicable production is one that is not ruled
out by the fact that it starts with a terminal other than the incoming input token. If the selected
production fails to produce a correct tree, the parser has to backtrack and try another applicable
production. The parser will keep doing this until a correct parse tree is constructed or all productions

are exhausted. For example, consider grammar G2 and the input cad :

S = ¢ A d

A =2 a b | a

As shown in figure 12. to construct a parse tree for this string top-down. we create a tree consisting
of a single node labelled S. Initially the input symbol is ¢. We then try to expand tree with the
first production for S. Since this production starts with terminal ¢ that matches the current input
symbol. the current input symbol becomes a. Next we try to expand the leftmost nonterminal leaf
in the tree. A is expanded using the first alternate for A. We now have a match for the second input
symbol s0 we advance the input symbol to d. At this point. the parser generated a complete tree.
there are no nonterminals left to expand. But this is a wrong tree. To fix this problem, the parser
must go back or backtrack to 4 and look for another alternative of A. The current input symbol must
be returned back to where it was before choosing the erroncous production. The sccond alternative

of A will produce the correct parse tree.

P N i '
(L 2) (3 h g 5 ;
! | !
s | s | s | s | s [
I I 1 :
i ? ! 3 ? | P ! :
i | | | ! ; i !
| ¢ A d ¢ A d 1 ¢ A d i ¢ A ¢ |
! ! : ! |
i bt |
! | i | 1
i i a b ! : a :
! | |
[{ i —————
| N [c []a] | | e qad
i H
. ; A ! A i
; | ! z] : !
. current input symbol i ‘ current input symbol current input symbol current input symbol ! current input symbol
' ! ; ot

Figure 12: Backtracking in top-down parsing

These problems can all be handled. and there are top-down parsers that take advantage of
backtracking. However. backtracking parsers are rarely seen because they are slow in general and
particularly slow when the input contains an error. The backtracking parser will have to try all
productions before discovering that the program contains an error.

Another problem of backtracking is related to semantics. If we make a sequence of erroncous
expansions and subsequently discover a mismatch. we may have to undo the semantic offects of
making these erroneous expansions. For example. entries made in the symbol table might have to be
removed. Since undoing semantic actions requires a substantial overhead. it is reasonable to consider
top-down parsers that avoid backtracking.

Therefore backtracking is not an attractive approach to parsing and is often avoided. In many
situations. the grammar can be modified to get rid of backtracking. For example, the problem in
our grammar is that two of the productions of A start with a and hence it is impossible to predict
which production to choose upon finding an a in the input. The solve this problem we have to

climinate this ambiguity. This can be done only by introducing some changes on the grammar to

become grammar G3 :

13

L2 2 =2 SUATA LN AR

S =5 ¢ A d
T = b | €
A = a T

This grammar defines the same language as the earlier. but it allows the parser to generate the
tree without backtracking. We have factored out the common prefix a and used another nonterminal
to permit the matching of b when it is in the input. This transformation is known as left factoring.

and there are systematic algorithms to do it [ASUSG|.

2.3 LL(1) Parser

2.3.1 Predictive Parsing

As we have already mentioned. top-down parsers are often referred to as predictive parsers since at
any stage. they try to predict the next lower level of the parse tree. Predictive parsing is a special
form of top-down parsing in which no backtracking is required. To construct a predictive parser. we
must know. given the current input symbol a and the nonterminal A to be cexpanded. which one of
the alternatives of A. al.a2.ad. ... is the unique alternative that derives a string beginning with a.

Since lefr-recursion causes top-down parsers to loop forever. in a predictive parser grammars can
not be left recursive. Also. in a predictive parser the grammar has to be left factored. therefore if
S — a | J. where a and .3 is some sentential form. then the set of terminals that a can start with
has to be disjoint with the set of terminals that J can start with.

Let FIRST (a) be the set of terminals that begin the strings derived from a. If a = €. then € is

also in FIRST (). The following algorithm shows how to calculate FIRST (a)
l. If e is a terminal. then FIRST (o) is {a}.
2. lf ais e. then FIRST (o) = {€}.
3. If ais a nonterminal and a — 3y | 32 [34 | ... then FIRST(a) = Ux FIRST ()

4. Ifa= X, ...X, where Xy, \,, are all symbols. and n >=2
then if | = ¢
then FIRST (a) = (FIRST(X) — {€}) U FIRST(:3). where 3 = \aoX5....\,
clse FIRST(a) = FIRST(X,)

If the grammar does not contain any e productions. the parsing process would be perfectly
predictive. By comparing the forthcoming input token with the FIRST set of each of the alternate of
the nonterminal we are trying to expand. the parser can decide which alternate to choose. Obviously-.
if this token does not belong to any of the FIRST sets, the parser knows there is an error in the
input. However when the grammar contains some € productions, the selection of productions might
still involve some guessing even with FIRST sets being used.

When grammars have € productions, the parser. trying to expand the nullable nonterminal A,

can not tell for sure upon finding that the incoming token is not in FIRST(A) whether to choose

14

ek i Al

A — ¢ or whether the input is erroneous. To solve this problem. the parser must be able to know
the tokens needed to expand what follows A. When the parser has this information. it can decide
whether the input token is erroneous or whether 4 — ¢ is the needed production. We call this
information FOLLOT (A).

We define FOLLOW (A). for nonterminal A. to be the set of terminals a that can appear
immediately to the right of 4 in some sentential form. that is the set of terminals a such that
there exists a derivation of the form S = adad where S is the start symbol. a and .3 are some
sentential forms. Note that there may. at some time during the derivation. have been svinbols
between A and a. but if so. they derived e. and disappeared.

The following algorithm computes FOLLOW (A)

L. if there is a production 4 = aB.3 where B is cither a nonterminal or a regular expression
if(FIRST(3) — {e}) ¢ FOLLOW (B)
FOLLOW(B) = FOLLOW(B)U (FIRST(3) — {¢})

2. if there is a production 4 — aB. or a production 4 = aB.3 where .3 S ¢
if FOLLOW (A) ¢ FOLLOW (B)
FOLLOW(B) = FOLLOW (A)U FOLLOW (B)

3. repeat steps 1 and 2 until nothing can be added to any follow set.

2.3.2 Predictive Recursive Descent Parsing

A top-down model syntax analysis in which we execute a set of recursive functions to process the
input. A function is associated with each nonterminal of a grammar. The sequence of functions
called in processing the input implicitly defines a parse tree for the input. Consider the following

grammar. G4:

E —-> T E2

E2 - + T E2 | ¢
T -5 F T2

T2 —- x F T2 | e
F - (E) I 7

The corresponding functions for each nonterminal in pseudo-code are shown in figure 13. NextSym-
bol in figure 13 is the token produced by the lexical analyser. The PRINT statements will print out

the reverse of a left derivation.

2.3.3 Table-Driven Predictive Parsing

In predictive parsing, having the current input svinbol and the nonterminal to expand is enough
to select the production to use next in the derivation. For example, cousider the grammar above.
Oune can say that if £ is the nonterminal to expand. and the current terminal on the input is id

then production £ — TE2 must be used. One can also write down all the possible combinations of

15

PROCEDURE E
BEGIN {E}
T : E2
PRINT(*'E found.™")
END {E}

PROCEDURE T
BEGIN {r}
F : T
PRINT(T found."")
END {T}

PROCEDURE E2
BEGIN {E2}
IF next_symbol IS '+ THEN
BEGIN ({IF}
MATCH(C+) ; T ; E2
END ({IF}
PRINT(*"E2 found™")
END {E2}

PROCEDURE T2
BEGIN {12}
IF next_symbol IS ** THEN
BEGIN {IF}
MATCH(**") s F : T2
END ({IF}
PRINT("*T2 found")
END (T2}

PROCEDURE MATCH(t : token)
BEGIN {MATCH}
IF next_symbol IS t THEN
BEGIN ({IF}
PRINT(" t found™’)
GET_NEXT_SYMBOL
END (IF}
ELSE
ERROR("* t was expected’”)
END {MATCH}

PROCEDURE F
BEGIN (F}
IF next_symbol IS ‘(" THEN
BEGIN ({IF}
MATCH((") s E 3 MATCH())
END (IF}
ELSE
IF next_symbol IS id THEN
MATCH(d)
ELSE
ERRORC("°F failed"")
PRINT("*F found'”)
END (F}

Figure 13: Pscudo-code for a predictive recursive-descent parser.

16

(d.a.) where 4 is a nonterminal to expand. « is the terminal on the input. and P the production

that must be chosen. in the form a table as in figure 14.

Non Input Symbols

Terminals id + - () S
E E—=>T E2 E = TE2
E2 E2 = + T E2 E2 — ¢ E2 — ¢
T T—=F T2 T — F T2
i T2 — ¢ T2 = = F T2 T2 — ¢ T2 — ¢
F F—id F —== (E)

Figure 14: Predictive parsing table.

Naturally. an empty entry in this table represents the impossibility of finding a production to
expand the left-most non terminal with the current input symbol.

The following algorithm can be used to generate such a table :
L. For every production 4 — a in the grammar. do steps 2 and 3.
2. If @ can derive a string starting with a then TABLE[A.a] = A 5 a

3. If a can derive the empty string. €. then for all b that can follow a string derived from 4 :
TABLE[Ab=4 > a

-£. Set empty entries in the table to error.

In recursive descent parsing. the algorithm relied on the implicit stack defined by the language.
For example. consider “Procedure E™ in figure 13. In this procedure. =T~ is called. =T in turn calls
“F" and ~T2" then “T” returns control. The implicit stack plays the role of a memory that tells us
where did we leave last. “E2” must be executed next.

Table-driven predictive parsing is “table driven” recursive descent parsing. I[nstead of recursive
procedure calls. a table is consulted for the next action to perform and an explicit stack is used.
Figure 15 shows us the model of a recursive predictive parser.

The following algorithm shows us how a parsing table and a stack can be used to perform non

recursive predictive parsing.
L. Initially. the stack contains the start symbol S on its top.

2. If the stack top contains a terminal symbol a. then the input symbol must be an «. clse ERROR.
If the two match. then advance the read head on the input string and pop the terminal symbol

from the stack.

3. If the stack top contains a nonterminal symbol A, then examine the input symbol currently

undler the read head. and consult the table to determine which production is to be applied. If

17

STACK

Predictive Parsing ————————= OUTPUT

Program

“im|oin e |»

Parsing Table

M

Figure 15: Nonrecursive predictive parser.

the table indicates production 4 — w. then remove A from the stack and push the string w

onto the stack.

4. Stop when the stack is empty. If stack is empty and all the input is consumed then parsing

was successful.

Figure 16 shows us all the moves made by the non recursive predictive parser of grammar G4 on

input id = id + id.

2.3.4 Characteristics of LL(1) Grammars

Even with the elimination of left-recursion. left factoring. and using FIRST and FOLLOW sets.
there are still cases when examining the next token is not sufficient to decide which production to
use. For example, when we are trying to expand a nonterminal A, if the current input token is a.
ASe andae FIRST(4)N FOLLOW (A). then we can not tell for sure by just having a on the
input what is the correct derivation, A = ¢ or the other that derives a string beginning with a.
For example consider grammar G3 below:
4 > B id
B - id + B | €
This grammar is neither left recursive nor does it need left factoring. The predictive parsing

table for this grammar is shown in figure 17.
[n this table we notice that. TABLE[B, id] has two entries. There are two potential productions

with which to expand B when an id is encountered on the input. We call this a conflict.

18

STACK INPUT PRODUCTION

E id *id +id E—= TE2

E2T id*id +id T = FT2

E2T2F id *id +id F—= i

E2T2id id *id + id

E2T2 *id + id T2—= *FT2

E2T2F* *id + 1d

E2T2F id + id F — id

E2T2id id +id

E2T2 +id T2 > €

E2 +id E2 = +TE2

E2T+ +id

E2T id T —= FT2

E2T2F id F = i

E2T2id id

E2T2 T2 = €

E2 E2 — €
Figure 16: Moves made by predictive parser on input “id id + id".

Non Input Symbols
Terminals)
id +
A A—=B id
B—=id + B
B
B—= ¢

Figure 17: Predictive parsing table that have two entries in one cell.

19

A grammar whose parsing table has no multiply-defined entries is said to be LL(L). A LL(1)
grammar is one in which we need only to examine the next token to decide which production to use.
The first “L™ in LL(1) stands for scanning the input left to right and the second “L” for producing
a leftmost derivation. and the 17 for using one input symbol of lookahead at each step to make
parsing actions decisions.

No ambiguous or left-recursive grammars can be LL(1). It can also be shown that a gramimar is
LL(1) if and only if whenever 4 — «a | .3 are two distinct productions of G the following conditions

hold:

o FIRST(a)NFIRST(3) =0

o if 33 €. then FIRST(a) N FOLLOW (4) = ¢

2.4 LL(k)

Up until now. we have limited the look-ahead to just one symbol. and one might wonder if having
a look-ahead of k-symbols instead of one makes the method more powerful. It does. so let us define
LL(k) grammars.

G is LL(k) if given a string wAda in (N U T)* and the first k£ terminal symbols (if thev exist) to
be derived from Aa there is at most one production which can be applied to A to yield a derivation
of any terminal string beginning with w followed by those & terminals.

We say a grammar is LL if it is LL(k) for any & > 1.

More formally. a CFG G = (V. T. P.S) is LL(k). for some fixed integer k. if whenever there are
two leftiost derivations

S = wda = wia > wr
such that FIRST(r) = FIRST(y).

and)
it follows that 3 = ~.

S 3 wda = wia > wy
We define
FIRST(a) = {w € T*| cither [w| < k and a = w. or |w| = k and @ = wr for some r}

To obtain a full LL{k) parser. the method that we used to obtain a full LL(1) table driven parser
can be extended to deal with pairs [A . L] where L is a FIRSTi(a) in a production 4 — a. This
extension is straightforward and will not be discussed further.

LL(k) parsers with & > | are seldom used in practice. because the parse tables are huge. and
there are not many languages that are LL{k) for some & > 1 but not LL(1). Even the languages
that are LL(k) for some & > 1 but not LL(1). are usually for the most part LL(1). and can be parsed

with conflict resolvers at places where the grammar is not LL(1).

2.5 Bottom-up Parsers

Bottom-up parsing creates the reverse of a right derivation. Bottom up analysis proceeds from leaf
nodes and upwards towards the root construct.

The algorithmn below gives a systematic approach to constructing a right-most derivation :
L. Begin with the string (i.e.. leaves of the to-be created parse tree).
2. Try to reduce to the start symbol by finding the current handle: The handle is

(a) the largest collection of terminals and non terminals in the leftimost part of the input

which can be found on the right-hand side of some production and
(b) such that all the symbols to the right of the handle are terminals and

(c) such that replacing the handle with the left-hand side of the production eventually (by

finding more handles) leads back to start symbol.

Figure 18 shows a step by step right-most derivation of a * (a + a) from grammar G6 below :

E - T | E + T
T - F | T « F
F > id | (E)

2.6 LR Parsers

Shift-reduce parsing is a general style of bottom-up syntax analysis. Shift-reduce parsing attempts
to construct a parse tree for an input beginning at the leaves and working up towards the root. We
can think of this process as one of reducing a string to the start symbol of the grammar. At each
reduction step a particular substring matching the right hand side of a production is replaced by the
left hand side of that production. and if the substring is chosen correctly at each step. the reverse
of a rightmost derivation is obtained.

Operator-precedence parsing is one form of shift-reduce parsing, that works for a small but
important class of grammars. Operator-precedence parsers can be constructed by hand. however a
lot of restrictions must be imposed on the grammar which makes it less attractive. For exarnple, the
grammar can not have e-productions. also it can not have two adjacent non terminals. Even though
operator-precedence parsers have been written for entire languages, we are not going to discuss them
in this thesis because they deal only with a small class of grammars.

The shift-reduce method to be described here is called LR(k) parsing. LR(k) parsing. introduced
by Knuth in 1965 [Knu65]. can be used to parse a large class of context-free grammars. There are a
nuwnber of variants for LR parsing. such as SLR(1). LR(1), and LALR(1), but they all use the same
driver. They differ only in the generated table. The L in LR(k) indicates that the string is parsed
from left to right: the R indicates that the reverse of a right derivation is produced, and the k for
the number of input symbols of lookahead that are used in making parsing decisions. When k is 1.

k is usually omitted. so LR means LR(1). Use of more than one symbol token of lookahcad puts

21

)

(X))

-hH
+ a)
E (8)
1
v
i
]
R4
+)

a)
5

a)
9N
)

A

r

.

I

P

2)
a + a)
18 (6)
¥
1
H
[F
co
T+ a)
(10)
V' Ty ‘\‘x
/,.-\\\:)
r -
& i
¥ 5
T t
[
Rt
,.‘
4
ot *

n

Figure 18: Step by step right-most derivation of “a * (@ + a)”

22

an undesirable burden on the lexical analyser and results in very large parsing tables. Hopcroft and
Ullman [HUT79] showed that any deterministic context free language can be handled by an LR(1)
parser. Therefore. in this chapter we will be only describe LR(1) parsing.

Shift-reduce parsing may be implemented using a standard pushdown automaton as follows:
e Use the initially empty pushdown stack to hold recognised constructs and symbaols.

¢ Parsing proceeds by either accepting a legitimate continuation of input. or recognising a valid

sentence which has been recognized on top of stack:

— If the top elements of the stack matches the right hand side of some production. they are

reduced by replacement with the non terminal on the left-hand side of the production.

— If the current input token is a valid continuation of the input. it is accepted and shifted

onto the stack.
e The input is accepted when input is exhausted and the stack is empty.

Figure 19 shows all the shift-reduce actions taken by the LR Parser upon parsing a = (a + a).
but it does not give us any hint about how decisions between shift and reduce were taken. It is not
intuitive to know when and how to recognize stack items to be reduced. or when a construct may
be extended by stacking the current input symbol. Additional information is needed to guide the
decisions to be taken between a shifting and reducing. This information is provided in a parsing
table.

Figure 20 shows the model of a LR parser. and how the stack and the parsing table fit into this
parsing technique.

As shown in figure 20. the parsing table consists of two parts. the action part and the goto part.
Figure 21 shows a parsing table for grammar G6.

We notice that the table has a column -“States™. This is because as we have said earlier. our
shift-reduce parsing method is implemented via a push-down automaton. Each state summarizes
the information contained in the stack below it. We have also seen in section 2.1 that a PDA has a
finite-state controller. The parser table is the state table of the controller.

The action part has four different kinds of entries called actions:
e Shift: indicated by the “S#” entries in the table where # is a new state.

¢ Reduce: indicated by “R#” where # is the number of a production. Productions were num-

bered to save space when entered into the table.

e Accept: Accept is indicated by the “Accept” entry in the table. When we come to this entry

in the table. we accept the input string. Parsing is complete.
e Error: The blank entries in the table indicate a syntax error.

The goto table provides information for state transition. The goto table and the states of the

pushdown automaton defines a deterministic finite automaton that recognizes the viable prefixes of

23

STACK INPUT ACTION

id*(id+id) Shift

id *(id+1d) Reduce by F — id

F *(wd+1id) Reduceby T — F

T *(id+1id) Shift

T* (id+1id) Shift

T *(id+id) Shift

T=*(id +id) Reduce by F id

T*(F +id) Reduceby T —= F

T*(T +id) Reduceby E = T

T*(E +id) Shift

T*(E+ id) Shift

T*(E+id) Reduce by F —=id

T*(E+F) Reduce by T — F

T*(E+T) Reduceby E = E+T

T*(E) Shift

T*(E) Reduce by F —= (E)

T*F Reduceby T —= T*F

T Reduceby E = T

E Accept

24

Figurc 19: Actions taken by an LR parser on “id * (id + id)” .

a a
INPUT ' m-1 S
STACK | Sm
LR Parser
X m
S LR Parser Driver
m-1
X m-1
S 0 Parsing Table
action goto
Figure 20: Model of a LR parser.
STATE action goto
id + * () S E T F
0 SsS S4 1 2 3
1 S6 Accept
2 R2 S7 R2 R2
3 R4 R4 R4 R4
4 S5 S4 8 2 3
5 R6 R6 R6 R6
6 Ss S4 9 3
7 SS S4
8 Seé6 St 10
9 R 1 S7 R 1 R 1
10 R3 R3 R3 R3
11 RS5 RS RS RS

Figurc 21: LR parsing table.

the grammar. As in a finite state machine. it is consulted as to how recognition may further proceed.
The goto table provides state transition information to model how much of a production has been

recognized and how to proceed based on remaining input tokens.

2.6.1 LR Parser Driver

The driver reads the input and consults the table. The table has two parts: an action part and a

goto part. The driver algorithm below. shows us how these actions and the goto table are used :
1. Push State 0 into the initially empty Stack.
2. Append $ to end of the input.
3. Repeat step 4 until input is accepted or an error is found.

-t. Examine action table entry action(s,,.qa,] . where s,, is the current state (on top of stack) and
@, is the incoming token. Of the following four cases. choose one that corresponds to the action

found:

e action is Shift (Sn) :
(a) Push the current input symbol a, into the stack.
(b) Push the new state (n) into the stack.
(¢) Advance input pointer to point to next input symbol
e action is Reduce (Rn):
(a) Pop 2 x w elements from the stack. where w is the number of symbols on the right-
hand side of production number n.
(b) Let s’ be the state on top of the stack now.
(c) Push A on top of the stack where A is the non terminal on the left-hand side of
production number n.
(d) Let 5" be the state in table entry goto[s’ . A]. Push s” on top of the stack.
e action Accept: Stop, parse is successful.

e action Error: Stop. declare an error.

2.6.2 Simple LR(1) Parse-Table Construction

Constructing the States

We have said carlier that a LR parse table is the state table of the controller of the pushdown

automaton. In order to build this table. we have to build the states of the PDA. A state indicates

a part of a production which has been recognized: it also indicates what is left to be recognized.
The information about how much of a production has been recognized and what is left may be

represented by an augmented production rule with a dot symbol on the right-hand side of the rule.

26

For example. the dot in this augmented production A — a-Se simply means that of the production’s
right-hand side a has been recognized and we expect to see a portion of the input string which can
be derived from Sc. The dot symbol proceeds to the right as symbols are recognized. Consider the

following production:
S = ade

augment the production with a dot and follow the motion of the dot. We notice that four different
configurations must be encountered. as shown in Figure 22. the rule is said to be recognised and

reduced.

S —/= e a A ¢

S —/8 a4 A e ¢

S —m= a A ¢ e

Figure 22: Configurations obtained during parsing due to the dot motion

When at the extreme left of the production. the dot symbol indicates that nothing of the rule
has been recognized so far. Similarly. when at the extreme right of the production. it indicates that
the complete rule has been recognized. and thus a reduction is possible.

Such an augmented production is called an itemn. Since items and states serve the same purpose.
items can be viewed as the states of the pushdown automata. A state has one or many items. Items
in a state are grouped together based on a relationship called the closure. The idea of a closure set

can be explained by looking at the three productions below :

S - a - A ¢
4 - G r
G - =

[n the first production. the dot precedes -1 which means an A is anticipated next. However, if
A is anticipated then a G must also be anticipated since the latter is a constituent of the former.

Similarly it must anticipate a z symbol because it is an indirect constituent. This information can

be summarized by this set of items :
{S—oa-de. A > -Gr. G- -z}
This set of items is called the closure of the set containing itemn S — a - Ac.

The following algorithm shows how closure(I) can be constructed, where [is a set of items:

27

1. Initially. every item in [is added to closure([).

If 4 = a-B3isin closure(l) and B —) is a production. then add the item B — -\ to

[§)

closure([). if it is not already there. Apply this rule until no more new items can he added to

closure([).

[tems are grouped together and cach group becomes a state which represents a condition of the

parse. The following algorithim shows how states are built:

I. Create a new nonterminal §’ and a new production S’ =+ S where S is the start symbol.

[

If S is the start symbol. put §' — -S into a start state called state ().
3. For every item in a state. add the closure of the set containing that item to the state.

4. Look for an item of the form A — r -z where : is a single terminal or nonterminal and build

a new state from A4 = rz - o Include in the new state all items with -z in the original state.

5. Continue until no new states can be created. A state is new if it is not identical to an old

state.

The states built by this algorithm are called the LR(0) sets. or the canonical LR(0) sets.

Filling the Action and Goto Part

Consider the following grammar G7 :

S 5 a A ¢ | b
A - a S ¢ | b

The LR(0) states for this grammar. using the algorithm above. are shown in Figure 23.

We have said that the states. and the goto table define a DFA that recognizes the viable prefixes
of the grammar. Having all the states of this DFA. all we have to do is to complete it. is to draw the
transitions between states. By studying figure 23. we notice that there can be a transition from Sg
to S) labelled S. Also. there can be a transition from Sg to S; labelled b. and so on. The complete
DFA is shown in figure 24.

From figure 24 we can collect all the information to fill the parsing tables. All transitions from
one state to another that are labelled with a nonterminal will fit into the goto table as shown in
Hgure 25.

On the other hand. any transition from state m to state n, that is labelled with a terminal. a for
example. will correspond to a “shift n” or a “S n” entry in Action[m.af . As for a state. r. with
no transition going out from, if it contains an item with the dot at the right end of the right-hand
side of the production. then there corresponds to it an entry “reduce n”. where n is the production
nurmber. or "R n” in Action[r.a] provided that terminal a is in FOLLOW(x). This is shown in
figure 26.

The construction of the Simple LR(1) (also called SLR(1)) parsing table can be summarized by

rhe following algorithm:

28

r ™
S0

S « S

e 2 A ¢

S e b
g
(TN
53

S b e
AN
s —
Se

S a A e cC
N\
r N
Sy

A aSc.
N

_ J
. R
S4

Figure 23: LR(0) states for grammar G7

S
r
(51 S4 B S
L s - S . A —> b.J L S > a4 A C e
b
™) o
Sz a SS

S —/™a « A ¢ A —>a .

A — . a8 ¢ a —= L, a

A —> ¢ b _ S —_—> .

Sy R

A—=asc.)

Figure 24: LR(0) parse configurations for grammar G7

state. 7 S I s S s s S s S S S
nonterminal & 0 | 2 3 4 5 6 7 s 9
: s S
S [8
A Se

state —,> ! S S S S S S S S S S
nonterminal ¢ 0 ! 2 3 4 5 6 7 8 9
a S2 S5 $2
b S3 sS4 S$3
c R2 R4 S7 R S$9 R3
S accept

Figure 26: Action table for grammar G7

30

S T TRV RS drOd LR Bada timbudid A m e dad Tad) L

L. If 4 = r-awx is in state m for input symbol a. and A — ra - . is in state n. then enter Sn at

Action[m. al.

2. If A = - is in state n. then enter Ri at Action{n.a] where i is the production number of
A= w.and ais in FOLLOW(A).

3. If S" = S- is in state n. then enter ~Accept™ at Action[n. §].

4. If A = r-Buis in state in. and 4 = r£B -+ is in state n. then enter n at Goto[m. B)

If any conflicting actions are generated by the above rules. we say the grammar is not SLR(1).
The algorith fails to produce a parser in this case.

The SLR(1) parser is a modification of another parser called the LR(0} parser. The states of the
LR(0) parser are built in the same way described above. However. no lookahead is used to create the
table. Unfortunately. LR(0) parsers do not recognize the constructs one find in typical programming
languages. For example consider grammar G7. while it is straight forward to construct the SLR(1)
parser. shown in Figure 27. it is impossible to generate an LR(0) parser for this grammar. This
is due to the fact that some of the states indicate both a shift and reduce actions. This called a
conflict. An example of such a conflict is seen in states So and Sy. The SLR(1) is not affected
by this conflict since it matches the lookahead symbol with the followers of the nonterminal before

choosing a reduction.

2.6.3 LR(1) Parse-Tables

Every SLR(1) grammar is unambiguous. but there are many unambiguous grammars that are not

SLR(1). For example consider this unambiguous grammar G8:

S - L = R
S - R

L - x R
L - id

R —- L

The canonical collection of sets of LR(0) items for grammar G8 is shown in figure 28.

Using the algorithm for building an SLR(1) parser. Action[S., =] would contain two entries : a
shift (S 6) and a reduce (R 3). It is clear that S - L- = R would correspond to the shift action.
On the other hand since FOLLOW(R) contains =. R — L- correspond to the reduce action.

