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ABSTRACT

FORECASTING MACROECONOMIC MODELS
WITH ARTIFICIAL NEURAL NETWORKS:
AN EMPIRICAL INVESTIGATION INTO THE FOUNDATION FOR

AN INTELLIGENT FORECASTING SYSTEM

Dat-Dao Nguyen, Ph.D.

Concordia University, 1999

This study investigates the foundation of an intelligent system using Artificial
Intelligent (AD) technologies to assist decision makers in a specific business problem, namely
business forecasting. In time series and macroeconomic modelling, there are many
assumptions being imposed on the behavior and functional relationship of the underlying
variables. In addition, one may face the complexity in the estimation of these models. This
study uses Artificial Neural Network (ANN) and other Al technologies in an effective
forecasting system in order to overcome the restrictions of traditional modelling and
estimation methods.

An ANN has been shown to be a universal function approximator (Cybenko, 1989;
Hornik et al., 1989). It requires no prior assumptions on the behavior and functional form
of the related variables but it is still able to capture the underlying dynamic and nonlinear

relationships among variables in the problem space, ie. a macroeconomic model in this
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context. This study integrates the powerful ability of an ANN into an efficient framework
incorporating Recurrent Algorithms (Jordan, 1986), Genetic Algorithms (Holland,1975) in
a Mixture-of-experts Architecture (Jacobs et al., 1991) to obtain accurate estimation and
forecasts. As such, this study addresses the ability of a versatile intelligent technology to
solve a general economic forecasting problem involving temporal and non-temporal
variables.

Using the contexts provided in the Klein Model I of the US interwar economy in
1921-1941 and the Klein-Goldberger Model of the US economy in 1929-1952, this study
investigates the relative performance of the proposed system and traditional methods in
modelling and forccasting a mix of economic variables. [t extends these frameworks into
the future to forecast with more recent data. The study specifies the conditions that will make
the implementation of ANN more successful in estimation and forecasting.

This study provides evidence on the effectiveness and efficiency of the proposed
system. [t asserts empirically the ability of the integrated ANN and GA in estimation and
forecasting. The findings should contribute positively to the development of theory,
methodology, and practice of using Al tools, particularly ANN and GA, to build intelligent

forecasting systems.
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CHAPTER 1

Introduction

One of the goals of Artiticial [ntelligence (Al) study is to build intelligent computer
systems to assist people in making decisions. The intelligent behavior of a computer
program is defined as the ability to learn and understand from experience, make sense out
of ambiguous or contradictory messages, recognize the relative importance of different
elements in a situation, and to respond quickly and successfully to a new situation (Turban
and Aronson. 1998). Besides assisting a user with the powerful computing capacity, an
intelligent system, particularly a Decision Support System (DSS). can alert the user to a
decision-making opportunity or challenge. recognize what needs to be solved and then solves
them with or without a user’s interference (Holsapple and Whinston, 1996). A DSS provides
the user with advice, expectations, evaluations, facts, and analyses in a decision context.
Such a system can facilitate and extend the user’s ability in the decision-making process,
particularly in acquiring, transforming, and exploring knowledge. Many successful
intelligent systems have been reported in various contexts in scientific study as well as in
business practice (Medsker, 1994, 1995). The present study investigates the foundations of
an intelligent system to assist decision makers in a specific business problem, namely,

business forecasting.
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A general business forecasting problem, particularly the one dealing with socio-
economic variables, usually involves many temporal and non-temporal interactions. It is
very often that the value of an economic variable is not only related to its predecessors in
time but also to the current and past values of other variables. One cannot accurately
forecast an economic variable by focussing solely on its behaviour over time. Therefore, the
most important application of econometrics is to build macroeconomic models to incorporate
various interrelated variables in the economy.

A time series consists of a set of observations on a variable taken at equally spaced
intervals over time. Time series can be studied from two perspectives: analysis and
modelling. An analysis summarizes the properties of a series and characterizes its salient
features in a time domain and/or frequency domain, whereas modelling enables the forecast
of future values. The distinguishing feature of a time series model, as opposed to an
econometric model, is that no attempt is made to formulate the behavioral relationship
between a temporal variable and other variables (Harvey, 1993). The movement of a
particular temporal variable is explained solely in terms of its own past or its relative
position in time. Then forecasts are made by extrapolation.

In contrast, an econometric model takes into consideration the behavior of an
economic variable in relation with others. In an economy, it is very often the case that the -
predicted value of an economic variable is related not only to its predecessors in time but
also to the past values of other variables. Most of these models use a Keynesian framework
for the determination of national income and its components such as consumption,

investment, and government expenditure. They take into account the relationship with other



macroeconomic variables such as inflation and unemployment. The purpose of these models
is to assist decision makers in structural analysis, forecasting and policy evaluation
(Intriligator, 1978). In structural analysis, one investigates the underlying interrelationship
of economic variables in the system under consideration in order to understand and explain
relevant phenomena in the economy. In forecasting, one predicts values of related variables
beyond the current sample data. In policy evaluation, one chooses an alternative on the basis
of an economic forecast taking into account the possible effects on and of other economic
variables.

Although rigorous econometric methods have been used in model building, there still
exists a debate on the appropriateness of an economic model. First, policy issues in
economics are related to politics such that the theoretical structure of a model tends to
reflect a political standpoint rather than the real world. Second, very often the data can fit
into many empirical models but statistical analysis cannot discriminate between rival
hypotheses. Finally, economists tend to dismiss or ignore the evidence from empirical
models unless it can be supported with traditional economic theory (Karakitsos, 1992).
Despite an abundance of econometric models, most of them do not provide accurate
estimates and forecast due to the complexity of the economic system, the impossibility of
validation with controlled experiments on the economy, and the existence of non-
quantifiable factors in economic activities. Econometric models, in which the structures are
chosen by hand and parameters are estimated from the data, may help to understand the
functioning of the economy qualitatively, but they are not accurate in making quantitative

predictions (Moody, 1995).



To identify an appropriate model for multivariate time series in an economic system,
one must consider various tests of individual stationarity, joint stationarity and cointegration.
Following this, one has to test for normality and independence. Then, depending on whether
the series have linear dependence or nonlinear dependence, an appropriate lag order of the
model is specified (Cromwell et al., 1994b). Apparently from this process, there are many
assumptions being imposed on time series modelling. In addition, when dealing with
nonlinear models, one may encounter the complexity of estimation (Mills, 1990).

However, regardless of theoretical controversies on what the economic models
should be, in many cases, the practical issue pertaining to any mode! building is how to
obtain accurate forecasts to serve for policy making (Intriligator, 1978). This study focuses
on this issue with the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA).
These emerging technologies, integrated into an intelligent system, intend to overcome the
constraints of traditional modeling and estimation methods in order to obtain better forecasts.

In theory, an ANN has been proved to be a universal function approximator. It can
approximate any underlying functional relationship between input (independent, exogenous)
variables and output (dependent, endogenous) variables without the need of specifying a
priori the functional form and imposing prescribed assumptions about the behavior of data.
The merit of ANN is in its effective and efficient learning of nonlinear relationships inherent
in the data. Similarly, a GA has been shown to be a powerful search tool with its ability to

explore a large number of alternatives in the problem space in order to avoid sub-optimality.



In practice, ANN has been implemented in many successful applications in sciences
as well as in business (Kryzanowski et al., 1993; Trippi and Turban, 1993; Sharda, 1994,
Refenes, 1993; and others). In time series study, ANN has been used to forecast univarnate
variables (Sharda and Patil, 1990; Foster et al. 1991, Hill et al., 1994; Lachtermacher and
Fuller, 1995; and others) as well as multiple variables (Nguyen and Kira, 1997). Literature
also reports an early attempt to estimate an economic system with ANN (Caporaletti et al..
1994). However, there are many shortcomings in the mentioned work in its inability to
capture the dynamics of simultaneous, contemporaneous variables in the system and its focus
on in-sample, ex-post forecasts only.

This study extends previous work with an investigation into the implementation of
an integrated system of ANN and GA in order to handle effectively a general family of
business forecasting problems. i.e., forecasting with a mix of temporal and non-temporal
variables. An econometric model should be a useful context for this investigation. Not only
does the study investigate network performance in terms of effectiveness and accuracy for
in-sample estimation, but it also projects network forecasts into the future to highlight the
behavior of ANN in generalizing on unseen data patterns.

This study advocates the use of Artificial Intelligence (AI) and Machine Learning
technology in economic forecasting. The ANN technique, which requires no prior
assumptions on behavior and functional forms of the variables, would be a viable alternative
in economic forecasting. In particular, the current study proposes an integration of ANN and
GA to obtain better approximations and forecasts of 2 macroeconomic model including

temporal as well as non-temporal variables. In this integration, the mixture-of-experts



network architecture is implemented to learn the relationship of the mix of economic
variables, and GA to build optimal network topology. This integrated framework should
serve as an efficient foundation to build intelligent forecasting systems. These systems
would be useful not only in Decision Support Systems but also in the emerging field of Data
Mining in which Al tools are used to acquire unknown knowledge from a mass of
information.

This study provides evidence on the effectiveness and efficiency of the integration
of ANN and GA in a mixture-of-experts architecture. The GA helps overcome the sub-
optimality of the tedious trial-and-error process in network building. The flexible network
architecture offers many alternative network configurations to capture the peculiarities of
variables in a business context before aggregating intermediate estimations into final results.
The integrated system processes effectively the mix of variables, and produces efficient
estimations and forecasts. This study proposes a versatile intelligent tool to solve a general
economic forecasting problem. Although there still exist limitations and possible
improvements, the findings of this study should contribute positively to the development of
theory, methodology, and practice of using Al and Machine Learning tools, particularly
ANN and GA, to build intelligent forecasting systems.

The thesis is organized as follows. In the next two chapters, the foundations of
Artificial Neural Networks and Genetic Algorithms are reviewed. Chapter 4 reviews
forecasting with the ANN technique. Chapter 5 presents research questions and
methodology of the undertaken empirical study. Chapter 6 reports and discusses the

experiments and findings in estimation and forecasting the Klein Model I. Chapter 7 reports



and discusses the experiments and findings in estimation and forecasting with the Klein-
Goldberger Model. Chapter 8 concludes with a summary of findings, contributions and

limitations of the study, and possible extensions in future research.



CHAPTER 2

Artificial Neural Network Technique

A Decision Support System (DSS) is defined as a computer-based information
system that affects or is intended to affect how people make decisions (Silver, 1991). The
goal of a DSS is to assist decision makers in identifying and applying some models in order
to arrive at a solution to the situation at hand. In a DSS, the main thrust is to allow decision
makers to analyze and detect patterns of data, internal as well as external, and to aid them
in making strategic decisions. However, the current quantitative approach in DSS research
is not sufficient to handle complex decisions. Many aspects of business and economic
systems do not lend themselves to quantified measurements. Also. many business and
economic structures cannot be represented with mathematical functions supported by a
traditional DSS. One may even argue on the appropriateness of some models and then a
priori assumptions of traditional methods implemented in a traditional DSS.

Artificial Intelligence technology, particularly the Machine Learning approach, has
the ability of learning data patterns and improving predicting performance with input data
themselves. This technology presents alternative methods of processing information and at
the same time avoiding the restrictions and insufficiency of traditional quantitative methods
(Hinton, 1992). One of the emerging technologies in Al and Machine Learning is the
Artificial Neural Network (ANN) technique. Besides the benefits of a powerful parallel

distributed computer system, the main reason for a growing interest in using ANN is in its
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ability to approximate a nonlinear relationship without imposing a priori assumptions on the
behavior of the variables under consideration. This chapter reviews the basics of the ANN
technique and relevant issues in the implementation of ANN in an intelligent system for
forecasting.
2.1. ARTIFICIAL NEURAL NETWORK TOPOLOGY

The Artificial Neural Network (ANN) technique mimics the functioning of human
neural system in parallel distributed information processing (Rosenblatt, 1959, 1962;
Rumelhart et al., 1986). A neural network contains computing units called neurons (or
nodes) arranged into layers in which each node in one layer has weighted connection to
nodes in the next layer in a particular configuration (Figure 2.1).

The manner in which the connections among nodes and layers are made defines the
flow of information in the network. A network topology consists of nodes as autonomous
processing units that are joined by directed arcs. Each arc (or connection) has a numerical

weight, w, , that specifies the influence of node u; on node ;. A positive weight indicates

o
a reinforcement whereas a negative weight represents an inhibition to the flow of
information.

A subset of nodes are considered as network inpur nodes if they provide external
signals to the network and do not recompute their outputs. These nodes have no entering
arcs. The output nodes produce outputs of the network as a whole. Nodes which are neither
input nor output are intermediate nodes. These intermediate nodes are necessary to compute

non linearly separable functions.

Each node u, computes a single node output or activation. The output of a node can



be an output of the network as a whole and/or the input for other nodes. Node inputs and
activations may be discrete, taking on values {0, 1} or {-1, 0, 1}, or they may be continuous,
taking on values in the interval [0, 1] or [-1, 1]. In computing bounded continuous output,
the output values can be scaled into [0,1]. The computational process of each node is as
follows. A node, as a processing unit, receives inputs from a number of other nodes or
from an external stimulus. A weighted sum of these inputs constitutes the argument to an
activation function or transfer function. The activation of a node is computed from the
activation of nodes directly connected to it and the corresponding weights for those
connections. The resulting value of the activation function is the output of the node. This
output gets distributed (or propagated) along the weighted connections to other nodes. A
neural network learns by means of weight adaptation in the training phase with a particular
learning rule. The propagation rule could be weighted sum, cumulative weighted sum,
maximum, minimum. majority, or product. The activation rule could be an identity or a
threshold function. The transfer function usually is a nonlinear, bounded and piecewise
differentiable function. However, it could be in one of the following forms: identity, linear,
sigmoid, sine, or hyperbolic tangent.

Nodes in a neural network are arranged into layers. Most applications use a 3-layer
network consisting of one input, one hidden and one output layer. Hidden nodes with their
activation function are needed to introduce nonlinearity into the network. In some cases,
more than one hidden layer is necessary to approximate a higher order function. However,
a complex network may not only fit the signal but also noise. This leads to overfitting the

training data and predicting poorly on the test data.
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A network is classified either as feedforward if it does not contain directed cycles
or recurrent if it does contain such cycles. In a recurrent network, node outputs are fed back
as inputs for nodes of the previous layer in the subsequent iteration. The recurrent network
is particularly useful in dynamic learning and prediction environments.

All knowledge in an ANN is encoded in its interconnection weights among the
neurons determined by the leaming process. A weight represents the strength of association
among connected features, concepts, propositions, or events during a training period
(Refenes, 1995). A neural network learns by adaptation in the training phase in which the
interconnection strengths are changed appropriately.

In the training phase, a neural network is presented with a training set composed of
external input patterns and their associated output patterns (or targets). The learning process
can be either unsupervised or supervised. In unsupervised learning, there is no performance
evaluation available and the network constructs clusters of similar input patterns. In
supervised learning, the network receives learning feedback on the difference between the
target and the network output in order to determine subsequent changes in weights
adaptation. The learning rule is an algorithm to reduce the differences between network
output and actual output by minimizing a cost function or maximizing an objective function.
There are many available algorithms and configurations for neural network training. The
choice of learning/training algorithm and network configuration depends on data and is
problem specific. However, Cybenko (1989) proves that, by using a backpropagation
algorithm and sigmoid transfer function, a neural network with one hidden layer can

approximate any continuous function.
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2.2. ANN AS A UNIVERSAL APPROXIMATOR

The ability of ANN in function approximation is due to its capability of learning the
underlying functional relationship from the data itself, therefore, minimizing the necessary
a priori non-sample information. A multi-layer network can produce a mapping between
inputs and outputs consistent with any underlying functional relationship regardless of its
true functional form. It eliminates the need for unjustified a priori restrictions, such as the
Gauss Markov assumption, frequently used to facilitate estimation in regression analysis.
In traditional statistics, the appropriateness of the Ordinary Least Squares method is an
empirical question, therefore the test of assumptions is a routine part of any application. In
contrast, whether these assumptions hold or not, the ANN still yields a similar solution since
the image of any underlying mapping can always be projected into a perfectly flexible
mapping.

The Kolmogorov's theorem (1957) establishes a perfectly general mapping from R"
- R™ as long as an appropriate transfer function g(.) is chosen.

Kolmogorov Theorem: Any continuous real-valued functions f{x,, x,. ....x,) defined
on [0,1]", n22, can be presented in the form

S xa,n0x) = Z:mlm 8 (X" (%) (2.1

where g, are properly chosen continuous functions of one variable, and ¢; are continuous
monotonically increasing functions independent of £,

Funahashi (1989), Cybenko (1989), Hornik et al. (1989) extend this theorem to show
that g(.) can be specified a priori as the sigmoid function without sacrificing the flexibility

of the mapping.
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Cybenko Theorem: Let g be any continuous sigmoidal function [e.g., g(&) = 1/(1 +
e?)]. Then, given any continuous real-valued function fon [0,1]" (or any other compact
subset of R") and £ >0, there exist vectors w;, W, .... W, @, and 0 and a parameterized

function G(-,w,a,0) : [0, 1" ~ R such that

IG(x,w,a,0) - fx)| <e forall x € [0, 1]” (2.2)
where

G(x,w,a,8) = Y " ¢, g(w,'x +6,) (2.3)
and w; € R, 8, € Ri w=(w;, W, ..., Wy); @=(a, &, ..., ay), and 8 =(6,, 6, ...6y).

Furthermore, Homik et al. (1989) show that the underlying true functional form does
not need to be continuous. They also show that standard multi-layer feedforward networks
using arbitrary transfer functions can approximate any Borel measurable function to any
desired degree of accuracy (Hassoun, 1995).

For instance, using log-sigmoidal transfer functions with a backpropagation (BP)
learning algorithm, which is discussed in the next section, a 1-3-1 network with 3 hidden
nodes produces a response that is the sum of 3 log-sigmoid functions. The response is a
superposition of 3 sigmoid functions. Thus, a network with more hidden nodes can
approximate better a complex function since the estimated function has a larger number of
inflection points (Hagan et al., 1996).

2.3. BACKPROPAGATION ALGORITHM

Backpropagation (Werbos, 1974) is a commonly used algorithm for leaming in

feedforward networks. It has been estimated that 70% of ANN applications report the

implementation of this learning algorithm. The method applies a mean squared error cost
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function and gradient descent approach for the convergence between the network output and
the desired target. Let /¥ be the set of a;ll network weights, the backpropagation finds the
network's gradient VF(.), then updates the current ¥ with a small step to form a new weight
W using
W =Ww-pVF(.) (2.4)

The positive parameter p is used to control the step size. To perform gradient descent, one
needs a differentiable error function. The backpropagation accomplishes this by using mcax{
squared error and by using nodes with continuous valued activations.

Let a backpropagation network start with a set of training samples with inputs and
corresponding desired outputs. The node activations u; having values in the interval [0,1]
are computed by

S,=% w,u (2.5)

u, =f(S) (2.6)
where the activation function f(x) is

fl)y=1(1+e?) (2.7)

The derivative of this sigmoid function evaluated at x can be expressed as
frx)=d/dx(l+e")" (2.8)
= [l + eI - (/1 +e)]

From this expression, one has the following useful identity for the estimation of derivative,

f1(S)=u(1-u) 2.9)
The task is to determine the weights {w,;} for the network that minimize the mean squared

error between network output and desired target.
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The algorithm begins by randomly assigning initial weights to break the symmetry
so that many intermediate nodes can take part in computing. Then one chooses a training
example and computes the gradient with respect to it. The computation involves a forward
pass over the network to compute node activations, followed by a backward pass to compute
gradients. Once the gradients are determined, the weights are updated. This process
continues until the algorithm converges.

The following representation of a BP algorithm is according to the representation in
Lippmann (1987) and Gallant (1993). Specifically:

I. Start with a small positive step size p and assign initial random weights {w,;} to

all nodes.

2. Repeat until the algorithm converges

2a. Take the next training example £, with its correct output C,

2b. Forward propagation step: Starting from the input, make a bottom-up
pass through the network to compute weighted sum S and activation u, = f(S)
for every node.

2¢. Backward propagation step: Starting with the output, make a top-down

pass through the output and intermediate nodes to compute

f1(&)=u(l-u) (2.10)
(Ci-u ' (S) if i, is an output node

5 = (2.11)
(Xt WaniO Y (S) for other nodes
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2d. Update weights
w', = w, T pdu; (2.12)
IfAw',,=w";-w, and a momentum a is added, the last steps of the algorithm are
modified as
2w =w,T aAw’,; + pdy, (2.13)

.

2. Aw =W W (2.14)
It has been proved that
-CE(W)/ES; =, (2.13)
and
-C&(W)iow,; = du, (2.16)
What the backpropagation algorithm does is to perform a gradient descent, where the
gradient is estimated from a single training example (Gallant, 1993). Also, this algorithm
performs an on-line updating in which the gradient is estimated and weights are updated
after every training example.
2.4. THEORETICAL PERSPECTIVE OF ANN
The similarity between ANN techniques and traditional methods in statistics and
econometrics has been investigated in the literature (Cheng and Titterington, 1994; Ripley,
1994; Hwang et al., 1994). In this section, the ANN is described from an econometric
perspective following the work of Kuan and White (1994).
Consider a simple neural network with one input layer of » nodes and one output

layer of v nodes. In this network, an input node i sends a real-valued signal x; in parallel

over connections to an output node j. This signal is amplified by a weight w; before
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reaching the output node j. Then, the value of output node ; is

V=L 6w i=1l,e,r;j=1,.,w (2.17)

=1 -t

[f one adds a bias node with value x, = 1, then the output value could be represented

as

filew) = ¥'w, j=1.,v (2.18)
or

Sfew) = (Jox')w (2.19)
where f=(f, ... ), = (1, x;, .. ), w=0v" ow) ) and wy = (wy'wy,', .ow,' ). The

output function f'is implemented with MADALINE (Multiple Adaptive Linear) network by
Windrow and Hoff (1960) and could be recognized as the systematic part of a standard
system of seemingly unrelated linear equations (Kuan and White, 1994). Whenv =1, it
could be recognized as the simple linear model.

[f the neurons become active only after their inputs pass a certain threshold, one has
the nonlinear response in ANN. The neurons can switch on or off. or they can smoothly vary
from fully off to fully on.

In the first possibility proposed by McCulloch and Pitts (1943), the output of a
neuron is given by

Gla)=1ifa>0
Slxw) = Gxw), j=1 ., (2.20)
G(a)=01ifa < 0.
G is an activation function of the output, which implements a threshold logic unit. The

output node ; is activated when x#'w; >0 or, alternatively,X",_, x;w; exceeds the threshold -w,.
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The other possibility is that neurons can turn on gradually as input activity increases.
Then, the activation function could be a smooth sigmoid function, in particular, the logistic
function G(a) = 1/[1 + exp(- a)]. This is the binary logit probability model in statistics. If
G is a normal cumulative distribution function, one has the binary probit model (Amemiya,
1981).

For multi-layer configuration, consider a network with one hidden layer of g nodes.
The output function at the node # is represented as

Si(x.0) = F By + L%, G(¥'w,) By ) j=lyg; h=1l..,v. (221)

where B, is the connection weight from hidden node j to output node 4. The vector 8 =

If one chooses the activation functions F(a) = a and G(a) = 1/[1 + exp(-a)], and
consider only a network with one output node (i.e.. v = 1), then the output function can be
represented as

fle.8) = By + L9, Gle'w)B, (2.22)
This equation resembles the projection pursuit models in statistics (Friedman and Stuetzle,
1981; Huber, 1985),

Sfx,0) = B, + T, Gile'w))B; (2.23)
However, in neural networks, the function G is given, whereas, in the projection pursuit
models, the functions G, are unknown and must be estimated from the data (Kuan and White,
1994).

If the input nodes are connected directly to output nodes as well as to hidden nodes,

the output function can be expressed as
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fix.8) = F(x'a+ By + X%, G(¥'w)B) (2.24)
where a is an rx1 vector of input-output weights, 8 = (a',Bg, ..., By, W', ..., W)
With F(a) = a, one has the standard linear model augmented by nonlinear terms.
The activations of hidden nodes can be viewed as latent variables (Kuan and White, 1994).
The functions in the form of
fx.0) = By + X3, G(¥'w)B; (2.25)
can be viewed as universal approximators. These functions can approximate any function
g: R* - R arbitrarily well provided that the neural network has sufficient hidden nodes and
properly adjusted parameters (Cybenko, 1989; Hecht-Nielsen, 1989; Hornik et al., 1989).
Similar results hold for network models with general (not necessarily sigmoid)
activation functions in L, spaces with compactly supported measures and in general Sobolev
spaces (Homik et al., 1990, Hornik, 1991)
For networks with many hidden layers, the output of an /-layer network can be
represented as
a,; = G,(4,(a,.0)), i=1,...q,: h=1,..L (2.26)
where a, is a g,x1 vector with element @,; ; A,(.) is an affine function of its argument, that
means A4,,(a) = d'w,, for some (g, + 1)x1 vector w,; ; G, is the activation function for nodes
of layer h; a;=x: q,=r; and g, = v. In this presentation, / = 2 denotes a single hidden
layer network.
As opposed to a feedforward network described above, a recurrent neural network
can have internal feedback in the architectures proposed by Jordan (1986) and Elman (1988).

