
Analysis of the Dynamic Travelling Salesman Problem with

Different Policies

Santiago Ravassi

A Thesis in

The Department of Mathematics

and Statistics

Presented in Partial Fulfillment of the Requirements for the Degree of Master of

Science (Mathematics) at Concordia University

Montreal, Quebec, Canada

December 2011

c©Santiago Ravassi, 2011

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Santiago Ravassi

Entitled: Analysis of the Dynamic Travelling Salesman Problem with Different

Policies

and submitted in partial fulfilment of the requirements for the degree of

Master of Science (Mathematics)

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final Examining Committee:

Chair

Dr. Yogendra P. Chaubey

Examiner

Dr. Galia Dafni

Examiner

Dr. José Garrido

Supervisor

Dr. Lea Popovic

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Date

Abstract

Analysis of the Dynamic Travelling Salesman Problem with Different

Policies

Santiago Ravassi

We propose and analyze new policies for the traveling salesman problem in a dynamic

and stochastic environment (DTSP). The DTSP is defined as follows: demands for

service arrive in time according to a Poisson process, are independent and uniformly

distributed in a Euclidean region of bounded area, and the time service is zero; the

objective is to reduce the time the server takes to visit to all the present demands

for the first time. We start by analyzing the nearest neighbour (NN) policy since

it has the best performance for the dynamic vehicle routing problem (DTRP), a

closely related problem to the DTSP. We next introduce the random start policy

whose efficiency is similar to that of the NN, and we observe that when the random

start policy is delayed, it behaves like the DTRP with the NN policy. Finally, we

introduce the partitioning policy, and show that, relative to other policies, it reduces

the expected time that demands are swept from the region for the first time.

iii

Acknowledgements

I would like to express my gratitude first and foremost to my supervisor, Professor

Lea Popovic. She has been an extremely patient and enthusiastic supervisor who

has helped me academically and personally during my master studies. I feel very

fortunate and honoured to have her as my supervisor.

My special thanks to Professor Galia Dafni for her generosity and support in

difficult moments.

I would also like to thank the staff of the Department of Mathematics and Statistics

for the great help they provided to see this thesis done.

My thanks to my friends Nadia, Laura, Federico, Emmanuelle, Daŕıo, Debora,

Felipe, Mohamad, and Laura (F).

I want to thank my mother and father for supporting me in all my pursuits , and

my sister for her great friendship. No matter where I live, they are always present.

Finally, I would like to thank Ĺıvia for her love, energy, and companionship. She

is my light, and to her I dedicate this thesis.

iv

To Ĺıvia,

v

Contents

List of Figures vii

List of Tables ix

Introduction 1

1 Randomized Algorithms and Probabilistic Analysis of Algorithms 3

2 Probabilistic Tools 6

2.1 Introduction . 6

2.2 Markov Chains . 8

2.3 Discrete-Time Martingales . 15

2.4 Discrete-Time Homogeneous Countable Markov Chains 17

2.5 The Poisson Process . 21

2.6 Continuous-Time Homogeneous Markov Chains 23

2.7 Continuous-Time Martingales . 32

2.8 Continuous-Time Inhomogeneous Markov Chains 33

2.9 Piecewise Deterministic Continuous-Time Markov Chains 38

3 The Dynamic Traveling Salesman Problem 41

3.1 A Stochastic and Dynamic Vehicle Routing Problem in The Euclidean

Plane . 45

vi

3.2 The DTSP with the NN Policy as a Discrete Markov Chain 56

4 The DTSP Simulations 63

4.1 The DTSP with Nearest Neighbour Policy 65

4.1.1 Simulated Annealing and First Local Maximum Estimation of

u∗ and t∗ . 71

4.1.2 Ergodic Estimations of u∗ and t∗ 77

4.2 The DTSP with Random Start Policy 81

4.3 The DTSP with Delayed Random Start Policy 84

4.4 The DTSP with Partitioning Policy 84

5 Conclusion 90

vii

List of Figures

3.1 Distribution of the distance to the closest unattended demand 59

4.1 FLM regression fit for the DTSPNN 75

4.2 SA regression fit for the DTSPNN . 75

4.3 DTSPP with λ = 3, 4, 5, 6 and different values of P 88

viii

List of Tables

4.1 DTSPNN with λ = 3, . . . , 8 . 67

4.2 Detailed DTSPNN with λ = 5 . 69

4.3 SA and FLM estimations of u∗ and t∗ for the DTSPNN 74

4.4 Ergodic estimation of u∗ and t∗ for the DTSPNN 80

4.5 DTSPR with λ = 3, . . . , 7 . 82

4.6 Ergodic estimation of u∗ and t∗ for the DTSPR 83

4.7 DTSPP with λ = 3, 4, 5, 6 and different values of P 87

ix

Introduction

Given a collection of demands and the cost of travel between each pair of them,

the objective of the of the traveling salesman problem (TSP) is to find the cheapest

way of visiting all the demands. The DTSP is the stochastic version of the TSP.

It was introduced by Psaraftis in 1988 [32] in a non spatial setting, and focuses in

finding a policy that allows a single server to visit demands whose positions are known

and independently generated. The service request is randomly assigned according to

a Poisson process and uniformly assigned across demands, and the service time of

demands are randomly and independently assigned according to some distribution

with known mean and finite variance. In 1991 Bertsimas and van Ryzin [3] introduced

the DTRP, a related problem to the DTSP where demands are uniformly located in a

region of finite area and studied different policies that can be used depending on both

the rate at which demands are created and the mean service time of the demands.

We have slightly departed from the definition of the DTSP given by Psaraftis

since demands are generated according to a Poisson process but independently and

uniformly placed over a bounded region in the Euclidean plane. We assume that once

the server visits a demand it is immediately freed to visit a new one, that is, the

service time is assumed to be zero for all the demands. In our study, when we talk

about the DTSP, we will refer to our definition of the problem; otherwise, it will be

stated.

In Chapter 1, we discuss randomized algorithms and probabilistic algorithms and

1

why it is sometimes convenient to use them instead of deterministic algorithms.

In Chapter 2, we propose some probabilistic concepts that might be useful in

the development of the DTSP. We start by defining random variables and stochastic

processes, then introduce Markov chains. The definition of discrete, continuous time

and inhomogeneous Markov chains, as well as piecewise deterministic continuous-time

Markov chains will be introduced along with their most relevant properties.

In Chapter 3, we examine the results obtained by Bertsimas and Van Ryzin in

1991 on the DTRP under different policies and with different arrival rates and service

time of demands. We later discuss some common points between the DTSP and

the DTRP, and why some of their results can be used in our problem. Then, we

estimate an upper bound for the expected distance between demands in the DTSP

with the NN policy. Finally, we observed that there exist similarities in the upper

bound assumed for the mean distance between demands in the DTRP and the upper

bound assumed for the mean distance between demands in our problem when both

problems are under the NN policy.

In Chapter 4, we analyze the NN policy on the DTSP since the NN was considered

to be optimal in the DTRP under heavy traffic. We estimate the mean number of

unattended demands when the system stabilizes and the mean time at which this

happens using different algorithms. Based on the NN policy, we introduce the random

start policy, which has the same performance as the NN. A variation of the random

start policy is presented; under certain conditions, its performance is equivalent to

that of the DTRP. Finally, we introduce the partitioning policy which is shown to

reduce the expected time during which the region has no demands for the first time,

with respect to the NN policy.

2

Chapter 1

Randomized Algorithms and

Probabilistic Analysis of

Algorithms

Randomized algorithms make random choices during their execution. In practice,

a randomized program would use values generated by a random number generator

to guide its execution, in the hope of achieving good average performance over all

the possible random choices. There are two principal advantages to randomized

algorithms. First, in many situations randomized algorithms run faster than the

best known deterministic algorithms. Second, randomized algorithms are simpler to

describe and implement than deterministic algorithms of comparable performance.

However, these gains come at a price; the answer may have some probability of being

incorrect, or efficiency is guaranteed only with some probability. Though it may seem

unusual to design an algorithm that may produce incorrect results or run inefficiently,

if the probability of such consequence is sufficiently small, the improvement in speed

or memory requirements may well be worthwhile.

An example of a randomized algorithm is the randomized quicksort algorithm,

3

one of the fastest sorting algorithms in practice. Quicksort is a divide and conquer

algorithm to sorting items on a list; it splits the list into two new lists and then

recursively call the quicksort procedure to sort them. If we want to have an effective

strategy, the split phase must ensure that one of the new sub list is neither larger

nor smaller than the other by a proportion of 3
4
, see [27], so a random choice of the

split point will effectively divide the partition half the time. The expected running

time for the randomized quicksort is of O(n log n); moreover, with high probability

the quicksort algorithm runs in time O(n log n), see [27]. Two of the most well known

deterministic sorting algorithms are bubble sort and heapsort. Bubble sort is known

to be simple to implement; however, it has poor performance since worst and average

case performance of the algorithm is O(n2), see [18]. On the other hand, heapsort

has worst and average case performance of O(n log n), but the approximate average

expected running time of heapsort is between 2 to 4/3 times larger than quicksort,

depending of the size of the list to be sorted, see [18].

The performance of randomized algorithms depends on the random decisions and

not on the assumptions about the inputs. On the other hand, in the probabilistic

analysis of the algorithm, the distribution of the input is assumed to be random, and

the algorithm -that might be deterministic- is analyzed.

Complexity theory tries to classify computation problems according to their com-

putational complexity, in particular distinguishing between easy and hard problems.

A method to estimate the computational complexity of an algorithm is the proba-

bilistic analysis of algorithms, which is used to study how algorithms perform when

the input is taken from a well-defined probabilistic space. For the classical worst-case

complexity theory the travelling salesman problem is NP-hard though they are often

easy to solve in practice. Probabilistic analysis of algorithms gives a theoretical ex-

planation for this phenomenon. NP-hard problems might have algorithms that are

extremely efficient on almost all inputs, see [26]; that is these problems are hard to

4

solve when the input is some pathological set, but in real-life situations the problems

are not hard to solve. In other words, if the input is randomly generated according to

some probability distribution on the collection of all possible inputs, it is very likely

that the problem instance is easy to solve, whereas instances that are hard to solve

appear with relatively small frequency. We first perform a probabilistic analysis for

the different policies used in the DTSP.

5

Chapter 2

Probabilistic Tools

We review the theory of Markov processes and martingales, but first we need to

explain what a stochastic process is. Most of the theory in this chapter was taken

from [10, 11, 21, 22, 26, 29, 37].

2.1 Introduction

Any experiment that involves randomness can be modeled by a probability space.

Such space comprises of a set of outcomes Ω, a collection of events F , and a proba-

bility measure P .

Definition 2.1.1 The complete list of all the possible outcomes of an experiment is

called the sample space and is denoted by Ω.

An event is a subset (collection) of Ω, but not all the subsets of Ω are events.

Thus, we define the collection of events F from the collection of subsets of Ω. Since

we are interested in combining events, we want our collection of events to include

these combination of events. Thus, we need to ensure certain properties to F .

Definition 2.1.2 The collection F of subsets of Ω is called a σ-field if it satisfies

the following conditions:

6

1. if A1, A2, . . . ∈ F then ∪∞i=1Ai ∈ F

2. if A ∈ F then Ac ∈ F .

With any experiment we may associate a pair (Ω,F), where Ω is the set of

possible outcomes and F is a σ-field of subsets of Ω which contains all the events

whose occurrence we may be interested in; thus, to call a set A an event is equivalent

to say that A belongs to the σ-field in question.

Example 2.1.1 A coin is tossed twice, then Ω = {{HH}, {TT}, {HT}, {TH}}.

Then, two σ−fields of Ω are the collection of sets

F1 = {∅,Ω, {HH,TT}, {HT, TH}} and F2 = {∅,Ω}.

We are also interested in assigning likelihoods to the events in F . The probabil-

ity function P that assigns likelihoods to the members of F is called a probability

measure.

Definition 2.1.3 A probability measure P on (Ω,F) is a function P : F → [0, 1]

satisfying

1. P (∅) = 0, P (Ω) = 1

2. if A1, A2, . . . is a collection of disjoints members of F , in that Ai ∩ Aj = ∅ for

all pairs i 6= j, then

P

(∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

The triple (Ω,F , P), comprising a set Ω, a σ-field F of subsets of Ω, and a probability

measure P on (Ω,F), is called a probability space.

The probability function tells us how the probability is distributed over the set of

events F . A probability measure is a special case of a measure on the pair (Ω,F).

7

A measure is a function µ : F → [0,∞) satisfying µ(∅) = 0 together with Definition

2.1.3-2. A measure µ is a probability measure if µ(Ω) = 1, that is, a probability

measure must assign 1 to the entire probability space.

Definition 2.1.4 A random variable is a function X : Ω → R with the property

that {ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ R. Such a function is said to be

F -measurable.

Definition 2.1.5 A stochastic process X = {Xt : t ∈ T} is a collection of random

variables that map the sample space Ω into some set S. The index t often represents

time, and in that case the process X models the value of a random variable X that

changes over time. We call Xt the state of the process at time t.

The mathematical analysis of random processes varies greatly depending on weather

S and T are finite, countable or uncountable.

2.2 Markov Chains

The Markov process is a special stochastic process that retains no memory of where

it has been in the past. This means that only the current state of the process can

influence where it goes next. The set of possible values the process can take will be

denoted by M . The set M might be finite or countable, and it is called the state

space. For any states i, j ∈ M , if Xt = i, then the process is said to be in state i at

time t. We suppose that whenever the process is in state i, there is a fixed probability

Pi,j that it will next be in state j.

Definition 2.2.1 A discrete-time stochastic process X = {X0, X1, X2, . . .} is a Markov

chain if

P (Xt = it|Xt−1 = it−1, Xt−2 = it−2, . . . , X0 = i0) = P (Xt = it|Xt−1 = it−1)

8

for all states it with t ≥ 0.

This definition expresses that the state Xt depends on the previous state Xt−1 but

is independent of how the process arrived to state Xt−1. This is called the Markov

Property or memoryless property, and it is what we mean when we say that a chain

is Markovian. It is important to note that the Markov property does not imply that

Xt is independent of the random variables X0, X1, . . . , Xt−2; it just implies that any

dependency of Xt on the past is captured in the value Xt−1.

If for all t Xt assumes values in a finite set, then we say that X is a finite state

space process or finite Markov chain, and if Xt assumes values from countable infinite

set, then X is a discrete state process or Markov chain. If T is countable infinite

set, we say that X is a discrete-time process. A Markov chain is said to be time

homogeneous, if P (Xt = i|Xt−1 = j) is independent of t.

We will first consider discrete-time homogeneous Markov chains, and then we will

introduce continuous-time and inhomogeneous continuous time Markov chains.

The Markov property implies that the Markov chain is uniquely defined by the

one-step transition matrix,

P = (Pi,j).

That is, the entry in the ith row and jth column is the transition probability Pi,j.

It follows that, for all i, ∑
j≥0

Pi,j = 1.

This transition matrix representation of a Markov chain is convenient for comput-

ing the distribution of future states process. Let p(t) = (p0(t), p1(t), p2(t), . . .) be the

vector giving the distribution of the state of the chain at time t. Summing over all

possible states at time t− 1, we have

pi(t) =
∑
j≥0

pj(t− 1)Pj,i

9

or

p(t) = p(t− 1)P.

Thus, for t, s ≥ 0,

p(t+ s) = p(t)Ps,

where Pm is the matrix whose entries are the m-step transition probabilities, so

the probability that the chain moves from state i to state j in exactly m steps is

P s
i,j = P (Xt+s = j|Xt = i).

When the representation of a Markov chain is through a directed weighted graph

D = (V,E,w), the set of the vertices V of the graph is the set of states of the chain.

There is a directed edge (i, j) ∈ E if and only if Pi,j > 0, in which case the weight

w(i, j), of the edge (i, j), is given by w(i, j) = Pi,j. Self-loops are allowed, and, for

each i ∈ V , it is required that
∑

j:(i,j)∈E w(i, j) = 1.

Classification of States

A first step in analyzing the long-term behavior of a Markov chain is to classify

its states. In the case of a finite Markov chain, this is equivalent to analyzing the

connectivity structure of the directed graphs.

Definition 2.2.2 A state i communicates with state j if

P (Xt = j for some t ≥ 0|X0 = i) > 0 and P (Xt = i for some n ≥ 0|X0 = j) > 0.

Definition 2.2.3 A set of states C is a communicating class if every pair of states

in C communicates with each other, and no state in C communicates with any state

not in C.

10

Definition 2.2.4 A Markov chain is irreducible if, for every pair of states, there is

a nonzero probability that the first state can reach the second.

Lemma 2.2.1 A finite Markov chain is irreducible if and only if its graph represen-

tation is a strongly connected graph.

Definition 2.2.5 A state i is recurrent if

P (Xt = i for infinitely many t ≥ 1|X0 = i) = 1,

and it is transient if

P (Xt = i for infinitely many t ≥ 1|X0 = i) = 0.

Another important result that help to classify of the states is Proposition 2.2.1.

Let rti,j denote the probability that, starting at state j, the first transition to state i

occurs at time t; that is,

rtj,i = P (Xt = i,Xs 6= i for 1 ≤ s ≤ t− 1|X0 = j).

Proposition 2.2.1 A state i is recurrent if

∑
t≥1

rti,i = 1,

and it is transient if ∑
t≥1

rti,i < 1.

The total number of visits and the first passage time to a state also helps to

classify a state. The random variable Ri denotes the total number of visits to state i,

Ri =
∞∑
t=0

I{Xt = i},

11

and Ti defines the first passage time to state i,

Ti = min{t ≥ 1|Xt = i},

with the convention that Ti = ∞ if this visit never occurs. Then, rtj,i = P (Ti =

t|X0 = j), and a state i is recurrent if and only if P (Ti <∞) = 1, that is if the visit

to state i occurs with probability 1. On the other hand, a state i is transient if and

only if P (Ti =∞) > 0, that is if there is a chance the visit to state i never occurs.

Proposition 2.2.2 The following three events are equivalent,

1. P (Ti <∞) = 1,

2. P (Ri =∞) = 1,

3. E(Ri) =∞,

and the following three events are also equivalent,

1. P (Ti =∞) > 0,

2. P (Ri <∞) = 1,

3. E(Ri) <∞.

Proposition 2.2.2 relates the first passage time, the total number of visits, and

Definition 2.2.5. A more general result is given by Proposition 2.2.3.

Proposition 2.2.3 Given X0 = i state i,

P (Ri = k) = P (Ti <∞)k−1P (Ti =∞).

Proposition 2.2.4 The states of an irreducible Markov chain are either all recurrent

or all transient.

12

The expected time to first reach state j when the chain starts at state i is given

by

hi,j =
∑
t≥1

t rti,j.

Definition 2.2.6 A recurrent state i is positive recurrent if hi,i = Ei(Ti) < ∞ ;

otherwise, it is null recurrent.

Lemma 2.2.2 In a finite Markov chain:

1. at least one state is recurrent

2. all recurrent state are positive recurrent

Thus, for a null recurrent state to exist the Markov chain must have an infinite

number of states.

