
Sensitivity of Impulse Responses to Small Low

Frequency Co-movements: Reconciling the Evidence

on the Effects of Technology Shocks

Nikolay Gospodinov�

Concordia University and CIREQ
Alex Maynardy

University of Guelph
Elena Pesaventoz

Emory University

Abstract
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frequency co-movement is allowed for in the levels speci�cation, it is implicitly set to zero in
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account for the empirical di¤erence between the two speci�cations.
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1 Introduction

An ongoing debate exists regarding the empirical e¤ect of technology shocks on production inputs,

such as hours worked. Most standard real business cycle models start with the premise that busi-

ness cycles result from unexpected changes in production technologies. This has the implication

that hours worked and other inputs to production should rise following a positive technology shock.

On the other hand, models with frictions, such as sticky prices, often predict an initial fall in hours

worked following a productivity shock. The dynamic responses in both models becomes more com-

plicated once inventories are included (Chang, Hornstein, and Sarte, 2009). As technology shocks

are di¢ cult to measure, they are commonly speci�ed as structural shocks in vector autoregressive

(VAR) models that are identi�ed via the long-run (LR) restriction that only technology shocks

have a permanent e¤ect on labour productivity (Gali, 1999, for example; see Alexopoulos (2006),

Shea (1999) and Basu, Fernald and Kimball (2006) for alternative measures of technology shocks).

The LR identi�cation scheme, an implication of many modern macroeconomic models, has been

widely employed in recent years. However, despite its common acceptance, the qualitative results

have proven quite sensitive to some aspects of the VAR speci�cation, particularly whether hours

worked are modeled in levels or �rst di¤erences.

Specifying the VAR in the di¤erence of both hours worked and labour productivity, Gali (1999)

and Shea (1999) �nd that hours worked initially fall following a positive technology shock, a �nding

which gives support to models with embedded frictions. Other papers have reached similar conclu-

sions (see, for example, Francis and Ramey, 2005; Basu, Fernald and Kimball, 2006; among others)

and this has spurred a line of research aimed at developing general equilibrium models (Gali and

Rabanal, 2004) or alternative �nite-horizon identi�cation schemes (Uhlig, 2004; Francis, Owyang

and Roush; 2005) that can account for this empirical �nding.

However, maintaining the long-run identi�cation restriction, but allowing hours worked to enter

the model in levels, Christiano, Eichenbaum and Vigfusson (2003, 2006) provide support for the
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prediction of standard RBC models, with hours worked rising immediately after a positive produc-

tivity shock. Christiano, Eichenbaum and Vigfusson (2003) argue strongly in favor of the levels

speci�cation and report that the levels speci�cation encompasses the estimated impulse response

function of the di¤erenced speci�cation, but not vice-versa. More recently, Fernald (2007) provides

both intuition and simulation results in support of the claim that the results from the levels speci�-

cation are mechanically driven by a common high-low-high pattern which arises from two level-shift

breaks in both productivity growth and hours worked, occurring in the early 1970s and mid-1990s.

After removing sub-sample means, Fernald (2007) �nds that the levels and di¤erenced speci�ca-

tions produce similar impulse response functions, both qualitatively matching the original results

of Gali (1999). As we discuss below, an important assumption made in this framework is that the

similar timing and direction of the breaks in productivity and hours is treated as coincidental.

Our paper takes up the challenge of reconciling the con�icting empirical �ndings reported

in the literature and contributes to the understanding of this debate in several respects. We

demonstrate analytically that the extreme sensitivity to di¤erent model speci�cations, �rst noted

by Christiano, Eichenbaum and Vigfusson (2003), appears to be due to a discontinuity in the

solution for the structural coe¢ cients implied by the long-run restriction. Interestingly, we �nd that

this discontinuity arises only in the presence of a low frequency correlation between hours worked

and productivity growth. This draws a tight link between the apparently con�icting results of

Christiano, Eichenbaum and Vigfusson (2003), who argue that the di¤erenced SVAR is misspeci�ed,

and Fernald (2007) who argue that the levels speci�cation is misleading without accounting for

structural breaks. Although they point in opposite directions, both sets of results, at least implicitly,

rely on similar low frequency correlations.

We argue that the di¤erence in conclusions cannot be determined solely on the basis of em-

pirical methods, such as unit-root pre-tests or Hodrick-Prescott (HP) pre-�ltering. Instead, the

appropriate conclusions that one draws from any of these approaches rests critically on the eco-
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nomic assumptions made about the source of the low frequency correlation. If these low frequency

correlations are treated as a true feature of the data generating process, as is implicitly the case in

Christiano, Eichenbaum and Vigfusson (2003), then over-di¤erencing improperly removes this low

frequency correlation, thereby corrupting the long-run identi�cation of the di¤erence speci�cation.

Such true low frequency co-movement may be plausible if technological changes have long-lasting

e¤ects on the underlying structure of the labour market. For example, technological improvements

give rise to greater e¢ ciency in household production, leading to increased female labour market

participation. Likewise, technological innovations a¤ecting regional transportation or labour search

costs, may also have lasting impacts on labour markets. On the other hand, Fernald (2007) provides

some convincing arguments for why the similar timing of the structural breaks in productivity and

hours may be coincidental, arising from disparate causes. Although Francis and Ramey (2009)

instead demonstrate that this low frequency behavior may be driven by common demographic and

sectoral employment changes, they argue that it violates the long-run identifying assumption and

should thus be treated as low frequency noise. In either case, it is the presence of this low frequency

correlation that corrupts the long-run identi�cation and renders the unmodi�ed levels speci�cation

misleading.