In Jordan architecture, network output feeds back into the hidden layer, whereas in Elman
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architecture, hidden layer output feeds back into the hidden layer (Figures 2.2 and 2.3). The
Elman network can be represented by the following function
fix, 8) =By + Lo ia,B; (2.27)
a; = G(¥'w; + d'.,3), j=1..,9; t=0,1,2, .. (2.28)
where a, = (a,, ...a,). In this network, the output depends on the initial value a, and the
entire history of svstem inputs ¥’ = (x,. ....x,). In econometrics, this network can be viewed
as a nonlinear dynamic latent variables model (Kuan and White, 1994).

Other neural networks also have been shown to be similar to statistical methods. For
example, probabilistic neural networks are similar to kernel discriminant analysis, Kohonen
networks for adaptive vector quantization are similar to k-means cluster analysis, and the
Hebbian learning algorithm is closely related to principal component analysis (Kuan and
White, 1994). These networks arc beyond the scope of this study.

2.5. TEMPORAL PATTERN RECOGNITION WITH ANN

An ANN, if it is configured appropriately, does have the ability of recognizing and
storing the temporal nature of patterns. Maren et al. (1990) reviewed many neural network
configurations for spatio-temporal pattern recognition as follows.

- Create a spatial representation of temporal data. The sequence of data is presented
simultaneously in the input layer of the network.

- Put time-delays into neurons or their connections to handle explicitly the temporal
aspect of incoming data. Information taken at one moment in time is shifted to the right
down a series of nodes and new information is inserted in the leftmost node. The number

of nodes determine the number of time intervals over which information is kept. Each
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network operation is still done in a single network cycle. There is no explicit integration of
temporal information, nor does the information stored in the rightmost nodes degrade with
time. When the information in the rightmost node is bumped out of the network, its effect
simply disappears.

- Use recurrent connection to create a temporal signal sequence. The connections are
set up to feed back node activation to themselves or to nodes in a previous layer.

- Use nodes with time varying activations; nodes are created to keep some residue
of the previous signals and allow a decay of historical information.

Within the scope of this study, a combination of the static representation of temporal
information and storing temporal patterns in a recurrent network is discussed.

2.5.1. Representation of Temporal Information

In the static representation of temporal information, a sequence of incoming temporal
data is represented simultaneously in the input layer of the network. In time series analysis,
the value of an economic variable corresponding to each time lag is represented by an input
node. For instance, if the variable X has 3 lags X,,,X,., X, ;. then one needs 3 input nodes
to capture the values of these lagged values.

In dynamic forecasting, the predicted values of economic variables of concern are
used in next period forecasting. Applying to ANN, one can store and generate temporal
patterns via recurrent connection. In this configuration, the output just produced by the
network is fed back to the input level to represent the state of the network at the preceding
moment in time. Also nodes can be created to keep some residue of the previous signals and

allow slow decay of historical information.



2.5.2. Storing Temporal Patterns in Recurrent Networks

Jordan (1986) proposes an architecture in which the value of output layer is fed back
to a context unit to create the memory traces. Both input units and context units activate the
hidden units to produce the next network output. A context unit retains the past value of its
input with an exponential decay. It can be considered as a lowpass filter which creates an
output that is a weighted average of some of its recent past inputs. Following Gershenfeld
and Weigend (1993), the output of a context unit can be represented as

v(n) = I, x(n)t*! (2.29)
where 0 <t< 1 is a time constant to control the degree to which past values are factored in.
The time constant t could be set to 1 - 1/D where D>0 represents the memory depth, i.e..
how long a given value fed to the context unit is remembered.

Elman (1990) proposes a ditferent architecture for the internal representation of time.
In a network. hidden units develop internal representations for input patterns. These
representations re-code patterns in a way that enables the network to produce the correct
output for a given input. In Elman architecture, context units remember the previous internal
state. As such, hidden nodes have the task of mapping both external inputs and also the
previous internal state of some desired output.

The difference between these two recurrent architectures is in the feedback of
previous network output. In a Jordan network, context units retain the approximation of
previous state. The network output is fed back to the context unit to develop a new internal
representation and then the approximation of the next state in the sequence of data (Figure

2.2). In an Elman network, output of hidden nodes is fed back to the context units. The
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context unit therefore retains an internal representation of the previous state (Figure 2.3).
In addition, the Jordan network requires a specification of memory depth whereas in the
Elman network the hierarchy is implicit in the structure of hidden unit activations.

2.6. MIXTURE-OF-EXPERTS NETWORK TOPOLOGY

A single network is useful for a simple task but it becomes insufficient to carry out
complex ones. I[n complex situations. one needs a system of networks in which many
networks are integrated or interacted which each others in logical or real parallelism. The
mixture approach is to build complex models out of simple parts. In this setting, systems of
networks can be tightly or loosely coupled (Maren et al., 1990).

A tightly coupled system is often the integration of networks of diffcrent types in a
single network. In this architecture one may not separate out individual networks. As such,
one is still facing the limitation of a single network no matter how complex it is. Often.
complex problems require multiple stages of processing and therefore multiple networks.

A loosely coupled svstem arranges similar networks in parallel or in hierarchies for
fast evaluation of different types of information from the same data. It also has the ability
to yield increasingly higher levels of data abstraction. In such systems, functions can be
decomposed and assigned to specific networks. Consequently, one network may serve as
a preprocessor or filter for another network. Also, an individual network can influence or set
the weights of other networks. Each individual network performs some unique task in
solving a complex problem. As such one can refine an individual network to achieve a
superior performance on a specific task. A system of networks offers improvement in

learning or performance in a complex task.

223-



In a loosely coupled system, individual networks may be arranged in one or a
combination of the following configurations (Maren et al., 1990):

- Hierarchy of Nenworks: Multiple networks of similar types are used to partition a
multi-scale pattern recognition problem into separate problems.

- Parallel Nerworks: A problem is partitioned so that different aspects are processed
in parallel by different networks. It is useful when several different analyses must be
performed on the same incoming data, or when data can be matched against several different
models. Each network is trained to extract different features or to make different
distinctions. Results from individual networks can be fused or correlated to obtain desired
results.

- System of Heterogenous Nenworks: One cannot expect that one type of network,
regardless of how versatile it may seem, to be sufficient to solve all tasks associated with a
complex problem. With a system of heterogenous networks, the task is to select the right
types of networks and put them together in a useful architecture to solve the problem
effectively. Ritter (1989) suggested that one may decompose the function that a mapping
network would learn into smaller functions, each of which is recognized or mapped by an
individual network. The functions do not need to be known or specified in advance. In
addition to the advantage of neural networks in learning the unspecified relationship from
training samples, this approach also helps to break down a very complex function into
manageable units.

- Control System: One network is used to control or assign weights to another. This

configuration is useful in adaptive control applications in engineering.
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Function approximation with ANN is traditionally based on a superpostion of simple
basis functions such as logistic functions. Instead of using solely superposition, one can also
use the principle of divide-and-conquer to split an input space into smaller regions which can
be fitted with simpler functions by a set of function approximators called expert networks
(Jacobs et al. 1991; Jordan and Jacobs, 1995). The assumption of the approach is that data
can be well described by a collection of functions. each of which is defined over a relatively
local region of the input space (Jordan and Jacobs, 1995). The expert networks could be
arranged in modular and/or hierarchical systems (Figure 2.4). These systems offer the ability
of solving a complex problem since the problem is divided into a set of sub-problems, each
of which may be simpler to solve than the original one. Modular architecture allocates
different expert networks to different regions of the problem space, whereas hierarchical
architecture divides regions of the problem into sub-regions. With the assumption that a
particular type of network (an expert) is appropriate in a region of the input space, the
architecture requires a mechanism that identifies the experts or a mixture of experts that
most likely produce the correct output from a given associated input. This is accomplished
with an auxiliary network, called a gating network, to provide the weight of contribution to
various experts.

Various algorithms have been proposed to take advantage of the modularity of
mixture systems. Simulation experiments indicate that although backpropagation does not
converge faster than other algorithms, it provides lower relative error (Jordan and Jacobs,

1995).



2.7. ISSUES IN NEURAL NETWORK TRAINING

Using ANN in a business context, one should be aware of the network performance
and how to configure a network appropriately in order to achieve the desired result. This
section examines the possibility of sub-optimality in network output and the measurement
of network performance. Then it discusses the designing of an effective network
architecture in terms of necessary network size. sufficient training set. appropriate training
time and other network parameters to assure a satisfactory performance.
2.7.1. Performance Issues

- Local Minima

Like all gradient descent methods, the backpropagation algorithm may not find the
global minimum even if it converges. In some problems, one does not even know whether
local minima exist or whether a minimum found by gradient descent is a local or a global
minimum. However, it has been argued that for multidimensional real world problems, a
local minimum must be a local minimum in every dimension. Therefore, the increase of
dimensionality seems to help (Gallant, 1993). Poston et al. (1991) show that for a
feedforward network using sigmoid activation function with as many hidden units as the
number of patterns to learn, it is almost certain that the error function has a unique minimum.
In practice, one may avoid local minima by starting the training with different initial random
weights. Ifall of them reach the same minimum for the error function, this value is assumed
to be a global minimum of the function (Lachtermacher, 1993).

- Measurement of Network Performance

To measure the performance of a network, the focus is on whether the network has
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learned input-output patterns in a training set and whether it can generalize its knowledge
to predict the input-output relationship in an out-of-sample set. In particular, it concerns the
convergence, the generalization and the stability of a network.

Convergence is concerned with the capability of a neural network to learn the
relationship of input-output patterns underlying in a data set. With a fixed topology
network, as the training time tends to infinity, the error minimized by the gradient descent
method tends to zero. With other methods, as the training time tends to infinity, the network
can classify the maximum number of possible mappings with an arbitrarily large probability
(Refenes, 1995). Therefore, with a given error tolerance margin, an ANN always converges
with sufficient training time.

Generalization is concerned with the ability of a network to recognize out-of-sample
patterns which it has not learned in the training set. Choosing a network with a structure
more complicated than necessary is similar to fitting a high degree polynomial to the lower
order data (Refenes, 1993). Also, a long training time may overfit the training data. A
complicated and/or overtrained network overfits signals as well as noise of the training set
and consequently it performs poorly with out-of-sample patterns.

Stability is concerned with the consistency of results obtained by a neural network
when varying the values of the parameters. It is known that a small change in network
parameters such as network design, training times, and initial condition may produce large
changes in network behaviour. Theoretically, the only criterion for deciding whether neural
networks perform better than parametric regressions is if they converge to smaller squared

errors of the sample data (Refenes, 1993).



2.7.2. Network Design Issues

- Nenwork size

It has been noted that a 2-layer network cannot accurately represent a function
exactly representable by a 3-layer network (Blum and Li, 1991). Certain mappings can be
uniformly approximated only with 3- instead of 2-layer network (Sontag, 1990). It has been
proposed that the use of a network with an additional number of layers can not hurt
because approximation properties of single hidden layer networks carry over to multi-hidden
layer networks (Hornik et al., 1989). However, Cybenko (1989) proves that, by using a
backpropagation algorithm and sigmoid transter function, a neural network with one hidden
layer is sufficient to approximate any continuous function.

[t is known that the learning capacity of the neural network depends on the number
of hidden nodes. Lippmann (1987) conjectures that the number of hidden nodes depends on
the number of input vectors (i.e., sample size). It has been shown that input dimensionality
(i.e.. input patterns), together with the number of hidden nodes, also defines the maximum
number of separable regions obtainable in the input space (Refenes. 1995). The analytic
estimation of the number of hidden nodes necessarily requires an analysis on the
dimensionality of input vector space. However, Refenes (1995) points out that feature
analysis is not a trivial task since many inputs cannot be regarded as independent and it is
impossible to determine the shape of the feature space. Furthermore, the underlying
assumptions of feature analysis, such as linearly separable regions of the input space, are

not necessary in applying intrinsicaily nonlinear multi-layer networks.



Nevertheless, many rules of thumb are proposed to select an appropriate number of
hidden nodes. For example, Salchenberger et al. (1992) suggest that the number of hidden
nodes should be 75 percent of the number of input nodes. Usually more hidden nodes than
the minimum number are needed so that the neural network can have a larger learning
capacity. If there are too few hidden nodes, the neural network may not be able to generate
a function that reflects the underlving problem. Having more hidden nodes than necessary
overfits the training set and decreases the ability to generalize to out-of-sample data. A
predetermined network with a fixed number of layers and nodes rarely moves to a useful
solution (Refenes, 1995). Given a cost function, the only way to determine the number of
layers and hidden nodes of an optimal network topology is by trial and error, either by a
hand picked process or by an automatic search procedure such as the Genetic Algorithm
(Goldberg, 1989).

- Sample Size

Several rules of thumb, based on statistical classification theory. conjecture that the
number of connections should be less than one-tenth of the sample size. In fact, as a
universal approximator in function mapping, the ANN can always produce a perfect
mapping from one universe to another universe, i.e., input set to output set. Also, in a
classification problem, one can always merge a large number of regions into a smaller
number of classes.

In many AI machine learning problems, the input space represents the whole problem
domain. As such, the size of the input set is dictated by the problem. Ideally one should

work with the whole population or consider the training set representing the complete
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population of input space to be mapped into an output domain. From the Kolmogorov
Theorem, the mapping with ANN can guarantee any arbitrary degree of accuracy. However,
when generalizing on a pattern outside the problem domain, the prediction may not be
accurate. Since the set of training patterns is taken from a problem space, the more training
patterns that are available, the more information about the universe one has for more
accurate generalization.

In a classification problem, consider a set of input patterns represented by d-
dimensional Euclidean space R?. In a single hidden layer network, a hidden node acts as
(d - 1) dimensional hyperplane that forms 2 decision regions. Mirchandini and Cao (1989)
show that the d-dimensional input space is linearly separable into M regions if there exist M
disjoint regions whose boundaries are composed of portions of hyperplanes. These regions
can be associated with classes, i.e., M regions can be merged into C classes where C < M .
The number of separable regions identifies the minimum number of training patterns T
required for training single hidden layer networks. Ideally, the availability of a training
vector in each of the M separable regions. i.e.. T = M, should ensure the separation of the
input space into M regions. However, Refenes (1995) notes that, for all but trivial problems.
it is impossible to determine what shapes the classes take in the feature space and whether
they are disjoint, concave or simple. In addition, networks with more than one hidden layer
can find solutions that do not satisfy the assumptions of this analysis.

The effect of sample size on the convergence of an ANN training has not been
asserted. However, an abundance of input-output patterns should provide more information

on the problem space for generalization purposes. In any case, from the analysis of
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Mirchandini and Cao (1989), one can always collapse a space of higher dimensionality into
a smaller one. Ideally, the training set should contain the possible minimum and maximum
of each dimension of the input vector to assure an accurate generalization (Refenes, 1995).

- Training time

Training time is the number of presentations of the data set to the network so that it
can adjust the interconnection weights in order to achieve a convergence. The term epoch
is often used to refer to the number of training cycles after which an update of the connection
weights is performed. As the training progresses, the network has a sufficiently large
number of free parameters and starts to overfit the training data. However, one can control
the training time with cross-validation and premature termination of training. The cross-
validation set is used to test the performance of the network on out-of-sample patterns.
Network training is terminated when the cross-validation error begins to rise.

- Transfer Functions

The transfer function captures the relationship between nodes of different layers in
an ANN. In theory, any differentiable function can be used as a transfer function. [n
practice, the choice of the transfer function is made based on a small number of bounded,
monotonically increasing, and differentiable functions such as the sigmoid logistic,
hyperbolic tangent, and linear functions, given below

Sigmoid function:

fx)=1/(1+e™) (2.30)
Hyperbolic tangent function:

fl)y=(e-e™)/(e+e™) (2.31)
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Linear function:
fxX)=x (2.32)

There are some heuristics on the selection of transfer functions. For instance, the
logistic function is used to learn the average behavior in classification and the hyperbolic
tangent function is used to learn about the deviation from the average in forecasting
(Klimasaukas, 1991). Symmetric functions such as the hyperbolic tangent can yield faster
convergence although the learning can become extremely slow if the weights are too small
(Refenes, 1993).

In theory, each network node may have a different transfer function. However, most
studies report the use of the same transfer function for all hidden nodes in the same layer.
The most used transter function for hidden nodes is the sigmoid function.

For output nodes, some studies report the use of the sigmoid transfer function while
others report using a linear function. The sigmoid output is well suited in classification
problems having binary target values. Rumenhart et al. (1995) demonstrate the
appropriateness of using linear output nodes in forecasting. However, Cottrel et al. (1995)
remark on the limitation of linear output nodes in modelling time series with a trend.

- Learning Rate and Momentum

The learning process of ANN is governed by a learning rate and a momentum. A
learning rate determines the magnitude of a correction term applied to adjust the weight of
each node. A large value of the learning rate causes the network to learn more quickly and
helps the network escape from a local minimum. However, it may cause the training to be

unstable or cause no learning to occur. A momentum is the percentage of previous errors
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applied to weight adjustment in each training case. A large value of momentum causes the
network to retain more impact of previous corrections to the current corrections, and helps

to prevent the impact of unusual case while continuously correcting for consistent errors.
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Figure 2.1
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Figure 2.2

Recurrent Network: Jordan Architecture
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Figure 2.3

Recurrent Network: Elman Architecture
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Figure 2.4

Mixture-of-experts Network Architecture
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CHAPTER 3

Genetic Algorithms

in the Search for the Optimal Network Design

The choice of network parameters and architectures to achieve a desired network
performance is a tedious task involving trial and error. Many heuristics have been proposed
to facilitate the task. Nevertheless, the chosen architecture is not necessarily an optimal one
that guarantees a satisfactory performance. A Genetic Algorithm (GA) can be implemented
to efficiently search for an optimal network design which may produce a better performance
for learning and prediction.

Genetic Algorithms are scarch procedures based on natural selection and genetics.
These algorithms mimic the natural process in developing superior entities from a population
of entities. The approach was initiated by Holland in the 1960's at the University of
Michigan, and was followed by his colleagues and students (Holland, 1975; Goldberg,
1989). The central theme of research on GA has been the robustness or the balance between
efficiency and the efficacy necessary for survival in many different environments. The
implication is that, if an artificial system can be made more robust, costly redesigns can be
reduced or eliminated. GA intends to design artificial systems having important mechanisms
of biological systems such as self-repair, self-guidance, and reproduction. GA are
theoretically and empirically proven to provide a robust search in complex spaces (Goldberg,
1989).
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This chapter begins with a review of the functioning of a standard GA in a search
space and its merits over conventional search methods. It then discusses the implementation
of GA to ANN optimization.

3.1. OPERATIONS OF GENETIC ALGORITHMS

Using biological terminology, one deals with chromosomes (or strings) composed
of genes (or features) which take values called alleles (or values) in a GA. The entire genetic
package of chromosomes is called a genorype (or structure). A candidate genotype is called
a phenotype (or candidate solution). A simple GA consists of the following three operators.

Selection (reproduction) is the survival of a fitness test in meeting an objective
function within the GA. This operation gives preference to better entities to be copied into
a mating pool to breed the next generation.

The selection could be based on a roulette wheel where each current string in the
population has a lot size in proportion to its fitness. As such, a string with a higher fit value
has a higher probability of contributing one or more offsprings in the next generation. This
method gives a slow convergence to the population while emphasizing good genetic mixing.
The process does not work well when the fitness values are all very similar in a large
population. As an alternative to avoid this difficulty, one can select a certain top percentage
performers (e.g., top 50%) in the population for the mating pool.

Crossover (cross-breeding, mating) is the mating of two entities chosen randomly
from the mating pool. In a simple crossover (swap tail), a cross site along the string length
is chosen at random with a uniform probability, then position values are exchanged between

the two strings following the cross site. For instance, the cross-over of two strings 1111111
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and 0000000 at the third locus produces the two offsprings 1110000 and 0001111. These
offsprings are placed in a new population. The process continues pair by pair until it
completes a new population with offsprings of superior parents. Besides the simple crossover
method of one cross site, one can have multi-point crossover to assure the feature exchange
of longer strings.

Mutation is the occasional. but low probability (e.g., .001), alteration in the bit value
of randomly selected features of successful structures. The purpose of this operation is to
introduce a simple random walk through the string space. This operator is needed to avoid
the overzealous search of reproduction and crossover which may lose potential useful
features encoded in a bit value. However, a frequent mutation rate will make the GA no
better than a random search.

3.2. REPRESENTATION OF SEARCH SPACE

In a GA. all values of a structure represent characteristics that uniquely define a
candidate solution in the space of possible solutions. The GA evolves successor populations,
or generations, from a limited population of initial candidate solutions. The process is
accomplished by defining features having a binary value of 0 or | to represent the inclusion
or exclusion of a particular value of a feature. These features are varied in each new
generation with the resulting structure evaluated in terms of its fizness. If a structure meets
the selected fitness criteria, then the values of its features are retained and bred with other
structures. Some of the weakest structures may be discarded, and replaced with new

structures.
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Applying a GA search to ANN optimization, a neural network architecture can be
defined by a structure. The values of this structure represent network characteristics that
uniquely define a candidate in the space of all possible architectures. The encoding of
features of an ANN may include the number of inputs, the number of layers, the number of
nodes in each layer, the number of feedback connections allowed, the degree of connectivity
from one laver to another, the learning rate, and the transfer function utilized by the learning
rule. All network parameters are encoded in one long stream of bits. This bit string
composes of many segments, each of which represents an area in the search space such as
input area, hidden node area, hidden layer area, etc.

A fimess function in GA search is defined such that it can account for different
performance and cost factors. The fitness function can be a weighted sum of performance
metrics (Lin and Lee, 1996). In searching for optimal ANN design, the general metrics may
include performance factors such as observed learning speed and accuracy of the network,
and cost factors such as the size of network in terms of nodes and weights. Since the relative
weights on each metric can be modified. the network structure can be tuned for different
optimization criteria. Once the optimal network architecture is discovered, this
configuration is implemented in a standard ANN for extensive training.

3.3. A SIMPLE GENETIC ALGORITHM

Hassoun (1995) indicates that in order to apply a GA to an arbitrary optimization

problem of the form
Minimize y(x) 3.1

subjecttox € X c R°
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it is necessary to establish the following:

- A correspondence between the search space Z and some space of binary strings €,

i.e., an invertible mapping of the form D: £ - Q ;

- An appropriate fitness function f{.) such that the maximizers of f correspond to the

minimizers of y.

Given a defined problem. an appropriate symbol string representation ( in /-bit long)
for candidate solutions, and a fitness function f{x), a simple GA can be represented as
follows (Davis, 1991; Mitchell, 1996):

1- Generate randomly n strings of /-bit to form an initial population of candidate

solutions.

2- Calculate the fitness f(x) of each string x in the population.

3- Repeat until n offsprings have been created:

- Select with replacement a pair of parent strings from the current population
using roulette wheel or top percentage method. The probability of selection
is an increasing function of fitness.

- With probability p, (cross-over rate), cross over the pair at a randomly
selected point, chosen with uniform probability, to form two offsprings. If no
crossover takes places, form two offsprings as exact duplicates of their
respective parents.

- Mutate the two offsprings at each locus with probability p,, (mutation rate).

- Place the resulting strings in a new population.



4 - Replace the current population with the new population. If n is odd, one new

population member is discarded at random.

5-Goto 2.
Each iteration of this process is called a generation. Although a GA is typically iterated for
a number of generations, there is no exact specification on how many generations a GA
should be iterated. The entire set of generations is called a run. Since the process is
randomized, each random-number seed will generally produce different results from run to
run. As such, GA research usually reports best fitness found in a run and the generation at
which the best fit entity was discovered. The results are averaged over many different runs
of GA on the same problem.
3.4. MERITS OF GENETIC ALGORITHMS

The merits of GA in comparison with conventional search methods are in its ability
to meet robustness requirements. Current literature identifies three main types of
conventional search methods, namely calculus-based, enumerative, and random search
(Goldberg, 1989). Although these methods are useful. they are not robust and efficient in
more complex problems.

- Calculus-based methods

Calculus-based optimization techniques can be classified into two categories: indirect
and direct methods. Indirect methods seek local extrema by solving the set of nonlinear
equations resulting from setting the gradient of the objective function equal to zero. This is
the multidimensional generalization of the notion of extrema in calculus. Given a smooth,

unconstrained function, finding possible peak starts by restricting search to those points with



slopes of zero in all directions.

Direct search methods seek local optima by hopping on the function and moving in
a direction related to the local gradient. To find the local best, the function is directed in the
steepest permissible direction.

Both methods are local in scope since the optimum they seck are the best in the
neighborhood of the current point. Once the lower peak is reached, and in order not to miss
the global optima, further improvement is necessary such as using a random restart.

Then, calculus-based methods depend upon the existence of derivatives, i.e., well-
defined slope values. Many practical parameter spaces have little respect for the notion of
a derivative and the smoothness it implies. The real world search is dealing with
discontinuities in multimodal and noisy search spaces. As these methods depend on the
restrictive requirements of continuity and derivative existence, they are suitable for a very
limited problem domain.

- Enumerative methods

Within a finite search space, or a discretized infinite search space, the search
algorithm starts looking at objective function values at every point in the space, one at a
time. Apparently, this method lacks efficiency as many practical spaces are too large for
point-to-point search.

- Random search algorithms

One may search and save the best solution with random walks and random searches.

In the long run, these methods can be expected to do no better than the enumerative scheme.



Apparently, many traditional search techniques require much auxiliary information
in order to work properly. For example, gradient techniques need derivatives, calculated
analytically or numerically, in order to be able to climb the current peak. Combinatorial
optimization requires access to most if not all tabular parameters. In contrast, a GA has no
need for this information. To perform an effective search for better and better structures
from a population of candidates. they only require payoff values (objective function values)
associated with individual strings representing individual choices in a problem space.

