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ABSTRACT

Nonparametric Prediction in Survey Sampling and its
Application to the Nonresponse Problem

Anthony N. Crisalli, Ph.D.
Concordia University, 1999

Nonparametric regression provides an important tool towards exploring the relationship
between a dependent variable and the independent variable(s) without assuming a functional
form between the variables. This thesis incorporates the nonparametric regression methodology
in the context of estimation of a finite population mean and/or total. The resulting estimator is
called the generalized smoothing (GSE) in contrast to the, model based generalized regression

estimator (GRE), developed by Sarndal (1972). The theory available for GRE is extended for the

GSE. We replace model-based predictors by those based on nonparametric regression.

The first objective is to investigate the merits of GSE over GRE in the simple random
samples with respect to different criteria. It is shown that GSE is design-consistent and
asymptotically design-unbiased. Furthermore, Monte Carlo simulations are carried out to
compare the GSE and the GRE with respect to several criteria, such as the Bias and the Mean
Square Error (MSE). The second objective is to extend the above methodology in situations of
non-response. In this case a probability response model for the respondents is assumed; the case
of each sample unit not responding with equal probability is considered as a particular case.
Monte Carlo simulations of the proposed procedures are presented so as to understand the
behavior the GSE, and the probability response model.

The linear regression model is ubiquitous in the sample survey literature, an assumption
that is untenable in practice. In this dissertation we illustrate that it is feasible to estimate a finite
population mean (also in the presence of nonresponse) with a nonparametric regression model.
The simulations demonstrate in both the cases of full response and nonresponse, that if the
underlying point scatter is linear then the GRE is the best choice. On the other hand if the point
scatter is not linear, a situation often met in practice, the GSE seems to outperform the GRE, in

terms of the benchmark criteria of MSE and bias.
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Chapter 1

Introduction

1.1 Model Assisted Survey Sampling

The last twenty five years has seen a large body of research done with respect to in-
ferential methodologies in finite populations. The thrust of this emphasis is the non
applicability of standard methods developed for infinite populations. A finite population
may not be satisfactorily characterized by a few parameters, in general, in contrast to
infinite populations. However, in practice, since a few parameters such as the mean or
variance were of interest, probability mechanisms for generating a sample did provide
valid methodology of point estimation (as in Neyman 1934). The basic concern at this
Juncture was the error of the point estimator, and therefore, concepts such as the bias,
standard error, variance, coefficient of variation and mean square error figured promi-
nently in the paradigm. Various sampling mechanisms were developed in order to reduce
the sampling variation in the estimator.

Godambe (1955) wrote 2 monumental paper “A unified theory of sampling from finite
populations”, in which he showed that no ‘uniformly best linear unbiased estimator’
exists to estimate a finite population mean or total if one only considers a probability
design. Starting with this paper a gradual shift in research activity was initiated. Many

concepts that were external to survey sampling were borrowed from the general theory



of mathematical statistics and introduced to the sample survey theory. This body of
knowledge has come to be known as Superpopulation model theory, Prediction theory
and Model assisted designs. The Superpopulation model theory comes in many flavors.
Some theoretical survey statisticians (Sérndal, 1972, 1976) assume a parametric model
for the underlying population and at the same time use the probability mechanism used
to gather the sample to estimate the population characteristics under consideration. On
the other hand, we have methods advanced by Royall (1968, 1970a, 1970b) that only
assume a parametric model for the finite population under consideration and makes no
use of the sampling mechanism that generated the sample. Finally, we have Bayesian
methods (Ericson, 1969, Rubin, 1983) which also assume a parametric model but make
their inferences by using a prior distribution on the parameters. The common theme in
all these inferential procedures is the assumption of a parametric model for estimating a
population characteristic.

Hansen, Madow and Tepping (1981) presented a paper entitled “Foundations of In-
ference in Survey Sampling”, which has become a corner stone in the survey sampling
literature. The thesis of this paper was that only inferences based on probability sam-
pling protected the survey statistician ‘against failures of assumed models and provide
robustness for all estimators’. The authors also encouraged research in what they termed
model dependent designs. They stated ‘ The proper use of models has much to contribute
to survey design. We urge conlinuing strong efforts, taking the fullest feasible advantage
of models, but ordinarily within the framework of probability sampling, i. e., using designs

and eslimators that are not model-dependent’.

1.2 Nonresponse

One of the major problems in all surveys is that of nonresponse. Studies by sampling
statisticians, market researchers, and sociologists have attempted to identify methods

(sampling and nonsampling) that elicit a high response rate. A unified theory for the



nonresponse problem has not been developed to the same extent as the theory for sam-
pling survey designs.

Nonresponse rates vary widely from survey to survey and from survey organization
to survey organization. These rates change over time and even change for repetitions of

the same survey. A sample response rate is defined as

R=

319

where r is the number of individuals that respond to a survey and n is the number of

individuals contacted through the survey. The sample nonresponse rate is defined as

R°=1-~R

This measure is used to judge the success of a survey; the smaller R° the better the survey
because then the response rate is high. The Panel on Incomplete Data in Sample Surveys
(P.I.LD.S.S., 1983) came to the following conclusion “nonresponse and refusal rates have
appeared to increase in some surveys, with refusal rates increasing relative to the total
nonresponse rates”. As an example, they compared the nonresponse rates for two U. S.
federally funded surveys for the years 1968 to 1980. In Table 1 one easily observes that

refusal rates have been increasing with time.



Table 1.1
Refusal Rates as a Function of Time

Year | Current Population Survey | Household Health Survey
1968 39% 26%
1969 39% 28%
1970 40% 26%
1971 43% 31%
1972 45% 36%
1973 44% 42%
1974 49% 52%
1975 54% 52%
1976 56% 55%
1977 61% 58%
1978 57% 55%
1979 59% 56%
1980 59% 56%

Source: Publisbed data from the Bureau of the Censas for the Currest Population Servey and from the National Ceater for Health for

the Housebold Health [pterview Survey.

Many terms and definitions are currently being used to describe various aspects of
the non-response problem. The P.ID.S.S. has addressed this problem and dressed a
glossary of non-sampling error terms. We present standardized terminology as developed

by PID.S.S.:

Definition 1.2.1 Non-response refers to missing or incomplete information due to
any of the following;

a) the respondent is not available when the data is being collected,

b) the respondent refuses to cooperate with the survey mechanism,

c) the respondent gives a partial answer to questions on the survey.



Definition 1.2.2 Unit nonresponse occurs if a unit is selected for the sample and is
eligible for the survey but no response is obtained for the unit or the information obtained

is unusable.

Definition 1.2.3 Item nonresponse occurs if gquestions that should be answered are
not answered or if answered are classified as unusable. Item nonresponse may be due to
any of the following;
a) the respondent does not have the information needed for one or more gquestions,
b) the respondent refuses to answer a specific question,

c) the interviewer or respondent skip the question.

1.3 Approaches to the Nonresponse Problem

Statisticians fear that nonrandom response will introduce a severe bias effect in estimates
derived from incomplete survey data. One school of thought contends that approaches
to the nonrandom response problem should be in the framework of the classical random-
ization theory traditionally used to analyze sample survey data. The second school of
thought argues that the problem would be better handled by finding new methods based
on probability models.

Many authors have considered the merits and demerits of each approach and have of-
fered their own suggestions. Bailar, Bailey and Corby (1977) deplore the lack of ‘a sound
statistical basis for the adjustment procedures’ currently being used for analyses of non-
response data and welcome ‘new simplified methods based on statistical models.” Rubin
(1977) uses a Bayesian argument to predict results for nonrepondents given the respon-
dents’ data. Methods based on randomization are due to Ernst (1978) and Bailar and
Bailar (1978). These authors have used bias adjustments techniques, namely imputation.
The two approaches have been combined by Cassel, Sirndal and Wretman (1979). These
authors use models to represent the point scatter and then base their analyses of these
models on traditional foundations. Griliches, Hall and Hausman (1977), Hausman and

5



Spence (1977), Little (1983) and Nordheim (1979) have all used probability models for
the respondents. These authors regard nonrandom nonresponse as a stochastic censoring

process and have used the probit model to represent the censoring mechanism.

1.4 Nonparametric Statistics

While survey statisticians were debating their philosophical foundations, mathematical
statisticians were creating a body of knowledge called ‘ Density estimation, Nonparametric
Regression, and General Additive Models’. All are nonparametric inferential procedures.
The basic philosophy as stated by Eubank (1988) for all these inferential procedures is
to let ‘the data speak for itself’ or as stated by Hastie and Tibshirani (1995) ‘let the data
show us the appropriate functional form’ without making parametric model assumptions.

Traditional simple regression analysis has its foundations on a known parametric
model for the relationship between a response variable y and a predictor variable z. The

simplest form of the relationship is the classical linear model
y=a+ 0z +c¢,

where < is an error term. The inferential procedure then involves finding estimates of the
unknown parameters a and 3. The modern regression analysis makes no assumptions on

the parametric form of the model. In particular one assumes that

y = u(z) +¢,

where p(.) is an unknown smooth function. The inferential procedure then involves
estimating the functional form of the relationship between the response and explanatory
variable. The basic idea behind all of these methods is to fit a model to the data points
locally. The model will only depend on the observations at a given point and on some
specified neighboring points. The fitted model produces estimates of the response variable



that are less variable than the known responses, the fitted values are known as smooth
predictions and the methods used to create such fits are called scatterplot smoothers. Even
if the underlying model is linear, smoothing methods are still useful because they enhance
the underlying structure of the data without reference to a parametric model. Missing
data is a problemn encountered in all statistical endeavors. Some response variables may
not have been recorded or recorded incorrectly. Smoothing interpolates the missing
data between adjacent points, whereas parametric methods would interpolate all the
observations.

Some of the more popular nonparametric regression methods are those based on kernel
functions, spline functions and wavelets. Each of these methods have their own strengths
and weaknesses but kernel functions have the advantage of mathematical simplicity. For
multiple regression models Hastie and Tibshirani (1985) developed a multivariate version

of the scatterplot smoothers which are called ‘Generalized Additive models’.

1.5 Overview of the Dissertation

This thesis introduces the nonparametric regression method to the survey sampling lit-
erature. The generalized smoothing estimator is described in Chapter 2, which is a
modification of the generalized regression estimator (see Sarndal, 1972, 1976). The bias,
variance and asymptotic normality of the estimator are developed in this chapter. We
demonstrate that the estimator is design-consistent and asymptotically design-unbiased.
Chapters 3 and 4 consist of Monte Carlo simulations of the proposed estimators. Hence
we will compare estimates of the population mean by contrasting parametric and non-
parametric models. The sampling design used in Chapter 3 is simple random sampling
without replacement, while in Chapter 4 we consider stratified simple random sampling
without replacement.

The thrust of Chapter 5 is to develop methods that reduce the bias incurred because
of nonresponse. The theory developed in Chapter 2 is now adapted for the nonresponse



problem. The response probabilities are estimated by binary regression and these esti-
mates are then used to estimate the population mean. Chapter 6 will compare estimates
of the population mean when nonresponse occurs in a sample by contrasting parametric
and nonparametric models . The sampling design used throughout this chapter is sim-
ple random sampling without replacement. In order to understand the behavior of these
different estimates the populations under investigation will have known point scatters.

The final chapter, discusses some topics for further research.



Chapter 2

The Generalized Smoothing

Estimator

2.1 Introduction

Let the characteristic ¥ of a population be related to the characteristic , through a

smooth function p(.), i.e.

y=pu(z) +¢, (2.1)

where < represents the unknown error variable. In the superpopulation model context,
the function p(z) represents the regression of Y on X for the bivariate random variable
(X.Y) ie.
wz) = EY|X)
Jyf(z,y)dy
f(z)

Here f(z,y) is the joint density of the bivariate random variable (X,Y) and f(z) the
marginal density of the random variable X. We use this interpretation for developing the
Generalized Smoothing Estimator. Sarndal (1972, 1976), considered p(.) to be known
in the form of a linear regression model and used predicted values of y in forming a

generalized regression estimator. We feel that the assumption of the knowledge of the



function p(.) may be very restrictive and hence wish to predict y in the absence of such
a knowledge. In this respect, the theory of nonparametric regression provides a versatile
method for exploring a general relationship between variables.

First we provide a review of kernel nonparametric regression along with its properties
in section 2.2. In section 2.3 the spline regression model is described, its properties
are presently not as well researched as those of the kernel nonparametric regression. The
generalized smoothing estimator is described in section 2.4. The estimator is shown to be
design-consistent and asymptotically design-unbiased in section 2.5, while its anticipated
mean squared error is found in section 2.6. The optimal inclusion probabilities for the
estimator will be found in section 2.7 by using the anticipated mean squared error of
section 2.5. In section 2.8 the bias and variance of the estimator will be developed, then in
section 2.9 a central limit theorem will demonstrate that the estimate has asymptotically
a normal distribution. Finally a nonparametric lack of fit test for the simple regression

model is discussed in section 2.10.

2.2 Kernel Nonparametric Regression

Smoothing a point scatter (Z, ¥x), involves the appraximation of the mean response curve

p(x), in the regression relationship
Y = p(xx) + €k, where k =1,...,n.

The goal of kernel nonparametric regression is to estimate p(z) by a ‘local averaging’. The
average will be constructed in such a way that it is defined only in small neighborhoods
around zx. A procedure that has received much attention in the literature is the kernel

smoother due to Nadaraya (1964) and Watson (1964) given by

a(z) = Z WY,

=1

10



where the function w; (zx) is defined by the following:

T_x;
- (57 : (2.2)

C

The function K(.) is called the kernel function, and has the following properties:

w;

K(u) > 0 and continous for all u, (2.3)
/ K(u)du =1, (2.4)
K{(—u) = K(u) for all u (K is a symmetric function about the origin). (2.5)

The parameter b is called the bandwidth also known as the window-width parameter
or the smoothing parameter. The value of b determines the level of smoothness. Small
values of b reproduce the data while large values give us the sample average of the response
variable Y, Geometrically this means that small values of b produce curves that are wiggly
while large values generate smooth curves (Hastie and Tibshirani 1995). How should b
be chosen? Theoretical and data - driven algorithms for optimizing b are described in
this section.

The following are the most widely used and studied kernels:

11



Table 2.1
Kernels used in Smoothing

Kernel K(u)
Uniform H(ul<1)
Triangle (1-[u)I(u<1)
Epanechnikov | $(1 — u?)I (Ju} < 1)
Quartic B1-4?))I(ju]<1)
Gaussian 7}; exp (—%uz)
Triweight BA—-u?) (jul <1)
Cosinus % cos Gu) I(u|<1)

Nonparametric regression on a single predictor generalizes in a straight forward way
to multiple predictors. For a multidimensional predictor variable

X; = (X:1.,..-, Xiq) one uses a multidimensional product kernel function

K*(uy,...,us) = [ ] Kn(un),

h=1

where Kj(us) is a kernel for predictor X, h = 1, ..., d. The kernel weights are now defined

% (%52)
wi(x) = 2= :

S (%52

=1 j=

as

Then a multivariate version of the local mean regression estimator is
i(x) = Ewi(X)yk, (2.6)
k=1

which is the multivariate fitted regression surface.

We now demonstrate that the kernel smoother is consistent and also find its pointwise

12



bias and mean squared error. The kernel smoother is the ratio of two random variables.
In order to find the expectation and variance of the kernel smoother each term in the ratio
must be analyzed separately. These are discussed here in infinite population context.
Let
p(r) = / yf(z,y)dy
= plz)f(z)
where f(z,y) is the joint density of the bivariate continuous random vector (X,Y’) and

f(z) the marginal density of X. Moreover let

LC r—zx;
b,;"( z )y"
Y Ky (z— z:) ys,
=i

[~

p(z) =

3|3

where
K=K ().

Therefore the Nadaraya-Watson estimator

i(z) = Z WY,

=1

can be written as:

i(z) = 2E)
[l.(.’l,‘) - f(:l?) ’ (27)

f($)=nib K(.’L‘—bzi)-
=1

Theorem 2.2.1 (Nadaraya- Watson, 1964) The estimator ji(x) is a consistent estimate

where

of the regression curve pu(x) at every point of continuity of u(z), as n — o0o,b — 0 and

nb — oo under the condition of the existence and continuity of p" (z) and f ! (z) atz.

Proof We first find the expected value of p(z).

13



EG@) = B (5 Kole-au)
= E(Ki(z—2)w)
= [[urse-1) 1010 £ @ dyar
- [KG-070|[ v i
= [KGE-orOu@a
= /K,,(z—t)p(t)dt

= %/K(zT—t)p(t)dt.

Let

therefore

E(p(x)) = /K(—-v)p(x+bv)dv
= /K(v)p(:z:+bv)dv

since K(.) is a symmetric function about the origin. Now expand p (z + bv) in a Taylor

series about z,(assuming the continuity and existence of p (z)) we have,

p(a:+bv)_z( p(:z:)+o(b‘) p(z)+ vbp (a:)+—§b-—p (z) +o(b%).

Using the properties 2.3-2.5 of the Kernel function and the Taylor series expansion of
p (z + bu) the expected value of p(z) is given by:

BEG@) ~ [K@) (p(z)+vbp @ +L2p (z)+o(b2))
= P(:t)/K(v)dv+bp (:l:)/vK(v)dv+
—P (x)/ viK (v) dv + o (b?)

- p(x)+9—p (z)0? + o (t?),

(2.8)
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where

o= /sz (v) dv.

Analogous manipulations for the variance show that

Var (@) = TELE o 1o (), (2.9
where
ag = /K2 (v) dv,
and

r’(z) =E(Y*|X =1).

Now the mean squared error of p(z) is given by:

MSE (j(z)) = ’“%(i)ax + %4 (p" (z) 02)2 +0((nb)™") +o0(8%). (2.10)

Therefore, if we let n — 00, b — 0 and ndb — oo then
MSE (p(z)) — 0,

or p(z) is a consistent estimate of p (z).
Using the similiar manipulations one can show that f (z) is a consistent estimate of

f(z). Using Slutzky's theorem (Roussas, 1997) we have that

2(z) = P& 2 p(2) _
pe) =25 B —u@

as n — 00,b — 0 and nb — oo or 2(x) is a consistent estimate of u (z) at every £ where

f(z)#0.m

We have shown that i(z) is a weakly consistent estimate of i (). Strong consistency

has also been derived under various conditions Nadaraya (1970), Devroye and Wagner
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(1980). The Nadaraya (1970), theorem on strong consistency is now stated and will be
used subequently.

Theorem 2.2.2 (Nadaraya,1970) Let A be a fized subset of R and assume that
1. X has a continuous density f,
2.inf f(z) >0,

pA(:z:) is continuous on R,

lY|<c<oo as.,

K(.) is a bounded density on R satisfying |z| K(z) — 0 as |z| — oo,

K(.) is of bounded variation

iexp(—anlﬂ) < 00 for alla > 0.

n=1
Then

SRS CRI NS

ess sup |2(z) — p(z)] — 0 a.s.

or i(z) is a strongly consistent estimate of p(x), if n — 00,6 = 0 and nb — oo .
In order to find the bias and mean squared error of ji(z), we linearize the estimate as

) — e = [PE) f(=) _f@)
s =@ = e ”) (f()+(1 f(z)))

5(z) — 1 (z) (=) f@) - @) M
[ Blz) = p(z) f(=z () — z) — f(x
= ) ) + (i(z) — n (=) (————f(z) ) :

To find the leading term of the distribution of i(x) — u (z) we use the following concepts

Definition 2.2.1 Let A, and By, be two real-valued random sequences then

An = 0p(Bn)

>e) = 0.

if foralle >0
lim P(A

an
n—co B.
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Definition 2.2.2 Let A, and B, be two real-valued random sequences then
An = Oy(Bn)

if for all € > O there exist A and M such that

r(

A,

B,

>A) <e€
foralln > M.

Using these definitions we can state that

B(e) - u(@) f@) = @) - p@) - n ) (f=2) - 1))
= 0,(t?) — (=) O4(8?) (2.12)
= Op(bz)’

and
(@) - 1) (f@) - f(2) = 0p(1)05(8?)

2.13
= op(¥?). #19

p(z) —p(z) f(=z)
) , because

the second term is of smaller order in probability as b — 0. These results allow us to

Therefore the leading term in the distribution of 2(z)—u () is

state the following theorems:

Theorem 2.2.3 The bias of the Nadaraya-Watson estimator i(z) is given by:

E ([L(.’B) _ #(z)) = % (ﬂ' (:17) f(z)f'*(':f)# (x)f (.‘L')) 02 +O(b2). (2-14)

Proof It was previously shown that

E(5(2)) = p(a) + 27 (@)07 + o(t?),

17



and

E (f(:z:)) ~ f(z) + é;f"(:z:)a'2 + o(b?).

Also since

p(z) = up(z)f(z),
P'x) = u'(@)f(z)+2u' (@) f (z) + pz)f (z).

Then
E (b(x) — (=) f(2))
f@)
E(§(z)) - u(z) E (f(=))
f@)

and the result follows by making the appropriate substitutions. &

E (i(z) — p(z)) =

Remark 2.2.1 If the regression is linear the above bias reduces to

E (i(2) — p () = 022 (@) (jzf) )52 1 o(82).

Theorem 2.2.4 The mean squared error of the Nadaraya- Watson estimator ia(x) is

given by:

MSE ([l.(l‘)) b ;((m)) + — <ﬂ' (.’B) f(x)f'*('xz)ﬂ (.’L')f (x) 0,2) + O(b“) +o0 ((nb)—l) .
(2.15)

The proof of this theorem is obtained through similar manipulations as that of The-

orem 2.2.5.

Remark 2.2.2 If the regression is linear the above mean squared error reduces to

MSE (i(z)) = %i‘fzg)—)ax + 5 (“_(;_ii)ﬂc#) +o(b) + o ((nb)™).
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The choice of bandwidth will have an effect on the precision of the estimate of u(z).
As b tends to get small the bias of ji(z) will get smaller but the variance of i(z) will get
larger. Similarly as b tends to get large the variance of ji(z) will get smaller but the bias
will get larger.