The popularity of the LR identi�cation scheme derives in large part from its robustness to model

speci�cation, in the sense that it often remains valid for a wide variety of macroeconomic models.

However, the implementation of the LR restriction also relies on the low frequency properties of the

data. Our results, which illustrate the possibility of discontinuity in this dependence, reinforce the

conclusions from the empirical literature suggesting that the long-run identifying scheme can be far

less robust to assumptions on the low frequency properties of the variables. Of course, there may

still be many cases in which robust empirical results can be obtained; for example, if the variables

in question are clearly stationary or if low frequency correlations are not present. Nevertheless, we

echo the recommendation made by Fernald (2007) that empirical researchers should check carefully
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the robustness of their results to alternate assumptions on the low frequency properties of the data.

In our analysis, we assume that the data can be well approximated by a �nite order invertible

VAR. Therefore the issues discussed here are distinct from those addressed by Erceg, Guerrieri

and Gust (2005), Chari, Kehoe and McGrattan (2008), and Christiano, Eichenbaum and Vigfusson

(2006), who debate the success of �nite structural VARs in approximating the in�nite order models

that are implied by economic theory. Nonetheless, our main conclusions continue to hold if the

data are generated from a calibrated dynamic general equilibrium model. Simulated draws from

the calibrated RBC model exhibit a low frequency co-movement similar to that found in the actual

data, and the results for a �xed VAR lag are qualitatively similar to those presented Section 4

(simulation results are available in an online appendix).

The rest of the paper is organized as follows. Section 2 brie�y reviews some empirical evidence

and provides the intuition behind our �ndings. In Section 3, we formalize this intuition and present

a theoretical model that helps us to identify the possible source of low frequency correlations and

derive the implications for the impulse responses identi�ed with long run restrictions. Section

4 presents the results from a Monte Carlo simulation experiment. Section 5 discusses the main

implications of our analysis for empirical work and Section 6 concludes.

2 Illustrative Example and Intuitive Arguments

To put the subsequent discussion in the proper empirical context, we present in Figure 1 the es-

timated impulse response functions (IRFs) based on the levels and di¤erenced speci�cations with

quarterly U.S. data for the period 1948Q2 - 2005Q3. U.S. data on labour productivity, hours worked

in the non-farm business sector and population over the age of 16 from DRI Basic Economics (the

mnemonics are LBOUT, LBMN and P16, respectively). The di¤erence in the impulse response

functions is quite striking. Despite the voluminous recent literature on the e¤ects of technology

shock on hours worked, there is still little understanding of how such large quantitative and quali-
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tative di¤erences in the impulse responses can be generated. While the literature attributed these

discrepancies to potential biases in both VAR speci�cations, it is not clear that such biases are

large enough in practice to explain such highly divergent results especially in the short run. In

fact, we �nd that it is nearly impossible to justify these di¤erences solely by the behavior of hours

worked itself and, in particular, by small deviations of the largest root of hours worked from unity.

It is well known, for example, that over-di¤erencing, and misspeci�cation in general, can lead

to biased results. However, what is indeed surprising is that a seemingly very minor, even unde-

tectable, misspeci�cation in the di¤erence speci�cation, may lead to a very substantial bias in the

resulting impulse response function. Standard unit root and stationarity tests on hours worked,

neither of which reject their respective null hypothesis, provide little guidance regarding this speci-

�cation choice (Christiano, Eichenbaum and Vigfusson, 2006). Pesavento and Rossi (2005) provide

con�dence intervals on the largest autoregressive root in hours worked using inversions of four

di¤erent unit root tests. All four con�dence intervals include unity and, in two cases, the lower

bound on the largest root exceeds 0.980 (in the other two cases, it exceeds 0.925). On the face of

it, this hardly appears to be a case in which over-di¤erencing would lead to large misspeci�cation

errors. In fact, in a reduced-form near unit root model, the speci�cation error that arises from

over-di¤erencing is second-order. Nevertheless, Christiano, Eichenbaum and Vigfusson (2003) re-

port quite a large speci�cation error in their calibrated simulations. This provocative result has

yet to be satisfactorily explained in an econometric sense.

Another way to look at the problem is to note that the di¤erenced speci�cation ignores possible

low frequency co-movements between labour productivity growth and hours worked. Figure 2

reveals that the HP trend of labour productivity growth and hours worked exhibit some similarities

and suggest that labour productivity growth may inherit its small low frequency trend component

from hours worked. On a more intuitive level, if hours worked are a highly persistent, but stationary,

process, it is possible that labour productivity growth inherits some small low frequency component
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from hours without inducing any observable changes in its time series properties.

In fact, as we show later, the seemingly con�icting evidence from the levels and di¤erenced

speci�cations identi�ed with LR restrictions can only be reconciled when these deviations from the

exact unit root are accompanied by small low frequency co-movements between labour productivity

growth and hours worked. We show that this low frequency co-movement drives a wedge between

the levels and di¤erenced speci�cations with a profound impact on their impulse response functions.