Even though the grammar is unambiguous, no SLR(1) parser can be built for it. If our parser
has additional information about the possible follower symbols of the production. the conflict can be
resolved. For example, in S» knowing that nonterminal R can not be followed by “=" since there is
no right-sentential form of the grammar that contains an R followed by an equal sign, the reduction
by It — L- can be ruled out when the lookahead symbol is “=". Hence it need not be included in

the parsing table.

31

—-
T —>

v,
\“

{

E —

E —>

T —

—

——

p

)

Figure 27

: SLR(1) parse configurations for grammar G7

e R TR R T el el b R TTEE G Cad s 200 e R LR AT

(. — (™ s) r
So R S, 'S5
ST ™. 5 L S —™ S . S [, 4 = R ’ S —™ R .
1
S — . L = R / R —=1L . —
. ™ . R _ J
. — . * R
s Y (N r
L — . id iS5 Se iS5
R —=. L J LL——>|d. S — 1L = . R L — - r .,
J R —= . L . J
- . L — . * R
SJ L — . ud
L —* . R
R o 1 5)
. — . * R
. — . i r (M
558 59
i R —/L . § —=I. = R,
N L)

Figure 28: Cannonical LR(0) collection of sets for grammar G8

LR(1) parsing is an extension of SLR(1) parsing strategy. where each item carries additional
lookahead symbols to indicate the possible follower symbols of the production. The general form of
an item becomes [= a - J.a]. where A4 — .3 is a production and a is a terminal or the right end
marker $. For example [E — E - +T.$/+] indicates that we have seen an E and are expecting a
“+T" which may then be followed by the end of string (indicated by $) or by a =+~. We call such
an object an LR(1) item. The 1 refers to the length of the second component called the lookahead
of the item. The lookahead has no effect in an item of the form [4 = a-.3.a] . where 3 is not € since
the next input symbol should be in FIRST(.3). On the opposite. an item of the form (4 = a-.qd]
calls for a reduction by A — «a only if the next input svmbol is a.

LR(1) parsing will succeed on a larger collection of grammars than SLR(1). It should be pointed
out. however. that there are unambiguous grammars for which every LR parser will produce a parsing
table with parsing action conflicts. Fortunately such grammars can be avoided in prograrmming

language applications.

Constructing the States

The algorithm for constructing the states is as follows :
L. Create a new nonterminal S’ and a new production ' — S where S is the start symbol.
2. If S is the start symbol, put [S’ — -S.8] into a start state called state 0.

3. For every item in a state. add the closure of the set containing that item to the state. The
closure is calculated as follows: If {4 — x - Xy, L] is in the state, where L is the set of
lookaheads, then add [X = -z, M] . where M is set of FIRST(yl) for each { in L. to the state

for every production X' — z where z is any sentential form.

33

4. Look for an item of the form [A — r-zw. L] where = is a single terminal or nonterminal and L
is the set of lookaheads. and build a new state from [A — rz - .. L]. Include in the new state

all items with -2 in the original state.

5. Continue until no new states can be created. A state is new if it is not identical to an old

state.

Filling the Action and Goto Part

Consider grammar G8. Using the algorithm above we can build all the states of the LR(1) parser.
The transition diagram for the DFA that accepts viable prefixes of this grammar is shown in figure 29.

Building this DFA is straight forward and not different from building the DFA from the LR(0)
states earlier. In both cases. all what we have to do is to follow the dot and record by which symbol
it had moved. The second component of the the item. has no effect on choosing the label of the
transition. Thus the goto table still can be filled as we did for the SLR(1) goto table.

Since the second component of the item has no effect on items where the dot is not on the
rightmost side of the first component. no modification also in this case on the algorithin for building
SLR(1) tables is needed.

The slightly modified algorithm for building LR(1) parsing tables form that of SLR(1) is shown

below:

L. If A = r-axis the first component of an item in state m for input symbol a. and 4 5 ra -

is the first component of an item in state n. then enter Sn at Action[m. a].

(V]

If [A = +-.a]is in state n. and A is different then S'. then enter Ri at Action[n.a] where { is

the production number of 4 — w.
3. If [S" = S-.§] is in state n. then enter ~Accept” at Action[n. $].

4. If A = r- Buis the left component of an item in state m. and A = rB - o is left component

of an item in state n. then enter n at Goto[m. B]

If any conflicting actions are generated by the above rules. we say the grammar is not LR(1).
The algorithm fails to produce a parser in this case.
Every SLR(1) grammar is an LR(1) grammar, but for an SLR(1) grammar the canonical LR

parser may have more states than the SLR parser for the same grammar.

2.6.4 LALR(1) Parse-Tables

A LR(1) parser has more states than an SLR(1) parser. For a language like Pascal the number of
states for an SLR(1) parser is several hundred compared to several thousands states for an LR(1)
parser for a language of the same size.

An LALR parser accepts as many constructs as an LR(1) parser. vet it has many fewer states

than an LR(1) parser. In fact SLR and LALR parsers have always the same number of states.

34

)

D R R - - N

.

Figure 29: LR(1) parse configurations for grammar

Therefore. LALR parsers are more often used in practice since both of them have the same number
of states yet an LALR accepts a much larger set of grammars than a SLR(1) parser.

An LALR parser is constructed by first constructing the LR(1) sets of items. and merging the
sets whose items have the same first components. The merging process consists of taking the union
of the lookahead sets of corresponding items: the result of each merger is one of the LALR states.

For example. by looking at figure 29 we notice that states S» and S;» have the same core:
{E - T-.T - T-+P}. Thus. they should be merged if a LALR(1) parser were to be built. The
merger of these two states consists of merging corresponding items. i.c. items with the same first
component. from cach state together. [E — T-.8/+] and [T — T -«P.$/ + /+] from S corresponds
with (£ — T-.}/+] and [T — T - «P.)/ + /+] from S|, respectively. When merging two items, the
first component remains as is. but the second component. the lookahead. becomes the union of the
lookaheads from the two items. Thus. merging items [E — T-.$/+] and [E = T-.)/+] will give a
new item [E — T-,8/)/+]. Figure 30 shows all the LALR(1) states obtained from the LR(1) states
of Figure 29.

Drawing the transitions between the states of figure 30 is no different from drawing them for an
LR(1) parser. The goto table is constructed as follows. If .J is the union of one or more states of
LR(1) items. then GOTO(J . X). where X is a non terminal. is the state whose core sot is the union
of the core sets of the GOTO(K . X) states for every K that is one of the merged states. The action
table entries are constructed as for the canonical LR parser.

It is not possible for a merger of two states to lead to a shift/reduce conflict that was not already
existing in LR parser. but it is possible for it to produce a reduce/reduce conflict. The grammar is
said to be LALR(1) only if the parsing table contains no parsing action conflict. Many algorithms

have been described. to render the construction of LALR(1) parsers more efficient [DP82].

2.7 Semantic Actions

There are some characteristics of the structure of programming languages that are difficult to describe
with BNF. and some that are impossible. As an example of a language rule that is difficult to specify
with BNF. consider type compatibility rules. In Pascal, for example a real type value can not be
assigned to an integer type variable. although the opposite is legal. Although this restriction is
possible with BNF, it requires additional nonterminal symbols and rules. If all of the typing rules
of Pascal were specified in BNF, the grammar would become many times larger. The size of the
grammar determines the size of the parser.

As an example of a language rule that can not be specified in BNF. consider the common rule that
all variables must be declared before being referenced. This rule can not be specified in BNF [Sehag).

A syntax-directed definition is one generalization of a context-free grammar in which additional
information that was either too difficult or impossible to represent with a BNF can be added.
Information is associated with a programming language construct by attaching attributes to the
grammar symbols representing the construct. An attribute can represent anything we choose: a

string. a number, a type. a memory address. Each symbol in the grammar can have one or many

36

a
/J
S

R
E—* L

Figure 30: LALR(1) parse configurations for grammar G8

attributes.

Values for attributes are computed by semantic rules associated with the grammar productions.
[n a syntax-directed definition each grammar production has associated with it a set of semantic
rules. Semantic rules are not only used to assign values to attribute. they can also be used to print
the value of an attribute or to update a global variable. Such actions are called side effects. Figure 31

shows an example of syntax-directed definition.

Syntax Semantics
Ey — E, + T E g - Value = E ;. Value + T. Value
E — T E . Value = T. Value
To = T 1 * F T - Value = T, . Value « T . Value
T — F T . Value = F.Value
F —=> (E) F . Value = E . Value
F — id F . Value = id . Value

Figure 31: Syntax-directed definition of a simple grammar.

Syntax-directed definitions are more commonly called attribute grammars. Attribute grammars.
introduced by Knuth [Knu68]. are syntax-directed definitions in which semantic rules can not have
side effects on actributes and global variables.

Semantic actions are often enclosed within braces and are inserted within the right sides of
productions. Such a notation is called a translation scheme.

Consider the expression 2 * 4 + 3 and the syntax-directed definition in figure 31. If we build
a parse tree for this expression and attach to every node in the tree the values of its attributes
calculated according the semantic rules shown in our syntax-directed definitions. we obtain the tree
shown in figure 32 . Such a tree is called an annotated parse tree.

As noticed from the example of the syntax-directed definition in figure 31, and as is often the
case. the value of an attribute is dependent on other attributes in the grammar. Based on these
dependencies. attributes are divided into two subsets: synthesized and inherited attributes. [f
we consider a parse tree, a synthesized attribute at a node is one whose value is computed from the
values of attributes at the children of that node. The value of an inherited attribute is computed
from the value of attributes at the siblings and parent of that node.

The dependency between attributes is very important because it dictates the order in which

attributes must be evaluated. For example. if an attribute b at a node in a parse tree depends

38

Value = 11

+ T
Value =8 Value = 3
Value =8 Value = 3
/ i
T . F id
Value = 2 Value =4 Value = 3
F id
Value = 2 Value = 4
id
Value =2

Figure 32: Annotated parse tree for “2 + 4 + 3".

on an attribute c. then the semantic rule for b at that node must be evaluated after the semantic
rule that defines ¢. The interdependencies among attributes at the nodes in a parse tree can be
depicted by a directed graph called a dependency graph. Figure 33 shows the dependency graph
for the syntax-directed definition in figure 31. An edge in the graph goes from an attribute a to an
attribute b, if b depends on a.

Once the parse tree and the dependency graph are completed. a correct evaluation order for
the semantic rules can be obtained. The application of the obtained evaluation order to evaluate
attributes results with the correct values. This method is described in further detail by Ramanathan
and Kennedy [KR77]. The only restriction put on the syntax-directed definition in this method is
that the dependency graph can not contain any cycles.

There is another method for evaluating attributes which does not impose any restrictions on the
syntax-directed definition. This method does not even require building a dependency graph. The

following algorithm describes the method:

. Start with the root node of the parse tree.

Evaluate all inherited attributes of the current node. if there are any.

[

3. On cvery child node of the current node starting from left to right apply steps 2.3 and {.

1. Evaluate all synthesized attributes of the current node, if any.

39

- Value =11

T
Value = 8 Value = 3

T | :
Value =8 Value =3

id
Value = 4 Value = 3

id
F Value = 4

Value = 2

Valu

[+
1]
~

Figurc 33: Dependency graph .

This algorithm requires gigantic storage requirements due to its recursive nature.

There are still many algorithms to evaluate attributes. however. most of them like the two
already described require a parse tree to be built before starting the evaluation of attributes . In
addition. more than one pass is needed. The complexity of these algorithms is inherent from the
desire of unrestricting our syntax-directed definitions. Obviously. a top-down parser would have no
difficulty evaluating attributes if all of them were inherited. Similarly. a bottom-up parser would
have no difficulty evaluating attributes if all of them were synthesized. Special cases of syntax-
directed definitions, like L-attributed and S-attributed definitions. that contain both synthesized and
inherited attributes do not require an explicit construction of a parse tree. rather attributes can
be evaluated in a single pass by evaluating semantic rules during top-down and bottom-up parsing.
Thus they are worth studying.

When L-attributed definitions are attached to an LL(1) grammar. attributes values can be com-
puted in a top-down fashion as input is being parsed. A syntax-directed definition is L-attributed if

it has the following :

. Each inherited attribute of a right-side symbol of a production must depend only on the

inherited attributes of left-side symbol and/or arbitrary attributes of symbols on its left.

o

Each synthesized attribute of a left-side symbol of a production must depend only on the

inherited attributes of that symbol and arbitrary attributes of right-side symbols.

40

S-attributed definitions imposes a further restriction on L-attributed definitions. This allows the
attributes in an S-attributed definition to be evaluated at parse time during LR(1) parsing. An

attribute grammar is S-attributed if and only if :

1. It is L-attributed.

2. Nonterminals have have only synthesized attributed.

2.8 Advantages/Disadvantages of Each Parsing Strategy

2.8.1 Table-driven Versus Recursive-descent LL(1) Parsing
Predictive recursive-descent parsing has the following characteristics:

e Easy to hand-write it. It does not explicitly use a stack. Instead. it relies on the implicit
recursion stack. Because of this. the relation between the parser and the underlyving grammar

is usually clear.

e Semantic actions are easily embedded in the parsing routines. Because the parser works by
prediction and parsing is modelled using functions. it is very easy to know at which point the

semantic action is to be inserted.

e A parameter mechanism or attribute mechanism comes virtually for free: The parser generator

can use the parameter mechanism of the implementation language.

e Non-backtracking recursive descent parsers are quite efficient. often more cfficient than the

table-driven ones.
e Dynamic conflict resolvers are implemented easily.
The main drawback to using recursive descent is:

e The size of a recursive-descent parser is usually larger than a table-driven one (including the

table). However. this becomes less of a problem as computers memory gets bigger and bigger.

2.8.2 LL(1) Versus LALR(1) Parsing

The main differences between LL(1) and LALR(1) can be summarized as follows:

e Top down parsing is more suitable for online parsing.

e Theoretically. the set of languages accepted by top-down parsers is limited. compared with
bottom-up parsers. However. most programming languages are LL(1) or are nearly so. A
language such as Pascal was written with an LL(1) grammar. LALR(1) can handle a much

larger set. of grammar than LL(1).

41

e LL(1) generally requires larger modifications to be made to the grammar than LALR(1). Severe
restrictions are imposed on the form of the productions in a LL(1) grammar. Specifically. left-
recursion and common prefixes can not be used. If the language is not LL(1) the grammar

can be transformed into LL(1) form. but the result is usually less clear.

e LL(1) allows semantic actious to be performed even before the start of an alternative: LALR(1)

performs semantic actions only at the end of an alternative.
e LL(1) parsers are often easier to understand and modify.

o If an LL(1) parser is implemented as a recursive-descent parser. the semantic actions can use
named variables and attributes. much as in a programming language. No such use is possible

in a table-driven parser.
e LL(1) has a little edge on LALR(1) as to speed and memory requirements [Hol90].

e It is more difficult to make modifications to a recursive-descent parser since the parser is in

the code not in a table.

e Error handling is similar in both techniques.

2.9 Summary

In this chapter we present a review of parsing. Early attempts to automate parsing are explained.
Top-down parsers and their problems are explained. Specifically table-driven LL(1) parsers and
recursive descent LL(1) parsers. A brief introduction about LL(k) was given. Bottom-up parsers
are introduced. A description of the bottom-up LR parsers is given. Variants of LR parsing such
as SLR(1). LR(1). and SLR(1) are also explained. Semantic actions are introduced. The chapter
coucludes with a comparison detailing advantages and disadvantages of table-driven versus recursive-

descent LL(1) parsers. and of LL(1) versus LALR(1) pasres.

42

Chapter 3

Parser Generators

3.1 What Does a PG Do?

A parser generator is a program which compiles a syntax definition. usually in the form of a gramiar.
into a parser for the language defined. The parser must accept any sentence of the language. and
reject any other input string.

As shown in figure 34. there are two possible forins in which a parser can be gencrated. In the
first case (1). the parser is a procedure. or a set of procedures. This is usually produced as a text file
containing a parser in source form. The second possibility (2) is to produce a parsing table. This
is a sequence of data values which encode parsing decisions for a fixed parsing procedure. called the
driver. The driver is usually supplied separately. often in a pre-compiled form.

Typically. the output of a parser generator is source code for some programming language (such
as C. C++. or Java). which can then be compiled and linked to the client application. Semantic
actions defined within the grammar are used to control how the client application processes data
clements as they are parsed. by binding specific symbols from the grammar to programmer-written
application code. When a given symbol is parsed by the parser. application code corresponding to
the semantic action for that symbol gets executed. Semantic actions are usually defined directly
within the grammar definition and consist of compilable statements from the target programming
language. In many cases. semantic actions are used to construct internal representations of the
parsed data for subsequent use by the application.

Shortly after CFG’s were introduced for defining programming languages. programmers noticed
that the rules of a grammar constituted a kind of flow-chart for a parsing procedure. Subject only to
the restriction that the grammar not contain any left recursion. an experienced programmer could
casily translate any grammar into a recursive-descent backtracking parser. Equivalent table-driven
procedures were also described. These parsers were too inefficient to use in compilers production. but
they demonstrated that parsers could be generated automatically from suitable grammars. After the

theory of LL(1) grammars was formalized, it became possible to produce efficient top-down parsers

43

n)

Context-Free Context-Free
Grammar Grammar

Parser

Generator

'

Genernted
Parsing Tables
Procedures
Driver

Figure 34: Automatic parser generation

mechanically. in either recursive descent or table-driven forms.

3.2 Approaches to Parser Generators

There is a very large number of parser generators in existence today. To name a few: AnaGram.
Holub. LLgen. Lisa. Mango. Muskox. Prece. LalrGen. Trooper. VisualParse++. Yace. Yacc++.
Yoce. Antlr. GrammaTech. Ell. Cocktail. Javacc. Jell. ProGrammer. Cogencee. Coco/R. Depoti.
Gray. wacco.

Most of the parser generators are similar in the techniques theyv use. Moreover, only few of
them are object-oriented. or even claim to be object-oriented. In an object-oriented parser the
emphasis should be on the data. in this case the grammar and its symbols. It is not enough to use
the traditional parsing techniques and wrap everything in a class called Parser for the parser to be
called object-oriented.

In this section we are going to introduce four approaches to parsing and parser generators that

touch on the topic of object oriented parsers and parser generators.

3.2.1 Yacc

Today. it can be said that the most used parser generator is Yace [Joh73). Yace was written by Steve
Johnson at Bell Telephone Laboratory in 1975 for the Unix operating System and since then it has
been ported to other environments. The word Yace stands for Yet Another Compiler Compiler.

Yacc. written in C, takes as input a description of a grammar in a notation near to BNF and

44

produces a parser which is also a C program. Each production in the grammar may have an action
associated with it. The class of specifications accepted by Yacc is LALR(1) grammars. Yacc uses
also some disambiguating rules to deal with some ambiguous grammars.

The parser generated is a push-down automaton consisting of a large stack to hold current states.
a transition matrix to derive a new state for each possible combination of current state and next
input symbol. a table of user-definable actions which are to be executed at certain points in the
recognition. and finally an interpreter to actually permit execution. The result is packaged as a
function yyparse(). which calls repeatedly a lexical analyzer function to read standard input.

The input specification has three parts :

l. Declarations and definitions

2. Grammar : Rules in ncar-BNF notation plus associated actions
3. User-written procedures in C

Sections are separated from each other by %%.

Grammar and Declarations & Definitions Section

The grammar section of Yacc consists of a grammar which specifies the syntax of some language
using a BNF-like format. A quoted single character. *+° for example. is taken to be the terminal
svmbol + and it means we are looking for character "+ on the input. Terminals that can not be
described by a single character. an identifier for example. must be declared in the declaration section.
as follows :

% token ID

% token NUMBER BEGIN END
Unquoted strings of letters and digits that are not declared in the declaration section are considered
to be non terminal symbols. A colon is used to separate the left-hand side of a production from its
right-hand side. not an arrow. The rules having the same left-hand side are separated by a vertical
stroke: |. A semicolon follows each left side with its alternatives and semantic actions. Empty rules
are denoted by rules having no symbols on the right-hand side. The left-hand side of the first rule
in the grammar is by default the starting symbol. This default can be overwritten by including a

command like this in the declaration and definition section :
% start E

A code segment. one or many C statements. may be associated with each grammar rule in Yace.
Once the parser can reduce the right-hand side of some rule. the semantic routine corresponding to
this rule is invoked. The writer of the grammar can use this code to perform semantic processing,
code generation. and so forth. The code is included directly in the grammar by following the rule.
but before the semicolon, with “{code}” where code is the segment of code to be executed. The
code. therefore. precedes a vertical stroke or a semicolon. Yace also allows users to put an action in

the middle of a rule, such as in :

45

FIRST : Second
{ 8 = 1. }
Third
{ r = 82 : y = 83 : }

Such actions put an extra burden on Yacc since it has to introduce a new nonterminal symbol

to match the action in the middle as in :

DUMAY
{ 88 = 1 : }

FIRST : SECOND DUMMY THIRD

Variables used in the code must be defined in the declarations and definitions section. These
variables are declared in that section as ordinary C declarations delimited by %{ and %}. Between
these two %{ and %} we also specify any global variable used by the functions of the third section.
and also the names of the header files to be included in our generated parser can be specified using

the usual C notation as in :
#include < string.h >

By default Yace associates with cach grammar symbol an attribute value. These attribute values
can be referenced in a semantic actions using variables $$. $1. $2. and so on. $$ refers to the
attribute value of the non terminal symbol on the left-hand side of the rule. $1 and $2 will refer the
first and scecond symbol on the right hand of the production respectively. In general $i will refer to
ith symbol. terminal or nonterminal. on the right. Terminal symbols receive their values when the
scanner assigns a value to the external variable yylval. A non terminal. on the other hand. needs to
receive its value via a semantic action. For example :

1.7

erpr : erpr ' term { 8% = $1 =+ 83 : }
| erpr =’ term { 8 = $1 - 83 : }

| term

When no action is specified. as in the third alternative in the example above. the default action
is {SS = $1:}. Thus the value of term’s attribute would be copied to that of exrpr. The default
attributes are all of type integer. so there is no problem copying one to the other.

Yace also allows the user to define attributes of other types, including structures. The stack
where Yace stores the values of attributes is declared to be a union that the user can redefine in the

declarations and definitions sections as follows:

Funion {
body of union ---
Once the union is declared. the union member names must be associated with the various terminal
and nonterminal names. This association is specified in the declaration section. The construction
< name > is used to indicate a union member name. If this follows one of the kevwords %token.

Yleft. Y%right. %noassoc as follows :
% token < name > ID FUNCTION

the union member name is associated with the tokens listed. The keyword %left. %right. and
“noassoc are used to declare operators associativity. As the names imply. %left. Zright. and
Znoassoc means left associative. right associative and. not associative respectively.

As for nonterminals. attributes can be associated to them in the same way as terminals. but
using the keyword %type in place of %token.

Yacce will automatically insert the appropriate union member names to cach token and nonter-
minal symbol having a value. However. there are many situations where it is difficult for Yacc to

figure out the types of values. and the user is requested to explicitly insert the union name between

< and > after the first $. as in :

FIRST : SECOND

.

{ S<wvall>S = 3 : }
THIRD

“This syntax has little to recommend it...” the author of Yacc says [Joh73].

User-Written Procedures Section

This section contains the main program that invokes the parser. The user can write there functions
that are needed in his program. For example an error recovery function called yyerror can be
provided. When Yacc encounters an error. it just prints a message. it is up to the user to rewrite

yyerror to supply more information.

Figure 35 gives a clearer idea about the input file for Yacc.

3.2.2 Yacc Meets C++

In a paper entitled “Yacc Meets C++" [Joh88]. Johnson the creator of Yace suggests some modifi-
cations on Yacc.

Yacc. the parser generator. allows attributes to be associated with grammar symbols. Yace uses
a LALR(1) method which is a bottom-up parsing algorithm, hence only synthesized attributes can
be handled directly. More complex translations must be done by building a parse tree. and then

walking this tree doing the desired actions.

et e SRR N P TS FaARE)

%
#include <stdio.h>

%}

S start Program

%token Id

Setoken Number

“%

Program : Statements

Statements : Statement Statements
I Statement

Statement :Id =" Expression

Expression : Expression ‘+° Term
I Expression -0 Term
I Term

Term : Term °*° Factor
I Term Factor
I Factor

Factor : °C Expression)
I Id
I Number

Ce%

main()

{

yyparse():
}

{printf("Program 'n").}

{printf("Statements ‘n");}

{printf("'Statements "n"): }

{printf("Statement *n"");

{printf(""Expression ‘n"):
{printf("Expression ‘n"");

{printf("Expression "n")

{printf(""Term ‘n"):
{printf("Term ‘n"):

{printf("Term n");

{primtf(""Factor “n"):
{printf("Factor \n"):

{printf("Factor ‘\n");

SI1 =82}
SS =81 + 82
$$ =81 -S2:
SS=SI: }
SS =81 *S2:
$S =81 82
S$S =SI:
SS$=SI:

$$ =S1:

$S =SI:

~

Figure 33: Yacc specification for the sequence of assignment statcments.

48

In Yacc. a unique datatype may be associated with each nonterminal symbol. In this case. every
rule deriving that nonterminal must return a value of the defined type. Each token may also have
a defined type: in this case. the values are computed by the lexical analyzer. An action computes
the value associated with the left side of a rule: this action depends on the particular rule and the
values of the components on the right of the rule.

Languages such as C++ support abstract data types that permit functions as well as values to be
associated with objects of a given type. Since values and actions are associated with a nonterminal.
it looks natural to represent a nonterminal as a C++ object. Johnson shows us how C++ abstract

data types can be applied to the semantic actions associated with a parser to achieve the effect of

attribute grammars.
Some examples can clarify how functions can be defined on these types (C++ object) and

incorporated in the grammar to replace actions used in Yace.

Counsider this rule:
erpr : erpr '+’ erpr
We can define a function print() on the object “expr’ as:
print() { Sl.print() : putchar('+') : $3.print(): }
We might also define another function type() as:
type() { return (erprtype ('+' . Sltype() . S3.type())) : }

This shows us that using functions we can take advantage of synthesized attributes. By allowing

these rule-defined functions to have arguments and return values we get manyv of the effect of inherited
g 3

attributes:
type(type t) { Sltype(t) : S2type(t) : }

[n Y++ (The suggested modified version of Yace using C++) when a function f is defined on a
nonterminal/type X. not only the value. but also the function definition itself depends on the rule

used to define the instance of X. for example consider the rule above. Two functions polish and

revpolish can be defined on it.
polish() { putchar(*+') : Sl.polish() : $3.polish() : }
and
revpolish() { Sl.revpolish() : S$3.revpolish() : putchar(‘+') : }

Another example is also given on these two rules defined as:

line : "PRE" erpr
line : "POST" ecxcpr

and a function print() is defined as:

print() { S2.polish() ; }

49

on the first rule. and:
print() { S$S2.revpolish() : }

on the second rule. Then. after a line has been recognized. print will print the expression in either
prefix or postfixform depending on the initial kevword of the line.

Some features of Y++ are :
l. Every grammar symbol. token and nonterminal alike. is associated with a C++ class.
2. Every class has 0 or more functions. defined on it.

3. Every grammar rule may have associated with it 0 or more functions that may be invoked to
access and change the values accessible to that rule. These functions may access and change
values of the result (left side) of the rule. and the components (right side) of the rule. and

invoke other functions defined on the components of the rule.

[n practice. Y++ specifications are transformed to C++ programs and compiled. yvparse returns
a value that is. in effect a pointer to the parse tree. When yvparse is called. it creates a data structure
that represents the tree. For tokens it creates space large enough to hold the value. if any. included
in the token. For nonterminals. the space created depends on the rule used to create to create the

particular instance of the nonterminal. The rule
A B C D :

would cause space to be allocated as follows:

integer rule number
space for the A values
pointer to the B value
pointer to the C value
pointer to the D value
In the case where the actions depend on the rule number (remember the example above). we generate

a conditional based on the stored rule number.

Some of the problems Johnson speaks about are

1. Scope: If there are two calls to yvyparse, does the second tree overwrite the first or should the

two remain active?

[

Default values: There is little point in wasting space on characters and literal kevwords

when they could be known from the rule number. How can this be exploited?

3. Default functions: If a function is called for a rule that contains no definition for that

function should a default definition be assumed?

2.

Error Handling: There is a premium in being able to return a sensible structure for any

input. even those in error, to allow the user to craft special functions that give particularly

good error messages.