The trade-off can be minimized by choosing a b that minimizes the mean squared

error. Using standard methods the optimal value of b is given by the following:

bopt = (;l%) ) ’ (216)
where )
o Uf(E:))aK’
(K@ @) +2 (=) f (=) L\
k2 = ( 7(@) ") ‘

We should theoretically choose b ~ n3 (Hirdle 1989, 1990) but the solution is not very
helpful in practice because b, is a function of unknown parameters. Many methods
have been proposed to solve this problem. Silverman (1986) showed that an appraximate

solution to the optimal bandwidth is given by

bope = 1.059An"%, (2.17)

such that
A = min(S; /RQ/1.34),

where S; is the sample standard deviation of the z’s and I RQ is the sample interquartile

range of the z’s.
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2.3 Spline Regression

The goal of spline regression is to minimize the penalized residual sum of squares for all

units k in the sample s,

Zke, (e — p(ze))? + A / (p." (t))zdt, (2.18)

over all functions p(.) with continuous first and integrable second derivatives. The pa-
rameter A represents the rate of exchange between the residual error and the roughness
of the curve u(.) and therefore is a smoothing parameter which has the same function as

the bandwidth and is called the span.

The minimizer was found by Schoenberg (1964). The unique solution f(zy) is a cubic
spline and has the following properties:

a. A cubic polynomial fits the data between two successive sampled z; values.

b. At the sampled values zi, ii(zx) and its two first derivatives are continuous.

c. At the boundary points z(;) and Z(,) the second derivatives of ji(x;) is zero.

Remark 2.3.1 The following points about the smoothing parameter A will be useful:
a. Decreasing A leads to a less smooth estimate of u(xx).

b. As A — 0, the spline smoother interpolates the sampled y, values.

c. As A — oo, / ([l."(t))2dt has to be very small with respect to Zke (w — p(z))?.

Therefore the spline smoother approaches a linear function at the sampled z; values.

The estimated spline smoother ii(z;) is a function of the spanning parameter X in the

penalized residual sum of squares

Sa(u(.)) = zke, (ye — p(zx))? + A/ (u"(t))2 dt.

Wahba and Wold (1975) recommend to cross-validating the sum of squares to find the
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optimal value of A. The procedure is to minimize:

CcV()) = % S e — it @), (2.19)

where [z:"(:ck) denotes the fit at z; by leaving out that data point. The optimal A, is
found by first computing CV'()) over a suitable range of A values and then choosing the
A that minimizes CV(A). Let A, be the value of A that minimizes CV()). We then use
Aopt to find fi(zx) which we shall now call ﬂ'*m (zx)- The predicted y; and residuals will
now be found with the Ay i.e.

Ykrgp = ﬂ,\m (z) for all zx € U,

€kr,y, = Yh — ﬂ*”t (zx) for all z € s.

where U is the population and s the sample chosen from U. Silverman (1986) has shown

that the spline smoother is related to the equivalent kernel function

1= o (-4 o (3.

The precision of the spline was shown by Hastie and Tibshirani (1995) to be

5”"

n—-trace(ls S )zke, (y" ”’x (zk)) (2.20)

Aopt Aopt

where S, is the symmetric projection matrix.
opt

2.4 The Generalized Smoothing Estimator

Here we consider the case of only one explanatory variable. The material in this section

generalizes in a straightforward way to multiple predictors.
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Probability sampling is used to select from the finite population U = {1,2,...,N} a
sample s of fixed size n such that s is selected with probability p(s) > 0. Now Y p(s) =1
where L is the set of all samples of size n . The sampling design p(s) is characte;'ged by the
first order inclusion probabilities, assumed to be positive for k = 1,2,..., N, mx = _ p(3)
where the sum is over all s having k as a member. We will use E,(.) and Vj(.) to.(ai;note
expected value and variance with respect to the design p(s).

We now make assumptions about the shape of the finite population point scatter

{(zx,yx) : k=1,2,...,N}.

The value of the explanatory variable is denoted by xx, kK = 1,2,...N and is assumed to
be known for all units in the population. This assumption is realistic on a macro level.
The shape of the point scatter is assumed to be generated by a model such as in equation
(2.1) called £. The assumption usually made is that the scatter of the N points looks as
if it had been generated by a linear model £, with y as the response variable and r as
the explanatory variable.

We generalize this assumption by assuming a model £ having the following properties:

a. y1,Y2,...,ynv are assumed to be realized values of independent random variables
Yi,Ye, ..., Y,

b. E¢(Yi) = p(zx) for k=1,2,...,N,
where £¢(.) denotes the expected value with respect to the model &, and p(zi) is an
unknown functional form.

The goal is to estimate the unknown population mean

- 1
Y = -—N— ZkeU yk: (2.21)

when (zk,yx) has been observed for a sample s such that k € s. Sdarndal (1972, 1976)
demonstrated in a series of papers the efficiency and properties of the generalized regres-
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slon estimator
iy = Ekw e+ 7 Zke‘ - (2.22)

where ex = yx— Y&, U is the predicted value of yx under the model £. A model € considered

frequently in the literature is
E(Yr) = Pz,
vE(Yk) = 0 z.

1. 1 . -
= = —B(t, — i), .23
my, Nt'+NB( ) (2.23)
where
- _r\ -y_k_
t'-LkESﬂ'k

is the 7 estimator of t, = E rew Y50 the population total of the y values,
- T ik
t.. — 13
il zkea Tk

is an estimate of the known z total, t; = ZK_U I; and

. ZrY
B = (zke.v wkaz) (Zke.- ﬂ:d:)

Sérndal, C. E., Swensson, B. Wretman J. (1992), use this model and comment ‘The

role of the model is to describe the finite population point scatter. We hope that the
model] fits the population reasonably well. We think that the finite population looks as
if it might have been generated in accordance with the model. However the assumption
is never made that the population was really generated by the model. Our conclusion
about the finite population parameters are therefore independent of model assumptions’.

This statement is a little questionable. First a model is used to estimate the finite
population parameter B, which is then used to estimate the population total ¢,. Are the
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conclusions model-independent or do we ‘look’ and ‘hope that the population was really
generated by the model’? Researchers in survey sampling use a parametric approach
for its simplicity in computation, for its compatibility with model assumptions and for
mathematical tractability.

We ascertain that a better solution to this problem is to make no assumption regarding
the point scatter. The motivation for the nonparametric regression approach as described
by Hirdle (1989, 1990) are as follows:

i. to provide a versatile method for exploring a general relationship between two
variables,

1. lo give predictions for observalions yel to be made without reference to a fized
parametric model,

1. to furnish a tool for finding spurious observations by studying the influence of
isolated points,

tv. to have a flexible method of substituting for missing values or interpolating between
adjacent X values.

We adapt and modify equation (2.23) . We replace B (tz - f,,,)by a nonparametric re-
gression estimate. We call this estimator the generalized smoothing estimate, denote

it by M, and define it as

- 1 - 1 (43
Mem = N keU Ye + N ch—a W—k’ (2'24)

where g = f_(zx) and ex = yx — Yx. Now fi_(zx) is the sample kernel estimator and is

defined as
Tk — T4
K ___:) .
Z ( b Yi Z W; (zx) yj
JES JES

Ty my

Tk (B57) Bt

i, (zx) =

where

W, (z) = K (ﬂ%ﬁ) :
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The estimate gy, is the mean of fitted values %Zkev ¥ and an adjustment term
1 €
ﬁ Zkes :/'_l‘:.
2.5 Asymptotic Unbiasedness and Consistency of the

Generalized Smoothing Estimator

Here we will demonstrate that M, is an asymptotically design-unbiased and design-
consistent estimator of Y. If an estimator @ is asymptotically design-unbiased then it can
be considered unbiased when the sample size is large. Also if 8 is design-consistent this
implies that the sampling error for 6 — 6 is likely to be small for large n.

For the asymptotics considered here we use the mathematical formulation given by
Issaki and Fuller (1981) and Robinson and Sarndal (1983). Consider a sequence of
populations Uj U,,...where U, consists of the first N, units from the infinite sequence
of populationsi.e. Uy = {k:1,2,...IN;}. It is assumed that U; C U, C Us... which implies
that Ny < N < N3 < .... Also consider a probability sampling design p,(.) for each of the
populations U,. Now p,(.) gives every element of U, a probability of being included in the
sample s, Let 7, and my;, denote the inclusion probabilities of the k’th unit and joint
inclusion of the (k,!) unit, {k,l = 1,2,...N.} associated with the design p.(.). Moreover
assume that the design is a fixed effective design, i.e. the sample size n, is fixed such
that n, < ny < nz < .... Now when t — oo, both n, — o0 and N, — oo.

Let

lforallk €s,
lka =
0 otherwise

therefore

P('Ikt = 1) = Mke and P(lkt= 0) = 1_7rkt1
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and

zkem fhe = zkem Tkt = Te-

Now rewrite (2.24) as

A 1 i, (zx)
Mem =N 2 kea 7rkt N Zkev (ze) — N z:kea. ke (2.25)

and furthermore as,

- 1 },klkg 1 Ikt
M. Tv_tz:keu. ke F, rev, H (%) (— - 1)

Consider
~0o __ 1 ﬁt(zk)
Mam = N Lores Tke N Zkeu () Zke.u The (2.26)
where f,(z) is the finite population estimator for population U, and is defined as
> Wiy
() = 2 =) w(@Y,
Z. W;(z) Ezem
JEU,
where
Wi(z
Wy (I) = (I,{i .
Zje U, 3(x)
Now
. . 1 R . 1 B, (k) — fo(zx)
Mem — Moy = N 2—iev, (i, (zx) — f2o(zk)) — N Zke:. — . (2.27)

A definition of asymptotic design unbiasedness and design-consistency is now pre-
sented. Allow U, to get larger by making N, — oo, n, — oo as t — o0o. The sample size
n, — oo but not at the same rate as N,. Let £ denote the probability distribution of the
infinite random variable (Y1, Y2, ...) and Y; denote the mean of the ¢’th population. In
the following definitions ’probability one’ refers to the probability under the distribution
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.

Definition 2.5.1 A predictor M, is said to be asymptotically design-unbiased if
Lim (Ep(M]Y.)-Y.) =0

with probability one.

Definition 2.5.2 A predictor M, is said to be design-consistent if for all e > 0,
Lim P, (|[M, = Ye| > e]Ye) =0
with probability one.

The following lemmas will enable us to show that M? and consequently M, to be

asymptotically design-unbiased and design-consistent.

Lemma 2.5.1 tlim (Ep (i, (zx) — p(zx)|Y:)) = 0,with probability one.

Proof Now
E W; (zx) y;
i, (zn) =
« \ Tk} = ,
Zjelj, Wj (zk)
and
2 (z2) D e, Wilan)ys
H\Tr) = .
E,-EU‘ W;(zx)
But
Er (Z:je.u ; 5 - Z:jeu. W;(z)y;|Y: ) =0 for all ¢,
hence
W; (zx) y;
E, 2 sen my_ 2en VIR Y. | =0

zjeUx Wi@e) Y, Wiz)
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Therefore

lim (Ep (2, (zx) — ie(zx)|Y:)) = 0 with probability one.

Now
Jim (E, (2, (z2) — w(@)Y)) = lim (B (B (@) ~ m(@)IY))

+ lim (Ep (2(zx) — p(z4)[Ye)) -

Using Theorem 2.2.2 we have that
Jim (B, (i(z4) = w(x) Vo)) = Jim (o) — (o))
almost surely. Using Slutzky’s theorem {(Roussas, 1997)we have that
tll‘rgo (Ep (2, (xx) — n(zx)|Ye)) = 0, with probability one. m

Lemma 2.5.2 tlim E, (Mgm — m3,)|Y.) = 0 with probability one.

Proof Apply Lemma 2.5.1. @

Now rewrite

- _ 1 1 ﬂt(xk)
Msm =N Zkes ‘T—u N z;. v H "N Zkea. '

ke

.1 Yile 1
A/[t - —N_t ZkeU. 7rkt - —N—t ZkEU #t( k) (_— - 1)

1 Yil I
- N; ZkEUc :;‘k:t YA zkEUg (Z‘E’ wg (Ik) Y) (i —_ 1)

(2.28)

Lemma 2.5.3 If u(z;) is bounded for allzy € U,, then tl_l_gxo N: ZkeU. (era w; (zx) Y)

bounded with probability one.

Proof Now j,(zx) = Z'_GU w; (zx) Y; is the finite population estimator for popula-
tion Uy such that fi,(zx) > p(zx) with probability one when £ — 00, b — 0 and n¢b — oo.

28



Now if Z, & 0 then g (Z,) = g (8) if g(.) is continuous. Therefore 2?(zi) 5 u?(z:) when
t — 00,b — 0 and ndb — oo.
Since p(zs) is bounded for all 7 € Uk, then lim F Zkeu u2(z:) is bounded for all

zx € U, and tllxg J_V: zkel}. (z‘e w; (zx) Y) is bounded with probability one. ®

The following inequality is needed to show the asymptotic results:

Lemma 2.5.4 If A and B are random variables then
E,|A - B| < (E,(A%))} + (E,(BY)*. (2.29)
Proof We have that (almost surely)
|A— B| <[A] +|B].

Therefore applying the expectation operator on both sides of the above inequality gives

us the following:
EplA"BI < EPIA|+EP|BI'

Using Jensen’s inequality for concave functions
Ep (9 (X)) < 9(Ep (X)),

we obtain

E,|A| < (E, (42))*

and the result follows. ®
As in Issaki and Fuller (1981) and Robinson and Sidrndal (1983), the following assump-

tions are made because in classical sampling theory the Y;’s and 7 are fixed constants:
1

i 2 . .y
Al tllrg N, E - Y,: < oo with probability one,
A2 hm N, min m = 00,
—00 1<k<N,
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. kit
A3 lim max -1l =0.
t—00 1SKFEISNe | T Tge

The following theorem and proof is analogous to that of Robinson and Sarndal (1983).

Theorem 2.5.5 Under A.1 - A.3, M? is asymptotically design unbiased and design-

constistent.

Proof The use of Markov’s inequality

Ep (IMto - 7" lYt)

F, (IM: - )-/zl > EIY;) < e

will establish the design-consistency and the asymptotically design unbiasedness of M,
as per Definitions 2.5.1 and 2.5.2. It will be sufficient to show that

tl_l.rg E, (|M? - Y:||Y:) =0, with probability one.

Let
Mto - )—/z = a - b!:
1 Iy,
a = rv:ZLeu,Yk (;;:‘1)’
I
b = keU; (z:e wi () Y) (_’5£ - 1)
Therefore

E, (IM: - ?c| IY:) = Ep (Ja. — b||Y,)

and using Lemma 2.5.4 we have that
1
By (lac — b 1Y) < (Bp(a? [Y0)* + (B2 [Y.)) ¥

Now

1 I 2
Ep(at[Y.) = T\ﬁzkeu Yo (w—:i'l)
I
N e 2 8 (1 -1) (32 -1).

k;él
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- __1)
Tge
But I I Lele Lo I
(o) () - m(lh k)
Tkt T TreTie Tke T
I ™ _zk_t_ﬂﬂ)
TheTye Mkt T
- Tkie 1
ke
Therefore,
1 1
_ = 2( - _
Ep(ai|Ye) = N2 Lakeu, (wkt 1)
Tkl
t N2 ke, E YeY ket 1)
LHeU,
k£l
Now
E(a?|Y.) < — 2 (1
PG 1) = Jp2 keUe ¥ \ Trg
1 Trie
+ L w( 1)
N kel k.lzel:J, ah ke
k£l
Since

1 2 1 . . -t 1 2
N? ZkeUg Y (E - 1) S (tlirgo N 1SREN, m“) N, ZkeU( Y,

and because of A.1 and A.2

-1
. . 1 2 . -
(:15?9 N, foin Wkg) A Zkem Y, — 0 as t — oo with probability one,

therefore

% Zkeu ) 44 (-1— - 1) — 0 as t — oo with probability one.
t t

Tkt
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Also

Tkt
Y, <  max
N2 ZkeU Z k (wk,m, ) T 1Sk#IEN,

T kit 1
-1l |— Y.Y:l.
Tt Te , N? Zkev‘ k.liet:f;
k£

kleU,
k£l
But
Tkt 1 1 Tkle 1 2
max |——— —-1||— YWYi<— max |— —1|— Y.
TSEFEISNG | TMee T , Ntz EkGUt k%] k= N 1<Sk£ISN | e e N, ZkEUt k
AL
Therefore because of A.1 and then A.3,
Tkie 1 it 2
Y.Y: — max -1} = Y, —0
N2 z:ﬁ:osU E kT ﬂ'kﬂflt N Sk£ISNe | Wre e N, keU,  k !

k,lel,
k:,él

when ¢ — oo with probability one. Therefore
Ey(a?|Y.) — 0

as t — oo with probability one.
Now

BEIYD = 333, (D m@x) (E-1)+

kt

1 w,Y; T
-I—V? ZkEU¢ kgj (zie.n Wi (xk) K) (Ziea 7ll'u ) (Wk:‘::u - 1)
k£l
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but

EplbiYe) < Tvlzz— El:eU. (Zie.. wi (zx) Y-')2 (% - 1) +
7 S, T, (S (S ) (55, 2))

v

We now study the first term of the above expression,

1 2/ 1 -1 4
NZ ZkeUg (zies, w; (zx) Yi) (a - 1) s (:13?0 Ne 1%, 7l"'“) N, Egev. (Eieag w; () y')

but using A.2 and Lernma 2.5.3, we obtain:

-1
. ) 1 2, . .
(hm N, min, m_.,) J—V: E ke, ( E ics, w; (zx) Y,-) — 0 as t — oo with probability one.

t—oo 1<k< N,

Therefore as t — oo

1 2 /1
35 Lo (T @)’ (= -1) =0,

with probability one. For the second term we have that,

1 LU
—N—f Zkeul‘kg (zies: wi (z) Yi) (Zie.u w; () Yi) (71'7:7?1: B 1)
k£

<
l<k¢l<N¢

| 5 e > (T @ %) (T, @Y.

?




but because of A.3 and Lemma 2.5.4,

T 1
ISI&%’S(Nc 7!‘1;:7‘:[: -1 N;Z Zkeu. k,l;l, (Zie,‘ wy (xk) ),t) (Zie.u wg (xk) },l)
k£l
1 s 1 2
= Fr. lslgéal)ScNt Wk:;:[t -1 Ft (ZkeUz (Z.‘e,‘ Ws (zk) K)) - 0’

as t — oo with probability one. Therefore,

1
N? Zkeu.z k,ZG,:, (Zie.n wi () Yi) (Zie.u wi () Yi) (71’7:71: - 1) -0
kel

as t — oo with probability one. Hence,
E,(b?|Y.) — 0 as t — oo with probability one.

Therefore the above facts demonstrate that M7 is asymptotically design unbiased and

design-consistent. @
Corollary 2.5.6 M, = mgn is asymplotically design unbiased and design-consistent.

Remark 2.5.1 Robinson and Sdrndal (1983), proved this theorem for the case of the
generalized linear regression model. Qur theorem generalizes their result, because we

make no linearily assumption belween the response and explanatory variable.

2.6 Anticipated Mean Square Error

A general expression is derived for the expected model mean square error £ M SE,(M,|Y,).
This measure was appropriately named by Fuller and Issaki (1982) as the anticipated
mean square error of M,. Furthermore, it is shown that as ¢ — oo, the anticipated mean

square error is 0.



The following assumptions will be used in the sequel:
1 2
A4 lim — Ekw‘ o2, =0,

t—oo lvt

N,
A5 im — min mg — oo.
t—oo N, 1SN,

Theorem 2.6.1 The anticipated mean square error of M, is given by

EeMSEL(M.|Y:) = Ac + £¢(g7) + 26¢Ep (hege) ,

where 1
= e 2 (2 _
A o Nt2 keUe Tk Tke 1)

m

n 1
E¢(9?) Fzz rerr, £€ | &K (;:t' - 1)) +

T Tklt
+ — Ec |l cxe -1 s
N kel Z'E;{,‘ ¢ ( i (szﬂ'u ))

and
ek = p(xr) — f1e(Ze)-
Proof Let
\/TTz(A’]z- ?z) = hc+gz
I
h = e, Ve = @) (22 -1)
I
o = iz LS e W) = (a) (22 -1)
Now
nEMSE,(M|Y:) = nEcEy (M, —Y.)
= E¢Ep (h}) + EcEp (97) + 26 Ep(hege)-
But

EE, (h?) = &E, ("‘\/rjﬁ ZkeUg e — plzs)) (-711’_':: - 1))2
- (5 T 04 w) (55-)

Tkt
+ € (T8 e Doty (i = lae)) (¥ = o)) (oo -
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since we assumed that the Y, are uncorrelated the above expression reduces to

2 _ M (-
E¢Ey (B]) = NZ ZkeUz Tk (ﬂ'kz 1) .

Now let us write

ex = p(xe) — i2,(zi),

EcEp (f_zkeU () = () <——1))2
= &E, (‘/—Ekeu, *(i_z—l))
= & (szkemei (%_1))+

& Tt 2 ExE Ttz 1
LS L -
¢ NE keU: TheTie ’

kleU,
k£l

£¢Ey, (97)

the result follows by making the appropriate substitutions. ®
Assume that the bias of i,(zx) is of negligible size compared with the variance i.e.
e = p(zi) — i1, (xx) = 0. Therefore the terms £¢(g2) and 2E¢E, (heg.) vanish in the above

theorem and

geMSEp(MgIYt) = Ag.

