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Abstract

Enhanced Communication Services for Many-to-Many Multicasting

using XTP

Ganesh Ramasivan

There is a strong application demand for reliable multicast. Widespread use of the
Internet makes the economy of multicast transport attractive. The current Internet
multicast model offers best-effort many-to-many delivery service but no guarantees.
One-to-many and many-to-many services will become more important in the future.
Reliable multicast transports add delivery guarantees, not necessarily like those of
reliable unicast TCP, to the group-delivery model of multicast. To meet this growing
demand for reliable multicast, there is a large number of protocol proposals. Because
of the complexity of the technical issues, and the abundance of proposed solutions,
we wish to put into place a classification of the various aspects involving reliable
multicasting.

XTP, one of the well-known transport protocols, provides a toolkit of mechanisms
over which the user may build the protocol he so desires. It has been observed that
the multipoint-to-multipoint mechanisms as described in the appendix to the XTP
specification are not very efficient. Hence, we also wish to provide a few suggestions

on how to improve the existing mechanisms.

1i



Acknowledgments

I thank the Lord Almighty for giving me the strength and perseverance to complete
this work. I am forever indebted to my parents who have showered me with their
love, support and encouragement since childhood. I will never forget the day my
sister persuaded me to take up Science instead of Accounting. Thanks Sis!!

Thank you Dr. Atwood for giving me a chance to delve into such an interesting
area of research and pointing me in the right directions whenever I felt lost. Thank
you Sir, for giving up parts of your weekends for our meetings.

[ would also like to thank Centre de Recherche Informatique de Montreal (CRIM )
and especially my co-supervisor Dr. Petre Dini for providing me with financial as-
sistance when I needed it most. My humble gratitude goes to my friend and counsel
Dr. Francois Begin who provided invaluable suggestions to my work.

I am indebted to my present emplover, Computing Devices Canada, and my man-
agers for giving me the flexibility to manage both my thesis and my work.

A special thanks to my cousins Muthu Nagarajan and Sangeeta Iver, the only
family T have in Canada. Finally I would like to thank all my friends who have made
life very enjoyable in Montreal. A special word of thanks to all the people who put -
me up at their place every weekend during the time [ was writing up my thesis.

I would be failing in my duty if I don’t express my gratitude to all the people be-
hind the scenes, the staff and the system analyst pool in the Department of Computer

Science for their assistance.

iv



Contents

List of Figures

List of Tables

1 Introduction

1.1

Aims and Motivation . . . . . . .. .. L e

2 The Multicast Paradigm

!\.’) !\J [§V] ()
e (VM) o —t

Multicast Service Model . . . . . . . ... .. ..
Multicasting at the Lower Layers . . . ... . ..
Multicasting at the Network Layer . ... . . ..

IP Multicast over ATM . . . . . . . . ... .. ..

3 Reliable Multicasting

3.1
3.2
3.3

A Taxonomy of Reliable Multicast Protocols and Applications . . . .

Review of Multicast Transport Protocols . . . . .

Summary . . - . ..o e e

4 Multi-sender Communication using XTP

4.1
4.2

4.3

Introduction . . . . . . . . ... ...
Previously Proposed Extensions to XTP Multicast

A New Proposal for Multi-sender Communication

vil

ix

68
68
69



4.4 The Enhanced Communications Support Layer. . . . .. .. ... ..

Conclusion

41}

3.1 Observations and Review of Work . . . . . . . . . . . . . ... . ..

5.2 Current Limitations and Future Work . . . . . . . . .. . .. . .. ..

Bibliography

A Multicasting in XTP
Al Introduction . . . . . . . . . . ...
A.2 Multicast Group Creation and Termination. . . . . . .. ... . ...
A.3 Multicast Group Management . . . . .. . . ... .. .. .. .. ...
A4 Multicast Association Management . . . . .. . ... .. ... .. ..

A5 Flow, Rate and Error Control Procedures . . . . . . . .. ... .. .

vi



List of Figures

[YoN (V] [] [

Qt

|

10
11

13
14

16
17
18
19

Multiparty Dataflow Topologies . . . . . . .. .. .. .. ... ....
Multicast Service Model . . . . . . .. ..o
Ethernet Address indicating Multicast Bit . . . . . . . . ... .. ..
32-bit Class D IP Multicast Address Format . . . . . . . ... .. ..
Mapping of a Class D IP Address into Ethernet Multicast Address . .
IGMP Messages withina LAN . . . . . .. .. .. ... ... ..
Multicast Routing between Sub-networks . . . . . .. .. .. .. ...
Construction of a Multicast Tree . . . . . .. .. .. .. ... ....
MBone Topology showing islands and tunnels . . . . . . .. ... ..
Multicast VC Mesh. . . . . . . . ..o
Multicast Server . . . . . . . . . .. Lo
VC’s carrving MARS Client-related Control Traffic . . ... ... ..
Two Phase Validation Protocol for Atomic Multicast . . . . . . . ..
Logical format of an acknowledgement bitmap . . . . . . . .. .. ..
Operation of MTP-2 Protocol . . . . .. . ... ... .. .......
XTP Communication Model . . . . . .. ... ... ... .......
M-by-N Connection Setup . . . . . . .. . ... ... ...
M-by-N Reliable Ordered Multicast . . . . ... ... .. .......
Architecture of the proposed M-by-N communication model . . . ..

Keys exchanged by host T when it wishes to transmit . . . . . . . ..



¥
(@)

Data-Flow at the Transport Layer when process at T transmits ... 79

Keys exchanged by host U when it wishes to transmit . . . . . . . . . 80
Data-Flow at the Transport Layer when process at U transmits . . . 81
Keys exchanged by host V when it wishes to transmit . . . . . . . . . 82
Data-Flow at the Transport Layer when process at V transmits . .. 83
Keys exchanged by host W when it wishes to transmit . . .. .. .. 84
Data-Flow at the Transport Layer when process at W transmits . .. 85
Format of ECSL PDU . . . . .. . . ... ... .. .......... 88
Format of a Message Acceptance Record (when token for message m

is transmitted) . . . . .. ... 90
FIRST packet Soliciting Receivers to Join the Group . . ... .. .. 106

Translation Table Entry at each Receiver after receipt of FIRST packet 107

JCNTL Request Packet from Receiver . . . . . . . ... ... ... . 108
JCNTL Response Packet from Transmitter (CaseI) . . . ... .. .. 109
Translation Table Entry at the Transmitter. . . . . . . ... . .. .. 109
Translation Table Entry at each Receiver . . . . . . . .. . ... ... 110
JCNTL Response Packet from Transmitter (Case II) . ... ... .. 110
JCNTL Request Packet from Receiver . . . . . . ... ... . .... 111
JCNTL Response Packet from Transmitter (CaseI) . . . .. ... .. 112
JCNTL Response Packet from Transmitter (Case II) . ... .. ... 112

viii



List of Tables

o

- W

Ot

-l

10

Permanent and Transient Multicast Addresses . . . . . . .. ... .. 14
Reliable Multicast Approaches . . . . . . . . . .. . ... .. ..... 39
Receiver Reliable Multicast Approaches . . . . . . . . . ... ... .. 40
Mapping Multicast Mechanisms to satisfv Requirements . . . . . . . 48

Summary of features exhibited by various Multicast Transport Protocols 67

Key used by host when multicasting data to the M-by-N group. . . . 83
Key used by host when unicasting data to other hosts . . . . . . . .. 83
Enhanced Communications Support Layer Service Primitives . . . . . 89
Explanation of Notations used for Local and Return Keys . . . . .. 105
Explanation of Notations used for Addresses . . . . . . ... ... .. 106

ix



Chapter 1

Introduction

With the advent of the ubiquitous Internet, there is a great dependence on and a
demand for computer networks to provide vast amounts of bandwidth. In its early
vears the “Net” was essentially used for e-mail and Usenet news. The present day
Internet carries heterogeneous traffic ranging from voice and video to various types of
data. There exists a multitude of requirements posed by the set of applications that
generate such traffic.

Although computer networks were originally designed for point-to-point ap-
plications, there is an increasing demand for using today’s networks to serve a new
breed of bandwidth hungry multimedia and multipoint applications. These group
applications involve multiple message exchanges among more than two application
processes. This type of communication is termed as Multi-party Data Flows (MDF)
and the application processes that generate these MDF are known as process groups.
The advantage behind using process groups is the encapsulation of internal state and
concealment of group member interactions in order to provide a distributed service
with a uniform external interface.

A group communication service is a set of fault-tolerant, network commu-

nication protocols that enable the application processes to maintain a consistent
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Figure 1: Multiparty Dataflow Topologies

replicated state despite random communication delays and communication or pro-
cessor failures. Several existing and emerging applications, both in the local-area and
wide-area environments, make use of this service including distributed-database ap-
plications, client-multiserver arrangements, multimedia applications, teleconferencing
and video conferencing, and industrial automation and process control to name a few.

Multiparty data flows have higher and more complex concerns for reliability
and thus they include semantics for partial failure modes resulting from dynamic
group membership and its relation to message delivery. A reliable group communi-
cation service must know how and when the binding of a message to its destination
receiver set occurs, must have a snapshot of its group membership at any partic-
ular point in time, detect unsuccessful message delivery and coordinate changes in
group membership with message delivery. Ordered message delivery is another issue

in most distributed applications. The service must provide atomic message delivery

to a group with ordering guarantees.



Topologies (Figure 1) for MDF include:
1. a single data source to a set of data sinks (point-to-multipoint)
2. multiple data sources to a single data sink (multipoint-to-point)
3. multiple data sources to a set of data sinks (multipoint-to-multipoint)

The communication subsystems on these topologies are most suited to one of
the three techniques for transfer of data namely unicast {one-to-one), broadcast (one-
to-all) and multicast (one-to-many). When identical data needs to be transfered to a
multiparty group, there are considerable efficiency and performance gains to be had
by exploiting the physical broadcast media, relative to a comparable series of point-
to-point transfers. Thus MDF and the complexities involved in group communication
are best addressed using multicast primitives. The next chapter takes a detailed look
at what multicasting really is, and it also explores the different functionalities at the
various lavers of the protocol stack in order to achieve true multicasting. There is

also a section on how multicasting is achieved on the present day Internet.

1.1 Aims and Motivation

The current Internet multicast model offers a best-effort many-to-many service but
does not offer any delivery guarantees. There is a strong application demand for
reliable one-to-many and few-to-few services. Reliable multicast transport provides
the necessary guarantees to the group-delivery model, but they are quite different
from those available for a reliable unicast transport such as TCP.

To meet the growing demand for reliability in the multicast domain, researchers
have proposed a large number of protocols. Like many research areas, there is great
interest in multicasting and consequently, there arise numerous issues and problems

that need to be tackled. In particular, the multipoint nature of this domain creates



a whole new arena of highly complex issues. Because of such complexity, and the
abundance of proposed solutions, it would be worthwhile to create a taxonomy of the
reliable multicast paradigm. Several aspects of reliable multicasting make such a tax-
onomy particularly challenging. First, the requirements of the application at hand
drive the requirements for reliability, and hence the design of the protocol. Thus,
the meaning of reliability varies (as we shall soon see) in the context of different ap-
plications. Secondly, if special care is not taken in the design of reliable multicast
transport protocols, the distributed nature of the multicast model can cause potential
havoc to the operation of today’s global Internet.

In the past, many reliable multicast protocols have been designed and im-
plemented and there exist numerous publications that demonstrate the protocols’
respective performance and suitability. However, little work has been done to com-
pare and contrast the various features and mechanisms provided by these protocols.
Hence, the first goal of this thesis, which takes the shape of Chapter 3, is an ex-
haustive look at these and various other aspects of reliable multicast protocols and
applications and their classification into a taxonomy. An attempt has also been made
to complement existing work by adding to the building blocks concept, which deals
with the commonality of various components in existing multicast protocols so that
they could be re-used across multiple protocols. Finally a validation of the taxonomy
has been done by reviewing four well known multicast transport protocols namely
the Reliable Multicast Transport Protocol (RMTP), the Local Group based Mul-
ticast Protocol (LGMP), the Xpress Transport Protocol (XTP) and the Multicast
Transport Protocol (MTP), and mapping their functionalities over the taxonomy.

RMTP and LGMP mainly cater to point-to-multipoint data-distribution type
of applications. They require receivers to take responsibility for data reliability and
use heirarchical mechanisms to achieve scalability. But these protocols do not offer

group reliability and management, leaving that task up to the application. The MTP



family of protocols (namely MTP, MTP-IT and MTP/SO) on the other hand, provide
support for multipoint-to-multpoint group collaboration type of applications. Apart
from requiring receivers to handle data reliability, these protocols also acquire and
maintain information about the members of the group. MTP/SO also makes use of
heirarchy to achieve better scalability.

XTP joins this list of reliable transport protocols by being able to support
both the data distribution and group collaboration type applications. The fact that
distinguishes XTP from the other protocols is its unique approach te protocol de-
sign. Traditionally, protocol design has involved specification of a service interface
and construction of a protocol to satisfv those requirements. On the other hand, XTP
provides a set of mechanisms over which a user may build the set of policies. This
feature allows XTP to provide support for both unicast and multicast applications.
XTP Version 3.6 [XTP3.6] specified a protocol which required receivers to take care of
data reliability and did nothing for group reliability. The multicast mechanisms were
then redesigned and respecified in XTP Version 4.0 [XTP1.0]. Further revisions were
made to the multicast mechanisms and they became part of an Addendum to the
XTP Version 4.0 specification, which was later incorporated into XTP Version 1.0b
[NTP4.0b;. Despite having well defined mechanisms for point-to-multipoint commu-
nication, the current version as specified has some deficiencies with the mulitipoint-to-
multipoint communication mechanisms. Hence, a major contribution of this thesis,
the essence of which has been described in Chapter 4, is an through understanding of
the problems preventing XTP from achieving efficient multipoint-to-multipoint com-
munication, and proposal of certain modifications to the recommendations found in
the addendum of the XTP protocol specification.

Finally, the last chapter presents our conclusions, summarises the contribu-

tions of this thesis, and outlines future research directions.
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Chapter 2

The Multicast Paradigm

Unicasting copies of the data to a set of receivers proves to be an ineflicient mech-
anism in cases where data needs to be transmitted from a single source to multiple
destinations. A better alternative would be to multicast data whereby the source just
sends a single copy of the data to all the destinations.

When processes on two or more networked computers exchange messages, there
are several lavers of communicating protocols at each host that work together to
achieve successful message deliverv. The Internet protocol architecture is divided
into several layers, namely the application layer, transport layer, network layer. data
link layer and the physical layer. This chapter details the capabilities of the multi-
cast service and looks at how efficient and high-performance group communication is
achieved at the physical and data-link layers and the network layer. There is also a

discussion on Internet and ATM-based multicasting.

2.1 Multicast Service Model

The multicast service allows a set of hosts to participate in real-time data transfer
via a multicast call. A multicast call is defined to be the relationship between these

participants during data transfer. It may be simplex, where one or more senders are
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Figure 2: Multicast Service Model

defined and the rest of the participants are strictly receivers, or duplex where there
may be return traffic from the receiver end in the same multicast call.

The participants of the multicast communication make use of use an inter-
mediate logical entity called a multicast server (Refer figure 2), which provides the
multicast service. The multicast server may be single or distributed, and may reside
inside or outside a network. or may be on the same network as the members accessing

it or on different networks.

The service also provide signals and control functions, such as multicast group
creation, group membership control, call establishment and termination and provision

of status information.

2.1.1 Service Capabilities

A very general multicast service was defined by the International Telephone and
Telegraph Consultative Committee (CCITT) in [X6Rec93]. The following subsections

provide a summary of the capabilities proposed.

2.1.1.1 Multicast Group Creation and Membership Control

A multicast group is defined as a group of members who use the multicast service to

participate in one or several multicast calls. It is created and controlled by a member,

7



who is then designated as the multicast group controller. Once created, a multicast
group is assigned a unique identifier, called a Group Identifier(ID). The Group ID
must be unique within a network, or it may be combined with the network address.
The membership of the group is controlled by the group controller who is authorised

to add (or remove) members from a multicast group.

2.1.1.2 Multicast Call

Data transfer between the members of a multicast group is through a multicast call.
There may exist rules concerning exclusion (or inclusion) of members of 2 multicast
group from a multicast call. The service should specify whether it will invite members
to join a call or whether the members themselves send requests to the service to join

a call. Priorities may be assigned for making calls and for transferring data between

members.

2.1.1.2.1 Multicast Call Identification

A multicast call is identified by a Call Identifier (ID), which is unique within a multi-
cast group. It is either assigned by the multicast service a priori and made known to
the members prior to joining the call or it may be assigned during call establishment.

At times, a member may use the Call ID to rejoin a multicast call after disconnecting

from it.