In addition. Goldberg (1989) notes that GAs are different from traditional
optimization and search procedures in the following aspects:

- GAs work with a coding of the parameter set, and not with the parameters
themselves. Since GAs exploit the coding similarities in a very general way, they are
unconstrained by the limitations of other methods such as continuity, derivative existence,
unimodality, and so forth.

- GAs search from a population of points, not from a single point. Since GAs work
simultaneously with a population of strings representing a rich database of points. they
investigate many peaks at the same time. As such, GAs can avoid locating false peaks in
multimodal search spaces that usually happen in point-to-point searches.

- GAs use probabilistic transition rules, not deterministic rules, to guide their search.
While randomized in its search in order to explore the coding of 2 parameter space, a GA
process is not a simple random walk. In fact, GAs use random choice as a tool to guide a

search toward regions of search space with likely improvement.
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3.5. GENETIC ALGORITHMS IN ANN OPTIMIZATION

GAs have been applied to the optimization of ANN. They are implemented to search
for either a set of optimal network weights or an optimal network architecture.
3.5.1. Search for Optimal ANN Weights

GAs have been used to search for the optimal interconnection weights of a multilayer
feedforeward network from its weight space without using any gradient information
(Montana and Davis, 1989). Unlike the backpropagation rule, a GA can avoid local
minimum traps while performing a global search. In this search, a complete set of weights
is coded in a string. Starting with a random initial population of such strings, the GA evolves
to arrive at a best fit string.

The literature reports on the superiority of a set of network weights selected by GA
(Whitley et al.. 1990; Sexton et al., 1998). Apparently, the limitation of this application is
in its operation only with a fixed network architecture. Since a set of weights is associated
with a particular network architecture, one cannot search for both in the same GA. As the
information on network architecture and its associated interconnection weights is represented
in the same string, a GA operator may arrive at a solution in which the number of weights
exceeds the number of connections.

In addition, for an ANN with continuous activation functions, one cannot replace
totally the gradient methods. An alternative is to build a hybrid system in which the genetic
weight search is followed by a gradient method, or a gradient-descent step can be included

in one of the genetic operators (Lin and Lee, 1996).
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3.5.2. Search for Optimal Network Architecture

GAs have also been used to conduct the search in the space of all possible ANN
architectures. Parameters of a candidate network are encoded into one long binary value
stream of many segments. Each of these segments represents an area in the search space
such as the number of inputs, the number of hidden layers, the number of nodes in each
layer, the number of feedback connections allowed, the degree of connectivity between
layers, the learning rate, and the transfer function. Each candidate network is trained and
then evaluated with an appropriate fitness or cost function. This cost function incorporates
both performance and the simplicity of the network. The search is carried out with GA such
that a good building block in one trial architecture is likely to survive and be combined with
good building blocks from the others (Lin and Lee, 1996).

Schaffer et al. (1990) propose the use of GA to evolve ANN architecture. Their
method of representing a network architecture in a string allows for the possibility of
including or eliminating a hidden node/layer and changing network learning parameters
during the evolutionary process. The method of optimizing network architecture with ANN
has been investigated by many other researchers (Davis. 1991).

Recently, Kira et al. (1997) investigate the relative performance of using GA in a
feedforward ANN versus traditional statistical methods in discriminant analysis
(classification) and logistic regression (function approximation). Using GA to select an
optimal network architecture and the contributive input variables, they conclude that the

hybrid of neural genetic network behaves similar to nonlinear, nonparametric stepwise
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regression without any a priori assumption on the functional form of the relationship among
data.

Hansen (1998) compares the performance of backpropagation networks designed by
GA and heuristics. The test domains are sets of two-dimensional problems having
compensatory, conjunctive, and mix decision structures. With a caution on the results being
problem-specific, he finds that heuristics produce a simpler architecture and yet perform

comparatively well.
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CHAPTER 4

Forecasting with Artificial Neural Networks

In time series studies, traditional forecasting models are linear (Granger and
Newbold, 1986; Hamilton, 1994). The nonlinearity in time series has only been investigated
recently (Granger and Terasvirta, 1993). With a focus on capturing nonlinear relationships,
ANN has emerged as a useful and powerful technique with its capability of function
approximation without imposing prior assumptions on the behavior of the variables under
consideration. This ability should be efficient in approximating the underlying relationship
of related factors in economic events and providing accurate forecasts.

This chapter reviews traditional modelling, and forecasting time series and economic
models. It discusses the performance and findings of previous works on using ANN as an
alternative method in forecasting. [t highlights the shortcomings of and possible
improvements on previous works which are being addressed in this thesis.

4.1. FORECASTING UNIVARIATE TIME SERIES

In time series studies, persistent forecasting is based on an assumption that the
system has a certain momentum such that the future will replicate the past (Intriligator,
1978). The simplest model of this type is the status quo forecast, or the Naive forecast. This
method predicts that the present value of the interested variable will continue through time

in the future, i.e.

Vet =W (4.1)
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Another method called Naive II predicts the same change from one period to the next
Vet = V=Y~ Y (#.2)
or predicts the same proportionate change
Ot =¥ /¥ = = V) /Y (4.3)
A related approach is trend extrapolation, based on simple functions of time, or
v.=a+bt (4.4)
Similarly, the exponential trend
Y. = Ae® (4.5)
is a special case where the prediction is based on a constant relative change
Wt =3 /3 = G-y Y = et (4.6)
and the forecast at time ¢ + /4 can be written as
Iny.,=InA+a(+h) 7
A general form for most persistent forecasts is the autoregressive model, in which
the forecast value is a weighted linear combination of all past values of the variable
Y =2 5a v, (4.8)
However, most time series do not fluctuate around a fixed level but have some
upward or downward trend. As such, a time series could be modelled as
y,=a+pt+e, t=1,..,T; g iid (0,067 4.9)
The disadvantage of the above model is that it captures only a global trend and
assumes that its parameters are constant over time. It is known that the underlying dynamics
of an economy as well as the noise distributions for economic series change with time.

Therefore, the useable length of a time series is shortened, and using older data induces
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biases in predictions (Moody, 1995). A more satisfactory modelling methed allows
parameters to change over time to capture any change in the data. Most forecasting would
be more useful if it could forecast the local trend accurately with more recent observations.

One may emphasize the impact of recent observations in forecasting with various
smoothing methods. These are recursive procedures in which current estimates of the level
and slope of the model are revised as new observations become available. Although these
methods are simple and low cost, better accuracy is obtained with more sophisticated
techniques (Makridakis et al., 1983).

4.1.1. ARIMA Models

A time series can also be considered as a stochastic process in which each
observation is a random variable ordered in time. Since observations in time series are
serially correlated, a simple process can be modelled as a first-order autoregressive AR(1)
model

Vs h=@( - 1) T g (4.10)
Since u is a fixed level, the model can be represented as

YT @ T E (+.11)
where the random disturbance g, is i.i.d. (0, ¢°).

If @ is between [-1, 1], the process is called sationary, i.e., the observations are
fluctuating around a constant level and there is no tendency for their spread to increase or
decrease over time. The properties of almost any stationary time series can be reproduced
by introducing a sufficiently high number of lags (Harvey, 1993). However, a more

parsimonious model can be constructed by taking into account the lagged values of both



observed variables and disturbance terms in an autoregressive-moving average (ARMA)
process. An ARMA(1,1) is represented as
Y, =0y, teg+ 0, (4.12)
If the process is not stationary, such as the random walk
VW=Vt E (4.13)

then its first differences. v, - v,, . are stationary and one can apply ARMA modelling on the
transformed series. This general class of models is called autoregressive-integrated-moving
average (ARIMA). Box and Jenkins (1976) develop an extensive procedure to fit ARIMA
models. The parameters of ARMA models could be estimated by Ordinary Least Squares
methods (OLS).
4.1.2. Forecasting Univariate Time Series with ANN

Traditional time series studies impose strong assumptions on the behaviour of the
underlying variables and the functional form of their relationship. The assumptions of
normality and linearity on the distribution and behavior of variables are necessary to
implement traditional estimation methods, such as OLS. In modelling a time series, one
should conduct routine tests on stationarity, normality, independence, linearity, model
specification, and model order of related variables (Cromwell et al., 1994a). The belief is
that once these restrictions are relaxed and an appropriate estimation method is implemented
to reflect the true behaviour and the relationship of the series, forecasting may become more
accurate. To recognize patterns of the underlying economic variables and to make accurate
prediction, the ANN as a nonparametric, nonlinear function approximator, can be a useful

and powerful alternative.



The literature reports many studies on the performance of ANN in forecasting
univariate time series in comparison with other traditional forecasting methods. The
comparisons are based either on benchmark data (such as the ones used in the M-
Competition and the Santa Fe Competition) or on results of previous work derived by
traditional methods.

Sharda and Patil (1990) use 75 series from a systematic sample of 111 series from
1001 real time series in the M-Competition data set (Makridakis et al., 1982). They find that
the ANN performed equally well as the automatic Box-Jenkins (Autobox) procedure. The
other 36 series did not provide both methods with enough data for estimation purposes.

Foster et al. (1991) compare the performance of ANN with those of Holt's, Brown's,
and the least square methods. Using the M-Competition data set, they find that ANN is
inferior for yearly data and comparable for quarterly data.

Hill et al. (1994, 1996) attempt to arrive at a more definitive comparison of ANN and
statistical models based on a systematic sample of 1 11 series taken from the M-Competition
data set. The statistical models are those used by Sharda and Patil (1990, 1992), and Foster
et al. (1991) plus deseasonalized single exponential smoothing, deseasonalized Holt
exponential smoothing, Box-Jenkins and a combination of results derived from traditional
forecasting models. The authors find that the performance of ANN is significantly better
than those of other methods. In previous work, ANN is used to forecast all periods in the
forecast horizon simultaneously, whereas in Hill et al. the first period of the forecast horizon
is generated and fedback into the network to forecast the second period. The performance

of ANN is especially superior in later periods of the forecast horizon.
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On a different benchmark data set, Gershenfeld and Weigend (1993) report the
results of the Santa Fe Competition on the performance of ANN in forecasting time series.
In particular, the competition provides the Data Set C concerning tick-by-tick currency
exchange rates for Swiss Francs and US Dollars, and asks for six forecasts concerning 1
minute, 15 minutes, 60 minutes, the closing value of the day of the last tick, the opening
value of the next trading day, and the closing value of the fifth day after the day of the last
tick. In this competition, the recurrent ANN technique had a slight improvement over
forecasting with the random walk, whereas the feedforward ANN provides predictions worse
than chance. However, the authors suggest that univariate time series are not enough to
provide information on the series behaviour.

Other studies report the comparison of ANN performance against results derived by
traditional methods reported in previous work. Tang et al. (1991) use ANN to forecast three
univariate time series in the time horizon of 1. 6, 12 and 24 months. In comparison with the
performance of ANN, they find that Box-Jenkins model performs less well as the forecast
horizon extends. With small series, the ANN performs reasonably well whereas the Box-
Jenkins method does not work well or does not work at all. However, if the series has a long
memory (i.c., a deterministic pattern), the Box-Jenkins method can describe it very
accurately. However, the Box-Jenkins model is sensitive to noise and, since forecasts are
built on previous observations, the method is only good for short-term forecasting.

Kang (1991) compares the performance of ANN and Autobox on 50 series of the M-
Competition data set. These series have been designated as most appropriate for the Box-

Jenkins technique. Kang finds that the forecast error of ANN is lower when there are trend
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and seasonal patterns in the series. Kang also notes that ANN often performs better when
predicting beyond the first few periods ahead.

Lee and Jhee (1994) use ANN to identify the order of ARMA model. The
identification of ARMA order is based on the Extended Sample Autocorrelation Function
(ESACF) discussed in Tsay and Tiao (1984). The authors use ANN to determine the degree
of matching between noisy ESCAF pattern with the prototype pattern of ARMA model.

Chu and Widjaja (1994) use ANN to identify six demand patterns in time series:
stationary, stationary plus seasonal, linear trend, linear trend plus seasonal, quadratic trend,
and quadratic trend plus seasonal. Once the demand patterns are identified, their network
is trained to recommend one among six exponential smoothing methods: single exponential
smoothing, Brown's linear exponential smoothing, Brown's quadratic exponential smoothing,
Holt's two parameter linear exponential smoothing, adaptive-response-rate single
exponential smoothing and Winters' seasonal methods.

Maasoumi et al. (1994) use ANN to forecast fourteen US macroeconomic series.
However, the series are treated as univariate with time lags varying from one to five.

Lachtermacher (1993) and Lachtermacher and Fuller (1995) report the performance
of ANN in comparison with the forecasts of previous studies on four stationary non-
seasonal, non cyclic, and on four non-stationary non-seasonal, non cyclic times series. The
authors use the Box-Jenkins modelling method to identify the order of the ARIMA model.
The number of necessary input nodes for network training is initially determined by the
number of autoregressive terms and the number of differencing operations of the calibrated

ARIMA model. Then these network architectures are adjusted by trial and error to obtain
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better MSE in forecasting. They find that ANN performed at least as good as ARIMA
models.
4.2. FORECASTING MULTIVARIATE TIME SERIES

It has been noted that univariate time series do not provide enough information to
explain the behaviour of the series itself. In addition, economic variables are interrelated so
that the multivariate time series approach should provide more accurate forecasts. The
purpose of multivariate time series is to determine and discover interactions between a given
time series with other time series. From this perspective, a given time series may be
influenced not only by certain exogenous events occurring at a particular point in time but
also by contemporaneous, lagged, and leading values of many other variables (Cromwell
et al., 1994b). The following review of multivariate time series uses the representation in
Mills (1990 ), Liitkepohl (1991), Harvey (1993), and Hamilton (1995).
4.2.1. VARIMA Models

Let v, denote the value of the economic variable of interest in period ¢. Then the
forecast for period T+ h, made at the end of period T may have the form

Iraw=S¥rs Yras o) (4.14)
where f{.) denotes some suitable function of the past observations y;. yr,, ... . In many
applications, linear functions are used so that
Vra=viayrt oy, vt oy, (4.15)

However, the value of an economic variable often is not only related to its

predecessors in time but also to the past values of other variables. Examples are the

relationships among macroeconomic variables investigated in Sims (1980).
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Denoting the related variables by y;,, s, , -.., Yk, the forecast of y, 7, at the end of
period T may be of the form
Irra =L ir s Yars o Yor s Yir s Yars s o Vs s ) (4.16)
In general, the forecast of the k-th variable may be expressed as
Yiren =SV 1r s Yars s Ver s Yira s Vara s Yara s -0 ) 4.17)
A multivariate mode! seeks to capture various interrelationships between different series
under consideration, and to provide more accurate forecasts of these series.
Consider the first-order vector autoregressive model VAR(1)
Y, =®Y,, ¢, t=1..T (4.18)
In this model, the disturbances are serially uncorrelated but may be
contemporaneously correlated
E(gg) = (4.19)
Since each variable depends not only on its own past values but also on past values
of others, if y,, denote the A-th element of Y, in VAR(1), then
ViSOV T @eaVas T T Qv T ks k=1..N (4.20)
This representation can be extended by bringing in more lags on y, and introducing
lags of g, in a vector autoregressive-moving average (VARMA) model. For example,
VARMAC(1,1) is expressed as
Y,=®Y, , +¢g+0¢,, t=1...T (4.21)
or, in general, VARMA(p,q) is expressed as

Y, =®,Y, +. +BY, +g+O8, .. +Og t=1..T (4.22)

t-q 3

where @ s are NxN matrices of AR parameters and @;s are N=N matrices of MA parameters.
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When applied to differenced observations, the model becomes a vector autoregressive-
integrated-moving average (VARIMA) model.
Define a non-singular NN matrix Q, such that
® = QAQ" (4.23)
where A =diag{ A,, ..., Ay }. The elements %,, ..., ky are obtained by solving the equation
- =0 (4.24)
A VARMA(p,q) process can be shown to be stationary if the roots of
| M-, - -D, | =0 (4.25)
are less than unity in absolute value. Stationarity implies that a process has a mean that is
the same for each time period. It follows from Wold’s Decomposition Theorem that, under
quite general conditions, every stationary. purely non deterministic process can be well
approximated by a finite-order VAR process (Liitkepohl, 1991).
The process is invertible if the roots of
[ N-A0,-..-0,1=0 (4.26)
are less than unity in absolute value. With the invertibility, weights placed on past
observations decline as one moves further to the past, i.e., larger weights are put on more
recent observations. If the invertible condition is satisfied, a VARMA process can have a
pure VAR representation (Liitkepohl, 1991).
4.2.2. Forecasting VAR Models with ANN
The parameters of a VAR model can be estimated by using either the Ordinary Least
Squares (OLS) or Maximum Likelihood (ML) method. In estimation of VARMA process,

ML procedures are recommended as they result in consistent, asymptotically efficient, and

-58-



normally distributed estimators under very general conditions. However, except for some
special cases allowing a fairly straightforward estimation, the optimization of the likelithood
function may result in a complicated nonlinear optimization problem. Furthermore, the
small sample properties of these ML procedures are in general unknown (Mills, 1990).

If the process follow a VAR model and there is no parameter restrictions, then the
model has the form of a seemingly unrelated regression model (Zellner, 1962) with an equal
number of regressors in each equation. In this case, the parameters can be estimated by
regressing each variable on the lags of itself and the other variables. OLS estimation can
provide consistent and asymptotically efficient estimates. If there are zero constraints on the
parameters, then there may be different regressors in different equations. In this casc. the
estimation technique proposed by Zellner (1962) can still be applied to derive a structural
equation system so that OLS estimation of each separate equation remains efficient.

To identify an appropriate model for multivariate time series, one has to conduct
various tests, such as testing for individual stationarity, joint stationarity, and cointegration.
Then one has to test for normality and independence. Depending on whether the series have
linear dependence or non linear dependence, an appropriate lag order of the model is
specified (Cromwell et al., 1994b).

If the series are non-stationary, VAR models can be extended to incorporate
constraints such as steady-state relationships and cointegration which link the various series
together. However, one can avoid non-stationarity by first differencing all variables.

To measure the performance of VAR models, predictors that minimize the forecast

mean squared errors (MSE) are the most widely chosen ones. Arguments in favour of using
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the MSE as a loss function are advocated by Granger (1969) and Granger and N_ewbold
(1986). They show that minimum MSE forecasts also minimize a range of loss functions
other than the MSE. For many loss functions, the optimal predictors are simple functions
of minimum MSE predictors. Furthermore, applying to an unbiased predictor, the MSE is
the forecast error variance which is useful in setting up interval forecasts (Liitkepohl, 1991).

Since many assumptions are being imposed on time series modelling in addition to
the complexity of estimating with the ML method, the use of ANN may provide accurate
forecasts without prior assumptions. To date, no report exists on using ANN to forecast
multivariate time series and its relative performance against the one of VARMA modelling.
Refenes et al. (1995) investigate the forecasting of stock prices based on six independent
variables. These time series are investigated in the framework of multiple linear regression.

The application of ANN technique and Vector Autoregression (VAR) in forecasting
multivariate times series is investigated by Nguyen and Kira (1997). Benchmark data used
in the study are taken from Liitkepohl (1991). The data are West German quarterly,
seasonally adjusted fixed investment, disposable income and consumption expenditures in
billion of Deutchmarks from 1960 to 1982. To evaluate the improvement of using ANN to
forecast multivariate time series, results obtained from the ANN are compared with those
obtained from a caliberated VAR model (Liitkepohl, 1991). Using a feedforward network
to make static forecasts and a recurrent network for dynamic forecasts, the results indicate
that the performance of ANNs are equally accurate as those of the traditional VAR method.

This thesis extends the previous study of forecasting multivariate time series with

ANNs to a general business forecasting problem. A general business setting usually
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involves temporal as well as non-temporal economic variables in which economic events
have simultaneous, lagged, and/or contemporanous effects on each others. An economic
system is a useful context of investigation into the versatile ability of ANNSs in dealing with
a general forecasting problem. The next section reviews the structure and forecasting of an
economic model.
4.3. FORECASTING AN ECONOMIC SYSTEM

An economic system is a set of simultaneous equations which is meant to describe
the working of an economy (Bodkin et al., 1991). One can have a whole system as well as
a partial system. For many years, macroeconometric models have been constructed as
essentially empirical counterparts to the Keynesian system. Only recently have alternative
paradigms appeared in econometric models such as the monetarist, radical or Post-
Keynesian, rational expectation, time series (Bodkin et al., 1991).
4.3.1. Structural Equations of an Economic System

An economic model organizes the information available about the system under
study and postulates the interrelationships among observables. The formulation of an
economic model! requires the following specifications: (1) the classification of economic
variables, (2) the variables that enter a specific equation, (3) any possible lags involved, (4)
nonsample information about a single parameter or combinations of parameters, and (5) how
many equations there should be and how the system should be closed or made complete
(Judge et al., 1985). The equations of such system are called structural equations, and their
corresponding parameters are called structural parameters. The system of equations is

complete if there are as many equations as the number of endogenous variables.
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A system of simultaneous equations may include: (1) behavioral equations
describing the responses of economic agents in the form of economic relations, (2) technical
equations involving relations in the system, (3) institutional equations and accounting
identities or definitional equations, and (4) equilibrium conditions. The institutional
equations, accounting identities or definitional equations, and the equilibrium conditions are
deterministic and contain neither stochastic terms nor unknown parameters to be estimated.
However, they provide important feedback relations for jointly determined variables. The
behavioral equations and technical equations specify possible relationships among the
endogenous and predetermined variables. They contain stochastic disturbance terms as well
as unknown parameters to be estimated.

Simultaneous and structural equations of an econometric model usually contain
information on the following variables (Judge et al., 1983):

- Endogenous, or jointly determined variables, have outcome values determined
through the joint interaction with other variables within the system.

- Exogenous variables affect the outcome of the endogenous variables, but whose
values are determined outside the system. Exogenous variables are assumed to condition the
outcome values of the endogenous variables but are not reciprocally affected because no
feedback relation is assumed.

- Lagged endogenous variables can be placed in the same category as the exogenous
variables since the observed values are predetermined for the current period. The exogenous
variables and lagged endogenous variables that may involve any length of lag are called

predetermined variables.
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- Non-observable random errors, also called random shocks or disturbances.

Following Intriligator’s representation (1978) for any econometric model
summarized by the estimated reduced-form equations, a short-term forecast of values taken
by all endogenous variables in the next period is given as

A A
o=y I +2,0IL+0, 4.27)
As such. the prediction of next period values of the endogenous variables consists of two
systematic components and one judgmental component.
. A . .
The first systematic component y, [T, indicates the dependence on current values of
A
the endogenous variables which are weighted by the estimated coefficients in II;. This term
summarizes the systematic dependence of each endogenous variable on previous values of
all endogenous variables due to factors such as serial correlation, constant growth processes,
or distributed lag phenomena.
A .
The second systematic component 2., I, is based on a prediction of the future
- . . - . A .

values of the exogenous variables 2., and the estimated coefficients I, . This term reflects
the dependence of the endogenous variables on exogenous variables of the model. Since the
z,., are exogenous variables, they are themselves determined on the basis of factors not
explicitly treated in the econometric model. As such, it is reasonable to assume that these
variables must be forecasted on the basis of factors other than those of the model itself.

The third component is the judgmental component ., called “added factors” which
can be interpreted as estimates of future values of the disturbance term. This component

summarizes the effect of all other factors including variables omitted from the model. The

added factors are based on judgments of factors not explicitly included in the model. The
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exclusion of these factors may be due to their rare occurrence or difficulty in obtaining data.
However, this does not mean that they must be overlooked in formulating a forecast. Indeed,
it would be inappropriate to ignore relevant considerations simply because they were omitted
from the model.

4.3.2. Estimation of Structural Equations

For a set of equations to be estimated, the disturbances in the system at a given time
are likely to reflect some common unmeasurable or omitted factors and therefore could be
correlated. The correlation between disturbances from different equations at a given time is
known as contemporaneous correlation. It is distinct from the autocorrelation which refers
to the correlation over time for the disturbances in the single equation. When
contemporaneous correlation exists, it may be more efficient to estimate all equations jointly,
rather than to estimate each one separately using least squares. The joint estimation
technique is known as seemingly unrelated regressions estimation (Zellner, 1962)

When one deals with a statistical model consistent with a system of simultaneous
equations in which many variables are interdependent. the classical least squares rule is
biased and does not converge to the true parameters even in large size samples. The indirect
least squares procedure is viable in the case of just-identified equations. In the case of over-
identified structural equations, one can use a generalized least squares procedures such as
2-stage, or 3-stage least square estimators. Literaturc on the asymptotically equivalent
estimators shows that in an econometric model with a high degree of over-identification and
low degree of freedom, the ordinary and two-stage least squares estimators will show similar

patterns in their statistical behavior (Judge et al., 1985)
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Various errors must be taken into account in studying the accuracy of econometric
forecasts. First, there is the inaccuracy in the model, which is a simplification of reality such
that it omits certain influences and simplifies others. Second, there is the inaccuracy of the
data used in the estimation of the model. Third, there is the inaccuracy or bias present in the
method of estimation. Fourth, there are errors in the forecast of the exogenous variables and
in the added factors. Finally, there are possible inaccuracies in the actual data in which the
forecast is compared (Intriligator, 1978).