User interface: Given a parse tree. it is very nice to be able to rewrite it.

Y ++ allows grammar and lexical analyvzers to be far more reusable than yvacc. since it is easy in

Y ++ to augment the grammar with new rules and actions.

3.2.3 Yacc++

Barbara Zino. the creator of Yacc++. cxplains the features of Yacc++ {Zing1].

e Yacc++ combines the lexing and parsing functions.

® Yacc++ is based on the O-O programming model. the features of which enhance ease of

programming. use and reuse of lexer and parser objects.

Yacc++ improves upon Yacc BNF by providing for regular expression constructs. which is a

simpler and more natural way to describe languages. (lists. optional items).

Multiple Class-Based Inheritance: Yacc++ takes advantage of multiple inheritance of
the following way: The base class contains token and parser nonterminal rules. The rules
are accompanied by semantic actions. Derived classes inherit tokens and parser nonterminals
rules. and their associated semantic actions from one or more base class. Changes or additions
to the token and/or parser nonterminals and their semantic actions can be made in the derived

classes. without any need for rewriting the grammar.

Multiple-Entry-Point Parsing: Yacc uses a structured. procedure-oriented programining
model. Therefore. Yacc creates monolithic lexer and parser program that has a single entry
point at the root of the parse tree. The entire parsing tree has to be matched with this lexer
and parser. There is no possibility of matching just a branch of the tree. 0-O programming is
a data rather that a procedure-oriented programming model. Yacc++ creates one lexer and
parser program and multiple data objects that can have multiple entry points into a parse
tree. The lexer/parser program processes input that matches the entire pattern tree or just a
selected branch of the tree. Programmers control which branches are visible to applications

by preceding the list of wanted nonterminal by “PUBLIC” inside the class definition.

Call-Back Mode for Integration with GUIs: Yacc produced parsers are oriented to the
serialized I/O model and batch file processing. In Yacc lexer and parser procedures control
the computing processes and they call I/0 routines to obtain input data. With the advent of
GUI that manages [/O and calls procedures to handle events, the old style of Yace is no longer
acceptable. Lexer and parser objects created by Yacc++ can operate in a call-back mode for
use within the GUI notification model. The lexer and parser objects are notified of events.
perform the appropriate actions and then return control to the GUI system. Lexer and parser

objects operating in call-back mode are coroutines that retain state between calls.

al

e Polymorphism is the ability to manage concurrent ob jects that are of differing classes. Lex
and Yacc create only one lexer and parser. With its GUI driven approach. Yace++ provide the
programmer with the ability to create a parser object each time a user opens a text window

to check if it conforms to certain dialect.

e Abstract Syntax Tree Objects support the construction of an internal representation of
the parsed input. This takes the form of an abstract syntax tree. Yacc++ generates classes
derived from the AST base class for CONSTRUCT and BASE CONSTRUCT declarations
specified by the user in the grammar. These CONSTRUCT declarations define classes for
tokens. and non-terminals. Yacc++ also generates the code which constructs the AST objects

during lexing and parsing.

3.2.4 Eiffel Parse Library

[n his book. “Reusable Software: The Base Object-Oriented Component Libraries™ [Mey94]. Bertrand
Meyer presents his approach to parsing. It comes as an Eiffel parse library.

Meyer summmarizes the need to this library in four points:

I. The need to interface the parsing tasks with the rest of an object-oriented (O-0O) system. such

as a compiler. in the simplest and most convenient way.

2. The desire to apply O-O principles as fully as possible to all aspects of a system. including
parsing so as to gain the method’s many benefits in particular reliability. reusability. and

extendibility.

3. The need to tackle languages whose structures are not easily reconciled with the demands
of a common parser generator which usually requires the grammar to be LALR(1). The
parse library uses a more tolerant LL scheme that allows backtracking whose only significant

constraint is absence of left-recursiveness.

4. The need to define several possible semantic treatments on the same syntactic structure. For
example in Eiffel. a compiler, an interpreter. a pretty-printer. software documentation tools.
browsing tools. and several other mechanisms all need to perform semantics actions on software
texts that have the same syntactic structure. (With Yacc. the description of syntactic and
sermantics are mixed. so one needs a new specification for each tool). The parse library keeps
syntax and semantic analysis separate, and uses inheritance to allow many different semantic

descriptions to rely on the same syntactic stem.

The grammar is divided into two kinds of constructs: a nonterminal and a terminal. Nonterminals
are described in terms of productions. which give the structure of the construct’s specimens. The
parse library relies on the convention that every nonterminal is defined by at most onc production.

A production describing a nonterminal can be one of three types:

L. Aggregate Production: defines a construct whose specimens are obtained by concatenating

specimens of a list of specified constructs. some of which may be optional. Example:

52

Conditional == (f then_part_list [else_part] end

2. Choice Production: defines a construct whose specimens are of one among a number of specified

constructs. Example:
Type == ClassType | Class Type Erpanded | Formal_Generie_Name

3. Repetition Production: defines a construct whose specimens are sequences of zero or more
specimens of a given construct (called the base of the repetition construct) separated from

cach other. if any. by a separator. Example:
Compound = { [Instruction “¢:'' }

The nonterminal will be accordingly called an aggregate. choice. or repetition construct. A
terminal construct has no defining production. [t is defined by the lexical grammar and not the
syntactical grammar.

The parse library represents these notions with few classes: CONSTRUCT. AGGREGATE.
CHOICE. REPETITION. TERMINAL. KEYWORD. LINTERFACE. and INPUT.

METALEX

_INTERFACE

*

Coonsmuct
Caganzanre> Ccrorce > Crerermon)

i

? heir

. deferred class

Figure 36: Class representation of the various components of grammar.

CONSTRUCT is a deferred class that describes the general notion of svntactical construct.
CONSTRUCT contains a deferred function called “production”. which is a direct representation of
the corresponding production.

AGGREGATE. CHOICE. REPETITION, and TERMINAL inherit CONSTRUCT. Function
“production” remains deferred inside these classes. Every effective construct class that the user
writes must provide an effecting of that function.

Although it is deferred, CONSTRUCT describes a parsing mechanism that its descendants, the

specimens of the constructs of a grammar should follow. For example. its procedure “process™

appears as:

parse;
if parsed then
semantics

end

Where parse and semantics are expressed in terms of some more specific procedures. which are also
deferred. This defines a general scheme while leaving the details to the descendants of the class.

AGGREGATE. CHOICE. REPETITION. and TERMINAL should also describe the correspond-
ing types of constructs. with features providing the operations for parsing their specimens and
applying the associated semantic actions.

To build a processor for a given grammar. one writes a class. called a construct class. for every
construct of the grammar. terminal or non-terminal. The class should inherit from AGGREGATE.
CHOICE. REPETITION or TERMINAL depending on the nature of the construct. It should
describe the production for the construct and any associated semantic actions.

To complete the processor. one must choose a “top construct™ for that particular processor. and
write a root class. This top construct is only defined with respect to a particular processor for that
grammar. Different processors for the same grammar may use different top constructs.

Meyer argues that in O-O methods tops and roots should be chosen last. and that the concept
of a top component of a grammar contradicts the O-OQ approach. which deemphasises any notion of
top component of a system.

The effect of processing a document with a processor built from a combination of construct classes
is to build an abstract syntax tree for that document and to apply any requested semantics to that
tree. Class CONSTRUCT is a descendant of a class called “TWO_WAY_TREE™ that describes a
versatile implementation of trees. So. as a consequence. are CONSTRUCT s own descendants. The
effect of parsing any specimen of a construct is therefore to create an instance of the corresponding
construct class. This instance is a tree node and is automatically inserted at this right place in the
abstract syntax tree.

To parse a document. one needs to get tokens from a lexical analyzer. This is achieved by making
some construct classes. in particular those describing terminals. descendants of one of the lexical
classes. The best technique is usually to write a class covering the lexical needs of the language
at hand. from which all construct classes that have some lexical business will inherit. Such a class
is a called a lexical interface class. LINTERFACE describes this pattern followed by the lexical
interface class.

Class TERMINAL includes a deferred function “token_type” of type integer. Every cffective
descendant of TERMINAL should effect this feature as a constant attribute, whose value is the code
for the associated regular expression. obtained from the lexical interface class.

The principal features for defining semantic actions are pre_action and post.action. These are
features of class CONSTRUCT. Procedure pre-action describes the actions to be performed before
a construct has been recognized; post_action, the actions to be performed after a construct has been

recognized.

As defined in CONSTRUCT. both pre_action and post_action do nothing by default. Any con-
struct class which is a descendant of CONSTRUCT may redefine onc or both so that they will
perform the semantic actions that the document processor must apply to specimens of the corre-
sponding construct. These procedures are called automatically during processing. before or after
the corresponding structures have been parsed.

For TERMINAL. only one semantic action makes sense. so pre_action and post_action have been
respectively defined unused_pre_action and action.

In order to separate syntax and semantics. Meyer suggests using the following approach:

e First write purely syntactic classes. that is to say construct classes which only effect the
syntactical part (in particular function production). As a consequence. these classes usually
remain deferred. The recommended convention for such syntactic classes is to use names
beginning with S.. for example SIINSTRUCTION or S_.LOOP.

e Then for ecach construct for which a processor defines a certain semantics. define another
class called a semantic class. which inherits from the corresponding syntactic class. The rec-
ommended convention for semantic classes is to give them names which directly reflect the
corresponding construct name. as in INSTRUCTION or LOOP.

This method described. relying on multiple inheritance. achieve the goal of letting different
processors share the same syntactic descriptions.

Classes AGGREGATE. CHOICE. TERMINAL. and REPETITION are written in such a way
that one does not have to take care of the parsing process. They make it possible to parse any
language built according to the rules given - with one limitation. left recursion.

The parse library uses backtracking to try various choices in sequences and recursively to rec-
ognize a certain specimen. To avoid too much backtracking. function “commit™ is used. A call to
“commit” in Aggregate A is a hint to the parser. which means that =if yvou get to this point tryving
to recognize a specimen of A as one among several possible choices for a choice construct C. and
vou later fail to obtain an A. then forget about finding an A here. You may go back to the next
higher-level choice before C - or admit failure if there is no such choice left. ~

One disadvantage about the use of "commit” is that it assumes global knowledge about the
grammar and its future extensions. Another one. is that requires a lot of care in order not to lead
to the rejection of valid texts as invalid.

There is a tool that complements the parse library called YOOC(Yes ! an 0-O Compiler).
YOOC is a translator tool that takes a grammar specifications as input and transforms it into a sot

of classes. all descendants of CONSTRUCT and built according to the rules defined above.

3.2.5 Trends in Compiler Construction

Bruce Watson [Wat95] says that a naive approach to 0-O parsing is to create a parser class that has
a member function which constructs a parse tree, given a token stream. This approach is no more

than an O-O wrapper around a traditional procedural parser.

[}
(31}

0-0 design of a compiler requires us to think in terms of the data structures between the phases
of a compiler. he says.
Figure 43 shows the organization suggested for an O-O compiler by Watson. as opposing to the

traditional approach shown in left diagram.

Tle
' Source File
Lexer
Lexing
Token Stream
Token Stream
Parser
Parsing
Parse Tree
Parse Tree
Translator
. Translating
Intermediate Lang .
Optimizer Intermediate Lang,. Optimizing
Intermediate Lang . Generating Code
Code Generator Object Code
Object Code

Figure 37: On the right Watson's organization of a compiler construction. on the left traditional
organization,.

Once the data-structures are designed (as classes), the phases of the compiler arise naturally as
the constructors of cach of these classes. For example, a parse tree object knows how to construct
itself from a token-stream. The parsing algorithm itself will be embodied in the constructors of the

parse tree nodes.Watson presents new O-O approaches for top-down and bottom-up parsing.

56

Watson’s Top-Down Parsing

We begin by constructing an object representing the root of the parse tree. After passing the token-

stream to the constructor of the root. the root is used to construct the subtrees of the root. For

example in :
E - I + E | I

The constructor for E invokes the constructor for [(passing it the token stream). constructing
a new [object. In the case that I is a token. the I will simply be extracted form the token stream.
Then the I constructor would then use the token-stream to build its subtree. The E constructor
then determines if the next constructor is a +. if it is. the + is consumed from the token stream and

the constructor constructs a new E object. again passing it the token stream.

Watson’s Bottom-Up Parsing

Watson [Wat95] presents a new approach to thinking about Bottom-Up parsing. Watson claims
that his algorithm proved to be easier to understand than the traditional approach when tested on
students.

Consider this grammar:
E : E =« [| I

and let us imagine we have the parse tree available at hand. We are going to figure out how to
un-parse the tree into a stream of tokens. starting with the rightmost leaf. We invoke a member
function of the root object. The member function of the root is the currently active function.
This member function determines that each of the object’s children must be un-parsed in turn.
It therefore destroys the root object. returning enough information so that the in-parse member
function of its children are invoked from left to right (cach simply invokes the next sibling. until
the rightmost sibling). The act of destroying itself and passing control to the children is known as
a produce step. The currently active member function, that of the rightmost node. un-parse itself
and returns control to its left sibling. This process of returning coutrol to the left sibling is called a
shift. And so on. until the parse tree is completely decomposed. Every time a leaf is decomposed.
the value of its token is printed to the screen from right to left. Figure 38 shows in a step by step
the un-parsing of the bottom tree representing “I « [« .

The bottom-up parsing process is the time-reversal of the above un-parse process. We start from
the last step and we go backward. The reverse of a produce step is the reduce step, while a shift
step remains the same. While the un-parse process is deterministic the time-reversal is not. because
the tree is not in reality drawn. but it was shown only as a matter of course. This can be solved by

introducing one or more tokens of lookahead or by restricting the class of grammars (cg. LR(0)).

Backtracking

Backtracking means that a part of the tree must be destroyed and control must be returned so

that another possible solution can be tried. Exceptions can be used to backtracking. Whenever a

a7

| el A Bl 1=
e ¥y \.l_
LIS Y [| o
\ ’
\ /
W= ==y
€ > ¥y
[K R
\
\
W 1= =
LET;V.I._
[[
(el
)=
.
/
/
[T el t= =
e - ¥ A
[S U 4. |
\ ’
\ ’
Mittar oy
Ve ¥
| RS Y [I |
\
\
W
AET-
o
1T
)=
-
'
’
[l VA R | (el
W * '
ot (IS |
’
’
il A Rl |
we-> ¥,
LI RY [

Figure 38: A step by step un-parsing of the bottom tree representing [« [= [~

failure occurs an exception can be raised. An exception handler will be placed at the point where
an alternative parsing algorithm is to be made. This facilitates the transfer of control to the point

at which a new attempt to parsing is to be made.

3.3 Summary

This chapter defines the role of a parser generator. The famous parser generator Yacc is introduced.
The chapter contains also a survey of the work done on object-oriented parsing and object-oriented

parser generators by four other researchers: Johnson. Zino. Mever. and Watson.

Chapter 4

Design of an Object Oriented

Parser

4.1 Why a Recursive-Descent Parser?

The most used parsing techniques in compiler construction are LL(k) and LR(k). Since the size of
a parser in both techniques increase dramatically when the value of k is incremented. k is usually
restricted to 1 which eventually narrows down parsers used into two : LL(1) and LALR(1).

In many compiler construction books. recursive-descent is treated as something of limited power.
or only as an introduction to learning table-driven techniques. Such a classification of recursive-
descent parsers is unfounded. as we are going to show. according to the criteria given by Fisher
and LeBlane in their textbook: Crafting a Compiler [FL88]. The criteria. they put to answer the
question of which algorithm is more powerful LL(1) or LALR(1)? is based on five points. A sixth

point related to speed of parsers is needed and thus was added:

1. Simplicity: It is beyond any doubt that recursive-descent parsers are more simple and easy to
both write and understand than any other parser. This may be due to the fact that top-down

parsing is more natural and easy to understand than bottom-up. This is informally shown in
figure 39.

2. Generality: While both LL(1) and LALR(1) in practice are capable of handling many pro-
gramming languages definitions. LALR(1) covers a wider scope of gramnmars than LL(1). Also.

it is harder to write a LL(1) grammar than a LALR(1). because a lot of restrictions has to be

imposed on the grammar. LALR(1) has the advantage over LL(1) by this criterion.

However. there are two reasons that make us believe there is light at the end of the tunnel for

the problem of limited generality of grammars handled by a recursive-descent parser:

60

A bottom-up parser says things like :

hmm. [have tokens like "i :=i + [."
That’s an Expression!

hmm, I have tokens like "begin Expression : Expression : end"
That’s a Block!

hmm. | have tokens like "procedure foo Block"
That’s a ProcDef!

hmm. [have tokens like "program bar Procdef Procdef Block"

That’s a Program!

A top-down parser says things like :
['m compiling a Program. so [need
"program bar Procdef Procdef Block"

I’'m compiling a Procdef so I need
"procedure foo Block"

I’'m compiling a Block so I need
"begin Expression ; Expression : end"

I'm compiling an Expression so I need
“i=ie I

Got it, so this must be a valid Program !

Figure 39: A witty comparison between top-down and bottom-up parsing

61

(a)

(b)

LL(k) are grammars of about the same generality of LALR(1) for a certain & > 1. Thomas
Christopher [Chr99] invented an algorithm that takes an LL(k) grammar and generates
LL(1) tables for it. Thus. the algorithm can be used to convert an LL(k) into an LL{1)
grammar. The generated grammar is usually bigger than the original because the algo-
rithm expands every nonterminal in a production with its right hand sides. A conversion
on a grammar will probably affect its readability. Further study from that point of view

is needed on the algorithm.

The concept or core of the algorithm for a recursive-descent parser is the same for k = 1
or k& > 1. What differs however. is how lookaheads are calculated. Having calculated
the lookaheads. the algorithms for a LL(1) and a LL(k) would look the same. When
k = 1. the calculation of lookaheads is very straightforward. In contrast. when & > 1 the
calculation becomes very complex and the size of information needed becomes extremely
large. This is why LL(k) have been ignored in practice [DeR69]. Parr [Par93] showed a
way to reduce space requirements for calculating lookaheads. The manifestation of this
algorithm was ANTLR [PQ95] : a parser generator for LL(k) grammars. Having the

possibility of using LL(k) grammars suggests using a recursive-descent parser.

3. Action symbols: The question here is “How flexible is the interface to semantics routines?””

LL(1} can call an action routine anywhere during the recognition of a right hand side of a pro-

duction. LR algorithms can only call action routines while reducing a right hand side to a left

hand side. However. LALR(1) can call actions in the same places by a simple transformation

of the grammar. and many LALR(1) parser generators (e.g. YACC) will do the transformation

themselves. LL(1) has only a slight edge here [FL8S].

Error Recovery and Repair Which parsers are better at recovering from or repairing errors

in the input sentence?

(a)

(b)

Error Recovery: One of the advantages of top-down parsers is that effective error recovery
is casy to implement [Hol90]. LL parsers. including recursive-descent. know what svibols
are expected to be recognized later in the input. while LR parsers have a stack of states
they were in earlier in the parse. The information LL parsers have is much casier to use
to make good repairs. LL has a distinct advantage here.

Error Repair: Many authors put down, unfairly. recursive-descent when it comes to this
point. Fischer and LeBlanc [FL88] for example. say “Recursive descent error repair is
rarely. if ever. done™. The following parser generators implement an error-correction tech-
nique: LLgen [GJ88]. Ell [Gro90a]. Stirling [Sti&5]. Rohrich [R6h80] provide theoretical

study of this topic.

5. Parser sizes: A recursive-descent parser is larger in size than a LALR(1). For example in a

comparison between a recursive descent parser generated by LLgen and an LALR(1) parser

generated by Yacce for the same grammar, it was found. when tests were done on three different

machines. that the earlier has an increase of 84%, 129%. 64% the size of the later. [G.J8S].

62

However. as memory becomes cheaper, computers have more storage space. An increase in

space. if not affecting speced. is not a dig deal.

6. Speed: A recursive descent parser is faster than a LALR(1). A recursive descent gener-
ated by LLgen was faster than a LALR(1) parser generated by Yacce for the same grammar

by 33% [GJ88].

Most important. recursive descent will permit to apply the object-oriented approach to parsing

that we are going to explain in the next section.

4.2 Object-Oriented Parsing Strategy

There are standard algorithms in textbooks on compiler construction. However. these algorithms
can not be used directly in an object-oriented environment because they are usually explained in
the context of procedural programming. whereas we will be working with objects.

[n this section we introduce our approach to building an object-oriented parser. The parser is a
top-down parser for LL(1) attributed grammars written in an object oriented language.

The idea of implementing a node in a syntax tree as a record with several fields is a very well
known one. The idea of representing the nodes in an annotated parse tree with objects hecomes
very natural when the tree is built top-down.

When top-down parsing is being used. a node of the parse tree is expanded into several other
nodes. Thinking in terms of objects. an object in the tree constructs other objects. An object. which
is an instance of a class. on the tree corresponds to an instance of the corresponding symbol in a
program. This means that each symbol in the language corresponds to a class or an instance of a
class.

For example. suppose the grammar contains the rule
Assignment — Variable AssOp Ecpression

after parsing an expression we will have an object belonging to the class “Expression™. The con-
structor for a class performs the parsing for the corresponding symbol. The constructor for class
Assignment would call the constructors for Variable. AssOp. and Expression. and would construct
an Assignment object. Thus. an Assignment object would contain pointers to classes : Variable.
AssOp. and Expression.

So in order to parse a document and counstruct a parse tree for it. we begin by constructing the
root of that tree by creating an object representing the non terminal start symbol. The constructor
of the root would in turn construct the subtrees of the root.

The attributes of a symbol correspond to data members inside the class representing that symbol.
If we use objects to represent nodes of the parse tree (or abstract syntax tree). then these are the
natural objects to send messages to. A semantic action is a message sent to an object. and is

represented by a member function inside a class.

63

4.3 Language Specification and Code Generated

The parsers we are describing are to be automatically generated by the parser generator we are

going to introduce in the next chapter. However. for the sake of clarity and explanation. we proceed

as if they are hand coded.
For specifying the languages accepted by the parser. an attribute extended BNF (EBNF) gram-

mar will be used. Qur EBNF grammar has the following main features :
e Svmbols: terminals and non-terminals.
e Regular Expressions: Optional. Repetitive. and Alternated Subrules.

o Artributes and Semantic Actions

We refer to symbols. regular expressions. and semantic actions as “constructs™. So any time the

word construct is used it means any one of them.

4.3.1 Symbols

Terminals
We divide terminals into two categories. depending on whether data obtained from the lexical

analvzer must be stored or not:

e Keywords such as Identifier. Integer. String. etc... contain data that must be stored. When
we read the identifier “Foo™ from a program we must store the string “Foo™ somewhere. We

refer to such terminals as Terminals with information (WIT). The following class is used

to represent WITs :

class WithInfoTerminal : public Construct

{
protected :
int TokenVal : /* Value given to this terminal and used by the lerical analyzer */
char *lexeme : /* String corresponding to this symbol returned by the lezical
analyzer */
public :
WithInfoTerminal(int val . char *text)
{
TokenVal = val :
lexeme = strdup(text) :
b
}:

We will explain later why WithInfoTerminal inherits Construct.

When an identifier “Foo” is encountered. an instance of class WithInfoTerminal is created.

64

e Operators and keywords arc terminals that do not need any information to be stored other
than their own name. For example. AssOp correspounds to the string ~=" but we do not need
to store this string because we know what an AssOp is. We refer to such terminals as No

Information Terminals (NITs). The following class is used to represent NITs :

class NolnfoTerminal : public Construct
{
protected :
int TokenVal :
public :
NolnfoTerminal(int val)
{
TokenVal = val:
}:
}:

We will show later why NoInfoTerminal inherits Construct.

NonTerminals

It is natural that nonterminals would have commmon characteristics. therefore we want all

nonterminals to be descendants of the same class.

class NonTerminal : public Construct

{

protected :
Scanner *scanner :
public :
NonTerminal(Scanner *scan)

assert(scan) :
scanner = scan :

}:

Non terminals. such as Statement. Expression. etc... . will be represented with a class inherited
from class NonTerminal shown above. This class contains pointers to its components (right

hand sides in the grammar).

For example consider this rule:
Assignment = Variable AssOp Erpression
where Variable is an WIT, AssOp is a NIT. and Expression is a NT.

65

We said that every non terminal contains pointers to its components. Therefore. the class
Assignment. contains three pointers: s0. sl. and s2 for Variable. AssOp. and Expression re-
spectively. The constructor for Assignment which is also responsible for parsing would look
like :

I: Assignment::Assignment(Scanner *MyScanner) : NonTerminal(MyScanner)

2: |
3: char * lexeme :
4: if (MyScanner—»Token() == VARIABLE) /* _VARIABLE: value returned by
3: the scanner upon lecing VARIABLE */
6: {
7 lexeme = MyScanner— Lexeme():
8: MyScanner—smatch(_VARIABLE):
$0 = new WithinfoTerminal(_.VARIABLE. lexeme):
10: MyScanner—match(_AssOp) :
11: sl = new NolnfoTerminal(_AssOp):
12: 52 = new Expression(MyScanner):
13: }
I4: else
15: Error(MyScanner—LineNo()) : /* Preceded by an underscore to
16: differentiate from user defined functions. */
17}

The existence of AssOp is implied by the object being an Assignment (since we know its
right hand side). One might say that it is not necessary for Assignment to keep a pointer to
AssOp. The overhead of a pointer to AssOp is negligible especially when compared with the
clarity and consistency a complete parse tree provide. A complete parse tree is not usually
necessary. For example. “¢if E then S, else S.’' can be represented abstractly as
[F(E. S1.S2). There are advantages in having the complete tree however, and it simplifies the
task of building a parser generator (in that you do not have to decide which NITs to discard).
Another advantage is that the generator can provide a function that prints the complete parse
tree to verify the accuracy of the parser. Some optimization can still be achieved by having the
AssOp pointing to a global object AssOp. This way, our parser will create only one instance of
AssOp during the parsing process. to which all pointers to AssOp will be directed. The same

applies to all NITs. This can be achieved by declaring class NITCollection.

If the grammar has four NITs : AddOp. MulOp, LP, and RP. The declaration of class NIT-

Collection would look like this:

class NITCollection

{

private :

66

S T T T e e W AR e s et

static NolnfoTerminal * symbol[4] :
public :
static void IniSyvmbols() :

static NolnfoTerminal *GetSymbol(int):

NolnfoTerminal * NITCollection::symbol{4]:

void NITCollection :: [niSymbols()

{

symbol{0] = new NolnfoTerminal(_AddOp):

new NolnfoTerminal(_MulOp):
new NolnfoTerminal(_LP):

symbol
= new NolnfoTerminal(_RP):

J
symbol[1]
I=
symbol[3]

2
(3

NolnfoTerminal * NITCollection :: GetSymbol(int val)

{
if ((val >= _AddOp) && (val <= _RP))
return symbol{val - _AddOp]:
clse

{

cout << “Unknown value for a NoInfoTerminal \n ~

exit(0):

}

Thus. line 11 in the constructor of Assignment becomes:
sl = NITCollection::GetSymbol(_AssOp) :
Things become more complicated when the non terminal has two or more alternate rules.

Consider the following rule:

Statemment — Variable AssOp Ecpression

| Ceifre Erpression “fthen’’ Statement ‘‘else’?’ Statement

As we have said carlier the class representing “Statement™ should contain pointers to its

components:

class Statement : public NonTerminal

{

67

=2 'E FE

La L.

TV AR AR MR B U S s L s

private :
WIT *a: // Variable
NIT * b : // AssOp
NT *c: // Erpression
WIT *d : /7 i
NT *e: // Erpression
WIT *f: // “then”
NT *g: // Statemnent
WIT *h: /7 Telse”
NT *i: // Statement

The readability. and clarity of the program will decrease especially if the non terminal has
many productions. because it becomes very difficult to keep track of which pointers belong to

which alternate rule.

NT. NIT. and WIT are all constructs within a grammar. If we define an abstract class
Construct. NT. NIT. and WIT will be heirs of class Construct. Figure 40 shows the relation
between the created classes. By defining s as a pointer to Construct we can benefit from
polymorphism and allow s to accept pointers to NT, NIT. and WIT. This means that there
is no need for a class of a non terminal to contain a number of pointers that is equal to the
total sum of symbols in each alternate rule. but rather it is sufficient to contain a number of

pointers that is equal to the maximum number of symbols from any of its alternate rules.