Example 2.6.1 If the sampling plan is simple random sampling Ty, = %, then the
t

anticipated mean squared error is

EMSE,MIY)=(1~1)Y, ok

keUe

It is now shown that the anticipated asymptotic mean square error approaches 0.
Theorem 2.6.2 EMSE,(M,|Y,) — 0, asn, — 00,b = 0, nb — o0,and t — oc.

Proof Using A.4 and A.5 we obtain that

-1
un 2 1 . Ng . 1 2
—_— g |——-1)})<{lm— min « —_— o — 0
N? kU, (71',,, ) = (t—ooo Ne 1<k<N, ke N, Zkeu. k !
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ast — o0 or

E¢Ep (h}) — 0asb — 0,nb — 0o and t — oo. (2.31)

We previously found that

Elad) = 73 Ekw ¢ (ek (ik -1))
Zkev. E ;: (ekel (mzﬂ'u 1) ) .

!

Now using A.5,

1 N, -1 1
21 _ = _ __g_ . 1 9
/Vzgé (ZkeUl ot ("Tkz 1)) < ((,1_1.12, e lgl:g}v, kg) N, ZkeU. Ee (e,‘)) — 0,

as b — 0,n,b — oo and t — oo. Therefore

e 2 1
Ee <N§Zkew€" (W—kz-l)) —+0asb—0,nb— 00 and t — oo.

n, kit
£ -_ leU, EkE -1 <
3 <N2 ZkEUg Zke#l‘ k=t TkeTie -

v b 1D DD B
xeu E¢ (exe
TreTe I keU: ! ¢ (exe)

N2 1<k;él<N¢

and using A.3 we have that

Ty
— max
N; 1<k#£ISNe

Tkie 1
TxeTre

1
_I\Tg Zkev. E’fgt Ee(exer) — 0

as b — 0,n,b — oo and t — oo. Therefore

n, Tkt
e (™ -
£ ( N2 zkev. Z'S{,‘ kel (71’1::7’1: 1) ) —0
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as b — 0,nb — oo and t — oo. Hence
Ec¢Ep (g7) — 0 as b— 0,nb — oo and t — oo. (2.32)
Now
EeEplhege) < (EeBp (1) £¢E, (92)) 1

Therefore

Ec¢Ep(heg:) 0 as b— 0,n,b — oo and t — o0,

using (2.31) and (2.32) and the theorem follows. ®

2.7 Near Optimal Inclusion Probabilities

We now find the values of mx, that minimize the asymptotic anticipated mean squared
error, E¢MSE,(M,|Y.). Moreover these values of 7, induce E¢ M SE,(M,|Y,) to attain
the Godambe and Joshi (1965) lower bound.

Theorem 2.7.1 Let p(.) be any probability sampling design such that the expected sample
size satisfies

EP(nSt) =Ny,

for some given n.. For the general smoothing estimator the values of mi, that minimize

the asymptotic EcMSEy(M,|Y,) = A, when gx = 0 are given by

The = =k (2.33)

g
2 e

The value of the minimized anticipated M SE 1is

(2.34)

Lol
.

CMSE 1) 3 (5 ) = 53 o



Proof The anticipated mean squared error under any probability design is

2
V=t e _
N2 &~kev: 1y,  NE &=kev,

if £ & 0. Also let

=
I
<
+
3|
g
m
S

- Dy L
Ntz keU, 7l’k¢,

which is dependent on 7. The constraint E,(n,, ) = n. maybe rewritten as

C=E ke = M.
keU, ke ¢

Now \
%V‘C = Ekeu, 7‘:—: o s
We now use the Cauchy-Schwartz inequality to find the optimal value of 7x,. The Cauchy-
Schwartz inequality states that
2

Satl| dowl=] D b |,

kleU, k,leU, k,leU,
k#l k#£L k£l

b
and equality holds if and only if -&5 is a constant for every k.Take
K

and
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We have equality when

3
vV Tkt The
o = | — = constant.
k Ok
V Tkt
Let
, 3
ke = n%,
Ok
then
ke = KOk,
but Zkem Tke = N, this implies that
N
K= ,
zkeUz k
therefore
WOk
Tk =

g
D e

Placing this value of 1, in the asymptotic anticipated mean squared error the desired

result is found. m

We now state the Godambe and Joshi (1965) inequality:

Theorem 2.7.2 Godambe and Joshi (1965) Let t be any estimator of t satisfying

then
. 1
EE, (t — t)2 > E :keU (;r_,: - 1) ol. (2.35)
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Applying this theorem with the optimal mx.:

NZ Zkeu. T 1) (EkeU. ) reU, Tk

which is the same as the minimum anticipated asymptotic mean squared error of the
generalized smoothing estimator as given in (2.34) when the bias is negligible. Thus
we conclude that the generalized smoothing estimator with optimum inclusion probabil-
ity attains asymptotically the minimum anticipated mean squared error of any design

unbiased estimator.

2.8 The Bias and Variance of the Generalized Smooth-
ing Estimator

Consider a complete enumeration of the population where we observe (zi,y:) for all

k € U. In this setup one can find the population kernel predictor of y; i.e.

ye = pl(zx)
= Zjeuwj(xk)ij
where _—
k—<Lj
L K(HP)
wj (zx) =

)

jeU
and K/(.) is any of the kernel functions described in Section 2.2. Also the population
fitted residuals are now defined as

Ei=y—i(zx), k€ U.

In order to find the bias and variance of m,m,, the following theorem will be used.
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Theorem 2.8.1 (Simdal, Swensson and Wretman 1992) The regression estimator t,,

tyr = zkeng + Zke: :_:

ts approrimately design unbiased fort = ZkeU yx with variance

Tkt Ex By
(tm') = Z ZkEU (ﬂ'kﬂ'l -1 T T i (2.36)

k leU;

Provided m; > 0 for all k,l € U, an unbiased estimator of Vj, (£, )is given by

Mgt €k €
Vo (br) = D Zkeu — (Wm - 1) e (2.37)

kleU,
k£l

The main result of this section is contained in the following theorem.

Theorem 2.8.2 The finite general smoothing estimator m,, ts approximately design

unbiased for Y and has an approrimate design variance

Z Tkt Ek Ez
V (msm) = N2 E keU (Wkﬂ'l ) Tx 'Tl (2.38)
ik

which can be estimated by

Tkt €x €
V ( am) = 2 Z Zkea Tkl (771:71'1 - 1) 7T_k7rl’ (239)

klel,
k£l

where e, = y, — Yk, €x being the sample counterpart of Ej.

Proof We first express

. 1
Mam = N Zkev’ N Zke: 7r,‘

42
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Mo = % PO ACAEES -
- Nzkeuﬂ( k)+NZke.yk l‘éﬂk)
ZkEU (ﬂ (z) — & (zk)) - N Zkea = (zk)m: ”(Zk)

Hence

7 1
Ep (mam) = Ep (N Ekeuu( k)+ Nzke, Trk) -

Using Lemmas 2.5.1 and 2.5.2 we have that

- .1 1
Ep (tem) = N Ekeu #o (26) + N ZkeU Ex,
= Y,

which demonstrates that Mg, is approximately design unbiased and the other results

follow using Theorem 2.8.1 =

Example 2.8.1 Suppose the sampling design is simple random sampling then w; = i

N
n(n — 1)

and Ty = m Now with this sampling design the G.S.E. My, is easily shown to

be
am = X =3
Mem = N keU kea ks

with approrimate design variance

n Sk

where
1
2___2: _ .,0\2
SE—- N—l kel (yk yk) .
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Now we estimate V, (ham) by

The above theorem shows that 1,y is approximately unbiased. Consequently we can
use a normal approximation to find confidence intervals for ¥ using fitem and V; (em)

because 1., is asymptotically unbiasedness and consistent (H4jek, 1960).

2.9 The Asymptotic Distribution of the Generalized
Smoothing Estimator under a Simple Random
Sample Design

In this section we specify conditions under which the finite population central limit theo-
rem holds for the generalized smoothing estimator under simple random sampling. Then
the population variance is replaced by an estimator, which is also consistent. Therefore
the central limit property holds for the standardized form with the variance replaced by
its estimator. The population finite population central limit theorem is only valid for the
simple random sample design.

Our results follow from the central limit theorem for finite populations, Héjek (1960):

Theorem 2.9.1 Suppose N, — oo and n, — oo as t — co. Then under simple random

sampling, _
va (ﬂt - Yt) c
— — N(0,1 t )
Vi-7s MO astmes

if and only if {Y:;} satisfy the Lindeberg-Hdjek condition

. (Yee - ¥)°
tll.xg zkeR(&) -(m =0 forany é > 0,



where R(8) is the set of units in U, for which

Y —-¥|
>6
V=TS > oV

Under simple random sampling s = e and our general smoothing estimator has

N
the following form:

1 -
M, =g+ N, Zkem a(Tre) — — Z,‘es A(Tre).

We now define the population residual about the regression curve as follows
_ 1
Ey = (Ykz - Yt) - (I‘(-’zkt - —I\Tg ZkeU. l‘-(xkt)) ) (2.40)

it can easily be shown that

Ny

E Ekg = 0.

k=1
The population variance of Ej, is

Z E?
S%, =

¢ N,—l'

The sample mean of the Ey, is defined as

b= (0= %) = (3 Do o) - o)), 24D

therefore

M=V = et 3, (o) - plzw)) - o 3, (3ow) - b))
= ég + D; - dg,

(2.42)



where

Do = 5 3y, (Blaw) = p(ow)
= o3 ) - paw).-

Theorem 2.9.2 Under simple random sampling

\/nt(Mz—?t) c
e — N(0,1) ast — 00,b — 0 and neb — oo,
Vl_JtSEt ( )

provided { Ex,} satisfy the Lindeberg-Hdjek condition.

Proof We express

N (A’It - )—ft) _ VTuE + \/ﬁt-Dt _ \/—n_td-t
Vl-JtSEt Vl—]tsEg VI—JISE( Vl—JtSEQ‘

Using Theorem 2.5.5 we have that

D,
V 1- fISEt

20, asb— 0,n,b — o0, as t — oc.

Similarly _
VTede
\Y 1-— flSEt

Now we verify the Lindeberg-H4jek condition

20, asb— 0,n,b — o0, as t — oo.

-1

: ER ERT o 2 2

s, Z:R(&) (N.—1)SE, o, (kz::l Ee Zkeﬂ(&) Eu
= 0.

Therefore
ﬂ-—f’N(O,l)ast—»oo.

\Y/ 1-—- ftSEl

Now using Slutsky’s theorem (Roussas, 1997) we have that

\ /nte-t \/n;Dt ‘/ntd-t L
+ ———)—— S N(0,l)ast —00.m
VI—[Se, V1—[Se. V1— Sk ©.1)
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We now state a law of large numbers for finite populations due to Héjek (1960):

Theorem 2.9.3 Suppose {Y:;} satisfies the condition

(1-f)S?

A Mt B Qast— o0,
n

Then under simple random sampling,
(i) E|g.— Y| 50 as t — oo,

and

(1) 5.~ Y. > 0 ast — oo.

The variance for M,, S%, is not usually known but must be estimated. We consider
as its estimate

2

D s, (e = ilz)

Se. = n.—1
s2
Our aim is to show that S—;;l £, 1 in probability as t — oo. We then can estimate
E,
M, =Y, v (M, - Y,
Vi (M. — V2) by e (M. — ¥.) which will converge in distribution to a N(0,1) as

Vl-fSE: Vl—JsE(

t — oc. We now adapt Theorem 2 of Scott and Wu (1981) for our problem.

2

Theorem 2.9.4 Under simple random sampling JE », 1 ast — oo provided the random
E,

2
variables {(Yk‘ S‘;(x"‘) ) } satisfy the conditions of Theorem 2.9.3.
E

Proof We now express .

§
5 = At At
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where

Ekes. (th - M(-’”hz))2

S COE V3
a e, lEw) — @)’
2 = (ne — 1) SE,
Y res, Yo — (zne) (1(zhe) ~ il@ae)
A= 2 (n. — 1) S%, ’

it follows from our assumption and Theorem 2.9.3 that A; 2 1 as t — oco. Now using
Theorem 2.9.2, Ay 5 0 as b — 0,1 — 00,n:b — 0o and t — oo. Lastly using Theorem

2.9.2, A; B 0asb— 0,n, — 00,n,b — 0o and t — co. ®
Corollary 2.9.5 Under the conditions of Theorems 2.9.2 and 2.9.3,

Ve (M, - Y,

e (M. z)—L»N(O,l)ast—-ooo,b—»Oandn,b—-»oo.
v 1-—- ]tsE(

Example 2.9.1 Therefore under simple random sampling we can use

Mem * 24 “/ 1./p (ﬁlm):

as a 100(1 — a)% confidence interval for Y.

2.10 Lack of Fit Test

The purpose of this section is to assess the lack of fit of a simple regression model.
Azzalini, Bowman and Héardle (1989) proposed a pseudo-likelihood ratio test. The formal

structure of the problem is as follows:

H, : E(e) 0
H,: E(e) = smooth function of z.
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The hypothesis can be tested with

RS5S¢ — RS S,
RSSo '

Frnp = (2.43)

where RSSy represents the residual sum of squares under the simple linear regression

model

RSSo =) (v:— %), (2.44)

i=1
and RSS, is the residual sum of squares of the fitted values using a nonparametric
regression

RSS1 =) (v — (z:)”. (2.45)

=1
The quadratic forms are respectively

RSS, = eTe

and
RSS; = eT(I-W)T(I-W)e

= eTAe,
such that W is the smoothing matrix associated with nonparametric regression. Now we
can rewrite Fyp as

eTBe
FNP = QTAQ’

where B =1 — A. The p-value associated with Fxp can be written

p = Pr(Fnp > Fow)
Pr(eT(I— (1 + Foauw)A)e > 0)
Pr(eTCe > 0)
= Pr(Q>0),

(2.46)
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where F;, is the value from the observed data.

The statistic Fyp does not have the standard properties of the usual F statistic. The
quadratic form Q associated with Fyp is not positive definite. Procedures have been
formulated by Bowman and Azzalini (1997) to find the distribution of Fyp. Basically
the authors match the first three moments of Q with that of a shifted and scaled x2

distribution. The cummulants of Q are found as follows:
k; = 271(j — ler{(VO)},
where tr is the trace operator and V is var-cov matrix of e,
Var(e) =1 - X(XTX)"'XT =V.

The matching of moments of @ with a shifted and scaled x? i.e. ax? + ¢ distribution

defines the following parameters

. 3
a=M,b=8'wz ¢ =K, — ab. (2.47)

-2

4Ry K3

We therefore approximate the distribution of Q as a x? with b degrees of freedom. Hence

we find the p-value as follows:
p=1-Pr(Q > c/a). (2.48)

Raz (1990) proposed a permutation test (bootstrap test) to find the distribution of
Fnp. If H, is true then the coupling of the £ and y in the observed sample is random.
The distribution of the statistic Fiyp can then be generated by simulation, using parings
of the observed z’s and ¥’s and constructing the corresponding Fyp statistic which we

call F,y,,. The empirical p—value of the test is then the proportion of F, which are larger
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than the Fyp observed in the original data set or

ﬁ = PI'(Fobv >FNP)
# (Fobw > Fnp) (2.49)
k ?

where k is the number of times F;, was simulated.
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Chapter 3

Empirical Comparisons of
Generalized Regression and the
Generalized Smoothing Estimators
under a Simple Random Sampling
Design

3.1 Introduction

This chapter will compare estimates of the population mean by contrasting the general-
ized regression and the generalized smoothing estimator developed in Chapter 2. For the
generalized smoothing estimator the normal kernel regression and the spline regression
will be considered. The sampling design that will be used throughout this chapter is sim-
ple random sampling without replacement. In order to understand the behavior of these
different estimates the populations under investigation will have known point scatters.
In Section 3.2 we present a method to generate populations having a known point

scatter. Subsequently in the section we simulate five populations having a known point
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scatter and also present their finite population characteristics. The ratio estimator, the
kernel estimator, and the spline estimator are developed under a simple random sample
design in Section 3.3. In Section 3.4 criteria are developed to judge the efficiciency of the
estimators. The results of the simulation procedure are presented in Section 3.5 while in

Section 3.6 the conclusions are presented.

3.2 The Populations

Five artificial populations of size N = 1000 were created. The z, values were generated

by a gamma distribution I'(6;, 82) with density given by

f(z) 2 exP(-5) ch that 6, >0, 6, > 0, and z > 0
= su a , 02 >0,and z > 0.
AT e
Conditional on zi, the y; values were also ger;etated by a gamma distribution I'(¢,, ¢,)-
r 2
Now z4 and yy are related as follows ¢, = ﬁ—o’;i and ¢, = ﬂim' The conditional mean
K
and variance of y; are as follows:
E (YilXx) =
= ﬁxk_my
and
V. (YelXz) = ;
e (Y| X) $162 (3.2)
o2z, ™,

Equations (3.1) and (3.2) are used to create populations having different point scatters.
If the point scatter has a mean E (Y:|Xyx) = Bz} and a variance V,(Yi|Xy) = o2zf we

must then choose our parameters r and m as follows:

r = 2l—g,

m = l-g
The five populations were created using the following procedure:
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1. 1000 z; values were simulated with a I'(8, = 2,6, = 10),

2. For each z, value, and pairs (B8,0) , (l,9) a yx was simulated as a T'(¢;, ¢,).
The parameter § = 0.4, 2, 4 and the parameter o was fixed at 0.4. The parameters ({, g)
were assigned the following values: (1,1), (2,1),(0.5,1),(1,.5), (0.5, 0.5), and (0.5,1). The

following two tables summarizes the major characteristics of the five populations.

Table 3.1

Population

Summary Statistics

Population 1 | Population 2 Population 3
l=1 l=2 =05
g=1 g=1 g=2

B=0=04 |8=10,0=04{8=2,0=04

X Y X Y X Y
Mean 20.51 | 8.18 | 20.48 | 109.69 | 20.11| 8.81
Standard Deviation 14.2 | 6.01 | 14.36 | 65.77 6.17 2.30
Skewness 1.27 | 1.39 | 1.36 2.57 0.55 0.62
Kurtosis 220 | 291 | 2.28 10.92 0.54 0.61
Coefficient of Variation { 0.69 | 0.74 | 0.70 0.60 0.31 0.26
Correlation 0.957 0.569 0.61




Table 3.2
Population

Summary Statistics

Population 4 Population 5
l=1,9g=05 |[l=05,g=05
f=20,0=04|8=40,0=04

X Y X Y
Mean 19.55 8.18 20.01 25.53
Standard Deviation 13.67 12.52 11.42 1.39
Skewness 1.40 4.50 0.15 .036
Kurtosis 2.57 32.74 248 2.60
Coefficient of Variation | 0.70 1.53 0.14 0.05
Correlation 0.521 0.579

3.3 The Estimators

In this section the generalized regression estimate, and the generalized smoothing esti-
mate are defined under a simple random sampling design. Their associated measures of

precision are also presented.

3.3.1 Generalized Regression Estimator

Consider a model in which the point scatter (:z:g, %) is constant such that
&

E( (y") = ﬂ.‘Bg.
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Moreover assume that the variance structure is proportional to the z; around the regres-
sion line

V;(yk) = 02z;.

The above model is called a common ratio model . Siarndal, Swenson and Wretman
(1992) have shown that the generalized regression estimator for the population mean

under a simple random sampling design has the following form:

iy = X2, (3.3)

which is called the ratio estimator in the survey sampling literature. Now X is the
population mean of the known z,’s while § and Z are the sample means.
Using a Taylor series expansion, it can be shown that the estimator is approximately

unbiased with variance estimator (see Cochran, 1977, Chapter 5)

. ) Xu 2
Vers(Thyr) = ry Vo, (3.4)
such that
. - yi — Bz
% 1 kaEs( ) . (35)
n—1
. Y
with 3 = zke’ ‘

I;
Zke, k

3.3.2 Kernel Regression Estimators

In the previous chapter we described and analyzed thegeneralized smoothing estimator

Tem = N zkeu ety Zke: 1r,;
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where

Ty — I )
¥ K (252w

-

Ye = z K(-‘Bk--‘tj) )
jeU b
and Tz
L K(F)w
€k = Y — 7T

>H (D)

i€s
is the sample residuals where K(.) is any kernel. Under a simple random sampling design

—
s

= j—T:;, the finite generalized smoothing estimate then has the following form:

. 1 .1
Moy = 7\7— Zkeu Y + ; Zke: €k. (36)

In the simulation study we only considered the normal kernel which is defined as

Kn(u) = \/12;exp (—%u’) ,—00 < u < 00,

and this weighting function was used to estimate the finite population mean Y. As previ-
ously stated all kernel regression estimators involve the bandwidth b, and optimal prop-
erties of the kernel estimates are functions of this parameter. The choice of b used
throughout the simulation is due to Silverman (1986) who showed that an appraximate

value of the optimal b, by is given by:
bope = 1.0594n"%, (3.7)

such that
A= min(Sz,IRQ/l.34),

where S; is the sample standard deviation of the z’s and I RQ is the sample interquar-

tile range of the z’s. Therefore the finite generalized smoothing estimate will have as
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predicted values

. opt _
yk = (zk — zj) 3 k - 1, 2, ...N, (3.8)
2K 5
j€s bope
and residuals
Ti-XT;
Y K (—; ) v
i€s opt
e =Yk — N\ k=12..n (3.9)
Y K ( ;‘ )
opt

i€s

The precision of the fitted nonparametric regression curve was studied by Rice (1984),
Gasser, Stroka, Steinmetz (1986), Hall, Marron (1988) and Hall, Kay, Titterington
(1990). These papers propose to estimate the sampling variance of the kernel regres-

sion curve as:
s? = (n— 2trace(W,) + trace(W:f))-l zkﬂ (yx — 9¢)?, (3.10)
such that the elements of Wy, are
T T
i (22)
_x(
g T T
> K (52)
Jj=1 bwt

Under a simple random sampling design it was shown in the previous chapter that

Wi; fori=1l.nandj=1..n.

the estimated variance of Mg, was

Hence for kernel smoothing the estimated sampling variance is

1-f

Vsrs (mm) = n

((n - 2trace(W.) + trace(W?)) ' 3= (we - g,,)’) . (3.11)
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3.3.3 Spline Estimators

Thegeneralized smoothing estimator

. 1
Mam = ﬁ keU et N Zkea 1r;,

n
is now adjusted for the spline estimator. Under a simple random sampling design m; = '

and thegeneralized smoothing estimator using a spline method has the following form:

) 1
Mo =N 2aw¥ "y Ekea k (3.12)

where ¢, is a predicted spline value of y;.
A cubic spline a(zx) will be fitted for the sample values as follows:
a. A cubic polynomial fits the data between two successive sampled z; values.
b. At the sampled values z, i(zi) and its two first derivatives are continuous.
c. At the boundary points z(;) and Z(y,), the second derivative of i(z;) is zero.