Following the representation of [ntriligator (1978), the absolute error of a short-term
forecast can be expressed as

A A A
e =y (I -M) +z (T - L) + (2. - 2000 + (0 -0,) (4.28)

The first term consists of errors due to incorrect estimation of the coefticient matrix II, being
weighted by v, . The second term consists of errors in estimating the coefficient matrix II,
being weighted by the true value of future exogenous variables z,.,. The third term consists
of errors in the forecasting of these future exogenous variables. weighted by the estimated
coefficient matrix fI The fourth term consists of errors in the disturbance terms, where
u,_, are the added factors reflecting other effects not being included in the model.

More recent experience with forecasting using an econometric model has indicated
the importance and value of added factors u,. These added factors, which reflect expert
judgment on factors not included in the model, in general significantly improve model
performance. Forecasts with such subjective adjustments generally are more accurate than
those obtained from the purely mechanical application of econometric models. Combining

an econometric model with expert opinion in this way utilizes the best features of each. It
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combines the explicit objective discipline of the formal econometric model and regression
estimators with the implicit subjective expertise of individual experts intimately aware of the
real world system. In any cases, an econometric model should be considered as a useful
starting point for formulating the forecast. It identifies those factors for which judgmental
decision must be made, and it provides a framework to ensure an internally consistent
forecast.

4.3.3. Nonlinearity and Dynamics of Economic Variables

Economic variables change over time and the linearity of an economic model is a
strong assumption. Current concerns in forecasting are in how to capture the nonlinearity
and the dynamics of economic events in economic modelling.

Nonlinearity in economic models can be in various forms. The nonlinearity can be
in the variables or in the parameters, or in both. In such cases, a traditional method is to find
a transformation. such as a Box-Cox transformation, to convert the model into a linear
specification. Judge et al. (1985) note that it is not unusual that parameters entering in a
regression model simply reflect one’s uncertainty on which model would adequately
represent the relationship among the variables. But there are models, called intrinsically
nonlinear models, which can not be linearly transformed. The estimation of these models is
based on minimizing or maximizing an objective function such as the sum of squared errors
or the likelihood function (Judge et al., 1985). However, with the current optimization
methods, one may encounter estimation complexity when dealing with nonlinear

optimization problems (Mills, 1990).
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In the literature, the dynamics in forecasting is discussed within a family of statistical
models called dynamic regression models (Pankratz, 1991). In this family, an output is
linearly related to current and past values of one or more inputs. The crucial assumption of
these models is that inputs are not affected by outputs. However, an alternative approach
is simultaneous equation modelling which was introduced into econometrics with an
investigation into the relationship among a set of macroeconomic time series (Sims, 1980).
From this perspective, a given time series may be influenced not only by certain exogenous
events occurring at a particular point in time but also by contemporaneous, lagged, and
leading values of a second variable or many other variables (Cromwell et al., 1994b).
Therefore, the dynamics of an economic model should be studied from a multivariate
perspective rather than a univariate one.

4.3.4, Major Macroeconomic Models

Econometric models reported in literature range from small to large scale models.
Small models have less than ten endogenous variables such as the Klein interwar and St-
Louis models. Medium-size models have between ten to one hundred variables such as
Klein-Goldberger and Wharton Models. Large models have more than one hundred
variables such as Wharton Mark [I, Chase Econometrics, and DRI models (Intriligator,
1978). In a comprehensive work, Uebe (1995) compiles a catalogue of economic models
of various countries in the world.

The antecedent of econometric models dates back to the models of general
equilibrium which were first developed by Leon Walras as an abstract system and later

extended by Vilfredo Pareto for empirical estimation. The last major antecedent is the
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empirical literature on Keynesian macroeconomic concepts spanning between the
publication of Keynes’ General Theory in 1936 to the publication of Tinbergen’s Business
Cycles in the United States of America, 1919-1932 in 1939 (Bodkin et al., 1991).

The early contributions to macroeconometric modelling initiated by Tinbergen
(1939) are in his seminal work on an annual model of the US economy. The model is fitted
bv Ordinary Least Squares to data for the period 1919-1932. There are 31 behavioral
equations and 17 identities for a total of 48 equations. All the relationships of the model are
linear including the linearizations of non-linear relationships. The model is used to draw
conclusions about the US economy based on an examination of individual behavioral
equations during the period of study. Sensitivity analysis on the estimated regression
coefticients was conducted. The model! is also used to evaluate the theories of business
cycles. However, there are no partial or full model simulation to test the hypothesized
structure of the model. Also no forecasting uses of the model are reported (Bodkin et al.,
1991).

In 1950, Klein published a monograph on Economic Fi luctuations in the United States
1921-1941, which presents three models of the US economy. These models arc usually
indicated as Klein’s interwar models or Model I, Model IT and Model III. The principal
attempt of these early econometric models is to test hypotheses and to describe the US
economy (Klein, 1950). The parameters of these models are estimated with Maximum
Likelihood and Ordinary Least Squares methods.

Model I contains three behavioral equations and three identities. The endogenous

variables are levels of consumption, net investment, private wage and salary bill, real
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national income, total property (non wage) income and the stock of capital. All endogenous
variables are in constant dollars, and all relationships are strictly linear. The exogenous
variables are primarily fiscal with a time trend, such as real government expenditures
including net exports, the public wage and salary bill in deflated terms, and real net indirect
tax collection.

Model II contains a consumption function and two identities which relate current
dollar gross national product to the sum of expenditure components and to disposable
income. In the behavioral equation of consumption, per capita consumption is related to
current and lagged real, per capita disposable income and to the real per capita level of the
money stock.

Model III contains 12 behavioral equations and four identities. There are three
behavioral equations to describe the money market and four behavioral equations to describe
the housing market. There are also a consumption function, a labor demand function, an
investment demand equation for plant and equipment, and a demand for inventories
equation. Later, this model was developed further into the Klein-Goldberger Model.

Klein-Goldberger Model was initiated as a project of the Research Seminar in
Quantitative Economics at the University of Michigan. It is a medium size model which
consists of 135 structural equations, five identities and five tax-transfer auxiliary
relationships. The model is based on annual observations from the split sample period 1929-
41, 1946-1952, and is estimated by the limited information maximum likelihood technique.
This model served as the paradigm for many subsequent model-builders (Bodkin et al.,

1991).
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The structure of the Klein-Goldberger Model may be viewed as the first empirical
representation of the broad basic Keynesian system (Bodkin et al., 1991). A blending of
real and money values is achieved as both the constant-dollar magnitudes and their
associated price deflators are estimated as part of the model. The dynamic components are
added in terms of cumulated investment. time trends. and distributed lags. The model also
contains several non-linearities in terms of the variables, which are linearized in an
approximate manner to obtain the solution for the entire system (Bodkin et al., 1991).

The framework of the model consists of 20 equations which explain 20 endogenous
variables of the model. The list of related variables presented in Klein and Goldberger (1935)
contains 63 variables in which 20 are endogenous and 43 are predetermined. Of the 43
predetermined variables, 19 are current exogenous and 24 are lagged. In the model, there
exists some degree of disaggregation. For example, among the endogenous activity
variables, there are five categories of income, two liquid assets, two interest rates, and three
types of prices. The exogenous set contains five demographic and social environmental
variables. and nine policy instruments including two types of government expenditures and
five types of taxes.

The Klein-Goldberger model was used to provide ex ante forecasting for the period
1953 (prepared in February-March 1953), 1954 (prepared in November-December 1953) and
1955 (prepared in December 1954). Forecasts were based on the new estimation with -
updated sample period and refinements of the model. Goldberger (1959) systematically

compares the ex-ante forecasts of the Klein-Goldberger model for 1953, 1954, and 1955 with
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alternative predictions generated by naive methods and concludes that the forecasting
performance of the Klein-Goldberger model is superior. The model almost always and for
every variable predicted rightly the direction of change.
4.3.5. Forecasting Macroeconomic Models with ANN

The first attempt to use ANN in modeling nonlinear relationships among economic
variables of a structural system was undertaken by Caporaletti et al. (1994) with an in-
sample estimation of Klein’s Model I Their ANN contains thirteen input nodes
corresponding to seven predetermined variables plus six exogenous variables of the model.
The output layer contains a single node corresponding to the remaining endogenous
variables. The hidden layer of this configuration contains eight nodes. Three ANNs are
constructed and trained, each of which is used to forecast one of three endogenous variables
of the model which are consumption, investment and private wage bills. The authors
conduct ex-post forecasts and find that results are significantly better than those from
traditional estimation methods.

This attempt has the following shortcomings. First of all, with a single output node
the network does not account for the contemporaneous and simultaneous effects of
endogenous variables. As such, it has a similar drawback of traditional single equation
estimation method. In a simultaneous equation system, the appropriate estimation should
be based on a multivariate approach.

Then, current values of endogenous variables in this setting are considered as inputs
of the network. In addition, there is no feedback to account for the dynamics of the system.

As such, this network cannot estimate and forecast a particular endogenous variable without
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the need of predetermined, current as well as lagged, values of all other endogenous
variables.

Lastly, this network architecture does not handle a mix of non-temporal and temporal
variables. As such, one cannot effectively account for the contemporaneous and lagged
effects of related variables of an economic system.

This thesis addresses these shortcomings with a network architecture which has the
ability to account for the simultaneous and contemporaneous effects of the variables in an
economic model. Using recurrent network design. the proposed network also accounts for
the dynamics of the system. As such, ANNs can provide etfectively not only ex-post

estimations but also ex-ante forecasts of an economic system.



CHAPTER 5

Research Questions and Methodology

The aim of this study is to investigate the integration of Artificial Neural Networks
and Genetic Algorithms in an effective architecture for an efficient intelligent forecasting
system. The proposed system is expected to capture effectively the underlying dynamics and
relationships among variables in an economic setting. and then to provide accurate forecasts.
This chapter presents the research questions studied herein and discusses methodology used
to address these questions.

5. 1. RESEARCH QUESTIONS

A general business forecasting problem has to deal with a multiple of interacting
temporal and non-temporal variables. One notes that a macroeconomic model usually
contains time series variables and other current variables. As such, it serves as a useful
context for developing an intelligent forecasting system using ANN and GA.

A major drawback of traditional econometric forecasting is the requirement of an
exactly specified simultaneous equation model. Actually, the functional specification of a
model is influenced more by the needs of the econometrician and the proposed estimation
procedure than by a knowledge of the true underlying process. The relationship of variables

in a model always reflects adherence to an economic school (Karakitsos, 1992).
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The choice of a traditional estimation technique is more often made for
computational ease rather than for capturing the true functional relationship. Also,
traditional estimations have not addressed sufficiently the nonlinear relationships among
economic variables (Mills, 1990).

The Artificial Neural Network technology has emerged as a prominent alternative
to traditional modelling and forecasting with its nonparametric and nonlinear approach. An
ANN is a universal approximator of any functional relationship. Given the existence of
interactions among variables in a macroeconomic model, an ANN should be able to
approximate well the underlying relationship. The main advantage of ANN is in its ability
to learn patterns from data without imposing any strong assumptions on the behavior of
related variables as well as on the functional form of the relationships.

This study investigates the implementation of an integrated framework of ANN and
other related decision technology in order to capture the underlying dynamics and nonlinear
relationships among variables in an economic setting. The proposed framework is designed
to learn well patterns of relationships among related variables, and then to provide forecasts
which closely reflect reality. In the development of economic policies, macroeconomic
variables could be specified, but their functional forms may not necessarily be prescribed a
priori. Unlike traditional modelling and estimation methods, the ANN technology does not
impose strong assumptions on the behaviour and relationship of related variables to fit data
in an a priori model. In addition, the proposed framework has its own mechanism based on
Genetic Algorithms to select the most appropriate ANN topology and related information

on system inputs in order to arrive at the most accurate learning and forecasting. This
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adaptive mechanism of the Machine Learning approach requires a minimum of interference
from analysts. As such, this integrated framework should serve well as a foundation for an
intelligent forecasting system.

The study first proposes an effective ANN architecture from a mixture perspective
to capture temporal and non-temporal patterns of economic variables. Then, it addresses the
issues on the effectiveness of GA in the selection of optimal network topology. After that.
it discusses the efficiency of the integrated ANN learning and forecasting.
® Mixture of Networks in Learning Multiple Economic Patterns

Forecasting in a general business context represented by an economic model of many
interacting variables requires a large and complex network. However, in a large single
network architecture, the behavior of individual economic variables may not be well
examined. [n addition, it can be very difficult to recognize the patterns of a mix of temporal
and non-temporal variables. As an alternative, Mixture-of-experts Network (Jacobs et al.,
1991) provides a useful architecture to learn the patterns of multiple economic variables.
From this perpective, the study proposes various ANN architectures to estimate and forecast
a mix of temporal and non-temporal economic variables effectively.
® The Effectiveness of Genetic Algorithms in Network Topology Selection

Since a GA is used intensively in this study to search for the optimal network
topology, the first issue that needs to be addressed is the effectiveness of GA’s selection.
The network parameters to be selected by GA are learning rate, momentum, transfer
functions, number of hidden layers and their nodes. In addition, GA is used to designate

appropriate contributing inputs for forecasting purposes. With its powerful search



mechanism in investigating a large population of alternatives, GA should be useful in
network design for a superior performance. GA helps to overcome the suboptimality of a
tedious trial-and -error process in network building and variable selection.

® The Efficiency of ANN Learning and Forecasting

This study investigates the efficiency of proposed framework over traditional
methods. A comparative study is conducted on in-sample learning and out-of-sample
forecasting performance across methods. The particular behavior of ANN in estimation and
forecasting is analyzed for future effective implementation.

5.2. METHODOLOGY

This section presents the related Al technology used in the study, the research
context, and the framework for the evaluation of the experimental results.
® Related Al Technology

To implement a mixture of networks in learning multiple economic patterns, an
ANN can have a recurrent module to deal with temporal data and a standard module for
other non-temporal data. These modules can be refined to learn individual patterns better.
Then a gating network captures the relationship between actual output of the economic
model and the estimations of modular networks.

To learn temporal patterns of a time series, there are many available networks using
various topologies such as time delays, time-varying activations, short-term and long-term
memories among others (Maren et al., 1990). Within the scope of this study, the static
representation of temporal information and the use of a recurrent network to capture

temporal patterns are implemented. In static representations of temporal information, a
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sequence of incoming temporal data is represented simultaneously in the input layer of the
network. In dynamic forecasting, the predicted values of the economic variables concerned
are used in next period forecasting.

This study implements the recurrent learning algorithm proposed by Jordan (1986).
In the Jordan algorithm, the network output is fed back to the input layer. There is a similar
recurrent learning algorithm in the literature, namely the Elman algorithm, in which the
output of hidden layer is fed back as the next input. The difference between the two
algorithms is that the actual network output is fed back to the input layer in the Jordan
algorithm whereas the previous internal representation of the output is fed back in the Elman
algorithm. The choice of Jordan algorithm over Elman and other time-delayed recurrent
algorithms is based on its comprehensiveness in representing lagged information. With this
topology, one can have dynamic forecasting, since the previous network output is used in
the next forecast period. Furthermore, the algorithm can retain a decayed effect of the
previous state to an economic system as the older information has less influence on the
current economic state.

Previously, one needed to refine a network topology with a tedious trial and error
process. The implementation of a Genetic Algorithm is intended to provide an efficient
search for optimal network design. In addition, a GA is used to identify the useful inputs
(exogenous variables and lagged variables) to predict outputs (endogenous variables) of the
economic model. As a GA has been proved to be a powerful search tool with its ability to
explore a large population of alternatives, it should help to overcome the suboptimality of

the trial-and-error process in network building. Consequently, a GA is used to select optimal
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network design at each stage of modular estimations in this study.
® Research Context

Using macroeconomic models as a general business forecasting context involving
a mix of temporal and non-temporal data, this study investigates Klein’s Model I of US
economy in 1921-1941 (Klein, 1950) and the Klein-Goldberger Model of US economy in
1929-1952 (Klein and Goldberger. 1955: Goldberger, 1959). These two models,
representing small and medium-size econometric models, have served as the paradigm for
many model-builders for a long period of time (Bodkin et al., 1991). In addition, the
availability of data for modelling and estimation in the original work makes these models
the subject of many competitive estimation methods. The results from these methods serve
well as a benchmark for comparison with those obtained from the ANN technology.

In a comparative study, the relative performance of Klein’s Model I and the
proposed system are evaluated on ex-post forecast for the period 1921-1941. Data for
estimation are taken from Klein (1950). Then the framework of Klein’s Model [ is used to
train and validate the ex-ante forecast ability of ANN on a moving window scheme from
1950 to 1994. Related data are taken from National Income and Products Accounts of the
United States 1929-1994 (U.S. Department of Commerce, 1998). Within this time horizon,
a moving window frame is implemented. In each window, 20 periods are used for
estimation, 5 subsequent periods for validation and next 5 periods for testing.

In a similar manner, the relative performance of the Klein-Goldberger Model is
compared for in-sample estimations for 1929-1950 . Then ex-ante forecast are evaluated

for the period 1951-1952. Data for estimations and forecasting are taken from Klein-
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Goldberger (1955). The original model involves many data transformation and aggregation
that one does not have equivalence in more recent data. As such, this study does not extend
the comparative study further ahead. However, the framework of original model and its
available data is used to demonstrate the functioning of an intelligent system in selecting
input variables and optimal network design.

In any case, Klein’s Model I and Klein-Goldberger Model and their available data
serve as a useful context to investigate the foundation of an intelligent forecasting system.
This system should perform well in any other similar forecasting contexts with more current
information on economic variables.
® Performance Evaluation

The evaluation of empirical results in this study proceeds as follows. After proposing
an appropriate modular ANN framework for each economic model, the study conducts a GA
search for optimal network design and a sensitivity analysis to assert the effectiveness of this
search. Once the network is refined according to the GA specification, the comparative
performance of network estimation and forecasting will be evaluated.

Sum of Squared Errors (SSE) is chosen as the benchmark for comparison because
ANN is a nonparametric estimation method. As such, the error measurements do not
account for the number of parameters to be estimated as in Mean of Squared Errors (MSE)
of traditional parametric regressions. Since this study does not replicate other traditional
estimation methods, there is not enough available information on residuals of estimations
and forecasts to conduct comparisons across methods based on other error measurements.

Also, this study does not impose the assumption of normality on the estimated residuals.
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Consequently, significance tests on the results are not conducted herein. However, this study
documents extensively information on its estimations and forecasting for future reference.

Sensitivity Analysis of GA Selection

GA is used to search for the optimal number of inputs, the number of hidden layers,
the number of hidden nodes, the transfer functions, and learning parameters. Controlling for
other factors. the sensitivity analysis on each selection is conducted to evaluate the
effectiveness of the GA selection. In particular, experiments are undertaken to address the
following issues on ANN performance:

- The effect of learning parameters selected by GA;

- The effect of transfer function selected by GA from a poo! of sigmoid logistic,

hyperbolic tangent, and linear functions;

- The effect of network architecture selected by GA in terms of number of hidden

layers. hidden nodes, and input nodes.

Comparative Analvsis of ANN Efficiency

This study evaluates the relative as well as absolute performance of the proposed
intelligent forecasting system. Relative performance of the framework is evaluated against
traditional estimations. The comparison across methods is based on the discrepancy between
estimation/forecasting and actual data. The performance is evaluated by Sum of Squared
Errors (SSE) between the forecast and actual values. For Klein’s Model I, error
measurements for the period of 1921-1941 are available in Klein (1950), SAS/ETS (1984),
and Greene (1990). For Klein-Goldberger Model, error measurements on estimations and

forecasts for the period of 1929-1952 are available in Klein and Goldberger (1955).
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Absolute performance of the proposed framework is assessed in the case where
comparable traditional estimations are unavailable. The absolute assessment would serve
as benchmark for future comparative work. In this case, each module as well as mixture
network is trained in 30 runs of 1000 to 10000 epochs, and the minimum and maximum
errors are recorded. The varying training times from 1000 to 10000 epochs is to investigate
the effects of under-training and over-training on network performance. The choice of 30
runs applied for each network is to provide information for future evaluations such as
significance tests and confidence intervals from a traditional statistical perspective. The
maximum and minimum error measurements serve as bound of errors on estimation resulting
from the proposed framework. This also provides useful information on the performance of

ANN in common practice where networks are run just a few times.
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CHAPTER 6

Estimation and Forecasting of Klein Model I

6.1. KLEIN MODEL I REVISITED

Klein (1950) modelled the US. interwar economy from 1921 to 1941 in six structural
equations. The model has three behavioral and three definitional equations. All terms are
measured in 1934 dollars. The model specification and variable descriptions are as follows.
For simplicity, time subscripts are omitted unless they indicate the lagged effects.

- Consumption Equation:

Co=ay+aP + P +uy(Wp, +Wg )+ u, (6.1)
where C is consumption, ¥p is private wage bill, Wg is government wage bill , and P is non-
wage income (profits).

- Investment Equation:

[=PBo+ BP PPy T By Ty (6.2)
where [ is net investment, P is profits, and K, ., is stock of capital at the beginning of the
year.

- Private Wages: (Demand of Labor)
Wp,=vo+1(L+ T - Wg )+v (Y + T - Wg . )Tyt Tuy (6.3)

where Y is output, T is taxes, and ¢ is time trend (year minus 1931).
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- Equilibrium Demand:
Y+T,=C+1+G, (6.4)
This equation defines total output as the sum of goods demanded by consumers C plus goods
demanded by business firms / plus goods demanded by the government and foreigners G.
The net change in inventories is included in / hence the demand and output cannot differ.
- Income:
Y, =Wp, +Wg TP (6.5)
This equation defined total output (income) as the sum of profits and wages.
- Capital Stock:
K=K, +1 (6.6)
This equation defined investment as the rate of change of the capital stock.
The system has six endogenous variables C, [, Wp, P, K, ¥, and four exogenous
variables T, #g, G and ¢.
6.2. PREVIOUS ESTIMATIONS OF KLEIN MODEL I
The following is a review of traditional estimation methods. These methods estimate
either single equations of the system or the system as a whole. The details of estimation are
described in Klein (1950), Theil (1971), and Greene (1990). The results obtained from these
traditional estimation methods serve as the benchmark for comparison with those from ANN.
6.2.1. Klein’s Model I in Reduced Form
The purpose of the six equation system is to describe six endogenous variables (C,
P, Wp, [, Y, K) in terms of four exogenous variables (Wg, T, G, r). In the structural form,

each of its equations describes part of the structure of the economy. This implies that some
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of the equations describe an endogenous variable in terms of other endogenous variables.
An alternative is to write the system in “reduced form”, i.e., to solve the system with
respect to the endogenous variables (Theil and Boot, 1962). Given the assumption on
linearity of the system, the reduced form can be specified as follows
y, = Ay, + Bx, +Cx,, +u’, 6.7)
where y is the column vector of endogenous variables. x is that of the exogenous variables.

and u° is that of the reduced-form disturbance. These variables are given by:

y =[CP WplYK]T (6.8)
x =[Wg TGt]T (6.9)
u'=[ucu’p Uy, upuly ug]” (6.10)

In the system of reduced form. each of the endogenous variables in year ¢ is described
linearly in terms of the same variables lagged one year (Ay.,), thc exogenous variables in
the same year (Bx,). the exogenous variables lagged one year (Cx, ), and the reduced-form
disturbances. It is noted that C, Wp and [ do not occur in lagged form, so that the
corresponding columns in the coefficient matrix consist of zeros.
6.2.2. Single Equation Estimations
Single-equation Method of Least Squares

This method treats each equation independently of all others in the system. Klein
noted that one had to make arbitrary choice of dependent variables for each of the three
equations (Klein, 1950). The problem with this method is that it does not account for
simultaneous and contemporaneous effects as one takes the values of other endogenous

variables as predetermined in the calculation of the equation of interest. At best, this method
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may serve as a sensitivity analysis given the predetermined values of other endogenous and
exogenous variables of the system.
Two-Stage Least Squares (2SLS):

Estimation of the system one equation at a time has the benefit of computational
simplicity. However, the method neglects information contained in other equations.
Therefore, it is called limited-information method. It has been noted that the Ordinary Least
Squares method cannot be applied with overidentified equations. In this case, one has to use
2SLS as an alternative.

Consider a system of simultaneous equations, the nonzero terms in the jth equation
are

Y=Yy +XB T (6.11)

The procedure of 2SLS consists of the following 2 steps (Greene, 1990):

- In the first stage, ordinary least squares prediction Y;* is obtained from a regression

of Y on X;

- In the second stage, the 2SLS estimator is obtained by ordinary least squares

regression of y, on Y;* and X; .

Limited Information Maximum Likelihood

In limited information maximum likelihood estimation, one takes into account the
absence of certain variables from a particular equation but not the absence of any variables
from any other equations (Theil, 1971). Using the reduced form of the system, the joint
density of endogenous variables is formulated and maximized subject to the constraints that

relate the structure to the reduced form (Klein, 1950).
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6.2.3. System Estimations
Three-Stage Least Squares (3SLS):

3SLS involves the application of generalized least squares estimation to the system
estimation, each of which has first been estimated using 2SLS. The process is as follows
(Greene, 1990).

- In the first stage, the reduced form of the system is estimated. Using ordinary least

squares, this results in Y;* for each equation.

- Then the fitted values of the endogenous variables are used to get 2SLS estimations

of all the equations in the system. Also residuals of each equation are used to

estimate the cross-equation variances and covariances L*.