Construct
R
Withinfo Nolnfo
Non Terminal . .
Terminal Terminal

k—__J — ~

Figure 40: Grammar symbols inherit Construct

Thus the class declaration of Statement would look like this:

68

:
i
g
|

class Statement : public NonTerminal

{

}

The first alternate rule of Statement. if chosen. will use only the first three pointers: sl, si.

and s2. while the rest of the pointers will be set to null. The second alternate rule is in need

private :
Construct * s0 :
Construct * sl :
Construct
Construct * s3 :
Construct * st :
Construct

public :

of all the six pointers.

The constructor of Statement will look like this -

Statement::Statement(Scanner *MyScanner) : NonTerminal(MyScanner)

{

char * lexeme :

s0 = NULL :
sl = NULL :
s2 = NULL :
s3 = NULL :
s+ = NULL :
s5 = NULL :
if ((MyScanner—Token() == _Variable))

{
Expression * tmp2 :
lexeme = MyScanner— Lexerne();
MyScanner—match(_Variable):
s0 = new WithInfoTerminal{_Variable. [exeme);
MyScanner—match(_AssOp)
s1 = NITCollection::GetSymbol(_AssOp):
tmp2 = new Expression(MyScanner) :
s2 = tmp2 :

}

else

if ((MyScanner—Token() == _IF))

{

69

Expression * tmpl :

Statement * tmp3 :

Statement * tmp5 :
MyScanner—match(IF) :

s0 = NITCollection:GetSymbol(_IF):
tmpl = new Expression(MyScanner) :
sl = tmpl :
MyScanner—match(_THEN) :

52 = NITCollection::GetSymbol{ _THEN):
tmpJ = new Statement(MyScanner) :

s3 = tmp3 :

MyScanner—match(_ELSE) :

s+ = NITCollection::GetSymbol(_ELSE):
tmp5 = new Statement(MyScanner) :

S5 = tmpd :

else

_Error(MyScanner—LineNo()) :

If the nonterminal has more than one alternative rule and one of them derives the null string

we treat it as if it was placed as the last one.

However. even with this approach. we can not say that the generated constructor will be very
readable. The number of data members in ~Statement™ is not large now. But. for a language
with may kinds of statements. the variables are going to become very overloaded. Also the
number of “tmp,” generated will make the constructor less readable. It would be better to
create subclasses for every production of “Statement™. Subclasses ~Assignment™ and ~Condi-
tional™ would be created for the first and second productions of “Statement” respectively. The
parser generator can not invent such nice names, but rather it will generate: “Statement_1".
“Statement 2. Obviously. subciasses Statement_1 and Statement_2 inherit class Statement.
All the attributes of the parent class Statement. even its inherited ones, need to be mirrored
into the subclasses generated: Statement_1 and Statement 2. This is very important to guar-
antee that the semantic values gathered during the parsing and belonging to Statement will
not be lost by introducing the new subclasses. The parser generator generates such a member
function. for every subclass. that copies attributes’ values of the parent class to the generated
subclass.

The class for Statement contains only one data member “s0” that will be eventually pointing

to cither “Statement_1" or “Statement_2”. The class declaration for class Statement will be :

class Statement : public virtual NonTerminal

{

PERGE Y T TONE I et g e TR

protected :
Construct * 50 :
public :
Statement(Scanner *):

static void _Error(int line = -1):

while that of Statement_1 which represents the assignment production:

class Statement_1 : public virtual NonTerminal. public Statement
{
protected :
WithInfoTerminal * s0 :
NolnfoTerminal * sl :
Expression * s2 :
public :
Statement_1(Scanner *):
void Initialiselnherited Attrib(Statement *):

static void _Error(int line = -1):

and that of Statement_2 which represents the conditional production:

class Statement 2 : public virtual NonTerminal. public Statement
{
protected :
NolnfoTerminal * s0 :
Expression * sl :
NolnfoTerminal * s2 :
Statement * s3 :
NolnfoTerminal * s :
Statement * s5 :
public :
Statement _2(Scanner *);
void InitialiseInherited Attrib{Statement *):

static void _Error(int line = -1):

The constructor of Statement_1 is almost the same as that of “Assignment™ on page 66. The

constructor of Statement 2 looks like this:

Statement_2::Statement 2(Scanner *MyScanner) : NonTerminal(MyScanner).

LM BT A 2

$i:iAITAE L

Statement(MyScanner)

{
char * lexeme :
s0 = NULL :
sl = NULL :
s2 = NULL :
s3 = NULL :
s4 = NULL :
s5 = NULL :

if ((MyScanner—Token() == IF))

{
MyScanner—match(_IF) :
s0 = NITCollection::GetSymbol{ _IF):
sl = new Expression(MyScanner) :
MyScanner—match(_THEN) :
52 = NITCollection::GetSymbol(_.THEN):
s3 = new Statement(MyScanner) :
MyScanner—match(_ELSE) :
s = NITCollection::GetSymbol(_ELSE):
s3> = new Statement(MyScanner) :
return :

}

-Error(MyScanner—LineNo()) :

}

The constructor for class Statement is less complicated than the one shown before -

Statement:Statement(Scanner *MyScanner) : NonTerminal(MyScanner)
{
char * lexeme :
s0 = NULL ;
if ((MyScanner—Token() == _Variable))
{
Statement_1 * tmp0 = new Statement_1(MyScanner):
tinpO—InitialiscInherited Attrib(this):
50 = tmpO :
return
}
if ((MyScanner—Token() == IF))

{

Statement_2 * tmp0 = new Statement 2(MyScanner):

=~
[{V]

5
5
2
H
5
=]
1

LI ALadD r s

tmpO— InitialiseInherited Attrib(this):
50 = tmp0 :
return :

}

-Error(MyScanner—LineNo()) :

[t is true that using this strategy more classes will be generated. but each class will be easier to
understand because it would be handling a simple problem. Therefore we adopted the latter
approach.

Using this approach. we have to decide on when to generate a new sub-class and when not.
A subclass should not be generated for a production that contains only a Terminal. or a non
terminal. accompanied by zero or many actions. For example. imagine that “Statement™ has
a third production containing a nonterminal “FunctionCall”. =s0” of “statement™ can be used

to represent “FunctionCall™ and there is no need to generate a subclass.

The following criteria is used to decide when to create or not to create a subclass

~ Do not create a subclass if:
1. The non terminal has only one production on the RHS
2. The non terminal has two productions on the RHS but one of them contains only
actions or just the null string
3. The non terminal has two or more productions cach of them containing only one
nonterminal or a terminal accompanied by any number of actions. or an optional
containing only one nonterminal or a terminal accompanied by any number of actions
- Create a subclass if:
1. The non terminal has more than one production and one of them at least has:
(a) multiple symbols or an optional containing multiple symbols or
(b) contains a repetition or an alternation or an optional containing a repetition or

an alternation .

4.3.2 Regular Expressions

Optional Subrules

A square bracket [] pair is used to delimit a sequence of one more constructs as optional
subrule.
When a Optional is encountered. it just means:

if the current token is within the FIRST set of this Optional

r»arse all the symbols and execute all semantic actions inside this Optional
I)

clse

all the symbols inside this Optional should be set zero.

For example. consider the non terminal “IFStmt™ defined by this production:

[fStmt == <‘if'* Condition “‘then’’ Stmt <[>’ “‘else’’ Stmt ¢ ‘17
The class of ~IfStmt™ will contain pointers to all the elements inside the Optional. As we

notice below. 55 and s6 are the pointers to “else™ and Stmt contained inside the Optional. [t

can be written as :

[FStmt::IFStmt(Scanner *MyScanner) : NonTerminal{MyScanner)
{
char * lexeme :
if ((MyScanner—Token() == _IF))
{
MyScanner—match(IF) :
50 = NITCollection::GetSymbol(_IF):
sl = new Condition(MyScanner) :
MyScanner—match(_THEN) :
s2 = NITCollection::GetSymbol(_.THEN):
s3 = new Stnt(MyScanner) :
if ((MyScanner—Token() == _ELSE))
{
MyScanner—match(_ELSE) :
s4 = NITCollection::GetSymbol(_ELSE):

sd = new Stmt(MyScanner) :

clse

_Error(MyScanner—LineNo()) :

Repetitive Subrules

A pair of brackets followed by a star []* is used to delimit a repetitive sequence (with zero or more
oceurrences). The sequence can be of any number of constructs.

Consider the following production :

Akl rabivadiia

Erpression — Term [AddOp Term |*
An casy approach to parse this production is:

BinarvOp = NULL :
create an instance of Term :

while (next_token == AddOp)

{

match(AddOp) :

Left = An instance of AddOp :

Right = An instance of Term :

BinarvOp = make_bin(Left. Right. BinaryOp) :
}

connect BinaryOp to the parse tree.

Where make_bin() constructs a binary operator node. pointed to by BinaryOp. in the parse tree.

BinaryOp can be represented by a class as shown below. hence make_bin would be the constructor

of that class.

class BinaryQp : public Construct

{
private :
Construct * left . * right :
BinarvOp * previous :
public :
BinaryOp(Construct *I = 0. Construct *r = (. BinaryOp *p = 0)
{
left =1:
right =r:
previous = p :
}:
}:

Talking C++. the constructor of Expression would look like this:

Expression::Expression(Scanner *MyScanner) : NonTerminal(MyScanner)
{
char * lexeme :
if ((MyScanner—Token() == D))
{
$s0 = new Term(MyScanner) :
if ({(MyScanner—Token() == _AddOp))
{

BinaryOp * bin_.op = 0 ;

BRI

ST T e A e el Rl T O T LA i

NolnfoTerminal * left = 0 :

Term * right = 0 :

while ((MyScanner— Token() == _AddOp))

{
MyScanner—match(_AddOp):
left = NITCollection::GetSymbol(_AddOp):
right = new Term(MyScanner):

bin_op = new BinaryOp(left . right . bin_op):

sl = bin.op :

else

NULL :

sl

t
else
-Error(MyScanner—LineNo()) :

}

Figure 41 shows the parse tree obtained according to our algorithm. It is noted in the figure that
the last created BinaryOp is the one connected to the tree. and not the first. We need to have the
ability to build the parse tree from the the input. and inversely restructure the input file from the
parse tree. This not difficult to do.

One of the characteristics of this algorithm is that it isolates what is inside the brackets]
from the rest of the parsing algorithm by emphasizing one variable. the one that will be connected

to rest of the parse tree. Thus we can casily figure out how to parse
“ [ID [AddOp ID |« |

The BinaryOp shown above has only two pointers. left and right. hence it allows a maximum of
two symbols inside the repetition. It was used only as a mean of explanation. We need to develop
BinaryOp to allow using sequences of whatever sizes. For example. if the repetition subrule contains

n non terminals: aya;y ---a, , binaryOp should look like this:

class BinaryOp : public Construct
{
private :
Construct **array:
int array size :
BinaryOp * previous ;
public :
BinaryOp(Construct ** arr = 0. int size = 0 , BinaryOp *p=0)
{

array = arr ;

Term

BinaryOp

- - e
‘~~\ -
~‘~.\ - -
BinaryOp ’:
T}
e L T
- BinaryOp

..

_A‘-'- " o BinaryOp '

Left pointer of BinaryOp
Right pointer of BinaryOp
Prcvious pointer of BinaryOp

i
'
.

BinaryOp |
I

These are the nodes that will be connected to the tree

Figure 41: The use of BinaryOp to parse a repetitive subrule

array size = size :

previous = p :

[nstead of having two pointers. BinaryOp has an array of pointers. The array will be created
dynamically. The algorithm below shows us how this is done for this repetition: [MulOp AddOp U)*

. where U is a nonterminal:

BinaryOp * bin.op =0 :
while ((MyScanner—Token() == \MulOp))
{
MyScanner—match(MulOp):
NolnfoTerminal * tmp0 = NITCollection::GetSymbol(_MulQp):
MyScanner—match(_AddOp):
NolnfoTerminal * tmpl = NITCollection::GetSymbol(_AddOp):
U * tup2 = new U(MyScanner):
Construct ** array = new (Construct *) BIE
array[0 | = tmp.rep.0:
array[1 | = tmp_rep_l:
array[2 | = tmp_rep2:
bin.op = new BinaryOp(array. 3. bin_op):

}

s; = bin.op :

Alternated Subrules

A pair of parenthesis () is used to indicate a choice between two or more alternatives. separated
from each other by | . An alternative can be a symbol (terminal or non terminal) accompanied
by any number of semantic actions. Only the symbol in the last alternative can be the null symbol.
This means that only one pointer is needed to represent an alternated subrule. Since the pointer
can be pointing to a terminal or a non terminal. it better be a pointer to Construct.

The code corresponding to an alternated subrule (ay | aa | @z | --- | a,) varies based on three

conditions as follows:
L. None of the symbols inside the alternated subrule is or derives the null string

if the current token is within the FIRST set of a;

parse the symbol and execute all semantic actions inside o,
else
if the current token is within the FIRST set of cr

parse the symbol and execute all semantic actions inside -

else

Error
2. The symbol in the last alternated subrule is the null string

if the current token is within the FIRST set of ay

parse the symbol and execute all semantic actions inside o,
else
if the current token is within the FIRST set of a-

parse the symbol and execute all semantic actions inside a-

else

set the pointer representing this subrule to null.

3. One of the symbol inside an alternate a;. not necessarily the last alternate. derives the null

string:

if the current token is within the FIRST set of a,

parse the symbol and execute all semantic actions inside a;
else
if the current token is within the FIRST set of as

parse the symbol and execute all semantic actions inside a-
else
else
if the current token is within the FIRST set of a,_,

parse the symbol and execute all semantic actions inside a;_;
else
if the current token is within the FIRST set of TN

parse the symbol and execute all semantic actions inside «,

clse

if the current token is within the FIRST sect of a,,
parse the symbol and execute all semantic actions inside a,,
clse

parse the symbol and execute all semantic actions inside a;

4.3.3 Attributes and Semantic Actions

Attributes

Terminals other than keywords. i.e. WITs and non terminals can have zero or many attributes. For

example in the production:

Erpression — Erpression AddOp Term

Expression. and Term both need to have an attribute “val”™. that will be used to hold the seman-

tical values obtained by applying a semantic rule such as :

Erpression.cal = Erpression.val + Term.val

The attributes of a symbol correspond to data members inside the class representing that symbol.
For example. to give Expression an attribute val that is an integer. we define an integer data member

val in the class declaration of Expression:

class Expression : public virtual NonTerminal

{

protected :

int Expression_val :

When an ateribute is given to an WIT. it becomes necessary to define a new class with the name
of that WIT. The new class inherits class WithInfoTerm. For example. if we want to give WIT ~ID"

an attribute val then a new class has to be defined for [D :

class ID : public WithInfoTerminal
{
protected :
int ID_val:

We will explain later (when we speak about inheritance), why we declared the attributes as
protected and not as private.

Oune of the problems is how to handle attributes’ types. I just assumed that the values were ints.

Even though the attributes used so far are of type integer, the user has the ability to declare
different types of attributes. In the next chapter we will show how attributes types can be specified

by the user.

80

Actions

Since the nodes of a parse tree are represented as objects. then these are natural objects to send
messages to. Each semantic action should be a message sent to an object. A message is represented
with a function call whose arguments are attributes of grammar symbols corresponding to the
subtrees of the node.

Below is an example of a grammar rule and its associated semantic action written in Yace :
Erpr : Term '+' Erpr { $8 = $I + $3 : }

In Yacc. the semantic action is written in C code in the grammar. This is language dependent
and can be verbose (although you can put everything in the form of function callsj. For us. the
semantic action should be a message written in as much general form as possible like ~do_it()"”. The

Yace rule can be translated using our approach to:
Erpr : Term '+' Erpr { this = add(Ezpr.val.Term.val) : '}

The use of ~this™ coincides with the C++ ~this™. We merely intended by it a pointer to the
current node. ~add™ is a member function of Expr and thus its header function has to appear inside

the class declaration of Expr :
int Expr_add(int . int) :

A function call of “add™ has to appear also inside the constructor of Expr.

We have to pay attention how to link the arguments of the function inside the semantic action
with the pointers to different symbols inside the class. For example. the arguments Erpr.val and
Term.val correspond to s0 — var and sl — var respectively. Thus. the constructor of Expr.

assuming the grammar is LL(1). would look like :

I: Expr:Expr(Scanner *\MyScanner) : NonTerminal(MyScanner)

2: |

3: char * lexeme ;

4: Exproval =0 ;

3: if ((MyScanner—Token() == _ID))

G: {

T s0 = new Term(MyScanner) :

8: MyScanner—match{_AddOp) :

9: 51 = NITCollection::GetSymbol{.AddOp);
10: 52 = new Expr(MyScanner) :

I1: Expr_add(s0?s0— _Get_Term_val(): 0. s27s2— _Get_Expr_val(): 0);
12: }

13: clse

[-4: -Error(MyScanner—LineNo()) :

15: }

81

On line 11 of this algorithm. the function call for the semantic action. we notice that the name of
the function ~add™ was preceded by the class name ~Expr”. this is explained below in the subsection
about inheritance. We also notice that arguments of the function were represented by functions
_Get_Term_val() and _Get_Expr_val(). These functions are automatically generated member func-
tions of classes Term and Expr respectively. They are needed because attributes are usually private
data members and can not be accessed directly by other classes.

The user is responsible only for coding the definition of the function add. The definitions will
be in a separate file so they do not have to be changed when the grammar is changed. The parser
generator can however facilitate the job of the user by generating a skeleton of every function in a

separate file. For example. for ~add™ the following skeleton can be generated.

int Expr::Expr_add(int al. int a2)

{
}

This skeleton can serve as a reminder for the user of how many functions have to be defined.
what are the return types. and how many arguments they take. It is enough for the user to write

between the two bracelets of this skeleton:
return Expr_val = al + a2 :

everything else will be generated by the parser generator.

The only problem in the notation we are using to specify sernantic actions occurs when the same

name of a symbol is used more than once in the rule. For example :
E : T AddOp T { ConvertType(T.type. int’’); add(T.val.T.cal): }:

There is no way in this example to tell which “T" of the two we are indicating. Yacc uses $i to
denote the i'th symbol in the rule. and replaces this by an array reference in the generated code. It
would be better if the user could write something a bit less error-prone than $i. Our parser generator

will be more natural. and more advantageous to the user.

By default. the first occurrence of T in the production will be considered. However, in order to

overwrite this default. this notation has to be used:
E T AddOp T { ConvertType(T : 2.type. “‘int’’): add(T.val.T :2.val): }:

The colon followed by a number i indicates the ith occurrence of the symbol in the production.
If no colon and number were specified, then by default. the first occurrence of the symbol is being

referred to. When counting the number of occurrences of a symbol. we ignore the existence of [].

[J* . and () within a production.

As for such an Expression :
E - T 4+ F

In this production we notice the existence of an "E” on the right hand side and another on the

left hand side of the production. We can access the attributes of E on the left hand side of the

82

production with the “this™ pointer which is defaulted. A colon followed by a number is only used
for symbols occurring on the right hand side of the production.
There are no restrictions on where an action can occur on the right hand side of a production.

However there is a restriction on their order of evaluation. The order of evaluation of these rules is

L-attribute.
If an action is being called by a symbol that occurs to its right the action will be ignored. the

same thing applies to attributes. If the attribute belongs to a symbol that occurs to the right of the
action. the attribute will be replaced by NULL by the parser gencrator.

An action can not reference a symbol inside a repetition or an alternation unless the action is

within the same repetition or alternation.

Inheritance

Sometimes after the user defines the productions. attributes. semantic actions in his grammar he
decides to experiment by adding some rules. attributes. semantic actions on some symbols. This is
dangerous because it could mess up his entire grammar. and these modifications would be difficult

to remove if later found unneeded.
Let us assume that A is the non terminal we want to experiment on. We define a new non

terminal B with all the new productions. attributes. and semantic actions we want to add. If we

add a production of the following form to our grammar:
A = B

then it means an object A on the parse tree can give birth to a new object B. It would be very
natural for B to inherit all attributes and functions defined on A since it is a direct substitute for
it. This can be done by having class B inherit A. Therefore. whenever a production of the above

mentioned form is encountered. its class declaration would contain in addition to what have been

said so far:

class B : public virtual NonTerminal. public A

{

If there is another production:
C = B
in the grammar. then B would inherit C too. Thus the class of B would look like

class B : publie virtual NonTerminal. public A, public C

{

83

Both A. and C inherit class NonTerminal. This explains why the word virtual precedes NonTer-
minal in the class declaration above.

The definition of the constructor of B should reflect this inheritance as C++ requires:

B::B(Scanner *MyScanner) : NonTerminal(MyScanner). A(MyScanner). C(MyScanner)

{
}

B would srill inherit A even if there were semantic actions on the right hand side of the production
with B.

Because we wanted to avoid conflicts between the inherited and inheritor classes we have preceded
the names of attributes and semantic functions with the class name such as in Expr._var and Term_var.
However. when the user writes semantic actions in the grammar specification he does not have to
worry about adding the name of the class to the name of the function or the attribute inherited. For
example if fune() is a member function of -1 and B inherits A then the user can write something
like:

B : ay -+ a, {this.func():}:

4.4 Interfacing with a Lexical Analyzer

Lexing is done using our Scanner class. This class wraps up “flex”. Flex is Gnu’s version of lex. the
lexical analyzer generator. [t generates code that is compatible with C++. Scanner provides the
interface for flex with the rest of the system. hence Hex is invisible to the rest of the program and
can be replaced casily.

Figure 42 shows the implementation of the Scanner class.

4.5 Problems and Solutions

We can improve our parser generator by:

I. Including crror repair/recovery functions in our generated parser. Right now the parser will
Stop as soon as an error occurs, prompting the user with a message indicating the error and on
which line to be found. We expect that including error repair/recovery functions would pose

no problems. In Section 4.1 we introduced some reference about this subject.
2. Allowing it to accept a single quoted character such as *+° and treat it as a NIT.
3. Allowing it to accept literal strings such “Hello World™ and treat it as \WWIT
4. Allowing the user to write comments in his grammar specification

5. Allowing repetitive subrules to be of a specific number times and not only 0 or many.

The last three suggestions are more casy to implement than the first one which requires more

effort. These suggestions are by no means the only possible ones, other suggestions can be found.

84

class Scanner
{
prvate :
FILE = input :
int lineno
int token :
char * lexeme ©
voud NextTokenq) :
char * TokenTextVal(int):
public :
Scannertchar *) ;
it Token(d { retum token 3
char = Lexemet) @
int LineNoO { retumn lineno :) :
vord matchdint) @
void matchgint . char =) ;
~Scannert) {
felosetinput).

treedexeme):

void Scanner:match(int val)
{
it (token == val)
NextToken():
else
{
cout << lineno << ™ " << TokenTextVal(val)
<< " was expected and not
<< TokenTextVal(token) << ™n'":

exitth) :

fetum ¢

void Scanner::NextToken()
{
token = yylex():
lexeme = yytext:

lineno = yyline:

Scanner:Scanner(char * gram)

{
FILE * in = fopen(gram . "r'');
i (lin)
{
cout << "Failed to open: " << gram
<< " the file describing the grammar . n
ext0):
}
mput = yyin * Lexinput file * =in
token = yylex(x
lexeme = yytext:
lineno = yyline:
b

void Scanner:match(int val . char * string)

{
if ((token == val) && (!stremp(string . lexeme)))
NextToken():
clse
{
cout << lineno << ™ " << TokenTextVal(val)
<< "" << string << " was expected and not
<< TokenText Val(token) << ™" << lexeme
<<endl:
exa(l):
}
retum @
}

char = Scanner:Lexeme()
{
char *sr=0;

it tlexeme)

{
str = strdup(lexeme):
assert(str):

}

retum str:

char * Scanner:: TokenTextVal(ing val)
{
const int START = 257
char * TextVal[] = { "(Blank)". "AddOp". "MulOp".

"LP¥."RP", "ID". "UNKNOWN"} :

it (fval)
retum TextVal[0]:

else

if ((val >= _AddOp) && (val <= _UNKNOWN))
retum TextVal[val - START + 1}

else

{
cout << "Undetined token value: " << val << endl :

exit(0):

Figure 42: Class Scanner implementation.

85

- TR A dee S VAR R AV I AL B Skt T e T

4.6 Summary

This chapter contains a comparison that proves wrong the idea that recursive-descent parsing is of
limited value. [t also details our object-oriented strategy to parsing. Language specification and
the code generated are explained in details. Many examples are given about the use of terminals.
nonterminals. regular expressions. attributes and semantic actions. The interface of the parser with

the lexical analyzer is shown. Some suggestions to improve the parser are given.

86

;
!
o
j
%
]
3
3
g
|
]

Chapter 5

Design of a Parser Generator

5.1 Approach to Building a Parser Generator

Figure 43 is an example of an input file showing the format that we are using to specify grammars
We want our parser generator to generate parsers for.

Grammar G. shown in figure 44. specifies the set of all input files acceptable by our parser
Lenerator.

When the user specifies his grammar according to the format specified by G. it becomes very
simple for us to point out non terminals. kevwords. terminals. grammar rules. regular expressions
(optionals. repetitions, and alternatives). attributes. and semantic actions.

Our approach to creating a parser generator is very simple. We represent every construct of
the afore mentioned constructs with a class. Every class contains one or more member functions to
generate code about itself that constitutes part of the parser to be generated. When the user runs
the parser generator program on his input file. an instance of these classes will be created for every
symbol in his grammar. By calling the code generating member functions of these objects a parser

for the user’s grammar will be generated.