Therefore

= f(zx) for all z, € U,

and

ex = Y — i(zx) for all zx € s.

The estimated spline smoother (i) is a function of the spanning parameter A in the

penalized residual sum of squares

Sa(u()) = (we — n(=e))* + A / (u"(t))zdt

keEs

The optimal value of A was found by cross-validating the sum of squares

V=23 (-t @)’,
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where ﬁ:k(xk) denotes the fit at z; by leaving out that data point. Let A, be the value
of A that minimizes CV(A). We then use A, to find f(z:) which we shall now call
i@, ‘ (zx). The predicted yi and residuals will now be found with the A, i.e.

Gk, = B, (zx) for all z, € U,

and

€k, = Yk — ﬁ%" (zx) for all zx € s.

The optimal spline regression estimator will now be

- 1 . 1
e =N ZkeU Ykrgpe + n Zke, €k (3.13)

The precision of the spline was shown by Hastie and Tibshirani (1995) to be

1

2
2 — -
ssp n— traCC(SA S; ) zkE, (yk I‘l',\,m (xk)) s
opt opt

(3.14)

where S, is the symmetric projection matrix which is the same as the smoothing matrix
opt

W,. Under a simple random sampling design it was demonstrated in the previous chapter

that the estimated variance was

hence for spline smoothing the estimated sampling variance is

V"’(Th"p) = 1 —7-1. ! (n - trace(ls,\om S; ) Zkea (y’c - ﬁ“wt (xk))z) : (3'15)



3.4 The Simulation Procedure

The simulations were carried out in S-Plus Version 3.3 as follows: First a simple random
sample of size n = 10,25 was chosen in each of the five populations. Secondly for each
sample the following estimates of the finite population mean were calculated: ..,
Mgm, Myp. Thirdly for each sample the following measures were calculated,

1. the sample bias B,,(1i()) = Y — iy,

2. the sample variance V,,,(rh(_)).

The following relative measures of performance were also found:

1. The absolute bias ratio

ABE g0, (3.16)

BR(m,)) =
\ Vers (1)

2. The absolute relative bias

B(m,)
Y

RB(1n(,) = ] l x 100. (3.17)

The procedure is repeated for a total of K = 1000 times for each of the sample sizes

n = 10, 25. Let ;) denote the estimate from the j th sample, we then calculate

1 1000
™) = 1000 ;mj(.), (3.18)

which is an estimate of E (rh(,)) . The same calculations were done for B(rh(.)), V",(rh(,)),

BR(ry,) and RB(m,). We also calculated the confidence interval at the appraximate

95% level,
. - . %
Ty + 1.96 [V,,,(m(_))]

and then counted the number of intervals C out of K that contain the true value of Y.
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We call this the coverage ratio and define it as
. C

Lastly we calculated the simulation mean squared error and the simulation variance with

the following:

mse () = 1000 Z () = ¥)?, (3.20)
V,,-m (ﬁl(.)) = mse (Th(_)) - Bz(fh(_)). (3.21)

We compared the efficiency of our proposed estimators with that of the generalized

regression estimator with

Eff (m( )) — mse:ra (mg.as) (3.22)

Values of Ef f (ﬁv.(,)) > 1 imply that the proposed method of estimation is superior to
that of the generalized regression estimator. If Ef f (ﬁt(,)) < 1 this implies that the
proposed method of estimation is inferior to the generalized regression estimator.

In the analysis the relative accuracy of V., (ﬁz(,))was compared to V yim (ﬁz(,)) for the

three methods of estimation. To be more specific the relative accuracy was defined as:

RA = (1_ Vaim (ﬁ“ ) = Vers (mn)) (3.23)

Veim ()

Values of R.A. > 1 imply that V,,, (ri(,)) over-estimates Vim ("), while R.A. < 1,

implies that V,,, (1)) under-estimates V,;m (1)) -

3.5 Results of the Simulation Study

The following tables summarizes the Monte Carlo characteristics of the five populations

considered for sample sizes n = 10 and 25. Table 3.3 contains the value of the population
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parameter Y and the average estimates of this parameter found by using Mepe, Mem and
Mgp. Table 3.4 contains the average bias of the estimators, while Table 3.5 presents the

average absolute relative bias of the estimators.

Table 3.3
Average Estimate of Population Mean

Sample Size = 10(1%) | Sample Size = 25(2.5%)

Y| Mere| Mem| Tap| Mpe | iem Mep
Population1| 818 817| 786 818| 819 8.02 8.20
Population 2 | 109.69 | 116.66 | 110.87 | 105.73 | 111.67 | 111.45 | 108.28
Population 3| 881 | 885 878| 885| 885| 882 8.84
Population 4| 8.18| 8.23| 783 827| 810| 795 8.13
Population 5| 25.53 | 25.59 | 25.51| 25.52| 2557 | 25.53| 25.54

Table 3.4
Average Bias of the Estimators
B(,)

Sample Size = 10(1%) | Sample Size = 25(2.5%)

Mepe | Mem My | Mope | Mem L
Population 1 | —-0.02 | —0.32 0.00 | 0.01(-0.15 0.02
Population 2| 6.96 | 1.18| -3.97 198 | 1.76 -1.42
Population 3| 0.03 | —0.03 0.04| 0.03] 0.01 0.03
Population 4 0.04 { —0.35 0.08 | —0.08 | —0.24 —0.06
Population 5| 0.06 | —0.02 | -0.02| 0.04 | -0.00 0.01




Table 3.5
Average Absolute Relative Bias of the Estimators

RB(m, )

Sample Size = 10(1%) | Sample Size = 25(2.5%)

Mepe | Mem My Mepe | Mom My
Population 1| 0.2% | 3.8% 0.0% | 0.2% | 1.9% 0.2%
Population 2 | 6.3% | 1.1% 36% | 1.8% | 1.6% 1.3%
Population 3 | 0.4% | 0.4% 0.4% | 0.4% | 0.1% 0.4%
Population 4 | 0.5% | 4.3% 0.9% | 1.0% | 3.0% 0.7%
Population 5 | 0.2% | 0.1% 0.1% | 0.2% | 0.0% 0.0%

The following patterns emerge form these tables:

1. For all estimators as the sample size increases the bias B(Th(_)) and relative bias
RB(m .,) decrease for the five populations considered. In Chapter 2 it was shown that the
generalized smoothing estimator is asymptotically unbiased. Tables 3.4 and 3.5 confirm
this fact albeit the sample sizes were small.

2. In population 1 the true regression model is linear and the bias and relative bias
of the . is negligible. The result is not surprising because the generalized regression
estimate rn_.. is the optimal estimate for the superpopulation model when [ = 1 and
g=1.

3. In populations 3 and 5 for both sample sizes the bias B(ﬁz(_)) and the absolute
relative bias ﬁ(?h(_)) of the three estimators are essentially the same.

4. In population 2 the bias B(r,,,) and the absolute relative bias RB(rh_..) of
the generalized regression estimate ., was much larger than the other two estimators
considered. The result is not surprising because the generalized regression estimate 1,

is not the optimal estimate for this superpopulation model.
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5. In population 4 at the sample sizes considered, the bias B(171,,) and the absolute
relative bias RB(tf4m) of the finite generalized smoother fiv,,, is much larger than the
other two estimates considered.

6. The bias that is always present in non-parametric regression near the edges of the
region over which the data have been collected, has been reduced. The reduction is due
to the fact that we are measuring the center of the regression curve and the bias that
occurs at both extremes of the regression curve cancel out. Moreover the results confirm
the approximate design unbiasedness property of Theorem 2.5.2.

Table 3.6, 3.7 and 3.8 contain the average sample variance V,,(rh(,)),coverage ratio
C.R.(1h(,)) and finally the average bias ratio BR (1)) . The bias ratio is considered
because it has an effect on the coverage ratio. When |BR (m())| <€ 10% the bias effect
may be ignored because the coverage ratio 1s appraximately equal to the nominal coverage

probability.

Table 3.6
Average Sample Variance
Vers (1)
Sample Size = 10(1%) | Sample Size = 25(2.5%)
L m,,. m,, Mepe | ™, m,,
Population 1| 0.302| 1.469 | 0.558 | 0.121 | 1.000 0.152
Population 2 | 2063.7 | 391.7 | 464.1 | 686.6 | 208.8 108.4
Population 3| 0.481 | 0.452 | 0.561 | 0.203 | 0.257 0.165
Population 4 | 8.742 | 11.244 | 32.831 | 3.876 | 7.157 5.913
Population 5| 0.935| 0.131 | 0.208 | 0.364 | 0.068 0.059




Table 3.7
Average Absolute Bias Ratio
BR (1))

Sample Size = 10(1%) | Sample Size = 25(2.5%)
Mepe | Mem m,, Meope | Mom m,,
Population 1 |11.5% | 9.6%| 0.0%|287% | 1.5% 5.1%
Population 2 | 15.3% | 15.6% | 18.4% | 7.5% | 12.2% 13.6%
Population 3 | 4.3% | 4.5% 53% | 4.2% | 1.9% 3.5%
Population 4 | 13.4% | 12.5% | 12.4% | 12.2% | 11.0% 12.4%
Population 5| 62% | 65% | 44%| 6.1% | 0.0% 4.1%
Table 3.8
Coverage Ratio
C.R. (mq,)

Sample Size = 10(1%)

Sample Size = 25(2.5%)

-

-~

~

Mepe | Mom m, | Mgpe | Migm m,,
Population 1 | 90.2% | 92.6% | 90.1% | 92.5% | 99.2% 91.4%
Population 2 | 88.9% | 84.3% | 87.3% | 92.6% | 83.8% 89.9%
Population 3 | 92.2% | 93.2% | 91.9% { 93.9% | 97.8% 93.6%
Population 4 | 82.3% | 84.8% | 80.0% | 87.3% | 85.4% 83.9%
Population 5 | 90.7% | 87.6% | 93.2% | 93.8% | 94.8% 93.7%

The following conclusions can be inferred from these tables:

8. For all estimators as the sample size increases the sample variance V,,, (1h())and
the average bias ratio decreases for the five populations considered.

9. In population 1 the true regression model is linear and the sample variance of
M e is much smaller than the other two estimates considered. As previously stated the

generalized regression estimate .. is optimal for this population.
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10. In population 3 for both sample sizes the average sample variance of the three
estimators are essentially the same magnitude. While in population 2 and 5 the average
sample variance of Mg, is much larger than the other two estimates. But in population
4 the average sample variance of M, is smaller than m,_ and m,,.

11. The sample size has an effect on the coverage rate C.R.(m()). As the sample size
increases the coverage rate C.R.(1y)) approaches the nominal 95%, which confirms the
asymptotic theory developed in section 2.9 of Chapter 2.

12. Table 3.7 demonstrates the effect that the bias can have on the coverage ratio
Table 3.8. As the bias ratio decreases the coverage ratio approaches the 95% nominal
level. Therefore the coverage rate C.R.(m,) is affected by the sample size and the bias

ratio.

Tables 3.9 and 3.10 contain the mean squared error of simulation Tis€sm (ﬁz(_))and
the associated sample variance Ve (ﬁl(,)) . These estimators are consistent estimates of

the design mean squared error mse,,, (1)) and of the design variance V,,, (my,) .

Table 3.9
Mean Squared Error of Simulation

TSerim ()

Sample Size = 10(1%) | Sample Size = 25(2.5%)

Trgne | Tom | T | Tigre | Tem |
Population 1 | 0.315}| 0.790 ; 0.707 { 0.121 | 0.215 0.249
Population 2 | 1880.8 | 926.1 | 366.8 | 657.5 | 461.8 108.7
Population 3 | 0.483 | 0.376 | 0.584 { 0.203 | 0.143 0.165
Population 4 | 11.224 | 10.702 | 22.601 | 4.105 | 4.232 11.442
Population 5| 0.988 | 0.141 | 0.243 | 0.366 | 0.054 0.227
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Table 3.10

Variance of Simulation

Veim (1))

Sample Size = 10(1%) | Sample Size = 25(2.5%)

More | Mo | Mo | Tgrs | M | 0o,
Population 1| 0.315| 0.691 | 0.707 { 0.121 | 0.191 0.249
Population 2 | 1832.3 | 924.7 | 351.1 | 653.7 | 458.7 106.7
Population 3| 0.484 | 0.373 | 0.585{ 0.202 | 0.143 0.165
Population 4 | 11.223 | 10.648 | 22.675 | 4.132 | 4.245 11.476
Population 5| 0.985| 0.140 | 0.242 | 0.365 | 0.054 0.227

From Tables 3.9 and 3.10 the following can be inferred:

13. For all estimators as the sample size increases the mean squared error of simulation
T7i8€sim (Th())and the sample variance V sim () decreases.

14. For population 1 the MS€sim (T g, ) and V sim (mgge) is smaller than that of the
other two estimators because M, is optimal.

15. In populations 2, 3 and 5 and for both sample sizes the MS€,m (gg.) and

<‘

sim (Mgge) is much larger than the other two estimators. While in population 4 the

3

$€sim (Mgrs) aNd Vgim (M., ) is of the same magnitude as that of M8€,im (17, ) and

<l

sim (ﬁ'l.m) .



Table 3.11 demonstrates the efficiency of each estimator considered in the simulation

for each of the populations studied.

Table 3.11
Efficiency
Eff(m,)
Sample Size = 10(1%) | Sample Size = 25(2.5%)
Trore | Pem | My | Mge | tem i,
Population 1| 1.00 | 0.40 045 | 1.00{ 0.56 0.49
Population 2 | 1.00 | 2.03 513 | 1.00| 1.42 6.05
Population 3 | 1.00 | 1.32 084 | 1.00| 1.47 1.27
Population 4| 1.00 | 1.04 049 | 1.00] 0.97 0.36
Population 5| 1.00 | 7.02 407 1.00]| 6.73 1.62

The following can be inferred from Table 3.11:

16. The sample size has an effect on the efficiency of the estimator. As the sample
size increases the efficiency increases.

17. The estimator 7n_,. is only efficient in population 1 because in this population
the generalized regression estimator has optimal properties.

18. The estimators 1n_,,. and m,  are essentially of equal efficiency for population 4
and for both sample sizes considered.

19. The estimators m,,, and m,, are more efficient than i, for populations 2, 3,

P

and 3.
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The p-values for the lack of fit test presented in section 2.10 using a shifted and
scaled x? distribution is presented in Table 3.12 while the p-values for the permutation
(bootstrap) test is presented in Table 3.13. In both tables we considered i, for the

null hypothesis and m,,, for the research hypothesis.

Table 3.12
Lack of Fit Test

p-values for x?2

n=10}|n= 25
Population 1 0.50 0.95
Population 2 0.00 0.00
Population 3 0.00 0.00
Population 4 0.00 0.00
Population 5 0.00 0.00

Table 3.13
Lack of Fit Test

p-values for Permutation

n=10|n= 25
Population 1 1.00 1.00
Population 2 0.01 0.00
Population 3 0.02 0.00
Population 4 0.01 0.01
Population 5 0.01 0.01

The shifted and scaled x? test and the permutation (bootstrap) lack of fit test permits

us to make the following conclusions:
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20. For population 1 the linear model adequately describes the fit of the point scatter.
Consequently, the generalized regression estimator M., would the appropriate estimator
of the finite population mean. This result confirms the efficiency analysis ‘fc?_und in Table
3.11.

21. We can reject the hypothesis of a linear fit at a significance level of 5% for
populations 2, 3, 4 and 5. For these finite populations a kernel or a spline regression
would fit the point scatter adequately and ultimately provide an efficient estimator of
the finite population mean. Again these results confirm those found in Table 3.11.

Finally Table 3.14 shows the relative accuracy of the variance estimator V,,, (ﬁz('))

with respect to the simulation variance V,,, (ﬁz(.)) .

Table 3.14
Relative Accuracy
RA(my,)

Sample Size = 10(1%) | Sample Size = 25(2.5%)

Migne | T | ., | Migpe | ,,
Population 1| 0.96 | 2.13 0.79 | 1.00 | 5.22 0.61
Population 2 | 1.13 | 0.42 1.32| 1.05|0.46 1.02
Population 3| 1.00 ] 1.23 0.96 | 1.00 | 1.78 1.00
Population 4| 0.78 | 1.06 145 | 094 | 1.70 0.52
Population 5| 0.95 | 0.93 0.86| 1.00 1.26 0.26

The above table demonstrates that:

22. As the sample size increases the relative accuracy of the sampled variance esti-
mator Vi, (17()) approaches the sample variance V sim (172(,) -

23. The relative accuracy of Vir, (Thg,e) Was very good for ...

24. The relative accuracy of V,,, (m,,) and V,,, (1,,) were not as favorable as the

relative accuracy of Vi, (Mgee). The methods used to find V.., (rhm) were studied
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by Rice (1984), Gasser, Stroka, Steinmetz (1986), Hall, Marron (1988) and Hall, Kay,
Titterington (1990). Research is still being pursued in this area because of the bias
present in m , which will have the effect of inflating the size of the residual sum of

squares.

3.6 Conclusions

This chapter has shown that it is possible to estimate a finite population mean with a
nonparametric model that makes no assumption about the underlying point scatter. We
are using the advice of Eubank (1988) 'let the data speak for itself’ or as stated by Hastie
and Tibshirani (1990) ’let the data show us the appropriate functional form’ without
making parametric model assumptions.

In keeping with the spirit of Hirdle (1989, 1990) the motivation for the nonparametric
regression approach is as follows:

i. to provide a versatile method for exploring a general relationship between two
variables,

it. to give predictions for observations yet to be made without reference to a fized
parametric model,

1i. lo furnish a tool for finding spurious observations by studying the influence of
isolated points,

iv. to have a flerible method of substituting for missing values or interpolating between
adjacent X wvalues.

Also Hansen, Madow and Tepping (1981) asked researchers the following  The proper
use of models has much to contribute to survey design. We urge continuing strong efforts,
taking the fullest feasible advantage of models, but ordinarily within the framework of
probability sampling, i. e., using designs and estimators that are not model-dependent’.

We urge survey statisticians to use nonparametric estimators because they are model-

independent and to use a probability sampling so as to protect the survey statistician
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‘against failures of assumed models and provide robustness for all estimators’ (Hansen et
al. 1981).
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Chapter 4

Empirical Comparisons of
Generalized Regression and the
Generalized Smoothing Estimators

under a Stratified Sample Design

4.1 Introduction

In this chapter we compare estimates of the population mean using parametric and
nonparametric models. The sampling design that will be used throughout this chapter is
stratified sampling without replacement. Considerable gains in efficiency can be obtained
with this design if the strata are well defined and if the allocation of sampled units in each
strata is done with the Neyman (1934) criterion. In order to understand the behavior
of these different estimates the populations under investigation will have known point
scatters.

In section 4.2 we present a method to generate populations having a known point
scatter in each strata. Subsequently in the section we simulate the three populations

and also present their finite population characteristics. The ratio estimator, the kernel
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estimator, and the spline estimator are developed under a stratified sample design in
section 4.3. In section 4.4 criteria are developed to judge the efficacy of the estimators
under a stratified random sample design. The results of the simulation procedure are

presented in section 4.5 while in section 4.6 the conclusions are presented.

4.2 The Populations

Three artificial populations of size N = 1000 were created. The populations had two
strata of size Ny = 500 where h = 1,2. For each strata z,; values were generated by

a gamma distribution I'(0,1, 0n2), Conditional on Zxx, ynx values for strata h were also

2 .7 2
generated by a gamma distribution I'(¢,,,#,.), where ¢,, = ﬂ:;”‘ and ¢, = ﬂcr;m .
rThk
The conditional mean and variance of y,; in stratum h is as follows:
E (Y| X =
e (Yai| Xne) Dr1Pn2 4.1)
= Buzp™s
and
Vi (Yol Xne) = ¢nidhe (4.2)
= oz ™.

Equations (2.1) and (2.2) are used to create strata having different point scatters. If the
point scatter has a mean E,(Yat|Xac) = Bhz), and a variance V (Yax|Xni) = o2z}, we
must then choose our parameters r and m as follows:
r = 2—g,
! (43)
m = l—g.
The three populations were created as follows:
Strata 1
1. Simulated 500 Tix with a I"(On = 2,012 = 10),
2. For each z,; value, and pairs (3,0) and (l,g), simulated a y,x value with a
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r(¢111 ¢12)'
Strata 2

1. Simulated 500 zo with a T'(0y; = 2.5,6,, = 20),

2. For each zx value, and pairs (8,0) and (l,g) simulated a yy value with a
T'(S21: 622)-
The following values of (I, g) were considered (0.5,1), (1,1), (1.5,1). The pair (3, o) were
given values of (0.4,0.4) , (4.0,0.4) and (—10.0,0.4) The following three tables summarizes

the major characteristics of the populations created.