2.1.1.2.2 Multicast Member Capabilities

The members of a group have certain capabilities that allow them to perform certain
functions for the purpose of data transfer. These capabilities may be realized only
when a group member participates in a call. A member of a group may be capable
of initiating multicast calls. A member with the send capability may function as a

sender (in a one-way call) or sender-receiver (in a two-way call) and one with the



receive capability may act as a receiver (in a one-way call) and a receiver/sender (in a
two-way call). It may receive information about the participants in a particular call.
A member may be capable of allowing or denying a potential participant from joining
a call or it may invite a potential participant to join a call. Other capabilities include
member exclusion from a call, call termination, and reception of miscellaneous control

messages.

2.1.1.2.3 Multicast Call Establishment

A multicast call may be established by static administrative means, which may be
similar to those used for creating point-to-point virtual circuits, or by using dynamic
on-line procedures. In the later case, a create multicast call request is issued by any
member authorised to initiate the multicast call. The service may generate multiple
invitation to join requests to the members of a group and the members may accept or
refuse the invitation. If the service does not issue join requests, then a member may
join a multicast call by sending a join request to the service which in turn responds
with a join confirmed or join denied. The service responds to the call initiator once
a specified number of members (also called a quorum) have joined or once a timeout

occurs.

2.1.1.3 Data Transfer

A multicast call enters the data transfer phase when either the call created is sent by
the service or when the sender other than the call initiator, joins the call. When a call
is established through static administrative means, the data transfer phase applies

when the sender interface is up.
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2.1.1.4 Multicast Call Termination

A multicast call may be terminated by either a member with the Terminate capability

or by the multicast service due to service-specific reasons.

2.2 Multicasting at the Lower Layers

2.2.1 Hardware-based Multicasting

Mulricast is well supported by shared media networks such as Ethernet, which provide
efficient broadcast delivery and a large space of multicast addresses. Most networks
that conform to the IEEE 802 standards provide multicast addresses that can be
recognised and filtered by host interface hardware.

In the case of Ethernet, the first bit that goes on the wire determines whether
the packet is a unicast or a multicast packet. The multicast bit is the least-significant
bit of the most-significant byte in the vendor-id portion of the 48-bit Ethernet address.
(Refer figure 3). When a sender wants to transmit maulticast, it sets the multicast
bit. puts an Ethernet group address in its station address portion and sends it on the
wire. If any station on the subnet is not interested in this multicast, their hardware
simply ignores the packet. But if a station decides to listen to this multicast, it sets a
filter in its Ethernet card whereby the hardware can start accepting multicast packets
belonging to this particular transmission.

The situation is more complicated in a case where the sender is attached to

10



one sub-network while the receivers reside on different sub-networks. In this case, the
handling of multicast traffic depends upon how these sub-networks are interconnected.

Devices such as link-layer bridges allow LAN functionality to be transpar-
ently extended across multiple interconnected networks, and packets can be properly
forwarded to their appropriate destinations. Link-layer Switching is another tech-
nique in which incoming frames from one interface of a switch are delivered at “wire
speed” out through another interface, depending on the destination MAC address
in the frame header. Unlike primitive bridges and switches, which simply flood the
incoming packets on all out-going interfaces, most modern bridging and switching
equipment make use of efficient learning algorithms, which provide them with infor-
mation about all incident branches leading to members of a given multicast group.
Multicast packets are forwarded only to those segments that have interested members
on them. Switches also make use of techniques such as IGMP snooping, virtual LANs
and GMRP to circumvent the problems associated with flooding multicast traffic. A

detailed discussion of these techniques can be found in [Gane97].

2.3 Multicasting at the Network Layer

Despite the advances in switching technologies, both at the link layer and network
laver, a vast majority of the existing packet-switched networks make use of routing
as a means of forwarding data across different sub-networks. This section takes a

look at how multicast packets are routed across internetworks and how multicasting

is achieved over the present-day Internet.

2.3.1 Multicast Groups

The set of participants in a multicast session forms a group known as multicast

group. When a host wants to transmit data to the group, it need not know the other

11



members of the group and need not itself be a member of the group. Such a group is
referred to as an open group. In contrast, there also exist closed groups in which only
the members of the group are allowed to send to the group. The membership of a
multicast group is usually very dynamic, in that it changes over time as participants

join and leave the group.

2.3.1.1 Types of Multicast Groups

Multicast groups may also be classified. based on the distribution of members across

an internetwork.

e Pervasive groups have members on all or almost all links or sub-networks in
the internetwork. These groups tend to be very long-lived and have well-known
multicast addresses. Examples of such groups include widespread directory

services, or net-news distribution groups.

e Sparse groups have members on only a small number of (possibly widely-
separated) links. These groups may be long-lived or transient. Examples
of sparse groups are real-time, computer-supported conferences, or replicated

databases.

e Local groups have members on only a single link or a set of links within a
single administrative sub-domain of the internetwork. These groups are highly
transient and exist only as long as required for the execution of a single pro-

gram. Examples of local groups are distributed parallel applications or games

executing at a single site.

2.3.2 Multicast Addressing

A multicast address identifies a set of receivers belonging to a particular multicast

group. Senders use this multicast address as the destination IP address of a packet

12
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Figure 4: 32-bit Class D IP Multicast Address Format

that is to be transmitted to all the members of the group.

A multicast group on the Internet can be identified by an [Pv4 Class D address
that has its higher-order four bits set to “1110” followed by a 28-bit multicast group
ID. (Refer figure 4). The host group address range is 224.0.0.0 to 239.255.255.253, of
which some addresses are permanent and some are transient, i.e., they are dynami-
cally assigned groups that exist only as long as they have members. The permanent
addresses are assigned by the Internet Assigned Numbers Authority (IANA) which
maintains a list of registered IP multicast groups (Refer table 1).

The range of multicast addresses 224.0.0.0 through 224.0.0.255 is intended for
applications that never need to multicast further than one hop. Multicast routers
never forward datagrams with one of these addresses as the destination, regardless of
the time-to-live (TTL). The all-hosts group refers to all multicast capable hosts and
routers on a physical network. Each host automatically joins this multicast group on
all multicast-capable interfaces, when the interface is initialised. Membership in this
group is never reported.

The IANA also owns the range of Ethernet addresses from 00:00:5e:00:00:00
through 00:00:5e:ff:ff:ff and allocates half of this block for multicast addresses. Given
that the first byte of any ethernet address must be 01 to specify a multicast address,
the addresses corresponding to IP multicasting are in the range 01:00:5e:00:00:00
through 01:00:3e:7f:ff:ff.

This type of allocation allows for a 32-bit Class D IP address to be mapped
into a 48-bit ethernet address by placing the lower-order 23 bits of the IP address into

the lower-order 23 bits of IANA’s reserved block address (Refer figure 5). Thus the

13



| Address Type | Address/Range Assigned Group ]

Permanent 224.0.0.0 Reserved and cannot be assigned.
224.0.0.1 All hosts on LAN (subnet).
224.0.0.2 All routers on LAN (subnet).
224.0.0.3 - 224.0.0.255 | Reserved for routing protocols.
224.0.1.11 [ETF-1-Audio.
224.0.1.12 [ETF-1-Video.
239.0.0.0 - Reserved for site-local “administratively-
239.253.255.255 scoped” applications.
Transient 224.0.1.0 - | Internet-wide multicast applications.
+ 238.255.255.255

Table 1: Permanent and Transient Multicast Addresses

mapping places up to 32 different IP groups into the same Ethernet address because

the upper five bits of the IP multicast group ID are ignored.

2.3.3 Internet Group Management Protocol

A process joins a multicast group on a given interface on a given host. The host
identifies the multicast group by the group address and interface. Hosts keep a table
of all the groups that at least one process belongs to and a reference count of all
processes belonging to that group.

The Internet Group Management Protocol (IGMP) is used by routers and
hosts that support muiticasting. The mechanisms in the protocol allows a host to
inform its local router, when a particular application running on it wishes to receive
transmissions addressed to a specific multicast group. The router also periodically
queries all the subnets to which it is connected to determine if known group members
are still active or interested in the transmission. The query is sent to the all-hosts
group (224.0.0.1) with a TTL of 1 so that it stays within the LAN (Refer figure 6).
Each host that is interested in receiving the multicast traffic sends back one report

per host group to the group address, so all group members see it.
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Figure 5: Mapping of a Class D IP Address into Ethernet Multicast Address

As multiple hosts may be sending reports for the same group, each host starts
a random Report delay timer. If during the delay period, another Report is heard
for the same group, the local host resets its timer to a new random value. Such a
procedure guarantees that Reports are spread out over a period of time and that
Report traffic is minimised for each group with at least one member on the sub-
network.

If there are multiple routers on the LAN performing IP multicasting, one of
them is elected “querier” and assumes the responsibility of querying the LAN for
group members.

Based on the group membership information learned from the IGMP. a router
is able to determine whether any multicast traffic needs to be forwarded to each of
its “leaf” sub-networks. This information, along with multicast routing protocols, is
used to support IP multicasting on the Internet.

IGMP is considered part of the IP layer and an IGMP packet is encapsulated
within an IP datagram. IGMP Version 1 was specified in RFC1112 [Deer89!. IGMP
Version 2, as defined in RFC2236 [Fenn97] enhances and extends the functionality
provided by IGMPv1 and is also backward compatible with it. Further enhancements
were made to IGMPv2 resulting in IGMP Version 3 (yet to be standardised), which

is specified in an Internet draft [Cain97}.
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Figure 6: IGMP Messages within a LAN

2.3.4 Multicast Routing

IGMP is concerned with the forwarding of multicast traffic from the local router
to group members on directly attached sub-networks. It is not concerned with the
delivery of multicast packets between neighbouring routers or across an internetwork.
Multicast routing protocols are necessary for such an Internet-wide delivery service.
These protocols are responsible for construction of multicast packet delivery trees and
for forwarding the multicast packets. Figure & shows how a multicast delivery tree can
be constructed across multiple sub-networks using IGMP information gleaned from
figure 7. Optimal delivery trees are constructed by multicast routing protocols by
using a combination of potentially different multicast routing algorithms. A detailed
study of the various multicast routing algorithms and protocols can be found in
[Gane97].

Multicast routing through the Internet follows one of two basic approaches,
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depending on the expected distribution of receivers throughout the network. The
first approach is based on the assumption that the multicast group members are
densely distributed throughout the network (i.e., many of the subnets contain at
least one group member) and that bandwidth is plentiful. The so-called “Dense-
mode” multicast routing protocols rely on a technique called flooding to propagate
information to all network routers. Dense-mode routing protocols inciude Distance
Vector Multicast Routing Protocol (DVMRP) [Pusa98], Multicast Open Shortest
Path First (MOSPF) [Moy94], and Protocol-Independent Multicast - Dense Mode
(PIM-DM) [Deer97].
The second approach assumes that the receivers are sparsely distributed through-

out the network and that bandwidth is not widely available. “Sparse-mode” does not

imply that the group has few members, just that they are widely dispersed. In
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this case flooding will result in wastage of network bandwidth and thus the routing
protocols must rely on more selective techniques to set up and maintain multicast
trees. Examples include Core-Based Trees (CBT) [Ball97] and Protocol-Independent

Multicast - Sparse Mode (PIM-SM) [Deer96;.

2.3.5 Internet Multicast Backbone

The Internet Multicast Backbone (MBone) is an interconnected set of sub-networks
and routers that support the delivery of IP multicast traffic. It was started in March
1992, when the first audiocast on the Internet took place from the Internet Engi-
neering Task Force (IETF) meeting in San Diego. Since then, it has been used as a
testbed for deployment of several multicast applications.

The MBone [Erik94] is a virtual network, which is layered on top of sections
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of the physical Internet. Since not all routers in the present Internet support multi-
casting, the MBone is composed of islands of multicast routing capability connected
to other islands by virtual point-to-point links called ‘tunnels’ (Refer figure 9). These
tunnels allow multicast traffic to pass through the non-multicast-capable part of the
Internet. On each of these islands, there is typically a host that is running the
“mrouted” multicast routing daemon, which is an implementation of the Distance
Vector Multicast Routing Protocol (DVMRP).

A multicast packet will be sent from one client, who puts the packet on the
local subnet, which then will be picked up by the mrouted for that subnet. The
routing daemon will consult its routing tables and decide onto which tunnels the
packet ought to be placed. At the other end of the tunnel is another mrouted that
will receive the packet. It will examine its routing tables and decide if the packet

should be forwarded onto any other tunnels. It will also check if there is any client
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on its subnet that has subscribed to that multicast group address and if so, put it
onto the subnet to be picked up by the client application.

When a multicast packet is sent through a tunnel, it is packaged into an
IP packet. There are two different methods of packaging, namely adding the Loose
Source and Record Route (LSRR) IP option, and encapsulation. The older implemen-
tations of mrouted used the LSRR IP option, whereby the routing daemon modifies
the multicast datagram coming from a client by appending an IP LSRR option where
the multicast address was placed. The IP destination address is set to the unicast
address of the mrouted on the other side of the tunnel. Due to the inherent disad-
vantages of this technique, most modern implementations of mrouted encapsulate the
multicast datagrams. The protocol used here is IP-in-IP (IP protocol number 4), in
which the original multicast datagram is put into the data part of a normal [P data-
gram that is addressed to the mrouted on the other side of the tunnel. The receiving
mrouted will strip off the encapsulation and forward the datagram appropriately.

Each DVMRP tunnel has a metric and a threshold. These are set when the
tunnel is configured. The metric specifies a routing cost that is used by DV MRP
for routing the multicast datagrams. The threshold is the minimum TTL that a
multicast datagram must have, to be forwarded onto a given tunnel and is used to limit
the distribution scope of the multicast packets. Mrouted automatically configures
itself to forward on all multicast-capable interfaces, i.e., interfaces that have the
“IFF_MULTICAST flag” set (excluding the loopback interface), and it finds other
mrouteds directly reachable via those interfaces.

At present, a majority of the MBone routers run DVMRP as their routing
protocol, which suffers from well-known scaling problems of distance-vector routing
protocols and does not (vet) support hierarchical multicast routing. As soon as more
routers support “native” multicasting and tunnels can be replaced, other routing

protocols such as PIM and MOSPF may be used.
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2.4 IP Multicast over ATM

AT\ is a connection-oriented broadcast network architecture, where end hosts must
first establish a virtual channel connection if they wish to communicate. This is com-
pletely different from the IP model, where the sender relies on intermediate routers
to deliver IP packets to their intended destination. However, the advantages of using
ATM at the link laver has lead to the development of several multiprotocol mecha-
nisms for encapsulating and transmitting packets using AALS5 over ATM VCs.

For multicasting over ATM, the sender should be aware of all the members
of the multicast group, and only the VC root node may add or remove leaf nodes
(sender-controlled). This is unlike the IP multicast model, where the sender does
not need to know the receiving multicast group membership (receiver-controlled).
The current ATM standards do not support the multicast group address abstraction
either.

Despite these drawbacks, UNT 3.0 and UNI 3.1 ATM based networks imple-
ment multicasting using the basic point-to-muitipoint service. The two most common
implementations are “V'C meshes” and “multicast servers™. In an ATM network, the
multicast-capable interfaces are grouped into “clusters”, where a cluster is a set of
AT)M interfaces able and willing to achieve AAL level multicasting.

In the multicast VC mesh (Refer figure 10), a point-to-multipoint VC origi-
nates from each sender to all the members of the multicast group. In addition, the
ATM interface must terminate one VC for each active source in the cluster. Nodes
that are both sources and group members will originate a single VC and then ter-
minate a branch of one other VC for every other node sourcing traffic to the group,
thereby resulting in a criss-crossing of VC'’s (i.e., a VC Mesh) across the ATM net-
work. Though the VC mesh reduces the transmission overhead on any given source
node and provides transmission reliability, it requires that each source node main-

tain a list of all the recipients and update the list when there are changes in group
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Figure 10: Multicast VC Mesh.

membership.

In the multicast server (MCS) model (Refer figure 11), a server is chosen
within each cluster. The MCS establishes a point-to-multipoint VC to all the desti-
nations and each source establishes a point-to-point VC with the MCS. This model
is sometimes called a “shared-tree” model, as the traffic from all senders shares the
distribution tree from the multicast server. During the data transmission phase,
the MCS reassembles messages arriving on all incoming VC’s and queues them for
transmission on its outgoing multipoint VC. Though this method is more adapted to
dynamic group membership control and resource utilisation (only two VC'’s are needed
per ATM interface), the MCS may create a potential bottleneck since the traffic from
various sources becomes concentrated on it. Although both VC meshes and MCSs
provide multicast services over ATM, their inherent drawback is that the addresses
of the intended recipients must be known in advance. This is not a requirement in
the classic [P multicast model, since the routers know (through IGMP information),
if clients on their subnet are part of a multicast group. To address this limitation,

the I[ETF proposed to set up a Multicast Address Resolution Server (MARS) on the
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Figure 11: Multicast Server

ATM network [Armi97].