5.2 Grammar Constructs

Figure 15 shows the classes that have to be created for different grammar constructs. It also shows

some of its most important data members. In this figure we can point out the following classes:

e Construct: An abstract class. Classes Terminal. ActionInfo. WithInfoTerm. NonTermi-
nal. Optional, Repetition. and Alternation inherit class Construct. Construct indicates these

classes” common properties such as:

— name

“« NonTerminal alpha wdent integer selector® selector factor operator! operator term SimpleExpression expression ActualParameters ProcCallOrAsaign0
ProcCallOrAssign IStatementQ [fStatement WhileSt stal S Seq e Identiust AmayType FieldList RecordTs pe
type FPSection FormuiParameters Procedureiicading ProcedureBody ProcedureDeclartion declarations0 declarations i declarations?

declarations module

 NolnfoTerminal DOT BEGIN END LBRACKET RBRACKET LP RP PROCEDURE VAR TILDE STAR PLUS MINUS DIV MOD AMPERSENT
MODULE SEMICOLON CONST TYPE ELSE ELSIF OR EQUAL LESS GREATER LE GE POUND GETS COMMA ARRAY OF IF

THEN WHILE DO COLON RECORD

« WithinfoTerminat fetter dignt

% Attributes

Nt factor.fanse © me wentname ;

T Actions

nt ident.Onet 12 char sefector. Twox) voud factor. Threetint); nt SempleExpression. Fourt); double WhileStatement. Erghtt):
tloat ActuaiParameters.Fiver): mt ProcCaliOrAssign0.Six(x: g slatement.sevend 1 nt [dentfast Ninetint i

% Ruley

alpha @ letter { dignt H

went 2 letter alphaf® :
nteger @ dagit [digit® H

sefector) ¢ DOT udent { 1dent.Onet): } | LBRACKET expression RBRACKET H

selector : {selectorOf* {Twor: 3 ¢

tactor @ dent selector | integer | LPexpression RP i TILDE factor H

operator| 2 (STARIDIVIMOD | AMPERSENT) :

term @ factor [operator! factor { factor: 2. Throetfactor first): |} |* H

operatorl : (PLUSTMINUSIOR) :

SimpicExpression @ (PLUSIMINUS 1 { Fourty: }) term {operator2 term|* :

expression : SimpleExpression { EQUAL IPOUNDILESS { LE IGREATER LGE) SimpleExpression | H
ActualParamcters : LP{expression JCOMMA expressioni*} RP H

ProcCallOrAssignd 1 | ActualParameters { ActualParameters. Fisef): Sixty }) { AcrualPazameters.Fiverr: } I selector GETS expression H
ProcCallOrAssign : dent ProcCallOr Assign0) :

{tStatementO @ expression THEN StatementSequence :

HStatement ¢ IF ifSatement0 END | ELSIF [tStatementO |° | ELSE SuatementSequence | END :
WhileStatement : WHILE expression DO StatementSequence END :

statement ¢ ProcCallOrAssign { seven(): } ItStatement | WhileStatement { WhileStatement.Exght(): }1) :
StatementSequence ¢ satement | SEMICOLON statement |* H

Identlust ' adent { COMMA statement { Ninctident.name;) |* H

ArayType : ARRAY evpression OF type H

Fieldlast : [IdentList COLON typel| H

Revord Ty pe ¢ RECORD FieldList {[SEMICOLON FieldList|* END :

e : dent I AmyType | RecordTspe :

FPSection : IVAR] IdentList COLON type H

FormalParameters : LP[FPSection [SEMICOLON FPSection|*] RP H

Proceduretfcading ¢ PROCEDURE ident [FormaiParameters| H

ProcedureBody 2 declarations [BEGIN StatementSequence] END :

ProcedureDeclaration @ ProcedureHeading SEMICOLON ProcedureBody ident :

declirationsO @ dent EQUAL expression SEMICOLON :

Jecirationst 1 dent EQUAL type SEMICOLON :

dectirations2 @ IdentList COLON type SEMICOLON :

devlarations : [CONST [declarationsO}® | | TYPE [declarations ! 1° 1l VAR [dechirauons2j* | [ProcedureDeclamtion SEMICOLON|® H
module : MODULE went SEMICOLON declarmtions [BEGIN StatementSequence| END wlent DOT :

Figure 43: Example of an input file to our parser generator

88

e e R]

Grammar — Declarations Attributes Prototypes Rules
Declarations —> "% "NonTerminal" [id]*

" "NolnfoTerminal" [id]*

"% "WithInfoTerminal" [id]*
Attributes — " "Attributes" [idid""id """ }*
Prototypes — g "Prototypes” [idid "." id "(" ArgTypes ")" """ J*
ArgTypes —> [d["."id]*]

Rules — "' "Rules" [OneRule J*

OneRule —= id":"RHS'";"

RHS — Actions [[SymOrRegExp Actions]+ SubRules]
SubRules —= ['"" RHS]

Actions —> ["{" [OneAction]+ "}"]

OneAction — Trio "(" [Arguments])" ;"
Trio —= id [[":" number] "." id]
Arguments — OneArg ["." OneArg]*

OneArg —= Trio
SymOrRegExp — id
I RegExp
RegExp —= OptionalOrRepetition
| Alternation
OptionalOrRepetition — "[" Actions [SymOrRegExp Actions]+ "]" ['"*")
Alternation — "(" Actions id Actions "I" SubAlternation)"

SubAlternation — [Actions [id Actions ["I" SubAlternation]]]

Figure 44: Grammar ~G” specifying the set of input files acceptable by our parser generator

89

) ﬁ [B ﬁ A
medarddy taumo EEEEEEE——
<IYIUO,)>RG ¢ {poy
uenRnposy [RITHTRINY uonnada nuond QUIIYSER] . foumo
‘ u : i J L ftiacay J ruondo y kano>106 0 s Sae
N~ B TR IR
P TR IS 1]
adfiong
R —— r ™ e N —
O
D IaUMO
B TR T
ENV) QUIVSTEL ¢ Um0
VUL L ojuyN RUIMLD | 10 :
ooy _,Q LETHEI ey RLTERRRTS
\ < v
N
ﬁ) N (B (")
R <doosg>ag : sadioond uoanpold ;- Lauso
U TR oo <uandiys1ag : siuawnin
; <UNV>IG 0 samngim 108D ag:) B i 2
HIASIRIN tngisn <UONINPOL>10G g oo que
" annsqy) (ounsqv)
ML,
" qunvsey L awfaddy | ojutenay wawndsy)

\\/

M TR
Ay vmsuo,y @ ad$y

(ansqy)
s,)
N

)

BTTA N

aueuTpy

RUM TN RITTIAY

1quny

o,

-

ammar file.

1 user s mput gr.

&

in

structs that can be found

ASSCS repr(‘scntmg con

e

3

Figure 4

90

— type: this attribute specifics whether the construct is a NonTerminal. Terminal. WithIn-

foTerm. ActionInfo. Optional. Repetition. or Alternation.

Aggregate: An abstract class. Classes Nonterminal. Optional. Repetition. and Alternation
are all aggregates. Aggregates are meaningless if not explained by means of productions.

Therefore. an ~Aggregate™ has a field “rule™ which is the list of all productions defining it.

Terminal: This class describes all terminals. To every terminal must be assigned a value that

the lexical analyzer makes use of. Therefore. ~Terminal™ contains the field token_val.

HasAttrib: An abstract class. Both non terminals and terminals (only WITs) can have

artributes and actions defined on them. Therefore two data members are necessary:

- attributes: The set of attributes defined on this aggregate. The attributes are found in
the section labelled “% Attributes”™ in the user’s input file. Attributes are represented
with class “Attribute™.

— prototypes: The prototypes of actions defined on this aggregate. These prototypes are
found in the section labeled =% Actions™ in the user’s input file. Prototypes are repre-
sented with class ~Prototype™.

WithInfoTerminal: Represents all terminals that have information that need to be stored
(as described in chapter 4). Such a terminal can have attributes. and actions. In that case a

special class is created fo- that terminal that inherit class WithInfoTerminal.
NonTerminal
ActionInfo

RegularExp: An abstract class. Optional. Repetition. and Alternation are regular expres-
sions. The only place regular expressions (nested or not) can appear are productions. There-
fore. we can say that regular expressions are owned by productions. The ~“owner” field indi-
cates which production owns this regular expression. “RegularExp™ is an heir of Aggregate.,

and therefore inherits “rule”.
Optional

Repetition

Alternation

Production: Is a way of representing the set of symbols defining an Aggregate. Therefore,
"Production™ has a field ~body™ which is a list of “Constructs™. Every “Production” is owned

by an ~Aggregate” and keeps track of that owner in the field “owner™.

Attrib: Represents the attributes defined in the attribute declaration section of the user’s

input file. The following data members are needed to describe an attribute:

=~ type: a string that saves the type of the attributes, for example an integer. a float. ...

91

o TR e i A L A O T T DO & S LY

— name

- owner: a pointer to “HasAttrib™. [ndicates the owner of this attribute that could be

either a NonTerminal. or a WithInfoTerminal.

¢ Prototype: Represents the actions. which are functions. defined in the actions declaration

section of the user’s input file.

— type: a string that saves the return type of the prototype. for example an integer. a Hoat.

- name
— arg_types: a list of strings each of which is the type of one argument of this function

— owner: a pointer to “HasAttrib™. Indicates the owner of this prototype that could be

cither a NonTerminal. or a WithInfoTerminal.

Trio: a class that is inherited by classes “Arguments™ and ~ActionInfo™. When an argument
or a function call is encountered in an input grammar file. their names are indicated in the
following form: id\[[** : * *number]“ ¢’ "ids] as shown in figure 44 in rules “OneArg” and
“OneAction™. Trio holds these tree picces of information idy. number. and id- in caller_name.

number. and called_name respectively.

ActionInfo: Describes the function calls of semantic actions found within grammar rules. [t

specifies what are the arguments and who is the caller.

— prototype: a pointer to the prototype of this function call.

— arguments: the list of arguments of this function call. Every clement in the list is a

pointer to an object ~Argument”.

— owner: a pointer to the non terminal or the WIT owning this function.

Argument: describes the argument of a function call that appears inside a grammar rule.
It inherits “Trio”. The arguments of a function call must be attributes of a non terminal or
a WIT. Therefore. “Argument” contains a data member “attrib™ which is a pointer to the

~Attrib” this argument is referring to.

5.3 Phases of Parser Generation

The entire process of parser generation will be launched by object “ParserGen” (Parser generator).

Figure 46 shows the phases of parser generation.

5.3.1 Scanning

Scanning is done using our Scanner class. This class wraps up “flex”. Flex is Gnu's version of lex.

the lexical analyzer generator. [t generates code that is compatible with C++. Scanner provides

92

Source File

lexing

Tokens

parsing

Grammar Validate

generate code

Generated Parser

Figure 46: Phases of parser generation

93

;
2
x
:
"
;
:
3
i

the interface for flex with the rest of the system. hence flex is invisible to the rest of the program

and can be replaced easily.

5.3.2 Parsing

We have said earlier that we need to represent every construct of the user’s input grammar with a
class. Having grammar G at hand. it is possible to write a parser that parses the user’s input file
and create an object for every matched construct.

Class Grammar will act as a container and will hold pointers to all non terminals. kevwords. and
terminals. All other constructs. attributes and actions for example. are in no danger of getting lost.
since they can be accessed from within terminals and non terminals. The class for grammar woulkd

look like this:

class Grammar

{
private :
Set<NonTerminal> *= NTs ;
Set<Terminal> = NITs ;
Set<WithInfoTerm> * WITs ;
};

One way to implement this parser is to create a class ~Parser™ that contains a member function for
every rule in grammar G shown in figure 44. Figure 47 shows class Parser’s declaration. We are not
interested in showing how to parse grammar G. since it is an LL(1) grammar. and it is very clear
how to write a parser for it. We are rather interested in how to transform the user's input grammar
file into a data structures of classes. This task can be achieved by adding semantic actions into
grammar G. Figure 48 shows grammar G after adding semantic actions into it. Actions are printed
in bold letters and enclosed within {}. The best way to understand figure 48 is to consider it rule

by rule and explain it with its actions.

e Declarations: By this rule. the user declares all the non terminals. and terminals (keywords

or non-keywords) that he will be using in his grammar.

— actionl: Creates instances of NT symbols.

Construct symbol

if (-3 symbol : symbol € Grammmar and symbol-name == < id; - lereme >)
symbol = new NonTerminal(...) :
Grammar - NTs = Grammar - NTs + symbol :

/* else

class Parser
{
private :
Scanner * scanner :
Grammar * grammar :
public :

void ParseDeclarations():
void ParseAttributes():
void ParsePrototypes():
Set<char> * Parse ArgTypes():
void ParseRules():
void ParseOneRule() :
void ParseRHS(NonTerminal *);
void SubRules(NonTerminal *);
Production * ParseActions(NonTerminal *. Aggregate *. Production * prod = 0):
Production * ParseOneAction(NonTerminal *. Production *):
Trio * ParseTrio(NonTerminal *. HasAttrib * &):
Set<Argument> * ParseArguments(NonTerminal * s):
Argument * ParseOneArg(NonTerminal *):
Production * ParseID(Aggregate * . Production * prod = 0):
Production * ParseSymOrRegExp (NonTerminal *. Aggregate * . Production * prod =0) :
Production * ParscRegExp (NonTerminal *. Aggregate * . Production * . int) :
RegularExp * ParseOptionalOrRep(NonTerminal *):
RULE * ParseAlternation(NonTerminal *, Altemation *) ;
RULE * ParseSubAlternation(NonTerminal *. Alternation *) ;
Parser (char * gram) :

Grammar * ParseGrammar () ;

~Parser () :

Figure 47: Class Parser declaration.

to

‘wd

6.

9.

Grammar

Declarations

Altributes

ArgTypes

Rules —>

—

A

OncRule —>

RHS —

Declarations Attributes Prototypes Rules

"
"%
%

ez
¢

epn
i3

[
l

"NonTerminal" [id {actionl} |*

"NolnfoTerminal” [id7 {action2) |*

"WithinfoTerminal* [id_ {action3} |*
3

"Auributes” [idl id7 "id | {actiond} |*
Al

{action6} ["." id7 {action7} |* |

“Rules" [OncRule }*

{action9}

SubRules —=

Actions —>

OneAction

Trio —>

Arguments

("1" RHS|

id {action8} " RHS'™"

Actions [{SymOrRegExp Actions]+ SubRules |

["{" [OncAction]+ "}" |

—

id
l

Trio "(" {Arguments])" ™" {action10}

{actioni1} [["™" number {actionl2} " {actionl3) id]

— OncArg {actionl4} ["."OncArg {actionlS} |*

OncArg —> Trio

SymOrRegExp —

{action16}

id

{actionl7}

RegExp

RegExp — OptionalOrRepetition {actioni8}

OptionalOrRepetition

Alternation —> {action22
"(" Actions id {actionl7} Actions "I" SubAlternation {action23)

Alternation

{action19}

— {action20}

"['" Actions [SymOrRegExp Actions]+ "]" {action28} ["*"]

e

SubAlternation — {action24})

[Actions [id {actionl7} Actions ["I"SubAllcrnation {action25)

Il

Figure 48: Grammar G after adding semantics actions to it.

96

A symbol with this name was already declared in the grammar as an NT

We assume it was typed again as an error */
— action2: Creates instances of NIT syvmbols.

Construct symébol
if (=3 symbol : symbol € Grammar and symbol-name == < id, - lereme >)
symbol = new Terminal(...)
Grammar - NITs = Grammar - N[Ts + symbol -
else
if (symbol is not ~NIT™)
Error
/* else
A symbol with this name was already declared in the granmar as a NIT

We assume it was typed again as an error */
— actiond: Creates instances of WIT symbols.

Construct symbol
if (-3 symbol : symbol € Grammar and symbol-name == < idy - lereme >)
symbol = new WithInfoTerm(...)
Grammar - WITs = Grammar - W ITs + symbol
else
if (symbol is not “WIT")
Error
/* else
A symbol with this name was already declared in the grammar as ¢« WIT

We assume it was typed again as an error */

e Attributes: By this rule. the user declares the attributes of NTs. and WITs (non-kevwords

terminals) if they have any.

- action4: Creates instances of every attribute.

Construct symbol

if (3 symbol : symbol € Grammar and symbol-name == < idy - lezeme >)
if (symbol is not “WIT” nor “NT™)

Error /* make sure that symbol can not have attributes */

else
Error

if (3 symbol : symbol € Grammar and symbol-name == < idy - lexeme >)
Error

Attrib attrib := new Attrib(...)

* Make sure symbol does not already have an attribute with the
Yy

same name and of a different type. */

97

if (3 attriby : attribs € symbol - attributes and attriby-name == < idy - lereme >)
if (attrib,-type <> attrib-type)
Error
else /* sincc it is of the same type. assume it is just an error */
return
/* No such attribute has been defined in this symbol. Add it to this symbol */

symbol - attributes = symbol - attributcs + attrib :

¢ Prototypes: By this rule. the user declares the prototypes of semantic actions defined on

NTs and WITs (non-keywords terminals) if they have any.

— action3: Creates instances of every prototype. A prototype collects information about

action return type, action name. and arguments types.

Construct symbol :
if (3 symbol : symbol € Grammar and symbol-name == < id, - lereme >)
if (symbol is not “WIT™ nor “NT7)
Error
else
Error
/* Check if this name is a valid function name. A valid function name can not

be: “this”. the name of a symbol. the name of an attribute of symbol ¥/

if (<idylereme > == "this™)
Error

if (3 symbol : symbol € Grammar and symbol-name == < idy - lereme >)
Error

if (3 attrib: attrib € symbol - attributes and attrib-name == < idy - lexeme >)
Error

/¥ Let arg_types be the value returned by the function for parsing
non terminal “ArgTypes™ that occurs to the left of actions. arg_types is
a set of strings representing arguments’ types */
Prototype prototype := new Prototype(... . arg_types)
/* check if the symbol given has already such a function if it does not add
it to the list of functions of this symbol. To compare two prototypes, compare
their types. their names. then their arguments’ types one by one */
if (prototype ¢ symbol - prototypes)
symbol - prototypes = symbol - prototypes + prototype

¢ ArgTypes: This rule is used to specify the types of a prototype’s arguments. The function

corresponding to this rule will return a set of strings cach of which is the type of an argument.

— action6: Creates a set of strings containing the type of the first argument.

Set<char> arg_types := new Sct(< id, - lexeme >)

98

- action7: Appends the rest of the arguments’ types into the set created in action6.

arg_types = arg_types + < idy - lereme >
¢ OneRule: Describes a rule in the user’s grammar.

- action8: Make sure there is a non terminal with this name in the grammar.

Construct symbol :
if (3 symbol : symbol € Grammar and symbol-name == < id - lereme >)
if (symbol is not “NT™)
Error
else

Error

e RHS: By this rule the user defines the right hand side of a non terminal symbol. The function
for parsing RHS has as an argument a NonTerminal variable. The only place from which this
function is called is within the function for parsing OneRule. Therefore. the function for
parsing RHS takes as an argument the non terminal symbol. which RHS is supposed to define
its right hand side. represented by id; in the right hand side of OneRule. Check action® to see

how symbol was obtained.

- action9:

if (lookahead ¢ {¢¢{’*. [D.>*[*’. 77(?7}) /* therc is nothing on the right hand side */
symbol-nullable = 1 :
return

else
Production prod = new Production(symbol) /* symbol owns prod */

symbol-tule = symbol-rule + prod

e OneAction: The function for parsing OneAction takes as an argument a variable of tvpe

Production. Everytime an Action is constructed by this function it is added to the body of
that production. For example when the function for parsing RHS calls the function for parsing
Actions. the function for parsing OneAction is eventually called. and hence the value of the

Production variable passed to it will be the production constructed in action9.

— actionl0

/* The name of the function is obtained from the object trio returned by the
function for parsing Trio the non terminal that occurs to the left of actionl0.*/
if (trio- Called name ==" this")

Error /* Not a valid function name */
if (3 symbol : symbol € grammar and symbol - name == trio - Called_name)

Error /* Not a valid function name */

99

if (3 attrib : attrib € sym - attributes and attrib - name == trio - Called_name)
Error /* Not a valid function name */
Actionlnfo info = new ActionInfo(...)

prod - body = prod - body + info :

e Trio: This object is used to specify an attribute or a function that will be used in an action
call. The information needed for this specification is the name of the attribute or function.
the name of the owner of the attribute or function. and the i'* occurrence of that owner in the
production. One of the arguments of the function for parsing Trio is symbol which is the non
terminal symbol created in action8 and that during the course of defining its right hand side

the function for parsing Trio was called.

- actionll: Create an instance of object Trio.

int nurmber := 1

/* < idy.lexeme > contains the function or attribute name. The owner is symbol */

if (lookahead ¢ {*¢:77 . <<.1})
Irio trio := new Trio(symbol- name. 0 /* number */. < id, - lexcme >. ...)
return trio

- actionl2:

if (number <0)

Error /* invalid specification of occurrence of symbol in production */
if (strl == ~this™)

Error /* a number is specified when “this™ is used as the symbol name. */
number = < number - val >

— actionl3: Create an instance of object Trio.

if (< idilereme > == "this™)
Trio trio = new Trio(symbol - name . 0 [* number */ . < idy - lexeme >)

return frio

else
if (3 symbol : symbol € Grammar and symbol-name == < id, - lereme >)
if (symbol) is not “NT” nor “WIT"™)
Error
else
Error
Trio trio = new Trio(< id, lexeme >. number, < ids -lexeme >)

return frio

e Arguments: The arguments of a function call are represented each with an object of type

Argument. This rule groups these objects within one set.

100

- actionl4: The function for parsing non terminal OneArg occurring to the left of action1-4
returns an object of type Argument ~arg”. Pick this object and create a set that contains

it.

/* arg is the object returned by the function for parsing non terminal Onedrgy */

Set<Argument> arg fst = new Set < Argument >(arg)

- actionl5: Appends the objects created by the function for parsing non terminal OneArg

into the set of Argument created in actionld.

arg st = argdst + arg :

e OneArg: Creates an object of type argument that will be returned by the funetion for

parsing it.

- actionl6: Based on the information stored in trio. that is returned by the function for
parsing non terminal Trio that occurs on the left of action16. an object of type Argument

is created. But the data stored in trio has to be verified if valid for an attribute name.

if (trio- called_name == "this™)
Error /* not a valid ettribute name */

if (3 symbol : symbol € Grammar and symbol - name == < trio - called_name >)
Error /* not a valid attribute name */

Argument arg = new Argument(trio- caller.name. - - -)

e SymOrRegExp: Occurs in two rules: RHS and OptionalOrRepetition. The context in
which SymOrRegExp occurs. is description of the body of a production prod. In RHS prod
is built by action9. while in OptionalOrRepetition prod is built by action20 as will be shown

below.

- actionl7: Upon encountering an identifier. we have to make sure there is a symbol with
such a name in the grammar. The symbol which is cither an NT. NIT. or a WIT has to

be added to the body of the production prod.

if (3 symbol : symbol € Grammar and symbol - name == < id - lexcme >)
prod - body = prod - body + sym
else

Error
¢ RegExp: Occurs in rule SymOrRegExp.

- actionl8: The function for parsing OptionalOrRepetition will return an object that is
either of type Optional or Repetition. Both classes inherit form the RegExp class. The
object returned by RegExp has to be added to prod that SymOrRegExp is describing as

seen earlier.

prod - body = prod - body + RegSym;

101

- actionl9: Creates an Alternation whose body is the set of productions returned by the
function for parsing Alternation. We append the object created into the body of the
production prod that was constructed in action9 and that represents the rhs of the rule

we are trying to parse. prod is passed to the function for parsing RegExp as an argument.
/* rule: Set< Production > returned by the function for parsing Alternation. */

Alternation Alternate = new Alternation(rule)

prod - body = prod - body + Alternate

¢ OptionalOrRepetition: Create an instance of either an object of type Optional or Repe-

tition. The created object will be returned by the function for parsing this non terminal.
- action20: Create a new production to represent what is inside the optional or repetition
to be parsed.

Production prod = new Production(...)

- action21: Creates either an Optional or a Repetition depending on whether the bracket
is followed by a star or not. Surely. the body of the created object is represented by the

production created in action20.

RegularExp symbol
if (lookahead = " *7)

symbol = new Repetition(...)
else

symbol = new Optional(...)

e Alternation: An alternating subrule “(.. | ..)” has at least two alternatives. We represent
every alternative with a production. Thus we need to create and return a set of Productjon.
— action22: Create a production that will represent the first alternative of the Alternation.

Production prod = new Production(...)

— action23: The function for parsing SubAlternation will return a set of production
called ProdList that represent second to last alternatives in the body of the alternation.

Append the production constructed in action22 to ProdList.

ProdList = ProdList + prod /* prod is the production created in action22 t/

e SubAlternation: The function for parsing SubAlternation returns a set production repre-
senting cach one of the alternatives. This function takes as an argument a variable of type

Alternation which is the alternation. created in actionl9, whaose body is being parsed.

102

T TR el all N W Y o b

- action24

if (lookahead ¢ { ID .7 {" }
alternate - nullable = 1 :
return
else
Production Prod = new Production(alternate /*ouner*/):

— action25:

/* Prod: in action24{. ProdList: returned by function for parsing SubAlternation */

Alternate - rule = Alternate - rule + Prod + ProdList

Figures 19. 50. 51. and 52 are examples of the data structures obrained after parsing rules

selectorQ. operatorl. term. and ProcedureBody of figure 43.

5.3.3 Validating the Grammar

It is a good idea to check if the grammar at hand is LL(1) or not before generating it.
In their “Dragon Book™. Aho. Cllman and Sethi [ASUS6] say that a nonrecursive grammar G
is LL(1) if and only if whenever 4 = a | 3. and a and .3 are two distinct productions of G the

following conditions hold:
L. FIRST(a) N FIRST(.3) = o .
2. At most one of a and J can derive the empty strings.
3. If 3 = €. then FIRST(a) N FOLLOW(.3) = 6.

In our case. since our grammars contain regular expressions: []-{]*. and (--- | ---). the three

conditions above still have to apply on regular expressions but with slight modifications :

I. In an alternation no two of its productions can start with the same syvmbol.

o

[n an alternation at most one of its productions can derive the empty string.

3. For optionals. repetitions, and alternations that contain one nullable productions: their FIRST

sets their FOLLOW sets must be disjoint.

If we implement these conditions we can make sure no ambiguous grammars can be parsed.
Algorithm 1 shows how to apply these conditions. However. the algorithm shows only how condition 2

is applied. The rest of conditions are shown in algorithm 2 for calculating the FIRST sets.

103

Grammar

NITs

NTs i

WITs | >

L)

1 Terminal

\name| DOT

’l‘_ﬁ

i Terminal

(name | RBRACKET |

r - X B
NonTerminal

g

name ident

=y

rule

T
attnbutes |

prototypes |

name | selectorQ

rule

attributes

prototypes

| Production

body ; :

D D

NonTerminal

D4

name | expression

rule

attrnibutes

prototypes

ffl.——

\‘_._)

Protoype
tvpe int
name One

| arg_types

: | owner |

Actioninfo

prototype | =

i

;
arguments |

caller_namce |

number f

called _name |

Figure 49: The data structure obtained by parsing rule “selector0” of fig 43

104

\

Grammar
WITs >
T > } { { \ —_ I)
NITs | (G ALl T @ Ll >
Nt |
. r R

L Terminal w (Terminal j, | Terminal ‘ Terminal j

' T . r

(name] STAR | (ame] oiv) (Tmame] woD) Uname] AMPERSENT

Ul H >
!
!
: NonTerm. j
-_— 7
' name | operator! ‘ I f_iﬁ \ K ;

: ,‘ ! 7T\ | Production
prule | I e W N T_{

i attributes i

,r Production) (Production (Pmducliorn
i ! :

|
4
J

\prototy pes |

Altemation

(body |
)
rule_| ' an) 7 T

Figurc 50: The data structure obtained by parsing rule “operatorl”™ of fig 43

—~
[Grammar
f T \ 4 H \
NTs >< l : M } H >
NITs > !
WITs > ’
NonTerm. NonTerm. NonTerm.
name | factor name | operatorl name | tem
rule -< rule > rule T

— attributes attributes attnibutes

an, |
} L prototy pes prototy pes prototypes T
/ R \ [T
r |
!

Aunb
S Se——
L type void

|
fT') R atrib | fj
P

/

‘namc__ Three

r R i

! Prototype caller_name factor ’ roduction
___K__ !

! type | void number

—_—

'namx. f Kcallcd_namc

| !arz types
T T

l

i

y Actionlnfo
@ L l prototype

! arguments @ Repetition

i caller_name factor

[“int” | | number 2
_—J 1

(called_name | Three

‘m_ dp Sh

Figure 51: The data structure obtained by parsing rule “term”™ of figr 43

105

F . 3
CGrammar
NTs = : 1 > : > N -
WITs > ! i X
1 ! E 2
NITs i g A g .
r NonTermn.]) NonTerm. \ ! NonTerm. i
name I StatementSequence % name | ProcedureBody]: i name f declarations)!
rule i rule —'—1 | rule !
_ | attributes , attrib ites attributes i
d ')
; prototy pes prototypes J

P Terminal]

name | BEGIN ~

{
l L {prototypes J

Optional

! I ‘1
! Terminal

name | END <

Figure 52: The data structure obtained by parsing rule “ProcedureBody™ of fig 43

106

v

o T TR BN L Py b R A b ea et s e et

int Grammar::Is LL1()
begin

/* CollectFollows (Alg 3): calculates the firsts and follows of all non terminals and

Optionals. Repetitions. Alternations existing in the definition of these non terminals. */

for every non terminal symbol “sym™ in this grammar
sym - CollectFollows():
for every non terminal symbol “sym” in this grammar
sym - Fitfor LL1{this . 0):
end

void Aggregate::Fit_for_LL1()
begin
for every production “prod” on the right hand side of this aggregate
this - FIRST():;
if (this - nullable) and (not prod - nullable) and
(prod -FIRST() N FOLLOW (this))
Error
for every production “prod” on the RHS of this aggregate
for every regular expr “reg_erp_sym™ in any of the list of:
optionals. repetitions. and alternations that belong to prod
reg_exrp_sym -Fit for LL1():
return
end

Algorithm 1: Algorithms for verifying if a grammar is an LL1

107

'
!
t
i

FIRST Sets

Let FIRST (a) be the set of terminals that begin the strings derived from a. If a = ¢. then € is
also in FIRST(a). The following rules show how to calculate FIRST (a)

l. If o is a terminal. then FIRST (n) is {a}.

[V

If o is e. then FIRST () = {€}.
3. If o is a nonterminal and a — 31| .32 33| ... then FIRST (a) = U FIRST (3)

4 Ifa=YX;...X, where \y...... \',, are all symbols. and n >= 2
then if X} = ¢
then FIRST (o) = (FIRST(X,) - {¢})u FIRST(.3). where 3 = XoX;. . X,
clse FIRST(a) = FIRST(X,)

We do not include € in the first set. rather we set the data member “nullable™ of Aggregate to 1
when the symbol is nullable.