This situation arises when restrictions on the matrix of LR multipliers, which includes low fre-

quency information, are used to identify technology shocks. While the levels speci�cation explicitly

estimates and incorporates this low frequency co-movement in the computation of the impulse re-

sponse functions, the di¤erenced speci�cation restricts this element to be zero. It is important to

emphasize that this component could be arbitrarily small and could accompany an autoregressive

(AR) root arbitrarily close to one, yet still produce substantial di¤erences in the impulse responses

from the two speci�cations. Therefore, our results also suggest that a pre-testing procedure for a

unit root will be ine¤ective in selecting a model that approximates well the true IRF when hours

worked are close to a unit root process. In this case, the pre-testing procedure would favor the

di¤erenced speci�cation, which rules out the above mentioned low frequency correlation, with high

probability. This could in turn result in highly misleading IRF estimates. In the next section, we

provide more formal arguments for explaining and reconciling the con�icting empirical evidence

from the levels and di¤erenced speci�cations.

3 Analytical Framework for Understanding the Debate

Our analytical framework and econometric speci�cation is designed to mimic some of the salient

features of the data and the implications of the theoretical macroeconomic (in particular, RBC)

models. First, we specify labour productivity as an exact unit root process. The RBC model

imposes a unit root on technology and the data provide strong empirical support for this assumption.
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Hours worked exhibit a highly persistent, near-unit root behavior, although the standard RBC

model implies that they are a stationary process. Since an exact unit root cannot be ruled out

as an empirical possibility, we do not take a stand on this issue and consider both the stationary

and unit root cases. However, these di¤erent speci�cations (stationary or nonstationary) either

allow for or restrict the low frequency co-movement between hours worked and labour productivity

growth. It turns out that this has crucial implications for the impulse response functions.

If hours worked are stationary, the matrix of largest roots of the labour productivity growth

and hours worked can contain a non-zero upper o¤-diagonal element, whose magnitude depends on

the closeness of the root of hours worked to one. This, typically fairly small, o¤-diagonal element

can produce substantial di¤erences in the shapes and the impact values of the IRFs from models

that incorporate (levels speci�cation) or ignore (di¤erenced speci�cation) this component.

If hours worked have an exact unit root, the matrix of largest roots specializes to the identity

matrix. In this case, there can be no low frequency co-movement between hours work and labour

productivity growth, ruling this out as an explanation for the di¤erence between the two sets of

impulse response functions. It is important to note, however, that this explanation is ruled out only

in the case of an exact unit root. Our results suggest that this small low frequency co-movement

can continue to induce large discrepancies between the IRFs of the di¤erenced and levels VARs,

even when the largest root is arbitrarily close to and indistinguishable from unity.

In order to complete the model, we need to adopt an identi�cation scheme that allows us

to recover the structural parameters and shocks. We follow the literature and impose the long-

run identifying restriction that only shocks to technology can have a permanent e¤ect on labour

productivity. In addition, we assume that the structural shocks are orthogonal. In the next

subsections, we formalize this analytical framework and work out its implications for the impulse

response functions based on levels and di¤erenced speci�cations.
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3.1 Reduced-form model

Consider the reduced form of a bivariate vector autoregressive process eyt = (lt; ht)0 of order p+ 1
	(L)(I��L)eyt = ut; (1)

where E(utjut�1;ut�2; :::) = 0, E(utu0tjut�1;ut�2; :::) = �; suptE[kutk2+�] < 1 for � > 0; and

	(L) = I �
Pp
i=1	iL

i =

"
 11(L)  12(L)

 21(L)  22(L)

#
is a �nite-order lag polynomial whose roots lie

strictly outside the unit circle. The matrix � can be expressed in terms of its eigenvalue decom-

position as � = V�1�V, where � =

"
1 0

0 �

#
contains the largest roots of the system and

V =

"
1 �

0 1

#
is a matrix of corresponding eigenvectors (see, for example, Pesavento and Rossi,

2006). Simple algebra yields � =

"
1 �

0 �

#
, where � = �
 (1� �), is the parameter that deter-

mines the low frequency co-movement between the variables and � denotes the largest root of hours

worked.

This parameterization, which arises directly from the eigenvalue decomposition of �, allows for

a small (�) impact of ht on lt, provided that � is not exactly equal to one. Note that in the exact unit

root case, � collapses to the identity matrix. The other o¤-diagonal element ofV, and therefore of

�, is set to zero as it would otherwise imply that hours is I (2) when � = 1 and I (1) when � < 1:

In principle, the model can also be generalized to include a non-zero (but asymptotically vanishing)

feedback from the level of productivity to hours worked. Simple algebra (available from the authors

upon request) shows that this parameterization does not materially a¤ect our subsequent analysis.

For this reason, we set the lower o¤-diagonal element of � to zero without any loss of generality.

It is important to note, however, that the zero lower o¤-diagonal restriction on matrix � does not

rule out a feedback from productivity growth to hours worked in higher-order (p > 1) VAR models.