Table 4.1
Population 6

Summary Statistics

Strata 1 Strata 2 Population
l=1landg=1|l=1landg=1

B=0=04 B=0c=04

X Y X Y X Y
Mean 1968 | 7.94 50.87 | 20.25 | 35.27 | 14.09
Standard Deviation 6.25 3.13 32.82| 13.13 | 28.30( 11.35
Skewness 0.69 0.84 1.11 1.11 1.94 | 1.89
Kurtosis 0.88 1.68 1.15 1.26 4.02 | 3.99
Coeflicient of Variation | 0.32 0.39 0.65 0.65 0.80 | 0.81
Correlation 0.829 0.980 0.981
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Table 4.2

Population?
Summary Statistics
Strata 1 Strata 2 Population
=landg=1|l=15andg=1
B=0=04 B=0=04
X Y X Y X Y
Mean 1992 | 7.89 | 49.38 12.67 34.65 | 10.28
Standard Deviation 13.71 | 5.77 | 31.92 2.02 2864 | 4.94
Skewness 1.30 1.19 1.50 1.05 1.89 | 0.12
Kurtosis 2.21 1.63 3.95 0.97 5.72 | 0.73
Coeflicient of Variation | 0.69 0.73 0.65 0.16 0.83 | 048
Correlation 0.955 0.407 0.609
Table 4.3
Population 8
Summary Statistics
Strata 1 Strata 2 Population
l=05andg=1 l=05andg=1
B=-10andoc=04|3=4and o =04
X Y X Y X Y
Mean 19.53 108.72 9.95 25.42 14.74 | 67.07
Standard Deviation 13.04 55.42 1.36 1.42 10.43 | 57.20
Skewness 1.16 1.45 0.03 0.110 2.20 | 1.68
Kurtosis 1.96 2.64 3.94 4.09 6.18 | 3.18
CoefRicient of Variation | 0.67 0.51 0.14 0.06 0.71 | 0.85
Correlation -0.625 0.545 —0.043
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4.3 The Estimators

In this section we adjust the estimators analyzed in Chapter 3. We take into consideration

the fact that our population is stratified into two strata.

4.3.1 Generalized Regression Estimator

We first consider a model in which the point scatter (xhk, i’i’i) (h=1,2,....H) is constant
hk
in each strata such that

E( (yn) = Brznx-

Moreover assume that the variance structure in each strata is proportional to the z,;
around the regression line

Ve (yne) = ohzns.

The above model is called the group ratio model.

The generalized regression estimator for the h'th stratum mean is given by:
. > Yn
Myrp = XUhg-y h= 11 seey H1
Ih

where Xy, is the population mean in strata h of the known zx:’s while §, and Z, are the
sample means of the sample chosen in strata h. Pooling information from each stratum

an estimate of the population mean is given by:

H
ﬁl.ﬂ.yr = z Whmyrhy (4'4)

A=1

H
N . . . . .
where W), = Wh and N = E N4, this estimate is called the separate ratio estimator of
h=1
the population mean.

Using a Taylor series expansion it can be shown that the estimator is appraximately
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unbiased with an estimate of its variance (see Sérndal et al Chapter 11),

X
ltrs(matyr) = sz ( Uh) Vh, (4.5)
such that
Vi = 1- f h zkea (y"" ﬁ“zu)
h= ny — 1
- Yrk
where 3§, = —————Eke"

b
ZkEQ hk

4.3.2 Kernel Regression Estimators

In the previous chapter it was shown that the estimate of the population mean using

kernel regression is
. 1
Mam =N 2uker ¥ T 5 Zke (4.6)

under a simple random sampling design The fitted values are defined as

Ty — ;5 )
ZJ"EUK( bope )yJ
ok (B2)

JEU bopg

Uk =

and the residuals by

Ee ()

$€s

SEE)

tEs

€k = Yk —

The finite generalized smoothing estimate for the h’th stratum mean is given by:

. 1 . 1
Memn = Fh Ekwh Ynx + ;’: Zke'h €nk
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Pooling information from each stratum an estimate of the population mean is given by:

H
Mytem = Z Whmmemn, (4.7)
h=1
N H
where W}, = Wh and N = ZN;.. The fitted values are defined as
h=1
Thx — IThj ]
) Zjevp. K ( bhopt ) Yhj
Y = ’
Z K (-’L'M: - -’l?hj)
JEU, bhopl

while the residuals have the following form

5k (T

ics bhope
Chk = Ynk — Trr T
ZK( hk— ht)
ics bhopt

The optimal bandwidth by, is found for each strata as follows

bropt = 1.0059A4n" %, (4.8)

such that

Ap = min(S;, IRQ./1.34)

and S;, is the sample standard deviation of the z’s in strata h and JRQ) the sample
interquartile range of the £ again in strata h.

As in Chapter 3 an estimate for the variance in strata h is given by

= (nn — 2trace(W,,) + tra.ce(“!'f,.))—l z (ynx — 9nx)?, (4.9)

kE oy



such that the elements of W,,, are

K (:z:;.._z;.,)
b
hopt fori=1.n.and h= 1...H.

Zhi-Thj
K
E ( bhopt )

JEs

Wy, =

The estimated variance V. (T14esm) is found by pooling the estimate for the variance 32

in strata h

Viers (m:nm) 2 Wz 1=/ 2 (4.10)
ny

4.3.3 Spline Estimators
The spline regression estimator
. 1
Mep = N kevF T L Ekea

is adjusted for a stratified sampling design. A cubic spline 1, (zxx) is fitted for the sample

values in each strata using the same procedures as described in Chapter 3. Therefore
Ynk = fn(zne) for all zpy € Uy,

and

Chi = Ynk — ﬂ(l‘hk) fOl‘ all T € Sp.

The optimal value of the spanning parameter A, is found by the cross-validating the

sum of squares in each strata
1 “—k 2
CV(h) = . Zke‘h (yne — 2 (znr))

where [1;*(zn) denotes the fit at zpx by leaving out that data point. Let A, be the
value of A; that minimizes CV'(A,). We then use Apope to find 2, (k) which we shall now
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call iz, rope (zi). The predicted y. and residuals will now be found with the Apope i.e.
Unkpppe = Pia,,,, (Zax) for all Zne € Un,

and

e"k‘\'w’! = Ynx — ﬁhAM' (:z:,,) for all Zpx € Sp.
The spline estimate in each strata is

1 1
Meph = - E Ihk + — e
sph A keU, Ynk o ks EHE

where gy is a predict yni value for all z4x € U,. Pooling information from each stratum

an estimate of the population mean is given by:

H
Tty = _ Whatitpn, (4.11)
h=1

r H

where W}, = %Th and N = Z N,,.
h=1

The precision of the splix_le is given by the following

, (yhlc - ﬁn,\,.m (-’17Mc))2
Sh = Zkesh np — tr(Sh, Sf )|’

hopt Anopt

where ShA is the symmetric projection matrix for strata h. An estimate of the variance
hopt

of My, is is found by pooling the estimate for the variance 33,. in strata h

H

- ) 1—

Vitrs (Mgesp) = D :Wf-n—’.&sﬁ- (4.12)
h=1
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4.4 The Simulation Procedure

The simulations were carried out in S Plus Version 3.3. Now since all the z,; are
known for each strata considerable gains in efficiency can be made if the total sample
size is allocated correctly. Since the population standard deviation S;y, are known, the

Neyman criterion allocates the total sample n to the strata as follows:

— NhSZUA
n, ——

=n 7
> NuSeu,
h=1

The simulation study for each artificial population was carried out as follows: I'irst a
stratified random sample of size n = 20,40 was chosen in each of the three populations.
Secondly for each sample the following estimates of the finite population mean were
calculated: Mgpyr, Msesm and Mg,,. Finally the measures of precision, relativity, efficiency
and accuracy defined in Chapter 3 were calculated so as to judge the behavior of M.,

Mgrsm and Mgegp-

4.5 The Simulations Results

The following tables summarizes the Monte Carlo characteristics of the five populations
considered for sample sizes n = 20 and 40. Table 4.4 contains the value of the population
patameter Y and the average estimates of this parameter found by using : Mgeyr, Marem
and .. Table 4.5 contains the average bias of the estimators, while Table 4.6 presents

the average absolute relative bias of the estimators.



Table 4.4
Average Estimate of Population Mean

Sample Size = 20(2%) | Sample Size = 40(4%)
Y | Mayr | ratem | Matap | Mayr | Tatem | Titseap
Population 6 | 14.09 | 14.09 | 13.70 14.12 | 14.11 | 13.87 14.10
Population 7 | 10.28 | 10.49 { 10.18 10.39 | 10.39 | 10.22 10.31
Population 8 | 67.07 | 71.65 | 68.18 65.48 | 68.61 | 67.60 66.84
Table 4.5
Average Bias of the Estimators
B(,)
Sample Size = 20(2%) | Sample Size = 40(4%)
Mgtyr | Tgtem | Tatep | Matyr | Matem | Tigrep
Population 6 | 0.00 [ —0.39 0.03 | 0.02]} -0.22 0.01
Population 7§ 0.21 | —0.11 0.11 | 0.11 |} -0.06 0.03
Population 8 | 4.58 1.11 -1.59 | 1.54 0.52 —-0.24
Table 4.6
Average Absolute Relative Bias of the Estimators
_R—B-(ﬁ"(.))
Sample Size = 20(2%) | Sample Size = 40(4%)
Matyr | Matem | Marep | Moty | Matem | Mgtap
Population 6 | 0.0% | 2.8% 0.2% | 0.1% | 1.6% 0.1%
Population 7 | 2.0% | 1.0% 1.0% | 1.1% | 0.6% 0.3%
Population 8 | 6.8% | 1.7% 24% | 2.3% | 0.8% 0.4%




From tables 4.4, 4.5 and 4.6 the following can be inferred:

1. For all estimators as the sample size increases the bias B(ﬁl(.)) and relative bias
RB(mn ) decreases for the three populations considered. This confirms the theory de-
veloped in Chapter 2 with respect to the asymptotic unbiasedness.

2. In population 6 the true regression model is linear and the bias and relative bias
of the gy, and m,,, are negligible. The result is not surprising for the generalized
regression estimate, My, is the optimal estimate for the superpopulation model when
[=1and g=1.

3. In population 7 for both sample sizes the bias B(r2 ,) and the absolute relative
bias R_B(rh“ of Mgem and 1M, are essentially the same.

4. In population 8 for both sample sizes the bias E(ﬁl(.)) and the absolute relative
bias ﬁ(n"z(_) of Mgy, is much larger than the other two estimators considered.

3. Again the bias that is always present in non-parametric regression has been re-
duced. The reduction is due to the fact that we are measuring the center of the regression
curve and the bias that occurs at both extremes of the regression curve cancel out. More-
over the results confirm the approximate design unbiasedness property of Theorem 2.5.2.

Table 4.7, 4.8 and 4.9 contain the average sample variance V,,, (ﬁz(_)) ,coverage ratio
C.R.(rm,)and finally the average bias ratio BR (1)) . The bias ratio is considered
because it has an effect on the coverage ratio. When IB_E (ﬁl(_))l < 10% the bias effect

may be ignored because the coverage ratio is approximately equal to the nominal coverage

probability.



Table 4.7

Average Sample Variance

Vars (1))
Sample Size = 20(2%) | Sample Size = 40(4%)
Meyr | Matem | Matsp | Motyr | Motam | Matep
Population 6 | 0.23 0.86 037 0.11 0.32 0.14
Population 7| 2.12{ 0.22 0.50 | 1.02| 0.16 0.19
Population 8 | 483.3 | 155.2 7841869 | 94.1 25.06
Table 4.8
Average Absolute Bias Ratio
BR (1)

Sample Size = 20(2%)

Sample Size = 40(4%)

fhstyr ﬁlnm ﬁl:tap ﬁlatyf mn.sm Thaup

Population 6 | 0.8% | 42.2% | 4.3% | 24% | 5.7% | 2.6%

Population 7 | 20.3% | 22.4% | 21.2% | 15.7% | 15.8% | 8.6%

Population 8 | 20.8% | 17.8% | 17.9% | 11.3% | 5.4% 4.7%
Table 4.9

Coverage Ratio

C.R. (n,)

Sample Size = 20(2%)

Sample Size = 40(4%)

-~

Matyr | Matem | Motsp | Motyr | Matem | Masp
Population 6 | 90.5% | 94.5% | 92.5% | 91.8% | 99.0% | 92.7%
Population 7 | 90.9% | 91.0% | 91.0% | 93.1% | 95.6% | 91.3%
Population 8 | 90.2% | 75.9% | 89.3% | 92.4% | 84.2% | 92.7%




The following patterns emerge from the tables:

6. For all estimators as the sample size increases the sample variance V,,, (17(,) and
the average bias ratio decreases for the three populations considered.

7. In population 6 the true regression model is linear and the sample variance of
Tngsm 1s much smaller than the other two estimates considered. As previously stated the
generalized regression estimate i ,m is optimal for this population.

8. In populations 7 and 8 the sample variance of 17 ,,m is much larger than the sample
variance of Myem and Migeep.

9. The sample size has an effect on the coverage rate C.R.(1()). As the sample size
increases the coverage rate C.R.(1m(,) approaches the nominal 95%, which confirms the
asymptotic theory developed in section 2.9 of Chapter 2. This result is similar to result
10 of Chapter 3 which was for simple random sampling.

10. Table 4.8 demonstrates the effect that the bias can have on the coverage ratio.

As the bias ratio decreases the coverage ratio approaches the 95% nominal level.

Tables 4.10 and 4.11 contain the mean squared error of simulation 7s€im (ﬁz.(,))and
the associated sample variance V sim (m(_,) . These estimators are consistent estimates of

the design mean squared error msey,, (1)) and of the design variance V., (112(,) -

Table 4.10
Mean Squared Error of Simulation

MSerim (1))

Sample Size = 20(2%) | Sample Size = 40(4%)

- - - -

Mgtyr | Matem Myeep Matyr | Motem | Mgrep

Population 6 | 0.26 | 0.80 045] 0.13| 031 0.16
Population 7| 1.89 | 0.26 089 076 0.12 0.12
Population 8 | 508.4 | 217.0 56.7 | 182.8 | 99.8 24.9
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Table 4.11

Variance of Simulation
Viim (1))

Sample Size = 20(2%) | Sample Size = 40(4%)

- - - S

Myyr | Motem | Mytsp | Matyr | Matem | Masp

Population 6 { 0.26 { 0.65 045| 0.13| 0.26 0.15
Population 7| 1.84| 0.25 0.87| 0.74| 0.12 0.12
Population 8 | 487.5 | 215.8 54.1 {1804 | 99.5 24.8

11. For all estimators as the sample size increases the mean squared error of simulation
THS€gim (Th(_))a.nd the sample variance Veim (ﬁl(_)) decreases.

12. For population 6 the MS€sm (774,-) and Vsim ("M5tyr) is smaller than that of the
other two estimators because g, is optimal.

13. In populations 7, 8 and for both sample sizes the T8€ yim (Tigre ) a0d Vi (1o pe)

is much larger than the other two estimators.

Table 4.12 demonstrates the efficiency of each estimator considered in the simulation

for each of the populations studied.

Table 4.12
Efficiency

Eff(m,)

Sample Size = 20(2%) | Sample Size = 40(4%)

-~ -

Maryr | Matem 77l:up Meeyr | Myram Metsp

Population 6| 1.00 | 0.32 0.58| 1.00{ 0.42 0.85
Population 7| 1.00| 7.19 2.13| 1.00| 6.08 6.44
Population 8 | 1.00| 2.34 895| 100 1.83 7.34




The following results are apparent:

14. The sample size has an effect on the efficiency of the estimator. As the sample
size increases the efficiency increases.

15. The estimator gy, is the only efficient estimator in population 6 because in this
population the generalized regression estimator is optimal.

16. The estimators MM em and 1y, are more efficient than mn,,, for populations 7,

and 8.

Finally Table 4.13 shows the relative accuracy of the variance estimator V., (ﬁz(_))

with respect to the design variance Viim (1h(,)) .

Table 4.13
Relative Accuracy
RA(m ,)

Sample Size = 20(2%) | Sample Size = 40(4%)

- -

Thszyr Mstem Myesp Myryr Mytem Myep

Population 6 { 0.89 | 1.31 083 084 1.22 0.89
Population 7| 1.15{ 0.87 0.57 | 1.38 131 1.64
Population 8} 0.99 | 0.72 145 1.04| 095 1.01

-~

The above table demonstrates that:
17. As the sample size increases the relative accuracy of the sampled variance esti-
mator Vi, (17(,)) approaches the sample variance V,im (r7(;)) in population 8. For the

other two populations the results are mixed.

4.6 Conclusions

This chapter has demonstrated that a finite population mean can be estimated with a

nonparametric model under a stratified sampling design. The methodology makes no as-
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sumption about the underlying point scatter. In practice, any regression model is likely
to have some error, by misspecification of the mathematical form of the model or by
omitting important explanatory variables. The nonparametric regression methods pre-
sented in this theses are in a sense robust, every survey statistician should have this tool
in her/his toolbax, because inferences made with nonparametric methodologies protect

the statistician against model misspecification.



Chapter 5

The Generalized Smoothing
Estimator and Nonparametric

Binary Regression for Nonresponse

5.1 Introduction

In many sample surveys some of the units contacted do not respond to all the items on
a questionnaire. Such non- response, is common in practice whenever the population
consists of units such as individual people, households, or businesses.

Suppose a population consists of N units and y is the characteristic we are interested
to measure. For simplicity assume the total population is surveyed and denote by ug
and pp. the population means of the responding population and the nonresponding
population. Also let Ng and Nge (N = Ng + Ng:) represent the sizes of the responding

and nonresponding populations. The population mean is a weighted average of ug; and

K Re

p= Ngrug -;VNRCFR" (5.1)

Let us now discard the nonresponding population and use ug the population mean of the
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respondents as an estimate of u. If the population mean of the respondents up, is different
than the population mean of the nonrespondents pug we induce a bias in our estimate
of the population mean u. The following Lemma quantifies this bias as a product of the

difference of the population means of both subpopulations and the nonresponse rate.

Lemma 5.1.1 The bias B incurred by using ug to estimate p is given by

B = R*(pge — p1g), (5.2)
¢ Nrs .
where R = N the nonresponse rate.
Proof Since
— NRﬂR + NRCI‘Rc
N 1
and
N = NR + NR‘:
we have
_ (N - NR:) [LR+ NR‘#R‘
H= N 4

or

TS #R+%(/‘R°-ﬂﬂ)
= pp+ R (pp — pg)-
But the bias is defined as
B = p—-pg
= R (pp- — ng).

Reducing R° so as to reduce the bias B is a problem of data collection. Many methods
have been developed to reduce the nonresponse rate. The fundamental work in this area
are attributed to Hansen and Hurwitz (1946) and to Politz and Simmons (1949, 1950).

This thesis does not address this issue as it is not a statistical problem.
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Reducing prc ~ pg, so as to reduce the bias B is on the other hand a problem
of statistical methodology. Consider a population U = {1,2,...,k,...N}, and let Ug
represent those units in the population that respond and Ugrc those units that do not
respond (Ur U Uge = U) . Suppose the missing values Y (k € Ugc) are estimated by ;.

We then can estimate u by
_ N + Ng-ji
g RER % ReMRe , (5.3)

where
- 1 .
Hp = Nee Z Y-
EEURC

and Ng and Ng- are the sizes of the populations Ur and Urc respectively. Note that ug

1s considered known because it represents the mean of the responding units.

Lemma 5.1.2 The bias B incurred by using § lo estimate pu is given by

B = R°(pge — fage), (5.4)

Nge .
where R = TR is the nonresponse rate.

Remark 5.1.1 The above lemma demonstrates that the nonresponse bias can be reduced
for a fized nonresponse rate if jig. is a good estimate of the population mean of the

nonrespondents jLg..

The main thrust of this chapter is to develope methods that reduce the bias incurred
because of nonresponse. In section 5.2 we review a nonresponse model due to Nargundkar
and Joshi (1975), and introduce the concept of response probability. Section 5.3 reviews
the superpopulation model literature for the nonresponse problem. In this framework two
models are considered, namely a regression model for the point scatter and a response
model for the respondents. The theory developed in Chapter 2 is now adapted in section
5.4 and 5.5 for the nonresponse problem. Finally in section 5.6 the response probabilities
are estimated by binary regression and these estimates are then used to estimate the

population mean.



5.2 A Model for the Response Mechanism

Nargundkar and Joshi (1975) adjusted the Horvitz - Thompson (1952) estimator

myr = z:;k,

| {7

so as to take into account the nonresponse behavior. Consider a population U =
{1.2,...,k,...N}, of size N. Let s be a sample of fixed size n drawn from U according to
a known sampling design p(s) such that

p(s) 2 0forall s€ L,

and

> p(s) =1,

€L

where £ is the set of all s of fixed size n. The inclusion probability of unit k is defined as

me = Y _ p(s) such that m > 0 for all k € U,

s€EL,

where £, = {s : k € s} . We also define the joint inclusion probability of units k and ! as

Tk = Z p(s) such that my; > 0 for all k,l € U,

S€EL

where £y, = {s: k,l € s}.
The response mechanism has the following distribution g(r|s) such that for every fixed

s, r denoting the members of s which is responding,

g(rjs) 2 0forall r € R,,



and

3 alrls) =1,

reR,

where R, = {r : r C s} . We define the response probability of unit k given s as

¢« = D_ q(r|s) such that ¢, >0 for all k € U,
r€ER.s
where Ry, = {r : k € R C s}. Also the joint response probabilities of units k and ! are
defined as
b = Z q(r|s) such that ¢, >0 for all k,l €U

reRiis

where Ry, = {r:k,l € r C s}. Assume that the units respond independently of each

gris) =T e J] 1 -¢0)-

kER kes—R

other and of s :

The ¢, may be functions of unknown parameters and auxiliary variables z; known for
all population units {k = 1,...N} such that ¢, = fi (z;0) -
Using these response probabilities Nargundkar and Joshi (1975) modified the Hovitz-

Thompson estimator as

- Yk
myy = E —_— 5.5
M keR N7y (59)

An estimator M is said to be design unbiased for the population mean Y if
EP (M) = }-,1

where the expectation is taken with respect to the sampling design p. This is also known
as 'p unbiased’. Since we have introduced a nonresponse distribution into the estimation

procedure unbiasedness must now be defined with respect to the design p and the response



mechanism q. This is called "pg unbiased’ and is defined as

Ey (M) = Ey (E; (M |s))
= Y.