Proposition 2.2.5 In an irreducible Markov chain, if hi,i < ∞ for some i ∈ M ,

then hi,j <∞ for all i, j ∈M .

Hence, we can therefore classify an irreducible chain as positive recurrent if one

state and hence all states are positive recurrent. From Propositions 2.2.4 and 2.2.5,

we have that the states of an irreducible Markov chain are either all transient, all null

recurrent, or all positive recurrent.

Proposition 2.2.6 A recurrent state i is null recurrent if

lim
t→∞

P t
i,i = 0.

Otherwise, it is positive recurrent.

Definition 2.2.7 A state j in a discrete-time Markov chain is periodic if there exists

an integer ∆ > 1 such that P (Xt+s = j|Xt = j) = 0 unless s is divisible by ∆. A

discrete-time Markov chain is periodic if any state in the chain is periodic. A chain

that is not periodic is aperiodic.

13

Definition 2.2.8 An aperiodic and positive recurrent state is an ergodic state. A

Markov chain is ergodic if all its states are ergodic.

Corollary 2.2.1 An aperiodic, finite, and irreducible Markov chain is an ergodic

chain.

Ergodic theorems concern the limiting behavior of averages over time, and, in the

case of Markov chains, the long-run proportion of time spent in each state. For a

Markov chain to be ergodic, two conditions are required in all the states: aperiodicity

and positive recurrence. Aperiodicity ensures that the limiting probability that the

chain is in any state is independent of the initial state. Positive recurrence, makes

sure that the expected time any state waits to be visited is finite when the chain is

irreducible, as stated Proposition 2.2.5; in addition, positive recurrence guarantees,

together with aperiodicity, that P t
i,j converges to a positive limit.

Stationary Distributions

If P is the one-step transition probability matrix of a Markov chain and if p(t) is the

probability distribution of the state of the chain at time t, then p(t + 1) = p(t)P.

Of particular interest are state probability distributions that do not change after a

transition.

Definition 2.2.9 A stationary or invariant distribution of a Markov chain is a prob-

ability distribution π such that

π = πP.

If a chain ever reaches a stationary distribution then it maintains that distribution

for all future time, and thus a stationary distribution represents a steady state or an

equilibrium in the chain’s behavior. The fundamental theorem of Markov chains

characterizes chains that converge to stationary distributions.

14

Theorem 2.2.1 (Ergodic Theorem) Any irreducible ergodic Markov chain has the

following properties:

1. the chain has a unique stationary distribution π,

2. for all j and i, the lim
t→∞

P t
j,i exists, and it is independent of j,

3. πi = lim
t→∞

P t
j,i =

1

hi,i
.

From Theorem 2.2.1, we can make some observations. If the time is sufficiently

large, the probability that the chain is in state i is πi and is independent of the initial

state. If the average time to return to state i from i is hi,i, then we expect to be in

state i for 1
hi,i

of the time; thus, in the long-run, we must have πi = 1
hi,i

. Note, that a

Markov chain does not have to be aperiodic to have a unique stationary distribution;

if i is a state of a periodic Markov chain, then the stationary distribution πi is not

the limiting probability of the chain being in state i but the long term frequency of

visiting state i.

2.3 Discrete-Time Martingales

A martingale is a stochastic process whose average value remains constant in a par-

ticular strong sense. We will define discrete time martingales as they are used in

Section 2.6.1; continuous time martingales will be used in Section 2.8 and will be

defined later in Section 2.7.

Suppose that = = {Ft : t ≥ 0} is a sequence of sub-σ-fields of F , then we say

that = is a filtration if Ft ⊆ Fs for all t ≤ s. We say a sequence X = {Xt : t ≥ 0} is

adapted to a filtration = if Xt is Ft measurable for all t. In other words, if we know

Ft, we can discern the value of Xt and, more generally, the values of Xs for all s ≤ t.

15

Definition 2.3.1 Let = be a filtration of the probability space (Ω,F , P), and let

{X0, X1, . . .} be a sequence of random variables which is adapted to =. We call the

pair (X,F) = {(Xt,Ft) : t ≥ 0} a discrete-time martingale if, for all t ≥ 0,

1. E|Xt| <∞,

2. E(Xt+1|Ft) = Xt.

From this definition, we can think of Ft as the state of knowledge or history of

the process X up to time t, or more precisely as a σ-field with respect to which each

of the variables X0, X1, . . . , Xt is measurable.

Definition 2.3.2 If conditions 1 and 2 from Definition 2.3.1 are replaced by,

1. E(X+
t) <∞,

2. E(Xt+1|Ft) ≥ Xt.

then the pair (X,F) is called a discrete-time submartingale. If they are replaced by,

1. E(X−t) <∞

2. E(Xt+1|Ft) ≤ Xt.

then then the pair (X,F) is called a discrete-time supermartingale.

Consider the notation a+ = max{a, 0} and a− = min{a, 0}. Since a = a+ − a−

and |a| = a+ + a−, the conditions in Definition 2.3.2 are weaker than in Definition

2.3.1. Note that a process is both a martingale and a submartinagale if and only if it

is a martingale.

Definition 2.3.3 A random variable T : Ω → {0, 1, . . .} ∪ {∞} is called a stopping

time with respect to a filtration = if {T = t} ∈ Ft for all t ≥ 0.

16

2.4 Discrete-Time Homogeneous Countable Markov

Chains

Given a Markov chain, we would like to obtain information on its stationary distri-

bution, if it exists. This is simple for finite-state Markov chains where the stationary

distribution can be computed exactly if it exists. However, the problem is highly non

trivial when the state space is countable where, in addition, countable state Markov

chains require further analysis in the properties of the stationary distribution since

one needs to establish its existence.

Discrete-time homogeneous countable Markov chains have already been defined

in Definition 2.2.1. For a description of irreducibility, recurrence and transience, and

positive recurrence and null recurrence of Markov chains see Definitions 2.2.4, 2.2.5,

and 2.2.6 respectively. Note that Lemma 2.2.2 states that an irreducible Markov chain

defined in a finite state space is always recurrent. However, in a countable space, it

might be either positive recurrent, null recurrent, or transient.

Classification of chains

The following examples show two Markov chains defined in a countable state space.

While the first example describes a recurrent Markov chain, the second one describes

a transient Markov chain though both are irreducible.

Example 2.4.1 Let {bt}t≥1 be an independent and identically distributed sequence of

Bernoulli random variables: P (bt = 1) = P (bt = −1) = 1
2

for all t and h : Z→ Z.

The Markov chain

Xt+1 = Xt + h(Xt) + bt+1 for t = 0, 1, 2 . . .

is recurrent if h satisfies:

1. |h(x)| < |x| for x 6= 0,

17

2. h(x) < 0 if x > 0, and

3. h(x) > 0 if x < 0.

The function h defined in Example 2.4.1, ensures that the process X is pushed

toward the state 0; thus, by intuition, we can expect X to be recurrent. The opposite

occurs in Example 2.4.2 where h forces the process to ”spread out”.

Example 2.4.2 Based on Example 2.4.1, if we redefine h, so that

1. h(x) > 0 if x > 0, and

2. h(x) < 0 if x < 0,

the Markov chain is transient.

Proposition 2.4.1 If the class C is recurrent, then for all i ∈ C

∑
j∈C

pi,j = 1.

Proposition 2.4.2 Given a communicating class C, if for some i ∈ C

∑
j∈C

pi,j < 1.

then the class is transient.

Note that if the chain is defined on a countable state space, Proposition 2.4.2 is

only a sufficient but not a necessary condition.

Given a Markov chain X, and a fixed state j, for each state i ∈M , let

α(i) = P (Xt = j for some t ≥ 0|X0 = i).

18

Proposition 2.4.3 Suppose X is irreducible. If X is transient, then there is a unique

solution to the equations:

1. 0 ≤ α(i) ≤ 1,

2. α(j) = 1, inf{α(i) : i ∈M} = 0,

3. α(i) =
∑
k∈M

p(i, k)α(k), i 6= j,

that must correspond to the appropriate probability. Moreover, if X is recurrent there

is no solution.

That is, an irreducible Markov chain is transient if and only if for any j we can find

a function α(i) satisfying the equations in Proposition 2.4.3.

Given an irreducible and aperiodic Markov chain. If the state space is finite, the

chain would be recurrent with a unique stationary distribution by Corollary 2.2.1 and

Theorem 2.2.1. However, in a countable state space a recurrent Markov chain might

be positive recurrent or null recurrent. Only when it is positive recurrent, the chain

might have a unique stationary distribution.

Let f be a function that takes values on the elements of M . For i ∈M ,

Pf(i) =
∑
j∈M

pj,if(i) = Ei
[
f(X1)

]
.

That is, if the current state is i, Pf(i) gives the expected value of the function f at

the next step.

The following lemma is used to prove the Foster-Lyapunov criterion [7, 25], which

will be used to determine the recurrence (or transience) of the Markov chains in

Examples 2.4.1 and 2.4.2.

Lemma 2.4.1 Let X be a Markov chain on a countable state space M , and f : M →

[0,∞) satisfy Pf(i) ≤ f(i) for all i ∈M \F where F ⊂M . Then the stopped process

19

{
f(Xt∧D)

}
t≥0 is a supermartingale. Similarly, if Pf(i) = f(i), then the process is a

martingale.

A function f : M → [0,∞) is compact if for each c ∈ [0,∞) the set {i ∈ M :

f(i) ≤ c} is finite.

Theorem 2.4.1 (Foster-Lyapunov Criterion) Let X be an irreducible Markov

chain. Suppose there is a finite set F ⊂M and a compact function f such that

1. Pf(i) ≤ f(i) for all i /∈ F ,

2. {i ∈ S : f(i) ≤M} is a finite set for each M > 0.

Then X is recurrent.

Theorem 2.4.2 Assume X is irreducible. Suppose there is a finite set F and a

function g : M → [0,∞) such that

1. Pg(i) ≤ g(i) for all i ∈ F

2. inf{g(i) : i ∈M} = 0.

Then X is transient.

Using Theorem 2.4.1 and choosing f(x) = |x|, it can be shown that the Markov

chain in Example 2.4.1 is recurrent. Similarly, by Theorem 2.4.2 and choosing g(x) =

1
|x| , it can be shown that the Markov chain in Examples 2.4.2 is transient.

Stationary Distributions

Theorem 2.4.3 If a Markov chain is irreducible, aperiodic and positive recurrent,

then

1. It has a unique limiting distribution such that for all i, j,

lim
t→∞

pt(i, j) = πj > 0.

20

2. The limiting distribution π satisfies:
∑

i∈M πi = 1 and πj =
∑

i∈M πip(i, j).

Proposition 2.4.4 Let X be an irreducible and aperiodic Markov chain and assume

that X0 = i. If X is positive recurrent, then

hi,i =
1

πi
.

If X is null recurrent or transient, then

hi,i =∞.

Theorem 2.4.3 and Proposition 2.4.4 provide the same results as Theorem 2.2.1.

However, the use of Theorem 2.4.3 requires to know that the Markov chain is positive

recurrent, a property that might not be trivial to verify in the countable case.

2.5 The Poisson Process

A continuous-time stochastic process {N(t) : t ≥ 0} is said to be a a counting process

if N(t) represents the total number of ‘arrivals’ or ‘events’ that occur by time t. Each

realization of the process N is a non-decreasing step function N : t → N0. The

Poisson process is a stochastic counting process that is related to both the uniform

and the exponential distribution.

Definition 2.5.1 A Poisson process with parameter λ is a stochastic counting process

{N(t), t ≥ 0} such that the following statements hold.

1. N(0) = 0

2. The process has independent and stationary increments. That is, for any t, s >

0, the distribution of N(t+s)−N(s) is identical to the distribution N(t), and for

21

any two disjoints intervals [t1, t2] and [t3, t4], the distribution of N(t2) −N(t1)

is independent of the distribution N(t4)−N(t3).

3. limt→0
P (N(t)=1)

t
= λ. That is, the probability of a single event in a short interval

is λt.

4. limt→0
P (N(t)≥2)

t
= 0. That is, the probability of more than one event is a short

interval t ends to zero.

Theorem 2.5.1 Let {N(t) : t ≥ 0} be a Poisson process with parameter λ. For any

t, s ≥ 0 and any integer n ≥ 0,

Pn(t) = P (N(t+ s)−N(s) = n) = e−λt
(λt)n

n!
.

The parameter λ is also called the rate of the Poisson process since the number of

events during any period of length t is a Poisson random variable with expectation

λt. The reverse is also true, that is, we could have defined the Poisson process as a

process with Poisson arrivals, as follows.

Theorem 2.5.2 Let {N(t) : t ≥ 0} be a stochastic process such that:

1. N(0) = 0

2. the process has independent increments. That is, the number of events in dis-

joint time intervals are independent from each other.

3. the number of events in an interval of length t has a Poisson distribution with

mean λt.

Then {N(t) : t ≥ 0} is a Poisson process with rate λ.

Theorem 2.5.3 Given that N(t) = n, then the n arrival times have the same distri-

bution as the order statistics of n independent random variables uniformly distributed

over [0, t].

22

This result states that, under the condition that the n events have occurred in [0, t],

the times at which the events occur, considered as unordered random variables, are

distributed independently and uniformly in the interval [0, t].

2.6 Continuous-Time Homogeneous Markov Chains

In a countable space, the continuous-time homogeneous Markov chain is the con-

tinuous time analogue of the homogeneous Markov chain, were the process spent a

random interval of time in a state before moving to the next state.

Definition 2.6.1 A continuous-time random process X = {Xt : t ≥ 0} is a continuous-

time homogeneous Markov chain if, for all s, t ≥ 0,

P (Xs+t = i |Xu, 0 ≤ u ≤ t) = P (Xs+t = i |Xt),

and this probability is independent of the time t.

As in the discrete case, this definition says that the distribution of the state of the

system at time Xs+t, conditioned on the history up to time t, depends only on state

Xt and is independent of the particular history that lead the process to state Xt.

A continuous-time homogeneous Markov chain can be expressed as a combination

of two random processes as follows:

1. A transition matrix P = (pi,j) where pi,j is the probability that the next state

is j, given that the current state is i.

2. A vector of parameters θ1, θ2, . . . such that the distribution of the time that the

process spends in state i before moving to the next step is exponential with pa-

rameter θi. The distribution of time spent at a given state must be exponential

in order to satisfy the memoryless requirement of the Markov process.

23

In other words, the continuous-time homogeneous Markov chain is a stochastic

process that moves from state to state in accordance with a Markov chain, but is

such that the amount of time it spends in each state, before proceeding to the next

state, is exponentially distributed. Note that the Poisson process is a Markov process

having states 0, 1, 2, . . . that always proceeds from state k to state k+ 1, where k ≥ 0

and the parameters θ1, θ2, . . . are all equal to 1.

Assuming a stationary distribution π exists, then the probability π that the

HCTMC will be in state i infinitely far out in the future is

πiθi =
∑
k

πkθkpk,i,

regardless of its initial state.

We will introduce the basic properties of Q-matrices and explain their connection

with continuous-time Markov chains. This new approach provides a more direct

mathematical description and makes possible a number of constructive realizations

of a given Markov chain. Theorem 2.6.1 will provide an alternative definition of

continuous-time Markov chains related to the one we just introduced.

Definition 2.6.2 A Q-matrix on M is a matrix Q = {qi,j ∈ M} that satisfies the

following properties

1. 0 ≤ −qi,i <∞,

2. qi,j ≥ 0 for all i 6= j,

3.
∑
j∈m

qi,j = 0 for all i.

Some additional definitions are needed before for Theorem 2.6.1.

Definition 2.6.3 A jump matrix Π = (πi,j : i, j ∈M) of Q is defined by

24

πi,j =


qi,j
qi

if j 6= i and qi 6= 0

0 if j 6= i and qi = 0

πi,i =

 0 if qi 6= 0

1 if qi = 0,

where qi = q(i) = −qi,i.

A jump process is a right-continuous stochastic process with piecewise constant

sample paths.

Theorem 2.6.1 Let X be a minimal jump process with values in M . Let Q be a Q-

matrix on M with jump matrix Π and semigroup (P (t) : t ≥ 0). Then the following

two conditions are equivalent:

1. The jump chain (Yn)n≥0 of (X)t≥0 is discrete-time Markov with transition matrix

Π and for each n ≥ 1, conditional on Y0, . . . , Yn−1, the holding times S1, . . . , Sn

are independent exponential random variables of parameters q(Y0), . . . , q(Y1), q(Yn)

respectively.

2. For all n = 0, 1, 2, . . ., all times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn+1 and all states

i0, i1, . . . , in+1

P (Xtn+1 = in+1|Xt0 = i0, . . . , Xtn = in) = pin,in+1(tn+1 − tn).

If (Xt)t≥0 satisfies any of these conditions, then it is called a Markov chain with

generator matrix Q.

We call τ0, τ1, . . . the jump times of (Xt)t≥0, where

τ0 = 0 and τn+1 = inf{t ≥ τn : Xt 6= Xτn},

25

for n = 0, 1, . . . , where inf ∅ =∞. The first explosion time ϕ is defined by

ϕ = lim
n→∞

τn.

It is possible that ϕ is finite, that is the chain undergoes a infinite number of jumps in a

finite amount of time. We shall not consider what happens to a process after explosion,

so it is convenient to adjoint to M a new state, ∞ say, and require that Xt = ∞ if

t ≥ ϕ. Any process satisfying this requirement is called minimal. Proposition 2.6.1

describes some conditions that ensures that a Markov chain is minimal.

Proposition 2.6.1 Let X be a Markov chain generated by Q. Then X does not

explode if any of the following conditions holds

1. M is finite,

2. sup
i∈M

qi <∞,

3. X0 = i, and i is recurrent for the jump chain.

By Theorem 2.6.1, the jump time has the probability distribution

P (τl+1 − τl ∈ B|Xτ0 = i0, . . . , Xτn = in) =

∫
B

e−tq(in)q(in)dt,

where B is a Borel subset of [0,∞), and the post jump location at the jump time τl+1

is given by

P (Xτl+1
= j|Xτ0 = i0, . . . , Xτn = in) = πi,j.

Theorem 2.6.2 Let Q be a Q-matrix, then the backward equation

P ′(t) = QP (t) , P (0) = I

26

has a minimal nonnegative solution (P (t) : t ≥ 0). The solution (P (t) : t ≥ 0) of the

backward equation is also the minimal non-negative solution of the forward equation

P ′(t) = P (t)Q , P (0) = I.

This solution also forms a matrix semigroup

P (s)P (t) = P (s+ t) s,t ≥ 0.

The definition of irreducible continuous-time Markov chains is the same as Defini-

tion 2.2.4 of irreducible discrete-time Markov chains. However, we can no longer use

the discrete definition of recurrence for the continuous case since a infinite number of

return visits does not necessary imply the time of these visits will occur ad infinitum.

For example, a chain can visit i infinitely many times before it explodes starting from

state i; however, i is certainly not a recurrent state.