MARS is a central registry, which maintains a table of Multicast Group Ad-
dress, AT\ addressl, ATM address 2, .... ATM address N mappings for every Layer
3 multicast group that has one or more members. Each MARS manages a cluster of
IP-ATM endpoints. Every IP/ATM interface (both host and router interfaces) which
is logically attached to a particular cluster is considered to be a "MARS client’.

Two different types of VC’s are used to carry control messages between a
MARS and its MARS clients. (Refer figure 12). A transient point-to-point VC to the
MARS carries query/response activity initiated by a MARS client, while control mes-
sages are propagated by MARS using a semi-permanent point-to-multipcint VC that
has all its clients as leaf nodes. This semi-permanent VC is also called a “ClusterCon-
trolVC”. A MARS client must initially register itself as a cluster member with the
MARS, allowing it to add the new members as a new leaf of the ClusterControlVC.

When a MARS client wishes to send to a multicast group, it queries MARS

to see if the group exists. If it does, the MARS sends the source node a list of all

23



Individual Host MARS
control traffic

- - -=» ClusterControlVC

ip.2

ATM endpoint

Figure 12: VC’s carrying MARS Client-related Control Traffic

the addresses of destination nodes that are members of the group. If the group does
not exist or MARS does not have any knowledge of it. the source is notified and the
connection packet is dropped. Once the source has the list of destination addresses,
it establishes a point-to-multipoint VC to the destination nodes. The MARS notifies
the source node when the membership of the group to which the source is transmitting
changes.

When a destination node wishes to join a multicast group, it sends a request to
the MARS to include it to the group. The MARS tracks the addresses of all nodes that
are members of its multicast groups, and maintains the list by periodically querying
its clients.

MARS works with both VC meshes and MCS multicasting techniques, and a

given MARS can support a mixture of both techniques on the same network.
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Chapter 3

Reliable Multicasting

3.1 A Taxonomy of Reliable Multicast Protocols

and Applications

Multicasting is defined as a transmission mechanism where a single sender transmits
data to a group of receivers. The issues involved in reliably transmitting data to
such a group poses a significant technical challenge. IP Multicast does not have the
capability to provide the data delivery guarantees that are required by a vast majority
of applications that make use of the multicast paradigm. Such delivery guarantees
can only be offered by reliable multicast transport protocols that work on top of the
network multicast service.

It is obvious that a multicast transport connection is required among the
users of the the multicast transport service for the purpose of data transfer. The
users who participate in a transport connection form a group and access multicast
services through a transport service access point (TSAP)!. The group of transport

service users maintain shared state information in order to support the mechanisms

! An Internet application can access multicast services using a combination of a 32-bit Class-D
IP address and port number.



of the data transfer phase and is termed an “active group”.

The ever growing number of reliable multicast protocols indicate the vast in-
terest in this active research area. However, the question of what is reliable in many
of these protocols gives us few precise answers. It is the skewed understanding of the
term “reliable” that encouraged us to build a taxonomy of reliable multicast. Past
attempts at such a taxonomy include [Diot97}, which is a survey of multicast proto-
cols in terms of functionality and mechanisms for reliable multicast transmission, and
'Obra98] which reviews several existing multicast transport mechanisms and classifies
them according to their distinct features. The Reliable Multicast Transport Working
Group (RMTWG), which is part of the IETF, is also looking to develop a framework
for standardisation of reliable multicast transport. It has published several draft
standards including 'Hand99], which provides a review of the design space for reliable
multicast protocols intended for bulk data transfer, and [Whet99], which attempts to
bring out certain components that are common to multicast protocols and standardise
them as “building blocks”, which may be re-used across multiple protocols.

Our taxonomy complements the existing work mentioned above and covers
new territory by looking at the various issues involved in many-to-many data trans-
fer. It also brings out the orthogonality between the various requirements of reliable
multicast transport protocols and the mechanisms used to satisfy those requirements.
We also add to the list of building blocks by isolating several common mechanisms
amongst the profusion of multicast protocols. The motivation behind isolating these
common mechanisms comes from the fact that the Xpress Transport Protocol (XTP)
[Stra92] has been designed to provide a set of mechanisms over which the necessary

policies may be implemented. More on XTP can be found in section 3.2.4 and in

Appendix A of this thesis.
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3.1.1 Classification of Requirements for Reliable Multicast
Applications
3.1.1.1 Types of Reliability

The notion of reliability in multicast communication is highly complex and piays a
major role in the design of the transport protocol. The term “reliable” multicast can
be seen in several different perspectives and can be defined in several ways.

[Garc91] defines reliability based on three properties of a multicast protocol.
The first is the length of time it takes to deliver a multicast message, either measured
from message initiation at the source or from the time the first message arrives at a
group member. Delivery time may be guaranteed at one group member, a majority of
group members, or all group members. The second property, atomicity, requires that
all group members deliver a message to the application within a specified interval
begun either after one group member has delivered the same message or after a
majority of group members have delivered the message. The final property is ordering,
which may range from no guarantees of ordering, to a guarantee that messages are
always delivered consistently even in the presence of network failures.

A less stringent definition of reliability is given in {Raja92! which defines pro-
tocols to be reliable if they offer completeness and finiteness. Completeness means
that the protocol delivers multicast messages in the same order as sent by the source,
without message duplication or loss. No mention is made of ordering guarantees in
the presence of failures. Finiteness is similar to atomicity.

For applications with strict latency requirements, the data is only useful if it
is delivered within bounded time. One issue which an application must deal with is
the actions that must be taken when the data cannot be delivered reliably within
the delay requirements. [Wang97] describes a way of broadening the application

reliability requirement from simply reliable or unreliable to a more general spectrum,



by introducing a parameter called Reliability Interval (RI). RI is defined as the time
interval within which reliable delivery is useful, and serves as a way to describe the
connection between reliability and latency. For instance a large RI would indicate
less stringent latency requirements and a small RI would indicate the reverse. So,
a mailing list distribution application may have an RI of 7 days while a multiuser

conferencing tool may have an RI of only 5 minutes.

3.1.1.1.1 Data Reliability

Despite varying views on the term reliable, multicast applications can be classified

based on how reliably the transport connection delivers data to the layer above it.

e Best-Effort Reliability: As the name suggests, best-effort reliability does
not guarantee any sort of reliable delivery. The application, if required, may
implement some sort of reliability mechanism. There is also the issue of loss of
data packets versus the corruption of the contents of the data packets. In case
of the contents of a data packet are corrupted, there will be no use for that data
packet anyway and hence it is required of a best-effort protocol to transfer with
the best of its ability, uncorrupted data packets. Most UDP-based IP Multicast

applications fit into this category.

e Bounded-Latency Reliability: In this case, each packet adheres to a spec-
ified lifetime over which the data is useful to the receiver, thereby defining an
upper bound on its delivery latency. Packets arriving outside this time frame
are discarded. A common applications which requires such a reliability guaran-
tee is a video stream, where each packet has a playback time and any packet

not meeting this deadline is discarded.

e Most-Recent Reliability: This type of reliable transmission targets applica-

tions where only the most recent data of a particular parameter is of interest.
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A simple example would be a service that provides reliable updates of stock
quotes. If a particular stock quote is lost, and a new update is received before
a retransmission can occur, the old data is rendered useless. Thus it is possible
that the data may take on a value that is never known to some or all of the re-
ceivers. Other example applications include Distributed Interactive Simulations

(DIS) and situational awareness dissemination in shared WAN environments.

e Absolute Reliability: This type of reliability requires that all the transmitted
multicast packets be delivered to the active group. If any of the data is missing
at the receiver even after repeated retransmissions, then none of the data will be
useful. It is analogous to the reliability supported by TCP for unicast sessions.
Multicast file transfer is a good example of an application requiring absolute

reliability.

3.1.1.1.2 Group Reliability and Management

It should be noted that reliable multicasting not only concerns reliable delivery of
data to the members of the group but also reliable knowledge and maintenance of
the group membership. Point-to-point unicast transmission involves only two parties,
and hence communication failure is represented by failure of either of the two parties.
However, in the multicast case, the issue is less straightforward. Many protocols that
exist today claim to be fully reliable, but fail to implement any sort of group reliability
mechanisms. There exist a set of conditions concerning an active group that must
be true in order for a transport connection to enter or remain in the data transfer
phase. The term “active group integrity” or AGI, identifies and defines the necessary

conditions in accordance with various levels of group reliability.

e O-reliable Multicast: This is the easiest way to multicast information on

a network. The sender is not required to have any knowledge of its set of
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receivers. In this case the AGI is typically zero. Many MBone applications that

exist today adopt this model.

e K-reliable Multicast: A multicast transmission amongst a group of N re-
ceivers is said to be K-reliable where (0 < K < N), if at least K members of
the group are alive at a particular instant. If a receiver failure is detected, then
that particular receiver can be removed from the group and the remaining group
members may continue. Another semantic may require the protocol to monitor
the cardinality of the group and abort the transmission if the membership of
the group drops below K. A more rigorous requirement could be enforced by
requiring that not only must K members be present, but they must be K specific

members.

e Atomic Multicast: Atomic multicast requires simultaneous delivery to all
members of the group or to none of them. In most cases, the transport con-
nection needs to be terminated in case the AGI is violated. A basic atomic
multicast protocol requires two phases, namely, a data transfer phase (trans-
mission and acknowledgement), and a validation phase (notification of receipt
of packet to all receivers). Once a packet is validated, receivers are allowed to
deliver the packet to the application (See figure 13). The two phases do not need
to necessarilv run in a stop-and-wait mode as the validation may be implicitly

sent in a following data packet.

A relationship between the data group reliability semantics can be derived from
the above classification. For instance, one may have best-effort data delivery with
none or K-reliable group semantics but it makes no sense to have atomic multicast
with best-effort data delivery. Similarly absolute data reliability can be categorised

with all the three types of group reliability semantics.
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Figure 13: Two Phase Validation Protocol for Atomic Multicast

Multicast group management on the other hand, deals with managing the
group in accordance with the AGIL The level of reliability provided by a multicast
protocol depends on the control algorithms and group policies used for managing the

group.

3.1.1.2 Multicast Data Distribution

There is a plethora of applications that require an underlying ‘reliable multicast’ ser-
vice. A further classification of these applications can be done based on the mechanism
used for data dissemination, into point-to-multipoint data distribution applications
and multipoint-to-multipoint interactive applications.

Point-to-multipoint or 1-by-N multicast applications deliver data from a single
source te multiple receivers, and usually run without much human intervention. A few
examples for this set include software distribution, data distribution and replication,
and mailing list delivery.

The latter group involves multiple sender participation (M transmitters and N
receivers) and are commonly referred to as M-by-N applications. They often have di-
rect human involvement and have stringent latency requirements due to their interac-

tive nature. Examples include interactive distributed simulations. networked gaming
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and other collaborative applications such as tele-conferencing and video-conferencing.

3.1.1.3 Ordering

Packets may arrive out of sequence at their destination due to packet losses or changes
in the datagram routes. Many distributed applications require an ordered reception of
packets, because misordering may give a different view of the state of the group. An
ordered reliable multicast communication amongst a set of TS-users is defined based
on how the transport service data units (TSDUs) of a sending TS-user are presented
to the receiving TS-user and how the receiving TS-user gets TSDUs from the sender.

In the case of single sender ordering, the TSDUs generated by the sending
TS-user must be delivered to each receiving TS-user in the active group in the same
order in which they were sent. In the case of multiple sending TS-users, ordering
is determined in terms of the relative sequencing of TSDUs received from multiple
sending TS-users. The ordering relationship defines the arrangement or interleaving
of TSDUs from multiple senders and can be classified as no ordering, local ordering,
causal ordering, partial ordering and total ordering. It should be noted that ordering
properties may also apply at a protocol level and in such cases the TSDUs are replaced
by transport protocol data units (TPDUs). The distinction between the two has been
made specifically for this purpose. The requirements for ordering that an application

may impose on a multicast protoco! can be classified as follows:

e No Ordering: This is the simplest requirement where the TS-provider does
not guarantee any relationship between TSDUs sent from a single sending TS-
user or from multiple sending TS-users. Note that even though the ordering

of TSDUs are not guaranteed, the ordering of TPDUs belonging to the same

TSDU are guaranteed.

e Local Ordering: Also called FIFO ordering or single source ordering, TSDUs

are guaranteed to be delivered to the receiving TS-users in the same order they
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were transmitted by the sender. There is no ordering rule specified for the
TSDUs transmitted by different senders. It is similar to the way TCP performs

ordering in case of unicast.

Partial Ordering: The TSDUs, generated by all sending TS-users are deliv-
ered to each receiving TS-user according to an arbitrary ordering rule. If the
TSDUs are ordered according to a rule applicable to all the receivers, then each
receiver receives the TSDUs generated by all the senders in the same order. On
the other hand, if the TSDUs are ordered according to a rule determined by

each receiver, then the TSDUs may be received in different orders.

Causal Ordering: Causal ordering requires that ordering be maintained across
distributed processes. The TSDUs generated by all senders are ordered accord-
ing to the causal dependence relationship among sending events. A causal
dependence relationship is established between two sending events, A and B, if

the following applies:

1. A happens before B if A and B are sending events generated by the same
sender and A is sent before B.

2. A happens before B if A and B are sending events generated by two differ-
ent senders and the TSDUs generated by event A by one sender is received

by the other sender before it generates the event B.

A causal dependence relationship is established among more than two sending
events if it can be established that A happens before B and that B happens

before C, and it therefore follows that A happens before C.

Total Ordering: TSDUs transmitted by multiple senders are received in the
same relative order and delivered in sequence to each receiver. This level of

ordering is typically required in distributed database-applications. In the case
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of multicasting from a single sender to multiple receivers, causal ordering and

total ordering are equivalent.

A protocol that ensures, in addition to reliability, a total ordering of the deliv-
ered messages is called an atomic protocol. Such a protocol may be used for reliable
validation, atomic operations, group memberships etc., while a causal protocol (en-
suring causal and not total ordering) may be used for ensuring consistency in updates

to replicated data.

3.1.1.4 Scalability

Several multicast applications require scalable multicast communication support for
large groups having hundreds or thousands of members who undergo a very high
number of group changes per second.

On the other hand, there may exist certain applications which might not re-
quire the protocol to scale to extremely large groups. For instance. if an application
were to be used only over a LAN environment, the protocol could be designed more
efficiently if it made use of the broadcast capability of the underlying physical media.
There can also be certain practical limits imposed by the application which reduce
the need for scalability. For instance, if we consider a white-board application, there
is a practical limit on the number of users who can simultaneously carry on a useful
session. Hence, it is highly unlikely that such an application would ever require the

protocol to be scalable to even 20 users.

3.1.1.5 Random Receiver Membership

Unlike the unicast case where the absence of a receiving end-point during the estab-
lishment of a connection causes the activity to abort and an error is indicated to the
higher layer, it is possible that there be no receivers during establishment of a multi-

cast connection. Hence applications may require protocols to allow receivers to join
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at any point in time. Similarly, members should also be allowed to leave multicast

groups at any time.

3.1.1.6 Congestion Control

Congestion control is one of the most difficult requirements to satisfy in multicast
due to its multipoint nature. Uncontrolled propagation of multicast data by even
just a few sources can potentially cause havoc on large-scale inter-networks. Thus,
for reliable multicast to be accepted and embraced, it must address congestion control
requirements in an efficient manner. These multicast protocols must also co-exist with

the more common unicast protocols like TCP.

3.1.1.7 Quality of Service

QoS characteristics for a multicast application include throughput, tolerance to tran-
sit delay, transit delay jitter and loss and corruption of packets. The QoS requirements
are usually specified through the selection of values of QoS parameters before a trans-
port connection is operated. Once agreed, QoS values usually apply for the duration

of a connection.

3.1.1.8 Security

As IP Multicast currently provides no security features, a multicast transmission on
the Internet can be received by anyone listening on that particular multicast address
and port as long as that receiver is within the TTL range of the sender. It should be
recognised however that privacy and security will be required of multicast protocols,

considering the multitude and types of existing and emerging multicast applications.



3.1.2 Classification of Reliable Multicast Mechanisms

Now that the requirements for most reliable multicast applications have been listed,
we can proceed with classifving the mechanisms used by reliable multicast protocols
to satisfv these requirements.