Lemma 5.2.1 The modified Hovitz- Thompson estimator

- _ Yk

kER

is pq unbiased.

Proof We have for all ¢, > 0 the following relationship

Ep(ns) = Ep(E;(nsls))

Y
= E,| E, (ZkeRN'frk¢k))

Yk
B (2. 1)

Now for all 7, > C we have

E, (5_‘4 ;’;k) =Y.m

kEs
Remark 5.2.1 The modified Hovitz- Thompson estimator is pg unbiased if the true dis-
tribution of the respondents is q(r|s). In practice this distribution is unknown. The analyst

must make assumptions about this distribution.



Nargundkar and Joshi (1975) also showed that an unbiased estimate of the variance
is given by:

(

. . 1 _ 1
Veg (Mivy) = N2 Zken Gy (m' - 1)+ 2 Z Z Sy (rumy'm ' — 1)

k€U k leU,
k£l kL
\ kl€R
h<i
1 - — -
* N ZkER ¢ (1 — @) yin'+ 2 Z Z (Ges — Sx)) vevimuny i)
k€U, k.I€Us

k£l k£l

\ kleR
k<l

(5.6)
with the first two terms due to the sampling design while the last two terms attributable

to the response mechanism which is unknown.

Remark 5.2.2 The above estimate of variance has the same inherent problems as pq
unbiasedness. The q(r|s) distribution is unknown and therefore Vm (ming) is ineffective

if the ¢, are unknown.

The above procedure can be useful for surveys that are repetitious. A statistician
can then formulate and test different response distributions g(r|s) and hence find her/his
ok In subsequent sections of this chapter we are going to review and make proposals to

estimate ¢.

5.3 Superpopulation Regression Models and the Non-
response Problem

Hansen, Madow and Tepping (1983) has become a corner stone in the survey sampling
literature. The thesis of this paper was that only inferences based on probability sam-

pling protected the survey statistician ’against failures of assumed models and provide
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robustness for all estimators’. The authors also encouraged research in what they coined
model dependent designs. They stated ' The proper use of models has much to contribute
to survey design. We urge continuing strong efforts, taking the fullest feasible advantage
of models, but ordinarily within the framework of probability sampling, i. e., using de-
signs and estimators that are not model-dependent’. Casel, Sirndal and Wretman (1979)
(hereafter CSW) undertook this challenge and developed a statistical model for the non-
response problem within the framework of probability sampling.
Consider a linear model £ such that Y;,Y;,...Yn are independent and

E(Yx) = x 8
p
= D Bz
=0
= Mg,

and
‘/< ()/k) = azvkv

where B3 is a vector of (p + 1) unknown coefficients, & is a vector of (p + 1) known
auxiliary variables for all £ = 1,2,...N. Also the o? is unknown and v, = v(x,) for a
known function v(.).

Assume that the individual response probabilities ¢, are dependent on the known

vector of auxiliary variables x;

¢k = f (x'k; g.),
where 8 is a (p+1) unknown vector of coefficients that can be estimated from the available
data.
The method proposed by CSW can be summarized by the following steps:
1. The unknoun @ is estimated by minimizing the likelihood function

L) = II¢I: H (1-¢)-

kER k€s-R
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2. The estimated parameter 6 is used to estimate the individual response probabilities
$k =f (X;:§Q)-

3. The estimated response probabilities are then used to estimate the unknown vector

of regression coefficients B
- ' -1
B=(xV, I 'x,) VMR,

where V,,TI,, and ®, are (n, x n,) diagonal matrices with diagonal elements respectively
of vx 7k and @, (k € ) ;now X, is a ((p + 1) x n,)matriz with column vectors xi, (k € r)
and Y, is a column vector having Y, (k € r) as elements.

4. The estimated g are then used in forming an estimate m, of the population mean

A Y = ( Zx )
Meg = — + B Z.;— = . (57)

keZR Ny ; ’ ; N7y
Remark 5.3.1 The main difficulty with the above procedure is specifying a proper model
for ¢, = f (x,:8). The q(r|s) distribution is unknown and therefore m, maybe model

biased because of response model mispecification.

Sarndal and Hui (1981) investigated the properties of this method by means of Monte
Carlo experiments. They concluded that if the regression model is representative of the
population point scatter, then the estimator 1, may still be design unbiased even if the
response probabilities are wrongly estimated using the model. If the regression model is
not representative population point scatter then 1, is still design unbiased if the response
mechanism is correctly modeled but then the variance of m, increases.

The choice of a response model introduces assumptions regarding the behavior of the
response mechanism. As we have seen these assumptions have an effect on the robust-
ness of the estimate 1, and V,, (7,) . When auxiliary information is available Giommi

(1985, 1987) showed that the response probabilities can be estimated nonparametrically.
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Giommi (1985) proposed to estimate ¢, by considering a nearest neighbor estimate:

ZikD(zk—z,-)
;0 = e , S (58
¢ Y D(z - z)) (58)

J€Es

where
1 if Ia:k—:l:,-l Sh

D(Ik--’rj)={

0 otherwise

such that h is a percentage (10%,30% and 50%) of the range of the sampled z values and
i = 1 if Kk € R and 0 otherwise. In the nonparametric literature h is called the span.

Giommi (1987) considered the following, kernel estimate of ¢; is

> D (zx —z5)
~-D* Jjer
¢ = E D+ (ze — 2,) ) (5.9)

JEs

such that )
. -1 (zk - T )
D* (zy — z;) = (27r112) ? exp (——2’—12—1—) ,

where h is again a percentage (10%,30% and 50%) of the range of the sampled z values.

The ¢, are then used to estimate Y with

-G __ Yk 2l v _ 23
me =3 Neg P (x > Nm;&k) - (5.10)

keER keER

~D ~D*
Monte Carlo experiments were conducted to study the characteristics of ¢, and ¢f .
The bias and variance of ¢ using &f are less than &f for various values of h. Both

procedures produced better estimates in terms of bias and variance than

- Yk 2l ¢ el
=3 wao t 8 (X -3 Nm) (5.11)

keR kER
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which is the estimate ¥ with no correction for nonresponse. The problem with both
methods of estimating ¢, is the specification of an optimal value of h. Niyonsenga (1994)
used the same procedure as Giommi (1985, 1987) but the h was based on a function of
the ranks of the auxiliary variables. The h value again was not optimal. Latter in this
chapter we will present a new procedure to estimate the values of ¢,. The bandwidth
used in the procedure will be optimal and will not have the same deficiencies as that of
Giommi (1985, 1987) and Niyonsenga (1994).

5.4 Nonparametric Regression Estimation for the Non-
response Problem

It was demonstrated in Theorem 2.5.2 that the nonparametric regression estimator

. _ 1 " 1 €Ex
e = zkeuﬂ-(zk) +5 Zke' -

is asymtotically design-unbiased (p unbiased) and design-consistent for ¥. The above

model is modified as

Tme = 55 D BER) + 57 ij — (5.12)

so as to take into account the nonresponse. The estimates fi(zx) can be either a kernel

or a spline estimates of yi based on a responding set r instead of a sample set s.

Remark 5.4.1 If the sampling design is simple random sampling take m; = L, because

N

in this case all units in the population have the same probability of response.

Now using Theorem 2.8.2 with R replacing s one observes that i, is appraximately

design unbiased with design variance

Vs () = 377 3 —1) 22 (5.13)

TRTl
k er \' k0
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which can be estimated by

Mk €x €
Vi (titamr) = 105 Ezm (“m 1) — (5.14)

k leR

such that e, = yx — yx. Again with r replacing s in Theorem 2.5.2 one observes that 1,
is asymtotically design unbiased and consistent for Y.

The estimate 1., may still be ¢ biased because of the unknown nature of the re-
sponding mechanism. CSW (1979), introduced responding probabilities so as to take into

account the problem of ¢ unbiasedness.. Using the same procedure we adjust M,n,, as

R 1 - 1 €k
Memnrq = -ﬁ ZkeU I‘(-'Bk) + ‘N‘ zkeR ¢k7rk ) (515)

where ¢y is the response probability for unit k£ € R. The bias and variance of 1,m,, are

established in the following theorem.

Theorem 5.4.1 The eslimalor Then,, is approrimately p-q unbiased for Y and has an

approrimate p-q variance

X ) Tkt E: E
Vo (Memre) = N? ZZ (7’1;‘71 );k-;l.

k leU
(5.16)
Prs ) E; Ef
—E, -
(T () 88
such that E} = f— An unbiased estimator of Vp (Nemrq) 5
k
) = ™) ea
‘/P (msmrq) - N2 ;; wk‘ (ﬂ’k‘”‘ 1) T 7 17
YT A (o) g o
23 \btn b’

such that e; = ;—k and ex = Y — Yx is the sample residual.
k
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Proof In Theorem 2.8.2 we showed that

. 1
mm—j—v' keU "+Nz:ke: T

therefore we can approximate fiigm,q by

L .1 0o, 1 Ej
Memrq = N ZkeU Y + N zkek m

Now
Ep (Memrg) = Eq(Ep (Momrq|s))

1 ) 1 E
= ? ZkeU v+ E, (j—v- Zkea Zf)
= ¥ 2w ¥

=Y,
1s approximately pg unbiased.

Now the variance of a random variable can be written as the sum of the variance of

the conditional expectation and the expected value of conditional variances i.e.
V(X)=Va(E(X]|A))+ Ea(V(A)).
Using the above identity we find the variance of fm.q as
Ve (Memrq) = Vi (Eq (TMemrq |$)) + Ep (Vg (Temrg |$)) -

But

E, (Mymrgls) = E, (% ZLGR ﬂ?:;k _ % (Zm i, éxk) _ ka ﬁ(xk)))
- N zkEa ™ N (Zkeg 4(3:’:) = Ekwﬂ(xk))

- m
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But in Theorem 2.8.2 we found

R Tkt Ek El
Vo (gm) = Z Zk JeU (wkm e

k,lE t
k£l

therefore
Tkt E E,
Yo (Eq (Mamrg [2)) = N2 2 Ek teU (mm 1) mem
kleU,
k#l
Now

. 1 , 1 Ex
Memre =N ZkEU “wt§ Ekeﬂ GrTi’

maybe written as

R 1
Memnrq = —ﬁ Z:kGU N szR ¢k

where E; = E Therefore using Theorem 2.8.1, we have that
/Ik

Gu ) EiE;
V smnr = %72 R e
(Temrq |5) HZG: ZL JeR (¢k¢, & b
k£l

Therefore

- Tkt EkEl
Y, (amr) = 703 >3 (m 1) B L

k.leU,
k##l
1 2y ) E; Ef
+oF, (1) 22y,
NZTP k; Z"'GR &t b tl
k£L

An unbiased estimate is found by using Theorem 2.8.2. ®»

Example 5.4.1 Suppose the sampling design is simple random sampling then ), = =

N
and 7y = TVn(T?V:—l—l)) Now with this sampling design thegeneralized smoothing estimator
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Thmrq iS 1
Plmrg = 2= = 2 :
mrd = N Lrev ¥ kER ¢,‘

with approrimate design variance

. 1- f' Pt
Vi (Memrq) = ( -
p (Momeq r k; z" ler \ @
k£l
where
1
2 _ — 2,2)2
SE - N-1 zkEU (yk yk) ’
E;
end E; = —. Now V, (Temrq) is estimated by
Tk
N 1-—- 1 Pt
V. (m r ) = (_
PR n? kliel:l Z" ler ¢kz S
k#£l
such that
2 =
S¢ = 777 2ker’ - A(z6))?
. ng N
f = ~ and e = yx — p(xx).

Remark 5.4.2 We observe from the theorem and the example that the variance is de-
composed into the sampling variance and the response variance. If we have full response
then ¢ = 1 for all k € s and v = n. The last term in V, (fMymeq)then vanishes and

Vo (Memrq) = Vp (Them) which was developed in Chapter 2 for the full sample case.

The theorem demonstrates that g, is appraximately unbiased. Consequently we
can use a normal approximation to find confidence intervals for Y using Memrq and

V, (Tgmrq) only if Timrq is asymptotic unbiasedness and consistent.
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5.5 Asymptotic Unbiasedness and Consistency of the-
generalized smoothing estimator having a Non-
response Distribution

We now demonstrate that fiim,, is an asymptotic design-unbiased and design-consistent
estimator of Y. Consider the same sequence of populations Uy Us, ..... as in Issaki - Fuller
(1979) and used in Chapter 2.

Definition 5.5.1 A predictor m is said to be asymplotically pg unbiased if
tl_ifg‘c (Epq (m]Y:) = V2) =0,

with probability.

Definition 5.5.2 A predictor m is said to be p — q consistent if for alle > 0,
tlim P (jm-Y| >€lY,) =0

with probability one.

The assumptions made in Chapter 2 are now adjusted so as to take into account the
responding probabilities. The assumptions are
I 1
.1 2 . -
Al zlLTc N, zkem Y : < oc with d probability one,
A2l '} mi =
zirgo AL éiusnzv, ¢k!7rkt oo
Drcte Ttz

A'3 lim max
¢kz¢u7rkt7rlt

- 1] —o.
t—voc 1Sk£IS Ne
Let

IVk, € s,
Ikt =
0 otherwise
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and

1Vk,er
Zln = ‘
0 otherwise

now

. 1 Y 1 i, (zx) .
Memre = N ZkeR by N (Zken T Zkeu “(z“)) ’ (5.18)

can be written as

1 Yili, Zkt 1 ( TeeZse
My = — % -
tq N, EkEU( }9}271'? N‘ ZkEU #( ) ¢ ket T kt Z (5 19)
1 kd ke ke ke '
- j\_ft EkeU. Pt it - N, ELEU; (Ztea ) (¢kt7rkt - 1)

Theorem 5.5.1 Under A'.1- A'.3, M, is asymplotically p—q unbiased and consistent.

The proof of the above theorem follow the same steps as that of theorem 2.5.2.

The regression models Mem, and 1mM,mrq Will both be representative of the population
point scatter and both are model and design unbiased. But the regression model emrq
will also be ¢- unbiased with respect to the response mechanism. But again we are
in the situation in which the ¢, are unknown.. The following section will introduce a

nonparametric method to estimate the unknown ¢,.

5.6 Nonparametric Regression Estimation of the Re-
sponse Probabilities

Giommi (1985, 1987) uses nearest neighbors and kernels to estimate the response prob-
abilities. We show explicitly that the ¢, of Giommi (1987) can be achieved using non-

parametric regression.

Let

1 if unit k responds
Zk =
0 otherwise
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be an indicator function for the respondents. Under this model the expected response
E(Z:) = ¢,. The response probabilities are estimated by

&k = Z Wi 2k,

kece

K (257)

Now we can rewrite ¢, = Zke,wkizk as

LK ()=
S« (F)
Seen K (5)1 Toen K (557)0
Lr() LR
Sen (57)
CON

tEs

where

Wy,

which is precisely Giommi's (1987) estimate.

Remark 5.6.1 &zk is the ratio of two Kernel probability estimates (apart from a normal-

i2ing factor) over two different samples namely the response sample and the full sample.

108



Lemma 5.6.1 The blim & = z

n
Proof
K T-I;
b = i T .
> K (50)
2 e KO
ZK(O)
_ LOEJ
]

Remark 5.6.2 As b — oo the estimale ‘Z’k ts overly smoothed.

Simonoff (1996) considers smoothing for categorical data sets. He also considers
smoothing for a multinomial regression and Poisson regression setup. We only consider

smoothing in a binary regression setup which is a special case of multinomial regression.

5.6.1 Kernel Binary Regression

Now for kernel regression we estimate the response probabilities ¢, by
-K
¢k = Ewk.-zk. (520)
kes

A problem with the above formulation is that the error terms £; are heteroscedastic

because the response variable Z; is an indicator variable. One can easily show that
o%(ex) = ¢ (1—¢s)-
A weighted nonparametric regression model will provide efficient estimates when the

error variance is unequal. Using weights

-1
¢ (1-¢2)’

109

Uk



is the proper approach to take but there exists a difficulty with this procedure because
the ¢, are unknown. A way out of this predicament is to estimate ¢, in stages.
Step 1

Fit the regression model by nonparametric regression

S = E Wi 2k,

kEs

where the function w,, is defined by the following:

K (252)

")

t€s

i=1l.n,

Whii

and b is the so called ‘bandwidth’ parameter.
Step 2
Estimate the weights vy using the results of Stage 1

1
b (1-4)

Vg =

An initial ¢, will be needed to start the process, a method for finding this value will
be developed in Chapter 6.
Step 3

The estimated weights are then used to transform the variables xz; and z; as:

« _ Tk
:k = -
Ui
Zk
2; = -
L/
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Step 4

Fit the regression model by nonparametric regression
¢ = wizi,
k€Es
where the function w;, is defined by the following:

r(555)

wy; = = l...n.

i EK(zk-z)

i€

Step 5

Steps 2 to 4 are iterated till convergence i.e.

°t+l|

for some specified constant ¢
The estimate Tsm,q is modified so as to incorporate the estimated response probabil-
ities ¢, as
- 1 - 1 (Y
Memrg = ﬁ EkEU a(ze) + W Zkeﬂ a_kﬂ’k ) (5.21)

and the unbiased estimator of V}, (171,m) is also modified as

- _ Tkt e &
V;’ (m,qu) - N2 g Z 7rk‘ (7r,,1r¢ 1) Uy 71’1
wrra(-is
¢kl ¢k¢l ¢k ¢l

k ler
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5.6.2 Spline Smoothing

Using the same setup as before we shall now describe the binary spline smoother. The

goal of this procedure is to minimize the penalized residual sum of squares which is

> G- ute)?+a [ (w'®) o

k€s

over all functions p(zx) with continuous first and integrable second derivatives. As before
the parameter A represents the rate of exchange between the residual error and the
roughness of the curve u(.) and therefore is a smoothing parameter which has the same
function as the bandwidth.

As we have seen the unique solution for the problem of is a cubic spline z(zx). The
cubic spline has the following properties:

a. 4 cubic polynomial fits the data between two successive sampled z, values.

b. At the sampled values xy, f1(zx) and ils two first derivatives are continuous.

c. At the boundary points T(1y and I,y the second derivatives of fi(zy).

Therefore we estimate the response probability under this setup as:
¢ = f(z) for all z4 € s.

The parameter A is chosen as previously described by the cross-validating the sum of

squares criterion

vy 1T, o)

where ﬂ:"(zk) denotes the fit at z by leaving out that data point. with the following.
We again have the same problem of heteroscedasticity of the £x. As before we estimate

@ In stages.
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Step 1

Fit the regression model by the binary spline smoother @, = i(z;) for all z; € S.
Step 2

Estimate the weights v using the results of Stage 1

1
(-2

-

Ui

An initial @, will be needed to start the process a method for finding this value will

be developed in Chapter 6.
Step 3

The estimated weights are then used to transform the variables zx and zx as:

Q
Lol

I
’

Step 4

Fit the binary spline smoother

@r = plzy) for all z, € S.

Step 5
Steps 2 to 4 are ilerated till convergence i.e.

12k ] = [1@kl] < e,

for some specified constant ¢.

To insure that
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we again re-scale any @, > 1 as ¢, = 1.
As before the estimate Mgy, is modify so as to incorporate the estimated response

probabilities @, as

“ _ 1 - 1 €
Memrg = N ZEGU a(ze) + N Eke' Zome’ (5.23)

and the unbiased estimator of V, (1,m) is modified as

o 1 1 (T e &
Vi (Momeq) = 773 T ") mem
p (m.ﬂn q) N2 ; [ezr ki (ﬂ'kﬂ', 1) T T

1 1 (¢k1 )e; €e;
+— — (2 g ) 22
szz(i’u Pk Pu

e Prpl

(5.24)

Statisticians make parametric assumptions with respect to the responding distribution
g(r|s). The conclusions that will be made with this modeling effort will only be as good
as the assumptions made at the parametric stage of analysis. We have shown that it
is possible to estimate the responding distribution ¢(r|s) nonparametrically. Hence the

problem of model misspecification will not be a problem in our analysis.
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Chapter 6

Empirical Comparisons of
Generalized Regi'ession and
Generalized Smoothing Estimators
under a Simple Random Sampling
Design in the Presence of

Nonresponse

6.1 Introduction

This chapter will compare estimates of the population mean by contrasting paramet-
ric and nonparametric methods when nonresponse occurs in a sample. The parametric
methods considered are the reduced generalized regression model and the generalized
regression model incorporating the estimated response probabilities ¢, For the nonpara-
metric methods the reducedgeneralized smoothing estimator (normal kernel and spline)

and thegeneralized smoothing estimator (normal kernel and spline) incorporating the es-
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timated response probabilities ¢, The sampling design that will used throughout this
chapter is stmple random sampling without replacement. In order to understand the be-
havior of these different estimates the populations under investigation will have known
point scatters.

In section 6.2 we identify two populations from Chapter 3 that have a known point
scatter. Section 6.2 also describes two response mechanisms that will be used in the
analysis. Formulae developed in Chapter 5 are presented in section 6.3 when the sampling
design is simple random sampling. In section 6.4 criteria are developed to judge the
efficacy of the estimators. The results of the simulation procedure are presented in

section 6.5 while in section 6.6 the conclusions are presented.