Definition 2.6.4 A state i is recurrent if

P ({Xt = i} is unbounded t ≥ 0|X0 = i) = 1,

and it is transient if

P ({Xt = i} is unbounded t ≥ 0|X0 = i) = 0.

Definition 2.6.4 is stronger that Definition 2.2.5 as it can be used in the discrete

case. Proposition 2.2.4 is valid in the continuous case. The continuous-time analogue

of Ti and rtj,i are

Ti = inf{t ≥ τ1 : Xt = i} and rtj,i = P (Xt = i,Xs 6= i for τ1 ≤ s < t|X0 = j).

27

As in the discrete case, if hi,i = Ei(Ti) <∞, the chain is positive recurrent, otherwise,

is null recurrent as in the discrete case.

Theorem 2.6.3 If qi = 0 or Pi(Ti < ∞) = 1, then i is recurrent and
∫∞
0
pi,i(t)dt =

∞.

Theorem 2.6.4 If qi > 0 and Pi(Ti <∞) < 1, then i is transient and
∫∞
0
pi,i(t)dt <

∞.

Theorem 2.6.5 Let c positive and set Zn = Xnc.

1. If i is recurrent for (Xt)t≥0 then i is recurrent for (Zn)n≥0.

2. If i is transient for (Xt)t≥0 then i is transient for (Zn)n≥0.

In other words, recurrence and transience are determined by any discrete-time sam-

pling of (Xt)t≥0.

Stationary Distributions

The notion of stationary distribution also plays an important role in the study of

continuous-time Markov chains. We say v is stationary if

vQ = 0.

We say a vector b = (bi : i ∈M) is a measure on M if 0 ≤ bi <∞ for all i ∈M .

Theorem 2.6.6 Let Q be a Q-matrix with jump matrix Π and let v a measure. The

following are equivalent

1. v is stationary,

2. uΠ = u where ui = viqi.

28

The equation u = uΠ can be interpreted as follows. For a state i ,viqi is the rate

at which transitions occur out of the state; expression on the right,
∑

j∈M vjqjΠj,i,

is the rate at which transitions occur into state i. If qi = qj for all i, j ∈ M that

is the exponential distribution governing the time spent have the same parameter,

then Theorem 2.6.6-2 is reduced to vΠ = v. Thus, the stationary distribution of

the continuous-time Markov chain is the same as the stationary distribution of the

embedded Markov chain.

Theorem 2.6.7 If Q is irreducible and recurrent. Then Q has a stationary measure

v which is unique up to scalar multiples.

Theorem 2.6.8 Let Q be an irreducible Q-matrix on M . Then the following are

equivalent:

1. some state in M is positive recurrent,

2. every state in M is positive recurrent,

3. Q is non-explosive and has a stationary distribution v.

Moreover when these conditions hold, we have that hi = 1
viqi

.

The next result justifies calling measures v with vQ = 0 stationary.

Theorem 2.6.9 Let Q be irreducible and recurrent, and let v be a measure. For any

s > 0, the following are equivalent:

1. vQ = 0,

2. vP (s) = v.

The complete description of limiting behavior for irreducible chains in continuous-

time is provided by the following result.

29

Theorem 2.6.10 Let Q be an irreducible generator matrix of X and % a initial dis-

tribution of X0. Then,

P (Xt = j) =
1

qjhj
as t→∞ for all j ∈M,

where 1
qjhj

= vj.

Theorem 2.6.11 Given a Q-matrix where qi,i < ∞ for i ∈ M , the Q-process P (t)

is unique if and only if the equation

(λ+ qi,i)µi =
∑
j 6=i

qi,iµj, 0 ≤ µi ≤ 1, and for all i ∈M,

has only the trivial solution ui = 0 for some (equivalent, for all) λ > 0.

Theorem 2.6.11 has many applications though it seems hard to apply in Example

2.6.1. We are going to introduce Theorem 2.6.12 that will let us easily show that

matrix Q in Example 2.6.1 is positive recurrent [4].

Example 2.6.1 This example is a simplified version of the Schlögl model since there

is one vessel rather a finite number of them.

qi,j =


λ1
(
i
2

)
+ λ4 if j = i+ 1

λ2
(
i
3

)
+ λ3x if j = i− 1

0 otherwise,

where matrix Q = {(qi,j) : i, j ∈ N} is homogeneous, i indicates the number of

reactions in the vessel, and λ1, . . . , λ4 are positive constants.

Theorem 2.6.12 Given an irreducible Q-matrix in a countable state space M where

supi∈M qi <∞. If there exists a compact function h and a constant k ≥ 0, η > 0 such

that ∑
j∈M

qi,j(hj − hi) ≤ K − η hi, for all i ∈M,

30

then the Markov chain is positive recurrent and hence has a unique stationary distri-

bution.

In Example 2.6.1 choose hi = i and η < λ3. Then we can find a finite K ={
k : λ1

(
i
2

)
+ λ4 −

(
λ2
(
i
3

)
+ λ3 i

)
≤ k + i(λ3 − η) for all i ≤ m

}
, were m = min{i :

2 + 33λ1
λ2

+ λ4 ≤ i}. Hence, by Theorem 2.6.12, it is ergodic.

Schlögl introduced the model in 1972 as a typical model of non equilibrium sys-

tems. It can be solved in similar fashion by choosing hi =
∑
u∈S

x(u), where u is a

vessel in a finite set S, and x(u) is the number of reactions in vessel u.

Quasi-stationary Distributions

Quasi-stationary distributions are used for modelling the long-term behaviour of

stochastic systems which, in some sense terminate, but appear to be stationary over

any reasonable time scale. One might wish to determine the distribution of the resid-

ual lifetime of a system at some arbitrary time t, conditional on the system being

functional.

The following definition of quasi-stationary distribution is taken from Pollett [31]

and introduced by van Doorn [36]. It is assumed that the system can be modelled as

a time homogeneous Markov chain X taking values in a countable state space M and

generated by a non-explosive Q-matrix Q. Since we are concerned with chains that

terminate, for simplicity, let us take 0 to be the sole absorbing state, that is, q0 = 0,

and suppose that M = {0}∪C where C = {1, 2, . . .} is an irreducible transient class.

In order that there exists a positive probability of reaching 0, given that the chain

starts in C, we shall suppose that qi,0 > 0 for at least one i ∈ C.

Definition 2.6.5 Let π = (πj, j ∈ C) be a probability distribution over C and define

p(·) = (pj(·), j ∈M) by

31

pj(t) =
∑
i∈C

πipij(t), j ∈M, t > 0.

Then, π is a quasi-stationary distribution if, for all t > 0 and j ∈ C,

pj(t)∑
i∈C pi(t)

= πj.

That is, if π is the initial distribution of the chain, then π is a quasi-stationary

if the state probabilities at time t, conditional on the chain being in C at t, are the

same for all t.

2.7 Continuous-Time Martingales

Continuous-time martingales are similar to discrete-time martingales, and we intro-

duce them since, under certain conditions, a continuous-time Markov chain can be

transformed into a continuous-time martingale.

Definition 2.7.1 Let = be a filtration of the probability space (Ω,F , P), and let

{Xt : t ≥ 0} be a sequence of random variables which is adapted to =. We call the

pair (X,F) = {(Xt,Ft) : t ≥ 0} a continuous-time martingale if, for all t ≥ 0,

1. E|Xt| <∞,

2. E(Xt|Fs) = Xs for all t ≥ s.

Similar to discrete-time martingales, we can think of Ft as σ-field of {σ(s) : s ≤ t}

if no filtration is specified. Submartingales and supermartingales are defined as in

Definition 2.3.2.

32

2.8 Continuous-Time Inhomogeneous Markov Chains

The definition of continuous-time inhomogeneous Markov chains is similar to its ho-

mogeneous counterpart. Let X = {Xt : t ≥ 0} denote a jump process defined on

(Ω,F , P) taking values in a finite or countable set M . Using a filtration rather than

a sequence of random variables, Definition 2.6.1 can be reformulated in Definition

2.8.1.

Definition 2.8.1 A jump process X is a Markov chain if

P (Xt = i|Fs) = P (Xt = i|Xs),

where (Ft)t≥0 is a filtration of the sequence of random variables (Xt)t≥0.

Note that since the process is inhomogeneous, P (Xt = i|Fs) may not be equal to

P (Xt−s = i|F0). If a jump process has interarrival times that are not exponentially

distributed and not independent, then the process is not Markovian.

For all i, j ∈ M and t ≥ s ≥ 0, let pi,j(t, s) denote the transition probability

P (Xt = j|Xs = i), and the transition matrix of the Markov chain

P (t, s) = (pi,j(t, s)).

We assume that

lim
t→s+

pi,j(t, s) = δi,j =

 1 if i = j

0 if i 6= j
.

It follows that for 0 ≤ s ≤ ζ ≤ t,

• pi,j(t, s) ≥ 0, for i, j ∈M ,

•
∑
j∈M

pi,j(t, s) = 1, for i ∈M ,

33

• pi,j(t, s) =
∑
k∈M

pi,k(ζ, s)pk,j(t, ζ) i, j ∈M.

Definition 2.8.2 The matrix Q(t) = (qi,j(t)), for t ≥ 0 satisfies the q − Property if

1. qi,j(t) is Borel measurable for all i, j ∈M and t ≥ 0,

2. there exists a constant K such that |qi,j(t)| ≤ K,

3. pi,j(t, s) =
∑
k∈M

pi,k(ζ, s)pk,j(t, ζ), for i, j ∈M.

For any real-valued function f and i ∈M ,

Q(t)f(·)(i) =
∑
j∈M

qi,j(t)f(j) =
∑
j 6=i

qi,j(t)(f(j)− f(i)),

where the second equality follows from the definition.

Definition 2.8.3 A matrix Q(t), for t ≥ 0 is a generator of X if it satisfies the

q-Property, and for all real bounded functions f defined on M

f(Xt)−
∫ t

0

Q(ζ)f(·)(xζ)dζ

is a martingale.

We will see that for any given Q(t) satisfying the q-Property, there exists a Markov

chain X generated by Q(t). For convenience, we will call any matrix Q(t) that posses

the q-Property a generator.

Let 0 = τ0 < τ1 < . . . < τl < ... denote a sequence of jump times of X such that the

random variables τ1, τ2− τ1, . . . , τk+1− τk, . . . are independent Let X0 = i and i ∈M ,

then Xt = i on the interval [0, τ1), and, in general, Xt = Xτk for t ∈ [Xτk , Xτk+1
)

The first jump has the probability distribution

P (τ1 ∈ B) =

∫
B

e
∫ t
0 qi,i(s)ds(−qi,i(t))dt,

34

where B is a Borel subset of [0,∞).

The post-jump location Xt = j, X0 = i and j 6= i, is given by

P (Xτ1 = j|τ1) =
qi,j(τ1)

−qi,i(τ1) .

If qi,i = 0, then define P (Xτ1 = j|τ1) = 0. If we let Bi = {t : qi,i(t) = 0}, then

P (qi,i(τ1) = 0) = P (τ1 ∈ Bi) =

∫
Bi

e
∫ t
0 qi,i(s)ds(−qi,i(t))dt = 0.

The jump time τl+1 has the conditional probability distribution

P (τl+1 − τl ∈ Bl|τ1, . . . , τl, xτ1 , . . . , xτl) =

∫
Bl

e
∫ τl+1
τl

qXτl ,Xτl
(s)ds(−qXτl ,Xτl (τ1 + t))dt.

The post-jump location of Xt = j, for j 6= Xτl is given by

P (Xτl+1 = j|τ1, . . . , τl, τl+1, Xτl , . . . , Xτl)) =
qXτ ,j(τl+1)

−qXτl ,Xτl (τl+1)
.

Theorem 2.8.1 If the Q(t) matrix satisfies the q−Property for t ≥ 0. Then,

1. The process X constructed above is a Markov chain.

2. The process

f(Xt)−
∫ t

0

Q(ζ)f(·)(Xζ)dζ

is a martingale for any uniformly bounded function f on M . Thus, Q(t) is a

generator of Xt.

3. The transition matrix P (t, s) satisfies the forward differential equation

dP (t, s)

dt
= lim

h→0

P (t+ h, s)− P (t, s)

h
= P (t, s)Q(t), t ≥ s,

P (s, s) = I,

35

where I is the identity matrix.

4. If Q(t) is continuous in t, then P (t, s) satisfies the backward differential equation

dP (t, s)

ds
= lim

h→0

P (t, s)− P (t, s+ h)

−h
= Q(s)P (t, s), for t ≥ s,

P (s, s) = I.

Corollary 2.8.1 Let X be a Markov process, Q(t) a matrix satisfying the q-Property

for t ≥ 0, and f uniformly bounded real function on M , then

Q(t)f(·)(i) = lim
h→0

E(f(Xt+h)− f(i)|Xt = i)

h
.

We can see the expression Q(t)f(·)(i) as the limiting mean rate of change of f .

Definition 2.8.4 A generator Q(t) is said to be weakly irreducible if, for each fixed

t ≥ 0, the system of equations

v(t)Q(t) = 0,

m∑
i=1

vi(t) = 1.
(2.8.1)

Note that it has a unique solution v(t) and v(t) ≥ 0.

A generator Q(t) is said to be (strongly) irreducible if, for each fixed t ≥ 0, equa-

tions (2.8.1) have a unique solution v(t) and v(t) > 0.

The expression v(t) ≥ 0 means that for each i ∈M, vi(t) ≥ 0; a similar interpreta-

tion holds for vt > 0. From the definition above, irreducible implies weak irreducible,

but the converse does not hold. For example, the generator

36

Q(t) =

 −1 1

0 0

 ,

is weakly irreducible since v = (0, 1) is the solution for equation (2.8.1), but it is not

irreducible. Once the chain reaches state 1, it never leaves it.

If a weakly irreducible Markov chain contains only one communicating class of

recurrent states, and if there are no transient states, then the Markov chains is ir-

reducible. That is, if a state i is not transient, then at every time t, there exists a

state xt such that qxt,i > 0, and since a (weakly) irreducible generator implies that

v(t)Q(t) = 0, then vxt(t) has to be positive.

Definition 2.8.5 For t ≥ 0, v(t) is a quasi-stationary distribution if it is the solution

of the equations in (2.8.1) and satisfies v(t) ≥ 0.

Definition 2.8.6 For t ≥ 0, v(t) is a stationary distribution if it is the solution of

the equations in (2.8.1) and satisfies v(t) > 0.

Example 2.8.1 Given the generator for a two-state inhomogeneous Markov chain

Q(t) =

 −λ(t) λ(t)

µ(t) −µ(t)

 ,

the generator Q(t) is irreducible if both λ(t) > 0 and µ(t) > 0 and it is weakly

irreducible if λ(t) + µ(t) > 0. Then v(t) =

(
µ(t)

µ(t)+λ(t)
, λ(t)
µ(t)+λ(t)

)
is the corresponding

stationary or quasi-stationary distribution, respectively. An equivalent description of

the chain is to say that if the chain is in state 1(or 2), then it stays in this state with

a length of time exponentially distributed with parameter λ(t) or (µ(t)).

37

2.9 Piecewise Deterministic Continuous-Time Markov

Chains

In 1980, Davis [6] introduced piecewise deterministic Markov processes (PDMPs)

as a general class of continuous-time Markov processes which includes both discrete

and continuous processes, except diffusions. PDMPs are suitable for formulating

optimization problems in many other areas of operational research.

Starting from x an element from the state space E ⊂ R, the process follows a

deterministic trajectory 1 until the first jump time T1, which occurs either sponta-

neously in a random manner, or when the trajectory hits the boundary of E. In both

cases, a new point is selected by a random operator, and the process restarts from

this new point. Consequently, if the parameters of the process under consideration

are described by the state x of a piecewise deterministic process, between two jumps

the system follows a deterministic trajectory.

As mentioned before in the case of events, there exist two types of jump:

1. The first one is deterministic. From the mathematical point of view, it is given

by the fact that the trajectory hits the boundary of E. From the physical

point of view, it can be seen as a modification of the mode of operation when a

physical parameter reaches the critical value.

2. The second one is stochastic. It models the random nature of some failures or

inputs modifying the mode of operation of the system, see [38].

The mathematical model related to the PDMP is as follows. Let d be a mapping

from a countable set K to N, representing the possible states of operation of the

process in question. Let (E0
v)v∈K be a family of open subsets of Rd(v), and, for

v ∈ K, ∂E0
v denotes the boundary of the interior E0

v . A piecewise deterministic

1For example, by the solution of an ordinary differential equation.

38

Markov process is determined by its local characteristics (=v, λv, Qv)v∈K , where =v is

a Lipschitz continuous vector field in E0
v determining a flow φv(x, t). The set

Γ+ = {x ∈ ∂E0
v : x = φ(y, t), y ∈ E0

v , t > 0}

is the boundary point at which the flow φ(x, t) exits from Ev
0 , and the set

Γ− = {x ∈ ∂E0
v : x = φ(y,−t), y ∈ E0

v , t > 0}

is characterized by the fact the flow stating from a point in Ev will not leave Ev

immediately. Thus, we can define the state space by

E = {(v, x) : v ∈ K, x ∈ E0
v ∪ Γ−v \ (Γ−v ∩ Γ+

v)}.

The boundary of the state space is given by the jump rate of the process λv : E →

R+; the value of the PDMP right after the jump is generated by Qv : E ∪ Γ+ ×E →

[0, 1] being the transition measure of the PDMP state after the jump, given that v

is the state of the PDMP immediately before the jump. It satisfies the following

property

[∀(v, x) ∈ K × E ∪ Γ+], Qv[x,E \ {(v, x)}] = 1,

that is the transition measure ensures that the jump has to be to a different state.

Suppose the PDMP starts with v0 ∈ K and x0 ∈ E, the evolution of the PDMP

Xt = (mt, xt). The first jump T1 can be defined as follows

PX0(T1 > t) = I[t<t∗v0 (x0)] · exp

[
−
∫ t

0

λv0 [φ(x0, s)]ds

]
,

where t∗v0(x0) = inf{t : t > φ(t) ∈ ∂Ev0}. The trajectory of Xt for t ∈ [0, T1] is given

39

by

 xt = φv0(x0, t)

mt = v0

,

thus, the state space of this process is defined by the product of a Euclidean space

and a discrete set.

At time T1 the process jumps to a new location and to a new regime defined by the

random variable X1 = (v1, x1) with probability distribution Qv0 [φ(x0, t), ·]. Starting

from X1, the next inter-jump time T2 − T1 and post-jump location X2 = (v2, x2)

are selected in similar way. Under some technical hypotheses, the process defined

is Markovian with piecewise deterministic continuous trajectories and jump times

T1, T2, . . . and post-jump locations X1, X2,

40

Chapter 3

The Dynamic Traveling Salesman

Problem

If a salesman, starting from his home city, is to visit exactly once each city on a given

list and then return home, it is possible for him to select the order on which he visits

the cities so that the total of the distance travelled in his tour is minimal. If he has

the distance to tour every pair of cities, he has all the data necessary to find the

minimum, but it is by no means obvious how to use these data in order to get the

answer. This problem is called the travelling salesman problem (TSP).