Thus, it has no implication for the direction of causality implied by the low frequency correlation

between hours worked and productivity growth. For example, in a VAR(2) model, the lagged

productivity growth is allowed to a¤ect hours worked through the possibly non-zero coe¢ cient  21:
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It is convenient to rewrite model (1) in Blanchard and Quah�s (1989) framework by imposing the

exact unit root on productivity so that 4lt is a stationary process. In this case, let yt = (4lt; ht)0

and A(L) = 	(L)

"
1 
 (1� �)L
0 1� �L

#
: Then, the reduced form VAR model is given by

A(L)yt = ut (2)

or yt = A1yt�1 + ::: +Ap+1yt�p�1 + ut: The non-zero o¤-diagonal element 
 (1� �)L allows for

the possibility that a small low frequency component of hours worked a¤ects labour productivity

growth. When the low frequency component is removed from either hours worked (Francis and

Ramey, 2009, and Gali and Rabanal, 2004) or labour productivity growth (Fernald, 2007), this

coe¢ cient is driven to zero and the estimated IRF resembles the IRF computed from the di¤erenced

speci�cation. The above parameterization of � can be used to explain this result.

3.2 Structural VAR

We denote the structural shocks (technology and non-technology shocks, respectively), by "t =

("zt ; "
d
t )
0, which are assumed to be orthogonal with variances �21 and �

2
2, respectively, and relate

them to the reduced form shocks by "t = B0ut, where B0 =

"
1 �b(0)12

�b(0)21 1

#
. Pre-multiplying

both sides of (2) by the matrix B0 and de�ning B(L) = B0A(L) yields the structural VAR model

B(L)yt = "t:

The matrix of long-run multipliers in the SVAR for yt is

B(1) =

24  11(1)� b
(0)
12  21(1) (1� �)

�
[
 11(1) +  12(1)]� b

(0)
12 [
 21(1) +  22(1)]

�
 21(1)� b

(0)
21  11(1) (1� �)

�
[
 21(1) +  22(1)]� b

(0)
21 [
 11(1) +  12(1)]

� 35 :
Imposing the restriction that non-technology shocks have no permanent e¤ect on labour produc-

tivity renders the matrix B(1) lower triangular. For � < 1, this LR restriction translates into the

restriction b(0)12 = [
 11(1) +  12(1)]=[
 21(1) +  22(1)]:

Suppose now that one assumes � = 1 and let 4eyt = (4lt;4ht)0: Then the reduced form

specializes to

	(L)4 eyt = ut (3)
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and the structural form is given by B0	(L)4 eyt = "t with a long-run multiplier matrix
B(1) =

"
 11(1)� b

(0)
12  21(1)  12(1)� b

(0)
12  22(1)

 21(1)� b
(0)
21  11(1)  22(1)� b

(0)
21  12(1)

#
:

Note that the LR restriction implies b(0)12 =  12(1)= 22(1) and even if the upper right element of �

is non-zero, the di¤erenced VAR would ignore any information contained in the levels by implicitly

setting this element to zero.

Once the structural parameter b(0)12 is obtained (by plugging consistent estimates of the ele-

ments of 	(1) from the reduced form estimation), the remaining parameters can be recovered from

B0E(utu
0
t)B

0
0 = E("t"

0
t) or

b
(0)
21 =

b
(0)
12 �22 � �12
b
(0)
12 �12 � �11

; �21 = �11 � 2b
(0)
12 �12 +

h
b
(0)
12

i2
�22 and �22 = �22 � 2b

(0)
21 �12 +

h
b
(0)
21

i2
�11;

where �ij is the [ij]th element of �. These parameters can be used consequently for impulse

response analysis and variance decomposition.

3.3 Implications for impulse response analysis

The impulse response functions of hours worked to a shock in technology can be computed either

from the levels speci�cation or the di¤erenced speci�cation. The levels approach will explicitly

take into account and estimate a possible non-zero upper o¤-diagonal element in �, but it su¤ers

from some statistical problems when hours worked are highly persistent. Christiano, Eichenbaum

and Vigfusson (2003) note that the levels speci�cation tends to produce IRFs with large sampling

variability that are nearly uninformative for distinguishing between competing economic theories.

Gospodinov (2010) shows that this large sampling uncertainty arises from a weak instrument prob-

lem when the largest root of hours worked is near the nonstationary boundary. On the other hand,

the di¤erenced approach will produce valid and asymptotically well-behaved IRF estimates in the

exact unit root case but it ignores any possible low frequency co-movement between hours and

labour productivity growth when hours worked is stationary. It can therefore give rise to highly

misleading IRFs even for very small deviations from the unit root assumption on hours.
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Since b(0)12 = [
 11(1) +  12(1)]=[
 21(1) +  22(1)] and b
(0)
12 =  12(1)= 22(1) can produce very

di¤erent values of b(0)12 ; the IRFs from these two approaches can be vastly di¤erent. In fact, because

the value of 
 does not depend on �, these di¤erences can remain large even for (�� 1) arbitrarily

close, but not equal, to zero. For simplicity, take the �rst-order model where 	(L) = I. In this

case, the two restrictions set the value of b(0)12 to 
 and 0, respectively, implying two very di¤erent

values for b(0)21 , which, in turn, directly determines the IRF. In particular, in the �rst-order model,

the impulse response of hours at time t+ k to a unit shock in technology at time t is given by

h
�kB�10

i
21
=

b
(0)
21 �

k

1� b(0)12 b
(0)
21

: (4)

As it is clear from (4) ; the impact e¤ect at k = 0 does not depend on the value of � as �0 = 1, but

only on the values of b(0)21 and b
(0)
12 , which themselves depend on 	(1) and 
. Focusing the debate

on the distance of � from one is therefore misleading, provided that � is not precisely equal to one.