It is obvious that the numerous requirements in the multicast case drives the
need for more complex mechanisms than what is available in unicast. Reliable mul-
ticast protocols, like their unicast counterparts, provide a variety of mechanisms for
handling acknowledgements, error correction, PDU ordering and flow and congestion
control. Other multicast specific mechanisms are also available for maintenance of
state and group-membership information, data-distribution, delayed receiver partic-
ipation, QOS, and timing. Group-coordinator mechanisms are also available for the

purpose of group management.

3.1.2.1 Data Reliability Mechanisms

Multicast protocols can be grouped into two broad classes namely, sender-reliable
and receiver-reliable, depending on whether the sending end or the receiving end is

responsible for implementing the reliability mechanisms.

3.1.2.1.1 Sender-Reliable

This approach places the responsibility of reliable data delivery and retransmission
of lost packets on the sender. The state information about all the receivers is moni-
tored by the sender and is maintained using positive acknowledgements (ACKs) from
receivers for every packet correctly received, and timers for the purpose of detecting
packet losses.

The approach is appropriate in cases where the sender must have absolute
control of the group (e.g., security reasons). This mechanism is most appropriate in

cases where atomic multicast is required. The main disadvantage of this scheme is
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that it does not scale due to the overwhelming of the sender with responses from
individual receivers (also known as the ACK implosion problem). The sender incurs
an additional burden in maintaining the state of all receivers. Putting multiple ACKs
into a single data packet reduces the implosion problem by a constant amount, but

there is a limit to this technique as well.

3.1.2.1.2 Receiver-Reliable

The alternate approach shifts most of the responsibility for reliable data delivery to
the receivers. Each receiver maintains reception state and requests repairs via negative
acknowledgements (NACKs) when errors are detected. Error detection is based on
the receiver perceiving gaps in the data. This requires that individual packets be
identified using sequence numbers.

There are several classes of receiver-reliable approaches that are discussed be-

low.

3.1.2.1.2.1 Sender-Oriented

In sender-oriented approaches, an error detection at the receiver results in a NACK
to the sender. Though there may be other receivers who have received the data
for which this NACK was issued, only the sender is involved in issuing repairs. This
approach is appropriate when receivers cannot communicate with each other (perhaps
for security reasons). However, it limits scalability due to the NACK implosion effect
at the sender for a large number of receivers. Thus, it is best suited for transmission
of very large data packets in low-error environments whereby a low NACK overhead

to data content ratio can be realized.



3.1.2.1.2.2 Receiver-Oriented

In a receiver-oriented approach, receivers can communicate with each other to assist
in error recoverv. Each receiver caches data for some time or for the entire session.
When a particular receiver detects an error, it multicasts a NACK to the whole group.
This technique is also called *“flat-receiver oriented” error recovery. In this case, any
receiver that has correctly received and cached the missing data can issue the repair.

The above approach in itself would not reduce the NACK implosion effect
since the NACK is sent to the whole group and any receiver which detects an error
could in turn issue a NACK. To further improve scalability and allow for distributed
state management and more organised repair schemes, it is possible to introduce hier-
archy into reliable multicasting. Such a “hierarchical-receiver oriented” error recovery
scheme may involve receivers organised into a tree structure. NACKs generated by
them are aggregated by a parent node and passed on to the level further up in the
hierarchy. Using appropriate router mechanisms, or with multiple multicast groups.
it is also possible to allow the intermediate tree nodes to retransmit missing data
to the nodes below them in the tree rather than relying on the original sender to
retransmit the data.

A further improvement to the distributed repair scheme is suppression of con-
trol messages per repair. When a receiver detects an error, it is highly likely that
other downstream and equidistant receivers (in terms of delay) will also experience
the error. In addition, the equidistant receivers are also likely to detect the error at
roughly the same time. To reduce the chance of all such receivers issuing NACKs
simultaneously, each receiver sets a random timer upon error detection. When the
timer expires, and if a NACK for the missing data has not been heard, then the
receiver issues the NACK. When a receiver that has correctly received and cached
the missing data hears a NACK, it will start another random timer. If this timer

expires and a repair for that particular packet has not been heard, one is issued. This
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| Reliability Mode | Error Detection | Repair Responsibility l Scalability |
Sender Sender Sender Low: due to ACK
implosion
Receiver Receiver See Table 3 See Table 3

Table 2: Reliable Multicast Approaches

method is helpful in reducing both the number of repair requests and repairs that
might otherwise be heard.

Another method used is the deterministic suppression of responses in cases
where the downstream receivers also detect the same errors as upstream receivers.
By accurately estimating the delay between receivers, the uniform distribution of the
downstream random timers can be adjusted to produce longer delays. Thus it is likely
that a downstream receiver will observe the NACK of an upstream receiver before
issuing his own NACK. Typically, a combination of randomised and deterministic
NACK /repair suppression is used for a flat, receiver-oriented reliability scheme.

The advantage of tree-based approaches is high fault tolerance and scalability.
Node failures affect only a subset of the receivers, each of which can easily and locally
decide to byvpass its parent and report directly to the node one level higher in the
tree. One drawback is the amount of state information required at each node to
perform the above mentioned functions. Another drawback is the requirement that
all receivers must cache data for retransmission. Though this is not a problem for
applications like interactive white-boards, where state is maintained regardless, it is
highly disadvantageous for long-lived applications that require significant buffering.

Tables 2 and 3 summarise the reliable multicast schemes presented above.

The receiver-reliable approach imposes constraints on senders in cases where
applications demand complete reliability. Since senders do not track receiver reception
state, and receivers may request retransmission of data at any point in the future,

the sender needs to buffer data indefinitely. This is not an issue for any applications
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[ Repair Orientation | NACK Scheme | Repair Scheme | Scalability |
Sender- Receivers NACK | Sender issues re- | Moderate: Least scal-
Oriented to Senders pairs to group able of receiver reliable

approaches
Flat, Receivers NACK | Receivers High: Limits NACK
Receiver- to group cache data and can | implosion but requires
Oriented issue repairs distributed buffering
Hierarchical, Receivers NACK | Hierarchical nodes | Very high: Excellent
Receiver- to some hierar- | successively respon- | scalability and limited
Oriented chical node or | sible for buffering | network overhead
group and issuing repairs

Table 3: Receiver Reliable Multicast Approaches

delivering data with a bounded latency, because the sender is free to discard data that
cannot meet the reception deadline. However, it does represent a problem in cases
where the validity of absolutely reliable data never expires and hence the sender
cannot arbitrarily discard it.

Another problem which arises due to the use of NACK-based protocols is the
fact that a sender is never sure whether a receiver is silent (not sending any NACKs)
because it is correctly receiving all the data or it just has died. In such cases, the
protocol must use some sort of positive acknowledgement mechanism to ensure that
receivers are alive throughout the session.

There is also the issue of excessive network load caused by local retransmis-
sions. In such cases, the protocol must have mechanisms to dynamically determine,
based on the number of receivers requesting retransmission, whether the data should

be multicast again to the whole group or just unicast to the individual receivers.

3.1.2.1.3 Open-Loop Delivery Mechanisms

There exists a class of applications that do not provide any sort of feedback to the

transmitter. The primary example of this is satellite-based transmissions where the
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back channel may be very narrow or even non-existent. In such cases the solution is
to take the initial data and encode it using an forward error correction (FEC)-style
mechanism. This encoded data is then transmitted as a continuous stream. Receivers
can then join a session and receive packets until they have received a sufficient number
to decode the original data. at which point they leave the session. The advantage
of this solution is that it can scale to an infinitely large number of receivers. There
are various types of FEC mechanisms available for multicasting including pro-active

FEC, reactive FEC and layered FEC, none of which are discussed here.

3.1.2.2 Group Reliability and Management

Similar to data reliability, mechanisms for group reliability require feedback from the
receiver. It is the responsibility of the transmitter to solicit such feedback and main-
tain the required information. The level of reliability required of a reliable multicast
protocol is determined by needs of the application. The greater the level of required
reliability, the greater the amount of information that needs to be maintained by the
group members. and hence the greater the AGL If the application does not care about
group membership (0-reliable multicast), then the design of the protocol becomes rel-
atively simpler. On the other hand, if the user’s reliability semantics require that
all members of the group must remain alive throughout a session (atomic multicast),
then the protocol must hold and periodically update all necessary data structures
required to ensure this. In such cases; the detection of a failed receiver dooms the
integrity of the group.

Efficient group management requires that there be sufficient reliable informa-
tion about the group members. For applications having a single sender sending to
multiple receivers, this state information must be stored and managed at the sender.
In order to achieve higher scalability, the receivers may be assigned the task of state

management. In case there are multiple senders into a group, the group may be
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monitored by a globally elected group-coordinator. The control algorithms make use
of this state information while the group management policies determines when and
how changes in membership (admission of group members, pruning of group members,
etc.) are handled.

Some multicast protocols use implicit group management, where sources sim-
ply send data to the multicast group address, which receivers can join to receive
the data. This model matches the way IP multicast handles group membership and
scales well for large groups. Some protocols provide no group management functions,
leaving it up to the application. Other protocols may require full control over group
membership. In this case, either the membership is static throughout a session, or

an explicit group membership protocol ensures reliable joins and leaves.

3.1.2.3 Data Propagation Mechanism

The simplest way to implement a 1-to-N {multicast) conversation would be to make
use of N one-to-one (unicast) connections. However, due to obvious inefficiencies. most
multicast mechanisms tend to be implemented over broadcast network hardware as
was discussed in the previous chapter.

Similarly, multipoint-to-multipoint communication can be made up of N mul-
ticast conversations. For instance, an M-by-N application on the Internet may make
use of M distinct IP multicast addresses. A better technique would be to make use
of a single IP multicast address with some sort of coordination of data flow amongst

the participating entities.

3.1.2.4 Assistance from Network Elements

A reliable multicast protocol must involve mechanisms running in end hosts, and
must involve routers forwarding multicast packets. It is common for routers to merely

forward packets leaving the reliability mechanisms to the transmitters and receivers.
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It is also possible for certain network elements to provide a degree of assistance in
this area. Routers on the data distribution tree from the transmitter to the receiver
may assist in the delivery of data and feedback aggregation and suppression. Since
routers can directly influence multicast routing, they have a degree of control over
how traffic is routed to various group members.

There may also be a need for certain additional nodes to coordinate a multi-
cast session. The functions of such an entity, which is also known as the coordinator,
master or designated receiver may include assisting with data delivery, feedback ag-
gregation, overseeing group membership and operational parameters, keeping track
of the session’s current state and handling message sequencing via the use of tokens
or sequence numbers.

It should be noted that such a entity becomes a single point of congestion and
possible failure. A network partitioning may also render the partition without the
coordinator inoperative. In order to achieve better reliability, failure detection when
there are no messages from the coordinator for a period of time and recovery through
the election of a new master needs to be performed. As part of the group reliability
mechanism, the master may periodically need to inform the other members of the
group of its existence. All the members of the group may in turn be required to reply
to that message to indicate to the master that it is alive. This is especially true of

most NACK-based receiver reliable protocols.

3.1.2.5 Message Ordering and Priority

Current solutions for local ordering make use of TCP-like sequence numbering of the
data. In the case of multipoint-to-multipoint communication, the global ordering is
achieved by using a centralised sequencer that grants tokens.

Receivers must ensure that packets with lower token number are delivered

to the upper layer prior to those with higher numbers. This may result in certain
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more important messages being held up due to the non-delivery of messages with
lower token numbers. To overcome this problem, a special mechanism called streams
may be employed at the receivers whereby every message is assigned a priority and
a stream. Within a stream, sequencing is guaranteed, but a stream is completely
independent from all other streams; and hence messages can overtake other ones with

a different stream number.

3.1.2.6 Scalability

For applications that need to scale to a large group of receivers, the burden of feedback
control and error recovery must be distributed among all the members of the group
by dividing the global multicast group into separate subgroups with the use of some
hierarchy mechanism to collect the responses from the various receivers.

The scalability of applications can also be improved by allowing receivers to
maintain and manage state information (using receiver reliable mechanisms as dis-
cussed in section 3.1.2.1.2.2), there by relieving the sender of this highly intensive
task.

Another approach to achieving scalability is to split the data across multiple
multicast groups. There may be a number of different variables based upon which
the data can be split. For instance, receivers may join an appropriate group based on
the quality of transmission they wish to receive. This may in some cases require fast
join and leave functionality from the routers and may also require more forwarding

state in them.

3.1.2.7 Late Join and Early Departure Mechanisms

Depending on how valuable the past data is to late joiners, the protocol should
require the transmitter to buffer all or part of the data using techniques like multi-level

caching. The late joiners may then look at the sequence number of the packet that was
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currently multicast by the transmitter and send a special request for retransmission
of all the packets with sequence numbers lower than the current one.

The question of how long the data needs to be retained by the transmitter also
depends on the needs of the application. If the application requires that all the data
be available all through the life of the transport connection, then sufficient buffering
will be required to satisfy this demand. On the other hand, applications may specify
a retention time for the data and once this time expires, the data may be discarded.

The protocol must also contain mechanisms to allow members to indicate their

intentions of joining or leaving a multicast group during the data transmission phase.

3.1.2.8 Flow and Congestion Control

Most Internet applications today rely primarily on end-to-end congestion control at
the protocol layer. A lot of research [Jaco97] is currently underway in this area.
Rate-based windowed flow control mechanisms may be used in the multicast
case to avoid overloading slow receivers and links with low bandwidth. This technique
involves having the sender transmit a window full of new packets at the start of a
cycle and at the beginning of the next cycle updates the send window and transmits
as many new packets as there is room for its send window. The sender must ensure
that all the receivers that have sent status messages within a given interval of time,
have successfully received the relevant packets before advancing the lower end of its
send window. In addition, the sender never transmits more than a full window of
packets during a fixed interval, thereby limiting the maximum transmission rate.
Ideally reliable multicast protocols should perform TCP-like congestion control
so that they can be TCP friendly. However, this will reduce the rate of transmis-
sion to that of the slowest receiver. Since there are always uncorrelated packet losses
on different parts of a multicast tree, the transmission rate will eventually decrease

to 2 minimum, i.e., one or two packets per round-trip time. One possible approach
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in this case is to simply transmit at the rate of one or two packets per round-trip
time and open the window very slowly when none of the receivers report any losses.
The slow-start algorithm also helps prevent a sender from flooding an already con-
gested network, by detecting possible congestion based on the number of received
acknowledgement packets that contain retransmission requests.

Another approach is to have multiple multicast groups and the sender then
transmits at different rates to each group. Receivers can choose to join the groups

based on the congestion they experience.

3.1.2.9 Quality of Service Mechanisms

There are several mechanisms available for the negotiation and agreement of QoS
parameters. A discussion on these mechanisms is bevond the scope of this thesis.

\lore information on QoS mechanisms can be found at {QoS].

3.1.2.10 Security Mechanisms

The simplest way to multicast data securely is to encrypt it before transmission.
Issues of security on networks and the Internet in particular pose several interesting
research problems which are beyond the scope of this thesis. Readers may refer to

(SMuG] for more details.

3.1.3 Reliable Multicast Transport Building Blocks

[Whet99] has defined the concept of a building block to be logical protocol components
that result in explicit APIs, which may be used by other building blocks or by protocol
clients. These building blocks are generally specified in terms of a set of algorithms
and packet formats that implement protocol functional components. A few sample
building blocks include NAK-based reliability, congestion control, security, etc.

This thesis makes use of a similar idea and lays out the set of requirements
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posed by multicast applications in general and proposes a functional decomposition
of reliable multicast protocols according to the mechanisms they employ to satisfy the
listed requirements. This functional decomposition has also resulted in a number of
additional building blocks like late join and early departure mechanisms, QOS mech-
anisms, etc., which may be used to build multicast transport protocols, all of which
have been listed in table 4. In certain cases, a one-to-one mapping of the mechanisms
and requirements is always not possible and certain requirements must be satisfied
using multiple mechanisms. For instance, hierarchical receiver-oriented reliability is
much more scalable if it makes use of special receivers to collect acknowlegments from
receivers further down the hierarchy. The table has also omitted the mechanisms nec-
essary to satisfy QoS and security requirements as they are beyond the scope of the

thesis.
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3.2 Review of Multicast Transport Protocols

The following section reviews four well know multicast transport protocols and maps
their requirements and mechanisms over our taxonomy in order to demonstrate its
completeness. These protocols have been chosen because they map well onto the listed
requirements and mechanisms. A description of each protocol has been provided and

the list of requirements they claim to satisfy using underlying mechanisms has been

tabulated.

3.2.1 Local Group based Multicast Protocol

The Local Group based Multicast Protocol (LGMP) [Hofm97! supports reliable and
semi-reliable transfer of both continuous media and data files. The protocol improves
scalability and performance by using subgroups (also called Local Groups) for lo-
cal acknowledgement processing and error recovery, as defined by the Local Group
Concept (LGC).