There are three aspects of the history of any mathematical problem: how it arose,

how research on it influenced other developments in mathematics, and how the prob-

lem was finally solved. If, as in the TSP, the problem is to develop an algorithm that

satisfies formal or informal standards of efficiency, the TSP has not yet been solved.

This modest-sounding exercise is in fact one of the most intensively investigated prob-

lems in computational mathematics, the first problem in the book Computers and

Intractability [8], and the most common conversational comparator (‘Why. It’s as

hard as the traveling salesman problem!’) [20]. The origin of the TSP along with its

name is unclear. There is a brief reference to the problem in the German handbook

41

printed in 1832 Der Handlungsreisende wie er sein soll und was er zu thun hat, um

Aufträge zu erhalten und eines glcklichen Erfolgs in seinen Geschften gewiss zu sein

Von einem alten Commis-Voyageur (‘The traveling salesman problem, how he should

be and what he should do to get Commissions and to be Successful in his Business.

By a veteran Traveling Salesman’).

According to Applegate et al. [1] mathematical problems related to the traveling

salesman problem were treated in the 1800s by Sir William Rowan Hamilton and by

Thomas Penyngton Kirkman. The general form of the TSP appears to be first studied

by mathematicians such Karl Menger in the 1930s and later promoted by Hassler

Whitney and Merrill Flood. Two of the earliest papers containing mathematical

results concerning the TSP are by Marks [24] and Ghosh [9], appearing in the late

1940s in which they show that the expected length of an optimal tour on n vertices

randomly allocated on a unit square is at least (
√
n− 1√

n
)/
√

2 and more than 1.27
√
n

respectively. Their work lead to a famous result of Beardwoood et al. [2] published in

1959 whose result states that with probability 1, as n approaches infinity the optimal

tour length divided by
√
n will approach some constant value β 1.

By the end of the 1960s, it was well appreciated that there appears to be a

significant difference between hard problems such as the TSP, and easy problems.

The problems for which there exists good algorithms are known as the P class, for

polynomial time. A possibly more general class is known as NP , for non deterministic

polynomial time. The NP class consists of those problems that are verifiable in

polynomial time. That is, if we are given a potential solution then we could check if

the given solution is correct in polynomial time. A problem is called NP − complete

if every problem in NP is polynomial reducible 2 to it. The problems for which

the existence of a polynomial-time algorithm implies that every NP problem has

1We will later review this asymptotic property in Section 3.1
2Let A be an algorithm for the solution of problem B. A problem C is polynomially reducible

to problem B if it can be solved in polynomial time by an algorithm that uses A as a subroutine
provided that each subroutine call of A counts as one step.

42

a polynomial-time algorithm, are called NP − hard problems. In 1972, Karp [14]

showed that the TSP is NP − hard. The algorithm developed by Held and Karp in

1972 still carries the best known guarantee on the running time of a general solution

method for the TSP with a O(n22n) bound. Since deterministic TSP solutions are

hard to solve, heuristic TSP methods started being developed.

Heuristic methods are used to speed up the process of finding a satisfactory so-

lution, where an exhaustive search is impractical. If a heuristic algorithm generates

solutions that are reasonably close to the optimal in polynomial time, then the heuris-

tic algorithm is called an approximation algorithm. A well known approximation

algorithm for the TSP is the Christofides method (1976), which guarantees a solution

within a length at most of 1.5 times the optimum. Measuring the performance of a

heuristic algorithm requires knowing the optimal TSP tour. A common way of mea-

suring the performance of TSP heuristics is to compare its results to the Held-Karp

lower bound. This measure, which is relatively quick and easy to compute, is useful

when evaluating the quality of near optimal solutions for large problems where the

true optima are not known. The Held-Karp lower bound can be found in polynomial

time by using the simplex method and a polynomial constraint separation algorithm

[35]. For example, NN averages less than 24% above the Held-Karp lower bound

on random Euclidean instances with N ranging from 10,000 to 1,000,000, while for

a selection of 15 of the largest 2-dimensional instances from Version 1.2 of TSPLIB

3(including all 11 with N > 3000), NN averaged roughly 26% above [13]. Christofides

algorithm normally keeps within 15% to 20% of the Held-Karp lower bound with a

complexity O(n3) [28].

The dynamic traveling salesman problem (DTSP) is a combinatorial optimization

problem where the objective is to minimize the Euclidean distance that takes to

visit all the demands in a dynamically changing environment. In the classic TSP,

3TSPLIB is a library of sample instances for the TSP (and related problems) from various sources
and of various types.

43

one tries to minimize the time in a static environment that is known before starting

the travel, while in the DTSP new demands appear randomly at a Poisson rate.

The distribution of the demands in the Euclidean plane is uniform and independent.

According to Regan et al. [33], Psaraftis first introduced the DTSP in 1988 [32].

The traditional TSP can be said to be static as well as deterministic since TSP

deals with demands whose location are known in advance to the planning process;

this provides a perfect set-up for applying advanced mathematical based optimization

methods such as partitioning [23]. The traditional travelling salesman problem could

be formulated as:

1. All information relevant to the planning of the routes is assumed to be known

by the planner before the routing process begins.

2. Information relevant to the routing does not change after the routes have been

constructed.

whereas in the dynamic counterpart of the traveling salesman problem considers

a TSP in which a subset of new demands arrives after demands are being served; it

can be summarized as:

1. Not all information relevant to the planning of the routes is known by the

planner when the routing process begins.

2. Information can change after the initial routes have been constructed.

A related problem to the DTSP is the dynamic traveling repairman problem

DTRP. We will talk about some results belonging to the DTRP that will be helpful

in the analysis of the DTSP.

44

3.1 A Stochastic and Dynamic Vehicle Routing

Problem in The Euclidean Plane

In the DTRP the vehicle serves demands, in a dynamic and stochastic environment,

with the goal of minimizing the total waiting time of demands rather than the total

travel distance in the system. As in the DTSP demands arrive at a Poisson rate and

are uniformly and independently distributed in a Euclidean service region.

Our study of the DTSP is based on the work of Bertsimas et al. [3] on DTRP,

whose work was initially motivated by Psafarftis’s definition of the DTSP. The DTRP

closely resembles the DTSP, and, as is the case of the TSP, the TRP is NP-complete

[34]. Their work analyses the performance of the DTRP under different policies and

traffic intensities and is briefly explained in this section.

Tools

Before talking about their results, we need to introduce some mathematic tools used

in their work.

Queues Queuing theory can be described as follows: consider a server and a popu-

lation of demands, which at some times enter the server in order to be serviced. It is

often the case that the server can only serve a limited number of demands. If a new

demand arrives and the server is exhausted, it enters a waiting line and waits until

the server becomes available. So we can identify three main elements in a queue: the

arrival of demands, the server and the waiting line.

The notation GI/G/1 represents a single server that has unlimited queue capacity

and infinite calling population, demands are independent and follow a general distri-

bution (that might not be exponential), and the distribution of the service time may

follow any general statistical distribution.

45

It is known [15] that the expected waiting time W in a GI/G/1 queue for demands

is

W ≤ λ(σ2
a + σ2

s)

2(1− ρ)
, (3.1.1)

where 1
λ

is the expected interarrival time, s is the expected service time, ρ = λs is

the traffic intensity, and σ2
a and σ2

s are the variances of the interarrival and service

time distribution, respectively. If ρ→ 1, the upper bound is asymptotically exact.

M/G/1 queue represents a single server that has unlimited queue capacity and infinite

calling population. The arrival of demands is a Poisson process and the distribution

of the service time may follow any general statistical distribution. It is known [16]

that the expected waiting time W is

W =
λs2

2(1− ρ)
, (3.1.2)

where s2 = σ2
s + s2 is the second moment of the service time and ρ = λs.

If we consider a queueing system that contains k queues Q1, Q2, . . . , Qk each with

finite capacity. Customers arrive according to a Poisson process with rate λ
k
. The

queues are served by a single server that serves each queue until is empty before

proceeding to the next one in a fixed cyclic order. The travel time around the circles

is a constant d. The service time at every queue are independent and identically

distributed random variable with mean s and second moment s2. The expected

waiting time for this system is

W =
λs2

2(1− ρ)
+

1− ρ
k

2(1− ρ)
d, (3.1.3)

where ρ = λs.

46

Geometric Probability Through the analysis of the different policies the expected

distance the server needs to travel plays an important role. Given X1 and X2 two

uniformly and independently distributed random variables in a square of area A, then

from [19]

E‖X1 −X2‖ = c1
√
A and E‖X1 −X2‖2 = c2A,

where c1 ≈ 0.52 and c2 ≈ 1
3
. If x∗ is the center of a square of area A, then

E|X1 − x∗| = c3
√
A and E|X1 − x∗|2 = c4

√
A,

where c3 ≈ 0.838 and c4 = 1
6
.

Asymptotic Properties of the TSP in the Euclidean Plane LetX1, X2, . . . , Xn

be independently and uniformly distributed demands in a square of area A and Ln

denotes the length of the optimal tour through the points. Then there exist a constant

βTSP , such that

lim
n→∞

Ln√
n

= βTSP ,

with probability 1 [2]. The estimated value of βTSP is βTSP ≈ 0.72 [12]. It is also

known [20] that

lim
n→∞

V (Ln)

n
= 0.

Space Filling Curves An N-dimensional space-filling curve is a continuous, sur-

jective function from the unit interval [0, 1] to the hypercube [0, 1]N . Let C be the

unit circle and S be the unit square. Let ψ be a 2-dimensional space filling curve from

C onto S. The following properties results were obtained from Platzman et al.[30]. If

θ, θ′ ∈ C, then

‖ψ(θ)− ψ(θ′)‖ ≤ 2|θ − θ′|.

If X1, . . . , Xn are any n points in S and Ln is the length of a tour of these n points

47

formed by visiting them in increasing order of their preimages in C, then

Ln ≤ 2
√
n.

If the points X1, . . . , Xn are independently and uniformly distributed in S, then

there exists a constant βSFC , such that

lim
n→∞

sup
Ln√
n

= βSFC ≈ 0.956,

with probability one.

Problem Definition and Notation

The problem is defined in a convex bounded region A of area A that contains a server

that travels at a constant unit velocity between demands. Demands for service arrive

according to a Poisson process with rate λ, and their location are independent and

uniformly distributed in A. Each demand i requires an independent and identically

distributed amount of on-site service si with mean s > 0 and second moment s2. It

is assumed, for simplicity, that A is a square area.

The traffic intensity is given by ρ = λs. The elapsed time between a demand i

arrives and its service is completed is denoted by Ti. The waiting time of a demand

i, Wi is defined by Wi = Ti − si. The steady-state system time T is defined by

T = limi→∞E(Ti) and W = T −s. Since on-site service times are randomly assigned,

the goal is to find a policy that minimizes T , and this optimal system time is denoted

by T ∗.

The M/G/1 model represents a single server visiting demands that arrive at Pois-

son rate, where each demand requires an identical and independent general distribu-

tion to be served. Note that we cannot treat the DTRP as a M/G/1 queue since in

the total service time of the DTRP we have to consider the travel time and the on-site

48

time. Although the on-site service times are independent, the travel times generally

are not. Hence, the total service time are not identically distributed random variables,

and therefore the methodology of M/G/1 queues is not applicable.

Lower Bound on the Optimal Policy

The performance of the proposed policies used in the DTRP will be evaluated with

respect to two lower bounds. When ρ → 0 that is when the arrival rate of new

demands is significantly smaller than the expected service time, the following light

traffic lower bound is used:

T ∗ ≥ E(‖X − x∗‖)
1− ρ

+
λs2

2(1− ρ)
+ s,

where x∗ is the median of the region A. If A is a square then E(‖X−x∗‖) = 0.383
√
A.

When ρ → 1 that is when the arrival rate of new demands is approximately the

same as the expected service time, the following heavy traffic lower bound is used:

T ∗ ≥ γ2
λA

(1− ρ)2
− 1− 2ρ

2λ
, (3.1.4)

where γ ≈ 0.266. If it is assumed that locations of demands at service completion

epochs are approximately uniform then the value of γ = 1
2
. The larger value of γ is

used to benchmark the different policies.

Note that in the lower bound of the heavy traffic intensity the waiting time grows

at least as fast as 1
(1−ρ)2 rather than 1

(1−ρ) , as is the case in the classical queuing

system. Moreover, it is a function of the first moment of the on-site service time,

another important difference from classical queuing system.

49

Proposed Policies

Several policies were proposed for the DTRP. The first-come, first-served policy

(FCFS) and the stochastic queue median policy (SQM) were evaluated under light

traffic.

FCFS If demands are present at the end of a service, next demand is served accord-

ing to FCFS policy; however, when there is not any unattended demand after a service

completion, the server waits until a new demand arrives before moving. Because de-

mands locations are independent of the order of arrival and the number of demands

in queue, the system behaves like a M/G/1 queue. Note that the travel times are

not strictly independent 4, but they are identically distributed as it is the distance

between two independent uniformly distributed locations in A. Thus, formula 3.1.2

can be used to find the average system time of the FCFS policy:

TFCFS =
λ(s2 + 2c1

√
As+ c2A)

2(1− λc1
√
A− ρ)

+ s+ c1
√
A,

where c1 ≈ 0.52. This policy is stable when λc1
√
A+ ρ < 1; thus, it is unstable when

ρ→ 1. For the light traffic case,

TFCFS
T ∗

≤ + c1
√
A

s+ c3
√
A

as λ→ 0,

where c1 ≈ 0.52, c2 ≈ 1/3, and c3 ≈ 0.383. The worst case scenario for this policy is

when s→ 0 then

TFCFS
T ∗

≤ c1
c2
≈ 1.36.

4Consider the case the last traveled distance was
√

2A that is the server is currently in one corner.

50

SQM The FCFS policy can be modified to achieve asymptotic optimal performance

in light traffic. Consider the policy of locating the server at the median of A and

following a FCFS policy, where the server travels directly to the service site from the

median, service the demand, returns to the median after the service is completed,

and waits there if no new demands are present. This policy is called the stochastic

queue median policy (SQM). Similarly as in the FCFS policy, the system behaves as

an M/G/1 queue. However, SQM varies from a system viewpoint since each service

time includes on-site service plus the round-trip from the median and the demand

but, from an individual demand viewpoint, includes the wait in queue, one-way travel

time to the service location, and on-site service time. The average system time under

this policy using equation 3.1.2:

TSQM =
λ(s2 + 4c3

√
As+ 4c4A)

2(1− 2λc3
√
A− ρ)

+ s+ c3
√
A,

where c3 ≈ 0.383, c4 ≈ 1/6, and the stability of the policy when 2λc3
√
A + ρ < 1.

Then,

TSQM
T ∗

= 1 as λ→ 0.

Thus, the SQM policy is asymptotically optimal as λ approaches zero.

The FCFS and SQM policies become unstable for ρ→ 1 since the average distance

traveled per service d remains constant, so d must decrease as λ increases. A policy

that is stable for all values of ρ needs to increasingly restrict the distance the server

can travel to service demands as ρ grows. In the case of heavy traffic, the following

policies were analyzed: partitioning (PART), traveling salesman (TSP), space filling

curves (SFC), and nearest neighbor (NN).

PART The PART policy restrict the distance the server can travel through a parti-

tion of the (square) service region A into m2 equal subregions where m is even, so the

51

server can perform a closed tour. The value of m increases with ρ as the size of the

partitions restrict the distance the server can travel. The server services the demands

of a subregion following a FCFS policy, and when no more demands are presents,

the server travels in a straight line to the next adjacent subregion and services until

no demands are left. This pattern is continuously repeated. For simplicity, it was

considered that the last location of a given subregion is projected onto the next sub-

region to determine the server’s new starting location though in practice the server

can start in the first demand of the new subregion. Each subregion behaves as an

M/G/1 queue, and the policy as a whole behaves as a cyclic queue with m2 queues,

where the optimal m is choose according λ, S, and A, then

TPART ≈ 2c1
2λc1
√
A

(1− ρ)2
+

λs2

1− ρ
.

When ρ→ 1,

TPART
T ∗

≤ 4.2 as ρ→ 1,

when γ takes the conjectured value 1/2. Thus, when ρ < 1 there exists an optimal

policy.

TSP The TSP is based on collections of demands into sets that can then be served

using an optimal TSP tour. Let Nk be the kth set and n a parameterizing constant

that indicates the number of demands in each set. The first n demands are assigned

to N1, the following n + 1 to 2n demands to N2, etc. When all demands in N1 have

arrived, a TSP tour starting and ending in the server’s depot (randomly located) will

visit the n demands from set N1, and if all demands in N2 have arrived when the tour

on N1 is completed, they are served using a TSP tour; otherwise, the server waits until

demands in N2 have arrived before serving it. Thus, sets are queued and are serviced

in a FCFS order. Since the iterarrival time, the time for n new demands to arrive,

52

and service time, n on-site services plus the travel time of the tour, are identically

distributed, the service of sets forms a GI/G/1 queue, where the interarrival time

follows a gamma distribution with shape n and parameter 1
λ
. After using equation

3.1.1 for the mean waiting time of GI/G/1 queues with the asymptotic properties of

the TSP, and finding an optimal value of m, the average system time for this policy

is

TTSP ≤ β2
TSP

λA

(1− ρ)2
+
βTSPλ

√
A(1

λ2
+ σ2

s)

(1− ρ)
3
2

+
β2
TSPλA

1− ρ
ρ→ 1,

and by using the heavy traffic lower bound,

TTSP
T ∗

≈ 2 as ρ→ 1.

As in practice the TSP policy is heuristic rather than optimal, the ratio can be

slightly larger than 2.

SFC Let ψ, C, and S be defined as in the Tools Section. Then the SFC policy is to

service demands as they are encountered in repeated clockwise sweeps of the circle

S, where the depot could be treated as a permanent demand and be visited once per

sweep. Let W0 denote the waiting time of a tagged demand, N0 denote the set of

locations of the N0 demands served prior to to W0, and L denote the length of the

path from the server’s location through N0 to W0 induced by the SFC rule. Let si be

the on-site service time of demands i ∈ N0, and R be the residual service time of the

demand under service. Then

W0 =
∑
i∈N0

si + L+R,

53

then

W = E(N0)s+ E(L) +
λs2

2
. (3.1.5)

In steady state, the expected number of demands served during a wait is equal to the

demands that arrive, thus E(N0) = N = λW . Since L is the length of a path through

N0 + 2 points in the square A, from the Space Filling Curve Subsection from Tools,

L ≤ 2
√

(N0 + 2)A. Then, by using Jensen’s inequality in the third statement,

E(L) ≤ 2E
√

(N0 + 2)A ≤ 2
√

(N + 2)A ≤ 2
√
λWA+ 2

√
2A.