Interestingly, the di¤erences between the IRFs do not necessarily disappear as � gets closer to

one and � approaches zero. As our analytical framework suggests, they can remain substantial

even for values of � � 1 and � = �
(1 � �) arbitrarily close, but not equal, to zero. This is

because, provided that � < 1, the size of this discrepancy depends on the co-movement through

the parameter 
, rather than through either � or �. At a more intuitive level, the reason that the

short-horizon IRFs can be highly sensitive to even small low frequency co-movements accompanying

small deviations of � from one, is that they are identi�ed o¤ of long-run identi�cation restrictions,

which depend entirely on the zero frequency properties of the data. As reported below, a similar

sensitivity does not arise when short-run identi�cation restrictions are employed.

3.4 An alternative parameterization

The fact that our framework suggests potentially large IRF discrepancies even for values of � quite

close to one is practically relevant, precisely because this is the case in which unit root tests have

the greatest di¢ culty detecting stationarity. The low power of the unit root test in this case arises
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because, in small samples, the resulting process for hours may behave more like a unit root process

than like a stationary series. This concept has been formalized in the econometrics literature by the

near unit root or local-to-unity model, in which � = 1� c=T for c � 0 is modelled as a function of

the sample size T and shrinks towards unity as T increases (Phillips, 1987; Chan, 1988). Naturally,

this dependence on the sample size should not be interpreted as a literal description of the data,

but rather as a device to approximate the behavior of highly persistent processes in small samples.

What makes this modelling device particularly relevant, is that, for small values of the local-to-

unity parameter c, it describes a class of alternatives to � = 1 against which unit root tests have

no consistent power. Intuitively, c = T (1� �) can be viewed as measuring the distance of the root

from one relative to the sample size. Small values of c correspond to cases in which T is relatively

small and � is relatively close to one, so that unit root tests have low power and the di¤erence

speci�cation is likely to be employed when computing IRFs.

An alternative parameterization of the model in (1) is therefore obtained by modeling the

largest root in hours as a local-to-unity process with � = 1� c=T with c � 0. Then, it follows that

� =

"
1 0

0 1� c=T

#
, V =

"
1 �

0 1

#
and �T =

"
1 �
c=T
0 1� c=T

#
. In �nite samples, as long as

c > 0, the feedback from hours to productivity is non-zero, yet arbitrarily small. The reduced form

for yt = (4lt; ht)0 is now

A(L)yt = ut

with A(L) = 	(L)

"
1 
 (c=T )L

0 (1� L) + (c=T )L

#
: In the unit root case (c = 0), �T collapses to

the identity matrix, the variables are not cointegrated and there is no feedback from hours to

productivity growth. Thus, the impact of ht�1 on 4lt is local-to-zero and vanishing at rate T�1=2,

since the level of h a¤ects 4lt through the term (
c=T )ht�1 which is Op(T�1=2) since T�1=2ht�1 =

Op(1) in the local-to-unity setup. This captures the notion that the low frequency co-movement

between hours and productivity growth must be small if the root of hours is close to unity. Writing

the model in the local-to-unity form is also intuitively appealing since the low frequency correlation
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between ht�1 and4lt is bound to disappear asymptotically, so that hours do not a¤ect productivity

growth in the long run.

Under the local-to-unity parameterization, the matrix of long-run multipliers becomes

B(1) =

24  11(1)� b
(0)
12  21(1) c=T

�
[
 11(1) +  12(1)]� b

(0)
12 [
 21(1) +  22(1)]

�
 21(1)� b

(0)
21  11(1) c=T

�
[
 21(1) +  22(1)]� b

(0)
21 [
 11(1) +  12(1)]

� 35
and the restriction that non-technology shocks have no permanent e¤ect on labour productivity

yields b(0)12 = [
 11(1) +  12(1)]=[
 21(1) +  22(1)] for c > 0. Note, that when c = 0, the model

again specializes to the di¤erenced VAR speci�cation in (3), for which the LR speci�cation implies

b
(0)
12 =  12(1)= 22(1). As a result, the analysis of the shapes of the impulse response functions

under the di¤erent speci�cations in Section 3.3 remains unchanged. This con�rms the �nding that

substantial di¤erences in IRFs can arise even within this class of models for which unit root tests

are not powerful enough to detect that hours worked are stationary. Thus, the stylized fact that

hours worked are indistinguishable from a unit root process does not guarantee that the true IRF

will be close to the IRF from the di¤erenced speci�cation.

4 Monte Carlo Experiment

To demonstrate the di¤erences in the IRF estimators with a non-diagonal �; we conduct a Monte

Carlo simulation experiment. 10,000 samples for yt = (lt; ht)0 are generated from the VAR(2) model"
I�
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0:2 0:55

!
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#"
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1 �

0 �

!
L

# 
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ht

!
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u1;t

u2;t

!
;

where � = �
(1� �); T = 250, (u1;t; u2;t)0 � iidN(0;�); � =

 
0:78 0

0 0:55

!
, and the parameter

values are calibrated to match the empirical shape of the IRF of hours worked to a technology shock.