Local Groups are formed by dynamic organisation of receiver sets and are in
turn managed by a special receiver called a Group Controller, which handles status re-
sponses and coordinates local retransmissions. The selection of appropriate receivers
as Group Controllers is based on the current state of the network and of the receivers
themselves. This process is not part of the LGMP protocol and is implemented by a
separate configuration protocol called Dynamic Configuration Protocol (DCP).

Packet errors are first recovered inside Local Groups using a receiver-initiated
approach. The sender performs retransmissions only if no member in a Local Group
(including the Group Controller) has a copy of the data. Otherwise, errors will be

recovered by local retransmissions.
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3.2.1.1 Acknowledgement Scheme

LGC defines three types of acknowledgement packets namely positive acknowledge-
ments (ACKSs to release data units from the sender’s buffer), negative acknowledge-
ments (NACKs to request for retransmission of missed data units) and semi-negative
acknowledgements (SNACKSs to indicate that at least one member of the Local Group
has correctly received a data unit, but another one is still missing it). Hence a SNACK
implies that a data unit has not yet been received correctly, but there is no request
for its retransmission.

In case one member of a Local Group does not receive a data unit, local error
recovery is first attempted. The GC does not NACK such a data unit. However,
the sender is not allowed to release the data unit from its buffer. If the successful
receiver that was supposed to perform the local retransmission dies, or leaves the
subgroup or group, all the members of the Local Group must have the chance to get
the missing data unit from someone else. In the worst case, they will get it directly
from the sender. Therefore, the GC does not acknowledge the data unit positively
either. Instead, it uses a semi-negative acknowledgement to indicate the status of the

data unit.

3.2.1.2 Error Recovery Scheme

LGC performs local retransmissions thereby reducing unnecessary traffic in segments
of the network that have no errors. A GC requests a missing data unit from the sender
or a higher-level GC only if no member of its subgroup has a copy of that data unit.
The GC may either unicast or multicast missing data units within its subgroup. It is
also possible for regular receivers to perform retransmissions based on timers carefully
set to suppress redundant requests and repetitive retransmissions. The suitability of
each approach mainly depends on the application-specific environment and on the

characteristics of the underlying network.
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LGC defines two different modes of performing local retransmissions: a load-
sensitive mode and a delay-sensitive mode. It is up to the application to choose the
appropriate mode according to its requirements. It is also possible for different GCs

to operate in different modes.

e Load-Sensitive Mode: The aim of this mode is to reduce network load caused
by local retransmissions and control messages. Local retransmissions are per-
formed only after the expiration of a predefined time interval. The decision
whether to perform retransmissions using unicast or multicast is taken dynam-
icallv depending on the current group status. If the number of repair requests
for a particular data unit exceeds a certain predefined threshold, then the GC
will multicast that data unit, otherwise it will send it directly to the requesting
receivers using unicast. However, local retransmissions performed by regular

receivers are always multicast to the Local Group.

e Delay-Sensitive Mode: This mode is more suitable for time-constrained ap-
plications that cannot tolerate delay. Here the GC immediately multicasts the
requested data unit to the Local Group on receiving a NACK. If the GC itself is
missing a certain data unit, it will multicast a repair request to the Local Group.
Anyv receiver holding a copy of the requested data unit delays the retransmis-
sion for a random interval, after which the receiver multicasts the requested
data unit to the Local Group. Other receivers that are still waiting to perform
the same local retransmission will stop their repair timers on receiving the local

retransmission.

3.2.1.3 Congestion Control

LGC separates the signal for indicating congestion from the algorithm for congestion

control. It provides mechanisms to detect network congestion based on the status



reports of each receiver, but leaves it up to the application to choose the algorithm

to deal with congestion.

3.2.1.4 Management of Local Groups

The placement of GCs and the assignment of receivers to appropriate Local Groups
are essential for the efficiency of data transfer. As the GCs are also single points
of failure, auto-recovery mechanisms are necessary for handling such situations. In
addition, due to dvnamic changes in memberships of the Local Groups, they must be
self-maintaining and self-reconfigurable.

Instead of integrating mechanisms into LGMP to define Local Groups and
establish and maintain these logically structured group hierarchies, a new protocol
named “Dynamic Configuration Service” (DCS), has been defined. DCS provides
all the mechanisms necessary to get the state information but it does not define the
parameters for the selection of an appropriate GC, which is a session-level control or
QOS management task. As the state information maintained by DCS is distinct and
independent of any data-level protocol, it can interact with any other protocol that

requires a similar receiver hierarchy.

3.2.2 Reliable Multicast Transport Protocol

The Reliable Multicast Transport Protocol (RMTP) [Paul97] provides sequenced,
lossless delivery of bulk data from one sender to a group of receivers. Reliable data
deliverv is ensured by selective retransmission of lost packets by the sender in re-
sponse to retransmission requests from receivers. To avoid throttling the sender with
retransmission requests, RMTP uses a tree-based hierarchical approach.

The receivers in a RMTP session are grouped into Local Regions and a Des-
ignated Receiver (DR) or ACK Processor (AP) functions as a representative of the

local region. The sender multicasts every packet to all the receivers using a “global”
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multicast tree. Only the DRs send their status to the sender indicating which packets
they received and which they did not receive. The receivers in the local regions send
their status to their corresponding DR. The DR uses these status messages to perform
local retransmissions to the receivers, there by reducing the end-to-end delay. Thus
the senders sees only the DRs and the DR sees only the receivers in its local region.
By distributing the processing of status messages among the sender and the DRs,
the acknowledgement implosion problem is avoided. RMTP also supports multi-level
hierarchy, in which case, a DR sends its status to the DR least upstream from itself
in the multicast tree and thus, the sender receives only as many status messages as
there are DRs in the highest level of the multicast tree. Usually RMTP receivers are
grouped into local regions based on their proximity in the network. For example, in
IP networks, receivers are grouped into local regions on the basis of the time-to-live
(TTL) field in the IP packets. The global multicast tree, rooted at the sender and
spanning all the receivers is set up at the network layer (ATM layer in the context of
an ATM network). Local multicast trees, which are parts of the global multicast tree
are set up between the DRs and their corresponding receivers.

RMTP’s design is based on the IP-Multicast philosophy and hence senders
do not possess explicit knowledge of the set of receivers. The receivers may join or
leave a multicast session without informing the sender. The status information from

receivers must reach the sender within a session-specified maximum time period.

3.2.2.1 Session Manager

RMTP sessions are created and controlled by a Session Manager, which is not a part of
the protocol. The Session Manager provides all the participants with the associated
connection parameters including the send and receive window sizes, the multicast
retransmission threshold, data packet size and other parameters that affect protocol

performance. It is also responsible for detecting and handling possible exceptional
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Figure 14: Logical format of an acknowledgement bitmap

situations such as network partitions and receivers voluntarily or involuntarily leaving

the multicast group.

3.2.2.2 Error Recovery

An RMTP sender divides the data to be sent inro fixed sized packets and transmits
them using the global multicast tree. Every packet is assigned a unique sequence
number that defines the overall order before they are multicast to the group.

Designated Receivers learn of missing packets from the ACKs unicast to them
by the receivers in their local region. The ACK packets contain the sequence num-
ber of the first in-sequence packet not received by the receiver, plus an acknowl-
edgement bitmap indicating which out-of-sequence packets have been successfully
received. (Figure 1)

The DRs keeps track of the sequence number of the lowest in-sequence packet
that has not been successfully received by a receiver. The data packets not received
are added to a retransmission queue, along with the identity of the receiver that
requested the retransmission. If the number of receivers requesting retransmission of
a packet exceeds a predefined threshold, the packet is re-multicast to all the members

of the group: otherwise, the packet is retransmitted via unicast to the receivers who

requested the retransmission.



3.2.2.3 Late Joining Receivers

It is possible that some receivers join a session after data transmission has commenced.
These late joining receivers must be allowed to catch up with the other receivers. In
addition, some receivers may temporarily fall behind due to various reasons such as
network congestion or network partitions. RMTP has two features which together

allow lagging receivers to receive the missed data.

1. Immediate Transmission Request: When a receiver joins a session late; it
can find out the packets it has missed earlier by looking at the sequence number
of the packet that is presently being multicast by the sender. At that instant, it
uses an special ACK packet to request its ACK processor for immediate retrans-
mission of those earlier packets. When an processor receives this special ACK
packet from a receiver, it checks the bit vector of the packet and immediately

unicasts the missed packets to that receiver.

5 Two-level Data Cache: To allow receivers to join an ongoing session at any
time and still receive all the data reliably, the senders and designated reccivers
in RMTP need to buffer the entire file during the session. This allows a receiver
to request the retransmission of any transmitted data from its corresponding
ACK processor. RMTP uses a two-level caching mechanism whereby the most

recent data packets are cached in memory, and the rest are stored on disk.

3.2.2.4 Selection of Acknowledgement Processors

An ACK processor for a receiver is either a sender or designated receiver that pro-
cesses acknowledgements and retransmits lost packets to the receiver. Receivers and
designated receivers periodically send acknowledgements to their ACK processors.
Although specific machines are manually chosen to function as designated receivers,

the choice of an ACK processor for a given local region is done dynamically.
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The designated receiver chosen to be a receiver’s ACK processor is the one
closest in terms of the number of hops (determined by using TTL’s) to the receiver.
ACK processors are selected using this mechanism at connection establishment, and

when an established ACK processor fails.

3.2.2.5 Flow Control and Congestion Avoidance

RMTP uses a rate-based windowed flow control mechanism to avoid overloading slow
receivers and links with low bandwidth. The sender transmits a window full of new
packets at the start of a cycle, and at the beginning of the next cycle, it updates the
send window and transmits as many new packets as there is room in its send window.
The sender ensures that all the designated receivers, that have sent status messages
within a given interval of time, have successfully received the relevant packets before
advancing the lower end of its send window. In addition, the sender never transmits
more than a full window of packets during a fixed interval, thereby limiting the
maximum transmission rate.

RMTP implements the slow-start algorithm to prevent a sender from flood-
ing an already congested network. The mechanism detects possible congestion based
on the number of received acknowledgement packets that contain retransmission re-

quests.

3.2.3 Multicast Transport Protocol

The Multicast Transport Protocol (MTP) [Arms92] provides sequenced, globally or-
dered, reliable, rate-controlled, atomic transfer of messages® between one or more
communicating processes as well as a predefined principal process. It is designed to
be used on top of an unreliable, not necessarily sequence-preserving multicast network

protocol such as IP multicast.

23 MTP message is a concatenation of user data portions of a series of data packets with the
last packet in the series carrying a end-of-message indication
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Apart from reliable message delivery, MTP uses an ordering and agreement
protocol to provide the synchronisation necessary for group members® to agree on
the order of receipt of all messages and delivery of those messages even in the face of
partitions.

MTP-2 [Borm94] is an enhanced version of MTP. It overcomes some of the
practical problems associated with using MTP and also adds functionality to it. Self-
Organising Multicast (MTP/SO) [Borm97], uses MTP-2 as a basis and adds sponta-
neous self-organisation of the members of the group into iocal regions.

The members of an MTP-2* group can take one of three different roles: co-
ordinator, sender and receiver. The coordinator provides the message ordering for
all members in a group and oversees group membership and operational parameters.
Senders send data in messages (a sequence of one or more packets) after obtain-
ing a token from the coordinator. Receivers receive these messages and request the
retransmission of lost packets through negative acknowledgements.

The data transfer and retransmissions are based on dividing time into heart-
beat intervals (measured in microseconds). After the initial transmission of a packet,
receivers have a limited retention time (measured in heartbeats) to request its retrans-
mission. After that time, senders are no longer obliged to honour NAK's, allowing
the producer to discard its copies of the data sent.

Before sending messages, a sender obtains a token from the coordinator that
contains a global message sequence number. Receivers are responsible for deliver-
ing messages in the correct (global) order to their applications. The token allows

the sender to transmit a limited number of packets in a heartbeat interval, thereby

achieving rate control.

3In order to maintain consistency throughout the document, the terms group, coordinator, sender
and receiver have been substituted for the terms web, master, producer and consumer.
A5 several limitations of MTP have been overcome in MTP-2, the rest of the discussion deals

with MTP-2, unless otherwise specified
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3.2.3.1 Coordinator Control

The concept of coordinator is very essential to the proper functioning of the MTP
protocol. The coordinator is the principal member of the group and is responsible for
instantiating and controlling the behaviour of the group, including its membership
and performance.

The coordinator handles group membership by admitting or rejecting members
wishing to join the group via a join request packet. A member may not be admitted
into the group in cases where it specifies service parameters that are in conflict with
those established by the coordinator. The coordinator has the capability to regularly
check the membership status of the group by querying individual group members. A
member may leave an on-going session by informing the coordinator of its intention
to quit the group.

The coordinator is also responsible for issuing tokens, which are necessary for
transmission into the group. Because MTP is a many-to-many protocol wherein any
number of senders may transmit to the group. the tokens also ensure total ordering

of messages.

3.2.3.2 Global Ordering

The coordinator assigns a global sequence number (also called a message sequence
number) to each message, which it sends in a token confirm packet as a response
to a token request. Senders will send this sequence number in every data packet
belonging to the message. To order packets within a message, senders assign a packet
sequence number on a per-message basis. It is the responsibility of the receivers to
deliver messages in the correct order to the applications, if sequenced delivery has
been specified for a message.

Senders return the token to the coordinator implicitly with the final packet of

the message once they have finished transmitting all their data.



3.2.3.3 Error Detection and Recovery
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When a receiver detects missing packet sequence numbers, they unicast NACKSs to

the sender. Retransmissions are then multicast to the group (Refer Figure 13).

To limit buffering at the sender, receivers have a limited time to request re-

transmission of data packets. This time is called retention time and is measured in

heartbeats. After this time, senders are no longer obliged to honour NAKs, allowing

them to discard their copies of the data sent.
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3.2.3.4 Atomic Message Transfer

MTP-2 ensures that all members agree on which messages are accepted by assigning
a status to each message. The coordinator maintains a message acceptance record
containing the status of the most recent 12 messages. Messages that are in progress are
marked “pending”, messages that have been correctly received by the coordinator are
marked “accepted”, and messaged that have not been correctly received are marked
“rejected”. The message acceptance record is transmitted in every packet sent by the
coordinator.

As soon as the sender notices one of its messages to be accepted, it sends
an acknowledgement of successful transmission to its application. Such an acknowl-
edgement does not guarantee that every receiver has received the message but that
ar least the coordinator was able to receive it correctly. If a specific receiver does
not completely receive a message (even after requesting retransmission), that is ac-
cepted by the coordinator, it will signal this as an unsuccessful reception error to its
application. It may also be an indication that such a receiver may be failing.

Receivers do not deliver pending or rejected messages to the application. A
message marked as rejected was not completely received (even after repeated re-
transmissions) by the coordinator. Normally, every receiver will drop such messages

and the sender of the message will indicate an unsuccessful transmission error to its

application.
It is obvious that atomicity increases message latency because applications
need to wait for the acceptance state of messages to propagate from the coordinator

before they can act on them. MTP-2 provides the facility to turn off atomicity on a

per-message basis, should the application not require it.
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3.2.3.5 Coordinator Loss and Migration

MTP-2 provides improved reliability by providing a mechanism for continuing with
the session in case the coordinator fails or is partitioned from a set of receivers. All
members can detect the loss of the coordinator when they do not receive any packets
or new parameter values from it. The suspected loss of the coordinator is confirmed
by the receivers sending it a special packet. If the coordinator does not respond, the
members assume that it has failed and elect a new coordinator, which accurmnulates
information about the status of all active messages, as well as recently requested
transport parameters from all responding members.

Coordinator migration is useful when the host with the running coordinator
or its network connection is overloaded or in the case when the member to which the
coordinator is associated wants to leave the session. The procedure adopted is similar

to the coordinator loss recovery procedure.

3.2.3.6 Dynamic Parameter Adjustment

The transmission time is divided into equally spaced intervals called heartbeats.
When no data is being sent, the master multicasts a special packet (called an empty
packet) per heartbeat. To reduce the impact of this overhead, the heartbeat can be
slowed when senders are quiescent. The amount of time that senders may retain data
may also be adjusted.

Also if frequent loss is encountered, higher parameter values may increase
the likelihood of successful (re)transmission. Only the coordinator of the group can

modify the heartbeat, retention and window parameters.

3.2.3.7 Priority and Streams

MTP-2 provides priority assignment for token requests and the coordinator processes

these requests in the order of priority.
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It also provides for sequencing of high priority messages as it would sequence
normal messages using a concept called “streams”™. In MTP-2, every message has
a priority and a related stream. Within a stream, sequencing is guaranteed, but a
stream is completely independent of all other streams; therefore messages in a stream

can overtake others that are in a different stream.