Let class Construct contain a virtual function :

virtual Set<Terminal> *= FIRST(...) =0 ;

This means this function has to be be redefined in the non abstract classes that inherit Construct.

Obviously. the first of a terminal is the terminal itself. and the first of an action is nothing or
null. Algorithm 2 shows the algorithms for calculating symbols’ First sets. The algorithm does not
show the First function of classes Terminal nor Action since they are trivial. Aggregate::First is
used to calculate first sets of non terminals. optionals. repetitions. and alternations.

Line 6 of function ~Aggregate::First™ is supposed to issue an error statement if the grammar is
left recursive. A grammar is left recursive if for some nonterminal symbol =A™ directly or indirectly.
A = Ada. Such a re-occurence of A on the left side of the new derivation is detected using the list
of non terminals “levels™ which is an argument of Aggregate’s function ~First™.

“levels™ can be thought of as a mirror of the language’s stack which holds the frames of

recursive functions calls to Aggregate:First. For example, consider the following grammar rules:

A - B C ---
B - B .-

B - B

c -

SIS O

C: - D Dy ---

Where B. C. By. Ba. C;. Ca, Dy, and D3 are ail nullable. Figure 53 shows the variations of levels

during the calculation of the First set of A.

108

(10100 vy = sy

4

a

(T 10 0 vy =5y

|
a

{

DDV} =810a9

4
J

{O' V) =81

1
J

(V) =519a9)

J

I
{ d4°9'v)=spay

<
4

{ 4'V}=spay

{V) =199

Figure 53: The variations of “levels”™ during the calculation of the FIRST set of A

109

Set<Terminal> Production::FIRST(Set<NonTerminal> [euels)
begin
for every symbol “sym™ in the body of this production
First = First + sym - FIRST (levels)
if (sym is not nullable) break
if (sym is the last svmbol in prod)
if (owner - nullable) and (owner is NT or ALTERNATION)
Error /* not LL(1}. more than one production of symbol are nullable */
this- nullable = TRUE :
this- owner - nullable = TRUE
return First
end

Set<Terminal> Aggregate::FIRST(Set<NonTerminal> levels)
begin

I if (this aggregate was not defined by means of any other symbols)
2: this- nullable = TRUE :

3: return NULL :

4: if (thisis NT)

3z if (this € levels)

6: Error /* Grammar is left recursive */

T Set <NonTerminal> levelsl = levels + this :

8: this- First = FRST(this- rule . levelsl) ;

9: return this- First :

end

Set<Terminal> FRST(Set<Production> ProdList , Set<NonTerminal> levels)
begin
if (not ProdList or ProdList is empty) return NULL :
Set< Terminal> Result = 0;
for every production ~prod” in ProdList
Set<Terminal> TermList = prod - FIRST(levels);
if (TermList N Result)
Error : /* more than I production of ouner start with same terminal */
Result = Result + TermnList
return Result :
end

Algorithm 2: Functions for calculating symbols’™ first sets

110

antdsent faa @

dhliae A i id Tl el i

FOLLOW Sets

The following steps are neceded to compute non terminals and regular expressions follow sets:

1. if there is a production A — aB3 where B is either a non terminal or a regular expression
if (FIRST(3) — {¢}) ¢ FOLLOW(B)
FOLLOW(B) = FOLLOW(B) U (FIRST(.3) — {¢})

if there is a production A — aB. or a production 4 -+ aB.3 where .3 = ¢
if FOLLOW (A) ¢ FOLLOW (D)
FOLLOW(B) = FOLLOW (A)U FOLLOW (B)

o

3. if there is an optional or a repetiton O containing aB or aB.3 where .3 = ¢
and B is either a non terminal or a regular expression
if FOLLOW(O) € FOLLOW (B)
FOLLOW (B) = FOLLOW(O)u FOLLOW (B)

4. if there is a repetiton R containing aB or aB.3 where ;3 = ¢
and B is cither a non terminal or a regular expression
if (FIRST(R) - {e}) € FOLLOW (B)
FOLLOW (B) = (FIRST(R) - {e})U FOLLOW (B)

3. if there is an alternation 4 = (---| B | ---) where B is a non terminal
if (FOLLOW(A) € FOLLOW (B)
FOLLOW(B) = FIRST(A)U FOLLOW (B)

6. repeat steps 1. 2. 3. -4, and 5 until nothing can be added to any follow set.

The algorithins for calculating the follow sets are shown in algorithm 3.
On line 1 of function NonTerminal::CollectFollows in algorithm 3 the word trace is used for the

first time. Trace is a class that looks like this:

class Trace
{
private :
Node<Construct> * node ;
Production * prod ;
public :
Trace(Node<Construct> * n , Production * p)
{
node = n ;

prod =

f
jge]

111

AR WAL S L LR

};

The calculation of the follow set of a non terminal involves tracking every position in which this
non terminal occurred on the right hand side of a production and checking what follows it. This
search is time consuming. If a non terminal has a list of all places in which it has occurred some
time can be saved. Trace with its two data members “prod™ and “node” provide all information
needed about the places in which the non terminal occured: the production and the specific node in
the body of that production.

The construction of this traces list for every noun terminal is an casy task that can be done during
parsing. If we go back to figure 48 and consider which rule in the grammar specifies the introduction

of a non terminal on the right hand side of a grammar. we will find it to be in rules 15. 18. and 19 -

SymOrRegErp — id {actionl7}

Alternation — {action22} (" Actions id{actionl?} Actions " |"
SubAlternation {action23})"

SubAlternation — {action24} [Actions [id {actionl7} Actions
["1" SubAlternation {action25} | |]

As areview. Actionl7 in rule 15 is :

L if (3 symbol : symbol € Grammar and symbol - name == < id - lereme >)
2: prod- body = prod- body + sym

3: else

4: Error

On line 2. of actionl7. the symbol is appended to the production’s body. Adding the following

statement between lines 2 and 3 will save the trace of a non terminal:

if (syrm is NT)
Trace t = new Trace(prod- body - end . prod):

sym-traces = sym-traces + ¢ ;

5.3.4 Building the Inherited List

The concept of inheritance between non terminal symbols was introduced in chapter 4. Definitely.
this inheritance between symbols affect the generated code. C++ requires that if a class A inherits
classes B and C. that the class declaration of A indicates this as: class A : public B. public C.
Thus. it is necessary, when generating the code for a non terminal A. to have at hand a list of
all non terminals that A inherits. Such a list can be described with such a data member in class

NonTerminal:

112

void NonTerminal :: CollectFollows()

begin

l: for every trace ~f" in the trace list of this non terminal

2: CalculateFollow(t-prod . t-node):

3: for every production “prod” on the right hand side of this non terminal
4: prod - RegExpFollows():

end

void Aggregate :: CalculateFollow(Production p , Node<Construct> node)
begin
Node<Construct> nert = node - next:
if (next)
Set<Construct> tmp = new Set containing elements from nert to p-body-end.
Production phoney = new Production whose body is tmp :
Set<Terminal> result, = phoney - FIRST(0) :
Set<Terminal> results = result, + :
if (“this” is REP)
result; = result; + FIRST():
if (result, ¢ Follow)
UpdateDependantFollows! (result.):
Follow = Follow + result, :
end

void Aggregate::UpdateDependantFollows(Set<Terminal> s)
begin
for every production “prod” in the rule defining this aggregate
for every symbol “sym™ in the body of prod from the last backward

if (s C Follow) return
sym-Follow = sym-Follow + s :
sym - UpdateDependantFollows(s):
if (sym is not nullable) break :

end

void Production::RegExpFollows()
begin
for every regular expression “sym” in any of the optionals.
repetitions or alternations lists of “this™ production.
sym - FIRST() :
sym - CalculateFollow(this . sym - position) :
for every production “prod” in the set of rules defining sym
prod - RegExpFollows():
end

UpdateDependantFollow: A virtual function of class construct. This function is redefined in
classes Terminal, ActionInfo. and Aggregate. Classes NonTerminal, Optional, Repetition, and
Alternation inherit class Aggregate and need not redefine this function. We have seen carlier
when we introduced the steps necessary for the calculation of the follow sets, in 2. 3. and 5
that the follow set of one aggregate can be dependent on the follow of another. This Sfunction

takes care of these cases.

Algorithm 3: Functions for calculating symbols® follow sets

113

Set<NonTerminal> = inherited ;

The following algorithm. if inserted in a member function of NonTerminal. would be sufficient

for initializing ~inherited™ :

for every trace t in the list ¢ “fraces’® of this non terminal
Aggregate sym = t-prod-owner:
if (sym is NT)
if (¢-prod has only a non terminal symbol in its body and zero or many actions)

this-inherited = this-inherited + ¢-node-item :

We chose to include it in algorithm 3 inside CollectFollow that will be invoked by every non

terminal.

5.3.5 Checking the Validity of References in Actions

The process of code generation for actions is very important. If the user’s specified actions are not
carefully checked before generating code (function calls) for them. they could cause the generated
parser to crash. The risks stemn from the fact that actions contain references to member functions

and data members of symbols. For example. the user could write in a rule :
E — ID "+" F { EXa(---) }

When writing the action. the user mistakenly typed “E” instead of “F”. If wo just go ahead and
transform this action we would have introduced a bug into the generated program by our own hands
since Val is not a member function of E.

The same logic applies also to the arguments of a function.

Another point that has to be checked carefully also. is the validity of references used in an action.

For example. the user could write:

E - ID "+" F { GVal(--) }

Obviously, G does not occur anywhere in this production. Therefore. the action has to be ignored
with a warning message issued to the user. Similarly, the action has to be ignored also when the
symbol referenced occurs textually preceding the action. The same logic applies to arguments.

When it is decided that an action or an argument ought to be ignored. the flag “ignored™ (an
integer) which is a data member of ~Trio” (inherited by classes ActionInfo and Argument) is set to
1. While the code is being generated. an action will be skipped (no code will be generated for it)
and an argument will be replaced by 0 upon finding this field to be 1.

CheckActionInfo is a member function of class ActionInfo, that checks the -alidity of the action.
This function has to be invoked by every action in the grammar before code is being generated for
it. CheckActionInfo is presented in algorithm 4. CheckActionInfo also matches the references to
svmbols in the actions specified by the users to the correct references in the genrated code. For

example. in the rule above F will be represented in the generated program by “s37.

114

[

void ActionInfo::CheckActionInfo(Grammar gramrmar . Production prod)
begin
int counter = 0. inder =0 ;
ScarchTrioResult! Result = NOT_FOUND :
if (2 sym : sym € grammar and sym-name == caller_name)
HasAttrib has = sym :
if (! has-CheckValidFuncOwner?(this))
Error
prod-SearchTrio®(this. this. inder. counter. Result):
if (Result == FOUND)
for every argument arg in the list of agruments arguments of this action
Trio * trio = arg :
counter = inder =0 :
Result = NOT_FQUND :
if (3 sym : sym € grammar and sym-name == arg-caller .name)
HasAttrib has = sym:
if (! has-CheckValidAttribOwner?(arg))
Error
prod-SearchTrio(this. trio. indec. counter. Result):
else
Error
else
Error
end

. SearchTrioResult: An enumerate that contains three values : NOT_-FOUND. FOUND. and

ACTION_ENCOUNTERED

- CheckValidFuncOumer: A virtual function of class HasAttrib. Redefined in classes Within-

foTerm and NonTerm. This function checks whether the symbol has a member Sfunction such
as the arqument passed. For non terminals, the action has to be looked up also in the list
of functions of inherited non terminals. The function returns one if the symbol has such a
function. and zero otherwise.

Check ValidAttribOumer: A virtual function of class HasAttrib. Redefined in classes Within-
foTerm and NonTerm. This function checks whether the symbol has a data member such as
the argurmnent passed. For non terminals, the attribute has to be looked up also in the list of
attributes of inherited non terminals too. The function returns one if the symbol has such an
attribute. and zero otherwise.

Algorithm 4: ActionInfo :: CheckActionInfo

void Production::SearchTrio(ActionInfo a_info, Trio trio, int inde.r,
int &counter, SearchTrioResult & Result)
begin
int val =0 :
if (frio-caller.name == this-owner-name) and (! trio-number)
Result = FOUND
return :
for every symbol Sym in the body of this production
val = inder :
inder+ = Sym-SearchTrio'(a_in fo.trio. inder. counter. Result):
if (Result == FOUND)
if (Sym is NT) or (Sym is WIT)
trio-index® = s + val :
return
else
if (Result == ACTION_ENCOUNTERED)
return
if (Result == NOT_FOUND)
Warning(~Sym does not occur to the left of the action™) :
return
end

. SearchTrio: A pure virtual member function of class Construct. SearchTrio has the following
prototype :

SearchTrio(ActionInfo, Trio, int, int &, SearchTrioResult &)

The & means the argument is passed by reference. SearchTrio is redefined in all classes that
tnherit class Construct:

e Terminal: The function just refurns 1.

o WithinfoTerm and NonTerminal: The body of their functions is the same:

if (name == trio-callername)
counter + + ;
if (counter == trio-number)

Result = FOUND:
return 1 :

e Optional. Repetition. and Alternation: Due to the similarities between their three Sfunc-
tions we combined them in algorithm 6

e Actions: The algorithmin is the following:

if (this == a_info)
Warning(“symbol referenced does not oceur to the left of the action”) :
trio-ignore = [;
Result = ACTION_ENCOUNTERED:

return 0 :

2. indez : member function of class Trio. Contains the string that when printed gtves the correct

match to the symbol in the generated code with the symbol specified in the action.

Algorithm 3: Production :: SearchTrio

116

for every production prod in the list of productions of this regular expression

int durnmy =0 .tmp =0 . val = 0
for every symbol Sym in the body of prod
val = tmp + inder :
tmp += Sym-SearchTrio(a_in fo . trio . inder . counter . Result):
if (Result == FOUND)
if (Sym is NT or Sym is WIT)
if (this is CHOICE)
trio-index = 7s” + rval :
return tmp :
else
if (this is ALTER)
if (adnfo-owner <> prod)
Warning(~Sym is not in the same production as action™)
trio-ignore = 1:

return | :
trio-index = “tmp” + inder :
return 1:

else
if (this is REP)
if (adnfo-owner <> prod)
Warning(“~Symn is not in the same production as action™)
trio-ignore = 1:

return | :
trio-index = “tmp_rep” + dummy :
return I:
else
if (Result == ACTION_ENCOUNTERED)
return | :

dummy + + ;

Algorithm 6: The algorithms of SeachTrio for optionals. repetitions. and alternations combined in

one algorithm

5.3.6 Code Generation

The entire process of code genecration hinges around the grammar described by the user’s input

file and transformed later by our parser generator into the data structure held by class Grammar.

Thercfore. it would be natural to enable Grammar to generate the code by adding to it a member

function :

void Grammar: :GenCode(...);

Without worrying about small details we can divide the code generated mainly into four different

categorics. as has been understood from chapter 4 :

L.

(™

A part used by the scanner:

(a) As was shown in figure 42. the class for the scanner contains a member function Token-

TextVal which can be generated automatically.

(b) In order for the scanner to work. the name of every terminal in the grammar must be
assigned an integer value. This can be automatically produced by generating C language

define commands.

Let’s call the function for doing this :

char ** Grammar: :GenTokenTextVal(...);

which is also a member function of Grammar. This function returns an array containing
the names of NITs symbols. This array is useful for function GenTermCode introduced bel-
low. GenTokenTextVal is also responsible for generating function Get TokenText\al which is
a member function of class Scanner. This function takes as an argument the token value of a

terminal and return its name. GenTokenTextVal is shown in algorithm 8.

NolnfoTerminals: A class NITCollection has to be declared and defined. Such a class acts as

a container for NITs. Let’s call the function for doing this :

void Grammar::GenTermCode(...);

which is also a member function of Grammar. GenTermCode is shown in algorithm 9.

WithInfoTerminals: A special class must be created for every terminal on which attributes or

protoypes have been declared. Let’s call the function for doing this :

void Grammar::GenWithInfoTermCode(...);

which is also a member function of Grammar. GenWithInfoTernCode simply calls the member

function GenClass of every WIT symbol in Grammar. GenClass is shown in algorithm 10.

118

4.

NonTerminals: A complete class declaration and definition must be generated for every non

terminal symbol. Let’s call the function for doing this :

NonTerminal * Grammar::GenNonTermCode(...);

which is also a member function of Grammar. This function returns a pointer to a non terminal
symbol which is meant as a pointer to the start symbol of the grammar and which can be used
in the generated main program to start the parsing process. GenNonTermCode simply calls
the member function GenClass of every non terminal syvmbol in Grammar. GenClass is shown

in algorithm 11.

Therefore the body of function GenCode should look as shown in algorithmn 7.

In the algorithms will the encounter four names of files :

I.

2

<.

4.

Hppfd: Contains all the declarations of classes generated.
Cppfd: Contains the definitions of classes members functions.

Declfd: Contains the skeletons definitions of actions member functions. These definitions are
meant to be in a seperate file to avoid regenerating the whole parser every time the user

modlifies the actions.

Hfd: Contains values assigned to terminals that are necessary for scanning.

The algorithms described below. were meant to give an overall understanding of how the code is

generated. A C++ style was used in the description of the algorithms.

5.4

Summary

This chapter presents our approach to building an object-oriented parser generator. A grammar that

represents the set of all acceptable input files is given, Based on that grammar classes were created

to represent every construct in a program. These classes can each generated code about itself. The

four phases of parser generation. scanning. parsing. grammar validation, and code generation are

detailed. Many algorithms are given and explained.

119

void Grammar::GenCode()
begin

char ** Names = GenTokenTextVal!():

GenTermCode?*(Narnes):

GenWithInfoTermCode?():

NonTerminal NTsym = GenNonTermCode*():

if (! NTsym) /* No non terminals were found */
Error

end

. GenTokenTextVal (alg 8): Genecrates member function TokenTextVal of class Scanner. This
function takes as an argument the token value of a terminal and return its name. It also
generates “define” macros for Token values in the header file Hfd that will be used by the
scanner. In other words the name of a Terminal will be given a value.

2. GenTermCode (alg 9): Generates class NITCollection declaration and definition. The two

member functions [niSymbols and GetSymbol of class NITCollection are also generated. Class
NITCollection works as a container for NITs. So that an NIT will be instantiated only once.
IniSymbol contains an array of all the NITs. And GetSymbol takes as an argument the token
val of a NIT and return a pointer to this NIT. The array and these two fuctions are all static.
Class NITCollection was described in chapter 4.

3. GenWithInfoTermCode: Calls the member function GenClass (alg 10) of every WIT symbol

in Grammar.
. GenNonTermCode: This function calls the symbol’s member function “GenClass™ (alg 11) of

every non terminal symbol. The function returns the first non terminal encountered.

Algorithm 7: GenCode

120

char ** Grammar::GenTokenText Val()
begin

end

Cppfd << "char * Scanner::TokenTextVal(int val) \n { \n~ << ---
<< “char * TextVal[] = { \"(Blank)\"" :

char ** Namesl = PrintAllNames' (NITs):

char ** Names2 = Print AllNames(WITs):

Cppfd << ---

if (Namesl or Names2)
char * s1 = Namesl 7 Namesl{0] : Names2[0] :
Cppfd << 7if ((val >= 7 << 51 << 7) && (val <= _UNKNOWYN)) \n~
<< “return TextVal{val - START + 1} : \n":

return Names :

L. PrintAliNames: will take as an argqument a list of terminals and will print the names of
terminals in the list seperated by commas in file Cppfd. This will be part of TokenText Val that
the program started generating. It will also print a define statement for every terminal in the
list in Hppfd. For erawmple for terminal sym the following statement will be printed:

T # define 7 + sym - name + \t' + sym-TokenVal + endl

It also returns an array of all the names of terminals in the list.

Algorithm 8: GenTokenTextVal

void Grammar::GenTermCode(char ** Names)
begin

end

int nbr_nodes = NITs - nbr_nodes :

if (! nbr_nodes) return

Hppfd << "class NITCollection \n” << “{ \n"~ << “private : \n”~
<< Tstatic NolnfoTerminal * symbol[” << nbr_nodes << 7} : \n\n"
<< e

Cppfd << "NolnfoTerminal * NITCollection::symbol[” << nbr_nodes << “]: \n\n"~
<< "void NITCollection :: IniSymbols() \n { \n" :
int counter = 0 :
for every NIT symbol “sym” in NITs
Cppfd << "symbol[” << counter << "] = new NolnfoTerminal(_"
<< Names[counter++] << "):\u";
Cppfd << "} \n\n"
<< "NolnfoTerminal * NITCollection :: GetSymbol(int val)™ << "\n { \n~
<< "if ((val >= 7 << Names[0] << 7) && 7
<< "(val <= 7 << Names[nbr_nodes - 1] << 7))\n”
<< "return symbolfval - 7 << Names[0] << }: \n”
<< v

Algorithm 9: GenTermCode

121

[V

void WithInfoTerm::GenClass()
begin
if (this symbol has no attributes nor actions) return
Hppfd << “class * << name << 7: public WithInfoTerminal \n { \n protected: \n~ :
GenAttribCode! (name);
GenConstructor®():
Hppfd << "\n public : \n” << name << “(int . char *): \n~ :
GenaAttribFuncCode® (name):
GenPrototypesCodet(name):
Hppfd << "} \n " :
end

GenAttribCode: A member function of class HasAttrib. For every attribute of the symbol which
can be either a non terminal or a terminal (not a keyword). and which inherits class HasAttrib.
generate a declaration of a data member in that symbol’s class declaration.

GenConstructor: a member function of WithinfoTerm this function will generate the construc-
tor for the symbol on which this function is invoked. I[n the constructor for every attribute of
the symnbol a statement initialzing it to zerc will be printed. For example if attrib name is “val”
and the symbol name is “id”. then the statement printed should be : “id_val = 0 :~

GenAttribFuncCode: A member function of class HasAttrib. For every attribute “attrib of this
symbol generate a member function in “this™ symbol’s class to access since it is a private data
member. For example if “this™ symbol’s name is “id” and attrib narme is “val” and its type is
“int” . then the printed statement is: “int _Get_id_val() { return id_val: }~

GenPrototypesCode: a member function of class HasAttrib. This function generates the decla-
rations and definition for every “prototype” owned by the symbol that inherits HasAttrib and
that has called GenPrototypesCode. The declaration of the prototype corresponds to printing a
line in Hppfd about the type. name. and function’s arguments types. Such information can be
obtained from “prototype”. It was mentioned in chapter 4, that the name of the symbol owning
the attributes and the prototypes will be added to their narnes when generating the code. The
definition of the prototype will be printed in Declfd to avoid regenerating the program every
timne the user changes the body of the functions. Since the body of these functions are supposed
to be written by the user, a skeleton (a pair of bracelets) is generated to make the program
more readable and easier to complete. The arguments are given dumrny names such as al, a2.

Algorithm 10: Member function GenClass of class WithinfoTerm

122

R s o S § Y S Sk o TR P IR S

(S

-

NonTerminal * NonTerminal::GenClass(int SubClass)
begin
if (generated') return NULL :
GenClassesInOrder?():
Hppfd << "class © << name << ~ : public virtual NonTerminal™
Genlnheritance®():
Hppfd << ---
GenAttribCode(name): /* introduced in alg 10 */
int Multi = IsltMultif() :
GenConstructor(Multi): /* see alg 12 */
Hppfd << "\n public " << ---
GenAttribFuncCode(name): /* introduced in alg 10 *
GenPrototypesCode(name): /* introduced in alg 10 */
if (SubClass)?
GenlInherited AttribIni®{):
GenError™():
Hppfd << 7} ;" << endl :
generated = 1 ;
if (Multi)
GenSubClasses(): /* see alg 15 */
return this :
end

generated: is a data member of class NonTerminal. [t is set to onc when the class for the
non terminal was already generated. This is useful to prevent multiple generations of the same
class. It is necessary because of function GenClassesInOrder

GenClassesInOrder: On every inherited symbol in the list of inherited symbols “inherited™ of
this™ non terminal GenClass is called. This indirect recursion will make sure no class is
generated before a class that inherits it. This is needed for the C++ GNU compiler.

C++ requires that if a class A inherits classes B and C. that the class declaration of A indicates
this as: class A : public B. public C. Genlnheritance: for every inherited symbol: “NTsym”™ in
the list of inherited symbols “inherited™ of this NT it prints: ~, public = + NTsymn-name.

IsltMulti: returns “07 if the non terminal symbol has only one production. It also returns
"0" f it has two productions and the second productions either contains the null symbol or
semantic actions. IsltMulti returns “1” otherwise.

subclass: a data member of class NonTerminal. Set to one when “this™ non terminal is a
generated subclass. The concept of subclasses was introduced in chapter 4.

GenlnheritedAttribIni (alg 16): When a subclass of a non terminal is created. all the attributes
of the parent non terminal, even its inherited ones have to be mirrored into the subclass.
Genlnherited AttribIni generates assignments statements to mirror attributes.

GenError: a member function of NonTerminal. GenError generates the declaration and def-
inition of function “_Error”. This function contains a prompt to the user that the symbol
cxpected to be found by the scanner is one of such and such. These symbols are obtained from
the First set of the non terminal. It contains also a call the ezit function which terminates the
program. The function “_Error” will be generated only if the non terminal is not nullable

Algorithm 11: Member function GenClass of class NonTerminal

123

[SV]

void NonTerminal::GenConstructor(int A ulti)
begin
Cppfd << name << 7" << name
<< "(Scanner *MyScanner) : NonTerminal(MyScanner)™ :
GenlnheritedCons!():
Cppfd << "\n { \n char * lexeme : \n" :
[niAttribToZero?(name):
if there are no productions on the RHS of this non terminal
Cppfd << "} \n":
return
if (Multi)
Hppfd << "Construct * s0 : \n~
Cppfd << "s0 = NULL : \n" :
else
Production prod = the production on the RHS of this non terminal
int nbr = CountProdSyms*(prod. 0. 0):
for i from 0 to nbr
Cppfd << 7s” << i <<~ = NULL : \n":
int i =1:
for every production prod on the RHS of this non terminal
GenProdSymsiInfo(prod. name . i . 0. Multi): /* see alg 1§*/
T
if (! nullable)
Cppfd << " Error(---) :\n " :
Cppfd << 7} \n" :
end

. GenInheritedCons: Member function of class non terminal. For every inherited sym-

bol: “NTsym™ in the list of inherited symbols: inherited of this NT it prints:
" 7 + NTsym-name + “(MyScanner)” . This is necessary because C++ requires that if
A inherits B, the constructor of A calls that of B.

- IniAttribToZero: a member function of HasAttrib. this function will generate for every at-

tribute of the symbol a staternent initialzing it to zero. For example if attrib name is “val”
and the symnbol name is “id”. then the statement printed should be : “id_val = 0 :~

- CountProdSyms: returns an integer representing the nunber of symbols in a production for

which data members were created. This function works by adding up the values obtained by
calling the member function CountSyms of every symbol inside prod. CountSyms is a virtual
function of Construct redefined in heir classes. CountSyms of NT, WIT, NIT. Alternation, and
Repetition just return <17, CountSyms of an Action return 0. CountSyms of an Optional
is shoumn in algorithm 1.3.

Algorithm 12: Member function GenConstructor of class NonTertminal

124

int Optional::CountSyms(int index , int Multi)
begin
int counter = Q :
for every symbol “Sym™ in the production ~Prod” representing “this”™ optional
counter += Sym-CountSyms(counter + inder. Multi):
return counter :
end

Algorithm 13: Optional::CountSyms

void GenProdSymsInfo(Production Prod, char * name , int prod_nbr,
int inder, int M ulti)
begin
if ('Prod-nullable)
GenlnFirst'(Prod-FIRST() . "if"):
Cppfd << " { \n":
if (IsSubClassNeeded?(Prod . AMulti))
Cppfd << name << "7 << prod_nbr << ™ * tmp0 = new ~
<< name << .7 << prod.nbr << "(MyScanner): \n"
<< "tmpU—InitialiseInherited Attrib(this): \n”
<< "s0 = tmp0 : \n" :
else
int counter = 0 :
for every symbol Sym in the body of this production
counter += Sym-GenSymlInfo®(index + counter. Multi):
if ('Prod-nullable)
Cppfd << “return : \n } \n" :
end

GenInFirst: this function has two arguments: a set of terminals “First™ and a string “key-
word”. GenlnFirst generates a conditional statement which can be either an “if ~ or a “while”
statement depending on “keyword™. The conditional statement compares the current token
Jound by the scanner with each element of “First™ if none of them is equal. the user is prompted
that the expected token is one of such and such. The conditional statement contains also a call
the “erit” function which terminates the program.