Note that while the numbers for the short-run dynamics are chosen to match the empirical values

estimated from a VAR in levels, in our simulations we consider both � < 1 and � = 1 and therefore

allow both speci�cations (levels and �rst di¤erences) to be the true DGP. The lag order of the VAR

is assumed known. In addition to the IRF estimates from the levels and di¤erenced speci�cations,
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we consider the IRF estimates from a levels speci�cation with HP detrended productivity growth,

as in Fernald (2007). The smoothing parameter for the HP �lter is set to 1; 600.

Figures 3 to 5 show simulation results for the IRFs under four di¤erent parameter con�gurations

for � and 
, all of which lie in a range of values that is potentially consistent with the actual

data. The three panels of each �gure correspond to the di¤erent model speci�cations: a VAR in

productivity growth and hours, a VAR in productivity growth and di¤erenced hours and a VAR in

HP detrended productivity growth and hours. For each model we show the true IRF (solid line),

the median Monte Carlo IRF estimate (long dashes), and the 95% Monte Carlo con�dence bands

(short dashes).

In Figure 3 we consider a stationary but persistent process for hours (� = 0:95), while allowing

a small low frequency component of hours worked to enter labour productivity growth (� = 0:04).

As shown in the �gure, the VAR in levels (left graph) estimates an IRF that is close, on average,

to the true IRF, except for a small bias (see Gospodinov, 2010, for an explanation). On the other

hand, the VAR with hours in �rst di¤erences (middle graph) incorrectly estimates a negative initial

impact of the technology shock even though the true impact is positive. This underlines the ability

of even a small low frequency co-movement to drive a qualitatively important wedge between the

IRFs based on the levels and di¤erenced models.

The lower panel of Figure 3 also provides interesting information. When the HP �lter is used

to remove the low frequency component from labour productivity growth (Fernald, 2007), the

estimated IRF resembles the IRF computed from the di¤erenced speci�cation. The graphs clearly

demonstrate that the removal of the low frequency component, by either di¤erencing or HP �ltering,

eliminates the possibility of any low frequency co-movements between the transformed series and

this has a profound in�uence on the IRFs. We also considered the speci�cation when hours worked

are HP-�ltered as in Francis and Ramey (2009). The behavior of the IRF estimates in this model

is similar to the case of HP-�ltered productivity growth.
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Figure 4 presents the results for the exact unit root case. In this case, the matrix of largest roots

becomes diagonal, eliminating the low frequency co-movement between hours and productivity

growth (� = 0). Despite some small biases, all median IRF estimates now correctly sign the

impact of the technology shock and come close to tracing out the true IRFs. Not surprisingly,

the di¤erenced speci�cation is particularly accurate and produces an unbiased estimator with tight

con�dence intervals. The estimator from the levels speci�cation exhibits both a modest bias that

arises from the biased estimation of the largest root of hours and a very large sample uncertainty

(Gospodinov, 2010). The estimator using HP �ltered labour productivity growth performs similarly

to the di¤erenced estimator, although it is slightly biased and more dispersed.

In Figure 5, we maintain the assumption of a zero o¤-diagonal element (� = 0) and return to

a persistent but stationary speci�cation for hours worked (� = 0:95). The median IRFs from all

models are again quite similar, both to each other and to the true IRF. In this sense, beside having

smaller bias and variance, the basic message from Figures 4 and 5 is similar, despite the fact that

hours are nonstationary in Figure 4 but stationary in Figure 5.

In summarizing the results from these four �gures, we note that large qualitative di¤erences in

median IRFs for the di¤erenced and levels VARs were observed only in Figure 3, in which there is

a small low frequency relationship between hours and labour productivity (� 6= 0). Neither Figure

4 nor Figure 5 show qualitative di¤erences in the median IRFs from the levels and di¤erenced

speci�cations. Yet, in Figure 4, hours have a unit root, whereas they are stationary in Figure 5.

While small sample bias is present and a¤ects the precision of the estimation, our simulations show

that the small sample bias and persistence of the non-technology shocks alone are not enough to

generate the substantial di¤erences in the impulse responses that we �nd in practice. What Figures

4 and 5 share in common is the absence of the low frequency co-movement of Figure 3. Although

the size of the unit root in hours worked has important implications for the sampling distributions

of the IRFs, these results suggest that it is the low frequency co-movement that plays the critical
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role in driving the qualitative di¤erences between the level and di¤erenced speci�cations.

We also want to stress that the con�dence intervals reported in Figures 3-5 are Monte Carlo

con�dence intervals, which are infeasible since they utilize knowledge of the true data generating

process. The bias in the levels VAR and the misspeci�cation in the �rst di¤erence regressions result

in poor coverage of con�dence intervals constructed with standard procedures at medium and long

horizons (Pesavento and Rossi, 2006). This is not re�ected in our infeasible con�dence intervals.

At the same time, Figures 3 and 4 show clearly how a wide range of di¤erent estimates for the IRF

are possible, and that the sampling uncertainty in the levels VAR is indeed larger. At the same

time, except for the cases in which either � is exactly one or � is exactly zero, the true impulse

response is never contained in the Monte Carlo con�dence bands for the VAR in �rst di¤erences.