- In the last stage, generalized least squares parameters are obtained for the system.
Full Information Maximum Likelihood

This estimation method assumes that (i) each of the three variables C, Wp, and [ is
non-autocorrelated, i.e., no correlation between their successive values, and (ii) there is no
correlation between the disturbances in any of the structural equations. The estimators treat
all equations and all parameters jointly in formulating the likelihood function to be
maximized subject to all of the restrictions imposed by the structure. Estimation with full
information maximum likelihood was reported in Klein's monograph (Klein, 1950).

Estimated parameters for the three equations for C, Wp, and / obtained from different
methods of limited- and full-information estimations are reported in Greene (1990). In this
study, the comparison across methods is based on residuals of related estimations reported

in Klein (1950) and SAS/ETS (SAS, 1984).
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6.3. ANN ESTIMATION OF KLEIN MODEL 1

This study uses the Mixture-of-experts Network architecture to design an effective
ANN for estimation and forecasting a mix of temporal and non-temporal variables. The
network accounts for not only the nonlinearity and dynamics but also the simultaneous and
contemporancous effects of the variables in an economic system. Applied to the Klein
Model I, the ANN learning and forecasting proceeds as follows.

If one relaxes the linear restriction on the relationships among variables of the Klein

Model I, the system can be specified as:

C. =f(P, P, Wp, Wg) (6.12)
I =f(P, P, KD (6.13)
Wp =f(Y, T, Wg, Yt T, W81 1) (6.14)
P =f(Y, Wp, Wg) (6.15)
Y, =f(C. T, G, [) (6.16)
K, =f(K..1) (6.17)

Using the formulation of Theil and Boot (1962), Intriligator (1978), the reduced

form of the Klein Model I can be specified as:

o =f(e2) (6.18)
where

y =[PYKC WpI]® (6.19)

Yo =[Py Yo Koy Gy Wpey Ly 17 (6.20)

7z, =[Wg TG Wg,, T 1T (6.21)
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The task of the ANN is to learn the underlying relationship in order to map accurately
the input-output patterns of the economic model. One notes that the system has two
components: a group of temporal variables and another group of non-temporal variables.
Thus, the ANN needs two modules to learn the specific patterns of each type of variable.
Endogenous variables of the system have contemporaneous and simultaneous effects on
each other. Consequently, the ANN needs a mechanism to aggregate modular estimations
into final results and to account for the simultancous and contemporaneous effect of
variables in the system. This task can be performed by a gating network. Using Mixture-of-
experts Network architecture in this study, the ANN estimation of Klein Model I is
conducted with two-stage and modular architectures.

Two-stage Estimations

Since the endogenous variables are contemporaneously related, it is not accurate to
estimate them with a single equation approach. In this study, the relationship of endogenous
variables and other variables of the system are estimated in the instrumental stage. Although
these variables are estimated simultaneously. their contemporaneous effect has not been
taken into account. Consequently, these instrumental estimations will be mapped to their
actual values to account for this contemporaneous effect in the fina/ stage (Figure 6.1).
Modular Estimation

In an economic system, some endogenous variables are affected by their lagged
values. In addition, the depth of lagged effects may vary across endogenous variables. Also
some variables of the model may be affected by a certain exogenous variable a priori.

Consequently, the ANN should have different modules at the instrumental stage to capture
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these lagged effects or specified effects separately. Without modular estimation for each
effect, it could be very difficult to approximate accurately the mix of temporal and non-
temporal variables. Instrumental output results from modular estimations are aggregated at
the final stage to account for the contemporaneous effect of all endogenous variables in the
network outcome (Figure 6.2).

Specifically. in the modular estimation of Klein Model I, the instrumental stage has
two modules: a recurrent module to estimate P, , Y, , K, taken into account their lagged
effect, i.e., P, . Y..,,K,.,. and a standard module to estimate C,, Wp,, /,. Then these
instrumental estimations P*,, Y*,, K*,, C* , Wp* , and [* are mapped to their actual values
P..Y. K, C, . Wp,and/to account for their contemporaneous effect.

6.4. FINDINGS AND DISCUSSION
6.4.1. Effect of Selected Network Parameters on Learning

From the initial structure of mixture-of-networks, at each stage and for each module
in the ANN estimation, GAs are used to select the optimal network topology. The fitness
criterion is a function of the simplicity of the network and its relative performance. The
simplicity is measured in terms of number of hidden layers and hidden nodes. The relative
performance of a candidate is measured in terms of its discrepancy between network outputs
and desired targets.

In the following, the network configuration is represented as [-H1F-H2F-OF where
L is the number of input nodes, H1 is the number of nodes in the first hidden layer, H2 is the
number of hidden nodes in the second layer, O is the number of output nodes, and F is the

transfer function choosing from a pool of logistic sigmoid functions (L), hyperbolic tangent
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functions (T), and linear functions (Lin). For instance, the notation of 9-7L-6T denotes a
network configuration of 9 input nodes, one hidden layer with 7 nodes using sigmoid logistic
transfer functions, and 6 output nodes using hyperbolic tangent transfer functions.

Experimenting intensively with the standard network of the instrumental stage in
two-stage ANN estimation, one seeks to confirm the effectiveness of GA in the selection of
network topology. The best configuration for this module is 9-7L-6T. The algorithm uses
a learning rate of .1 and momentum of .5. The GA evolves in 30 generations, each of which
has a population size of 30 strings. As such, 900 candidates of ANN architectures are
examined for each GA run.
- Learning Rate and Momentum

Using the configuration selected by the GA for the standard module, the effect of
various learning rates and momentum on learning error is reported in Table 6.1. The errors
are averaged over 30 runs, each run lasted 5000 epochs. This sensitivity analysis asserts the
optimal selection of learning rate and momentum by GA. Italso systematically confirms the
effect of learning rate in interaction with momentum on network error. If the learning rate
is controlled, the larger momentum produces the larger error. Similarly, if the momentum
is controlled, the larger learning rate produces the larger error. To assure a better
generalization, this study uses an early stopping rule in which the training is halted when the
cross-validation error begins to rise or the training time reaches a preset number of epochs.
Consequently, the training time in this experiment is controlled, and the speed of

convergence across learning rate and momentum has not been investigated.
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- Transfer function

This study lets the GA select an appropriate transfer function from a pool consisting
of sigmoid logistic, hyperbolic tangent, and linear functions. In contrast to heuristics
reported in the literature, the linear transfer function for output nodes never emerges as the
best choice in this study. GA selects most transfer functions of the form of sigmoid logistic
or hyperbolic tangent function. Controlling the learning rate at .1 and momentum at.5 in the
standard module, sensitivity analysis on number of hidden nodes and their transfer functions
are reported in Table 6.2. By eliminating or adding one hidden node and varying the transfer
functions of hidden and output layers, the effectiveness of the GA selected configuration is
evaluated in terms of network complexity. The performance chracteristics are averaged over
30 runs of 5000 epochs each. This analysis asserts the optimality of GA selection, as the
selected network configuration produces the lowest error in learning.
6.4.2. Effect of Training Time on Learning

Consistent with the documentation in the literature, this study confirms that the
longer one trains the network, the smaller the error is. In the experiment, in-sample learning
error has been decreased as the training time is increased from 1000 epochs to 10000 epochs.
Also this study finds that the network does not learn well if it has not been trained
sufficiently (e.g., less than 1000 epochs). This fact is particularly important in recurrent
network training. One observes from the experiments that if the recurrent network is not
trained sufficiently, it produces a constant estimated output both in-sample and out-of-
sample. In the following comparison, results from different training epochs are reported for

each network configuration. However, learning in-sample patterns well does not necessarily
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guarantee a good performance on out-of-sample generalization. As such, in further
investigation herein, an early stopping rule is applied. The network training is stopped
when the error of prediction on the test set starts increasing or the training time reaches a
preset number of epochs. In the following sections, the performance of network is reported
along with the training times of 1000, 5000, and 10000 epochs to illustrate the effects of
under- and over-training on the network performance.
6.4.3. Two-stage ANN Estimation of the Klein Model I

At each stage of estimation (namely instrumental stage and final stage), the selected
network is trained in 30 runs, each lasting from 1000 to 5000 epochs. Each run is started
with a different initial set of network weights generated by a different random number seed.
At each stage of estimation, minimum and maximum errors are recorded. This results in two
streams of data representing instrumental estimations, one with maximum error and the
other with minimum error. These streams of instrumental estimations are used in final
estimation of system equations. The GA selects a network configuration of 9-7L-6T for the
instrumental stage and 6-6L-3T for the final stage. Table 6.3 reports the performance of
network with minimum/maximum error at the instrumental stage and the
minimum/maximum error at the final stage. The rationale of this recording is to evaluate the
case where the network is trained just one time at each stage, what would be the boundary
of errors taking into account the best and the worst estimations from 30 runs.

Results in Table 6.3 show that the performance of the ANN is superior to those of
traditional methods (Klein, 1950; SAS, 1984) and Caporaletti et al. (1994). The comparison

is based on SSE in the estimation of each exogenous variable as well as total SSE in the



estimation of the whole system at different training times.

At 1000 training epochs, the Total SSE of the two-stage ANN estimation with
maximum error at instrumental stage and maximum error at final stage is 33.87866 or about
50% of the estimation errors of traditional methods. This error measurement is about the
same as the one reported in Caporaletti et al.. [f the final estimation is obtained with the
minimum error at the instrumental stage and minimum error at the final stage. the Total SSE
is 18.72112 or about 25% of the estimation errors reported in traditional methods. This error
is about 50% of the estimation error reported in Caporaletti et al..

At 5000 training epochs, the Total SSE of the two-stage ANN estimation with
maximum error at instrumental stage and maximum error at final stage is 18.046797 or about
25% of the estimation errors of traditional methods, and 50% of the one reported in
Caporaletti et al.. If the final estimation is obtained with the minimum error at the
instrumental stage and minimum error at the final stage, the Total SSE is 10.774157 or about
20 % of the estimation errors reported in traditional methods, or about 30% of the one
reported in Caporaletti et al..

At 10000 training epochs, the Total SSE of of the two-stage ANN estimation with
maximum error at instrumental stage and maximum error at final stage is 14.725791 or about
20% of the estimation errors of traditional methods, and 40% of the one reported in
Caporaletti et al.. If the final estimation is obtained with the minimum error at the
instrumental stage and minimum error at the final stage, the Total SSE is 7.450847 or about
10 % of the estimation errors reported in traditional methods, or 20% of the one reported in

Caporaletti et al..
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Caporaletti et al. (1994) use an ANN to estimate each endogenous variable of the
system, one by one. This single equation estimation approach may not capture well the
simultaneous and contemporaneous effects of other endogenous variables in the system as
the system approach used in this study.

6.4.4. Modular ANN Estimation of the Klein Model 1

Although the two-stage ANN configuration reported in the previous section
performs better than traditional estimations and single equation estimations with ANN, it
cannot handle a mix of temporal and non-temporal variables existing in many business
contexts represented by a simultaneous equation system. Forecasting a mix of variables with
a system of standard ANNGs is not effective and efficient as one has to rely on predetermined
lagged values and/or the values of other variables estimated outside the system to feed in as
input. The appropriate network configuration for a mix of variables should have separate
modules in the instrumental stage to deal with different aspects of the data.

Using Mixture-of-experts Network architecture, the modular network configuration
in this study has two modules: a recurrent module and a standard one. The recurrent module
is refined to learn the lagged effect on related temporal variables. The standard module
leamns the inter-relationship of other variables in the system. Then instrumental estimations
from these two modules are processed in the final stage with the mapping of instrumental
estimations to desired targets of the system. This mapping accounts for the
contemporaneous and simultaneous effects on the final estimation of the endogenous

variables.
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Specifically, in the instrumental estimation stage, GA selects the configuration of
9-6L-3T for the network of recurrent module and 9-7L-3T for the network of standard
module. Each network is trained in 30 runs, each run lasts from 1000 to 10000 epochs.
Each run is initiated with a different set of network weights generated randomly. In each
module, minimum and maximum errors of estimation are recorded. It results in two streams
of data representing instrumental estimations with maximum/minimum errors. These
streams of instrumental estimation are used in the final estimation of system equations. GA
selects the configuration of 6-6T-3T for the network in the final stage. The final network
is trained in 30 runs, each with different initial random weights. Each run lasts from 1000
to 10000 epochs. Results from modular ANN estimation are reported in Table 6.4.

At 1000 training periods, the Total SSE of modular ANN estimation with maximum
error at instrumental stage and maximum error at final stage is 17.79388. If the final
estimation is obtained with the minimum error at the instrumental stage and minimum error
at the final stage, the Total SSE is 6.49236 . These error measurements are about 50 % of
errors from the two-stage ANN estimations reported in the previous section.

At 5000 training periods, the Total SSE of modular ANN estimation with maximum
error at instrumental stage and maximum error at final stage is 11.79388 versus 18.046797
resulted from the two-stage ANN estimations. If the final estimation is obtained with the
minimum error at the instrumental stage and minimum error at the final stage, the Total SSE
is 2.728608 versus 10.774157 resulted from the two-stage ANN estimations.

At 10000 training periods, the Total SSE of modular ANN estimation with maximum

error at instrumental stage and maximum error at final stage is 10.178641 versus 14.725791

-95-



resulted from the two-stage ANN estimations. [f the final estimation is obtained with the
minimum error at the instrumental stage and minimum error at the final stage, the Total SSE
is 1.414566 versus 7.450847 resulted from the two-stage ANN estimations.

In all cases, the results obtained from modular ANN estimations are superior than
those of two-stage ANN and traditional methods reported in the previous section. The
reason for this improvement is that the temporal effect of lagged endogenous variables on
the system is taken into account explicitly in modular estimation.

6.4.5. Modular ANN Forecasting of the Klein Model I

This study uses the variables defined in the Klein Model I to forecast the related
endogenous variables for the period from 1950 to 1994. As the US economy grows
dramatically, the level of macroeconomic variables in this period increases accordingly. For
instance, taking all measurements in 1992 constant dollars, the national income of the US
grows from 41.98 billions in 1950 to 6,086.60 billions in 1994. Similarly, the consumption
grows from 35.22 billions in 1950 to 4,957.80 billions in 1994 (U.S. Department of
Commerce, 1998). It would be difficult for a network to deal with variables whose values
increase to an unbound limit and spacing with big gaps. As an alternative, this study
considers a more compact space and focuses on the growth rate of related endogenous
variables. Consequently, related data in the period are transformed into first differences of
their natural logarithmic values to capture their growth rates.

The dynamics of an economic system can be studied either with a rolling window
scheme or with a moving window scheme. In a rolling window scheme, the time frame

extends (walks forward) from the origin further to the future to capture in formation of the
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new data. In a moving window scheme, a time window slides forward and the older data are
discarded. In time series forecasting, the information of older data may not be useful,
particularly in the context of growing US economy. Consequently, the ANN estimation and
forecasting studied herein is conducted on a moving window scheme for the yearly growth
of related US economic variables from 1950 to 1994.

In the experiments. for each time window , 20 yearly periods are used for training,
the next 5 for testing, and the subsequent 5 for validation or forecasting (Figure 6.3).
Consequently, a modular network is trained with in-sample information for 20 periods and
tested on 5 out-of-sample periods. GA is used to select the appropriate configuration for
each module. Each modular network is trained in 30 runs. Each run starts with a different
initial set of random weights. The training stops when errors of prediction on the test set
starts increasing or the training time reached 5000 epochs. This early stopping rule is
applied to ensure an accurate generalization of ANN on future cases. The best nerwork from
30 runs is used to make forecasts for the next 5 out-of-sample periods of the scheme.

SSE of ANN estimation are reported in Table 6.5. The estimated and actual values
of related endogenous variables in each time window are illustrated in Graphs 6.1 t0 6.12.
In the following analysis, the growth rates of consumption, private wages, and net
investment are indicated as DLC, DLWp, and DLI, respectively. Their final estimates result
from modular network estimations are indicated as DLC**, DLWp**, and DLI**,
respectively. Following Klein (1950) and Klein and Goldberger (1955) who concentrate
their analyses on the sign of the forecast residual, the current analysis focuses on the ability

of the ANN to pick up the future direction of related variables. The following provides
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descriptions on the behavior of ANN in learning and forecasting. The experiments intend
to observe how the network behaves when it forecasts unseen patterns in the fluctuation of
economic variables. There is no benchmarking and significance tests on the accuracy of
ANN forecasting in these experiments.

® Period from 1950 to 1979

In the period from 1950 to 1979, data from 1950-1969 are used for training. 1970-
1974 for testing, and 19735-1978 for forecasting. GA selects a network configuration of
9-4L-3T for the recurrent module, 9-5L-3T for the standard module, and 6-4L-3T for the
final stage.

For the growth rate of consumption DLC. the network learns well the data patterns
in the training period as it captures correctly the changes in direction of the variable. The
SSE for this training period is .000331 on the estimation of the growth of this variable.
However, in the test/forecasting period, the network projects a slight fluctuation at a lower
level when the related variable started fluctuating in an upward trend (Graph 6.1). The SSEs
for the testing and forecasting periods are .001794 and .008602, respectively. The network
does not experience these high growth levels in an upward trend. Consequently, it produces
moderate forecasts at an average level.

For the growth rate of private wages DLWD, during the training period, the network
learns well the data patterns and follows closely the changes in direction of the variable with
a SSE of .000832. In the test and forecast periods, the network picks up the changes in
direction with SSEs of .001821 and .001209, respectively. One notes that as the network

learns the large fluctuation patterns in the training set and it is able to forecast a moderate
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level while following the future directions of the data (Graph 6.2).

For the growth rate of investment DL/, network forecasting picks up the changes in
direction of the variable as it already learned the fluctuated patterns of the data. The SSE
for the training and test periods are .017397 and .09676, respectively. However, when the
variable fluctuates at a wide levels (in 1974-75), the network has not experienced this new
pattern to make a close prediction. Therefore. it produces forecasts at moderate levels. The
SSE for this forecast period is .267968 (Graph 6.3).
® Period from 1935 to 1984

In the period from 1955 to 1984, data from 1955-1974 are used for training, 1975-
1979 for testing, and 1980-1984 for forecasting. GA selects a network configuration of 9-6T-
3T for the recurrent module, 9-6T-3T for the standard module, and 6-7T-3Tfor the final
stage.

For DLC. the network leans well the upward trend in the training set by following
correctly the changes in direction of the variable with a SSE of .000682. It is able to pick
up the patterns in the test period with a SSE of .000751. When the future data (1980-84)
fluctuated in a new, downward pattern, the network produced a dampening forecast at a
moderate level (Graph 6.4). As the network has not experienced this pattern, it produces a
SSE of .004883 for the forecast period.

For DLWp, after learning well the upward trend in the training set with a SSE of
001172, the network forecasts a slight fluctuation at moderate level when the future data
(1980-84) fluctuate in a new pattern (Graph 6.5). SSE for the test and forecasting periods

are .002552 and .010367, respectively.
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For DLI, after learning well the fluctuation in the training set with a SSE of .008684,
ANN forecasts follow the future data pattern. However the network had not experienced the
large changes in the levels of the extreme variation in the forecast period (e.g., the changes
in 1982 to 1984). Consequently, when future data start fluctuating widely (1980-84), the
network produced forecasts at moderate levels (Graph 6.6). SSE for the test and forecasting
periods are .074401 and .758536. respectively. The large error in the forecast period are due
to the large changes in levels of data that the network is unable to capture.
® Period from 1960 to 1989

In the period from 1960 to 1989, data from 1960-1979 are used for training, 1980-
1984 for testing, and 1985-1989 for forecasting. GA selects a network configuration of 9-5T-
3L for the recurrent module, 9-6T-3T for the standard module, and 9-3L-3T for the final
stage.

For DLC, the network learns well the upward pattern of the training set with a SSE
of .000752. When future data starts a downward trend (1985-1989), the network had not
experienced the large changes in levels to produce closer forecasts. As a result, network
forecasts follows the future directions at higher levels (Graph 6.7). SSE for the test and
forecast periods are .006123 and .012539, respectively.

For DLWp, the network learns well the upward pattern of the training set with a SSE
of .001325. When future data starts a downward trend, ANN forecasts follow the trend but
at higher levels (Graph 6.8). Similar to learning and forecasting DLC in this period, the
network has not learned the large change in levels of future fluctuation in order to provide

closer forecasts. SSE for the test and forecast periods are .00773 and .024928, respectively.
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For DLI, the network learns well the fluctuation in the training set with a SSE of
.019973. When future data start dropping (1985) and then fluctuating at a lower level (1985-
89), the network forecasts follow the trend but at a higher level (Graph 6.9). SSE for the test
and forecast periods are .082321 and .727144. The large error for the forecast period is due
to the change in data patterns as they fluctuate at a moderate levels that the network is unable
to follow closely.
® Period from 1965 to 1994

In the period from 1965 to 1994, data from 1965-1984 are used for training, 1985-
1989 for testing, and 1990-1994 for forecasting. GA selects a network configuration of 9-
5L-3T for the recurrent module, 9-3L-3Tfor the standard module, and 9-5L-3T for the final
stage.

For DLC, the network learns well the upward trend in the training set with a SSE of
.001085. When future data start a long downward trend, the network has not learned these
patterns in order to predict accurately the future level and in some occasions changes of
directions, e.g., in 1990 (Graph 6.10). SSE for the test and forecast periods are .002213 and
014209, respectively.

For DLWp, the network learns well the upward trend in the training set with a SSE
of .001471. When future data has a downward trend, the network does not predict accurately
the level and change of directions from the pattern that it has learned (Graph 6.11). SSE for
the test and forecast periods are .002426 and .012759, respectively.

For DLI, the network learns well the fluctuation in the training set. Since the training
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set contains patterns of large fluctuations, the network forecast is able to follow the trend of

future data, however in a large fluctuating pattern that it has learned (Graph 6.12). SSE for

the test and forecast periods are .136035 and .164281, respectively. The large error from
these periods is due to the sudden change in levels of fluctuation that the network is unable
to capture.

6.4.6. Concluding Remarks
From extensive experiments with GA and ANN on the Klein Model [, and with the

caution on problem specific, the following remarks on the efficiency and effectiveness of the

proposed system are in order.

L GAs have selected the learning parameters and network configuration efficiently
from a pool of candidates. The selected network designs always produce smallest
errors between network output and target values.

o ANNs constructed in mixture-of experts network architecture provide effective
alternatives to handle efficiently a mix of temporal and non-temporal variables. This
architecture offers flexible alternatives to study patterns of the problem space. One
can use hierarchical networks to conduct instrumental estimations. One can also
partition the problem space into domains and assign them to modular ANN to learn
the related patterns.

From the observations of ANN behavior in learning patterns of the training set and
producing forecasts on unseen data, the following remarks are related to the performance of
the proposed ANN system in generalization, and to the improvement of its forecast ability.

° In contrast to what is stated in literature, the network does not learn and project the
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extreme and recent trend. [t tends to provide a moderate forecast in terms of

fluctuation and level.

o If the network has been trained with data having an upward trend and related variable
to be predicted fluctuates in a downward trend, network forecasts will be dampened
at a middle level.

° If the network has not experienced drastic level changes in the training set, it
produces a forecast following the trend but at a higher level for future downward
change and lower level for future upward change.

° If the network is trained with the fluctuated pattern, its forecasts follow the future
trend but at a moderate change in level. The larger the variation in the training set,
the closer the ANN will follow the patterns in the forecast period in terms of
directions and levels.

o The network cannot predict accurately a level outside the range of pattern it has
learned from the training sct. When it encounters such a case, it produces a forecast
at an average level of the training set.