6.2 Populations

In order to understand the behavior of the parametric and nonparametric estimators
under nonresponse two populations were chosen from the five populations in Chapter 3.
The results of Chapter 3 show that under full response that the generalized regression
estimate is optimal in population 1 while in population 5 either the normal kernel re-
gression estimator or the spline regression estimator is optimal. We purposely choose
these populations so as to verify the theory developed in Chapter 5. The following table

summarizes the major characteristics of the two populations.
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Table 6.1
Population

Summary Statistics

Population 1 Population 5
l=1,9g=10|1=05,9g=0.5
f=0=04 |f=40,0=04
X Y X Y
Mean 20.51 | 8.18 | 20.01 25.53
Standard Deviation 14.2 6.01 | 11.42 1.39
Skewness 1.27 1.39 | 0.15 .036
Kurtosis 2.20 291 2.48 2.60
Coefficient of Variation | 0.69 | 0.74 | 0.14 0.05
Correlation 0.957 0.579

In the analysis two nonresponse mechanisms are considered. The mechanisms are
defined by independent Bernoulli (¢;) trails such that the probability of nonresponse is
¢;. for unit k and are given by:

Mechanism I: ¢ is constant and independent for all units in the population.

Mechanism II: ¢, = exp(—Az;) is this case ¢, is a decreasing function of zi. Rubin
(1977) defined this type of nonresponse mechanisms ‘ignorable’ while Rancourt, Lee and
Sarndal (1994) called this ‘the unconfounded mechanism’. Under this mechanism small
units zyx respond more frequently than large units.

In the simulation study the response probabilities were set at the 70% and 90% level.
For mechanism IT a A = .019 provides a mean response level of 70% while a A = .005

provides a mean response level of 90%.
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6.3 The Estimators

So as to have an unbiased estimate of the population mean in the presence of nonresponse,
the statistician must model correctly either the regression function or the response prob-
abilities. If the regression model is representative of the population point scatter, then
the estimator is model and design unbiased whether the estimated response probabilities
are correct or not. On the other hand if the regression model is misspecified then the
response probabilities have to be correctly estimated in order that the estimate be design
unbiased (p unbiased).

6.3.1 Generalized Regression Estimates

The first step in the analysis is to model the sample point scatter by a regression curve.

We again consider a model £ in which the point scatter | zi, :—: is constant such that
E (yx) = Bz

with variance structure proportional to the zx around the regression line
V() = o’z

The generalized regression estimator for the population mean under a simple random

sampling design has the following form:

MGRE = X”%' (6.1)
Now Xy is the population mean of the known z,'s while § and Z are the sample means
found with the n sampled units. Suppose that only r units from a sample of size n
respond and let R represent the responding set, the above equation is now written as

iy = Xy 2t 62)

v
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where 7, and Z, are the sample means of the r respondents. We shall call m,;, the reduced

generalized regression estimator. The estimate 1, has as a variance estimator

Z,

Vira(tyr) = (’?”)2% (6.3)

such that

T SO

Vo r r—1

D en¥
I;.
ZkeR k

6.3.2 Generalized Smoothing Estimators

with 8 =

Thegeneralized smoothing estimator

. 1
TMem = N xev 7 N Eka T

was shown in Chapter 2 to be asymtotically design unbiased (p unbiased) and design-

consistent for Y. The above model is modified to

Memr = N keuyk + = N ZkER 71'}.- (64)

and will be named the reducedgeneralized smoothing estimator. The estimates y; can be
either a normal kernel or a spline estimates of y; based on a responding set R instead of

a sample set s.

6.3.3 Regression and Response Models

The response probabilities are now incorporated in the regression models. These will
be estimated nonparametrically by binary regression. Initial response probabilities are
needed before we can apply the algorithms developed in Chapter 5.
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Since the vector of auxiliary variable z is know for the sample set s and the response
set R the following steps will estimate the initial response probability ¢, :

1. Find the number of bins c for the sample set s with Doane’s rule:

c= [log,n+ 1+ log, (1 +"y\/§)]

where n is the sample size of the full sample, i is an estimate of the kurtosis of the
sample values and [.] is the grealest integer function.

2. Calculate the bin width @ for the sampled set s:

o= Rangce (z) .

8. Form the following intervals:
(m+(k-1Nw,m+ksw]fork=1...c

such that m = min(z € s).

4. Count the number of z's that came from the sample set s that fall in the interval
(m + (k — 1)@, m + k = @] suppose this value is ny.

5. Counted the number of r's that came from the response set R that fall in the
interval (m + (k — 1)@, m + k * @] suppose this value is ry.

6. An initial estimate of the of the response probability for the interval (m + (k —

1), m + k x @] is given by

7. Transform 0 to

. b,
b =1 _
k=108 (1 — o,,)

Remark 6.3.1 All responding values have the same response probability 6, in the inter-

for the subsequent analysis.
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val (m + (k — 1)@, m + k = w]. The idea is similar to the response homogeneity group
model but different in the sense that we stratify with the observed values from the full

sample.

The vectors 8 and 's do not have the same length. In order to overcome this difficulty
a vector @ is created such that @) repeats itself r, times. We then perform a binary kernel
regression using a normal kernel and a smooth spline regression as described in Chapter
5. In the binary regression the dependent variable is taken as the response vector & and
as the explanatory variable the ’'s from the sample set s.

Suppose that the estimated response vector 8 is found through either binary kernel

regression or a smooth spline regression. The vector 8 is then transformed to

exp (8)

¢= 1+ exp (8)

such that unit k € R has as a response probability ¢,. These response probabilities are
now used in the estimation procedures developed in Chapter 5 section 6. Note that &),‘

can be estimated with either binary kernel regression or binary spine regression.

6.3.4 Generalized Regression Estimates with Estimated Response
Probabilities

Assuming the model £, and suppose that only r units from a sample of size n respond.
Let R represent the responding set, then under a simple random design the generalized
regression estimator for the population mean has the following form when the response

probabilities are estimated by binary kernel regression or binary spline regression:
D ers
keR &k
AR DO Y
kER &k

Now the estimated variance of ﬁz;‘,‘,q is

(6.5)
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Xu) o 1 [ ¢u e e

Virs rg) = tal\ze ! 6

(Mg ( kg‘ Z"‘ER b (¢k¢¢ ) é: (©9)
k£l

such that

. 1 -fzken (yk“sz)z

Vo = r r—1

and e; = yx — k-
The ¢, can be estimated with a binary normal kernel or a binary spline regression.

A
Therefore we let ],

y,q if the ¢, is estimated with a binary spline regression

= mx, if the ¢, is estimated with a binary normal kernel regression

and my,.q

6.3.5 Generalized Smoothing Estimators with Estimated Re-

sponse Probabilities

The smooth estimates discussed in Chapter 5 are now modified so as to incorporate
the binary kernel regression estimate ¢,. Under simple random sampling the smoothing

estimate Mgm,, has the following form:

. 1
Mamrg = N Zkev n Zkett b

where y; is either a kernel smoother or a spline smoother. Therefore using éﬁk as an

estimate of ¢, the above equation can be written as:

1 €
"""' N Zkeu ; ZkeR z: (6.7)
Also an unbiased estimate of the variance of mk, . is given by
~ . 1- 1 $ €k €
V,,-, mA r ) = .—k.l— - 1) == (6.8)
e r r? kg;, z" er Gy (¢k¢l r &y
k£l
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The gk is either a kernel smoother or a spline smoother and the ¢, can be estimated
with a binary normal kernel or a binary spline regression. We let ﬁl:,q = ﬁzf,:‘ if Y
is kernel smoother and the ¢, is estimated with a binary normal kernel regression, and
mj., = mis if j is kernel smoother and the ¢, is estimated with a binary binary spline
regression. On the other hand we let /.. = MoK if g is a spline smoother the ¢, is
estimated with binary normal kernel regression and finally m# = mSS if g is a spline

smoother the ¢, is estimated binary spline regression.

6.4 Simulation Procedure

In mechanism I the response rate is constant for all members of the population while for
mechanism II the response rate ia different for all members of the population. Therefore
the sampling mechanism needed to generate these samples are different. The sirulation
algorithm for both mechanisms are now presented along with the summary statistics
calculated for each sample drawn. The analysis was only done for the simple random

sampling design.

6.4.1 Mechanism 1

Simulations were carried out in S-Plus Version 3.3. The simulation procedure for mech-
anism I is as follows:

1. A simple random sample of size n = 25 is drawn from Population 1 and Population
5 by random number generation.

2. From this random sample of size n a sample of size r = P x n is drawn by random
number generation where P is set to be 70% and 90%.

3. Repeat steps 2 and 3, 1000 times.

When the sample is of size n = 25 the response rate is 100% the estimate rhigre was
calculated. For each sample of size r the following estimates of the finite population mean

were calculated: mhy,, Mems,and mi,,,. Thirdly for each sample the measures of precision,
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relativity, efficiency and accuracy as defined in Chapter 3 were calculated so as to judge

the behavior of ™my,, Mm,,and Mm.,.

6.4.2 Mechanism 11

The simulation procedure for mechanism II is as follows:

1. A simple random sample of size n = 25 is draum from Population 1 and Population
5 by random number generation.

2. For each unit k in the sample n the response probability ts calculated with ¢, =
exp(—Azxy), such that A is set to 0.019 for the 70% mean response rate and to 0.005 for
the 90% mean response rate.

3. A Bernoulli trail is then performed for all k € s with probability ¢, for success
(response) and 1 — ¢, for failure (nonresponse).

8. Repeat steps 2 and 3, 1000 times.

When the sample is of size n = 25 the response rate is 100% the estimate thgre was

calculated. Since we know a priori the response probabilities ¢, for each sample of size

7
2iers,

T
2icng,

is used as a benchmark for the analysis. The analysis for samples of size r was made

T the estimate

(6.9)

My, = Xy

with and without the estimated response probabilities ¢,. For the analysis with the
estimated response probabilities ¢, the following six estimates of the finite population

SS

nS ., mEK mKS mix., and Mgy . Now for the analysis

mean were found: ﬁ'sz,q, Myrgr Memrg: Momrqs
without the estimated response probabilities &k the following three estimates of the finite
population mean were considered: ., Mgm,,and m,,. Finally for each sample the
measures of precision, relativity, and accuracy as defined in Chapter 3 were calculated
for each estimator.

The following measures of efficiency were computed for all the proposed estimators:
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1. The first measure of efficiency used as a base the generalized regression estimate:

Effi (1)) = K";;(’("m;("f)) (6.10)

2. The second measure of efficiency used as a base ., the generalized regression
estimator adjusted with the known response probabilities ¢,

Eff, () = ‘;—:((%“)) (6.11)

3. The third and final measure of efficiency used as a base m,, the generalized regres-

sion estimator reduced to size r

Effs (mg) = % (6.12)

Values of Ef f(, () > 1 imply that the proposed method of estimation is superior to

that of the base estimator fhigre, Myrq and .. If Ef f) (1)) < 1 this implies that

the proposed method of estimation is inferior to the base estimator.

6.5 Simulation Results

The following pages contain an analysis of the Monte Carlo simulations. The sirnulations
were performed on each population at and for both response mechanisms. The response

rates were set at 70% and 90% for each mechanism.

6.5.1 Mechanism I

The following tables summarizes the Monte Carlo characteristics of the two populations
considered for a sample size of n = 25 and mean response rates (R.R.) of 70% and 90%
when response is at random. Table 6.2 contains the value of the population parameter

Y and the average estimates of this parameter found by using M ee, Miyr, Mem and Mgy
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Table 6.3 contains the average bias of the estimators, while Table 6.4 presents the average

absolute relative bias of the estimators.

Table 6.2
Average Estimate of Population Mean
Population 1 Population 2
Estimates Y =8.18 Y = 25.53
TMGRE 8.171 8.179 25.551 25.543
R R.=7%|R.R.=90% | R. R. =70% | R. R. = 9%0%
Myr 8.190 8.189 25.575 25.522
Mgy 7.991 7.894 25.520 25.496
Mepr 8.165 8.196 25.541 25.531
Table 6.3
Average Bias of the Estimators
B(m,,)
Estimates Population 1 Population 2
MGRE —0.007 0.001 0.020 0.012
R R =70%|R.R.=90% | R.R. =70% | R. R. = 90%
Myr 0.011 0.012 0.043 —0.010
Mernr —0.284 —0.187 ~0.036 -0.012
Mspr —0.018 0.012 0.009 -0.001
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Table 6.4

Average Absolute Relative Bias of the Estimators

RB(h,)
Estimates Population 1 Population 2
MGRE 0.1% 0.0% 0.1% 0.0%
R.R.=70% | R.R. =90% | R. R. =70% | R. R. = 90%
Myr 0.1% 0.1% 0.2% 0.0%
Mrnr 3.5% 2.3% 0.1% 0.0%
Mepr 0.2% 0.1% 0.0% 0.0%

The following patterns emerge from these tables:

1. For the estimators My,, Mgm, and 1,y the bias B () and relative bias ﬁg(fhm)

decreases as the response rate increases for the two populations.

2. In Chapter 3 it was shown that the finite general regression estimator mggre had
the smallest bias in Population 1 because for this population this method of estimation

is optimal. Therefore the finite reduced general regression estimator g, will also have

the smallest bias in this population because it shares the same optimal properties.

3. In populations 5 for both response rates the bias B(rh(_)) and the absolute relative

bias T?.‘E(rh“) of the reduced spline smoothing estimator is smaller than m,, and m,p,.

Table 6.5, 6.6 and 6.7 contain the average sample variance V,,, (ﬁt(_)) , the average
bias ratio BR (7i(,)and finally the coverage ratio C.R. (1)) . When |BR ()| < 10%
the bias effect may be ignored because the coverage ratio is appraximately equal to the

nominal 95% coverage probability.
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Table 6.5

Average Sample Variance

Vers (1)
Estimates Population 1 Population 2
MGRE 0.117 0.122 0.365 0.359
R.R. =70% | R. R. = 90% | R. R. =70% | R. R. = 90%
My 0.305 0.167 0.916 0.507
Tiemr 0.775 0.413 .0123 0.052
TMgpr 0.568 0.220 0.208 0.088
Table 6.6
Average Absolute Bias Ratio
BR ()
Estimates Population 1 Population 2
MGRE 0.2% 0.1% 3.3% 2.0%
R.R.=70% | R.R.=90% | R. R. =70% | R. R. = 90%
Ty, 0.1% 0.1% 6.0% 3.0%
M ernr 3.5% 2.5% 3.4% 1.2%
Mgpr 0.2% 0.1% 3.0% 0.2%
Table 6.7
Coverage Ratio
C.R. ()
Estimates Population 1 Population 2
MGRE 92.3% 94.5% 93.5% 93.9%
R.R.=70% | R. R. =90% | R. R. = 70% | R. R. = 90%
Myr 90.0% 94.0% 90.0% 92.8%
Memr 94.2% 98.7% 90.0% 91.9%
Mopr 89.6% 91.5% 91.7% 93.0%
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The foilowing conclusions can be inferred form these tables:

4. As the response rate increases the sample variance Virs (rh(_))and the average bias
ratio BR (ri()decreases for all the estimators 17y, Mems and Mgp,.

5. The finite reduced general regression estimator 1M, has the smallest sample vari-
ance and bias ratio in population 1 but in population 5 the other two estimators have
these properties.

6. The response rate has an effect on the coverage rate C.R.(17()). As the response
rate increases the coverage rate C.R.(1iy()) approaches the nominal 95%, which confirms
the asymptotic theory developed in section 2.9 of Chapter 2.

7. Table 6.6 demonstrates the effect that the bias can have on the coverage ratio
Table 6.8. As the bias ratio decreases the coverage ratio approaches the 95% nominal
level. Therefore the coverage rate C.R.(m,) is affected by the response rate and the bias

ratlo.

Tables 6.8 and 6.9 contain the mean squared error of simulation S€,im (772())and the
associated sample variance V zm (1h()) . These estimators are consistent estimates of the

design mean squared error mse,, (7)) and of the design variance V., () .

Table 6.8
Mean Squared Error of Simulation

TMSEgim (1))

Estimates Population 1 Population 2

MGRE 0.120 0.122 0.375 0.372
R.R. = 70% | R.R. = 90% | R.R. = 70% | R.R. = 90%

My, 0.334 0.159 0.816 0.527

Memyr 0.760 0.314 0.135 0.082

Mepr 0.756 0.264 0.280 0.106
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Table 6.9

Variance of Simulation

Vaim (1)
Estimates Population 1 Population 2
MGRE 0.120 0.122 0.372 0.375
R.R. =70% | R.R. = 90% | R.R. =70% | R.R. = 90%
My, 0.334 0.158 0.816 0.527
Memnr 0.680 0.279 0.133 0.082
Mapr 0.756 0.264 0.280 0.106

From Tables 6.8 and 6.9 the following can be inferred:

8. For all estimators as the response rate increases the mean squared error of simu-
lation T7S€,im (771())and the sample variance V im (1)) decreases.

9. For population 1 the TM8€yim (Myr) and V im (171, ) is smaller than that of the other
two estimators because 1, is optimal.

10. In population 5 and for both response rates the 7S€gm (T,,) and Vim (my,) is

much larger than the other two estimators.

Table 6.10 demonstrates the efficiency of each estimator considered in the simulation

for each of the populations studied.

Table 6.10

Efficiency

Eff(m,)
Estimates Population 1 Population 2

MGRE 1.00 1.00 1.00 1.00
R.R. =70% | R.R. = 90% | R.R. = 70% | R.R. = 90%

My, 0.36 0.77 0.46 0.71
My 0.18 0.44 2.81 4.56
M epr 0.16 0.46 1.34 3.52
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The following can be inferred from Table 6.10:

11. The response rate has an effect on the efficiency of the estimator. As the response
rate increases the efficiency increases.

12. The estimator M, is used as a benchmark for both populations. In population
1 the optimal estimator is the generalized regression, because of this optimally the effi-
ciency of the reduced generalized regression estimator rn,,, is greater than the reduced
smoothing kernel estimator or reduced smoothing spline estimator. In population 5 the
generalized regression estimator is not optimal ( as per Chapter 3), but at a response
rate of 70% the smoothing kernel estimator or reduced smoothing spline estimator have
creater efficiency than the mggre that has a response rate of 100%.

Finally Table 6.11 shows the relative accuracy of the variance estimator V,,, (rh(_))

with respect to the simulation variance Vyim (1)) .

Table 6.11
Relative Accuracy
RA(m,)

Estimates Population 1 Population 2
MGRE 0.96 1.02 0.96 0.98

R.R. =70% | R.R. = 90% | R.R. = 70% | R.R. = 90%
My, 0.91 1.05 1.12 0.96
Memr 1.14 1.48 0.64 0.92
TMpr 0.75 0.83 0.74 0.83

The above table demonstrates that:

13. As the response rate increases the relative accuracy of the sampled variance
estimator V., (7(,) approaches the sample variance V im (1(,)) -

14. The relative accuracy was very good for the reduced generalized regression esti-

mator. The other two estimators did not have the same accuracy as 1.
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6.5.2 Mechanism 11

The following tables summarizes the Monte Carlo characteristics of the two populations
considered for a sample size of n = 25 and mean response rates (R.R.) of 70% and 90%
when response is a function of an auxiliary variable. Table 6.12 contains the value of
the population parameter Y and the average estimates of this parameter. The miggre
was calculated before nonresponse and used as a benchmark. A priori the response
probabilities ¢, are known for each sample of size r the estimate m,,, was also used as
second benchmark in the simulation study. For the analysis with the estimated response
probabilities ¢, the following six estimates of the finite population mean were found:
Mg Mg, MmiK  mKS MoK . and mJs. . And for the analysis without the estimated
response probabilities ¢, the following three estimates of the finite population mean were

considered: My, , Mgmr,and Mg, Table 6.13 contains the average bias of the estimators,

while Table 14 presents the average absolute relative bias of the estimators.
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Table 6.12

Average Estimate of Population Mean

Estimate Population 1 Population 5
Y =818 Y =25.53

MGRE 8.199 8.198 25.563 25.511

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 8.159 8.174 25.549 25.573
mk, 8.160 8.174 25.548 25.574
., 8.156 8.173 25.549 25.574
mEK 7.970 8.002 24.605 25.110
LA 8.040 8.076 25.098 25.098
myK., 8.194 8.264 25.515 25.453
Thf,ﬁ,q 8.203 8.263 25.515 25.454
my, 8.167 8.176 25.547 25.573
Mgny 7.674 7.862 25.501 25.506
Mpr 8.203 8.157 25.516 25.523
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Table 6.13

Average Bias of the Estimators

B(rn,,)

Estimate Population 1 Population 5
MGRE 0.021 0.020 0.032 -0.021

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq —0.019 —0.004 0.042 0.018
mk, —0.019 -0.004 0.042 0.016
Mo -0.023 —0.005 0.043 0.017
mKK —0.208 -0.176 —0.926 ~-0.422
mKS. ~0.138 —0.102 —0.834 —0.434
Moh 0.015 0.086 —0.079 —0.017
Mamrg 0.025 0.085 -0.078 -0.016
Myr —0.011 —0.002 0.041 0.016
Memr —0.504 —0.316 —0.031 -0.025
Mepr 0.025 -0.022 —0.015 —0.009
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Table 6.14
Average Absolute Relative Bias of the Estimators

-R_B-(’h(-))

Estimate Population 1 Population 5
MGRE 0.3% 0.2% 0.1% 0.1%

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 0.2% 0.1% 0.2% 0.1%
k. 0.2% 0.0% 0.2% 0.1%
My, 0.3% 0.1% 0.2% 0.1%
meK, 2.5% 2.1% 3.7% 1.7%
AL 1.7% 1.2% 3.3% 1.7%
My 0.2% 1.0% 0.3% 0.1%
Mg 0.3% 1.0% 0.3% 0.1%
Myr 0.1% 0.0% 0.2% 0.2%
Memr 6.2% 3.9% 0.1% 0.1%
Mspr 0.3% 0.3% 0.1% 0.0%

The following patterns are observed from these tables:

1. The bias B(rh(.)) and relative bias ﬁ(m“) decreased for all the estimators as the
response rate increases for both populations.