To better assess the sensitivity of the levels and di¤erenced speci�cations to di¤erent values

of �, we plot in Figure 6 the true and estimated responses for � = 0:95 and various degrees of

low frequency co-movement: Each line represents values for 
 = f�0:5;�0:2; 0; 0:2; 0:5g, which

correspond to di¤erent o¤-diagonal elements � depending on the value of � (recall that � = �
(1�

�)). Once again, it is clear that, while the level speci�cation explicitly estimates and incorporates

the di¤erent values for � in the computation of the impulse response functions, the di¤erenced

speci�cation implicitly imposes this element to be zero. This leads to substantial deviations from

the true impulse response functions.

Finally, the di¤erences in the IRFs for the various model speci�cations are expected to arise

only in the case of long-run identi�cation restrictions that are directly a¤ected by the inclusion

or the omission of the low frequency component. In order to verify this conjecture, we estimate

the IRFs based on a short-run identi�cation (Choleski decomposition) scheme, with productivity

growth ordered �rst and hours second. We emphasize that our short-run identifying scheme is used

only to illustrate the relative insensitivity of the IRFs to the low frequency co-movement when

they are identi�ed by short-run restrictions. We do not advocate its use in practice since it has
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no clear theoretical justi�cation. (See Christiano, Eichenbaum and Vigfusson (2006) for a more

sophisticated, model-based, short-run identi�cation scheme.)

The results from the three models for � = 0:95 and � = 0:04 are presented in Figure 7. Unlike

the long-run identi�cation scheme (Figure 3), the IRF estimates for all speci�cations are very close

to the true IRF and fall inside the 95% Monte Carlo con�dence bands. This suggests that the short-

run identi�cation scheme is robust to the presence or absence of low frequency co-movements, which

is not the case with identifying restrictions that are based on long-run information.

The simulation results so far are obtained under the maintained hypothesis of an underlying

low frequency co-movement in the data for � 6= 0, which is implicitly assumed to be structural in

nature. An online appendix (available on the authors�webpages) presents additional simulation

results from two observationally equivalent structural break models that give rise to the common

high-low-high pattern observed by Fernald (2007). These simulations are intended to provide some

insight into the reasons underlying the di¤erences between our results and the results in Fernald

(2007). The simulation results clearly indicate that imposing the assumption that the timing of the

breaks is coincidental (Fernald, 2007) or exogenously driven (Francis and Ramey, 2009) is crucial

for producing evidence supporting the break removal or HP �ltering prior to the IRF analysis

advocated by Fernald (2007) and Francis and Ramey (2009). By contrast, the results from a

co-break model, where the similar magnitude and timing of the breaks is driven by a common

underlying component, are qualitatively similar to those presented above, in which removing the

low frequency component leads to substantial deviations of the IRF estimates from their true values.

5 Discussion of Results

The analytical and numerical results presented above clearly suggest that some seemingly innocu-

ous transformations of the data can lead to vastly (qualitatively and quantitatively) di¤erent policy

recommendations. The main objective of this paper is to illustrate and identify the source of these
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di¤erences. At the same time, several interesting observations and remarks emerge from our analy-

sis that highlight some potential pitfalls in empirical work with structural dynamic models that

use highly persistent variables in conjunction with long-run identifying restrictions. Following

Blanchard and Quah (1989), long-run identifying restrictions have been popular tools in applied

macroeconomics (see for example Rogers (1999), Lastrapes (1992) and Clarida and Gali (1994)

among others), while ever since Nelson and Plosser (1982), the low frequency properties of macro-

economic data series has been widely debated. Therefore, these more general insights are likely

also to be useful in other contexts.

First, it is common practice in macroeconomics to remove low frequency components by applying

the HP �lter when focusing on business cycle frequencies. For example, Fernald (2007) argues that

the low frequency component is not important for business cycle analysis. The e¤ect of technology

shocks on hours worked is typically evaluated at business cycle frequency and it is reasonable to

assume that the removal of low frequency components will not a¤ect the conclusions. We agree

with this position, provided that the structural shocks are identi�ed using short- or medium-run

restrictions. We argue that the low frequency component contains important long-run information

that, while not directly relevant at business cycle frequencies, a¤ects in a fundamental way the

long-run restrictions. Therefore, omitting or explicitly removing the low frequency correlation can

result in misspeci�cation of the long-run restriction and hence the business cycle component that

is of primary interest to the analysis. In contrast, the low frequency component does not seem to

matter for the short-run restrictions and the transformations applied to the data do not a¤ect the

impulse responses that they identify, as illustrated in our simulation section.

Although the analogy is not exact, the removal of low frequency components bears some simi-

larities to ignoring the long-run information contained in the error-correction term in cointegrated

models. The cointegration information does not directly a¤ect the business cycle analysis, but is

essential to the long-run equilibrium. If we use short-run restrictions, the cointegration information
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can be left out without serious consequences. If the data are subjected to di¤erencing (�ltering)

prior to the analysis, the long-run information contained in the cointegrating relationship is lost

and the long-run restriction is misspeci�ed, which in turn gives rise to misleading results.

Second, it is well known that a highly persistent linear process often exhibits dynamics that are

observationally equivalent to dynamics generated by a long memory, structural break or regime-

switching process. Therefore, it is di¢ cult to statistically distinguish between these processes in

�nite samples and commit to a particular speci�cation. In our context, it is hard to determine

if the low frequency component (for example, the U shape in hours worked) and co-movement

are spurious or not. Fernald (2007) convincingly illustrates the cost of falsely keeping the low

frequency component if this co-movement is spurious. Our results indicate that there is an equally

large cost of falsely removing it when the co-movement is a true feature of the correctly identi�ed

model. Ultimately, the researcher has to take a stand on whether the long-restriction applies to the

original or �ltered data. Our analysis in the previous sections provides important information on

the sensitivity (robustness) of the di¤erent statistical transformations of the data to misspeci�cation

of the long-run restriction.