Consequently, in order to improve its forecasting ability, a network should
experience with the variation in trend (upward/downward, long/short fluctuation) and the
possible highest and lowest levels of data patterns. The experiments conducted herein
illustrate that the more variations exist in the training set, the closer ANN follows with future

fluctuations in terms of directions and levels.
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Figure 6.1
Two-stage ANN Estimation of Klein Model I
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Figure 6.2

Modular ANN Estimation of Klein Model I
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Figure 6.3

Moving Window Scheme
for Estimation and Forecasting
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Table 6.2

Sensitivity Analysis on GA Selection:
MSE of Standard Module
in Instrumental Stage of Two-stage ANN Estimation

ANN Architecture MSE
9-8L-6T 2.6744
9-8L-6L 6.8746
9-8T-6T 2.8999
9-8T-6L 5.3162
9-7L-6T 2.1962
9-7L-6L 6.7239
9-7T-6T 2.5495
9-7T-6L 4.8737
9-6L-6T 3.8810
9-6L-6L 8.0856
9-6T-6T 5.2359
9-6T-6L 6.0632
Legend:
L: Sigmoid logistic transfer function
T: hyperbolic tangent transfer function

MSE : Average MSE of 30 runs, 5000 epochs each
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Table 6.3

Results of Two-Stage ANN Estimation

of the Klein Model I
Total SSE SSE
C W, [
2SLS* 60.97260 21.92525 10.000496  29.04686
LIML* 85.90255 40.88414 10.021920  34.99649
3SLS* 73.60150 18.72696 10.920560  43.95398
ML** 56.26009 22.08910 10.218495  23.95249
CapoANN*** 32.4987 9.5356 9.8813 13.0813
1000 training epochs ,
Min**s® - Min***** 1872112 6.805794 12.80344 2.431763
Min*#%** . Max***** 28 53662 9.140769 16.64345 2.752003
Max**** _ Min***** 2333051 4.796138 13.92080 4.613574
Max**** - Max***** 33 87866 8.404020 20.55768 4.916960
5000 training epochs
Min**** . Min***** 10.774157  3.511433 5.884045 1.378679
Min**** _ Max***** [5.164985  4.690529 8.620608 1.853848
Max**** _ Min***** [5770872  2.684769 9.96278 3.123323
Max**** . Max***** [8.046797 4.353278 10.19043 3.503089
10000 training epochs
Min**** _ Min***** 7450847  2.212344 3.946774 1.291729
Min**** - Max***** [0.129417  3.218656 5.394284 1.516477
Max**** _ Min***** |2.985553  2.209983 7.958855 2.816715
Max**#* _ Max***** 14725791  3.582101 7.809497 3.334193

Legend:

* SAS (1984) SAS/ETS User’s Guide, Version 5

**  Klein (1950)
40k Caporale[ti et al. (1995)

**x*  Nax/Min error on Instrumental ANN Estimation in 30 runs
*+x+*% Max/Min error on Final Stage ANN Estimation in 30 runs
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Table 6.4

Results of Modular ANN Estimation

of the Klein Model 1
Total SSE SSE
C W, [
2SLS* 60.97260 21.92525 10.000496  29.04686
LIML* 85.90255 40.88414 10.021920  34.99649
3SLS* 73.60150 18.72696 10.920560  43.95398
ML** 56.26009 22.08910 10.218495  23.95249
CapoANN*** 32.4987 9.5356 9.8813 13.0813
1000 training epochs
Min**** _ Min*****  6.49236 2.548467 3.376657 567239
Min**** _ Max***** 10.71094 3.150886 6.57862 963706
Max**** o Mip***** |3 .8]735 5.598224 6.402702  1.816427
Max**** . Max*****]7.79338 4.621934 10.73451 2.436934
5000 training epochs
Min**** _ Min***** 2728608  1.714980 .710870 302756
Min*#** o Max***** 4074969  1.781884 1.539434 753651
Max**** _ Min***** 3735219  1.952168 1.048673 734379
Max***k o Max*****]]1.100670  2.792316 6.484070 1.824284
10000 training epochs
Min**** - Min***** ].414566 653434 459314 301818
Min**#* . Max***** 3357525  1.613617 1.091524 652384
Max**** - Min***** 2686912  1.136092 .840595 710231
Max**** . Max*****[(.178641  1.784696 7.326907 1.067041

Legend:

* SAS (1984) SAS/ETS User’s Guide, Version 5

% Klein (1950)
***  Caporaletti et al. (1995)

*#*x%  Max/Min error on Instrumental ANN Estimation in 30 runs
***%% Max/Min error on Final Stage ANN Estimation in 30 runs
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Table 6.5

Modular ANN Estimation and Forecasting (1950-94)
Using Klein’s Framework

SSE
DLC DLWp DLI

Period of 1950-79:

Training (1950-69) .000331 .000832 017397
Testing (1970-74) 001794 .001821 096760
Forecasting (1975-79) .008602 .001209 267968
Period of 1935-84:

Training (1955-74) .000682 001172 008684
Testing (1975-79) .000751 002552 074401
Forecasting (1980-84) .004883 010367 7583536
Period of 1960-89:

Training (1960-79) .000752 001325 .019973
Testing (1980-84) .006123 .007730 .082321
Forecasting (1985-89) 012539 024928 727144
Period of 1965-94:

Training (1965-84) .001085 001471 .028825
Testing (1985-89) 002213 .002426 136035
Forecasting (1990-94) 014209 012759 164281
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CHAPTER 7

Estimation and Forecasting of

Klein-Goldberger Model

7.1. KLEIN-GOLDBERGER MODEL REVISITED

Klein and Goldberger (1933) use their model to describe the US economy for the
period 1929 to 1950 with the exception of the war years from 1942 to 1945. The model
(denoted as the KG Model hereatter) is reformulated and re-estimated many times later to
incorporate more recent data until 1954. In the original form, the model has 20 structural
equations consisting of 135 behavioral and 5 definitional equations as follows:
(1) Consumption Equation:

C =q,+a, (Wp+Wg-Tw) +t,(P-Sp-Tp) +o;(4d - Ta), +a.C,,

+ag(Ly). + U(Np) T 1y (7.1

where C = consumer expenditure in 1939 dollars

Wp = deflated private employee compensation

Wg = deflated government employee compensation

(Wp + Wg - Tw) = deflated disposable employee compensation

P = deflated nonwage, nonfarm income

Sp = deflated corporate saving

(P - Sp - Tp) = deflated disposable nonwage, nonfarm income

A = deflated farm income
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(4 - Ta) = deflated disposable farm income

L, = deflated end-of-year liquid assets held by persons

N, = number of persons in US
(2) Investment Equation

I =By+B (P+A+D-Tp-Ta) +PB,(P+A+D-Tp-Ta)., +Bs(i).,

Bk BelLa), .y F oy, (7.2)

where [ = gross private domestic capital formation in 1939 dollars

D = capital consumption charges in 1939 dollars

i, = average yield on corporate bonds

K = end-of-year stock of private capital in 1939 dollars

L, = deflated end-of-year liquid assets held by enterprises
(3) Corporate Saving Equation

(Sp) =vo + 1i(Pc - Te) +ya(Pe = Te = Sply + 1sBey Ty, (7.3)
where Pc = deflated corporate profits

Tc = Deflated corporate income taxes

B = deflated end-of-year corporate surplus
(4) Relation between Corporate Profit and Nonwage Nonfarm [ncome

(Pc), =8; +8,P, +08,P  +uy, (7.4)
This empirical, nonstructural relation is intended to maintain the completeness of the model.
(5) Depreciation Equation

D, =g +¢g [(K,+K,.)2]+e(Y+T+D- Wg)+us, (7.5)

where Y+ T+ D - Wg = private Gross National Product in 1939 dollars
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(6) Demand for Labor (Private Wages)
(Wp), =G +§ (Y+T+D-Wg), +L(Y+T+D - Wg),., +{t + ug, (7.6)
where ¢ = time trend in years
(7) Production Function
(¥+T+D - W) =ny+ N[ h(Nw - Ng) + Ne + Nf L + 1 [(K, + K..1)/2]
TNl T U, (7.7)
where A = index of hours worked per person per year
NMw = number of wage and salary earners
Ng = number of government employees
Ne = number of nonfarm entrepreneurs
Nf=number of farm operators
(8) Labor Market Adjustment Equation
wo=w., = 8, 0,(V - Mw - Ne- Nf), +0,(p.y - pd) T8 Ty, (7.8)
where w = index of hourly wages
N = number of persons in the labor force
N - Nw - Ne - Nf=unemployment in number of persons
p = general price index
(9) Import Demand Equation
(Fi), =y, +y[(Wp+Wg+P+d-Tw-Tp-Ta)p/!pi] + u(Fi)., +us, (7.9)
where Fi=import of goods and services in 1939 dollars
pi = index of prices of imports

(Wp+ Wg+ P+ A - Tw - Tp - Ta) = deflated disposable income plus corporate
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saving (by an index of import prices)

(10) Agricultural Income Determination Equation

[4 (p/ pa)l, =, +x,[(Wp+ Wg+P~-Sp-Tw-~Tp)p/pa),

+,[(Wp+Wg+P-Sp-Tw-1Ip)p/pa).,
+K&5(p / pa), + xy(Fa), + uy, (7.10)

where pa = index of agriculture prices

Fa = index of agricultural exports

Wp + Wg + P - Sp - Tw - Tp = deflated disposable nonfarm income
(11) Relation between Agricultural and Nonagricultural Prices

(pa), =hy +hpp, +ho(pa@).y + (7.11)
(12) Household Liquidity Preference Equation

(L), - w(Wp+Wg+P+A-Tw-Tp-Sp-Ta) = w[(iL), - 1%, (7.12)
where i, = average yield on corporate bonds in percent

i, = minimum possible interest rate
(13) Business Liquidity Preference Equation

(Lo, = vi(Wp) =V + Va(pe = Poa) T Vslish + Valladey * s, (7.13)
where i = average yield on short term commercial paper
(14) Relationship Between Short Term and Long Term Interest Rates

() =&+ &lis). s T &lish.s T Uiy (7.14)
(15) Money Market Adjustment Equation

[Gis)e = (ig)1]/ (sh.1 =00 T O R + 14y, (7.15)

where R = excess reserves of banks plus bank holdings of government bonds as a
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percentage of total reserves

The following Equations 16 to 20 are five definitions and accounting identities of the model.
(16) Definition of GNP

C,+I1+G +Fe-Fi=Y +T +D, (7.16)
where G = government expenditures for goods and services in 1939 dollars

Fe = exports of good and services in 1939 dollars

T = deflated indirect taxes less subsidies
(17) GNP = GNI Identity

(Wp), + (Wg), + P,+4,= ¥, (7.17)
(18) Relation Between Wage Rate, Hours of Work, Employment, and Wage Bill

(3w, ] pY(Nw), = (Wp), + (W), (7.18)

(19) Definition of Investment

K -K,_ =I -D, (7.19)
(20) Corporate Surplus
Bl - Bz-l = (Sp)‘ (720)

This model uses 20 endogenous variables; namely:
p = price index of gross national product (1939 base = 100)
C = consumer expenditures in 1939 dollars
Wp = deflated private employee compensation
P = deflated nonwage income
Sp = deflated corporate saving

A = deflated farm income



L, = deflated end-of-year liquid assets held by persons

[ = gross private domestic capital formation in 1939 dollars

D = capital consumption charges in 1939 dollars

i, = average yield on corporate bonds

K = end-of-year stock of capital in 1939 dollars

L, = deflated end-of-year liquid assets held by enterprises

Pc = deflated corporate profits

B = deflated end-of-year corporate surplus

Y = deflated national income

Nw = number of wage- and salary-earners

w = index of hourly wages (1939 base : 122.1)

Fi = imports of goods and services in 1939 dollars

pa = index of agricultural prices (1939 base : 100)

is = average yield on short term commercial paper

The model has the following 19 exogenous variables:

g = deflated government employee compensation

Tw = deflated personal and payroll taxes less transfers associated with wage and
salary income

Tp = deflated personal and corporate taxes less transfers associated with nonwage
nonfarm income

Ta = deflated taxes less transfers associated with farm income

Np = number of persons in the US



Tc = deflated corporate income taxes

t = time trend in years

h = index of hours worked per person per year (1939 base : 1.00)

Ng = number of government employees

Ne = number of nonfarm entrepreneurs

Nf= number of farm operators

N = number of persons in the labor force

pi = index of prices of imports (1939 base : 100)

Fa = index of agricultural exports (1939 base : 100)

R = excess reserves of banks as a percentage of total reserves

G = government expenditures for good and services in 1939 dollars

Fe = exports of goods and services in 1939 dollars

T = deflated indirect taxes less subsidies
7.2. PREVIOUS ESTIMATION OF KLEIN-GOLDBERGER MODEL

In the original estimation, Eq. 14 for the empirical relation between short and long
term interest rate and Eq.15 for the market adjustment both use single-equation least squares
estimation with one lagged endogenous variable. In addition. Eq. 2 for the investment
function is treated as a function of predetermined variables alone.

Other equations of the model are estimated by the method of limited information
using the following set of predetermined variables:

C... = lagged consumer expenditures in 1939 dollars

(L)),., =lagged deflated, year-end liquid assets held by households
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(Np), = number of persons in the US

(P+4+D- Tp - Ta),., = lagged deflated, disposable nonwage income plus
depreciation and corporate savings

K,., =lagged year-end stock of fixed capital in 1939 dollars

(L,),., =lagged deflated, year-end liquid assets held by enterprises

(Pc - Tc - Sp),., = lagged deflated corporate dividend payments

B,., =lagged deflated, year-end accumulated corporate savings

(Y+ T+ D - Wg),., = lagged gross national product in 1939 dollars

t = time trend in years

D..\ - P.., = lagged first differences in the general price index

(Fi),., = lagged imports of goods and services in 1939 dollars

(Wp+ Wg+ P - Sp - Tw - Tp),., = lagged deflated nonfarm disposable income

(Fa), = index of agricultural exports

(G + Fe), = government expenditures plus exports of goods and services

The estimations are conducted over the period 1929-41 and 1946-50 in billions of dollars,

millions of persons, and indices based on 1939.

7.3. ANN ESTIMATION OF KG MODEL

This section reports on the use of ANN and GA in an intelligent system to estimate

and forecast a mix of temporal and non-temporal economic variables. The Klein-Goldberger

Model with its available data serve as a useful context for the experiment. In addition,

results from the original work (Klein and Goldberger, 1995) provide useful benchmark for

comparative purposes.
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Adelman and Adelman (1959) note that as the excess bank reserves R, are taken as
exogenous, the short term interest rate (is), and long term interest rate (i), can both be
computed without reference to the rest of the system. Therefore, onc treats them as
predetermined and eliminates the estimation of these variables (Eqgs. 7.14 and 7. 13) in the
system. Similarly, index of agricultural prices pa in Eq. 7.1l can be calculated
independently by using its lagged values and price index of GNP which is considered as
predetermined. As a result, pa is treated as predetermined value. Consequently, there are
12 endogenous variables to be estimated in this study.

The ANN used in this study has 12 outputs, namely, C, Y, Sp, Pc, D, Wp, w, Fi, A,
L, L..and . They represent the estimates of 12 simultaneous structural equations of the
system. All of these outputs, except /, have lagged effects. Using a mixture-of-experts
network architecture, the modular ANN has a recurrent module to account for these lagged
effects and a standard module for L.

The ANN uses the following 43 inputs:

- 11 actual lagged values of 11 endogenous variables having lagged effects;

- Government expenditures for goods and services G, government employee

compensation (/g), and its lag (Wg), .,

- Export of goods and services Fe

- Nonwage income (Profit) P and its lag P, .,

- Indirect taxes T, personal and payroll taxes (Tw), and its lag (Tw),_,, personal and

corporate taxes (7p), and its lag (Tp).;, corporate income tax (7c) and its lag

(Tc),.,, income taxes of agricultural sector (Ta), and its lag (7a),.,
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- Lagged year-end accumulated corporate savings B, _,

- Year-end stock of fixed capital K and its lag K| _,

- Agricultural export Fa

- Price index of GNP p and its lags p,.,, p,.», price index of agricultural products pa,

price index of import pi

- Population of the US Njp, number of people in labor force N, number of wage- and

salary-earners Nw, number of government employees Vg, number of farm
operators Nf, and number of nonfarm entrepreneurs Ne

- Index of hours work per person per year /4

- Short term interest i, and long term interest is

- Time trend ¢ (1929 =0)

In contrast to model specification of traditional estimation methods, as one does not
know exacly the interaction of variables in an economic system, the ANN estimation
conducted herein does not specify any particular effect of an input (exogenous or lagged
endogenous) on a particular equation of the system. However, temporal variables with their
lagged effects are treated explicitly.

The experiments are conducted to evaluate the relative performance of ANN in
comparison with previous estimations of the KG Model in term of error committed for in-
sample estimation and forecasting. The data are taken from Klein and Goldberger (1955).
The data from 1929 to 1950 are used to train ANN. Then the network is used to generalize
on out-of-sample cases in 1951 and 1952. Results are compared with those of the same

period reported in the original work of Klein and Goldberger (1955). Although the network
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estimated 12 variables, only 10 variables have similar error information reported in the
original work. One notes that, in Klein and Goldbeger (1955), error on index of hourly
wages w is reported in the difference with its previous value (w, - w,,), and the error of
private liquid assets L, is reported in a logarithmic format. To avoid introducing further
error in re-estimation and re-transformation of final results, this study compares only the
variables having compatible format.

The experiments conducted herein also seek to evaluate the performance of GA in
selecting a parsimonious set of input variables. Besides selecting the appropriate ANN
configuration for network training, GA is used to select the most relevant variables that
contribute to a more accurate approximation of output in the related module.

7.4. FINDINGS AND DISCUSSION
7.4.1. Estimation and Forccasting with Modular ANN

Using the full set of input variables described in the KG Model, GA is implemeted
to select only the optimal network configuration for the instrumental stage and the final
stage. GA selects a configuration of 45-15T-11T for the recurrent module, and 45-14L-1T
for the standard module. For each module, the selected network configuration is
implemented and trained in 30 runs, each run lasting for 5000 epochs. Minimum and
maximum ANN error from the 30 runs are recorded. This results in two streams of
instrumental estimations representing the bound of errors on estimations from 30 runs. The
ANN performance is evaluated for learning and forecasting from each stream of instrumental
estimations. GA selects a configuration of 12-15L-12T for the gating network at the final

stage. Maximum and minimum errors from estimation with the two streams of instrumental
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estimations are recorded. This study does not impose the assumption of normality on the
estimated residuals. Consequently, the significance tests have not been conducted on the
final estimations. However, the residuals from these estimations are recorded for future
analyses with conventional statistical methods.

Results in Table 7.1 indicate the range of errors for in-sample estimation from a
network with minimum/maximum error at the instrumental stage and/or minimum/maximum
error at the final stage. Exception in learning C and using instrumental estimation with
maximum error to learn Y and Wp, the ANN performance in terms of SSE is superior than
those reported in Klein-Goldberger (1955). Total SSE for the variables estimated in Klein-
Goldberger (1955) is 344.0039. Total SSE for the ANN estimations with minimum error at
the intrumental stage and minimum error at the final stage is 41.4183. Total SSE for the
ANN estimations with minimum error at the intrumental stage and maximum error at the
final stage is 45.0717. Total SSE for the ANN estimations with maximum error at the
instrumental stage and minimum error at the final stage is 184.9078. Total SSE for the ANN
estimations with maximum error at the instrumental stage and maximum error at the final
stage is 241.8141. In forecasting for 1951 and 1952, with the exception of C, ¥'and Wp, the
residuals resulted from ANN forecasting are lower than those reported in Klein-Goldberger.
7.4.2. Estimation and Forecasting with Sets of Modular Variables Selected by GA

In this experiment, at each stage of instrumental estimation, besides selecting an
appropriate configuration for each module, GA also is used to select the most relevant
variables that contribute to a more accurate approximation of output. The top ten network

topologies for each module are presented in Tables 7.3 and 7.4 . GAs are run in 30 trials,

-135-



each trial evolves in 30 generations of 30 strings. One notes that hyperbolic tangent transfer
function is selected for output nodes of both modules. But for each set of selected input
variables, GA also finds an appropriate network configuration that provides the minimum
estimation error.

For the recurrent module, the top GA selection contains 33 variables from the input
set. i.e.. all except D,\.( L)), Fe. (Wg)... P., Tp, Ta, p, p.i, p.», pa, and pi. The
corresponding ANN configuration for this module is 33-15T-11T.

For the standard module, the top GA selection contains 38 variables from the input
set, i.e., all except Y., w,.» T, D, Fe, and Tp. The corresponding ANN configuration for
this module is 38-9L-1T.

One notes that D, |, Fe, and Tp are not selected for both modules. The ANN
configuration selected for the final stage is 12-15L-12T.

Results reported in Tables 7.5 and 7.6 show that the performance of ANN in learning
and forecasting is improved in comparison with those reported in the previous section.
Unless instrumental estimation containing maximum error being used in the estimation of
C and Wp, the SSE of all estimations are lower than those estimated by Klein-Goldberger
and ANN with full input set.- Total SSE for the ANN estimations with minimum error at the
intrumental stage and minimum error at the final stage is 37.9853. Total SSE for the ANN
estimations with minimum error at the intrumental stage and maximum error at the final
stage is 55.1164. Total SSE for the ANN estimations with maximum error at the
instrumental stage and minimum error at the final stage is 38.5591. Total SSE for the ANN

estimations with minimum error at the instrumental stage and minimum error at the final
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stage is 60.2807. In forecasting for the period 1951 and 1952, residuals of all except those
of C, Yand Wp are lower than the forecast from Klein-Goldberger and ANN with full input
set.

7.4.3. Estimation and Forecasting with Union Set of Modular Variables Selected by GA

Although each module could function well with a particular set of related input
variables. but in a system as a whole. the more informative variables the network has, the
more it can learn effectively about the patterns in the problem space. To assess this
possibility, the union set of selected variables in two instrumental modules are used for
network training. The GA is used to select the appropriate configuration for each module
at each stage of estimation.

The union set of variables contains 42 variables, all but D, Fe, and Tp. The
corresponding network configuration is 42-13T-11T for recurrent module, 42-12L-11 for
standard module, and 12-12T-12T for the final stage.

Except for using instrumental estimation with maximum error of C, Y and W, results
reported in Table 7.7 show that this union of variables and network selection provide the
most accurate ANN performance for in-sample learning experiments. Total SSE for the
ANN estimations with minimum error at the intrumental stage and minimum error at the
final stage is 12.9667. Total SSE for the ANN estimations with minimum error at the
intrumental stage and maximum error at the final stage is 50.3069. Total SSE for the ANN
estimations with maximum error at the intrumental stage and minimum error at the final
stage is 26.74. Total SSE for the ANN estimations with maximum error at the instrumental

stage and maximum error at the final stage is [86.4155. In forecasting for the period 1951
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and 1952, results in Table 7.8 show an unsatisfactory ANN performance on C, Y and Wp.
However, forecasts for other variables have smaller residuals than those used full set and
modular set of variables.

7.4.4. Estimation and Forecasting with Union Set of Modular Variables

Controlled for ANN Architecture

To validate the effectiveness of the union set of selected variables, the configuration
of gating network for ANN learning with full input set is used as controlled architecture.
This final stage has a network configuration of 12-15L-12T. The network is used to map the
stream of instrumental estimations (resulted from using the union set of input variables) to
their actual output values. Then the results are compared with those using an appropriate
gating network configuration (12-12T-12T) reported in the previous section.

Results reported in Tables 7.9 and 7.10 show that the performance of ANN
decreases. [t is lower then the one using full set with optimal configuration, as well as the
one using union set with optimal configuration. Total SSE for the ANN estimations with
minimum error at the instrumental stage and minimum error at the final stage is 49.1934.
Total SSE for the ANN estimations with minimum error at the instrumental stage and
maximum error at the final stage is 53.3079. Total SSE for the ANN estimations with
maximum error at the instrumental stage and minimum error at the final stage is 212.4023.
Total SSE for the ANN estimations with maximum error at the instrumental stage and
maximum error at the final stage is 246.3837. Forecasts for 1951 and 1952 also have larger
residuals than those using the union set of variables and corresponding network

configuration.
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The reason is the streams of data resulted from instrumental estimations with the full
set of inputs versus the union set of selected inputs contain different pattern information.
These patterns can only be learned well with an appropriate ANN configuration. The results
show that the union set contains effective information on patterns of the problem space for
a more accurate network estimation.

7.4.5. Concluding Remarks
From experiments with the Klein-Goldberger Model, this study offers the following

remarks on the implementation of ANN and GA in an intelligent system for

estimation/forecasting and its performance.

] The performance of ANN in approximating C, ¥, and Wp is not remarkable. The
estimation and particularly forecasting of these variables with ANN may need other
alternative architectures. This study is conducted from a multivariate perspective. An
alternative could be a three-stage ANN estimation in which the streams of
instrumental estimation, resulting from recurrent and standard modules, are used to
estimate each endogenous variable in a separate instrumental module. Then, these
single equation estimations are aggregated into a gating network to account for their
contemporaneous and simultaneous effect. With the mixture-of-experts architecture,
one can have many alternative ANN designs by dividing a problem space into
refined domains to learn modular patterns better before aggregating them into a final
result.

o In contrast to the belief that the more information the network has the better its

performance becomes, this study shows that only relevant information helps. The
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presence of some “irrelevant” information may in fact decrease the performance of
the ANN. The effectiveness of information can be assessed by GA in relation to the
performance of ANN. The integrated ANN and GA helps in implementing a step-
wise selection similar to the traditional method.

Each data stream of instrumental modular estimations carries different information
on patterns of the problem sub-spaces. As one changes the boundary of these sub-
spaces, i.e., different partitions of input space into instrumental modules, the content
of these data streams will change. Consequently, in the final stage of estimation, one
needs an appropriate gating network configuration to effectively aggregate
information on patterns of the sub-spaces. This could be overlooked in the case
where one has the same number of modules for different partitions of the input
space.

[n ANN learning, one may not have any problem with the mis-specification of input
variables for a system of equations, and consequently for its endogenous variables.
This study does not prescribe the influence of specific inputs on outputs.
Apparently, a specific set of input variables will have more effect on a particular
output. However, either the GA selects the relevant information and the appropriate
configuration in network training, or the network learning algorithm tries its best to
produce a mapping with least errors between network outputs and target values. This
finding is particularly useful in data mining in which one deals effectively and
efficiently with a mass of information without the need of subjective data selection

and model specification.
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Table 7.3

Input Variables and Network Architecture Selected by GA:
Recurrent Module of Instrumental Stage

ANN Topology MSE

33-15T-11T 9107
28-11T-11T 1.0130
29-15T-11T 1.0394
22-15T-11T 1.0512
30-10T-11T 1.0933
24-14T-11T 1.1292
25-13T-11T 1.1529
27-9T-11T 1.2012
21-15T-11T 1.2718
20-15T-11T 1.3470
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Table 7.4

Input Variables and Network Architecture Selected by GA
Standard Module of Instrumental Stage

ANN Topology MSE

38-9L-1T 1646
20-3L-1T 1889
37-10T-1T .1908
23-12L-1T 2013
19-12L-1T 2016
27-12L-1T 2069
15-13L-1T 2078
22-14L-1T 2085
21-8L-1T 2242
43-15L-1T 2315
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CHAPTER 8

Conclusion

8.1. SUMMARY OF FINDINGS
® On the Effectiveness and Efficiency of Mixture of ANN Learning

This study provides evidence that an ANN in a mixture-of-experts network
architecture has a superior performance to traditional estimations. Its performance also is
superior to the one of a large single network. The advantage of the framework is that it can
account for patterns of different types of variables, in this case, the temporal and non-
temporal variables of an economic system. By means of instrumental estimations resulting
from either intermediate or modular expert-networks, it facilitates the indepth study of
particular input or group of inputs in the problem space. At the same time, the framework
considers the simultaneous as well as contemporaneous effects in the economic system from
a multivariate perspective.
® On the Effectiveness of GA Selection

With controlled experiments, this study provides evidence that GA has the ability to
select the optimal parameters for efficient network training. Sensitivity analyses also show
that the network configuration selected by the GA in terms of number of hidden nodes/layers
and transfer function is the most effective one.