3.2.3.8 Self-Organisation

The MTP/SO protocol was developed to handle the NACK-implosion problem. by
introducing hierarchy to MTP-2. MTP/SO introduces the concept of regional re-
peaters. Receivers multicast NACKs with a local scope®, before multicasting them
with a larger scope. Repeaters that have previously received the requested data re-
transmit locally after receiving a local NACK. Repeaters that don’t have the data
just relay the NACK to the next higher level of hierarchy, up to the whole group,

where, finally, the sender itself replies with a copy of the data.

3.2.4 Xpress Transport Protocol

The Xpress Transport Protocol (XTP) is a high-speed transport protocol designed
to meet the needs of various applications ranging from real-time embedded systems
to multimedia distribution to applications distributed over a wide-area network. [t
defines a set of orthogonal mechanisms necessary for delivering user data from one end-
svstem to one or more end-systems but avoids implementing specific pre-established
policies. It provides a multitude of independent features including flow control, rate
control, error control, delivery priority, unicasting/multicasting, various data deliv-
erv semantics, parametric address and traffic specification from which the user can

construct a protocol well-suited to the application at hand.

5The scoping can be done with IPv4 TTL thresholds or by using IPv6 administrative scoping,
but the exact number and extent of scopes is a global parameter of the group



XTP makes use of well-defined packet structures, containing user data or con-
trol information, which are exchanged by the end-systems for purpose of data transfer.
The control information is used to provide the requested level of correctness via error
control algorithms and maintenance of state information. Efficient data transfer and
the desired quality of service can be achieved using flow and rate control algorithms,
certain protocol modes and traffic shaping information. All of XTP’s packet types
use a common header structure, which contains the information necessary to steer

the packet’s payload to the appropriate destination.

3.2.4.1 Contexts and Associations

A “context” is an XTP data structure that holds relevant state information about an
active endpoint at a XTP host. Every active conversation in XTP requires a context
which must be instantiated before sending or receiving XTP packets. Each context
(unicast communication) manages a full-duplex data stream® and is also capable of
sending and receiving control information. The operation of a context is controlled
by bit-flags in the packet header.

An XTP user communicates with one or more XTP users by establishing
an “association”, which is an aggregate of all the active contexts and data streams
between them. To establish an association. the initiating host sends a association-
establishment packet to a destination host. which in turn creates a corresponding
endpoint for the association. Such an association is a one-to-one or unicast associa-
tion. XTP also provides for one-to-many or multicast associations in which case there
are more than two endpoints. Data flow is full-duplex only in unicast associations.
In case of multicast associations, the data flows only in the one-to-many direction.
The protocol also provides a variety of mechanisms for closing a connection once all

the data transfer has been completed. Figure 16 illustrates contexts and associations

6In case of multicast communication, the data stream is simplex.
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in the XTP communication model.

Only the association-establishment packet carries explicit addressing informa-
tion. All other packets carry a unique key in their header, which allows the packet to
be mapped to the appropriate context at the receiving host.

NTP requires that there be a listening context in the unicast case (or a set of
listening contexts in the multicast case) to which a transmitting context can send a
packet for association establishment. If there is no endpoint waiting to receive such a

packet, it is a protocol error. Such behaviour makes XTP an “asvmmetric” protocol.

3.2.4.2 Error Control Mechanisms

XTP’s error control mechanisms make use of positive and, when appropriate, negative
acknowledgement to effect retransmission of missing or damaged data packets. The
retransmission mechanism may either be Go-Back-N or selective-repeat. Missing
data is indicated using control messages and this prevents spurious and redundant
retransmissions, which may otherwise lead to congestion. There also exist mechanisms

for quick-acting error notification.
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3.2.4.3 Flow Control and Rate Control Mechanisms

Flow contral is a set of techniques that enable a data source to match its transmission
rate to the currently available service rate at the receiver and in the network. It links
the transmission rate afforded by the transmitter to the buffer space available for
the connection at the receiver. Flow control is one of the mechanisms for congestion
control.

Rate control on the other hand, is a producer/consumer concept, which deals
with controlling the rate at which the transmitting transport entity is allowed to
submit data to the underlying data delivery service. It is desirable since the receiver
may drop packets not because it has run out of buffer space (flow control problem),
but because it cannot process data as quickly as the transmitter sends it.

N TP provides orthogonal mechanisms for shaping rate control and flow control.

The flow control is based on 64-bit sequence numbers and a G4-bit sliding window.

3.2.4.4 Support for Multicasting

An important and distinguishing feature of NTP is the provision of mechanisms for
transport layver multicasting. XTP multicast is not an attachment to the unicast
functionality, rather, each mechanism used for unicast communication is available for
multicast as well. It provides a wide range of options from the UDP style best-effort
multicast delivery to ordered and reliable multicast delivery. A detailed description

of XTP multicast can be found in Appendix A of this thesis.

3.2.4.5 Data Delivery Service Independence

With increasing use of switched networks in place of routed networks, a traditional
network layer service may not be appropriate in every instance. Though XTP is a
transport protocol, it can be employed over just about any underlying data delivery

service including MAC, IP, AALS etc. XTP employs parametric addressing, allowing
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packets to be addressed with any one of several standard addressing formats.

3.3 Summary

Table 5 provides a summary of the various features exhibited by the various multicast
protocols discussed in the previous section. It is clear that only XTP provides a

complete set of mechanisms to satisfy all the listed requirements.
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Chapter 4

Multi-sender Communication using

XTP

4.1 Introduction

The previous chapter described two main classes of multicast applications, namely
non-interactive point-to-multipoint data distribution applications and multipoint-to-
multipoint interactive applications. It is clear that the reliability requirements for
these two classes of applications are quite different. RMTP and LGMP are examples
of multicast transport protocols that provide support for the former set of applica-
tions. They are receiver-reliable and make use of hierarchical mechanisms to achieve
scalability. MTP and MTP-2 on the other hand support multipoint-to-multipoint
applications but the absence of any hierarchy limit their scalability. MTP/SO over-
comes this limitation by introducing mechanisms for hierarchy. The MTP family of
protocols are also NAK-based protocols.

Multicasting has always been an integral part of XTP since the early stages

of development of the protocol. Revision 3.6 of the specification [XTP3.6] required
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receivers to multicast their control responses to the group and indicated packet er-
rors using NACKs. An appendix to the specification described several new heuris-
tics including the bucket algorithm. damping, slotting and cloning, as mechanisms
to improve the efficiency and effectiveness of XTP’s group communication support.
\ulticasting of responses to the group was not a very advantageous mechanism and
caused problems in widely-distributed networks. Moreover the use of NACKSs for sig-
nalling errors prevented fuily-reliable data transfer. Revision 4.0 of the specification
[NTP4.0] substantially changed the multicast procedures. The recommendation to
suppress response packets was removed, and receivers unicast control packets back
to the transmitter. Mechanisms were introduced to uniquely identify participants in
an association. However, these mechanisms involved potentially inefficient mappings
thereby substantially reducing the protocol performance. These and other issues were
corrected in the addendum to the 1.0 specification {Atwo96a].

NTP, like other sender-reliable multicast protacols, requires the sender to keep
track of the state of all the receivers using responses gathered from the active receiver
group. As already mentioned in section 3.1.1.1.2 on page 29, such a technique does
not scale to large groups due to acknowledgement implosion. [Atwo96b] and [Hofm96i
suggest two independent ways of dealing with this. Both the proposals make use of
hierarchy as a means of improving scalability. The difference between the two lies in
the way they handle distribution of data to the members of the group and the way

they collect responses from the receivers.

4.2 Previously Proposed Extensions to XTP Mul-

ticast

The multicast mechanisms in XTP provide a reliable 1-by-N communication facility.

An appendix to the XTP specification [XTP4.0b] describes a set of mechanisms that
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can be used to build a multipoint-to-multipoint service. This M-by-N communication
facility, in which application data flows from M different data sources to N data
sinks, makes extensive use of XTP’s standard 1-by-N multicast service. An M-by-N
multicast cornmunication service has been developed by adding a few extensions to
XTP’s basic multicast facility. These extensions make use of two techniques called
“concentration” and “cloning” to achieve the required functionality.

Concentration is defined as the inverse of multicasting, where arbitrary mes-
sages are reliably transmitted from a set of hosts in a multicast group to a single host.
If multiple data streams are concentrated into one receiving host, this host requires
M contexts to handle data from M sources. XTP implements each concentration
data stream as a new unicast association. Cloning is a technique used to improve
the efficiency of concentration. In case a large number of concentration channels
are needed, there may be an advantage of creating additional contexts {also called
pseudo-contexts) automatically instead of using explicit association setup procedures.
The simplest method is to implement a persistent listen operation at the concentra-
tor node, which clones a sequence of active contexts in response to incoming FIRST
packets.

The existing proposals for the M-by-N service attempt to provide reliable,
ordered atomic transfer of messages. A set of M communicants concurrently transmit
messages to each other (symmetric group communication), and the messages are
reliably delivered to each member in the group with a mutually consistent ordering at
N receiving sites. Figure 17 shows the communication setup for an M-by-N service.
An application entity at the “sequencer node” sets up a 1-by-N reliable multicast
connection with the set of receivers in the multicast group. When a receiver accepts
the FIRST packet sent to establish the reliable multicast association, it sends back a
unicast FIRST packet to the sequencer node. Using cloning, the transmitting context

at the sequencer node establishes a reverse channel with each group member. Thus
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Figure 17: M-by-N Connection Setup

cach group member has a reliable XTP unicast connection to the sequencer node,
which in turn has a reliable multicast connection to the set of receivers. It should be
noted that this mechanism is similar to the one described in page 22 for the ATM
multicast server model.

When a group member wants to send a message, it does so asynchronously
by unicasting it to the sequencer node (labelled 1 in figure 18), which sends out
the message on the multicast connection (labelled 3). The relaving of messages is
performed by a transport layer “bridge”, which multiplexes the data from a set of
receiving contexts into a single (multicast) transmitting context (labelled 2). The
bridge is also responsible for preserving message boundaries when forwarding data
from the back-channels into the outgoing multicast channel. Flow and rate control can
be used on the incoming back-channels to throttle members. The XTP associations
ensure reliable delivery and a mutually consistent message ordering of the global
message stream at each group member. The XTP group management facility helps
the sequencer node detect failures using information from the active group members.

Despite all XTP’s strengths, the M-by-N communication mechanisms in X TP

as defined the appendix of the 4.0 specification are neither graceful nor efficient. The

71



HOST A

Multicast Context

Receiver |
\ Ordered Messages

- o Receiving :>
_ 3 Context
] Transmitting <::
: S M | Local Messages
\
\ Cloze b1 HOST B
2
\
1 Clone <
* N

Recciver 2|
Ordered Messages
b Receiving : >
Sequencer Node

|

Context !

Transmitiin. <—_
—_—
Context Local Messages

il

HOST C

Receiver 3
ceenver Ordered Messages

N Receiving m—
Context

Transmittin <I ___L——‘
Context | Local Messages

i

I

Figure 18: M-by-N Reliable Ordered Multicast

rest of this section takes a closer look at the deficiencies and existing alternatives.
[P Multicasting is inherently M-by-N in nature and any number of transmitters may
send data to a single IP Multicast address on which any number of receivers may
be listening. Unlike other multicast transport protocols, XTP does not make use of
this underlying capability. Instead it struggles to achieve similar functionality using
the sequencer node, which results in a single point of congestion and failure. The
scalability of the system is also greatly reduced because of the sequencer.

One solution to the problems mentioned above is the use of M individual 1-
by-N multicast associations. This requires M distinct multicast addresses (one for

each sender) on which the N receivers must listen. Such a facility will also require the

services from a higher layer to manage the M different multicast addresses. Though



this technique solves a few problems described above, it makes inefficient use of the
multicast address space. Moreover, this solution requires the use of N contexts for

each transmitter for a total of MN contexts.

4.3 A New Proposal for Multi-sender Communi-

cation

It is now well understood that the total reliability requirement dictates senders to
have complete knowledge of the group (sender-reliable multicast). It has also been
repeatedly mentioned that maximum scalability can be achieved when the members
of a multicast group are organised into a hierarchy. With these two issues in mind,
there is ongoing work [Hanna] to incorporate hierarchy into XTP multicast.

Most M-by-N multicast applications that exist today do not pose heavy scal-
ability requirements. This is inherently due to the fact that applications such as
video conferencing typically have few group members (less than 10). In such cases
hierarchy is not necessary. It should be recognised though that in future there may
exist M-by-N applications in which M is considerably less than N. Examples of such
applications include a video conference that has only -1 or 3 members who are active
participants while there may be a 1000 other members who are passive listeners.

There is general agreement amongst the members of the IETF that a single
reliable multicast protocol or framework is not likely to meet the needs of all Internet
applications [Mank98]. However, there is little understanding as to the exact relation-
ship between application-specific requirements and more generic underlying reliable
multicast mechanisms.

The International Standards Organisation (ISO) and the International Elec-
trotechnical Commission (IEC), on seeing the lack of a “one-size fits all” solution for

reliable multicast, have defined a new transport service interface named Enhanced
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Communications Transport Service (ECTS) [JTC1/SC6]. This draft standard at-
tempts to provide a uniform and universal service interface between transport proto-
cols and applications that require support for powerful multimedia group communi-
cation. ECTS has been designed to allow it to work on top of any of the well-known
unicast and multicast Internet transport protocols such as TCP, RTP, UDP and MTP.
A companion protocol to ECTS has also been developed, called Enhanced Commu-
nications Transport Protocol (ETCP) [JTC1/SC6], which makes extensive use of the
multicast capabilities of TPv4 and [Pv6 and relies on RSVP for QOS provisioning
through resource reservation.

The ideas resulting from various global standardisation efforts as described
above and the availability of a mechanism-rich transport protocol such as XTP mo-
tivates us to build an underlying transport service infrastructure to support a wide
range of application-specific requirements, most of which have already been listed in
the taxonomy. In particular we would like to address the underlying problems with
the M-bv-N mechanisms in XTP by defining a new multipoint-to-multipoint trans-
port facility. In the next section, we develop a generalised service interface, which
will be able to reside on top of the modified transport protocol and perform functions
such as packet ordering amongst multiple senders.

The asymmetric nature of XTP’s association formation necessitates formation
of a multicast association with a process sending FIRST packets to a group of listen-
ing contexts. On the Internet, such a group of listening contexts is identified by a
multicast group address. The mechanisms necessary to pass this addressing informa-
tion to the group are not discussed here. It is assumed that a session management
application such as the Session Directory Tool [SDR] is capable of conveying the
necessary information.

Figure 19 shows the architecture for our new proposal. For ease of explanation,

we make use of an example in which 4 processes (labelled A, B, C and D in the
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Figure 19: Architecture of the proposed M-by-N communication model

architecture) at hosts T, U, V and W respectively, wish to participate in a multi-party
conversation. A separate implementation of XTP’s transport layver can be found in
each host in our example. Above this layver is our proposed Enhanced Communications
Support Layer (ECSL), a non-transport functional laver, which deals with issues such
as data ordering and token management. To further simplify our explanation, we
assume that only one process at each host wishes to be a part of the multi-party
conversation. It should be noted that the ECSL’s multiplexing capability could allow
more than one process to be part of the M-by-N group at a particular host (See Host
U in figure 19). We also make an assumption that the process A at host T begins the
session, by sending out FIRST packets to the 3 other waiting contexts at hosts U, V
and W respectively (Refer (a) in figure 20). On account of this, T is also assumed to

be the master of the M-by-N multicast session, henceforth cailed the “association”
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master context.

The association master is the process at a given host that first transmits XTP
FIRST packets for a given M-by-N group. It is also responsible for distributing trans-
mit tokens and coordinating the communication between the entities. A more robust
protocol implementation may require master selection via some sort of distributed
consensus protocol. In such a case, if the host with the association naster crashes or
is partitioned away, a re-election takes place to find a new master. A discussion on
the various distributed consensus algorithms to deal with master re-election is beyond
the scope of this thesis.

In the NTP multicast specification, the restriction of data flow from a sender
to the multicast receivers is indicated by setting the RCLOSE bit in the XTP header.
For data to flow in the reverse direction, separate unicast paths need to be set up.
In contrast, for our model, we clear the RCLOSE bit in the FIRST packet, thereby
allowing data on the reverse path of the full duplex channel. The sender makes use
of the local key for the multicast group Kr, for multicast data transmission. The
processes at U, V and W each have a separate listening context. henceforth referred
to as “host” master contexts, which wait for the arrival of the FIRST packet from
the association master context at host T.