2. Population 1 has a point scatter that is well represented by a generalized regression
model therefore it is not surprising that the estimate 1, had the smallest bias and bias
ratio at both response rates. The adjusted estimators rhzf.q and ﬁzf,.q have biases and
relative biases close to m,.

3. In Population 5 the smallest bias and bias ratio was observed for the reduced spline
estimate m,,.. The reduced kernel smoother 1M m,, the adjusted generalized regression
estimates KX _, m> , and the adjusted spline smoothers ﬁz,’f,f,q and rnf,ﬁ,,, had biases and
relative biases close to Mgy, .
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4. The adjusted smooth kernels mXX . mKS  have the largest bias and bias ratio for
both response rates and in each population.

Tables 6.15, 6.16 and 6.17 contain the average sample variance V., (77(,) ,the average
bias ratio BR (1)) and the coverage ratio C.R. (1i,)).

Table 6.15
Average Sample Variance
Virs (112()

Estimate Population 1 Population 5
MGRE 0.121 0.121 0.362 0.358

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 0.220 0.163 0.563 0.405
mk, 0.219 0.162 0.554 0.409
Mo 0.219 0.163 0.584 0.412
mKK. 1.537 0.719 0.349 0.100
LT 1.548 0.648 0.315 0.153
MK 0.212 0.133 0.237 0.102
Monrq 0.361 0.175 0.238 0.103
My 0.219 0.131 0.538 0.404
Mgrnr 1.030 0.753 0.061 0.070
Mspr 0.208 0.178 0.097 0.067
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Table 6.16

Average Absolute Bias Ratio

BR ()

Estimate Population 1 Population 5
MGRE 6.0% 5.7% 5.3% 3.5%

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 4.1% 1.1% 6.5% 2.2%
mieg 4.0% 1.0% 6.6% 2.2%
My o 4.8% 1.2% 6.6% 2.2%
mEK, 24.5% 14.2% 14.5% 1.3%
mis . 17.2% 8.2% 15.7% 1.6%
Mgk 23.5% 3.4% 24.8% 3.5%
Mamrg 20.3% 4.1% 24.3% 3.3%
Myr 2.4% 0.6% 6.5% 2.1%
Memr 58.1% 31.1% 29.5% 9.5%
Mgpr 5.4% 5.1% 4.9% 3.5%
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Table 6.17
Coverage Ratio

C.R. ()

Estimate Population 1 Population 5
MGRE 95.0% 93.6% 94.2% 94.0%

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 91.0% 93.4% 91.0% 92.8%
mi, 90.8% 93.4% 92.2% 93.2%
my . 90.8% 93.0% 90.2% 93.2%
ﬁz,’fn’ﬁq 60.6% 62.6% 57.0% 66.2%
AN 69.0% 67.0% 62.0% 76.0%
Mg 84.0% 77.0% 93.8% 92.0%
Mgnrq 85.0% 80.0% 93.8% 91.0%
Myr 91.0% 93.8% 92.4% 92.4%
Menr 93.0% 97.4% 93.2% 93.6%
Mepr 84.2% 86.8% 93.8% 93.6%

The following can be inferred form these tables:

5. As the response rate increases the sample variance V,,, (f())and the average bias
ratio BR (rh(_))decreases for all the estimators.

6. The finite adjusted general regression estimators M ,mS ., the adjusted spline
Thf,ff,q, the reduced spline estimate m,,, and the reduced general regression estimator 17,
all have the same sample variance and bias ratio at the 70% response rate in population
1. At the 90% response rate the adjusted spline mJX, and the reduced general regression
estimator m,, have the smallest sample variance and bias ratio.

7. In population 5 the reduced smoothing estimator fm,,,, and the reduced spline

estimate m,,r have essentially the same variance and bias ratio. The other estimators

have larger sample variances and bias ratios.
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8. The response rate has an effect on the coverage rate C.R.(1()). As the response
rate increases the coverage rate C.R.(1h()) approaches the nominal 95%, which again
confirms the asymptotic theory developed in section 2.9 of Chapter 2.

9. Table 6.16 taken in conjunction with table 6.17 demonstrates the effect that the
bias can have on the coverage ratio. As the bias ratio decreases the coverage ratio
approaches the 95% nominal level. The estimators m}X_ mKS = have less than favorably
coverage rates in populationl and 5 because these estimates have large biases.

Tables 6.18 and 6.19 contain the mean squared error of simulation TS€um (2())and
the associated sample variance V ,im (ﬁz(_))of the estimators. These estirmators are consis-

tent estimates of the design mean squared error mse,,, (rh(,)) and of the design variance

Virs () -

Table 6.18
Mean Squared Error of Simulation

TMNSEuim (ﬁl(.))

Estimate Population 1 Population 5
MGRE 0.118 0.126 0.375 0.338
RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 0.205 0.193 0.557 0.444
mk, 0.204 0.194 0.548 0.447
. 0.203 0.194 0.556 0.450
A 0.513 0.348 0.260 0.298
mis 0.463 0.264 0.290 0.290
Mg 0.300 0.209 0.145 0.135
Momre 0.296 0.216 0.144 0.151
Myr 0.207 0.194 0.535 0.442
Memr 0.599 0.365 0.840 0.060
Mepr 0.591 0.333 0.113 0.069

139



Table 6.19

Variance of Simulation

YV sim (1)

Estimate Population 1 Population 5
MGRE 0.118 0.126 0.374 0.338

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 0.205 0.193 0.557 0.442
. 0.204 0.194 0.548 0.446
Thf,.q 0.203 0.194 0.556 0.449
Mg 0.470 0.317 0.260 0.120
Mg 0.444 0.254 0.290 0.102
Thf,ff,q 0.300 0.202 0.144 0.129
rhf,flm 0.295 0.209 0.144 0.145
My, 0.207 0.194 0.535 0.441
Mermyr 0.344 0.265 0.084 0.059
Mpr 0.590 0.332 0.112 0.069

10. For all estimators as the response rate increases the mean squared error of simu-
lation 78€,im (7h))and the sample variance V ,;m (1)) decreases.

11. In population 1 at both response rates, the mean squared error of simulation and
the sample variance for the finite adjusted general regression estimators mf,q,ﬁzf,.q and
the reduced generalized regression m,, are identical and minimal.

12. In population 5 the reduced kernel smoother 1h,,, and the reduced spline
smoother Mg, have the smallest mean squared error when the response rate was 90%.
When the response rate is reduced to 70% the reduced spline smoother 17, has the
smallest mean squared error.

Tables 6.20, 6.21 and 6.22 demonstrates the efficiency of each estimator using a dif-

ferent benchmark. In table 20 the generalized regression estimator mggrg is used as a
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benchmark because for this estimator the response rate is 100%. In table 21 the ad-
justed generalized regression estimator with known a priori response probabilities 17,
is used for the comparisons Finally in table 6.22 all the estimators are all compared to
the reduced generalized regression estimator my,.

Table 6.20
Efficiency with respect to mggre

Estimate Population 1 Population 5
MGRE 1.00 1.00 1.00 1.00

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 0.58 0.65 0.67 0.76
mE. 0.58 0.65 0.69 0.76
Mg 0.58 0.65 0.67 0.75
AR 0.23 0.36 2.59 1.13
Mg 0.26 0.48 2.60 1.16
myk 0.39 0.60 1.44 2.50
Mymrg 0.40 0.58 1.29 2.24
My 0.57 0.65 0.70 0.76
Mamr 0.20 0.35 3.33 7.45
Mspr 0.20 0.38 4.46 4.87
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Table 6.21

Efficiency with respect to m,,,

Estimate Population 1 Population 5

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 1.00 1.00 1.00 1.00
my 1.01 1.00 1.02 0.99
Mg, 1.01 1.00 1.00 0.99
mEK. 0.40 0.56 3.85 1.49
LA 0.44 0.73 3.67 1.53
My 0.68 0.92 2.14 3.28
Mg 0.69 0.90 1.92 2.94
My, 0.99 1.00 1.04 1.00
Memr 0.34 0.53 4.95 7.46
M pr 0.35 0.58 6.62 6.39

Table 6.22
Efficiency with respect to m,,

Estimate Population 1 Population 5

RR. = 70% | RR. = 90% | RR. = 70% | RR. = 90%
my, 1.01 1.00 0.98 0.99
.. 1.02 1.00 0.96 0.98
mhx, 0.40 0.56 2.06 2.48
M inrq 0.45 0.73 1.92 2.52
Tgnra 0.70 0.92 2.60 3.27
Monra 0.69 0.90 2.60 2.94
My, 1.00 1.00 1.00 1.00
Mgmr 0.35 0.53 6.36 7.44
Mgpr 0.35 0.58 4.75 6.38
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13. The response rate has an effect on all three efficiencies. As the response rate
increases the efficiencies increase.

The following can be inferred from Table 6.20:

14. In population 1 at both response rates the optimal estimator is the generalized
regression Mgre, because of this optimally the efficiency of the finite adjusted general
regression estimators /i, M5, and the reduced generalized regression 1, is larger than
the efficiency of the other estimators.

15. In population 5 at both response rates the generalized regression estimator is not
optimal ( as per Chapter 3), the reduced smoothing kernel estimator 1m,m, or reduced
smoothing spline estimator f,, have the largest efficiencies. The adjusted smoothing
kernel estimator enrq and the adjusted reduced smoothing spline estimator Mgy have
larger efficency than the adjusted reduced generalized regression estimator but smaller
than Mgm, and Mepr.

The following can be inferred from Table 6.21:

16. In population 1 at both response rates the finite adjusted general regression
estimators My ,my,, and the reduced generalized regression mm,, have efficiencies equal
to the adjusted generalized regression estimator with known a priori response probabilities
My-,. The other estimators have much smaller efficiencies.

17. In population 5 at both response rates the reduced smoothing kernel estimator
M.m, or reduced smoothing spline estimator 1m,,, have the largest efficiencies. The ef-
ficiency of these estimators are greater than the efficiency of the generalized regression
estimator with known a priori response probabilities 17, The adjusted smoothing kernel
estimator Mem,, and the adjusted reduced smoothing spline estimator 17,,, also have
larger efficency than the generalized regression estimator with known a priori response
probabilities ..

The following can be inferred from Table 6.22:

18. In population 1 at both response rates the finite adjusted general regression
estimators mX_ and M3, have efficiencies equal to the reduced generalized regression

yrq vre
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1myr. The other estimators have much smaller efficiencies.

19. In population 5 at both response rates the reduced smoothing kernel estima-
tor M,m, or reduced smoothing spline estimator 17,,, have the largest efficiencies. The
efficiency of these estimators are greater than the efficiency of the reduced generalized re-
gression estimator m,,. The adjusted smoothing kernel estimator 17i,mq and the adjusted
reduced smoothing spline estimator 17,y,, also have larger efficency than the reduced gen-
eralized regression estimator 1.

Finally Table 6.23 shows the relative accuracy of the variance estimator V,,, (ﬁz(_))

with respect to the simulation variance Vi, (rh(_)) .

Table 6.23
Relative Accuracy
RA(my,))

Estimate Population 1 Population 5
MGRE 1.03 0.96 0.97 1.06

RR. =70% | RR. = 90% | RR. = 70% | RR. = 90%
Myrq 0.84 1.07 0.92 1.01
LT 0.84 1.08 0.92 1.01
Ty 0.84 1.08 0.92 1.05
miX, 1.53 4.85 0.58 0.83
mES, 1.46 6.10 0.78 1.50
A, 0.71 0.84 0.79 1.64
Mgmra 0.66 1.22 0.71 1.65
My, 0.83 1.06 0.92 1.01
1 J— 2.19 3.88 0.73 1.19
Mepr 0.35 0.54 0.86 0.96
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The above table demonstrates that:

20. As the response rate increases the relative accuracy of the sampled variance
estimator V,,, (7(,)) approaches the sample variance Vaim (M) .

21. The relative accuracy of the adjusted generalized regression estimators and the
reduced generalized regression estimator were not as good as the generalized regression
estimator. The response rate and the variability of the estimated response probability
have an effect on the relative accuracy.

22. The relative accuracy of the kernel smoother and the spline smoother were not
as favorable as the relative accuracy the generalized regression estimator. The response
rate and the variability of the estimated response probability h:ive an effect on the rela-
tive accuracy. Moreover research is still being conductd on finding optimal methods to

estimate the varinace of these estimators.

6.6 Conclusions

The results confirm Sédrndal’s and Hui’s (1981) conclusions. If the regression model is
representative of the population point scatter, then the estimator is model and design
unbiased even if the response probabilities are wrongly estimated. The chapter has shown
that it is possible to estimate a finite population mean with a nonparametric model in
the presence of nonresponse by making no assumption about the underlying point scatter

and the response mechanism that created the nonresponse.
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Chapter 7

Further Topics for Research

7.1 Introduction

The theory and results of the previous chapter have demonstrated that nonparametric
regression is a powerful and useful tool that should be in the toolbox of all survey statis-
ticians. The normal kernel regression method and the spline smoother studied in the
thesis are not the only nonparametric regression available to estimate the population
mean or total. The dissertation used only one auxiliary variable z associated with the
response variable y but in practice the response variable may have many predictors. Also
a binary regression model was used to estimate the response probabilities ¢, but other
methods exist to estimate these probabilities. This chapter can be taken as a launch pad
for further research.

Different approaches to nonparametric regression will be the focus of section 7.2. In
particular the local linear regression model and the locally weighted regression smoother
will be presented in this section. In section 7.3 we will introduce the multivariate ker-
nel regression estimator, the local multivariate regression estimator, generalized additive
model, as generalizations of the multivariate regression model. Section 7.4 will intro-
duce the smooth logistic regression model which can be used to estimate the response

probabilities @,.
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7.2 Nonparametric Regression

The normal kernel regression method exposed in the previous chapters is called the local
mean regression estimator. The estimator seeks to average the values of the response - -
variable locally. The local linear regression approach is an alternative to the local mean

regression estimator. The local linear regression
M(Ik) =a+ ﬂ (Ig - l‘,’) + &

is the least squares solution to

min (yi —a— B (zx — 1))2 K (ﬂ‘f—) . (7.1)

a8 i€Es

Any of the kernels defined in chapter 2 can be used as a weight in the local linear

regression model. The solution of the above least squares is

- 1 (s2(zk; b) — s1(zx; b)) (Zk — Zi) wratsi
) = n Eies - sg(xk;b)so(x:;b) — s1(xk; b)? (7.2)

where b i1s the bandwidth, ws; is defined by a kernel weight

K (252

K (55

Wiy =

and

si(zk; ) = z:‘_e, (ze = -’L‘i)j wy, J=0,1,2. (7.3)

The local linear regression was introduced by Cleveland (1979). Fan and Gijbels (1992)
showed that the local linear regression had smaller bias near the boundaries of the co-
variate space than the local mean regression method.

The following procedure due to Cleveland (1979) has received much attention in esti-
mating u(z:). The method is known as the locally weighted regression smoother (loess).
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A locally weighted smooth i(z:) using g nearest-neighbors is calculated as follows:

a. The q nearest-neighbors of z: are denoted by Q(zi). The number of neighbors of
Tk, q is specified as a percentage of the total number of sampled values. This percentage
is called a span which has the same role as the bandwidth b in the kernel smoothing
methodology.

b. Calculate the largest distance between z; and another point in Q(zi)
A(zi) = max |z, — z;].
(Te) = mex |z = 241
c. Weights w; are assigned to each point in Q(z;) using the tri-cube weight function
|zx — :r,-|>
A(zi)

where

w(u) = (1—u3)31(0$u< 1)

d. j(xx) is the fitted value at = from the weighted least squares fit of yx to T, on
the neighborhood Q(xi).

In locally weighted regression smoothing, the span is constant over the entire sampled
zy values. Now if either the curvature of u(z) or the error variance o?v(x,) varies over
the range of the i, a constant span will not produce an optimal fit. The optimal fit
can be found with the supersmoother which uses a local cross validation and chooses a
span for the z; values by leaving out one at a time the z; and estimating the w; on the
remaining n — 1 points, Simonoff (1996).

The local linear regression and locally weighted regression smoothing methods are
alternative procedures to the local mean regression model. Further studies on these two
methods within a survey sampling design would enrich the on going research. Preliminary
studies have been done with these procedures when the response rate was 100 % and the

initial results have been encouraging. One draw back that I have encountered with these
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methods is the large cost of computer resources to find the estimates.

7.3 Multivariate Nonparametric Regression

The local mean regression model on a single predictor generalizes in a straightforward way
to multiple predictors. For a multidimensional predictor variables X = (X, ... Xax)T

one uses a multidimensional product kernel function

d
K*(Xy,....Xq) = [] K(X;) (7.4)

i=1

where K(X;) is a kernel for each predictor The kernel weights are now defined as

K*(Xi,...,X4) (7.5)
K*(Xy,.... Xq)

kes

W(Xy) =

Then a multivariate version of the local mean regression estimator is
px) = WXy (7.6)

which is the multivariate fitted regression surface.
The local linear regression model also generalizes in a straightforward way to multiple

predictors and is called the local multivariate regression estimator. The local multivariate

regression estimator
Yi = Bo + By (Xa — i) .. + B3 (Xa — Zai) + &
is the least squares solution of

Bq(x) =min Z‘.ﬂ (¥ = Bo = By (X1 — Z13) ... — B4 (Xa — zai))? Ka (H™ (X — X))
(7.7)
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such that Ky(H™! (X; — x)) is a multivariate kernel function with bandmatrix H and
x is a d x 1 vector corresponding to the predictor variables. We now define the design

matrix X, and the weight matrix W, so as to find estimates 3, and ﬁj (F=1..d)). Let
( 1 Xj—znn . . . Xg—21n \

Xz

\1 Xi—z4n - . . X4"-Tdn)

and

W, = diag(Kg(H™' (X; — x) ... Ka(H™! (X, — X))

If the matrix XI7W_X, is invertible then
B=(XIW.X;) " XTW.y. (7.8)
The estimator ji,(x) is the intercept term G, or
fra(x) = €] (XIW.X,)™ XIW.y (7.9)

where e, is the (p + 1) vector having the value 1 in the t'th entry and zero elsewhere.
Properties of this estimator can be found in Ruppert and Wand (1991).

As the dimension of the regressor hyperplane increases, estimates of the nonparamet-
ric multivariate regression gets progressively more difficuit. An important consequence
of this pattern is the somewhat paradaxical fact that in high dimensions, local neigh-
borhoods are almost surely empty, and neighborhoods that are not empty are almost
surely not local. This has been called the curse of dimensionality. A way around these
difficulties is to restrict the form of the multivariate regression estimator. Friedman and

Stuetzle (1981) and Hastie and Tibshirani (1985) proposed the generalized additive model
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to overcome the curse of dimensionality.

The multivariate regression model is now written as
Vi = Ba(X) = Bo + 1y (x1:) + - + g (Xai) + & (7.10)

where p; (j = 1...d)denote functions whose shapes are unrestricted, apart from an as-

sumption of smoothness and conditions such as z": p;(Xj;) = 0 for each j. The ad-
ditivity assumption allows all of the one dimensioi:;.l smoothing methods to be used in
the multivariate context. The intercept parameter 3, can be estimated by the mean
of the respondents § because of the restriction that each additive component sums to
zero. Hastie and Tibshirani (1990) P. 99 proposed the backfitting algorithm to estimate
the generalized additive model. In the sequel S; is an arbitrary scatter plot smoother (
keruel or spline).

a. Initialize By = 7§, s (x5) = pg for j =1..d.

b. Cycle j=1..d,1..d,...

1y () =85 (y=Bo = 3, s (%))

c. Continue (b.) until the individual functions don’t change.
Let 1 (x;)be the estimated value of u; (X;, )therefore the multivariate regression model
is estimated by

Ui = y(x) = Bo + fy (X0:) + ...+ g (Xai) - (7.11)

All the concepts presented in this dissertation are based on a univariate model. Fur-
ther studies and analysis of these multivariate methods within a survey sampling design
framework would hopefully extend the ideas presented in this thesis. Preliminary stud-
ies have been done and were encouraging, with generalized additive model using spline
smoothers. More research has to be done in this area with different types of smoothers

and applied to the areas of full sample response and partial sample response.
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7.4 Response Probabilities

In chapter 5 we used binary kernel and binary spline regression models to estimate the
response probabilities ¢,. The local linear and the locally weighted regression models
can be modified to binary regression models so as to estimate the probabilities ¢,.

An alternative procedure to estimate the probabilities ¢, is to use a smooth logistic

regression. The log-likelihood has the form

L(BoB1) = 3, e (B0, 1) K (255) (7.12)

where I (8o, ;)is the contribution to the usual log-likelihood from the kth observation

in other words

te (B, 1) = welog (125 ) +1og 1 = ). (7.13)

The ¢, denotes the response probability at the sampled value zx. The logit link function

is defined as

logit (¢,) = log (1 e m) = fo+ Bz (7.14)

and is assumed to link the response probability ¢, to the auxiliary variable z,

The log-likelihood defines a local likelihood. The local likelihood is found by summing
the contribution of each [, for each observation, weighted by the distance between the
corresponding z; and the point of estimation z.

Maximization of [ (8,, 8,) provides local estimates (ﬁo, Bl) . The local estimates then
can be used to find the estimated response probability ¢, at zx. The &, is found with
the following relationship

=P (Bo + B]xk)
f + exp (Bo +Blzk) .

The generalized additive model also provides another method to find the response prob-

(7.15)

abilities ¢,. The advantage of this method is that it can be used if one has one or many

predictors for the response probability.
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The methods proposed in this section would provide estimates of the response prob-
abilities. Are these estimates of ¢, any better than the binary regression estimates of
chapter 5?7 Does the nonresponse bias decrease sufficiently by using these estimates of

&7 These questions among others are important topics for further research!
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