Plugging these results into 3.1.5 and solving W where T = W + s, then

TSFC ≤ γ2SFC
λA

(1− ρ)2
+ o

(
1

(1− ρ)2

)
, (3.1.6)

where γ2SFC ≤ 2. The value of γSFC is based on the worst case tour and is probably

too large. If it is assumed that the clockwise interval between the preimages of the

server and the tagged demand is a uniform [0, 1] random variable and the N0 points

are uniformly distributed on this interval, then γSFC ≈ 0.64 -the simulated value of

γSFC ≈ 0.66-. Thus, the system for this policy is therefore about 15% lower than

that of the TSP policy. Equation 3.1.6 shows that SFC policy grows within constant

factor of optimal.

NN Finally, the NN policy was considered for two reasons: 1) NN was used in the

heavy traffic lower bound of the equation 3.1.4, and 2) the shortest processing time

rule is known to be optimal for the classic M/G/1 queue [5]. Let di be the travel

distance to the demand i from the location of previous demand served. Because of

the dependencies among the travel distance di, there was no rigorous analytical result

produced for the NN policy, but if it is assumed there exists a constant γNN such that

54

E(di|NT) ≤ γNN

√
A

NT

, (3.1.7)

where NT is the number of demands in the system at a completion epoch, then it is

possible to show that [17]

TNN ≤ γ2NN
λA

(1− ρ)2
as ρ→ 1.

The authors performed simulation experiments identical to those on the SFC policy

to verify the asymptotic behavior of TNN and estimate γNN . The value of γNN ≈ 0.64

that is NN is 10% faster than TSFC . The simulations showed that the system time

follows the λA
(1−ρ)2 growth predicted by the lower bound in equation 3.1.4.

Conclusion

The DTSP and the DTRP consider that the region where demands arrive is a unit

square in the Euclidean space, and both severs travel at a constant unit velocity;

however, both problems differ in the conditions and objectives. In the DTRP, the

mean service time is positive, and their objective is to reduce the mean waiting time

of the demands, while, in the DTSP, the service time of each demand is zero, and the

objective is to establish the mean time the system has no demands to serve for the

first time. However, DTRP can give us some insight of what should be a good policy.

We have seen that the best DTRP policy in light traffic is SQM. When ρ → 0,

the server, in the SQM policy, tends to be free after a demand is served, and, by

positioning in the center of the region when it is free, the server reduces the expected

travel time to the new demand -and so the demand’s mean waiting time-. On the

other hand, the rest of the policies (FCFS, TSFC, and NN) which do not try to locate

the server in a position that would leave it close to the new demand to come have

poorer performance. However, as the traffic ρ increases, all these policies outperform

55

SQM. These policies put less emphasis on prioritizing the order demands arrive and

more emphasis on serving as many demands as possible in the short term. The policies

that best perform are the NN and SFC which completely ignore the order of arrival

of demands, whereas the TSP policy, which serves blocks organized by the order of

arrival, and the PART policy, which serves demands in each partition according to

the FCFS policy, keep some consideration in the order demands arrived and are less

efficient than NN and SFC.

In other words, policies that under heavy traffic are able to reduce the total waiting

time of demands by reducing the coefficient between the length of the path and the

number of demands served perform better. Moreover, since the service time is out of

control in any policy, good heavy traffic policies in the DTRP that focus in reducing

the travel distance from one demand to the other will perform better. Finally, since

in the DTSP we seek to reduce the travel distance from one demand to the other,

good DTRP heavy traffic policies should be efficient when used in the DTSP.

3.2 The DTSP with the NN Policy as a Discrete

Markov Chain

Let ξt be the set of unattended demands, including the new demands created, at the

moment the tth demand xσ(t) is served. Let θ(t) be the set of new demands uniformly

distributed in the unit square generated by a Poisson process with rate λ on time

interval of size dt. The time dt =‖ xσ(t−1) − xσ(t) ‖2 is the shortest distance from

demand xσ(t−1) to the rest of the unattended demands ξt−1, where xσ(t) ∈ ξt−1.

If we define the triple

Xt = {ξt , xσ(t) , xσ(t+1)} for t = 1, 2, . . . (3.2.1)

56

where the first element ξt = ξt−1 \ xσ(t) ∪ θ(t) is the set of unattended demands

that evolves subtracting one served demand and adding the new generated demands.

The second element xσ(t) is the tth visited demand and the reference point used to

find the closest unattended demand xσ(t+1) from ξt. The system starts with X1 =

{{x2} , x1 , x2}, where xσ(1) = x1 and xσ(2) = x2, and it grows according to equation

3.2.1. The process X is a discrete Markov chain since the state Xt depends on the

previous state Xt−1, and it is independent of how the process arrived to state Xt−1

since the order in which demands arrive is irrelevant.

The DTSP with NN policy (DTSPNN) consists in generating a path Lt = L(xσ(1),

xσ(2), . . .) that connects with constant unit velocity demands that are created accord-

ing to a Poisson random variable Zλ(t) with mean λt and uniformly distributed in

a unit square. Given a time limit Tλ > 0, the process stops when either there are

no more points to visit or |Lt| ≥ Tλ. Demands are chosen according to the closest

distance to the server.

Let xσ(t) be the tth demand served at time
∑t

k=2 dk and the closest unattended

demand created up to time
∑t−1

k=2 dk from xσ(t−1), where dt =‖ xσ(t−1) − xσ(t) ‖2. The

set of demands created on a time interval dt by Zλ(dt) is denoted by θ(dt). We can

summarize the algorithm in the following steps:

1. Start with t = 2 and two random demands x1 and x2 where x1 is the starting

position, so Lt = L(xσ(1), xσ(2)) = L(x1, x2).

2. Generate Zλ(dt) new demands where dt =‖ xσ(t−1) − xσ(t) ‖2.

3. Visit the closest demand from xσ(t) to
t⋃

k=2

θ(dk) \ {xσ(1), . . . , xσ(t)} denoted by it

xσ(t+1).

4. If either
t⋃

k=2

θ(dk) \ {xσ(1), . . . , xσ(t+1)} 6= ∅

57

or

|Lt| =
t∑

k=2

dk < Tλ,

set t = t+ 1 and go back to step 2. Otherwise, stop.

We will refer to one execution of the algorithm as an ”iteration” and the whole

collection of different iterations as a ”simulation”.

The DTSPNN can be modelled by the process Yt = f(Xt) where the function

f : Xt → N ∪ {0} returns the number of unattended demands of the process X at

time t, and Dt+1 = g(Xt) where the function g : Xt → R+ returns the distance to the

closest unattended demand from the last served demand xσ(t) at time t.

The number of unattended demands in the present does not provide enough infor-

mation for the calculation of P (Yt+1 = n|Yt = m). The future number of unattended

demands is influenced by the number of unattended demands generated by a Poisson

process with rate λ in a time interval dt; the problem lies in the fact that we cannot

estimate dt if the locations of the unattended demands are unknown.

If we knew the distribution of the unattended demands at a time t, we would be

able to calculate the distribution of the number of unattended demands at a time

t + 1 since the distance dt+1 can be obtained from xt. Then, [Yt+1|Xt = xt] =

Yt − 1 + Zλ(dt+1), and if we were to have E(Yt+1|Xt) = Yt then E
(
Zλ(dt+1)|Xt

)
= 1

and E(dt+1|Xt) = 1
λ
.

We can also obtain some information about the distribution of Dt+1 given Xt = xt.

Assuming the algorithm visited demand pt−1 and then pt, let Dt+1 be the distance

between last visited demand pt and the next demand Pt+1; I be the area of the

intersection of the two circumferences C1(pt−1, dt) and C2(pt, Dt+1); R be the area of

the unit square not covered by either C1 or C2; and N be the area of C2 that does

not intersect with C1 as shown in Figure 3.1,

58

Figure 3.1: Distribution of the distance to the closest unattended demand

Then,

P (Dt+1 < l|Xt = xt) = P
(
{∃ new demands in I ∪N}

⋃
{∃ old demands in N}

)
= P

(
{∃ new demands in I ∪N}

⋃
{all old demands are in R}c

)
,

since there are no old demands in C1.

Since the locations of new demands are independent of the locations of old demands,

P (Dt+1 < l|Xt = xt) = P (∃ new demands in I ∪N) + P ({all old demands are in R}c)

− P (∃ new demands in I ∪N) · P ({ all old demands are in R}c)

= (1− e−λ|I∪N |) + (1− |R|yt−1) − (1− e−λ|I∪N |) · (1− |R|yt−1)

= 1− e−λ|I∪N ||R|yt−1.

Since the exact probability is hard to obtain, we will find a lower and upper bound.

When R has the smallest area |R|s and I ∪N the largest area |I ∪N |l, then

59

P (Dt+1 < l|Xt = xt) ≤ 1− e−λ|I∪N |l |R|yt−1s for 0 < l <
√

2, where

|R|s = 1− (πl2 + πd2t − |I|) (3.2.2)

|I| = l2 cos−1(
l

2dt
) + d2t cos−1(1 +

l2

2d2t
)− 1

2

√
l2(2dt − l)(2dt + l) (3.2.3)

|I ∪N |l = πl2. (3.2.4)

The area |R|s is the smallest when the two circles are located such that their

intersection with the unit square is the largest, and the area |I∪N |l is the largest when

the intersection between the circle with radius l is located such that its intersection

with the unit square is the largest.

On the other hand, a lower bound can be calculated when it is considered that R

is the largest area |R|l and I ∪N the smallest |I ∪N |s, then

P (Dt+1 < l|Xt = xt) ≥ 1− e−λ|I∪N |s|R|yt−1l for 0 < l <
√

2, where

|R|l = 1− (
πd2t
4

+
πl2

2
− 1

2
|I|) if 2l > dt > l (3.2.5)

|R|l = 1− πd2t
4

if dt > 2l (3.2.6)

|R|l = 1− (
πl2

4
+
πd2t
2
− 1

2
|I|) if 2dt > l > dt (3.2.7)

|R|l = 1− πl2

4
if l > 2dt (3.2.8)

|I ∪N |s =
πl2

4
(3.2.9)

The area |I| was previously defined. Equation 3.2.5 occurs when the center of the

circle with largest radius dt is in a vertex of the unit square, and the center of the

circle with smallest radius l is on a side of the unit square. When dt is at least twice

as large as l, equation 3.2.5 becomes 3.2.6. When l > dt, equations 3.2.5 and 3.2.6

are equivalent to 3.2.7 and 3.2.8 respectively. Equation 3.2.9 is the area of the circle

with radius l and center in a vertex of the unit square.

60

An upper bound of the expected distance to the next demand can be obtained,

E(Dt+1|Xt = xt) =
∫ √2
0

P (Dt+1 > l|Xt = xt)dl

≤
∫ √2
0

e−λ|I∪N |s|R|yt−1l dl

=

∫ dt
2

0

e−λ
πl2

4 (1− πd2t
4

)yt−1dl +

∫ dt

dt
2

e−λ
πl2

4

(
1− (

πd2t
4

+
πl2

2
− 1

2
|I|)
)yt−1

dl

+

∫ 2dt

dt

e−λ
πl2

4

(
1− (

πl2

4
+
πd2t
2
− 1

2
|I|)
)yt−1

dl +

∫ √2
2dt

e−λ
πl2

4 (1− πl2

4
)yt−1dl.

Equation 3.2.2 shows that when the number of unattended demands Yt is large,

the distance between old demands is small, so, with respect to dt, Dt+1 should be

small, whereas when Yt is small, there are not many old demands so Dt+1 should be

larger than dt. The rate λ also plays a role in the distribution of Dt+1 since when

λ increases, the distance Dt+1 should be smaller as the region tends to have more

demands. Thus, we can assume that after some time -given that the server has not

yet swept all the demands- the system will stabilize and there exists a quasi-stationary

distribution for the number of unattended demands.

Let Lt be the length of the tour of the server after it visits the tth demand, u∗ be

the mean number of unattended demands of the quasi-stationary distribution, and t∗

be the mean time that takes the system to arrive to the quasi-stationary distribution.

After the number of untended demands of an iteration arrives to u∗, the mean

number of unattended demands of the iteration will remain close to u∗ until the

iteration vanishes. In order to remain around this value, the number of demands

visited has to be approximately equal to the number of demands created. In other

words, the mean distance between visits has to be 1
λ
,

E∗(dt|Xt) =
1

λ
for Lt ≥ t∗, (3.2.10)

where E∗ denotes expectation under the quasi-stationary distribution.

61

In Section 3.1 we have seen that if demands are independently and uniformly dis-

tributed in the unit square and served according to SFC policy, then with probability

1.

lim
n→∞

sup
Ln√
n
≈ 0.956,

on the other hand, when Ln is the length of the optimal TSP tour,

lim
n→∞

Ln√
n
≈ 0.72.

Motivated by these two lower bound we are going to assume that there is a positive

constant c such that

E∗(dt|Xt) ≤
c√
u∗
,

then

E∗(dt|Xt) =
1

λ
≤ c√

u∗
,

and,

u∗ ≤ λ2 c2.

In section 4.1.2 we will show an estimate that the expected number of unattended

nodes u∗ when the system stabilizes is associated with the rate λ,

u∗ = 0.468λ1.932,

so c =
√

0.468 ≈ 0.68. This constant is close to the one on equation 3.1.7 whose

value is γNN ≈ 0.64.

62

Chapter 4

The DTSP Simulations

Since it is believed that there is no time efficient algorithm to solve NP-hard prob-

lems, approximation algorithms are developed which generate near-optimal solutions.

Probabilistic analysis of algorithms study the performance of a algorithm as a func-

tion of the input and are used to: predict the resources such as time and memory

that the algorithm will consume, compare algorithm with competing alternatives,

improve the algorithm by spotting the performance bottlenecks, or explain observed

behavior. There are basically two categories of performance analysis, namely, combi-

natorial worst-case, and probabilistic average-case performance analysis. Essentially,

a probabilistic analysis is based on certain assumptions on the probability distribu-

tion of instance I. Then we can find, for example, the expectation E(A(I)), the

ratios E(A(I))
E(opt(I))

and E(A(I)
opt(I)

), and the difference E(A(I))−E(opt(I)), where A stands

for an approximation algorithm solving a maximization problem, A(I) and opt(I)

denote respectively the solution produced by algorithm A and the optimal solution

for instance I. Or, one can show that algorithm A finds an optimal solution with

high probability. The probabilistic analysis of algorithms is a refinement of worst-case

analysis, which is often too pessimistic compared to the performance of algorithms in

actual practice.

63

One common distinction is that probabilistic algorithms, unlike deterministic ones,

make random choices when computing. They are commonly referred to as ”coin-

flipping algorithms.” Such algorithms are likely to produce different results for the

same problem when posed in different circumstances. On the other hand, the proba-

bilistic analysis of an algorithm incorporates randomness into the data processed by

an algorithm; that is, it considers the pair (algorithm, problem instance) and proba-

bilistically explores the algorithm behavior over a large variety of problem instances.

Typically, the analyst can make statements about the probability of selecting a partic-

ular instance, or focus attention on the distribution of suitable variables that describe

the problem instance. The task is then to relate the algorithm performance to these

variables.

The Monte Carlo simulation is a non deterministic method that relies on repeated

random sampling to determine the properties of some phenomenon; it is used to

approximate problems whose exact solution is complex and difficult to evaluate. The

method can be generalized in the following steps:

1. Define a domain of possible inputs.

2. Generate random inputs from a probability distribution over the defined do-

main.

3. Compute the inputs.

4. Repeat steps 2 to 3 n times, where n is large.

5. Aggregate the results.

We will first use Monte Carlo to evaluate the NN policy for the DTSP with dif-

ferent arrival rates and then we will use it to evaluate the DTSP under modified NN

policies. In the DTSP demands arrive at a Poisson rate and are both randomly and

64

uniformly distributed in the unit square region, but the NN will perform a determin-

istic computation on these inputs; that is, we will use the Monte Carlo method to

perform a probabilistic analysis of a deterministic algorithm. A more detailed expla-

nation of the implementation of the Monte Carlo simulation of the DTSP with NN

policy follows.

4.1 The DTSP with Nearest Neighbour Policy

To explain the DTSPNN simulation, we will use the notation introduced in Section

3.2. We iterate the algorithm a number of times. If an iteration stops before Tλ, the

exact time the iteration stopped and the number of points that visited is stored. For

those iterations that did not vanish before specific moments 0 < T1,λ < T2,λ < . . . <

TN,λ = Tλ, we check the number of points both visited and unattended. We will use

the subindices s and s′ to denote iterations that did and did not stop respectively to

express, using the collected information, the following results:

1. The proportion of iterations that did not stop at Ti,λ, denoted by ps′(Ti,λ)
1.

2. Among the iterations that stopped before Ti,λ: Mean time spent ts(Ti,λ) before

stopping and the mean number of served demands (visited) vs(Ti,λ).

3. Among the iterations that did not stop at time Ti,λ: Mean number of served

demands vs′(Ti,λ) and the mean number of unattended demands us′(Ti,λ).

4. Among all the iterations: Mean number of demands visited v(Ti,λ) and mean

number of demands unattended u(Ti,λ).

We can establish some relations among these quantities.

• At any time Ti,λ:

1Though lightly cumbersome, the complete notation should be ps
′

λ (Ti,λ).

65

ts(Ti,λ) ≤ Ti,λ; ts′ is not included since when ps′(Ti,λ) > 0, ts′(Ti,λ) = (Ti,λ).

u(Ti,λ) = us′(Ti,λ) ps′ .

v(Ti,λ) = vs(Ti,λ) (1− ps′) + vs′(Ti,λ) ps′ .

• When Ti,λ is sufficiently large:

λ Ti,λ = vs′(Ti,λ) + us′(Ti,λ) if ps′(Ti,λ) > 0.

vs(Ti,λ) = λts(Ti,λ).

Table 4.1 shows the state of the simulation at specific times Tλ so that 1−ps′(Tλ) ≈

{ 9
10
, 8
10
, . . . , 1

10
}. Each simulation of λ consists in 10,000 iterations.