2. IsSubClassNeeded: This function returns “17 if a subclass of the non terminal owning “Prod”

needs to be created to represent “Prod”. A subclass is necded if [sMulti() returns [(see alg 11)
when the non terminal is checked and if Prod contains more than one symbol (non actions) or
even one symbol but that is either a repetition or an alternation.

GenSyminfo: A virtual member function of class Construct. This function will be inherited
and redefined by all classes that inherit class Construct, such as NonTerminal. Terminal.
Withinfo Term, Repetition, Optional. Alternation, Action. The function is used to generate
code about the symbol. The different variants of GenSyminfo are shown in algorithms: 17. 18,
19. 20, 21.

Algorithm 14: GenProdSymsInfo

void NonTerminal::GenSubClasses()
begin
int prod_.nbr =1 :
for every production prod on the right hand side of this non terminal

if (IsSubClassNeeded(prod . 1)) /* introduced in alg 14*/

NonTerminal sub_class' = new NonTerminal(name + prod_nbr. prod. this):
sub_class-GenClass(1): /* [: means it is a subclass. see alg 1r*/
prod_nbr + + :
end

. Create a new non terminal whose name is name + prod_nbr. right hand side is prod. and which
tnherits “this" non terminal.

Algorithm 15: NonTerminal::GenSubClasses

void NonTerminal::GenInherited AttribIni()
begin
NonTerminal * parent = the NT inherited when this was created as a subcelass
Hppfd << "void InitialiseInherited Attrib(" << parent-name << = *): \n" :
Cppfd << “"void ” << name << ~:: Initialiselnherited Attrib("
<< parent-name <<~ * s} \n { \n" :
StartInherited AttribIni():
Cppfd << 7} \n":
end

void NonTerminal::StartInherited AttribIni()

begin
for every inhcrited symbol “parent” in set of inherited symbols of this non terminal

for every attribute “attrib”™ of parent

Cppfd << parent-name << 7.7 << attrib-name << = s—"
<< parent-name << 77 << attrib-name << " \n” :
parent-StartInherited AttribIni():
end

Algorithm 16: NonTerminal::GenlInherited AttribIni

126

e A e IR

PR BIER el 0 Ll are e

int Terminal::GenSymlInfo(int indexr, int A ulti)
begin
if (! Multi)
Hppfd << "NolnfoTerminal * s™ << inder << ™ : \n" :
Cppfd << "MyScanner — match(.” << name <<) : \n”
<< 78T << inder << 7 = NITCollection::GetSymbol(” << name << T)AnT
return 1| :
end

int WithInfoTerm :: GenSymlInfo(int inder, int Multi)
begin
if (! Multi)
if (this has one or more actions or attributes)
Hppfd << name :
else
Hppfd << "WithInfoTerminal ~ :
Hppfd << "* 5" << inder << 7 :\n" :
Cppfd << “lexeme = MyScanner — Lexeme(): \n~
<< "MyScanner - match(.” << name << "): \n" :
<< 78T << inder << 7 = new ":
if (this has or or more actions or attributes)
Cppfd << name << 7(.7 << name << ~. lexeme): \n”~
else
Cppfd << "WithInfoTerminal™ << "(.” << name << ~. lexeme): \n 7
else
Cppfd << “lexeme = MyScanner — Lexeme(): \n”
<< "MyScanner — match(.” << name << "): \n™:
if (this has any actions or attributes)
Cppfd << name << ™ * tmp~ << inder <<~ = new ~
<< name << 7(7 << name << 7, lexeme): \n”
<< 7sT << inder << T = wmp” << inder << " :\n~
else
Cppfd << 7s” << inder << ™ = new WithInfoTerminal(." << name
<< 7. lexeme): \n" :
return 1| :
end

int NonTerminal::GenSymlInfo(int indexr, int Multi)
begin
if (! Multi)
Hppfd << name << ™ *s" << inder << ” : \n" :
Cppfd << 7s” << inder << " = new " << name << " (MyScanner) : \n” :
else
Cppfd << "tmp” << inder <<~ = new ~ << name << "(MyScanner) : \n”
<< 7S <<inder << 7 = tmp” << indexr << " \n”
return 1 :
end

Algorithm 17: Virtual function GenSymlInfo of classes Terminal, WithInfoTerm. and NonTerminal

127

S T T TR A TR Rl e d B b el a b s

int Alternation::GenSymlInfo(int inder, int M ulti)
begin
if ('Alulti)
Hppfd << "Construct * s™ << inder << ”: \n":
int counter = 0 . nullable_found = Q ;
for every production “prod” in the body of “this™ alternation
if (prod - nullable)
nullable _found = 1 :
else
GenlInFirst(prod - FIRST() . "if"): /* described in aly 14 */
Cppfd << 7{\n" :
for every symbol “Sym™ in the body of prod
Sym - GenSymlinfo(inder. Sym is ACTION 7 Multi : 1):
Cppfd << 7} \n" :
if prod is not the the last production in the body of “this™ alternation)
Cppfd << “else \n™ :
if (!nullable)
GenError! (Cppfd):
else
if (‘nullable_found)
Cppld << "else \n 5" << inder <<~ = NULL \n " :
return ! :
end

- GenErvor: a member function of Alternation. GenError generates an else statement containing

a prompt to the user that the symbol expected to be found by the scanner is one of the such
and such. These symbols are obtained from the First sct of the alternation. The elsc statement
conteins also a call the exit function which terminates the program.

Algorithm 18: Alternation::GenSymInfo

128

int ActionInfo::GenSymlInfo(int val, int M ulti)
begin
if (ignore) return 0 :
char * owner_name = prototype-owner-name :
if (! number)
Cppfd << owner_name << "~ << called_name << " ("
else
if (Mults)
if (first three characters of index! are not “tmp™)

char * tmp = index + 1 : /* index starts with an *s". Skip the s */
Cppfd << 7if (tmp™ << tmp << ") \n tmp” << tmp <<~ — " :

else
Cppfd << 7if (” << index << ") \n” << index <<~ = ~:
else
Cppfd << 7if (7 << index << ") \n” << index << =~ = =
Cppfd << owner_name << "7 << called_name << " ("
for every argument “arg” in the list of arguments of this ActionInfo
arg - GenSymlInfo(Al ulti):
.-+ /* print commas between arguments */
Cppld << ™): \n" :
return 0 :
end

void Argument::GenSymliInfo(int M ulti)
begin
if (ignore)
Cppfd << 0 : /* introduced in alg 14*/
return ;
char * owner_name = attrib-owner-name:
if ('number)
Cppfd << owner_name << =" << called_name :
else
if (Multi) and (first three characters of index? are not “tmp”)
char * tmp = index + 1 : /* index starts with an *s" Skip the 's* */
Cppfd << "tmp”™ << tmp << 72 tmp” << tmp:
else
Cppfd << index << "?" << index ;

Cppfd << 7 = _Get.” << owner_name << " << called_name << ()0

end

1.2: index values were described in alyorithms 4. 5. and 6.

Algorithin 19: Virtual function GenSymlnfo of classes ActionInfo and Argument

129

int Optional::GenSymlInfo(int inder, int M ulti)
begin
GenlInFirst(First . =if”):
Cppfd << "{ \n" :
Node<Construct> SymNode = WarningNested!():
int counter =0 :
for every symbol “Sym” in the body of the production representing
“this™ optional and which starts with SymNode
counter += Sym - GenSymlInfo(counter + inder. Multi):
Cppfd << "} \n" :
return counter :
end

WarningNested: A member function of class ReqularExzp. Issues a warning whenever we have
an optional or a repetition enclosed inside one or many other optionals or repetitions. For
cxample. the nesting here is unecessary: ([A]*]]. WarningNested returns a pointer to the
mnermost nested repetition or optional. or just to the optional/repetition itself if no nesting
oceurs.

Algorithm 20: Optional::GenSymliInfo

int Repetition::GenSymlInfo(int inder, int Multi)
begin
if (this-First == ¢) return 0 :
WarningNested():
Production prod = first production of rule that defines the body of this :
GenlnFirst(prod-FIRST() . "if"):
Cppfd << "{ \n BinaryOp * bin.op = 0 : \n" :
GenlInFirst(prod-FIRST(). ~“while™):
Cppfd << "{\":
int counter =0 :
for every symbol sy in the body of prod
counter += sy - Rep_GenSymlInfo(counter . Multi):
if (counter)
Cppfd << "Construct ** array = new (Construct *) [<< counter << "[: \n" :
else
Cppfd << "Coustruct ** array = 0 \n" ;
for { from 0 to counter — 1
Cppfd << "array[" << i << "] =tmp.rep” << i << ":\n
Cppfd << "bin.op = new BinaryOp(array, ” << counter << ~. bin_op); \n"
<< "} \ns” << inder <<~ = bin_op : \n”
<< "} \nelse \ns” << indexr << " = NULL :\n" :
if (' Multi)
Hppfd << "Construct * s << inder << ”:; \n”
return 1:
end

Algorithm 21: Repetition::GenSyminfo

130

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The conclusions drawn from this work are twofold. One is related to LL(1) grammars and the other

is related to the use of object-oriented paradigm.

6.1.1 LL(1) Grammars

The use of LL(1) grammars has advantages and disadvantages. Without repeating the information

given in Sections: 2.8 and 4.1. the generation of a recursive descent parser from an LL(1) grammar
has five main advantages:

l. An LL(1) grammar is ecasy to read.
2. An LL(1) grammar is casy to parse.

3. An LL(1) grammar allows the use of both inherited and synthesized attributes unlike an

LALR(1) which can only have synthesized attributes.
1. The generated parser is reasonably small and fast.

5. The generated parser is casier to understand and modify because it directly reflects the gram-
mar.

6. We came up with a clearer notation for representing semantic actions than that of yace.
On the other hand, using an LL(1) grammar has the following main disadvantages:

1. The class of languages specifiable by LL(1) grammars is smaller than the class of languages

specifiable with LR(1) grammars.

131

B L

EALRERAL B

2. Some restrictions are imposed on the form of the grammar making it more difficult for the

programmer to design new grammars.

We believe that the advantages of having an casy to understand grammar and parser outweight

the disadvantages.

6.1.2 Use of Object-Oriented Paradigm
Some of the benefits claimed for object-oriented programming are:
o Reader Comprehension.

e Encapsulation: Can be defined as a form of information hiding. It allows changes to be made
to the implementation of a system with minimal effects on the end user. It is a technique by
which data is packaged together with its corresponding methods. The state data in an object
is said to be encapsulated from the outside world. This means that the internal data of an
object can only be accessed through the message interface for that object. The way in which
the internal data is accessed is hidden from the requester. because it is neither required nor
convenient that the designer of the application should be aware of the internal implementation

details of the method invoked by the message.

e Modularity: This concept is closely related to the concept of encapsulation. Modularity is
the degree to which a program is devided into parts (modules) with well-defined. narrow
interfaces. The ability to make changes within a module without affecting other modules is
essential to support the evolution of large systems. A key concept in object technology is that
an application can be constructed from existing modules { also called parts or components).
[n object-oriented languages the basis of modularity is the class definition. The elimination
of unwanted dependencies between different parts of a program (sometimes called coupling).
is achicved by having each object presenting to the world its public interface: the inner works
are hidden. and can be modified without rippling the effect of the modification to the other

modules.

¢ Inheritance: Allows reuse of the behavior of a class in the definition of new classes. Subclasses
of a class inherit the data structure and the operations of their parent class (also called a
superclass) and may add new operations and new instance variables. Inheritance is often
referred to as an “is-a” relationship if the class A inherits from class B. then it is possible to

say that A -is-a™ B.

e Polymorphism: A word of Greek origin that means “having multiple forms™. It refers to the
ability to hide different implementations behind a common interface. With polvmorphism.
the same message can be interpreted differently by objects of different classes and therefore

produce different but appropriate results.

The use of an object-oriented programming paradigm affected this work in its two components:

The generated parser and the parser generator.

132

1
El
i
3
g
3
2
]
i
3

The Parser Generator

One of the most important conclusions drawn from the work on the parser generator is that it is
not necessary for a parser generator to include a finite state machine. a push-down automaton. or
a decision table. Many parser generators that claimed to be object-oriented in the past wrapped
up those components in classes. Having those components wrapped up in classes does not offer any
boost to the comprehensibility of the parser generator. nor does it reflect the relation botween the
parser generator and its product: the generated paser. which are of the most important objectives
of object-oriented programming.

An object-oriented program is supposed to be data-oriented. This is how we started. A parser
generator is supposed to generate a parser from a grammar. A grammar is nothing but a set of
components: rules. terminal. non terminals. regular expressions. semantic actions. Classes represent
very well a grammar’s components. By representing every component with a class, the set of objects
obtained can cooperate together on the generation of the parser by producing each the code about
itself. The set of objects representing the grammar relate directly to the generated parser since there
is a clear match between every object and a class of the generated parser.

Our parser generator took advantage also of the benefits of QOP mentioned carlier. The modu-
larity provided by class definitions provided seperate naming spaces which made building cach class
much easier. The genericity provided by class methods simplified the coding. Inheritance also helped

to reduce code size by factoring out common functionality to new superclasses.

The Generated Parser

The benefit gained by applying object-oriented programming on the generated parser is a very
comprehensible object-oriented approach to parsing. Representing every symbol in the grammar
with a class relates to the nodes of the parse tree. Moreover. representing semantic actions as
methods in classes fits well with the object-oriented concepts of a message and a method.

The representation of attributes and semantic actions as data and function members in a class
fits well with object-oriented approach where classes states are supposed to be changed by messages

sent to an object.

6.2 Future Work

The are several small improvements which could be made to our parser gencrator. These changes

do not affect the basic function of the system. but could casily be justified as convenience features.
1. Comments should be allowed in the users’ grammars. This is useful and casy to add.

2. Literal strings should be allowed in the users” grammars. For example. the literal string *+°

should be allowed in the users’ grammars instead of writing something such as AddOp.

3. The input grammar should be expanded to allow some non-LL(1) features which could be easily

handled. like common prefixes among the grammar productions can be mechanically removed.

133

e EE R A et e Tmmmmm e e

[n addition. it may be useful to allow some ambiguity. like the usual form of IF-THEN-ELSE
production. This could be handled. as most LL parsers do. by providing a default rule for

resolving the ambiguity.

4. The parser generator and the generated parser could be much improved by inserting some
better form of syntax error handling. Currently. the parser aborts as soon as it finds a single
syntax error. As the follow sets are computed anyway to generate the parser. these could be
used to attempt error recovery by discarding input tokens until an element of the follow set is

found.

3. Distribute the scanner in the generated parser into the classes for terminals. This way the

construct for terminal ID. for example. when called will scan for ID.

6. Providing a graphical user interface for the generated parser where the user can watch the
construction of the parse tree during parsing. This can be made by defining a class tree node
that all generated classes inherit and which contains all the necessary functions to plot a tree

node.

6.3 Summary

This chapter names the contributions of this thesis and suggests future work. The use of object-
oriented techniques is very suitable for building parsers and paser generators. The clarity and
simplicity gained is great. Further studies into using 0-O techniques in all phases of a compiler is

encouraged.

134

T T TR TR A AR R AR At el e, o e

Bibliography

[AGOS]

[ANOG]

[ASK90]

[ASUSG]

[AUT2

[AUTS]

[Bau]

(BBG ~60)

[BBGCSG]

[Cho36]

[Cho39]

Andrew W. Appel and Maia Ginsburg. Modern Compiler Implementation in C. Cam-

bridge University Press. 1998.

Henk Alblas and Albert Nymeyer. Practice and Principles of Compiler Building with C.
Prentice Hall. 1996.

H. Alblas and J. Schaap-Kruseman. An attributed ELL(1)-parser generator. In D. Ham-
mer. editor. Compiler Compilers. number 477 in Lectures Notes in Computer Science.

pages 208 209. Berlin: Springer-Verlag. 1990.

A. V. Aho. R. Sethi. and J.D. Ullman. Compilers: Principles. Techniques. and Tools.
Addison-Wesley. 1986.

A. V. Aho and J.D. Cllman. The Theory of Parsing. Translation. and Compiling. Volume

I: Parsing. Prentice Hall International. 1972.

A. V. Aho and J.D. Ullman. Principles of Compiler Design. Addison-Wesley. second

cdition. 1978.

J.W. Backus. F.L. Bauer. J. Green. C. Katz. J. McCarthy. P. Naur. Perlis A.J..
H. Rutishauser. K. Samelson, B. Vauquois. H. Wegstein. J. A. van Wijngaarden. and
M. Woodger. Report on the algorithmic language ALGOL 60. Communications of the
ACM. 3(5):299 -314. May 1960.

William A. Barett. Rodney M. Bates, David A. Gustafson. and John D. Couch. Compiler
Construction: Theory and Practice. Englewood Cliffs. New Jersey: Science Research

Associates. Inc, second edition. 1986.

N. Chomsky. Three models for the description of language. [EEE Transactions on

Information Theory. 2(3):113 124, 1956.

N. Chomsky. On certain formal properties of grammars. Information and Control.

(2):137 167. 1959.

135

[Cho62]

[Chr99]

[DeR69]

[DP82]

(FLSS]

[G4l92]

[GJ90)]

[Gro8§|

[Gro90a]

{Gro9ob]

[H()IQ()]

[Hor88]

[Hor9u}

[HUT9]

N. Chomsky. Context-Free Grammars and Pushdown Storage. RLE Quart. Prog. Report
No. 65. MIT. Cambridge. Mass.. 1962.

Thomas Christopher. A strong LL(k) parser generator that accepts non-LL grammars
and generates LL(1) tables. Technical Report 1999-3-#2-TC. Tools of Computing. March
1999.

F. DeRemer. Practical Translators for LR(k) Languages. PhD thesis. MIT. 1969.

Frank DeRemer and Thomas J. Pennello. Efficient computation of LALR(1) lookahead
sets. ACM Trans. Prog. Lang. Syst.. 4(4):615 -649. October 1982,

Charles N. Fischer and Richard J. LeBlanc. Jr. Crafting a Compiler. The Benjamin
Cummings Publishing Company. 1988.

Jose Fortes Galvez. Generating LR(1) parsers of small size. In U. Kastens and P. Pfahler.
editors. Compiler Construction. number 641 in Lectures Notes in Computer Science.

pages 16 29. Berlin: Springer-Verlag. 1992.

Dick Grune and Ceriel J. H. Jacobs. A programmer-friendly LL(1) parser generator.

Software-Practice and Ezperience, 18(1):29 38. January 1988.

Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: A Practical Guide. Ellis
Horwood. 1990.

J. Grosch. Generators for High-Speed Front-Ends. pages 81 92. Number 371 in Lectures

Notes in Computer Science. Berlin: Springer-Verlag. 1988.

J. Grosch. Efficient and comfortable error recovery in recursive descent parsers. Structured

Programming. (11):129 -140. 1990.

J. Grosch. Object-oriented attribute grammars. In A. E. Harmanci and E. Gelenbe.
editors. Proceedings of the Fifth International Symposium on Computer and Information

Sciences (ISCIS V). pages 807 -816. Oct 1990.
Allen I. Holub. Compiler Design in C. Prentice Hall. 1990.

R.N. Horspool. ILALR: An incremental generator of LALR(1) parsers. In D. Hammer.
editor. Compiler Compilers and High Speed Comnpilation, number 371 in Lectures Notes

in Computer Science. pages 128-136. Berlin: Springer-Verlag. 1988.

R.N. Horspool. Recursive ascent-descent parsers. In D. Hammer, editor. Compiler Com-
pilers. number 477 in Lectures Notes in Computer Science. pages 1-10. Berlin: Springer-
Verlag. 1990.

J. E. Hopcroft and J.D. Ullman. [Introduction to Automata Theory, Languages. and

Computation. Reading, Mass.: Addison-Wesley. 1979.

136

[Joh75]

[Joh88]

[Kio97]

[Knu63]

{Knu68]

[Knu71]j

[(Knuv4]

(KRTT

{Lee89]

[Lem92a

[Lem92b]

(Meyv92]

Meyod]

[Muc9T7]

[Nij82]

N1j93]

(Par92]

S. C. Johnson. Yacc - yet another compiler compiler. Technical Report CSTR 32. AT&T
Bell Laboratories. Murray Hill. N_J, 1975.

S. C. Johnson. Yacc meets C++. Computing Systems. 1(2):159 167. Spring 1988.

Derek Beng Kee Kiong. Compiler Technology: Tools. Translators and Language Imple-

mentation. Kluwer Academic Publishers. 1997.

Donald E. Knuth. On the translation of languages from left to right. Information and

Control. (8):607 -639. 1965.

Donald E. Knuth. Semantics of context-free languages. The American Mathematical

Systems Theory. (2):127-145. 1968.
Donald E. Knuth. Top-down syntax analvsis. Acta Informatica. 1:79-110. 1971.

Donald E. Knuth. Computer science and its relation to mathematics. Computers and

People. pages 8- 11. September 1974.

K. Kennedy and .J. Ramanathan. Deterministic attribute graminar evaluator based on

dynamic sequencing. In Fourth ACM Symposuim on Principles of Programming Lan-

guages, pages (2 -85. 1977.

Peter Lee. Realistic Compiler Generation. Foundations of Computing Series. The MIT

Press. 1989.

Karen A. Lemone. Design of Compilers: Techniques of Programming Language. Addison-

Wesley. 1992.

Karen A. Lemone. Fundamentals of Compilers: An [ntroduction to Computer Language

Translation. Addison-Wesley. 1992.
Bertrand Mever. Eiffel: The Language. Prentice Hall. 1992.

Bertrand Meyer. Reusable Software: The Base Object-Oriented Component Libraries.

Prentice Hall. 1994.

Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann

Publishers. 1997.

Anton Nijholt. Computers and Languages: Theory and Practice. volume 4 of Studies in

Computer Science and Artificial Intelligence. Elsevier Science Publishers B.V.. 1982.

Anton Nijholt. Context-Free Grammars: Covers., Normal Forms. and Parsing. Lecture

Notes in Computer Science. Berlin: Springer. 1993.

Thomas W. Parsous. Introduction to Compiler Construction. W.H. Freeman [and] Com-

pany. 1992.

137

o T T TR TR SRR Wy HaRs T st

[Par93]

(PQI5]

[Révol]

[R6h80]

[Sebgg)

[SHGF83]

[SK95]

[Sti85]

[Wat95]

(W93

[Wir96)
[W\I95]

[Zin91]

T.J. Parr. Obtaining Practical Variants of LL(k) and LR(k) for K~ > 1 by Splitting the
atomic k-tuple. PhD thesis. Purdue University. 1993.

T.J. Parr and R.W. Quong. ANTLR: A predicated-LL(k) parser generator. Software-
Practice and Erperience. 25(7):789-810. July 1995.

Gyorgy E. Révész. Introduction to Formal Languages. Dover Publications. Inc. New
York. 1991.

J. Rohrich. Methods for the automatic construction of error correcting parsers. Acta
Informatica. (13):115-139. 1980.

Robert W. Sebesta. Concepts of Programming Languages. Addison-Wesley. third edition.
1996.

Axel T. Schreiner and Jr. H. George Friedman. Introduction to Compiler Construction
With UNIX. Englewood Cliffs, New Jersey: Printce-Hall. Inc.. 1985.

Kenneth Slonneger and Barry L. Kurtz. Formal Syntaz and Semantics of Programming

Languages: A Laboratory Based Approach. Addison-Wesley. 1995.

Colin Stirling. Follow set error recovery. Software-Practice and Ezrperience. 13(3):239

257. March 1985.

Bruce W Watson. Trends in compiler construction - an invited address. In Proceedings of
the Symposium of the South African Institute for Computer Scientists and Information

Technologists. Pretoria: South Africa. May 1995.

William M. Waite and Lynn R. Carter. An Introduction to Compiler Construction.

Harper Collins College Publishers. 1993.
Nicklaus Wirth. Compiler Construction. Addison-Wesley. 1996.
Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-Wesley. 1995.

Barbara Zino. The domino effect. parsing and lexing objects with Yacc++. SunWorld.
4(5):86-92. May 1991.

138

T R AR AR N U T e b A e el E o k0

Appendix A

Samples Output from the Parser

(Generator

[n this appendix we show the parser generated for the following grammar which is a subset of the

Oberon0 grammar shown in figure 43:

% NonTerminal module alpha declarations2? IdentList statement [fStatement
IfStatementO expression term operatorl operator2 factor
% NoInfoTerminal MODULE SEMICOLON BEGIN END DOT VAR COLON COMMA IF ELSIF
ELSE THEN EQUAL LESS GREATER PLUS MINUS LP RP STAR DIV
% WithInfoTerminal letter digit
% Attributes
int factor.first ;
char letter.second ;
int declarations2.third ;
float statement.five ;
% Actions
int module.First();
int letter.Second();
float alpha.Third();
char IdentList.Fourth(int , char);

double statement.Five();

139

b e LT LM

SNES FI AL

% Rules

void IfStatement.Six(float);

int expression.Seven();
int factor.Eight();
module : MODULE letter [alpha {alpha.Third();}]+ SEMICOLON
[VAR [declarations2]*]
[BEGIN statement [SEMICOLON statement]*] END
letter [alpha {alpha:2.Third();} }*= DOT
{First(); letter.Second(); }
declarations2 : IdentList COLON letter
[alpha {alpha.Third();}]=
{ IdentList.Fourth(third , letter.second); }
SEMICOLON
IdentList : letter [alpha {alpha.Third();} 1=
[COMMA statement { statement.Five(); } 1=
statement (IfStatement { IfStatement.Six(five); } |
{ statement.Seven(); })
IfStatement : IF IfStatementO END [ELSIF IfStatementO]=
[ELSE statement [SEMICOLON statement =]
END
IfStatement0 : expression THEN statement
[SEMICOLON statement]=
expression : (PLUS | MINUS |) term [operator2 term]=

[C EQUAL | LESS | GREATER) (PLUS | MINUS |)

term [operator2 term]=

140

term : factor [operatorl factor]=
factor : letter [alpha {alpha.Third();}]=
| digit [digit]=
| LP expression RP {expression.Seven(); Eight();}
alpha : letter | digit H
operatorl : (STAR { DIV) ;

operator2 : (PLUS | MINUS) ;

The parser generated is distributed in four files: OOParser.h. OOParser.hpp. OOParser.cpp. OO Pdecl.cpp.
Some parts were omitted and replaced with = --~ beecause they were either shown earlier. as is the

case of the scanner. or because they are too simple.