In fact, the integration of GA and ANN has the ability of a stepwise selection of input

-151-



variables for a nonlinear, nonparametric approximation of a problem space. It selects the
most relevant input and then a corresponding function approximator ( i.e., an appropriate
ANN architecture) to learn accurately patterns of the problem space.

® On the Efficiency of ANN Estimation/Forecasting

This study confirms the ability of ANN in function approximation to any degree of
accuracy. With ANN, one can overcome the restrictions in model specification and variable
selection of traditional estimation methods. Its in-sample learning errors are absolutely lower
than any other traditional estimation methods.

However, the merits of a Decision Support System in general, and a forecasting
system in particular, is to use its stored knowledge about the past in order to provide useful
suggested solution for the future, e.g., an accurate forecast. Using ANN in a forecasting
system and providing it with abundant information about the problem space, the network
should learn patterns from past data and approximate the future well.

Evidence from this study shows that, whenever the network learns a particular pattern
well, its prediction follows future patterns closely, provided that these patterns are not
extremely different from those that the network has stored in its knowledge. In the case of
predicting new emerging patterns, this study highlights some behavior of ANN when
forecasting future patterns that it has not learned. In contrast to the remarks reported in
literature that the network learns and projects the recent extreme trend, this study finds that

the network provides a moderate projection into the future instead.
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8.2. IMPLICATIONS OF THIS STUDY
® [mplications for Theory

This study empirically shows that ANN, as a computing tool, can overcome
restrictions of traditional methods in the estimation and forecasting of simultaneous,
structural equation systems. One of the strong assumptions in econometric and traditional
statistics is the linear relationship of variables in a model. In addition, there are many
assumptions being imposed on the behavior of variables and time series in order to make
available estimation methods feasible (Mills, 1990). Using ANN as a universal function
approximator, without any constraints and prescriptions on data and functional models, one
can approximate the underlying relationship between input-output patterns well to arrive at
an accurate estimation.

This study also shows that GA, as a search tool, can overcome the sub-optimality in
model identification and variable specification. With the integration of ANN and GA, one
can build forecasting systems without the need for a specific theoretical model. Although
expert’s knowledge on the problem domain is valuable in model identification and variable
specification, it is not necessary in order to build an effective and efficient forecasting
system. With an abundance of information. GA should be able to search through the mass
of data to select the most appropriate variables which positively contribute to the
accurateness of forecasting. In addition, it also selects the most appropriate ANN
configuration in order to approximate well the patterns of selected data.
® [mplications for Methodology

This study adheres to the Machine Learning field in Artificial Intelligence study in
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building Decision Support Systems, particularly intelligent forecasting systems. The study
provides an effective integration of ANN and GA to exploit the powerful computing and
search ability of these emerging technologies. In a mixture-of-experts network architecture,
modular networks are used to address the peculiarity of individual patterns. Then the GA is
implemented to select the appropriate input for the task and corresponding network topology
to leam these patterns.

Particularly in business forecasting, modular networks are implemented in order to
handle a mix of temporal and non-temporal data patterns without the need to prescribe data
behavior and a priori model. The mis-specification of forecasting model may not be a
serious issuc as the estimation crrors at the early instrumental stages are rectified at the final
stage of the integrated network. However, too much error in instrumental estimation
definitely affects the performance of the network as it has to try harder to detect signals from
a noisy stream of data. A GA integrated with an ANN acts as a nonlinear stepwise selection
of relevant variables. GA should be able to select input variables which contribute the most
to network performance.

In highlighting the behavior of network errors in estimation and forecasting, the
experiments also show that one should train networks with an abundance of information
about the problem space. ANN should learn the maximum and minimum levels of related
variables in order to generalize well on unseen cases.
® [mplications in Practice

In proposing a unified framework of GA and ANN for building intelligent forecasting

systems, this study applies emerging technologies in Artificial Intelligence, particularly those
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in Machine Learning area to solve business problems. Previously, ANNs were used mostly
to learn physical patterns. Recently, ANN and GA are used as a computing tool to overcome
the restrictions of traditional estimation methods, particularly, the assumptions on linearity
and the functional relationships among variables. The investigation undertaken in this study
supports the ability of ANN and GA as a versatile intclligent technology to solve a general
family of business problems, namely forecasting problems involving many temporal and
non-temporal variables.

In particular, this study presents an effective implementation of modular networks
to solve a mix of economic data with the integration of recurrent and standard networks. It
also proposes the use of maximum and minimum errors to represent a bound of error on
network learning and to serve as an efficient means to assert the accuracy of network
estimation.

The proposed integration not only serves as a foundation to build effective Decision
Support Systems, but it is also useful in the emerging ficld of Data Mining. In this field,
Artificial Intelligence tools are used to discover and acquire unknown knowledge from the
mass of information. Without a priori restrictions on the behavior of data and the prescribed
functional relationships, the proposed network is able to discover unknown patterns in socio-
economic information.

8.3. LIMITATIONS OF THIS STUDY

This study is conducted from a Machine Learning perspective in building Decision

Support Systems. The focus is on the aggregation of Al tools in an effective intelligent

forecasting system and to study its behavior. As such, it did not investigate other possible
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improvements of traditional estimation and forecasting methods besides those reported in
the literature.

This study uses the framework and available data of Klein and Klein-Goldberger
Models as research context. Even these models represent a general context involving
temporal and temporal economic events, the findings of this study may still be problem-
specific. In addition, the study does not impose the assumption of normality on the behavior
of estimation residuals for significant tests with conventional statistical methods. However,
the findings and documentation of this study should serve as useful benchmark for future
comparative studies on performance of alternative methods.

This study is conducted from a multivariate perspective to estimate simultaneous,
contemporaneous variables of an economic system. All endogenous variables are estimated
simultaneously in appropriate modules at the instrumental stage or final stage. As such, some
peculiarities of individual variables may not be modeled and studied intensively. There are
other possibilities in building modular networks. For instance, in a three-stage ANN
estimation. one can build modular networks to estimate single equations of the system before
aggregating them with a final network to account for simultaneity.

This study uses an early stopping rule in training to assure a better generalization of
the network. The selection of network parameters and architecture is based on the
simplicity of network configuration and on the accuracy of the network estimation. As such,
the speed of convergence was not addressed in GA search. In a large problem setting, where
the time to reach convergence is critical, GA should account for this issue explicitly when

selecting the appropriate learning parameters.
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8.4. EXTENSIONS OF THIS STUDY IN FUTURE RESEARCH
® [dentification of Lag Effect with GA

In this study, temporal information is represented in a static manner, i.e., the value
of an economic variable corresponding to each time lag is represented as an input. If an
arbitrary number of /time lags of a variable are represented in / network inputs, one can use
GA to search for the most important lagged impact in forecasting. The memory of a time
series is the longest lag selected by GA which has positive contribution to network
estimation. The integration of ANN and GA will help to overcome the linearity in
correlograms of traditional methods of time series model identification.
® Modular Estimation of Temporal Variables having Different Lags

According to the specification of the original model, instrumental estimations in this
study focus on temporal variables of one lag. In a different context, one can have a modular
estimation of a mix of temporal variables having different lags. Consequently, one can have
many recurrent modules at the instrumental stage, each of which will handle variables
having the same number of memory length.
® \Modular Estimation of Single Equation of the System

The estimations in this study are from a multivariate perspective in which network
output (endogenous variables) are computed simultaneously. An alternative is modular
three-stage estimation in which modular networks are implemented to learn the peculiarity
in patterns of individual variables before aggregating instrumental estimations of
endogenous variables at the final stage. This approach will require many modules in the

integrated network, and the corresponding network design and computing. In any case, the
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instrumental estimation of single equations with ANN should provide similar information
to traditional single equation estimation methods.
® Seasonal Patterns of Economic Data

This study uses yearly data of the US economy. In a situation involving forecasting
with seasonal patterns, e.g., the Wharton model (Evans and Klein, 1967), one can use
indicator variables for seasonal effects. An indicator also is appropriate for event studies in
investigating the reaction of an economic system given an unusual external shock. With the

indicator variable as input, the network will be useful in sensitivity (what-if) analyses.

This study has investigated and presented a comprehensive foundation for an
effective decision support system to assist users making better decisions in a general
business forccasting problem. Although there still exist limitations and other possible
improvements, the findings of this study should contribute positively to the development of
theory. methodology and practice of using Machine Learning and Al tools to build
intelligent forecasting systems. With all of its limitations, this endeavor has contributed to
the noble goal of Artificial Intelligence study in building and introducing smart machines
to assist human beings in their daily activities, in this case, solving a class of business

problems.
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Appendix 1

Data for Klein Model I Estimation

time C P Wp I K Y Wg G T
1920 39.8 12.7 288 2.7 1828 43.7 2.2 24 34
1921 419 124 255 -02 1826 40.6 2.7 39 77
1922 450 169 293 19 1845 49.1 29 32 39
1923 492 184 341 52 189.7 554 29 28 47
1924 506 194 339 3.0 192.7 564 3.1 3.5 38
1925 526 20.1 354 51 1978 58.7 3.2 33 55
1926 55.1 196 374 56 2034 603 3.3 33 7.0
1927 562 198 379 42 2076 61.3 3.6 40 6.7
1928 573 21.t 392 3.0 2106 640 3.7 42 42
1929 57.8 21.7 413 5.1 2157 67.0 4.0 41 4.0
1930 550 156 379 1.0 2167 57.7 4.2 52 1.7
1931 509 114 345 -34 2133 50.7 4.8 59 15
1932 456 7.0 29.0 -62 207.1 413 353 49 83
1933 46.5 11.2 285 -51 2020 453 5.6 3.7 54
1934 48.7 123 306 -3.0 1990 489 6.0 40 6.8
1935 513 140 332 -13 1977 533 6.1 44 72
1936 577 176 368 21 1998 61.8 74 29 83
1937 587 173 410 20 201.8 65.0 6.7 43 6.7
1938 57.5 153 382 -19 1999 612 7.7 53 74
1939 616 190 41.6 1.3 2012 684 7.8 66 89
1940 65.0 21.1 450 33 2045 741 8.0 74 96
1941 69.7 235 533 49 2094 853 85 138 116

Source: Klein (1950)
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Appendix 2

Min-Min Residuals of 2-Stage ANN Estimation (1000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
0.360311 1.528929 -0.011954
0.736206 0.236169 -0.015743
0.432469 -0.921835 -0.738235
0.471651 -0.154280 0.552365
-0.141462 0.080263 -0.211895
-0.504999 0.044576 -0.242458
-0.656745 0.064043 -0.153537
-0.005357 0.176919 0.818062
0.769580 -0.475278 -0.593064
0.463753 0.061498 -0.022514
0.648824 -0.638130 -0.117130
-0.417905 -0.193125 0.217180
-0.028877 0.782393 0.355985
-0.808826 -0.121927 0.032569
0.340850 0.041501 -0.206643
-1.445934 0.922378 -0.000433
0.739304 -0.421848 -0.036950
-0.246384 -0.362567 -0.033045
-0.254919 0.473433 0.021982
0.001221 1.108990 0.237232
-0.284557 -2.361256 -0.376782
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Appendix 3

Min-Max Residuals of 2-Stage ANN Estimation (1000 epochs)

for Klein Model I
e(C) e(Wp) e(T)
1.131532 1.326138 -0.002029
0.990185 0.071567 -0.070164
0.518731 -1.048158 -0.753569
0.370768 -0.085101 0.558064
-0.212926 0.019933 -0.186135
-0.666010 -0.073943 -0.206856
-0.697150 0.167238 -0.127334
-0.028325 0.369691 0.862541
0.705283 -0.445370 -0.559408
0.544342 0.144094 -0.001322
0.246229 -0.862785 -0.219805
0.535513 -0.330671 0.406732
0.281460 0.670372 0.384700
-0.862144 -0.223800 0.008756
-0.025460 0.133927 -0.248217
-1.547301 1.163852 0.013228
0.761105 -0.239933 -0.007471
-0.558758 -0.265086 0.007400
0.007346 0.671572 0.088566
0.497673 1.030972 0.176928
-0.000011 -3.002785 -0.504329
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Appendix 4

Max-Min Residuals of 2-Stage ANN Estimation (1000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
0.603784 1.211908 -0.029487
0.248547 -0.123946 -0.033460
0.426629 -1.239141 -1.022296
0.428698 0.030565 0.979262
0.412455 0.368841 -0.176416
-0.445688 -0.044268 -0.392181
-0.655154 0.284563 0.100200
-0.215588 0.332192 1.091555
0.461467 -0.485215 -0.646675
0.232548 0.046072 -0.046239
0.407209 -0.282631 -0.212958
-0.098970 -0.683748 0.602312
0.146111 0.638638 0.294565
-0.475555 -0.011964 -0.158459
-0.025521 -0.030570 -0.106616
-1.279369 1.070682 0.039741
0.686471 -0.673717 -0.251615
-0.052872 -0.011382 0.167677
-0.334978 0.145594 0.109050
0.489670 1.088654 0.089477
-0.077098 -2.563268 -0.395570

-174-



Appendix §

Max-Max Residuals of 2-Stage ANN Estimation (1000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
1.428430 1.422968 -0.089117
0.797047 -0.338658 0.208019
0.116807 -1.560468 -1.027363
0.333525 -0.027247 0.958460
0.134150 0.401960 -0.378302
-0.702364 0.044115 -0.679446
-0.601379 0.410497 -0.024183
0.005393 0.590012 1.072173
0.653697 -0.303624 -0.711460
0.386528 -0.236277 0.099969
0.334398 -0.680943 -0.237040
-0.910963 -0.349424 0.515142
-0.043835 1.017673 0.311334
-0.414088 0.075097 -0.119260
0.122283 -0.116679 -0.022701
-1.225455 1.081592 -0.021539
0.645043 -0.613121 -0.244938
0.129940 -0.053970 -0.024577
-0.316377 0.297125 0.156231
0.266541 1.178806 0.100504
-0.958049 -3.238358 -0.302918
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Appendix 6

Min-Min Residuals of 2-Stage ANN Estimation (5000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
0.062116 1.129910 0.038300
0.249245 0.053872 -0.054155
0.248013 -0.643339 -0.471605
0.168993 -0.302134 0.402436
0.057581 0.331087 -0.004532
-0.063848 0.347761 -0.000001
-0.558582 0.030347 -0.184448
-0.192689 0.010457 0.574360
0.610671 -0.476262 -0.701729
0.004467 0.235864 0.063952
0.251375 -0.145973 -0.016217
-0.055601 -0.080574 0.091278
-0.019398 0.615303 0.079599
-0.703521 -0.297773 -0.038236
0.513309 -0.055808 -0.179666
-1.007842 0.645541 -0.047772
0.809308 -0.715179 0.010137
0.071861 -0.178115 0.112594
-0.236024 0.063509 -0.093839
-0.118217 0.781506 0.158605
-0.235057 -1.229771 -0.178250
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Appendix 7

Min-Max Residuals of 2-Stage ANN Estimation (5000 epochs)

for Klein Model I
e(C) e(Wp) e(D)
0.553999 1.380148 0.088436
0.580803 -0.028439 -0.155651
0.455254 -0.959138 -0.494438
0.254088 -0.203211 0.383461
-0.042783 0.167745 0.047748
-0.430265 0.131296 0.000001
-0.619685 0.178640 -0.114881
-0.230431 0.240025 0.577911
0.439304 -0.436284 -0.699063
0.526722 0.278768 -0.010620
0.155992 -0.582642 -0.103285
-0.053644 -0.066353 0.590821
-0.210110 0.740799 0.164535
-0.742751 -0.060602 -0.085934
0.436282 0.110829 -0.280275
-1.092551 0.880878 0.044553
0.813260 -0.623043 0.101022
-0.052223 -0.438239 0.069829
-0.012891 0.172034 -0.054948
-0.089325 0.764118 0.172824
-0.025768 -1.572427 -0.263300
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Appendix 8

Max-Min Residuals of 2-Stage ANN Estimation (5000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
-0.000002 1.218117 0.038090
-0.291698 0.005653 -0.080600
0.089539 -1.038236 -0.745341
0.206534 0.074125 0.808249
0.460356 0.465101 -0.120296
-0.166933 0.003297 -0.312733
-0.444129 0.248891 -0.061857
-0.333092 0.167744 0.658472
0317573 -0.613694 -0.983926
0.043972 0.283167 0.239033
0.196363 0.038837 -0.171935
-0.181924 -0.782532 0.414693
0.300900 0.465504 0.097843
-0.238326 -0.097847 -0.113709
0.329993 -0.115760 -0.054570
-0.713672 0.900275 0.054066
0.714345 -0.979927 -0.269446
-0.225887 -0.046630 0.030215
-0.451269 -0.057756 0.090918
0.544106 1.016193 0.117468
-0.000011 -1.723325 -0.078288
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Appendix 9

Max-Max Residuals of 2-Stage ANN Estimation (5000 epochs)
for Klein Model I

e(C) e(Wp) e(D)

0.481748 1.330736 0.058435
0.184628 -0.053716 -0.093990
0.352979 -0.979940 -0.805108
0.336073 0.012849 0.891584
0.344561 0.393198 -0.099703
-0.499090 -0.053316 -0.294166
-0.643161 0.204088 -0.014160
-0.266637 0.150082 0.718235
0.356033 -0.580514 -0.986077
0.238644 0.260301 0.157189
0.435663 -0.031658 -0.114862
-0.561952 -0.169333 0.539826
-0.068497 0.750034 0.070008
-0.468131 -0.134374 -0.134349
0.246940 -0.242572 -0.084843
-0.788795 1.003570 0.032262
0.879453 -0.754307 -0.265257
-0.031475 -0.539565 0.013914
-0.338823 -0.055109 0.091847
0.254524 1.209293 0.151306
-0.668338 -1.68168 -0.021147
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Appendix 10

Min-Min Residuals of 2-Stage ANN Estimation (10000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
-0.000002 0.723181 0.057511
0.208641 -0.070903 -0.092158
0.035634 -0.666288 -0.333336
0.074332 0.113306 0.291929
0.053656 0.407003 0.107788
0.019331 0.238676 0.000001
-0.354343 0.103357 -0.166295
-0.292744 0.193196 0.477417
0.373615 -0.594563 -0.731973
0.045158 0.254415 0.096862
0.166109 -0.081524 -0.104947
0.125414 -0.492245 0.379726
-0.026138 0.618269 0.038363
-0.536548 -0.208162 0.001915
0.522269 0.053395 -0.245009
-0.662982 0.350501 0.041065
0.817292 -0.858021 -0.006487
-0.237526 0.036988 0.130850
-0.166319 0.082083 -0.072048
-0.035957 0.443970 0.124021
-0.091335 -0.729016 -0.122857
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Appendix 11

Min-Max Residuals of 2-Stage ANN Estimation (10000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
-0.000002 0.569923 0.084074
0.314213 -0.384761 -0.142667
0.329156 -0.599912 -0.500758
-0.023656 -0.125243 0.430328
0.005652 0.396299 0.031803
-0.062074 0.367578 0.000001
-0.56565 0.033319 -0.136818
-0.310273 0.182816 0.519713
0.600898 -0.420422 -0.738924
0.092182 0.041193 0.057670
0.149458 -0.264957 -0.096484
-0.084447 -0.167080 0.339554
-0.032063 0.879871 0.037860
-0.544479 -0.248785 -0.019008
0.637965 0.154687 -0.145178
-0.869968 0.517932 -0.027068
0.780602 -0.589157 0.121701
-0.024460 -0.194186 0.084917
-0.340387 0.079039 -0.138804
0.068802 0.659935 0.113322
-0.000011 -1.409879 -0.107594
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Appendix 12

Max-Min Residuals of 2-Stage ANN Estimation (10000 epochs)

for Klein Model I
e(C) e(Wp) e(])
-0.000002 1.371143 0.058930
-0.282940 0.211024 -0.076564
-0.019477 -0.788072 -0.703065
0.153822 -0.054797 0.753031
0.398074 0.419546 -0.149399
-0.194975 0.035074 -0.293776
-0.329772 0.153928 -0.104863
-0.232194 0.059811 0.613941
0.333530 -0.384213 -0.875565
0.023945 0.245569 0.173824
0.027505 0.033642 -0.122289
0.119246 -0.444721 0.542046
0.002251 0.450617 -0.010493
-0.303199 -0.317108 -0.182206
0.429328 -0.289939 -0.065969
-0.625014 0.708221 0.068312
0.764199 -1.068333 -0.285365
-0.082397 0.131524 0.067485
-0.333067 -0.034696 0.097396
0.128029 0.896816 0.077941
-0.484706 -1.394814 -0.002635
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Appendix 13

Max-Max Residuals of 2-Stage ANN Estimation (10000 epochs)

for Klein Model I
e(C) e(Wp) e(D)
0.832742 1.019306 0.052095
-0.041916 -0.019273 -0.158488
0.208897 -0.911737 -0.768882
0.029036 0.179861 0.870799
0.396372 0.474332 -0.027972
-0.219717 -0.027357 -0.181903
-0.570766 0.253683 0.021222
-0.359124 0.248479 0.696631
0.510181 -0.619798 -1.005892
0.230164 0.166341 0.151674
0.069444 0.012150 -0.149997
-0.027719 -0.465693 0.538826
0.004425 0.769556 0.065354
-0.419090 -0.170105 -0.130351
0.153175 -0.241611 -0.058766
-0.672836 0.649131 0.089134
0.828309 -0.868774 -0.219017
0.105473 -0.076938 0.051488
-0.390565 -0.123678 0.047330
0.101387 1.003479 0.057652
-0.592921 -1.428986 -0.027808
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Appendix 14

Min-Min Residuals of Modular ANN Estimation (1000 epochs)

for Klein Model [
e(C) e(Wp) e(l)
-0.000002 0.603565 -0.014728
0.081356 0.171218 -0.120236
-0.085139 -0.204626 -0.183856
0.012949 -0.187914 0.344976
0.036925 0.372816 -0.031605
-0.102731 0.139978 0.000001
-0.077392 -0.047060 0.100376
-0.159745 -0.098933 -0.047272
0.449340 -0.392098 -0.319323
-0.218460 0.282774 0.084471
0.196760 -0.054062 -0.095893
-0.506384 -0.110207 0.423931
0.176487 0.527143 -0.122048
-0.328716 -0.110132 -0.125192
0.604716 -0.047931 0.177792
-0.353816 0.086204 -0.114408
0.580025 -0.457920 0.008708
0.103474 -0.133144 0.052739
-0.616083 -0.134019 -0.095071
0.023201 0.949738 0.034695
-0.767421 -1.019505 0.007913
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Appendix 15

Min-Max Residuals of Modular ANN Estimation (1000 epochs)

for Klein Model I
e(C) e(Wp) e(D)
0.129381 1.054781 -0.041023
0.046589 0.381211 -0.045182
-0.203296 -0.450582 -0.304437
0.069464 -0.182887 0.331285
0.361983 0.343881 -0.226285
-0.000719 0.177862 0.000001
-0.233890 0.021741 0.091873
-0.278954 -0.302928 0.020232
0.577529 -0.164185 -0.351823
-0.131111 0.300405 0.038732
-0.038321 -0.163269 -0.101643
0.085318 0.332499 0.651431
-0.108498 0.288279 -0.001917
-0.354087 -0.438406 -0.228015
0.389358 -0.406535 0.121549
-0.673572 0.486015 -0.083337
0.490880 -0.655544 0.216345
0.529198 0.106580 -0.006001
-0.512140 -0.136976 -0.089705
0.000946 1.043610 -0.074546
-0.977122 -1.536866 0.057993
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Appendix 16

MaxMin Residuals of Modular ANN Estimation (1000 epochs)

for Klein Model [
e(C) e(Wp) e(l)
0.816213 0.587423 0.129159
0.432800 -0.250359 -0.244209
0.187661 -0.883939 -0.531542
0.485800 0.386316 0.896346
-0.387796 0.014261 -0.254696
-0.073820 0.531156 0.000001
-0.630447 0.189935 -0.019065
-0.199857 0.017579 0.049069
0.596656 -0.571633 -0.570529
0.276619 0.159860 0.070354
0.029035 -0.188839 0.034409
0.464625 -0.519922 0.341798
0.105244 0.507750 -0.093369
-0.939109 -0.139846 -0.148583
0.088012 0.482724 -0.010258
-0.899776 0.688415 0.070125
1.082635 -0.944027 0.010750
-0.070385 0.131646 0.070880
-0.185835 -0.460157 -0.189244
0.011162 0.827309 0.210215
-0.555835 -1.139451 -0.130650
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Appendix 17