66

Table 4.1: DTSPNN with λ = 3, . . . , 8

λ Ti,λ ps′ (Ti,λ) ts(Ti,λ) vs(Ti,λ) vs′ (Ti,λ) us′ (Ti,λ) v(Ti,λ) u(Ti,λ)

3

0.79 0.6984 0.377586 1.16479 2.03207 2.52864 1.7705 1.766
1.59 0.5996 0.561904 1.52448 4.07655 3.21748 3.0547 1.9292
3.6 0.4999 0.942441 2.41812 9.9946 3.90178 6.2056 1.9505
7.32 0.3998 1.67949 4.44302 21.8159 4.23512 11.3887 1.6932
12.56 0.3 2.83165 7.87757 38.902 4.282 17.1849 1.2846
20.25 0.2 4.49985 13.0779 63.866 4.37 23.2355 0.874
33.39 0.1 6.91583 20.7657 106.84 4.29 29.3731 0.429
150.83 0 11.4618 35.4313 - - 35.4313 0

4

0.3 0.8976 0.171958 1.02246 1.11854 2.42747 1.1087 2.1789
0.66 0.7993 0.309862 1.11809 1.77756 3.08557 1.6452 2.4663
2.66 0.6998 0.637834 1.83744 7.95241 5.17219 6.1167 3.6195
18.47 0.6 2.74702 9.09275 70.6742 6.775 46.0416 4.065
41.51 0.5 8.12959 30.0558 164.322 6.8136 97.1888 3.4068
68.62 0.4 15.8747 60.8272 274.623 6.74025 146.345 2.6961
103.75 0.3 25.7425 100.469 417.607 6.75033 195.611 2.0251
153.56 0.2 38.4372 151.708 620.784 6.8355 245.524 1.3671
242.33 0.1 55.6494 221.695 980.424 6.866 297.568 0.6866
1391.42 0 86.5959 347.283 - - 347.283 0

5

0.4 0.8889 0.206478 1.05131 1.27517 3.25582 1.2503 2.8941
3.8 0.7998 0.547544 1.74476 13.4546 7.87759 11.1103 6.3005
192.8 0.6999 30.8405 149.996 957.235 10.1137 714.982 7.0786
417.1 0.6 98.4164 486.333 2081.07 10.1862 1443.17 6.1117
694.5 0.5 187.978 934.024 3470.82 10.18 2202.42 5.09
1020.9 0.4 299.405 1491.8 5105.31 10.1928 2937.21 4.0771
1456.8 0.3 431.785 2154.83 7287.75 10.1567 3694.71 3.047
2041.1 0.2 593.714 2965.51 10213.7 10.046 4415.15 2.0092
3015.8 0.1 802.158 4008.61 15094.5 10.238 5117.2 1.0238
12593.6 0 1175.75 5879.56 - - 5879.56 0

6

5 0.8581 0.419118 1.50035 20.8245 11.3462 18.0824 9.7362
2230 0.8 316.611 1892.99 13367.2 14.4221 11072.4 11.5377
6520 0.6998 1661.95 9958.41 39104.6 14.2844 30354.9 9.9962
11335 0.6 3463.88 20767.1 67993.1 14.3383 49102.7 8.603
17180 0.5 5598.16 33572.8 103055 14.3698 68314 7.1849
23990 0.4 8062.77 48357.4 143907 14.4093 86577.2 5.7637
33305 0.2999 10993.2 65937.3 199799 14.2768 106082 4.2816
45490 0.2 14517.4 87079.9 272915 14.1995 124247 2.8399
67845 0.1 19040.9 114221 407025 14.334 143501 1.4334
446080 0 26920.7 161493 - - 161493 0

7

100000 0.8026 22035.5 154271 700131 19.4047 592378 15.5742
110000 0.7938 25582.8 179106 770143 19.2982 648271 15.3189
230000 0.6962 72216.6 505612 1.61033e+6 19.2623 1.27472e+6 13.4104
380000 0.5932 130982 917058 2.66058e+6 19.4093 1.95131e+6 11.5136
550000 0.4946 195558 1.36922e+6 3.85083e+6 19.4127 2.59662e+6 9.6015
750000 0.3981 268028 1.87662e+6 5.25113e+6 19.4479 3.22001e+6 7.7422
1.02e+6 0.2983 354751 2.48381e+6 7.14150e+6 19.3027 3.87320e+6 5.758
1.39e+6 0.1986 459414 3.21661e+6 9.73196e+6 19.1813 4.51056e+6 3.8094
2.01e+6 0.0995 592565 4.14886e+6 1.40728e+7 19.4472 5.13630e+6 1.935

8

4e+6 0.883 997361 7.98010e+6 3.20068e+7 24.9785 2.91957e+7 22.056
1e+7 0.766 4.50188e+6 3.60226e+7 9.60205e+7 25.5666 8.19810e+7 19.584
2e+7 0.657 8.18151e+6 6.54663e+7 1.60034e+8 25.2938 1.27597e+8 16.618
2e+7 0.569 1.14394e+7 9.15347e+7 2.24049e+8 24.7469 1.66935e+8 14.081
4e+7 0.455 1.62610e+7 1.30116e+8 3.20069e+8 25.1648 2.16544e+8 11.45
4e+7 0.378 1.97410e+7 1.57962e+8 3.84083e+8 24.4709 2.43436e+8 9.25
6e+7 0.296 2.36231e+7 1.89025e+8 4.80103e+8 25.4561 2.75184e+8 7.535
8e+7 0.199 2.92357e+7 2.33935e+8 6.40140e+8 25.1307 3.14770e+8 5.001
1.16e+8 0.096 3.68867e+7 2.95156e+8 9.28203e+8 25.5 3.55929e+8 2.448

67

Conclusion

An important result shown in Table 4.1 is that all iterations eventually vanish; that is,

ps′(Ti,λ)→ 0 when Ti,λ →∞. For λ ≥ 3 2, us′ stabilizes after a short time compared

to the time taken to have all the iterations finished with no unattended demands. If

we can estimate, among the iterations that did not finish, the mean number u∗ of

unattended demands the process stabilizes, then we can estimate, among the itera-

tions that did not finish, the mean time t∗ at which the number of untended demands

stabilize. The estimation of t∗ is important as it indicates when the simulation sta-

bilizes, and once the simulation stabilizes, we can produce some predictions. Table

4.2 considers λ = 5 and 10,000 iteration, and it shows the evolution of the same sim-

ulation from Table 4.1 from a different point of view. The first time we observe the

simulation is at time 50 since by this time, according to Table 4.3, us′ is stabilized.

After time 50, we continue observing the status of the simulation every 300 unit of

times. In Table 4.1 times Ti,λ are chosen so that 1−ps′(Tλ) ≈ { 9
10
, 8
10
, . . . , 1

10
}, whereas

in Table 4.2 times Ti,λ are equally spaced. In the third column of Table 4.2, we have

added the ratio
ps′ (Ti,5)
ps′ (Ti−1,5)

between the current and previous proportion of iterations

that did not finish. This ratio remains between 0.79 and 0.83 when the number of

iterations are significant and stabilized; that is, under certain conditions, the iter-

ations in a simulation vanish following a geometric distribution whose parameter is

ps′ (Ti,5)
ps′ (Ti−1,5)

.

2We avoided the case when λ ≤ 3 since iterations are short-lived, and so they don’t get to
stabilize.

68

Table 4.2: Detailed DTSPNN with λ = 5

Ti,5 ps′ (Ti,5)
ps′ (Ti,5)

ps′ (Ti−1,5)
ts(Ti,5) vs(Ti,5) vs′ (Ti,5) us′ (Ti,5) v(Ti,5) u(Ti,5)

50 0.7713 0.7713 3.41331 14.8229 242.351 10.1923 190.315 7.8613
350 0.6256 0.811098 78.9938 389.606 1744.42 10.1122 1237.18 6.3262
650 0.5131 0.820173 174.928 868.838 3247.66 10.2083 2089.41 5.2379
950 0.4217 0.821867 273.634 1363.08 4749.96 10.156 2791.33 4.2828
1250 0.3423 0.811714 372.679 1858.9 6252.28 10.2068 3362.75 3.4938
1550 0.2812 0.821502 459.904 2295.67 7754.15 10.1245 3830.59 2.847
1850 0.2268 0.806543 546.916 2731.06 9255.81 9.94709 4210.88 2.256
2150 0.1855 0.817901 620.453 3099.36 10759.2 10.3353 4520.27 1.9172
2450 0.15 0.808625 689.996 3447.39 12260.7 9.99667 4769.39 1.4995
2750 0.1209 0.806 752.83 3761.68 13764.5 10.1572 4971.02 1.228
3050 0.0967 0.799835 810.32 4049.27 15267.8 10.1655 5134.1 0.983
3350 0.079 0.81696 856.058 4278.72 16765.8 9.9962 5265.2 0.7897
3650 0.0648 0.820253 896.297 4480.21 18267.9 10.1296 5373.66 0.6564
3950 0.0535 0.825617 930.815 4652.97 19770.1 10.0187 5461.74 0.536
4250 0.044 0.82243 962.163 4809.79 21273.9 10.4636 5534.21 0.4604
4550 0.0376 0.854545 985.088 4924.53 22778.2 10.2766 5595.82 0.3864
4850 0.0317 0.843085 1007.67 5037.61 24280.4 10.429 5647.6 0.3306
5150 0.0249 0.785489 1035.54 5177.19 25783.4 10.0763 5690.29 0.2509
5450 0.0219 0.879518 1048.61 5242.74 27284 10.2648 5725.45 0.2248
5750 0.0172 0.785388 1070.34 5351.67 28782.8 10.0581 5754.69 0.173
6050 0.0137 0.796512 1087.51 5437.67 30282.9 10.4526 5778.05 0.1432
6350 0.0119 0.868613 1096.84 5484.39 31785.3 10.3025 5797.37 0.1226
6650 0.0099 0.831933 1107.8 5539.28 33286.9 10.4848 5813.99 0.1038
6950 0.0078 0.787879 1119.83 5599.53 34784 10.1026 5827.17 0.0788
7250 0.0062 0.794872 1129.53 5648.14 36281.9 9.96774 5838.07 0.0618
7550 0.0053 0.854839 1135.22 5676.68 37773.8 10.4151 5846.79 0.0552
7850 0.0042 0.792453 1142.45 5712.92 39263.3 11.0476 5853.83 0.0464
8150 0.0034 0.809524 1147.98 5740.55 40784.6 11.2647 5859.7 0.0383
8450 0.0029 0.852941 1151.54 5758.34 42311 11.3793 5864.34 0.033
8750 0.0021 0.724138 1157.49 5788.18 43784.1 10.381 5867.97 0.0218
9050 0.0019 0.904762 1159.04 5795.98 45258.8 9.57895 5870.96 0.0182
9350 0.0015 0.789474 1162.26 5812.21 46678.7 10.2667 5873.51 0.0154
9650 0.0011 0.733333 1165.59 5828.87 48157.5 11.1818 5875.43 0.0123
9950 0.0005 0.454545 1170.77 5854.68 49695.8 10.8 5876.6 0.0054
10550 0.0004 0.8 1171.68 5859.22 52722 12.75 5877.97 0.0051
10850 0.0003 0.75 1172.64 5864.01 54216.7 11 5878.51 0.0033
11150 0.0002 0.666667 1173.61 5868.89 55477 14 5878.81 0.0028
11450 0.0001 0.5 1174.61 5873.88 56893 11 5878.99 0.0011
12650 0 0 1175.75 5879.56 - - 5879.56 0

Assuming that the rate iterations vanish is geometric between constant time in-

tervals, we can predict, based on the present information, the time a simulation will

first have a certain proportions of iterations that did not finish.

Suppose we choose a time interval [tl, tr] where we know that tl > t∗ and ps′(tl) 6=

ps′(tr) > 0; that is, we know that the time interval takes place after the number of

unattended demands stabilizes, and the time interval is wide enough to guarantee

that a reasonably number of iterations will vanish between tl and time tr. Then, we

will be able to estimate the time at which the number of iterations that did not finish

will arrive to a desired proportion pf . Having chosen pf -where pf < ps′(tr)-, we can

69

estimate the time te at which only the proportion pf of demands will be left in the

system.

Since the proportion of iterations that did not finish follows a geometric progres-

sion, then for n ∈ N we have

pf = ps′(tl)

[
ps′(tr)

ps′(tl)

]n
;thus, n =

ln

(
pf

ps′ (tl)

)
ln

(
ps′ (tr)
ps′ (tl)

) , (4.1.1)

and the estimated time te at which the proportion pf will occur is

te = tl + n(tr − tl). (4.1.2)

Consider Table 4.1 when λ = 6. Suppose we have run the simulation until time

6520 and chosen tl = 2230 and tr = 6520, and we want to estimate the time te that

the proportion of iterations that did not stop is pf = 0.1. Then, by equation 4.1.1

n ≈ 15.572, and by equation 4.1.2 the time there will be 10% of the iteration running

is te ≈ 69.037, which is close to 67.845, the value from Table 4.1.

The precision of the prediction will depend on the fact that a significant number of

iterations stopped between tl and tr; that is, by either choosing a large time interval

or by increasing the number of iteration in a simulation. These considerations will let

us have a clear snapshot of the progression of how iterations vanish. In our example

we have not verified that tl > t∗ as 2230 seems a conservative election -enough time

has passed to ensure that us′ stabilizes-; however, if we could estimate t∗, we would

be able to make predictions with smaller values of tl.

70

4.1.1 Simulated Annealing and First Local Maximum Esti-

mation of u∗ and t∗

Table 4.1 shows that after some time the quantity us′ stabilizes. For example, when

λ = 5, us′ ≈ 10.15 after time 192.8; however, it is not clear in what moment -between

3.8 and 192.8- this is likely to happen. Understanding how the number of unattended

demands us′ evolves in every iteration and so understanding us′ will let us know the

time t∗ that u∗ occurs. We used two methods to estimate the values of u∗ and t∗: the

first local maximum (FLM) and simulated annealing (SA).

We drafted FLM since, from Table 4.1, we observe that us′ grows until it hits

certain number of unattended demands, and it stays there until all the iterations

finish. For every single iteration, FLM records the first time the number of unattended

demands us′ is a local maximum u∗, and the time t∗ that this happens. On the other

hand, SA will decide with some probability if a local maximum of us′ will be used to

estimate u∗ and t∗. Both FLM and SA are heuristic and are used to estimate u∗ and

t∗. However, FLM is deterministic, and SA is randomized.

Both algorithms are similar in the sense that in each iteration one look at the

previous and current observation of us′ in order to decide whether the iteration has

stabilized or not. After obtaining u∗ and t∗ for each iteration, they are averaged over

the set of iterations to calculate u∗ and t∗. Note that if the time interval between

the previous and the current observation of us′ is small, we might produce noisy

observations with the risk of estimating not only a sub-local maximum u∗ but also

early t∗. On the other hand, if the algorithm uses large time intervals, it will estimate

a proper u∗ but with a larger than optimal t∗. Since it is not clear what would be

a good choice of time the intervals, we will analyze all the iteration with respect to

different fixed set of time intervals.

Let c > 0, cj = j c, Tj,i = cj i, and Tj =
⋃∞
i=1 Tj,i a set of increasing times where

the observations of us′ and ts′ take place. That is, the time interval of a set whose time

71

observations are Tj,1,Tj,2, . . . ,Tj,i, . . . will be cj. Let uj∗ be the mean estimated number

of unattended demands the system stabilizes, and let t
j
∗ be the mean estimated time

the system stabilizes when the set of time observations Tj is used.

FLM starts estimating u1∗ and continue estimating u2∗, u
3
∗ . . . until uj∗ < uj−1∗ for

the first time at which point u∗ = uj−1∗ and t∗ = t
j−1
∗

3. The following steps show how

FLM works.

1. Choose a positive constant c. Set j = 1 and u0∗ = 0.

2. For each iteration and at times Tj:

(a) Find i such that us′(Tj,i) < us′(Tj,i−1) for the first time.

(b) Store us′(Tj,i) and Tj,i.

3. From 2b, compute uj∗ and t
j
∗ by averaging us′(Tj,i) and Tj,i over the number of

iterations.

4. If uj∗ > uj−1∗ , set j = j + 1 and go to step 2. Otherwise, set both u∗ = uj−1∗ and

t∗ = t
j−1
∗ , and stop.

As FLM, SA estimates u1∗, u
2
∗, . . . until uj∗ < uj−1∗ for the first time, at which point

u∗ = uj−1∗ and t∗ = t
j−1
∗ . However, assuming it is evaluating uj∗, in each iteration SA

estimates u∗ and t∗ according to a probabilistic approach. In every time observation

us′(Tj,1), us′(Tj,2), . . . , us′(Tj,i), . . . of an iteration, it performs one of the following

actions using a random value yi ∼ Unif(0, 1):

i If yi ≤ e

(
us′ (Tj,i)−us′ (Tj,i−1)

)
cj then continue evaluating the following time obser-

vation,

ii If yi > e

(
us′ (Tj,i)−us′ (Tj,i−1)

)
cj then set u∗ = us′(Tj,i−1) and t∗ = Tj,i−1,

3We consider that u0∗ = 0

72

That is, the algorithm continues evaluating the number of unattended demands

in the future until ii happens. In other words, the algorithm always stops in some local

maximum since when us′(Tj,i) is not a local maximum, then uj ≤ 1 ≤ e

(
us′ (Tj,i)−us′ (Tj,i−1)

)
cj

always. The following steps show the SA algorithm in more detail:

1. Choose a positive constant c. Set j = 1 and u0∗ = 0.

2. At times Tj and for each iteration:

(a) Find i such that yi > e

(
us′ (Tj,i)−us′ (Tj,i−1)

)
cj for the first time where yi ∼

Unif(0, 1).

(b) Store us′(Tj,i) and Tj,i.

3. From 2b, compute uj∗ and t
j
∗ by averaging us′(Tj,i) and Tj,i over the number of

iterations.

4. If uj∗ > uj−1∗ , set j = j + 1 and go to step 2. Otherwise, set both u∗ = uj−1∗ and

t∗ = t
j−1
∗ , and stop.

If, in every iteration, SA stopped in the first local maximum, it would produce

the same result as FLM. Table 4.3 shows the values and time the process stabilizes

when using FLM and annealing with 10,000 iterations and c = 0.5.

Conclusion

Table 4.3 shows that the mean number of unattended demands the process stabilizes

are similar in both methods, and they are slightly larger than the values inferred from

Table 4.1. In those values of λ where both method stopped using the same set of

time Tj, SA has larger t∗ than FLM since, in every iteration, the first time happens

that us′(Tj,i) < us′(Tj,i−1), SA might continue seeking for further local maximum, but

with no guarantees that the latter local maximum will be larger than the previous

73

Table 4.3: SA and FLM estimations of u∗ and t∗ for the DTSPNN

FLM SA

λ cj t∗ u∗ cj t∗ u∗

3 2 2.13864 3.2111 1.5 1.84435 3.05211

4 5.5 7.03477 6.12158 5.5 7.16386 6.01467

5 10.5 15.4948 10.4296 10.5 15.7191 10.3745

6 15.5 24.421 15.4029 15.5 24.7014 15.375

7 20 32.5016 21.0477 20.5 33.6766 21.0354

8 23.5 38.9475 27.4463 23.5 39.2969 27.4438

9 22 37.5826 34.5241 20.5 35.4853 34.4506

10 23.5 40.6322 42.3554 20 35.6598 42.1858

11 31 53.0776 51.2513 29 50.2628 51.2293

12 31 53.8058 60.7113 31 54.0755 60.7291

13 31.5 55.2856 70.9847 31.5 55.5496 71.0092

14 30.5 54.757 81.8908 30.5 54.9939 81.9166

15 36 63.7423 94.0354 36 63.9778 94.0566

16 38 67.7217 106.838 38 67.9873 106.867

17 38.5 69.2284 120.269 38.5 69.454 120.295

18 45 79.8462 135.057 45 80.0955 135.085

19 42.5 77.1894 149.925 42.5 77.4431 149.961

20 40.5 75.4114 165.457 40.5 75.6038 165.489

21 47.5 86.6533 182.749 47.5 86.8894 182.788

22 45 84.181 199.963 45 84.3741 200.001

23 44 84.2978 217.938 44 84.4928 217.976

24 45 87.0444 237.203 58 105.272 238.855

25 58 106.146 258.828 58 106.359 258.865

one. On the other hand, when λ is small FLM, gives slightly larger values of u∗ than

SA, but the opposite occurs when λ is large. Figure 4.1 shows the regression fit and

the residual sum of squares (RSS) of the fit for the FLM using the values of Table 4.3.