A.1 OOParser.h

#define NMODULE 257
#define SENMICOLON 238
#define .BEGIN 259
#define _LEND 260
#define .DOT 261
#define VAR 262
#define . COLON 263
#define _COMNIMA 264
#define IF 265
#define _ELSIF 266
#define _ELSE 267
#dcfine _THEN 268
#define _ EQUAL 269
#define _LESS 270
#define _GREATER 271
#define _PLUS 272
#define MINUS 273
#define LP 274
#define _RP 275
#define STAR 276
#define DIV 277
#define letter 278

141

#define _digit 279
#define _.UNKNOWN 281

A.2 OOParser.hpp

#if 'defined (__.OOPARSER_HPP)
#define _OOPARSER_HPP 1
extern “C” {
#include “stdio.h™
#include "malloc.h™
#include “string.h”
}
#include <stream.h>
#include <assert.h>
#include "OOParser.h”

// These are necessary for Lex. They will be removed when a our lexical
// analyzer defined as an object will be provided.

extern FILE * yvin :

extern int yyvlex():

extern char * yvyvtext :

extern int yvline :

class Scanner {
private :
FILE * input :
int lineno
int token :
char * lexeme :
void NextToken() :
char * TokenTextVal(int):
public :
Scanner(char *) :
int Token() :
char *Lexeme() :
int LineNo()
void match(int) :
void match(int . char *) ;

Scanner() :

142

class Construct {

b

class NonTerminal : public Construct {
protected :
Scanner *scanner :
public :
NonTerminal(Scanner *scan) {
assert(scan) :

scanner = scan

class NolnfoTerminal : public Construct {
protected :
int Token\al :
public :
NolnfoTerminal(int val) {
TokenVal = val:

class WithInfoTerminal : public Construct {
protected :
int TokenVal :
char *lexeme :
public :
WithInfoTerminal(int val . char *text) {
TokenVal = val:
lexeme = strdup(text);

}:

class BinaryOp : public Construct {
private :
Construct **array;
int array size :
BinaryOp * previous :

public :

143

BinaryOp(Construct ** arr = 0. int size = 0 . BinaryOp *p=0) {
array = arr :
array size = size :

previous = p :

b

class module:

class alpha:

class declarations2:
class IdentList:
class statement;
class [fStatement:
class IfStatement0:
class expression:
class term:

class operatorl
class operator2:
class factor:

class lettor:

class NITCollection {
private :
static NolnfoTerminal * symbol[21] :
public :
static void [niSymbols() :

static NolnfoTerminal *GetSymbol(int):

class letter : public WithInfoTerminal {
protected :
char letter_second:
public :
letter(int . char *);
char _Get_letter second() { return letter_second: }:

int letter Second():

class module : public virtual NonTerminal {

protected :

144

NolnfoTerminal * s0 :
letter* sl
Construct * s2:
NolnfoTerminal * s3 :
NolnfoTerminal * st :
Construct * s3:
NolnfoTerminal * s6 :
statement * s7 :
Construct * s8:
NolnfoTerminal * s9 :
letter® s10 :
Construct * sl1:
NolnfoTerminal * s12 :
public :
module(Scanner *):
int module_First():

static void _Error(int line = -1):

class declarations2 : public virtual NonTerminal {
protected :
int declarations2_third:
IdentList * s0 :
NolufoTerminal * sl :
letter* s2 :
Construct * s3:
NolnfoTerminal * s4 :
public :
declarations2(Scanner *):
int _Get_declarations2_third() { return declarations2_third: }:

static void _Error(int line = -1);

class IdentList : public virtual NonTerminal {
protected :
letter® s0 :
Construct * sl:
Construct * s2:
public :
IdentList(Scanner *):

145

char IdentList_Fourth(int. char);

static void _Error(int line = -1):

class statement : public virtual NonTerminal {
protected :
float statement five:
Construct * s0:
public :
statement(Scanner *):
float _Get_statement five() { return statement five: }:

double statement Five():

class [fStatement : public virtual NonTern:inal {
protected :
NolnfoTerminal * s0 :
IfStatement0 * s1 :
NolnfoTerminal * s2 :
Construct * s3:
NolnfoTerminal * s4 :
statement * s3 :
Construct * s6:
NolnfoTerminal * s7
public :
[fStatement(Scanner *):
void IfStatement Six(float):

static void _Error(int line = -1):

class IfStatement0 : public virtual NonTerminal {
protected :
expression * s0 :
NolnfoTerminal * sl :
statement * s2 ;
Coustruct * s3:
public :
[fStatementO(Scanner *);

static void _Error(int line = -1):

146

class expression : public virtual NonTerminal {
protected :
Construct * s0:

term * sl :
i Constriuct * s2:
Construct * 53:
Construct * s4:
term * s5 :
Construct * s6:
public :
expression(Scanner *):
int expression_Seven():

static void _Error(int line = -1):

class term : public virtual NonTerminal {
protected :
factor * s0 :
Construct * si:
public :
term(Scanner *):

static void _Error(int line = -1):

class factor : public virtual NonTerminal {

protected :
int factor_first;
Construct * s0 :

public :
factor(Scanner *):
int _Get factor first() { return factor first: }:
int factor_Eight():

static void _Error(int line = -1):

class factor.1 : public virtual NonTerminal, public factor {
protected :
letter* s0 :

Construct * sl;

147

TRt L

FILIIATRABTwR

public :
factor_1(Scanner *):
void InitialiseInherited Attrib(factor *):

static void _Error(int line = -1);

E class factor 2 : public virtual NonTerminal. public factor {
protected :

WithInfoTerminal * s0 :

Construct * sl:
public :

factor_2(Scanner *):

void InitialiseInherited Attrib(factor *):

static void _Error(int line = ~1):

class factor.3 : public virtual NonTerminal. public factor {

protected :
NoInfoTerminal * s0 :
expression * sl :
NoInfoTerminal * s2 :
public :
factor 3(Scanner *):
void InitialiseInherited Actrib(factor *):

static void _Error(int line = -1):

class alpha : public virtual NonTerminal {

class operatorl : public virtual NonTerminal {

class operator2 : public virtual NonTerminal {

#ondif

148

A.3 OOPdecl.cpp

#include “OOParser.hpp”

int letter::letter Second() {

}

int module::module_First() {

}

floar alpha::alpha_Third() {
}

char IdentList::[dentList_Fourth(int al. char a2) {

}

double statement::statement _Five() {

}

void IfStatement::IfStatement Six(float al) {

}

int expression::expression Seven() {

}

int factor::factor_Eight() {

}

A.4 OOParser.cpp

#include "OOParser.hpp™

Scanner::Scanner(char * gram) {

-}

int Scanner::Token() {

return token:

char * Scanner::Lexeme() {

149

e B el Vbl oy A TR R

e W J R

int Scanner:LineNo() {

return lineno:

void Scanner::match(int val) {

void Scanner::match(int val. char * string) {

void Scanner::NextToken() {

Scanner:: Scanner() {

}
char * Scanner::TokenTextVal(int val)
{
const int START = 257
char * TextVal{] = {
“(Blank)”. "MODULE™. "SEMICOLON". "BEGIN”. "END". "DOT". "VAR". "COLON".
TCOMMAT. "[F". "ELSIF”. "ELSE". "THEN". "EQUAL". "LESS". "GREATER".
“PLUS™. "MINUS”. "LP”. "RP™. "STAR™. "DIV", “letter”. "digit™. "UNKNOWN"
}:
if ('val)
return TextVal[0];
clse
if ((val >= MODULE) && (val <= _UNKNOWN))
return TextValfval - START + 1] :
clse {
cout << "Undefined token value: " << val << endl ;
exit(0);

150

R R R ol A

TTIRRERIRA A LN M B ad A E La Py vl £ e

NolnfoTerminal * NITCollection::symbol[21]:

void NITCollection :: IniSymbols() {
symbol[0] = new NolnfoTerminal{ MODULE):
symbol[l] = new NolnfoTerminal(_ SEMICOLON):
symbol[2] = new NolnfoTerminal(_ BEGIN):
svmbol[3] = new NolnfoTerminal(_LEND):
symbolf4] = new NolnfoTerminal(_DOT):
symbol{5] = new NolInfoTerminal(_-VAR):
symbol[6] = new NolnfoTerminal(_.COLON):
symbol[7] = new NolnfoTerminal(_.COMMA):
symbol[8] = new NolnfoTerminal(IF):
svmbol[9] = new NolnfoTerminal(_ELSIF):
symbol[10] = new NolnfoTerminal(_ELSE):
symbol[l1l] = new NolnfoTerminal(_THEN):
symbol[12] = new NolnfoTerminal(_LEQUAL):
symbol[l3] = new NolnfoTerminal(_LESS):
symbol[14] = new NolnfoTerminal(_ GREATER):
symbol[15] = new NolnfoTerminal(_PLUS):
symbol{16] = new NolnfoTerminal(MINUS):
symbol[17] = new NolnfoTerminal(_LP):
symbol[18] = new NolnfoTerminal(_RP):
symbol[19] = new NolnfoTerminal(STAR):
symbol[20] = new NolnfoTerminal(_DIV):

NolnfoTerminal * NITCollection :: GetSymbol(int val) {
if ((val >= MODULE) && (val <= _DIV))
return symbol[val - NMODULE]:
else {
cout << "Unknown value for a NolnfoTerminal \n ":
exit(0):

letter:zletter(int val . char *text) : WithInfoTerminal(val . text) {

letter _second = 0 ;

module:zmodule(Scanner *MyScanner) : NonTerminal(MyScanner) {

char * lexeme :
$0 = NULL : s1 = NULL : s2 = NULL :s3 = NULL :s4 = NULL : s5 = NULL :
$6 = NULL : s7 = NULL : s8 = NULL : s9 = NULL : 510 = NULL : s11 = NULL :
s12 = NULL :
if ((MyScanner—Token() == MODCULE)) {
MyScanner—match{ MODULE) :
s0 = NITCollection::GetSymbol(MODULE):
lexeme = MyScanner—Lexeme():
MyScanner—match(letter):
sl = new letter(letter. lexeme):
if ((MyScanner—Token() == _etter) |j (MyScanner—Token() == _digit)) {
BinaryOp * bin.op =0 :
while ((MyScanner—Token() == _etter) || (MyScanner—Token() == _digit) {
alpha * tmp_rep_0 = new alpha(MyScanner):
if (tmp_rep.0)
tmp_rep_O—alpha_Third():
Construct ** array = new (Construct *) [1]:
array[0 | = tmp_rep.0:
bin_op = new BinarvOp(array. 1. bin_op):

'

s2 = bin_op :
}
else

s2 = NULL :

MyScanner—match(SEMICOLON) :
s3 = NITCollection::GetSymbol(SEMICOLON):
if ((MyScanner—Token() == _VAR)) {
MyScanner—match(.VAR) :
s+ = NITCollection::GetSymbol(\VAR);
if ((MyScanner—Token() == _etter)) {
BinaryOp * bin.op =0 :
while ((MyScanner—Token() == letter)) {
declarations2 * tmp_rep_0 = new declarations2(MyScanner):
Construct ** array = new (Construct *) [1]:
array[0] = tmp_rep 0:
bin_op = new BinaryOp(array, 1, bin_op);

}
sH = bin_op ;

}

clse

sd = NULL :
h
if ((MyScanner—Token() == _BEGIN)) {
MyScanner—match(_.BEGIN) ;
s6 = NITCollection::GetSymbol(_BEGIN):
s7 = new statement (MyScanner) :
if ((MyScanner—Token() == SEMICOLON)) {
BinaryOp * bin.op = 0 :
while ((MyScanner—Token() == SEMICOLON)) {
MyScanner -match(SEMICOLON}:
NolnfoTerminal * tmp_rep 0 = NITCollection::GetSymbol(SEMICOLON);
statement * tmp._rep_-l = new statement(MyScanner):
Construct ** array = new (Construct *) [2]:
array{ 0 | = tmp._rep0:
array[1 | = tmp_rep_l:

bin.op = new BinaryOp(array. 2. bin_op):

}

s8 = bin.op :
}
else

s8 = NULL :

}

MyScanner—match(_END) :
59 = NITCollection::GetSymbol(_END):
lexeme = MyScanner— Lexemne():
MyScanner—match(detter):
510 = new letter(Jetter. lexeme):
if ((MyScanner—Token() == _etter) || (MyScanner— Token() == _digit)) {
BinaryOp * bin.op = 0 :
while ((MyScanner—Token() == _etter) || (MyScanner— Token() == digit)) {
alpha * tmp_rep_0 = new alpha(MyScanner):
if (tmp_rep.0)
tmp_rep_O—alpha_Third();
Construct ** array = new (Construct *) [1]:
array[0 | = tmp_rep.0:
bin_op = new BinaryOp(array. 1. bin_op):
}
sll = bin.op ;

}

clse

sl1 = NULL ;
MyScanner—match(_.DOT) :
512 = NITCollection::GetSymbol(_DOT):

module_First():
if (sl)
sl—letter Second():
return :
}
_Error(MyScanner—LineNo()) :

voitd module::_Error(int line) {
if (line !'= -1)
cout << line << 7
cout << 7 An MODULE was expected. \n~
exit(0):

declarations2::declarations2(Scanner *MyScanner) : NonTerminal(MyScanner) {
char * lexeme :
declarations2_third = 0 :
s0 = NULL : s1 = NULL : s2 = NULL : s3 = NULL : s4 = NULL :
if ((MyScanner—Token() == etter)) {
50 = new IdentList(MyScanner) :
MyScanner—match(_.COLON) :
51 = NITCollection::GetSymbol(.COLON):
lexeme = MyScanner—Lexeme():
MyScanner—-match(letter):
52 = new letter{_letter. lexeme):
if ((MyScanner—Token() == letter) || (MyScanner—Token() == _digit)) {
BinaryOp * binop =0 :
while ((MyScanner—Token() == _etter) || (MyScanner—Token() == _digit)){
alpha * tmp_rep 0 = new alpha(MyScanner);
if (tmp_rep.0)
tmp_rep_O—alpha_Third();
Construct ** array = new (Counstruct *) [1]:
array[0] = tmp_rep_0:
bin_op = new BinaryOp(array, 1. bin_op);
}

53 = bin_.op :

154

i
é
]
ad
A
g
1
5

- T T TR e mey

}

else
s3 = NULL :
if (s0)

s0—IdentList _Fourth(declarations2_third. s27s2— _Get_etter _second(): 0)

MyScanner—match(SEMICOLON) :
54 = NITCollection::GetSymbol(_ SEMICOLON):
return ;

}

_Error(MyScanner—LineNo()) :

void declarations2:: _Error(int line) {
if (line '= -1)
cout << line << 7:" :
cout << 7 An letter was expected. \n” :
exit(0):

[dentList::Ident List (Scanner *MyScanner) : NonTerminal(MyScanner) {
char * lexeme :
s0 = NULL : s1 = NULL :s2 = NULL :
if ((MyScanner—Token() == _letter)) {
lexeme = MyScanner— Lexeme():
MyScanner—match(detter):

50 = new letter(letter. lexeme);

if ((MyScanner— Token() == letter) || (MyScanner—Token() == _digit)) {

BinaryOp * bin.op = 0 :

while ((MyScanner—Token() == etter) || (MyScanner—Token() == _digit)) {

alpha * tmp_rep 0 = new alpha(MyScanner):
if (tmp_rep_0)
tmp_rep-O—alpha_Third();
Construct ** array = new (Construct *) [1};
array[0] = tmp_rep_0:
bin_op = new BinaryOp(array, 1, bin_op):
}
sl = bin_op :
}
else

sl = NULL ;

if ((MyScanner—Token() == _COMNMIA)) {
BinaryOp * bin.op = 0 :
while ((MyScanner—Token() == .COMMA)) {
MyScanner—match(_.COMMA):

NolnfoTerminal * tmp_rep.0 = NITCollection::GetSymbol(_COMMA):

statement * tmp.rep_1 = new statement(MyScanner):
if (tmp_rep_1)
tmp _rep_l—statement _Five():
Construct ** array = new (Construct *) [2]:
array{ 0 | = tmp_rep_0:
array[1] = tmp_rep_1:
bin_op = new BinaryOp(array, 2. bin_op):
}
s2 = bin_op :

}

else
s2 = NULL :
return :

}

_Error(MyScanner— LineNo()) :

void IdentList::_Error(int line) {
if (line '=-1)
cout << line << 7" ;
cout << ° An letter was expected. \n” :

exit(0):

statement::statement(Scanner *MyScanner) : NonTerminal(MyScanner) {

char * lexeme ;
statement five = 0 ;
s0 = NULL :
if ((MyScanner—Token() == IF)) {

[fStatement * tmp0 = new IfStatement(MyScanner) :

s0 = tmpO :

if (tmp0)

tmp0— IfStatement Six(statement _five);

clse

156

s0 = NULL :

[fStatement::IfStatement(Scanner *MyScanner) : NouTerminal(MyScanner) {
char * lexeme :
s0 = NULL : sl = NULL : s2 = NULL :s3 = NULL : s4 = NULL :
55 = NULL : s6 = NULL : s7 = NULL :
if ((MyScanner—Token() == _IF)) {
MyScanner—match(IF) :
s0 = NITCollection::GetSymbol(_IF):
51 = new [fStatementO(MyScanner) ;
MyScanner—match(_.END) :
52 = NITCollection::GetSymbol(_END):
if ((MyScanner—Token() == _ELSIF)) {
BinaryOp * bin.op =0 :
while ((MyScanner—Token() == _ELSIF)) {

MyScanner—match(_ELSIF):
NolnfoTerminal * tmp_rep_ 0 = NITCollection::GetSymbol(_ELSIF):

[fStatement0 * tmp.rep_1 = new I[fStatementO(MyScanner):
Construct ** array = new (Construct *) [2]:
array{ 0 | = tmp_rep.0:
array[1 | = tmp.rep_1:
bin_op = new BinaryOp(array. 2. bin_op):
}
s3 = bin_op :
'
clse
s3 = NULL :
if ((MyScanner—Token() == _ELSE)) {
MyScanner—match(_ELSE) :
s4 = NITCollection::GetSymbol(_ELSE);
9 = new statement(NyScanner) ;
if ((MyScanner—Token() == SEMICOLON)) {
BinaryOp * bin.op = 0 ;
while ((MyScanner—Token() == SEMICOLON)) {

MyScanner—match(SEMICOLON);
NolnfoTerminal * tmp_rep.0 = NITCollection::GetSymbol(_ SENMICOLON);

statement * tmp_rep_1 = new statement{MyScanner):
Construct ** array = new (Construct *) [2];

array[0 | = tmp_rep.0;

Wyt TSy Y S TSI IS LN

array[1 | = tmp_rep_1:
bin_op = new BinaryOp(array. 2. bin_op):

}

s6 = bin.op :
}
clse

s6 = NULL :

}

MyScanner—match(_LEND) :
57 = NITCollection::GetSymbol(_LEND);
return :

}

_Error(MyScanner— LineNo()) :

void [fStatement::_Error(int line) {
if (line '= -1)
cout << line << 7:7 ;
cout << 7 An IF was expected. \n" :

exit(0);

[fStatementQ:IfStatementO(Scanner *MyScanner) : NonTerminal(MyScanner) {

char * lexemne ;

s0 = NULL : s1 = NULL :s2 = NULL ;:s3 = NULL :

if ((MyScanner—Token() == _PLUS) {| (MyScanner—Token() == MINCUS) ||
(MyScanner—Token() == _LP) || (MyScanner—Token() == etter) ||
(MyScanner— Token() == _digit)) {

s0 = new expression(MyScanner) :
MyScanner—smatch(_.THEN) :
sl = NITCollection::GetSymbol(_.THEN):
s2 = new statement(MyScanner) ;
if ((MyScanner—Token() == SEMICOLON)) {
BinaryOp * binop =0 ;
while ((MyScanner—Token() == SEMICOLON)) {
MyScanner—match(_ SEMICOLON):
NolnfoTerminal * tmp_rep 0 = NITCollection::GetSymbol(_SEMICOLON):
statement * tmp_rep_1 = new statement(MyScanner);
Construct ** array = new (Construct *) [2];

array[0] = tmp_rep.0:

158

T T T PTG e 6 LTS R S SR Tt T e

array[1 | = tmp_rep_l:
bin.op = new BinaryOp(arrzy, 2, bin_op):
}
s3 = bin_op :
}
else
s3 = NULL :
return :

}

_Error(MyScanner—LineNo()) :

void IfStatementO::_Error(int line) {
if (iine != -1)
cout << line << 17 :
cout << 7 An PLUS . MINUS . LP . letter or digit was expected. \n™ :
exit(0):

expression:expression(Scanner *MyScanner) : NonTerminal(MyScanner) {
char * lexeme :

s0 = NULL :s1 = NULL :s2 = NULL :s3 = NULL : s4 = NULL : 55 = NULL : s6 = NULL :

if ((MyScanner—Token() == _PLUS) || (MyScanner—Token() == MINTUS))
(MyScanner—Token() == _LP) || (MyScanner—Token() == _ectter) ||
(MyScanner—Token() == _digit)) {
if ((MyScanner—Token() == _PLUS)) {

MyScanner—match(_PLUS) :
s0 = NITCollection::GetSymbol(_PLUS):
}

clse
if ((MyScanner—Token() == MINUS)) {
MyScanner—match(MINUS) :
s0 = NITCollection::GetSymbol(MINUS);
}
clse
s0 = NULL :
sl = new term(MyScanner) :
if ((MyScanner—Token() == _PLUS) || (MyScanner—Token() == _MINLUS)) {
BinaryOp * bin.op = 0 ;
while ((MyScanner—Token() == _PLUS) || (MyScanner—Token() == _\MINUS)) {

KA R bdd ™ Fmeas’s Th

operator2 * tmp._rep_0 = new operator2(MyScanner):
term * tmp_rep_1 = new term{MyScanner);
Construct ** array = new (Construct *) [2]:

array[0 | = tmp_rep 0:

array[1 | = tmp_rep_1:

bin_op = new BinaryOp(array. 2. bin_op):

}

s2 = bin.op :
}
clse

s2 = NULL :

if ((MyScanner—Token() == _EQUAL) || (MyScanner— Token() == _LESS) il

(MyScanner—Token() == .GREATER)) {

if ((MyScanner—Token() == _EQUAL)) {
MyScanner—match(_.EQUAL) :
53 = NITCollection::GetSymbol(_LEQUAL):

}

else

if ((MyScanner—Token() == _LESS)) {
MyScanner—match(_LESS) :
s3 = NITCollection::GetSymbol(_LESS):

}

else

if ((MyScanner—Token() == .GREATER)) {
MyScanner—match(_ GREATER) :
s3 = NITCollection::GetSymbol(.GREATER):

}

clse {
cout << MyScanner—LineNo() << 7:”
cout << ” An EQUAL . LESS . GREATER was expected. \n~ :
exit(0):

}

if ((MyScanner— Token() == _PLUS)) {
MyScanner—match(_PLUS) :
s4 = NITCollection::GetSymbol(_PLUS):
}
else
if ((MyScanner—Token() == MINUS)) {
MyScanner—match(MINUS) ;
s4 = NITCollection::GetSymbol(MINUS):

160

& T A P

}

else
s+ = NULL :

s3 = new term(MyScanner) :

if ((MyScanner—Token() == _PLUS) || (MyScanner— Token() == MINUS)) {
BinaryOp * bin.op =0 :

while ((MyScanner—Token() == _PLUS) || (MyScanner— Token() == AIINUS)) {

operator2 * tmp_rep_0 = new operator2(MyScanner):
term * tmp.rep.l = new term(MyScanner):
Construct ** array = new (Construct *) [2]:

array[0 | = tmp_rep_0):

array(1 | = tmp_rep_I:

bin_op = new BinarvOp(array. 2. bin_op):

}

s6 = bin_op :
}
else

s6 = NULL :

}

return :

}

-Error(MyScanner—LineNo() } :

void expression::_Error(int line) {
if (line '= -1)
cout << line << 7:
cout << An PLUS . MINUS | LP . letter or digit was expected. \n™ :
exit(0):

term::term(Scanner *MyScanner) : NonTerminal(MyScanner) {
char * lexeme ;
sO0 = NULL : s1 = NULL :
if ((MyScanner—Token() == _LP) || (MyScanner— Token() == letter) ||
(MyScanner—Token() == _digit)) {
s0 = new factor(MyScanner) ;
if ((MyScanner—Token() == STAR) || (MyScanner—Token() == _DIV)) {
BinaryOp * bin.op = 0 ;
while ((MyScanner—»Token() == STAR) || (MyScanner—Token() == _DIV)) {

161

AL S ad b Ao iVl ealer s b dasl b vl et e

operatorl * tmp_rep_0 = new operatorl({MyScanner):
factor * tmp_rep_l1 = new factor(MyScanner):
Construct ** array = new (Construct *) [2]:
array[0 | = tmp_rep.0:
array[1 | = tmp_rep_l:
bin_op = new BinaryOp(array. 2. bin_op):
}
sl = bin_op :
}
else
s1 = NULL :
return :

}

_Error(MyScanner—LineNo()) :

void term:_Error(int line) {
if (line '= -1)
cout << line << 77 :
cout << 7 An LP . letter or digit was expected. \n™ :
exit(0):

factor::factor(Scanner *MyScanner) : NonTerminal(MyScanner) {
char * lexeme :
factor first = 0 :
s0 = NCLL :
if ((MyScanner—Token() == etter)) {
factor_1 * tmp0 = new factor_1(MyScanner):
tmpO— [nitialiseInherited Attrib(this);
sO = tmpO :

return

if ((MyScanner—Token() == _digit)) {
factor 2 * tmp0 = new factor 2(MyScanner):
tmp0—InitialiseInherited Attrib(this):
s0 = tmpO ;
return ;

}
if ((MyScanner—Token() == _LP)) {

162

~hpdet el Wi AT o

factor_.3 * tmp0 = new factor.3(MyScanner):
tmpO— Initialiselnherited Attrib(this):

sO0 = tmpO :

return :

}

-Error(MyScanner—LineNo()) :

void factor::_Error(int line) {
if (line '= -1)
cout << line << 7:7 ;
cout << 7 An LP . letter or digit was expected. \n™ :
exit(0):

factor_l::factor_1(Scanner *MyScanner) : NonTerminal(MyScanner). factor(MyScanner) {
char * lexeme :
sO0 = NULL : s1 = NULL :
if ((MyScanner—Token() == etter)) {
lexeme = MyScanner— Lexeme():
MyScanner—match(letter):
s0 = new letter(letter, lexeme):
if ((MyScanner—Token() == letter) |} (MyScanner— Token() == _digit)) {
BinaryOp * bin_.op = 0 :
while ((MyScanner—Token() == _etter) || (MyScanner— Token() == digit)) {
alpha * tmp_rep.0 = new alpha(MyScanner):
if (tmp_rep.0)
tmp_rep-O—alpha_Third():
Coustruct ** array = new (Construct *) [1]:
array{ 0] = tmp_rep.0:
bin_op = new BinaryOp(array. 1. bin_op):
}
sl = bin_op :

}

else
s1 = NULL :
return :

}

-Error(MyScanner—LineNo()) ;

163

void factor_l:InitialiselnheritedAttrib(factor * s) { }

void factor_1:: _Error(int line) {
if (line !'= -1)

cout << line << 7:

cout << 7 An letter was expected. \n” :

exit(0):

factor 2::factor 2(Scanner *MyScanner) : NonTerminal(MyScanner). factor(MyScanner) {
char * lexeme :
s0 = NULL :s1 = NULL :
if ((MyScanner—Token() == _digit)) {
lexeme = MyScanner— Lexeme():
MyScanner—match(_digit);

sO0 = new WithInfoTerminal(_digit. lexeme):

if ((MyScanner—Token() == _digit)) {
BinaryOp * bin.op =0 :
while ((MyScanner—Token() == _digit)) {

WithInfoTerminal * tmp_rep 0 =
new WithInfoTerminal(_digit . MyScanner—Lexeme()) :

Construct ** array = new (Construct *) [1]:
array[0 | = tmp.rep0;
bin_op = new BinaryOp(array. L. bin_op):

sl = binoop :

}
clse

sl = NULL .
return :

}

-Error(MyScanner—LineNo()) :

void factor 2:InitialiseInherited Attrib(factor * s) {

}

void factor_2:_Error(int line) {
if (line !I= -1)

164

cout << line << 7" :
cout << 7 An digit was expected. \n" :
exit(0):

factor.3::factor 3(Scanner *MyScanner) : NonTerminal(MyScanner). factor(MyScanner) {
char * lexeme :
s0 = NULL : sl = NULL :s2 = NULL :
if ((MyScanner—Token() == _LP)}) {
MyScanner—match(_LP) :
sO0 = NIT Collection::GetSymbol(_LP):
s1 = new expression(MyScanner) :
MyScanner—match(_RP) :
s2 = NITCollection::GetSymbol(_RP):
if (s1)
sl —expression _Seven():
factor_Eight():
return :

}

_Error(MyScanner—LineNo()) :

void factor_3::InitialiseInherited Attrib(factor * s) {

}

void factor_3::_Error(int line) {
if (line !'= -1)
cout << line << 77 ;
cout << 7 An LP was expected. \n” :
exit(0):

alpha::alpha(Scanner *MyScanner) : NonTerminal(MyScanner) {

void alpha::_Error(int line) {

operatorl::operatorl(Scanner *MyScanner) : NonTerminal(MyScanner) {

void operatorl::_Error(int line) {

operator2::operator2(Scanner *MyScanner) : NonTerminal(MyScanner) {

void operator2::_Error(int line) {

int main(int arge . char ** argv } {
if (arge!=2) {
cout << "Wrong number of arguments. should be: [Program Name] [File Name] .~
<< endl :
exit(0) :
}
NITCollection::IniSymbols():
Scanner * scanner = new Scanner(argv[1]):
module * root = new module(scanner) :
if (! scanner— Token())
cout << “Input is accepted by grammar\n~:
else

cout << "Input is unaccepted by grammar\n ":

166