Max-Max Residuals of Modular ANN Estimation (1000 epochs)

for Klein Model I
e(C) e(Wp) (D)
0.259367 1.243156 -0.005069
0.581043 0.052100 -0.105022
0.401665 -0.855047 -0.641505
0.223589 0.233904 0.936935
-0.153837 0.052000 -0.280264
-0.114645 0.209333 0.000001
-0.590793 0.270055 0.018823
-0.293565 0.238084 0.106316
0.499026 -0.770299 -0.730441
0.253338 0.307752 0.067264
0.279901 -0.039009 0.163869
-0.184671 -0.530016 0.371322
0.591663 0.444628 0.002940
-0.642184 -0.419923 -0.275334
-0.029153 -0.055015 -0.023066
-1.000140 0.814471 0.111379
0.683724 -0.775665 0.087309
-0.117313 -0.011455 -0.024367
-0.374998 -0.112226 -0.136135
0.846649 1.132874 0.323284
-0.075938 -2.077424 -0.351396
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Appendix 18

Min-Min Residuals of Modular ANN Estimation (5000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
0.611974 0.228693 0.018888
0.119835 0.136390 -0.115698
-0.148860 -0.274667 -0.156250
0.031077 0.001558 0.242256
0.074252 0.208894 -0.087944
-0.080747 0.194875 0.000001
0.018185 0.018747 0.165254
-0.123868 0.090100 -0.021626
0.187038 -0.408013 -0.249061
-0.079731 0.184396 -0.003646
0.052084 -0.014351 -0.013839
0.132788 -0.147249 0.245303
-0.007549 0.300745 0.001974
-0.537322 -0.077749 -0.097363
0.258002 0.073445 0.086402
-0.092853 -0.121842 -0.067265
0.196339 -0.125946 0.118385
0.141090 -0.175502 0.024785
-0.294386 0.007132 -0.100170
0.240379 0.281479 0.011908
-0.804195 -0.096951 -0.041381
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Appendix 19

Min-Max Residuals of Modular ANN Estimation (5000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
0.292741 0.372728 0.009595
0.141388 0.378352 -0.086600
-0.081596 -0.383432 -0.218257
-0.036672 -0.011771 0.302669
0.023756 0.235864 -0.171801
-0.170812 0.237638 - 0.000001
0.012658 0.011919 0.063523
-0.147038 -0.058925 0.007101
0.393916 -0.296292 -0.364731
-0.227669 0.097913 0.054439
0.087820 0.095665 -0.040231
-0.068140 0.001440 0.595848
0.225243 0.169271 -0.023272
-0.449580 -0.297836 -0.251366
0.330646 -0.018092 0.069505
-0.052116 -0.159276 0.009614
0.375748 -0.114597 0.059036
0.090092 -0.038028 -0.011725
-0.500562 -0.049471 -0.054887
0.226891 0.438633 0.045919
-0.762279 -0.731759 -0.056340
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Appendix 20

Max-Min Residuals of Modular ANN Estimation (5000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
-0.000002 -0.000006 0.078127
-0.296181 0.292579 -0.228636
0.284455 -0.064340 -0.200206
0.142134 0.160608 0.491481
-0.114282 -0.425734 -0.289754
-0.266267 0.356542 0.000001
-0.390414 -0.040499 -0.021877
-0.072770 0.116898 0.053286
0.753326 -0.224042 -0.412562
-0.224491 0.056730 0.074944
-0.088053 0.088840 -0.104568
0.047900 -0.156218 0.287874
-0.048260 0.054667 0.081865
-0.172919 0.104498 -0.021332
0.503204 -0.224910 -0.079248
-0.205054 0.106708 0.027847
0.471974 -0.507004 0.089468
0.108551 -0.022113 0.011401
-0.569322 0.350184 -0.035438
-0.086861 0.102875 0.034682
-0.000010 -0.238988 -0.112488
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Appendix 21

Max-Max Residuals of Modular ANN Estimation (5000 epochs)

for Klein Model I
e(C) e(Wp) e(D)
-0.000002 1.154083 0.071174
-0.101730 0.106511 -0.159366
-0.227203 -0.895860 -0.571419
0.365652 0.440733 0.751692
0.020930 -0.023352 -0.331870
-0.094663 0.496683 0.000001
-0.344684 0.148836 0.006088
0.083850 -0.015670 0.063514
0.286544 -0.567315 -0.579277
-0.178413 0.458280 0.142740
-0.079813 -0.189888 -0.182311
0.413889 -0.052084 0.490136
-0.176765 0.342758 -0.004748
-0.485908 -0.691253 -0.215469
0.657664 0.156678 0.117645
-0.270145 0.125694 0.072041
0.624181 -0.804008 0.022326
-0.140583 0.311604 0.084184
-0.466634 -0.180036 -0.226288
0.233856 0.761299 0.172241
-0.845660 -1.145669 -0.068599

-191-



Appendix 22

Min-Min Residuals of Modular ANN Estimation (10000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
0.253885 -0.000006 0.024519
-0.032352 0.175431 -0.133144
-0.019508 -0.110147 -0.188630
0.093245 -0.138804 0.240967
0.003390 0.100450 -0.091276
-0.134748 0.029073 0.000001
0.109284 0.090498 0.205106
-0.010579 0.097165 -0.032179
0.035609 -0.145531 -0.216011
-0.110825 0.029115 -0.000590
0.164793 -0.123943 -0.035892
0.070265 -0.146549 0.220213
-0.061707 0.297220 0.001303
-0.263305 -0.049535 -0.062260
0.093642 0.009064 0.102008
-0.009940 -0.110791 -0.040599
0.210027 0.113194 0.056014
0.004337 0.086457 0.022536
-0.261819 -0.175489 -0.097723
0.130081 0.115566 -0.024987
-0.539798 -0.376984 0.110514
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Appendix 23

Min-Max Residuals of Modular ANN Estimation (10000 epochs)

for Klein Model [

e(C) e(Wp) e(l)
0.535539 -0.000006 0.055440
0.024570 -0.093844 -0.142596

-0.083507 -0.031522 -0.173226
-0.154462 -0.084132 0.245029
0.105322 0.267164 -0.151604
-0.027128 0.126897 0.000001
-0.011275 -0.106226 0.115537
0.026977 0.030549 0.067492
0.156474 -0.184354 -0.367931
-0.193970 0.090692 0.056200
0.092149 0.045265 -0.106592
-0.191713 -0.083891 0.452128
0.228374 0.137476 -0.059950
-0.347949 -0.102998 -0.148146
0.334773 0.158173 0.118539
-0.162292 -0.180653 -0.034309
0.346146 -0.184315 0.016583
-0.003811 0.009229 0.028692
-0.316827 -0.033861 -0.053760
0.184258 0.366695 -0.068567
-0.780734 -0.816590 0.307033
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Appendix 24

Max-Min Residuals of Modular ANN Estimation (10000 epochs)

for Klein Model I
e(C) e(Wp) e(l)
-0.000002 0.060207 0.038813
0.183140 0.048585 -0.109421
-0.239547 -0.078733 -0.372685
0.176703 0.135412 0.495812
0.148905 -0.240462 -0.400224
-0.084779 0.268564 0.000001
-0.299155 0.017187 -0.069502
0.197192 -0.076286 0.040118
0.116634 -0.070233 -0.183529
-0.106171 0.095399 0.001786
0.021177 0.017471 -0.007948
0.221537 -0.143225 0.223761
-0.049713 0.319225 -0.131623
-0.528907 -0.111436 0.005153
0.443469 -0.075267 -0.033252
-0.231696 0.077747 0.073250
0.365067 -0.302738 0.112654
-0.057804 0.009572 0.032111
-0.290895 0.116000 -0.116552
0.098381 0.166386 -0.051101
-0.135379 -0.616635 0.088600
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Appendix 25

Max-Max Residuals of Modular ANN Estimation (10000 epochs)

for Klein Model [
e(C) e(Wp) e(l)
0.299455 1.251431 0.084537
-0.122513 -0.039418 -0.102895
0.064935 -0.887960 -0.564079
0.015231 0.463167 0.489807
0.025778 0.022497 -0.251136
-0.008463 0.621255 0.000001
-0.399165 0.151247 0.111382
0.229209 -0.048301 -0.032062
0.103145 -0.667683 -0.245289
-0.008167 0.462507 0.021618
-0.074313 -0.100334 -0.038139
0.108065 -0.172043 0.318682
0.089115 0.035475 0.004662
-0.461684 -0.457977 -0.226685
0.549617 0.279149 0.071677
-0.151790 0.055453 0.144434
0.248357 -0.999252 -0.076589
-0.018353 0.362862 0.175749
-0.477575 -0.128099 -0.295685
0.398529 0.846004 0.212878
-0.663264 -1.221032 -0.064454
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Appendix 26

Data for Estimation and Forecasting 195C-94

Year DLP DLY DLK DLC DLWp DLI

1949  -0.187463 20013859 0.015166 0.019758 0014742 -0.584414
1950  0.275980 0.110646 0.029429 0.084756 0.101850 0.685246
1951  -0.061500 0.187720 0.033206 0.148975 0.206876 0.152099
1952 -0.047932 0.082325 0.025444 0.068572 0.084448 -0.236952
1953 0.036220 0.071896 0.025847 0.073385 0.090335 0.041349
1954  0.025319 0.020847 0.022161 0.041702 0.001638 -0.129853
1955  0.264778 0.086541 0.033921 0.089702 0.097976 0.453765
1956  0.036022 0.105160 0.033767 0.082813 0.118122 0.029287
1957  0.003859 0.087112 0.029749 0.085536 0.083658 -0.094936
1958  -0.120886 0.052936 0.022857 0.056550 0.018989 -0.237240
1959  0.231974 0.073565 0.033725 0.081506 0.097060 0.417284
1960  -0.030911 0.058718 0.031712 0.057218 0.064821 -0.028826
1961  0.004469 0.053085 0.029502 0.042363 0.033910 -0.041623
1962 0.151500 0.073562 0.035978 0.071604 0.081367 0.231199
1963  0.086005 0.060779 0.038154 0.064207 0.063431 0.095797
1964  0.151208 0.084225 0.041942 0.086346 0.084485 0.134719
1965  0.199654 0.098249 0.050745 0.096352 0.094296 0.236896
1966  0.098571 0.112407 0.055340 0.109285 0.128060 0.139752
1967  -0.012300 0.103108 0.048848 0.087138 0.096480 -0.072712
1968  0.082343 0.136031 0.052884 0.136646 0.138017 0.130260
1969  0.010172 0.132774 0.058292 0.123114 0.145065 0.152973
1970  -0.063915 0.123393 0.049745 0.121159 0.109792 -0.104576
1971  0.225255 0.123212 0.062354 0.131139 0.113404 0.282041
1972 0.219404 0.135421 0.075166 0.134199 0.140700 0.255693
1973 0.319792 0.168097 0.091904 0.154546 0.175187 0.284707
1974  0.195026 0.179375 0.081888 0.175353 0.183028 -0.028571
1975 0.073311 0.171321 0.054667 0.189897 0.147135 -0.335972
1976  0.239401 0.157953 0.085441 0.166835 0.175387 0.516800
1977  0.236412 0.164633 0.115279 0.168517 0.178999 0.400141
1978 0.240646 0.192469 0.138914 0.182655 0.202182 0.313849
1979 0.198904 0.200432 0.141014 0.190938 0.205861 0.154991
1980 -0.015887 0.197519 0.107244 0.187931 0.183468 -0.149976
1981  0.037540 0.203438 0.130649 0.187794 0.191942 0.316590
1982 -0.207460 0.121068 0.081270 0.128585 0.110578 -0.369216
1983  0.218016 0.103439 0.091271 0.136565 0.101205 0.202405
1984  0.139361 0.139965 0.155126 0.124572 0.141566 0.654250
1985  -0.084149 0.104196 0.130248 0.115623 0.105980 -0.032400
1986  -0.113130 0.084479 0.111865 0.092932 0.084348 -0.031277
1987  0.390856 0.091362 0.104202 0.097749 0.100668 6.037000
1988  0.302114 0.109166 0.096369 0.115074 0.113679 0.022074
1989  -0.008226 0.114189 0.096763 0.111918 0.098556 0.100652
1990  0.153868 0.107528 0.078163 0.108138 0.101653 -0.126137
1991  0.079658 0.075235 0.051606 0.073734 0.065562 -0.350419
1992 0.116873 0.084810 0.057282 0.086903 0.082250 0.158818
1993 0.156833 0.070895 0.075556 0.081239 0.074804 0.343403
1994  0.172779 0.071800 0.093174 0.079793 0.077606 0.294085
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Appendix 27

Residuals of Estimation and Forecast 1950-79

for Klein Model I

Year e (DCL) e (DLWp) e (DLI)

1950 0.000738 -0.001426 -0.044557
1951 -0.005900 -0.015727 -0.004795
1952 0.002655 -0.006407 0.049802
1953 -0.001855 -0.000026 -0.006110
1954 0.005391 0.013401 -0.032477
1955 -0.000596 0.006221 0.005217
1956 0.004558 0.003442 0.010444
1957 -0.006058 0.008438 -0.048820
1958 -0.005485 0.004558 0.076789
1959 0.000269 -0.005541 0.006309
1960 0.003502 -0.003901 -0.028387
1961 0.007364 -0.008343 -0.022295
1962 0.000828 0.000759 0.008097
1963 -0.003809 -0.002379 0.024439
1964 -0.005001 0.005446 -0.021213
1965 -0.002188 0.000658 -0.000035
1966 0.005340 -0.000847 -0.013322
1967 0.002007 -0.007023 0.023174
1968 -0.004303 0.004135 -0.003249
1969 0.002267 -0.000148 0.014801
1970 0.012940 0.025829 0.135730
1971 -0.000378 0.010513 -0.214043
1972 -0.001172 0.023581 -0.020789
1973 -0.019488 -0.012935 -0.108934
1974 -0.035291 -0.017880 0.142211
1975 -0.052494 -0.008966 0.344684
1976 -0.029520 -0.010677 -0.340602
1977 -0.028325 0.004167 -0.158736
1978 -0.041593 -0.018065 -0.085826
1979 -0.049425 -0.025896 0.024245
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Appendix 28

Residuals of Estimation and Forecast 1955-84

for Klein Model I

Year e (DCL) e (DLWp) e (DLI)

1955 -0.002164 0.000850 -0.054964
1956 0.008566 -0.018810 -0.003124
1957 -0.003055 0.003654 0.013206
1958 -0.010855 0.008410 0.042159
1959 0.005842 0.001741 -0.011444
1960 0.004919 -0.005973 -0.005666
1961 0.005497 -0.001275 -0.030789
1962 0.001978 -0.002900 0.046374
1963 0.000778 0.000833 0.003482
1964 -0.004844 0.003507 0.002803
1965 -0.009025 0.001907 -0.000645
1966 0.004895 -0.005761 -0.008252
1967 0.005230 0.002955 -0.007493
1968 -0.000701 0.003696 -0.005368
1969 0.004181 -0.010749 0.013492
1970 -0.006080 0.011504 -0.001560
1971 -0.009788 0.016418 -0.004532
1972 -0.001036 -0.000700 -0.005859
1973 0.008199 -0.008168 0.005007
1974 -0.002859 -0.005288 -0.001485
1975 -0.016205 0.032386 0.236747
1976 0.004225 0.000990 -0.129273
1977 -0.003452 -0.009298 -0.029039
1978 -0.011043 -0.025313 -0.024846
1979 -0.018352 -0.027833 -0.013399
1980 -0.015337 -0.005429 0.291121
1981 -0.016259 -0.014977 0.071936
1982 0.041779 0.064944 0.750751
1983 0.030892 0.071159 0.199207
1984 0.041030 0.028847 -0.255537
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Appendix 29

Residuals of Estimation and Forecast 1960-89

for Klein Model I

Year e (DCL) e(DLWp) e (DLI)

1960 -0.000200  -0.009236 0.026840
1961 0.008192 0.013314 0.010655
1962 0.001587 -0.000044  -0.012142
1963 -0.003001 -0.001353 -0.033862
1964 -0.005114 0.002353 0.015326
1965 -0.002264 0.007701 -0.038580
1966 0.005827 -0.008211 0.028585
1967 0.003897 -0.011122  -0.005164
1968 -0.003586 -0.003833 0.002983
1969 0.011099 -0.007275 0.028255
1970 0.000777 -0.000895 -0.022644
1971 -0.011912 0.015829 -0.017203
1972 0.000539 0.003071 0.022240
1973 0.008463 -0.003099 0.046261
1974 0.003306 -0.006116  -0.035267
1975 -0.012639 0.013577 0.062828
1976 -0.006045 0.001905 -0.076288
1977 0.003030 0.004406 0.000249
1978 0.000850 -0.009013 0.002164
1979 -0.005053 -0.011839  -0.003422
1980 -0.001897 0.004902 -0.017246
1981 -0.006369  -0.003933 -0.114719
1982 0.056265 0.073582 0.169569
1983 -0.028199 0.016631 0.036731
1984 0.046016 0.044713 -0.196877
1985 0.062016 0.084903 0.472642
1986 0.043137 0.062843 0.344533
1987 0.024405 0.034136 0.272264
1988 0.052079 0.069402 0.428637
1989 0.059363 0.088249 0.356641
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Appendix 30

Residuals of Estimation and Forecast 1965-94

for Klein Model I

Year e (DCL) e (DLWp) e (DLI)

1965 -0.006206 0 -0.026946
1966 0.006265 -0.013497 0.060224
1967 0.007762 -0.002184 0.049135
1968 0.001355 -0.003643 -0.011668
1969 0.005260 -0.016184 0.058061
1970 -0.008497 -0.013782 0.008301
1971 -0.011580 0.006839 -0.055531
1972 -0.000302 -0.001895 0.032081
1973 0.003596 -0.008895 0.031953
1974 0.015585 -0.000077 -0.024380
1975 -0.012736 0.001817 -0.033250
1976 -0.006312 0.006377 0.047490
1977 0.002016 0.004752 -0.003330
1978 -0.002067 -0.011169 0.015631
1979 0 -0.010553 0.007109
1980 0.003007 0.000940 0.007239
1981 0.000153 0.005548 -0.014126
1982 0.002826 -0.006747 0.037783
1983 -0.015079 0.017497 -0.045004
1984 -0.000619 0.001877 -0.073358
1985 -0.006759 -0.005229 0.104969
1986 0.006731 0.009948 -0.014236
1987 0.023367 0.021972 0.203480
1988 -0.027936 -0.019383 0.288400
1989 0.028208 0.037959 0.015322
1990 0.081425 0.072223 -0.N57132
1991 0.078814 0.056161 -0.018800
1992 0.026684 0.046921 0.361429
1993 0.024278 0.042868 0.122214
1994 0.008140 0.018685 0.122866
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Appendix 31

Data for Estimation and Forecasting Klein-Goldberger Model

time Y C I G Fe Fi W1 w2 P

1928 64.30 584 3.9 3520 3.89 19.80
1929 69.73 622 149 78 50 4.1 37.78 423 23.00
1930 62.18 586 101 86 43 3.6 3541 459 18.86
1931 5408 566 59 93 36 32 3240 5.19 13.80
1932 4340 518 L1 88 29 27 27.23 549 896
1933 4275 51,1 16 86 29 28 2644 590 7.90
1934 48.82 540 35 100 3.1 2.7 29.08 6.59 10.76
1935 57.18 572 6.7 100 33 33 31.07 691 14.19
1936 6442 628 93 118 34 35 35.14 827 17.10
1937 70.64 65.0 114 113 4.1 40 38.85 7.59 18.65
1938 65.88 639 63 126 42 3.1 3588 847 17.09
1939 71.58 675 99 13.0 42 33 39.27 8.55 19.28
1940 79.20 713 13.7 13.7 49 3.6 4235 8.67 23.24
1941 9380 766 17.1 208 50 40 49.13 9.58 28.11
1945 129.30 86.3 8.3 4.6 61.01 26.68 30.29
1946 11448 957 203 189 75 40  61.88 14.85 28.26
1947 113.84 98.3 193 156 94 40 6491 11.00 2791
1948 120.321003 227 179 72 46  66.75 10.87 3230
1949 116.65103.2 180 20.0 74 46 6584 12.17 31.39
1950 126.351089 268 19.0 7.1 54 70.85 12.72 35.61
1951 136.15108.5 276 275 86 5.2 75.38 1521 37.58
1952 138.14111.4 243 334 83 55 78.65 16.82 35.17

Source: Klein and Goldberger (1955)
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Appendix 31

Data for Estimation and Forecasting Klein-Goldberger Model (Contd.)

time A D Pc Sp T Tw  Tp Tc Ta

1928 447 950 6.16 0.84 -0.30 123 1.10 0.08
1929 469 9.84 698 1.02 633 -030 1.69 1L.15 0.09
1930 335 9.81 430 -115 611 -037 1.18 0.73 0.10
1931 270 9.89 042 -395 833 -156 031 048 0.09
1932 1.75 896 -2.54 -5.67 954 -1.28 -0.13 0.40 0.08
1933 249 890 -2.69 -555 9.85 -1.25 0.06 0.58 0.05
1934 241 9.62 -0.01 -349 946 -1.21 032 0.78 0.02
1935 500 850 251 -140 822 -129 092 098 0

1936 395 9.18 424 -1.79 1025 -2.10 1.69 1.42 0.02
1937 548 887 537 -064 839 038 214 146 0

1938 437 889 373 -045 923 019 162 103 0

1939 4.51 9.02 523 -0.01 1071 0.16 1.70 146 O

1940 488 930 847 1.67 11.48 023 3.08 283 -0.02
1941 6.37 10.10 1237 1.17 12.14 093 7.76 7.14 0

1945 896 12.07 11.50 0.21 8.72 1096 795 0.54
1946 9.76 11.32 10.09 0.06 12.23 3.19 844 623 049
1947 9.32 13.46 1208 1.19 11.72 399 9.17 7.04 045
1948 985 13.69 1533 4.18 999 361 895 7.17 0.55
1949 7.31 1475 1409 3.92 1260 2.50 7.27 6.03 0.36
1950 7.52 16.25 17.09 227 1339 2.60 1122 9.88 0.37
1951 798 17.06 1872 223 13.79 7.15 1464 11.88 0.33
1952 742 1935 1651 190 14.51 8.63 13.72 10.14 0.38

Source: Klein and Goldberger (1955)
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Appendix 31

Data for Estimation and Forecasting Klein-Goldberger Model (Contd.)

time B K Fa pr pa pi Np N Nw

1928 0 0 122.6 157

1929 1.02 5.1 162 1209 156 143.6 121.8 494 37.0
1930 -0.13 54 138 1163 132 123.6 123.1 50.1 350
1931 -4.08 14 134 1050 92 101.4 1240 50.7 321
1932 -9.75 -65 118 942 68 829 1248 513 288
1933 -15.30 -13.8 131 90.7 74 792 1256 51.8 303
1934 -18.79 -19.9 102 955 95 90.7 1264 525 335
1935 -20.19 -21.7 95 97.7 115  96.2 1273 53.1 349
1936 -21.97 -21.6 88 983 120 96.6 128.1 S53.7 379
1937 -22.61 -19.1 102 102.7 128 104.7 128.8 543 39.1
1938 -23.07 -21.7 116 1009 102 97.1 1298 55.0 378
1939 -23.07 -20.8 100 100.0 100 100.0 1309 55.6 39.2
1940 -21.40 -16.4 72 101.5 105 99.2 132.0 56.2 40.9
1941 -20.23 -94 66 1095 129 107.4 1334 575 454
1945 -15.56 -11.4 140.3 217

1946 -15.49 -24 174 1526 246 158.8 1414 61.0 49.2
1947 -1431 34 183 1683 289 183.0 144.1 61.8 493
1948 -10.13 124 157 180.6 300 189.8 146.6 62.9 50.2
1949 -6.21 156 18 1794 262 180.2 149.0 63.7 489
1950 -394 26.1 155 183.6 269 196.5 151.7 64.7 50.7
1951 -1.71 36.6 184 197.5 318 2445 1544 66.0 54.7
1952 0.19 415 164 2024 303 2321 157.0 66.6 56.0

Source: Klein and Goldberger (1955)
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Appendix 31

Data for Estimation and Forecasting Klein-Goldberger Model (Contd.)

time Ng Nf Ne h w il is L1 L2

1928 117.1 485 365 15.0
1929 36 56 438 1.158 1184 521 585 33.6 16.0
1930 3.7 57 438 1.109 1199 509 359 339 16.0
1931 41 58 438 1.079 114.1 581 264 37.6 149
1932 43 59 47 1.010 1059 687 273 404 16.7
1933 58 6.0 46 1.032 938 589 173  39.7 16.2
1934 68 6.1 46 0990 102.7 496 1.02 405 16.8
1935 7.1 59 47 1.030 103.3 446 0.76 42.1 17.1
1936 80 57 48 1.067 105.5 387 075 454 18.1
1937 7.1 55 49 1.040 117.2 394 094 452 17.1
1938 81 53 49 0941 1256 419 0.8l 46.2 17.7
1939 79 52 5.0 1.000 122.1 3.77 059 496 194
1940 7.7 51 5.0 1.015 124.7 355 056 51.6 220
1941 85 50 49 1.054 1345 334 054 543 237
1945 195.1 0.75 110.1 52.0
1946 92 48 55 1.097 217.2 274 0.81 1083 434
1947 72 50 59 1.077 2412 2.86 1.03 102.4 383
1948 72 47 6.1 1.059 263.7 3.08 144 965 35.7
1949 76 47 6.1 1.033 2769 296 148 983 372
1950 78 44 6.2 1.056 286.9 2.86 145 979 384
1951 96 41 6.3 1.056 3099 3.08 217 933 379
1952 104 40 6.3 1.057 3262 3.19 233 952 38.1

Source: Klein and Goldberger (1955)
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