Similarly, Figure 4.2 shows the regression fit and the RSS of SA. The time the system

stabilizes fits a linear function of λ, and the mean number of unattended demands

when the system stabilizes fits an approximately quadratic function of λ.

The FLM regression fit: u∗(λ) = 0.3870λ2.0275 with RSS = 135.82 and

t∗(λ) = 4.0306λ− 0.0031 with RSS = 705.72.

The SA regression fit: u∗(λ) = 0.3734λ2.0404 with RSS = 186.69 and

t∗(λ) = 4.2478λ− 2.4963 with RSS = 635.47.

74

Figure 4.1: FLM regression fit for the DTSPNN

u
∗

t ∗

λ λ

Figure 4.2: SA regression fit for the DTSPNN

u
∗

t ∗

λ λ

Remarks We tried a variation of the previous algorithms. Instead of evaluating

all the iterations with respect to a set of times Tj, we decided to compare each iteration

with respect to the sequence of time T1,T2, . . . to find a sequence of local maximum

u1∗, u
2
∗, That is, when in every iteration it is found for the first time that uj∗ < uj−1∗

- or yi > e(u
j
∗−uj−1

∗)cj in the case of SA-, the values uj−1∗ and its time uj−1∗ are used

to obtain the aggregated means u∗ and t∗. The steps for the variation of the FLM

75

algorithm are 4:

1. Choose a positive constant c and set k = 1.

2. Consider the kth iteration, and set j = 0 and u0∗ = 0.

3. Set j = j + 1 and applying time interval Tj:

(a) Find i such that us′(Tj,i) < us′(Tj,i−1) for the first time.

(b) Set uj∗ = us′(Tj,i−1).

(c) If uj∗ > uj−1∗ jump to step 3.

4. Store uj−1∗ and tj−1∗ .

5. If there are iterations left, jump to step 2.

6. From step 4, calculate u∗ and t∗ by averaging uj−1∗ and tj−1∗ over the number of

iterations.

Compared to Table 4.3, the results obtained by this algorithm underestimates

the values of u∗ for λ = 3, . . . , 25. The number of unattended demands of a single

iteration has too many fluctuations, so it will have local maximums with high fre-

quency throughout its entire cycle. Thus, the algorithm will find local maximum in

early stages of its cycle that will be suboptimal, and so, in most of the iterations, the

algorithm will generate a suboptimal sequence u1∗, u
2
∗, . . . from which it will choose

the local maximum of an iteration.

4Replacing step 3a by

Find i such that yi > e

(
us′ (Tj,i)−us′ (Tj,i−1)

)
cj for the first time where yi ∼ Unif(0, 1).

would produce the SA version.

76

4.1.2 Ergodic Estimations of u∗ and t∗

After a short period of time, the iterations of the DTSPNN hit u∗, and remain around

this value for a long time until they vanish. That is, we are in presence of a quasi-

stationary distribution since iterations appear to be stationary over a reasonable

time scale before they vanish. Since the limiting state of the system is to ”die-out”,

it does not provide information of what is the stationary state during the existence

of the system. Thus, we cannot apply the ergodic theorem, but we can use a similar

approach to estimate the quasi-stationary distribution. The approach is a conditional

version of the ergodic theorem.

By sampling the number of unattended demands of each iteration that did not

vanish at different time intervals, we can estimate u∗. Let Tj =
⋃Tj
i=1 Tj,i be the finite

set of increasing times in which observations of the number of unattended demands

take place for each iteration. The set Tj is defined as in FLM and SA; however, its

size is bounded by Tj = bTλ
cj
c.

Let K be the number of iterations, and uks′(Tj,i) be the number of unattended

demands of iteration k at time Tj,i. Then, the mean number of unattended demands

uj∗ of all the iterations that did not vanish at time Tj when observations take place

according to Tj is

uj∗ =

K∑
k=1

 Tj∑
i=1

uks′(Tj,i)

 I{uk
s′ (Tj,Tj)>0}

Tj


K∑
k=1

I{uk
s′ (Tj,Tj)>0}

=

K∑
k=1

ukj

K∑
k=1

I{uk
s′ (Tj,Tj)>0}

.

The expression ukj is the average number of unattended demands of an iteration k

when observations are performed at times Tj. If at the time of the last observation -

the T thj observation- an iteration has vanished then ukj is set to 0. Thus, the expression

on the right is the average number of unattended demands of all the iterations that

77

did not vanish at time Tj,Tj .

If λ is large, a single iteration lasts a long time before it vanishes, producing com-

putationally expensive estimations of us′ , so we have chosen to limit the observation

of the number of unattended demands until time Tλ. When λ is small, iterations

vanish after a short period of time. Thus, Tλ should not be large, so we can avoid

the situation of having a high proportion of rejected iterations or uks′(Tj,Tj) = 0. The

set of increasing times Tj will be defined by c and Tλ and chosen according to λ.

The larger the value of λ the larger the values of both c and Tλ. For a given λ, the

following steps explain how u∗ is obtained. Then, we will introduce the algorithm

used to estimate t∗.

1. Define c and Tλ. Set j = 1 and u0∗ = 0.

2. Evaluate uj∗.

3. If uj∗ > uj−1∗ , set j = j + 1 and go to step 2. Otherwise, set u∗ = uj∗ and stop.

The estimations of uj∗ will grow along with j until a local maximum is found. The

larger the value of j, the smaller the set of the maximum number of observations Tj

per iteration. For small values of λ, the estimation of u∗ should be more sensitive

to the increments of j since iterations are short lived and early observations in the

number of unattended demands -that are below the ideal u∗- have more weight on

the estimation of uj∗ than when iterations live longer. Thus, we do not expect that j

will grow according to λ.

After the value of u∗ is known, it is possible to estimate t∗ using the algorithm

below. For every iteration, we evaluate the mean time the number of unattended

demands is grater or equal than u̇∗, the closest natural number to u∗. We have

decided to use u̇∗ rather than u∗ since the number of unattended demands is a natural

number. Note that u∗ is equal to uj−1∗ rather than uj∗ (step 3), where uj∗ is slightly

smaller that uj−1∗ .

78

The value t∗ is obtained by averaging each time t when us′(t) ≥ u̇∗ first happens

(step 3a) in every iteration. Since most of the time there is a high chance that

us′(t) > u̇∗, we decided to alleviate the effect of the inequality by assigning the value

of uj−1∗ over uj∗ to u∗ and hence u̇∗. However, since we are using u̇∗ in the comparison,

the election of either uj∗ and uj−1∗ might be irrelevant in the majority of the iterations.

Finally, along with t∗, we evaluated the mean number of unattended demands ũ∗

obtained at the time the number of unattended demands of each iteration surpasses

u̇∗ for the first time.

1. Set u̇∗ = [u∗].

2. Consider the set of observations T1 used on the estimation of u∗.

3. For each iteration:

(a) Find i such that us′(T1,i) > u̇∗ for the first time.

(b) If i is found, store T1,i and us′(T1,i).

4. From 3b, compute t∗ and ũ∗ by averaging T1,i and us′(T1,i) over the iterations

in which i was found.

Table 4.4 shows the result of the method. The number of iterations used in the

simulation is denoted by K, and the number of iterations that were not rejected is

K∗. The value of c is increased along with λ, so we can observe each iteration for

longer time without increasing the number of observations.

Conclusion

Table 4.4 shows that for every λ, the ergodic approach has values of u∗ that are both

smaller than the values obtained with the FLM and SA methods and closer to the

values of Table 4.1. Thus, the values of t∗ are also smaller in Table 4.4 than in the

previous methods. Note that, ũ∗ is significantly larger than u∗, which means t∗ is still

79

Table 4.4: Ergodic estimation of u∗ and t∗ for the DTSPNN

λ K K∗ N c Tλ j cj t∗ ũ∗ u∗ u̇∗

3 40000 4684 1000 0.03 30 21 0.63 2.63272 6.46458 4.51929 5

4 10000 3734 1000 0.075 75 16 1.2 4.07845 8.55434 6.80603 7

5 10000 5461 1000 0.5 500 8 4 5.98595 11.6805 10.1792 10

6 10000 7960 1000 2 2000 6 12 9.73513 16.7084 14.3674 14

7 10000 8744 10000 2 20000 3 6 11.8124 22.0180 19.3308 19

8 10000 9176 10000 3 30000 3 9 15.7674 28.6725 25.0636 25

9 10000 9347 10000 3 30000 6 18 18.7231 35.9848 31.5635 32

10 10000 9463 10000 3 30000 5 15 20.2378 43.3329 38.8488 39

11 10000 9544 10000 3 30000 4 12 22.4479 51.6298 46.9094 47

12 10000 9617 10000 3 30000 4 12 24.7289 60.9746 55.7585 56

13 10000 9667 10000 3 30000 4 12 26.1611 70.3170 65.3911 65

14 10000 9710 10000 3 30000 10 30 28.9392 81.6799 75.8186 76

15 10000 9746 10000 3 30000 7 21 31.0769 92.9460 87.0335 87

16 10000 9779 10000 3 30000 7 21 33.1269 105.274 99.0412 99

17 10000 9804 10000 3 30000 9 27 35.9438 118.607 111.853 112

18 10000 9826 10000 3 30000 9 27 36.9898 131.999 125.440 125

19 10000 9841 10000 3 30000 6 18 40.3235 147.415 139.823 140

20 10000 9858 10000 3 30000 7 21 42.4098 162.690 155.018 155

21 10000 9868 10000 3 30000 9 27 45.1280 179.030 171.013 171

22 10000 9879 10000 3 30000 9 27 47.4670 196.433 187.802 188

23 10000 9894 10000 3 30000 13 39 48.7276 213.677 205.399 205

24 10000 9900 10000 3 30000 6 18 52.2157 233.083 223.754 224

25 10000 9908 10000 3 30000 10 30 53.5575 252.646 242.958 243

larger than the optimal. However, the ergodic approach is an improvement over the

FLM and SA in the estimation of u∗ and consequently of t∗. This method is more

computationally expensive than the FLM and SA. For example, if λ = 10, the average

time iterations stopped in SA is t∗ = 40.6322, whereas in the ergodic approach the

mean time iterations stopped is between (Tλ
K∗
K
, Tλ) = (28, 389, 30, 000) units of time.

The quadratic regression of the mean number of untended demands and the time

it stabilizes is u∗ = 0.468λ1.9324 and RSS = 166.3095. The linear regression of the

mean time the number of unattended demands stabilizes is t∗ = 2.3304λ−4.0073 and

RSS = 13.8337.

80

4.2 The DTSP with Random Start Policy

The DTSP with random start (DTSPR) works as the DTSPNN defined in Section

3.2, but after serving a demand, the server starts in a random location uniformly

distributed in the unit square. The distance from every visited point to the new

random location does not directly affect the process. In other words,

• The distance from every visited demand to the new random location is not

included in the length of the path Ln. The length of the path is the sum of the

distances from a random location to its closest demand.

• No new demands are generated in the trajectory from every visited demand to

the new random location.

• New demands are generated in the time the server travels from its location

-after being randomly located- to its closest demand.

Table 4.5 shows the mean state of the simulation when at intervals of times in

which 1 − psλ ≈ i
10
, i = 2, . . . , 10. Each simulation for each λ consists of 10,000

iterations.

81

Table 4.5: DTSPR with λ = 3, . . . , 7

λ Ti,λ ps′ (Ti,λ) ts(Ti,λ) vs(Ti,λ) vs′ (Ti,λ) us′ (Ti,λ) v(Ti,λ) u(Ti,λ)

3

0.27 0.8902 0.161652 1.01002 1.07785 1.78117 1.0704 1.5856
0.48 0.7884 0.2618 1.04442 1.33638 2.08473 1.2746 1.6436
0.78 0.6996 0.366263 1.14614 1.992 2.48999 1.7379 1.742
1.56 0.5997 0.548835 1.48039 3.98583 3.15408 2.9829 1.8915
3.48 0.4992 0.915457 2.34225 9.6254 3.89744 5.978 1.9456
7.14 0.4 1.62532 4.28333 21.2557 4.24225 11.0723 1.6969
12.51 0.2996 2.79419 7.76299 38.6355 4.31308 17.0124 1.2922
19.8 0.1999 4.41926 12.8268 62.2951 4.29515 22.7155 0.8586
32.58 0.1 6.73568 20.1634 104.072 4.19 28.5543 0.419
163.95 0 11.3218 34.9699 - - 34.9699 0

4

0.3 0.8921 0.172887 1.02132 1.12297 2.43022 1.112 2.168
0.65 0.7978 0.302018 1.10237 1.74668 3.0712 1.6164 2.4502
2.8 0.6992 0.627922 1.81283 8.43435 5.32108 6.4426 3.7205
17.8 0.6 2.72096 9.1055 68.0432 6.78617 44.4681 4.0717
41.6 0.5 8.05909 29.8788 165.089 6.8222 97.4839 3.4111
69.45 0.3999 15.8553 61.0533 278.269 6.74794 147.918 2.6985
104.6 0.3 25.8728 101.306 421.398 6.742 197.334 2.0226
152.9 0.2 38.5609 152.555 618.248 6.8605 245.694 1.3721
236.8 0.1 55.4197 220.986 959.746 6.783 294.862 0.6783
1114.05 0 85.4416 342.98 - - 342.98 0

5

2 0.8 0.461732 1.5045 6.22737 6.14925 5.2828 4.9194
161 0.6999 23.7835 115.115 799.087 10.2303 593.827 7.1602
376 0.5996 84.3432 416.52 1875.98 10.1503 1291.61 6.0861
627 0.5 166.831 828.763 3133.05 10.1982 1980.9 5.0991
932 0.3999 267.723 1333.29 4661.11 10.2001 2664.08 4.079
1320 0.2998 388.334 1936.66 6607.42 10.2328 3336.95 3.0678
1889 0.2 537.365 2683.6 9457.46 10.207 4038.38 2.0414
2874 0.1 736.67 3682.17 14397.7 10.25 4753.72 1.025
11659 0 1088.53 5445.83 - - 5445.83 0

6

40 0.8527 0.668841 2.83775 227.604 14.2397 194.496 12.1422
1760 0.7986 237.441 1418.43 10552 14.3147 8712.52 11.4317
5320 0.6999 1307.82 7840.5 31920.2 14.3843 24693.9 10.0676
9520 0.5994 2823.1 16933.1 57129 14.3091 41026.5 8.5769
14480 0.4994 4640.89 27841.9 86898.1 14.2559 57334.6 7.1194
20280 0.4 6742.13 40450.6 121712 14.2705 72955.1 5.7082
27960 0.2998 9197.6 55189.2 167806 14.3386 88951.6 4.2987
39520 0.1998 12233.7 73411.1 237185 14.485 106133 2.8941
57760 0.0998 16186.7 97137.4 346643 14.3978 122038 1.4369
308920 0 23207.7 139274 - - 139274 0

7

2000 0.891 17.5782 121.881 13986.4 19.3471 12475.2 17.2383
106000 0.7987 24216.8 169544 742138 19.309 626874 15.4221
228000 0.6999 71227.7 498669 1.59634e+6 19.3659 1.26693e+6 13.5542
382000 0.5987 129928 909672 2.67455e+6 19.3708 1.96630e+6 11.5973
546000 0.4997 195982 1.37215e+6 3.82281e+6 19.4036 2.59675e+6 9.696
742000 0.3989 271274 1.89931e+6 5.19509e+6 19.3204 3.21400e+6 7.7069
1.012e+6 0.2996 356279 2.49448e+6 7.08550e+6 19.2079 3.86995e+6 5.7547
1.408e+6 0.1997 460942 3.22728e+6 9.85813e+6 19.1998 4.55146e+6 3.8342
2.042e+6 0.0999 597063 4.18033e+6 1.42971e+7 18.9409 5.19100e+6 1.8922
8.544e+6 0 838161 5.86838e+6 - - 5.86838e+6 0

82

The values between Table 4.1 and Table 4.5 seem to be close. We will use the

ergodic estimation to have a closer look at the parameters u∗ when λ = 3, . . . , 25. In

order to reduce the computational time of the estimations, we reduced the number

of iterations used with respect to Table 4.4.

Table 4.6: Ergodic estimation of u∗ and t∗ for the DTSPR

λ K K∗ N c Tλ j cj t∗ ũ∗ u∗ u̇∗

3 40000 4570 1000 0.03 30 9 0.27 2.64722 6.46219 4.53485 5

4 10000 3824 1000 0.075 75 16 1.2 4.0533 8.52162 6.81811 7

5 10000 5478 1000 0.5 500 8 4 5.93552 11.6697 10.1721 10

6 8000 3901 10000 1.5 15000 6 9 9.14308 16.4557 14.3714 14

7 8000 6986 10000 1.5 15000 3 4.5 11.1426 21.7039 19.3313 19

8 8000 7307 10000 1.5 15000 4 6 13.4028 27.866 25.0607 25

9 8000 7450 10000 1.5 15000 8 12 16.4146 35.0852 31.5679 32

10 8000 7543 10000 2.5 25000 4 10 19.5861 43.0756 38.8437 39

11 8000 7622 10000 2.5 25000 8 20 21.5265 51.3381 46.9019 47

12 5000 4806 10000 2.5 25000 10 25 24.1466 60.6764 55.7633 56

13 5000 4836 10000 2.5 25000 9 22.5 25.4392 69.8786 65.3909 65

14 5000 4855 10000 2.5 25000 6 15 28.1963 81.1371 75.8144 76

15 5000 4869 10000 3 30000 6 18 31.5275 92.9358 87.0305 87

16 5000 4880 10000 3 30000 7 21 33.2566 105.251 99.0395 99

17 5000 4897 10000 3 30000 4 12 35.7557 118.619 111.844 112

18 5000 4911 10000 3 30000 6 18 37.113 131.938 125.442 125

19 5000 4921 10000 3 30000 5 15 40.2574 147.269 139.828 140

20 5000 4925 10000 3 30000 8 24 42.2477 162.769 155.024 155

21 5000 4932 10000 3 30000 7 21 44.4779 179.145 171.005 171

22 5000 4940 10000 3 30000 8 24 47.6093 196.437 187.800 188

23 5000 4947 10000 3 30000 12 36 48.7583 213.622 205.394 205

24 5000 4953 10000 3 30000 7 21 51.7698 233.122 223.780 224

25 5000 4955 10000 3 30000 10 30 54.2891 252.562 242.979 243

Conclusion

If we compare the values from Table 4.4 and Table 4.6, that is, if we compare the

estimated u∗ using ergodic approach in both the DTSPNN and the DTSPR, we can

see that both algorithms perform similarly. This invariance of the performance by

the DTSPR leads us to consider the partition policy.