When a host master receives the FIRST packet, it performs a full context
lookup. Unlike the cases of unicast and 1-by-N multicast! where a full context lookup
will fail if the address is in use, it does not fail in the M-by-N multicast case, as it
is possible to have more than one sender into a group. Another difference between
1-by-N multicast and M-by-N multicast arises due to the fact that in the former,
there may be more than one listening context at a host and hence the search for
listening contexts must continue until all are found. On the other hand, in the later

case, the search for listening contexts stops when one (host master context in this

1Refer A.4.1 for details on first packet matching for 1-by-N multicast.



JCNTL request

FIRST Key = KTQ key = K—'rg & xkey = K.'rz
[— V T V
JCNTL request
FIRST key = KTg & xkey = KT3
fev I‘Tg FIRST JCNTL request
Key = KTg key =KTo &
xkey = K'—rl
W U W
(@) ®)

JCNTL responsc
| key = K-’I- & _(ke}' = K't
2 2 i

T - VvV

I

JCNTL response

I key =Kt 3& xkev=K s

JCNTL response
key = KT l& xkey = K'll

U w

(©)

Figure 20: Keys exchanged by host T when it wishes to transmit



case) is found. As mentioned earlier, the multiplexing capability of the higher layer
would allow multiple processes on a single host to receive the data.

The host master then creates a “subordinate” context, which will handle all
further unicast transmissions towards the node that transmitted the FIRST packet
(T in this case). Once the FIRST packet satisfies the acceptance criteria, each sub-
ordinate context replies with a JCNTL request packet back to the process at host
T (Refer (b) in figure 20). Hence U will send a JCNTL request with kev = R7,
and xkey = K7, and V will send a JCNTL request with key = "{-9 and xkey = R7,
and so on. It should be understood that any reference to the host implies the XTP
implementation at the host unless otherwise indicated.

Now the association master context at T will create subordinate contexts to
handle the incoming unicast JCNTL request packets. Then each subordinate will in
turn respond with a JCNTL response packet with key = K7, (towards host U) and
xkey = K7 (Refer (c) in figure 20) and so on. Once all the required packet exchanges
have been completed, host T will have one association master context (which will
also play the role of the host master context) and three subordinate contexts (one
each for the unicast associations to the respective subordinate contexts at hosts U,
V' and W). Similarly each receiving host will now have one host master context and
one subordinate context.

Figure 21 shows the data paths established at the transport layer of our ar-
chitecture after the above mentioned packet exchanges. If the process at T wishes
to transmit data to all the group members, it will use the local key of the multicast
group (Kr,). If the transmitter at host T sent packets to a specific receiver (say at
Host U), it will make use of the kev 7, - Likewise, if a member of the group (say at
Host U) wanted to send control packets back to the transmitter at T, it will use either
the local key of the multicast group as a return key (K7,) or the key assigned by the

transmitter to uniquely identify receiver U(K7 ). Note that a member at U may also
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Figure 21: Data-Flow at the Transport Layer when process at T transmits

send data back on the reverse path from T because the RCLOSE bit is cleared in the
XTP header.

The mechanism we have described so far is similar to the 1-byv-N multicast
mechanism. Where our model differs is when another process (say at Host U) wishes
to begin sending into the group. In such a case, it will first acquire a transmit token
from the association master at host T (see section .- for details) and will send out a
FIRST packet to the multicast group with key = K, with its RCLOSE bit cleared
(Refer (a) in figure 22).

As mentioned earlier, each of the participating hosts (T, U, V and W) has
a host master context listening for FIRST packets sent to that particular multicast
group address. Now each host master context will create subordinate contexts again,
which in turn respond with a JCNTL request packet (Refer (b) in figure 22). Thus
the host at T will reply with key = K’ ’Ug (or K7, on the unicast forward path set up

by the process at T) and xkey = K7, (or K], on the unicast reverse path set up by
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the process at T). The host at U will in turn respond with a JCNTL response packet
(Refer (c) in figure 22), which will contain key = Kj: (or K, on the unicast reverse
path set up by the process at T) and xkey = K (or A7,. on the unicast forward
path set up by the process at T).

Now if the process at U wishes to transmit data to all the group members, it
will use the local key of the multicast group (K, ). If the transmitter at U wished to
send packets to a specific receiver (say at Host T), it will use key = K7,. If a member
of the group (say at Host T) wants to send packets back to the transmitter at U,
it will use K7, (Refer figure 23). Similarly, the packet exchanges required in case a
process at host V and host W wish to transmit data are shown in figures 24 and 26
and the corresponding data flows at the transport layver are shown in figures 25 and
27 respectively. Tables 6 and 7 list the keys used by the respective transmitters in
the above example.

Most applications are considerably simplified when the messages exchanged
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| Transmitting Host .~ Group Key |

T Kr,
T K,
\' Ky,
!L W A K W,

Table 6: Key used by host when multicasting data to the M-by-N group
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| Transmitting Host ~ Receiving Host | Key |

T | T Kr,
T | \% | Kp,
T f W ' Ko,
U ' T K.,
U \% K,
154 W K,
T V T R—tz
z \Y U K.,
\ w Ky,
W T K.,
W T K.,
W \% K.,

Table 7: Key used by host when unicasting data to other hosts



by the group members arrive in the same order at all recipients, even if theyv originate
at different senders. The example above described how XTP’s transport mechanism
must be modified to accommodate true M-by-N communication. The ECSL, which
sits on top of the XTP transport, must have mechanisms necessary for the necessary
message exchanges. The next section looks at the design of such a support layer.
[t must be pointed out that the ECSL has been modelled on the lines of another

well-known multipoint-to-multipoint transport protocol, MTP.

4.4 The Enhanced Communications Support Layer

For the design of the ECSL on top of XTP’s modified M-by-N communication facility,
we continue with our example from the previous section. The ECSL will incorporate
a number of building blocks listed in the taxonomy and it will allow XTP to be
efficiently used for the purpose of M-by-N communication.

As described in the previous chapter, the level of reliability required by the
application determines the behaviour of our model. For instance, in case a host
crashes or is partitioned away, then fully reliable multicast would require that all the
data that was missed by that particular host be retransmitted in case the partitioned
host rejoins the group. This would imply buffering of massive amounts of data by
the ECSL. It would be more efficient to have the application to deal with such issues.
Hence our present model does not provide the necessary mechanisms for dealing with
partitions and late join of group members.

The ECSL provides a set of primitives that the application can use to partici-
pate in a multi-party communication. For instance, when a process wishes to transmit
data to the group, it issues an open primitive to in turn call an open primitive at
the transport interface. This results in a XTP FIRST packet (with the RCLOSE

bit cleared) being sent to the other participating members. Then there is a series of
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JCNTL packet exchanges resulting in a master context (association master context)
and a set of subordinate contexts at T. Now a simplex 1-by-N multicast path exists
for process A from host T to hosts U, V and W, with a full-duplex unicast path
between host T and hosts U, V and W respectively. The previous section detailed
the keys that are exchanged for the purpose of connection setup and data transfer at
the transport layer.

Now if process B on Host U wishes to transmit data into the group, it first
needs to acquire a transmit token from the master of the group using an ECSL token
request primitive. This primitive in turn calls a transport token request primitive,
which results in the transmission of a unicast Token request packet to the master.
Depending on the implementation. the association master’s ECSL may choose to pass
the request up to the application in order to allow the user to accept or reject the
member wishing to transmit, which in turn results in a Token response or Token deny
packet. A more simplistic approach may be to just respond immediately with a token
response packet, which is sent on the unicast path back to the requesting host. The
token response packet will contain a list of members who are part of the active group
as well as the ordering rule that needs to be followed.

Now process B calls an open connection primitive at the ECSL, which in turn
results in a open transport connection primitive. After the required JCNTL packet
exchanges are completed between U and T, V-and W, there exists one master context
and a set of slave contexts at host U. Hence a simplex 1-by-N multicast path is created
between U and the other three nodes and bidirectional unicast paths are created from
U to all the other nodes. The host master context handles all the 1-by-N multicast
data flow in the forward direction while the subordinate contexts are responsible for
reverse control packet flow (for the 1-by-N outgoing data), and the (reverse) data flow
from the receiving entities.

From the above description, it is obvious that the ECSL service interface must



Protocol

Version Packet Type Length

Session Source Connection Identfier

Session Destination Connection I[dentifier

Message Acceptance Record

Data

00 - Token Request Packet
01 - Token Response Packet
02 - Data Packet

Figure 28: Format of ECSL PDU

provide a number of packets to perform a minimum number of functions, such as
starting up an M-by-N multicast session. distributing and managing the tokens that
are required for transmission to the group and performing data transfer functions.

Figure 28 shows the format of an ECSL PDU. It consists of a ECSL protocol
header followed by a variable amount of data. The header is part of every PDU.

The frst 8 bits of the packet are the protocol version number. The discussion
here refers to version 1 of the ECSL protocol and thus the field has the value of 0x01.
The next twelve bits form the Packet Type. Table 8 gives a list of the different packets
used by the ECSL protocol. The next segment is a 12 bit length of data field.

The ECSL source connection identifier is a 32-bit field containing the value
assigned by the transmitting system when the ECSL was created. Similarly the ECSL
destination connection identifier is a 32-bit identifier for the destination entity.

The next field is a 16 element vector, which represents the status of the last

88



| Service [ Primitive Parameters |
Open S_OPEN_MASTER. . Group membership and Ordering Rule !

- S_.OPEN_.SLAVE Group membership and Ordering Rule
Token Request | S_.TOK.REQ -

Token Response | SSTOK_ACC Active group list and Ordering Rule
Token Deny S_.TOK_DEN -

Token Cancel S_.TOK_CAN -

Data S_DATA -

Table 8: Enhanced Communications Support Layer Service Primitives

16 messages transmitted to the group. This field along with a 16 bit ECSL Token
number field and ECSL packet number field make up a Message Acceptance Record
(see figure 29). The message sequence numbers are 16-bit unsigned values. This field
is initialised to zero by the master when the ECSL is initialised, and incremented by
one after each token is granted. Only the master is permitted to change the value
of the message sequence number. Once granted, that message sequence number is
consumed and the state of the message must eventually become either accepted or
rejected. Packet sequence numbers are unsigned 16 bit numbers assigned by the
sending process on a per-message basis. Packet sequence numbers start at a value
of zero for each new message and are incremented by one (consumed) for each data
packet making up the message. The ECSL packet sequence numbers have a one-to-one
mapping with the transport layer packet sequence numbers.

We define a message to be a concatenation of user data portions of a series of
data packets with the last packet in the series carrying an end of message indication.
A message may contain any number of bytes of user data, including zero. The ECSL
Protocol must ensure that all processes agree on which messages are accepted and in
what order they are accepted. The master controls this by allocating transmit tokens
and setting the status of messages using a message acceptance record, which is carried

in every packet. Other peer ECSL’s then learn of the status of earlier messages by
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processing this information.

]

, Scssion Token Number Session Packet Number

Figure 29: Format of a Message Acceptance Record (when token for message m is
transmitted)

The first 32 bits of the record show the status of the 16 most recent messages,

which the master sets according to the following rules.

e If the master has seen the entire message (including the EOM and all intervening

data packets), the status is accepted.

e If the master has not seen the entire message but believes the message sender
is still operational and connected to the master (as determined by the master),

the status is pending.

e If the master has not seen the entire message but believes the sender to have

failed or partitioned away, the status is marked as rejected.

The record also contains a 16-bit ECSL Token Number and a 16-bit ECSL
Packet Number. The token number is incremented by one after each token is granted
by the master. The packet number, which has a one-to-one mapping with the trans-
port sequence number, is assigned by the producing process and is incremented by

one on a per-packet basis.

The rest of the packet makes up the data portion of the packet. The last
data packet needs to carry an end-of-message marker and is also used for implicitly

surrendering the transmit token back to the master.
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Chapter 5

Conclusion

The first goal of this thesis was to clearly distinguish the requirements from the mech-
anisms used to satisfy those requirements in the case of reliable multicast protocols.
Having cleared that big quagmire, a classification was done to create a taxonomy of
the various features. A few well-known multicast protocols were then chosen to be
mapped over our taxonomy to demonstrate its completeness. The second goal of the
thesis was to propose certain modifications to improve XTP’s existing multipoint-to-
multipoint communication model. Though our present design requires the use of at
least M*N contexts, it only requires one multicast address. This is significantly better
than most of the techniques that exist at present for achieving M-bv-N multicast in
XTP. Thus, we believe that the efforts in this thesis have gone rowards successfully

achieving the two listed goals.

5.1 Observations and Review of Work

It has become clear that the reliability that an application demands from a protocol
determines many aspects of a protocol’s design and subsequent performance, including
its complexity, efficiency, overhead, and the amount of state that it requires senders

and receivers to maintain. The type or level of reliability guaranteed by a protocol
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also determines how well suited it mayv be for certain types of applications.

It is claimed that the proposed design satisfies at least a subset of the require-
ments found in the taxonomy. To justify this claim, we revisit the ECSL design and
map its features over one of the multicast transport protocols described in Chapter 3.
For ease of explanation, we have chosen the Multicast Transport Protocol (MTP). As
mentioned earlier, M TP provides sequencing and global ordering using the services of
a central entity known as the coordinator. In our model for instance, the association
master context plays the role of the coordinator. When one of the entities partic-
ipating in the M-by-N multicast session wishes to transmit data. it must acquire a
token from the coordinator using the token request primitive. The order in which the

tokens are issued will determine the transmission order.

5.2 Current Limitations and Future Work

We believe that the claim of completeness in the taxonomy will be short-lived. As
more powerful multicast applications emerge, the requirements they pose on the un-
derlying protocols are sure to change. Advances in network technology are also likely
to result in newer and better mechanisms to satisfy the necessary requirements. This
will warrant updating the taxonomy to reflect these changes.

Another possible classification of the set of multicast protocols can be on the
basis of their communication model. For instance, several protocols make use of
hierarchy whilst others do not. Such a view has not been explored in this thesis due
to lack of time.

As mentioned earlier, the reeds of present day M-by-N type applications do
not require scalability. However, this may be a requirement in the very near future.
Hence addition of some sort of heirarchial mechanisms to improve scalability would

ensure that our present model can provide a complete range of mechanisms to satisfy
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all the requirements mentioned in the taxonomy.

Another aspect that has not been looked into is the issue of late receiver join.
One reason for this is the inability of most present day transport layers to buffer all
the data since the beginning of a particular session so that a late joiner may catch up.

This issue may be tackled with the help of some sort of checkpointing mechanism.
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Appendix A

Multicasting in XTP

A.1 Introduction

There exists a plethora of appiications (e.g., distributed databases, distributed simu-
lations, multimedia teleconferencing and video-conferencing, sensor data distribution
etc.,) that utlize the multicast communication paradigm, making multicast the most
distinguishing and important feature of XTP.

XTP multicast provides a powerful set of mechanisms for group communication
amongst a single sender and one or more receivers. Since this is transport layer
multicast, flow, rate and error control procedures are applied to the transmission of
arbitrary-size messages to arbitrary-size groups. XTP multicast provides the same
control algorithms and mechanisms as XTP unicast but the basic difference between
the two is the fact that while XTP unicast allows full-duplex data flow between the
two communicating entities, XTP multicast is simplex data flow (sender to one-or-
more receivers).

XTP multicast packets obey the same syntax rules as non-multicast packets
and the packet structure is identical except that all packets in a multicast association

have the MULTI bit set in the packet header. A multicast transmitter may utilize
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either the multicast group address or an individual transmitter’s unicast address to
transmit packets. A multicast receiver on the other hand must use the transmitter’s
unicast address to send control packets.

To indicate that a multicast association is inherently simplex (i.e., sender’s
incoming data stream is closed), the RCLOSE bit in the header is set for each outgoing
packet from the sender, starting with the FIRST packet. All packets sent by the
multicast receivers will have the WCLOSE bit in the header set.

The protocol assumes that the underlying data delivery service provides a
multicast or broadcast service. It does not define how to assign and manage group
addresses for this service and these details must be handled by mechanisms external
to the protocol.

NTP provides a wide range of data reliability mechanisms from the UDP style
best-effort multicast delivery to ordered and reliable multicast delivery. For reliable
multicast transmission, an XTP transmitter must maintaic and constantly update
the state information of all the receivers in a group. In general, the transmitter needs
to maintain state only for a subset of the receivers also known as “active™ receivers,
and run its control algorithms on them. The group management policy used by the
transmitter determines the set of active receivers. Hence the active receivers are the
ones whose control information is used to drive the control algorithms, while control
information from all other receivers is not used. There exist orthogonal mechanisms
for reliable management of information about group members.

The following gives a simplified description of the XTP multicast procedures
as laid out in the latest version of the XTP specification {XTP4.0b;. The reader is
asked to refer to this document for specific information such as packet formats and

other relevant details about the protocol.
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A.2 Multicast Group Creation and Termination

There are two different ways by which potential receivers may become part of a

multicast association.