Finally, pre-testing procedures that are used to determine which speci�cation is more appropri-

ate perform poorly, especially when the data are highly persistent. Our analysis suggest that large

di¤erences in the IRFs arise even when the largest root is arbitrarily close to one, in which case

the pre-testing procedure selects the di¤erenced speci�cation with probability approaching one.

Put another way, we �nd that, when identi�ed by LR restrictions, the IRFs from the di¤erenced

speci�cation are not robust to small deviations of the largest root from unity, even when those

deviations are too small to be empirically detected.
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6 Conclusion

This paper analyzes the source of the con�icting evidence from structural VARs identi�ed by

long-run restrictions on the e¤ect of technology shocks on hours worked reported in several recent

empirical studies. We show analytically that the extreme sensitivity of the results to di¤erent

model speci�cations can be explained by a discontinuity in the solution for the structural coe¢ -

cients implied by the long run restrictions, which arises only in the presence of a low frequency

correlation between hours worked and productivity growth. The critical mechanism underlying

the di¤erence between the levels and di¤erenced speci�cations, is that the di¤erenced speci�cation

restricts this correlation to zero when solving for structural model, whereas the levels speci�cation

allows it to enter in unrestricted manner. Consequently, it may not be surprising that alternative

�ltering approaches reported in the literature, such as HP �ltering and trend-break removal, which

eliminate this low frequency correlation, provide evidence supportive of the di¤erenced VAR. We

also demonstrate that low frequency correlations capable of causing strong discrepancies between

the two speci�cations are compatible with autoregressive roots in hours worked that are indistin-

guishable from one. This sharp discontinuity implies that one cannot rely on univariate unit root

tests to resolve this debate, since they are not designed to discriminate between exact and near-unit

root models.

Fernald (2007) also highlights the role of an observed low frequency correlation in the data,

modeled as a common U-shaped pattern driven by structural breaks, and provides a number of

convincing empirical exercises to illustrate its importance. While this insightful analysis clearly

demonstrates the empirical link between the low frequency correlation and the con�icting results,

to date there has not been a full theoretical understanding of why this low frequency correlation

plays such an important role. We �ll this gap by showing, in a more general analytic framework,

that the key role played by this low frequency correlation is to create a discontinuity between the

structural solutions of the di¤erenced and levels speci�cations.
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We argue that the importance of the low frequency correlation cannot by itself resolve the

debate, because, depending on the way it is modeled, it may lead to biases in either the levels

or di¤erenced speci�cation. However, in conjunction with Fernald (2007) and Francis and Ramey

(2009), our results help to clarify the terms of the debate. We demonstrate that if there is a

true low frequency correlation in the population model that is correctly identi�ed by the long-run

identi�cation restriction, then any procedure which removes this low frequency correlation, whether

by di¤erencing, HP �ltering, or trend-break removal would result in a substantial bias. In fact, we

�nd that one cannot reproduce the discrepancy in the results with any reasonable probability in a

correctly identi�ed model, without introducing such a true population correlation.

The reason that this �nding might seem to be at odds with those of Fernald (2007) and Francis

and Ramey (2009), who both argue that the levels speci�cation is biased, is that neither of these

papers perceive the observed correlation as an inherent feature of the correctly identi�ed model.

Fernald (2007) argues that the observed low frequency correlation is purely coincidental as a similar

pair of breaks in both series occur due to historical happenstance. Francis and Ramey (2009) treat

the observed correlation as a population characteristic explained by common low frequency trends

in demographic and public employment, but argue that the long-run restriction does not hold

until these low frequency trends are purged from the data. In our view, the debate therefore

hinges on the interpretation given to this low frequency correlation. If one has reasons to believe

that there is a genuine low frequency co-movement in a correctly identi�ed model, this would

support the �ndings of Christiano, Eichenbaum and Vigfusson (2003). On the other hand, if one

is convinced either that the observed correlation is coincidental (Fernald, 2007) or that it is due to

factors that violate the identi�cation restriction (Francis and Ramey, 2009), then the results may

be interpreted as supporting the earlier �ndings of Gali (1999). More generally, our results help to

explain the empirically observed sensitivity of long-run identifying schemes to uncertainty regarding

low frequency dynamics, even when identifying characteristics at business cycle frequencies.
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Figure 1. Response of hours worked to a 1% positive technology shock, U.S. data 1948Q2 - 2005Q3.

Top graph: hours worked in levels; Bottom graph: hours worked in �rst di¤erences.
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Figure 2. HP trends of labour productivity growth (top graph) and hours worked (bottom graph),

U.S. data 1948Q2 - 2005Q3.
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Figure 3. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model
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Figure 4. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model
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Figure 5. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model
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Figure 6. Response of hours to a positive technology shock (long-run identi�cation) with data simu-

lated from the model
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Figure 7. Response of hours to a positive technology shock (short-run (Choleski) identi�ca-

tion) with data simulated from the model
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