83

4.3 The DTSP with Delayed Random Start Policy

We will call the DTSP with delayed random start (DTSPDR) the policy obtained by

modifying the DTSPR policy as follows: new demands are generated in the trajectory

from every visited demand to the new random location and, as in the DTSPNN,

during the time that the server takes to travel from a random location to its closest

demand. After a demand is served, there is a waiting time from which the server does

not serve new demands since it is heading towards the random location; however, new

demands might be created during this time. The mean time that takes the server

to move from the served demand to the new random location can be consider as the

DTRP’s mean service time s of demands. From Section 3.1, we know that given two

uniformly and independently distributed points X1 and X2 in a square of area A,

then E‖X1 −X2‖2 = 1
3

√
A and E‖X1 −X2‖ ≈ 0.52

√
A. Since we can considered X1

and X2 as the location of the last served demand and the later random location of the

server respectively then the service first moment is s ≈ 0.52, and the service second

moment is s2 = 1
3
. The DTSPDR behaves as the DTRP with NN policy, and the

system will eventually sweeps all the points with probability 1 only if ρ = 0.52λ < 1

5. This policy in general does not stabilize over time where the number of unattended

demands grows to infinity.

4.4 The DTSP with Partitioning Policy

The DTSP with partitioning (DTSPP) is another modification of the DTSPNN. As in

the previous problems, the server will generate a path Lt = L(xp1,q1σ(1) , x
p2,q2
σ(2) , . . .), that

connects at a constant unit velocity demands created according to a Poisson random

variable Zλ(t) with mean λ and uniformly distributed in the unit square; the process

5When ρ ≥ 1, there is a chance that the DTSPDR is stable since the system can still arrive to
us′ = 0, and once this happens the system stops. On the other hand, when the DTRP with NN of
Section 3.1 arrives to us′ , it waits for new demands to arrive.

84

also stops when either there are no more points to visit or |Lt| ≥ Tλ. However, in the

DTSPP, we split the unit square into a set of P 2 disjoint squares of area 1
P 2 . Let xp,qσ(t)

be the tth served demand in partition p, q ∈ P . After the server attends a demand,

the election of the next demand to be served will depend on the evaluation of ct rather

than the closest demand dt as in the DTSPNN case. We will briefly explain the idea

behind ct.

Starting from the position of the last demand, the algorithm performs the following

steps in each partition p′, q′ ∈ P of the unit square:

a Calculate the distance from the server to the closest demand of the partition.

b Starting from the closest demand of the partition to the server, calculates the

length of the path that sweeps all the demands of the partition using the NN

algorithm.

c Divide the sum of distances obtained in (a) and (b) by the number of demands

visited in (a) and (b).

The closest demand to the server located in the partition with the minimum value

in step(c) is the demand that the server will actually visit; the minimum value will

be denoted ct = min{cp
′,q′

t } ∀ p′, q′ ∈ P . Note that once ct is found, it is used to

serve the tth the closest demand from the server, and after the tth demand is served

ct+1 is evaluated in the same manner to decide which is the next demand -and thus

which partition the server will visit next-. The idea behind using ct rather than dt

is to force the server to move to areas with ”high density” of untended demands

though the decision might involve visiting demands that are not the nearest to the

server. We are interested in the behaviour of the DTSPP when P is rather small.

When P → ∞, DTSPP will behave as the DTSPNN since, with high probability,

each partition will have at most one demand, that is, for most of the time the length

in step (b) will be zero and ct = dt. A more detailed explanation in the evaluation

85

of ct is as follows. Assuming the server has served demand xp,qσ(t−1), we will introduce

the following notations:

• The set of unattended demands in a partition p′, q′ is defined Up′,q′(t − 1) and

its size by |Up′,q′(t− 1)|.

• The server’s closest unattended demand in a partition p′, q′ is ẋp
′,q′

σ(t)
6.

• The length of the path L{Up′,q′ (t−1)}
(
ẋp
′,q′

σ(t−1)

)
generated by starting from ẋp

′,q′

σ(t−1)

and visiting all the untended demands Up′,q′(t− 1) under the NN policy.

Then,

cp
′,q′

t =
‖xp,qσ(t−1) − ẋ

p′,q′

σ(t)‖2 + L{Up′,q′ (t−1)}
(
ẋp
′,q′

σ(t−1)

)
|Up′,q′(t− 1)|

,

is the average distance between the path obtained by visiting all the demands in

partition p′, q′ using the NN policy and starting from xp,qσ(t−1) over the number of nodes

in partition p′, q′.

Finally

ct = min
{
cp
′,q′

t

}
,∀ p′, q′ ∈ P.

The DTSPP can be described as follows:

1. Start with t = 2 and two random demands xp,q1 and xp
′,q′

2 where xp,q1 is the

starting position, so L2 = L(xσ(1), xσ(2)) = L(xp,q1 , xp
′,q′

2).

2. Generate Zλ(dt) demands where dt = ‖xp
′,q′

σ(t−1) − x
p,q
σ(t)‖.

3. Evaluate ct. Consider the partition p∗, q∗ for which ct = cp
∗,q∗

t and visit ẋp
∗,q∗

σ(t+1).

4. If either
t⋃

k=2

θ(dk) \ {xσ(1), . . . , xσ(t+1)} 6= 0,

6If Up
′,q′(t− 1) 6= ∅

86

or

|Lt| =
t∑

k=2

dk < Tλ,

set t = t+ 1 and go back to step 2. Otherwise, stop.

Table 4.7: DTSPP with λ = 3, 4, 5, 6 and different values of P

(a) λ = 3

P Tλ t v
1 150.83 11.4618 35.4313
2 250 13.3341 40.9301
4 250 12.9576 39.881
6 200 12.3051 37.9046
8 200 12.0114 37.0938
10 200 11.6709 35.9908
12 200 11.6424 35.9211
14 200 11.714 36.1038
16 200 11.5191 35.4576
18 200 11.5615 35.6516
20 150 11.601 35.7473
22 150 11.5009 35.474
24 200 11.5668 35.6605
26 250 11.4513 35.2965
28 200 11.3886 35.0859
30 200 11.4675 35.3437
32 200 11.384 35.0672
34 150 11.4667 35.3176
36 200 11.4944 35.4528
38 200 11.526 35.5474
40 200 11.4865 35.4224
50 200 11.4727 35.3763
60 200 11.4991 35.4683

1000 150 11.4798 35.417

(b) λ = 4

P Tλ t v
1 1391 86.5959 347.283
2 1712 146.684 588.018
4 1692 128.023 512.931
6 1338 111.366 446.215
8 1290 99.516 399.175

10 1492 93.319 374.304
12 1618 91.639 367.589
14 1070 89.548 358.901
16 1422 89.637 359.547
18 1040 87.506 351.137
20 1046 86.436 346.851
22 948 87.251 349.927
24 1078 87.041 349.090
26 1056 84.600 339.554
28 1170 84.628 339.598
30 1324 84.721 339.720
32 1042 84.657 339.607
34 1254 84.140 337.309
36 1080 86.265 346.182
38 1160 83.475 334.747
40 1036 83.933 336.800
50 1228 83.508 334.980
60 1212 84.689 339.946

1000 1031 82.397 330.591

(c) λ = 5

P Tλ t v
1 12593 1175.75 5879.56
2 40420 3700.46 18508.6
4 33580 2853.70 14274.1
6 36960 2189.04 10949.8
8 24320 1790.82 8957.48
10 23465 1548.19 7744.07
12 17385 1397.16 6988.60
14 16020 1321.74 6611.11
16 12540 1267.76 6341.92
18 15855 1218.89 6098.25
20 11880 1178.00 5891.64
22 14125 1151.74 5759.24
24 13700 1179.22 5898.23
26 16570 1115.09 5577.22
28 13050 1118.55 5594.39
30 11275 1122.29 5613.86
32 13435 1132.04 5662.76
34 12250 1104.68 5524.78
36 10880 1111.89 5561.31
38 11055 1105.01 5527.52
40 11145 1112.19 5563.82
50 11230 1106.29 5533.71
60 11480 1087.70 5441.27

(d) λ = 6

P Tλ t v
1 446080 26920.7 161493
3 - - -
6 - - -
9 637500 58212.3 349360
12 448500 42415.6 254553
15 427500 35100.5 210655
18 414000 31462.3 188817
21 328500 29405.4 176472
24 345000 27916.8 167535
27 373500 26475.0 158883
30 267000 26025.3 156180
33 246000 25593.3 153598
36 294000 25564.7 153420
39 241500 24429.7 146611
42 256500 24091.5 144581
45 234000 24665.8 148023
48 336000 24016.4 144128
51 238500 24142.8 144887
54 253500 23627.0 141791
57 237000 24204.7 145263
60 303000 24214.3 145315
80 238500 23347.9 140115
100 247500 23014.1 138111

87

Table 4.7 shows the mean time at which all iterations vanished and the mean

number of demands visited for the DTSPP simulations when different number of

partitions are used - including the results from Table 4.1 when P = 1 7. Figure 4.3

shows the results of Table 4.7, where the vertical line represents the mean time the

iteration vanish when P = 1.

Figure 4.3: DTSPP with λ = 3, 4, 5, 6 and different values of P

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

0 10 20 30 40 50 60

11
.5

12
.0

12
.5

13
.0

Partitions

M
ea

n
T

im
e

●

●

●

●

●

●

● ●

●
●

● ●

● ● ● ●
●

●

●
● ●

●

0 10 20 30 40 50 60

90
10

0
11

0
12

0
13

0
14

0

Partitions

M
ea

n
T

im
e

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ●
● ● ● ● ●

●

0 10 20 30 40 50 60

10
00

15
00

20
00

25
00

30
00

35
00

Partitions

M
ea

n
T

im
e

●

●

●

●

●

●

●
●

● ●

●
●

●

● ●
●

● ●

●
●

20 40 60 80 100

25
00

0
30

00
0

35
00

0
40

00
0

45
00

0
50

00
0

55
00

0

Partitions

M
ea

n
T

im
e

7When λ = 6 and P = 3, 6, there where iterations that did not vanished at the time of the last
observation Tλ = 500, 000, so these results were not included in the table.

88

When P is small, the mean time t at which the iterations vanish is larger than

when P = 1, and as P increases, the values of t decreases, until t get smaller than

is for P = 1. There is an improvement in the DTSPP if our objective is to reduce

the mean time the iterations will vanish; this improvement is more apparent when λ

increase as there is more chances for partitions to have more than one demand.

If we calculate, among those simulations where all the iterations vanished, the ratio

between the mean number of nodes visited and the mean time at which iterations

vanish, it remains close to λ. That is,

v

t
≈ λ, for every P and λ;

thus, regardless of the value of P , the DTSPP visits demands at the same rate as the

DTSPNN 8 though for some values of P the DTSPP finds conditions for which all

the demands can be swept from the unit square faster than the DTSPNN.

8Otherwise, the number of unattended nodes would explode if DTSPP visited nodes at a lower
rate than the arrival rate of demands, or iterations would be short lived if the DTSPP visited nodes
at a higher rate than the arrival rate of demands.

89

Chapter 5

Conclusion

The NN policy was first used for the DTSP as it has the same performance order

as the optimal lower bound and slightly more efficient than the SFC policy for the

DTRP, a closely related problem to the DTSP. The DTSPNN could be modelled using

Markov chains since, once the server visits a demand, the next demand to be served

is dominated by the system’s current configuration regardless how it arrived to that

state. At the moment of modelling the problem into a Markov chain we faced the

difficulty of finding a rigorous analytical expression for the distance between demands

because of the dependencies among the travel distances. Bertsimas et al expected

distance lower bound for the DTRP with NN policy was calculated assuming that

the expected distance is bounded by inequality 3.1.7.

In order to have some insight how the DTSP behaves with different policies, we

used Monte Carlo simulations on either deterministic or randomized algorithms. Sim-

ulations showed that regardless of the Poisson rate, the DTSPNN eventually arrives

to a situation where the server sweeps all the demands in the region though the speed

of the server remains constant. The larger the rate, the larger the expected time

this situation will occur as the expected number of unattended demands present in

the system increases with the rate λ. It should not be surprising that the process

90

terminates eventually -if the server visits demands ad infinitum, it will eventually find

a condition where it can sweeps all the demands before new ones are generated.

We have also seen that the mean number of unattended demands stabilizes after

a relative short period of time and that iterations start vanishing according to a geo-

metric distribution. Thus, if we know the mean time iterations stabilize and, on any

later interval to that time, we calculate the proportion of iterations then we know the

parameter of the geometric distribution. This distribution can be used to predict the

proportion of iterations that will (not) vanish in the future. We have considered sev-

eral methods to estimate the expected time iterations stabilize. Simulated annealing,

first local maximum, and ergodic estimations were proposed. The ergodic approach

was the most accurate of the three as it has the smallest absolute distance between

estimated mean number nodes the system stabilizes and the values observed on Table

4.1; consequently, the estimated mean time the number of unattended demands sta-

bilize is also preferable from the ergodic estimation. If we averaged the mean number

of unattended nodes of Table 4.1, we would be producing a rough ergodic estimator;

hence, the closeness of the results with Table 4.1. The ergodic approach is the most

computationally expensive estimator of the three methods.

We introduced the NN with random start policy that consists in instantly 1 allocate

the server in a random position after a demand has been visited. The efficiency of

this method is equal to the NN policy since in both cases the server starts from a

random location. In the NN policy, the random location is the last demand’s location,

whereas in the NN with random start the starting point is explicitly declared. If we

considered that in the trajectory the server travels from the last served demand to the

random location new demands are generated (DTSPDR), the problem can be treated

as the DTRP with NN policy, so iterations might not vanish and become unstable if

λ→ 1
0.52

.

1No new demands are created in the server’s trajectory from the position of the last served
demand to its new random location.

91

Finally, we have proposed the partition policy that forces the server to go to

those partitions with high density of demands; density of each partition is calculated

using the NN policy, so this policy does not always choose the closest demand at that

time. In terms of the mean time iterations vanish, the partition policy performs worse

than the NN policy when the number of partitions is small, but as the number of

partitions increases, this policy produces better results than the NN policy. However,

with large number of partitions this policy would have similar performance to the NN

policy since with high probability each partition will contain at most one demand,

so the server will go to the partition where the closest demand is. Even though the

partition policy performance differs from the NN, both algorithms visits demands

with the same rate 1
λ
; this agrees with the fact that otherwise, the expected number

of unattended demands would monotonically increase or decrease with the partition

policy.

92

Bibliography

[1] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. The Traveling Salesman

Problem. A Computational Study. Princeton University Press, 2006.

[2] J. Beardwood, J. H. Halton, and J. Hammersley. The shortest path through

many points. Proceeding of the Cambridge Philosophical Society, 55:299–327,

1959.

[3] D. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing

problem in the Euclidean plane. Operations Research Society of America, 39(4),

August 1991.

[4] M. Chen. On three classical problems for Markov chains with continous time

parameters. Journal of Applied Probability, 28(2):305–320, 1991.

[5] R. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling. Addison-

Wesley, Reading, Mass., 1967.

[6] M. Davis. Markov Models and Optimization. Chapman Hall, London, 1993.

[7] F. G. Foster. On the stochastic matrices associated with certain queuing pro-

cesses. The Annals of Mathematical Statistics, 24(3):355–360, 1953.

[8] M. Garey and D. Johnson. Computers and Intractability: A guide to the Theory

of NP-Completeness. Freeman, San Francisco, 1979.

93

[9] M. N. Ghosh. Expected travel among random points in a region. Calculta

Statistical Association Bulletin, 2:83–87, 1949.

[10] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford, third

edition, 2005.

[11] R. Hogg, J. McKean, and A. T. Craig. Introduction to Mathematical Statistics.

Pearson Prentice Hall, sixth edition, 2008.

[12] D. Johnson. Tokio, 1988. Presented at the Mathematical Programming Sympo-

sium.

[13] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case

study in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local

Search in Combinatorial Optimization., pages 215–310. John Wiley and Sons,

Ltd., 1997.

[14] R. Karp. Reducibility among combiatorial problems. In R. Miller and

J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.

Plenum Press. New York, USA, 1972.

[15] J. Kingman. Some inequalities for the queue GI/G/1. Biometrika, 49(3/4):315–

324, 1982.

[16] L. Kleinrock. Queueing Systems. Volume 1: Theory. John Wiley, New York,

1976.

[17] L. Kleinrock. Queueing Systems. Volume 2: Computer Applications. John Wiley,

New York, 1976.

[18] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,

second edition, 1998.

94

[19] R. Larson and A. Odoni. Urbans Operations Research. Prentice Hall, Englewood

Cliffs, N.J., 1981.

[20] E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys. The Traveling Salesman

Problem. John Wiley & Sons Ltd., 1983.

[21] G. F. Lawler. Introduction to Stochastic Processes. Chapman and Hall/CRC,

1995.

[22] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times.

American Mathematical Society, 2008.

[23] O. Madsen, A. Larsen, and M. M. Solomon. Dynamic Vehicle Routing Systems

Survey and Classification., volume 38, pages 19–40. Springer US, 2007.

[24] E. Marks. A lower bound for the expected travel among m random points. Annals

of Mathematical Statistics, 19:419–422, 1948.

[25] S. Meyn and R. Tweedie. Markov Chains and Stochastic Stability. Springer-

Verlag, 1993.

[26] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-

rithms and Probabilistic Analysis. Cambridge University Press, 2005.

[27] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.

[28] C. Nilsson. Heuristics for the traveling salesman problem. Technical report, 2003.

Tech. Report, Linköping University, Sweden.

[29] J. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic

Mathematics, 1997.

95

[30] L. K. Platzman and J. Bartholdi. Spacefilling curves and the planar travelling

salesman problem. J. ACM, 36:719–737, October 1989.

[31] P. Pollett. Analytical and computational methods for modelling the long-term

behaviour of of evanescent random processes. In Proceedings of the 12th National

Conference of the Australian Society for Operations Research, Australian Society

for Operations Research, Adelaide, pages 714–535, 1993.

[32] N. Psaraftis. Dynamic vehicle routing problems. Vehicle Routing: Methods and

Studies, 16:223–248, 1988.

[33] A. Regan, J. Herrmann, and X. Lu. The relative performance of heuristics for

dynamic traveling salesman problem. In proceedings of the 81st meeting of the

Transportation Research Board, February 2002.

[34] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the

Association for Computing Machinery, 23:555–565, 1976.

[35] C. L. Valenzuela and A. J. Jones. Estimating the Held-Karp lower bound for

the geometric TSP. European Journal of Operational Research, 102(1):157–175,

1997.

[36] E. A. van Doorn. Quasi-stationary distributions and convergence to quasi-

stationarity of birth-death processes. Advances in Applied Probability, 23(4):683–

700, 1991.

[37] G. G. Yin and Q. Zhang. Continuous-Time Markov Chains and Applications: A

Singular Perturbation Approach (Stochastic Modelling and Applied Probability).

Springer, 1998.

[38] H. Zhang, F. Dufour, Y. Dutuit, and K. Gonzalez. Piecewise determinis-

tic markov processes and dynamic reliability. Journal of Risk and Reliability,

222(4):222–545, 2008.

96