1.

[V

Transmitter-Initiated Join: This is an “invitation™ to join the multicast
association, where the transmitter initiates the join procedure by multicasting
a FIRST packet to the group soliciting receivers. Any receiver listening on this
address then responds with a JCNTL packet back to the transmitter, request-
ing to join the multicast association. If the transmitter wishes to allow that
receiver to join, it responds with another JCNTL packet, which indicates that

the receiver is part of the association.

Receiver-Initiated Join: This is also known as “late-join”, in which case
receivers try to take part in an ongoing association by transmitting a JCNTL
packet to the group address requesting admission from the transmitter. The
transmitter will then respond with another JCNTL packet allowing the receiver

to join the assoclation.

It is obvious that the transmitted-initiated join must always be used for any

new session. Unlike unicast communication, multicast does not require the presence of

receivers for commencement of a session. Hence it might be possible that an invitation

to join does not yvield any receivers and in such cases, the late-join procedure may be

used.

If 2 multicast receiver wishes to withdraw from a group, it can do so by trans-

mitting a CNTL packet with the END bit set. The multicast transmitter removes the

receiver from the group but does not have to close the association even if that was

the last receiver in the group. A transmitter can terminate a multicast association by

sending a packet with the END bit set. Similar to the unicast case, various degrees

of gracefulness are possible for closure of a multicast group.
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A.3 Multicast Group Management

\ulticast receivers are allowed to join or leave an ongoing session at any time, and
hence multicast group management must ensure reliable multicast transmission in
the face of such changes in membership of the multicast group. The reliability of a
multicast association depends on the control algorithms used in the association and
on the group management policy.

The NTP multicast transmitter maintains the state of the active multicast
receivers as derived from control packets. The control algorithms running at the
multicast transmitter make use of this information, while the group management
policy determines when and how changes in membership are handled.

NTP does not impose policies for managing the receiver set because they
are application and interface specific, but it provides the mechanisms for admitting,
rejecting, and ejecting group members according to the group management policy.
The specification defines three aspects to group communication where a policy is

required.

1. Group Membership Admission The group membership policy should de-
termine how the multicast transmitter will find its initial set of receivers. The

policy should also determine who the active receivers are and are not.

(8]

Group Membership Pruning The policy should also dictate when a receiver
should be removed from the active receiver group and when a receiver should

be dropped from the receiver set altogether.

3. Group Reliability As the reliability of a multicast transmission depends on
the group membership and in particular the responses from the active receiver
group, the policy should determine if group reliability is compromised when the

active receiver group becomes insufficient.
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It is the responsibility of the multicast application to specify the parameters
necessary to control the behaviour of the multicast association. The parameters
include how the initial group of active receivers is compiled, the admission policy for
the active receiver and regular receiver group during an in-progress association, the
pruning or removal of receivers from the set of active receivers or from the group
entirely and what is meant by receivers lagging behind other receivers.

The state information about each active receiver is maintained in multicast
data structures at the multicast transmitter. This information can be regularly up-
dated by the transmitter, by setting the SREQ bit in any outgoing packet, which
forces receivers to respond with CNTL packets.

The transmitter can ensure syncronization amongst all receivers with respect
to the data stream by observing the “rseq” values in the data structure to verify
that all values are within some user-defined threshold of the transmitter’s last “seq”
value. A significantly low rseq value for a particular receiver might indicate that
receiver is slower than the other members of the group. or just that that receiver has
left the group without notification or died. To verify the status of such a receiver,
the transmitter forces an update of state information using SREQ. If all receivers
respond, then the offending receiver is just slow. However, if one or more receivers
fail to respond after the expiry of WTIMER. a synchronizing handshake procedure
will confirm whether the receiver is alive or dead.

The level of reliability required by an application determines the integrity of a
group. The amount and type of information recorded in the group membership data
structures, and the degree to which that information is exposed to the user, affects
the breadth of group reliability semantics that can be imposed by the user. For an

in-depth discussion about the requirements for group reliability, see section 3.1.1.1.2

on page 29.
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A.4 Multicast Association Management

Managing an XTP multicast association is closely related to managing a group of
receivers. The rest of the discussion details how a multicast association is established,

maintained and terminated and what specific packets are exchanged for these actions.

A.4.1 DMlulticast Association Establishment

Similar to the unicast association establishment, a multicast association is established
when one or more listening contexts receive a first packet and all the participating
contexts (one transmitting and one or more receiving) move into the active state.
As there may be multiple multicast contexts on the same host listening on the same
multicast address, an incoming packet has to be matched against all the listening
contexts to find those that will accept the association.

Each listening context submits an address filter that represents the address
values that the context is willing to accept, as well as acceptable traffic shaping
parameters and option bits. Once a FIRST packet is received and is not a duplicate
for an already active context, it is subjected to a matching algorithm to determine if
any listening contexts should get a copy of that packet. The contents of the FIRST
packet are compared against each listening context’s criterion for acceptance until
all listening contexts have been examined. A copy of the FIRST packet is given to
each listening context for which the address, traffic specification, and options are
acceptable. Each listening context that accepts the FIRST packet also makes an
entry for that context in its translation map. The entry will help the context map
any further incoming packets whose “key” field is the same as this FIRST packet’s
key field, and whose source host’s address (which can be obtained from the underlying
data delivery service) is the same as this FIRST packet’s source host’s address. Now

all the participating contexts move into an active state.
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| Notation Explanation
Kg Transmitter’s Local Key for the muiticast group
P Kr Receiver’s Local Key
Ki Key assigned by the Transmitter to uniquely identify a receiver i
Kg’ Transmitter’s Local Key for the multicast group as the Return Key
Kr’ Receiver’s Local Key as the Return Key
Ki’ - Key assigned by the Transmitter to uniquely identify a receiver i as the
| | Return Key

Table 9: Explanation of Notations used for Local and Return Keys

If the FIRST ;;acket finds an active context, then it is a duplicate which might
have been resent because the transmitting context timed out too early {due to an
incorrect WTIMER value). In such a case, a copyv of the FIRST packet should be
given to each of the contexts to which this packet belongs. and each of them should
respond accordingly if the SREQ or DREQ bits are set, and accept any additional
data that is part of the FIRST packet, but no new contexts become active.

If a full context lookup finds neither listening nor active contexts. then the
packet is dropped. This is very different from the unicast case where a rejected
FIRST packet results in a DIAG back to the sender. The reason for this is due to
the possibility that a multicast session may be active, even though there may be no

interested receivers in a group at a particular point in time.

A.4.2 Multicast Packet Exchanges

The following explains the necessary communication and packet exchanges for XTP
multicast. The procedures for both unreliable and reliable group information are
dealt with for both the transmitter-initiated and receiver-initiated join procedures.
The diagrams are drawn where necessary to indicate the basic context information
and other important fields in the relevant XTP packets. Tables 9 and 10 give a

description of the notations used in the following figures.
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! Notation Explanation |

!

| SA Source Address Field in an Address Segment
DA Destination Address Field in an Address Segment
src Source Address used by the Delivery Service !
dest Destination Address used by the Delivery Service

TAg(m) | Multicast Transport Address of the Group
TAt(u) Unicast Transport Address of the Transmitter
TAr(u) Unicast Transport Address of the Receiver

At(u) Unicast Delivery Service Address of the
Transmitter
Ar(u) Unicast Delivery Service Address of the Receiver |

Table 10: Explanation of Notations used for Addresses

A.4.2.1 Transmitter-Initiated Multicast

In a transmitter-initiated join procedure, the transmitter sends out a FIRST packet
to the group (Refer figure 30) containing the transmitter’s local key, the multicast

transport address of the group and the unicast transport address of the transmitter-.

Transmitter T Receiver R1

- - o, —_—— -

1

1
! : FIRST ‘ :‘

{ i
' 1 \
-’ - - eem - o
/ Listening

Contexts

Transmitting FIRST
Context . Receiver R2
Key =Kg ' ————
d

E 1 }
stc = At(u) ! o

DA =TAg(m);
: SA =TAw(w)
: Initial Tspec

wn

Figure 30: FIRST packet Soliciting Receivers to Join the Group

Once the FIRST packet arrives at a receiver, a entry is made in the receiver’s

! The explanation refers to only certain fields of the FIRST packet and assumes that the other
fields are present.
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Pointers to the set of

Delivery Service Key Context contexts listening at
Address Transport Address TAg(m)
———
A(u) ' Kg —_—

Figure 31: Translation Table Entry at each Receiver after receipt of FIRST packet

translation table to map future packets from that transmitter for that particular
group address to the respective set of receiving contexts (Refer figure 31). It should
be noted that though Figure 31 indicates pointers to listening contexts, it is possible
to store the actual contexts there instead of pointers to them and such a choice is

implementation-dependent.

A.4.2.1.1 Unreliable Groups

If the transmitter does not care about who its receivers are. it will not set the SREQ
bit in the FIRST packet. Thus the receiver will remain silent. However this does not
prevent the transmitter from setting the SREQ/DREQ bits in future outgoing packets
to gather responses from listening reccivers and using these responses to advance its
outgoing sequence numbers. These responses must be returned with the transmitter’s
local key as the return key and the transmitter must make use of some algorithm to
coalesce the responses. Hence in this case, though data reliability can be guaranteed,

reliable reception by a defined group of receivers is not guaranteed.

A.4.2.1.2 Reliable Groups

If the transmitter wishes to have reliable knowledge of its receiver set, then the
receivers need to send back control packets to the transmitter. In this case, the
transmitter sets the SREQ bit in the outgoing FIRST packet inviting receivers to

join the multicast association. Receivers interested in being part of this association
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Figure 32: JCNTL Request Packet from Receiver

each responds with a JCNTL packet (Refer figure 32). This is a request to join
the group and is directed to the unicast address of the transmitter containing the
transmitter’s local key (as return key) and the receiver’s local key (as return key) for
the purpose of key exchange. Though the request packet is a response to a SREQ
in the first packet, for reliable group semantics, the SREQ is set in this packet and
protected with the WTIMER. The alloc value which represents the amount of data
a sender is permitted to transmit is set to the current window size of the receiver.
At this point, the transmitter has the receiver’s local key (as return key) and the
receiver’s transport address to uniquely identify each receiver in the group.

In order to complete the packet exchange, the transmitter issues a JCNTL
response packet allowing the receivers who sent out JCNTL requests to join the
association. This packet does not have the SREQ bit set. Depending on whether the
transmitter would wish to continue to uniquely identify the receivers or not, one of
two listed cases may arise.

Case I: In case the transmitter wishes to continue to identify its set of re-
ceivers, it assigns a key to uniquely identify each receiver and sends it out in the

JCNTL response packet (Refer figure 33). When the JCNTL response packet arrives
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Figure 33: JCNTL Response Packet from Transmitter (Case I}

at the receiving host, it records that key as the key to be used in future for sending
control packets back to the transmitter and adds an entry to its translation table to
ensure correct delivery of a DIAG packet which is sent by the transmitter in case the
transmitting context dies.

If the contents of the destination address field in the address segment of the
JCNTL response packet does not match the unicast transport address associated
with a particular receiver’s local key, then a protocol error has occurred. This error is
signalled by a DIAG packet to the transmitter with the receiver’s local key. In order
for the transmitter to know which receiver sent this DIAG, it adds a mapping to its

translation table to identifyv that particular receiver (Refer figure 34).

Delivery Service . Key Context
Address
i
Ar(u) Kr Ki

Figure 34: Translation Table Entry at the Transmitter

It is possible that a transmitting context might cease to exist at any time. In
such a case, instead of waiting for WTIMER to expire, the transmitter will send a

DIAG packet with the individual receiver’s key. To enable correct delivery of this
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Delivery Service Key ' Context
Address .
At(u) Ki ﬁ Kr

Figure 35: Translation Table Entry at each Receiver

DIAG to the appropriate context, the receiver makes an entry in its translation table
to map that key assigned by the transmitter to uniquely identify a receiver with that
particular receiving context (Refer figure 335).

Case II: In case the transmitter does not wish to continue to uniquely iden-
tifs each receiver after receiving JCNTL requests packets from all those receivers, it
sends a JCNTL response packet to all the receivers with the exchange key as the

transmitter’s local key (as return key) for the group (Refer figure 36).

l Transmitter T r Receiver Ri

|
T
j

o -— -
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/ eyei 7

S

Transmitting  xkey = K¢’ Receiving
Context + dest = Ar(u) ! Context
' st = At(u)
: DA = TAr(u)
LSA =TAlW |

................

Figure 36: JCNTL Response Packet from Transmitter (Case II)

Once all relevant packet exchanges have been done and all necessary infor-
mation recorded at both the transmitter and receivers, the transmitter may begin
transmitting data packets to the group using its local key for the group. Such packets
will always require a full-context lookup at the receiving host (See Figure 31).

If the transmitter wishes to send packets to an individual receiver it will use

the receiver’s local key (as return key) and the receiver needs to perform only an
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Figure 37: JCNTL Request Packet from Receiver

abbreviated context lookup to match these packets with their appropriate set of

active contexts.

If the receiver wishes to send control packets back to the transmitter it may
make use of the key that it learned from the initial FIRST packet (in which case the
transmitter will not be able to identify the particular process at the host which sent
the packet), or the key that it learned from the JCNTL response packet (in which
case the transmitter will be able to precisely identifv the process at the particular
receiving host which sent the packet). The transmitter uses an abbreviated context

lookup to map the appropriate entry.

A.4.2.2 Receiver-Initiated Multicast

\When a receiver wishes to late-join an existing multicast association, it sends a JC-

NTL request packet to the transmitter with the SREQ bit set (Refer figure 37).
The transmitter then responds with a JCNTL response packet with key values

depending on whether the transmitter wishes to uniquely identify each new receiver

or not.
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Figure 38: JCNTL Response Packet from Transmitter (Case I)

In case the transmitter wishes to uniquely identifv each new receiver, it allo-

cates an unique key to identify that receiver from its key space and sends this key asa

return key in the exchange key field of the packet (Refer Figure 38). The transmitter

also makes an entry in its translation table as before (Refer Figure 38).

If the transmitter does not wish to uniquely identify each new receiver, it uses

the local key of the group (as return key) in the exchange key field of the packet (Refer

Figure 39). The other procedures followed are similar to the transmitter-initiated join

case.
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Figure 39: JCNTL Response Packet from Transmitter (Case II)
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There are certain exceptional situations in the protoco! in which case, packet
exchanges are complicated by lost packets or simultaneous events. Readers are en-

couraged to refer to the specification for those details.

A.4.3 Multicast Association Termination

The transmitter may terminate associations or even entire sessions at any point in
time. Individual receivers are also allowed to leave multicast associations at will.

When a receiver is no longer interested in the multicast association {because
the application exited), the receiving context will voluntarily exit the association by
sending a control packet to the transmitter with the END bit set, and move into a
zombie state for a time period. In the zombie state, the multicast receiver responds
only to packets sent to its unicast address with a return key in its keyv field. The
response is typically a retransmission of the control packet with the END bit set. The
multicast transmitter updates its active receiver group if any active receivers leave
the association. The behaviour of the protocol also depends on the group reliability
semantics.

A multicast receiver may also be forced to leave the association at any time.
If a multicast receiver receives a packet with the END bit set, it must immediately
abandon the association and move into a quiescent state.

If an active multicast receiver fails to respond to a status request from the
transmitter, the transmitter will timeout and enter into a synchronizing handshake
procedure. If the receiver fails to respond even after this time period, it is assumed

to be dead and is removed from the list of active receivers.
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A.5 Flow, Rate and Error Control Procedures

A multicast transmitter follows the same rules for flow control, rate control and error
control as a unicast sender. It uses default or inherited values for flow, rate and error
control algorithms and takes new values from receiver responses to SREQ and DREQ
bits set in the header of outgoing DATA or control packets by the transmitter. The
sender also periodically updates the round-trip time estimate by observation.

The only consideration specific to multicast is that the values for flow, rate
and error control must be resolved in such as way that they are an aggregate of
all values from the known group of receivers. The decision as to how these values
are aggregated from the receiver group is implementation, and possibly application
specific, and hence is not defined by the protocol.

As with unicast, multicast error control is based on the exchange of information
regarding lost or damaged data and the retransmission of this data. Depending
on whether the NOCHECK bit is set in the header of a packet, the checksum is
performed over the header only or over the whole packet. Data loss and recovery is
via a standard acknowledgement and retransmission procedure and timers are used
to detect loss of status requests. Recovery in such a case is through an exchange
of packets designed to resynchronize the endpoints of the association (also called
a svnchronizing handshake). Other error conditions including protocol errors are
indicated using DIAG packets which are unicast to the respective hosts with a return

key in the key field.
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