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Isolas of periodic passive Q-switching self-pulsations in the three-level:two-level model for a laser
with a saturable absorber
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2Instituto de Fı́sica, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla, Pue. 72570, Mexico
(Received 5 January 2011; revised manuscript received 7 July 2011; published 7 November 2011)

We show that a fundamental feature of the three-level:two-level model, used to describe molecular monomode
lasers with a saturable absorber, is the existence of isolas of periodic passive Q-switching (PQS) self-pulsations.
A common feature of these closed families of periodic solutions is that they contain regions of stability of
the PQS self-pulsation bordered by period-doubling and fold bifurcations, when the control parameter is either
the incoherent external pump or the cavity frequency detuning. These findings unveil the fundamental solution
structure that is at the origin of the phenomenon known as “period-adding cascades” in our system. Using
numerical continuation techniques we determine these isolas systematically, as well as the changes they undergo
as secondary parameters are varied.
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I. INTRODUCTION

Single-mode class-B lasers, where polarization dynamics
is adiabatically eliminated, typically do not show dynamical
instabilities unless additional electro-optical or optical com-
ponents, such as intracavity modulators, saturable absorbers,
external field injections, or external feedbacks, are introduced
in the laser system [1–3]. An important example of these
lasers, the CO2 laser with an intracavity gaseous saturable
absorber (LSA), may generate giant laser spikes, which
are known as passive Q-switching (PQS) self-pulsations.
The latter were first observed a long time ago in the laboratory
by Wood and Schwarz in 1967 [4]. Soon after, the complex
dynamics induced by the CO2 LSA experiments triggered a
number of early studies [2,5–9]. Indeed, the rich dynamical
phenomenology of the CO2 LSA, and its versatility to change
control parameters, make it a particularly interesting object for
the study of its nonlinear dynamics [10–16].

In this paper we show that a widely accepted model,
the three-level:two-level model (3-2LM), which describes the
temporal dynamics of this system with a good degree of
fidelity [10,16], predicts the existence of isolas of periodic
PQS self-pulsations as a suitable parameter is changed. This
parameter can be the incoherent external pump or the cavity
frequency detuning. By an isola, we mean a smooth, closed,
and isolated family of periodic solutions, stable or unstable,
which is generated as a single control parameter is allowed
to change. Isolas of periodic orbits in autonomous systems
have been found in different contexts, such as in an electronic
circuit [17], and in a model for air oxidation of hydrogen in a
continuous-flow stirred tank reactor [18,19].

In the CO2 LSA, typically each PQS self-pulsation consists
of a leading spike, named the reinjection, and n − 1 small
intensity undulations in a tail [9,10]. We label these periodic
PQS self-pulsations as �(n). As the incoherent external pump
[13,20] or the cavity frequency detuning [16] is changed in
the experiment, period-adding cascades of PQS self-pulsations
arise, �(n) → �(n+1) or vice versa. In the framework of the
three-level:two-level model (3-2LM) [9,10,13], we show that,
as the incoherent pump or the cavity frequency detuning is
changed, the origin of the period-adding cascades stems from

the peculiar coexistence of stable �(n) along a sequence of
isolas of periodic orbits of increasingly higher period for
increasing n.

Previous studies on period-adding cascades have been re-
ported for optically injected lasers [21–24], and for a laser rate
equation model with a term describing a saturable absorber and
a modulated pump source [25]. To our knowledge, however,
no previous observation of isolas of PQS self-pulsations has
been reported in PQS semiconductor lasers [26] or in PQS
microchip lasers [27].

II. THREE-LEVEL:TWO-LEVEL MODEL

The standard model for the CO2 LSA is described by four
coupled rate equations for the laser intensity I , the population
densities in the upper and lower laser levels of the amplifier,
and the population density difference between the energy
levels in the absorber [9,10]. In this model it is assumed
that both the amplifier lasing molecular transition frequency
and that of the absorber are homogeneously broadened and
resonant. It has also been shown that the 3-2LM describes
the N2O LSA experimental results [20]. After a suitable
normalization of the variables and parameters, the following
set of equations is obtained [13,16]:

dI

dt
= I (U − Ū − 1),

dU

dt
= ε[W − U (1 + I )],

(1)
dW

dt
= ε(A + bU − W ),

dŪ

dt
= ε̄[Ā − Ū (1 + aI )].

Here U and W are proportional to the active population differ-
ence and the effective population source term, respectively, in
the amplifier, Ū is proportional to the population difference
in the absorber, and ε and ε̄ are normalized relaxation
rates in the amplifier and absorber, respectively. The parameter
a is proportional to the ratio of the absorption coefficient to
the amplification coefficient. Finally, b is the squared ratio
between two effective relaxation rates in the amplifier. The
parameter A is proportional to the external incoherent pump
rate in the gain medium, while Ā is proportional to the
equilibrium population difference in the absorber. The time
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t has been rescaled with respect to the cavity-damping rate.
In the case when the cavity frequency detuning �ω is the
main control parameter, a theoretical dependence of the laser
parameters A, Ā, and a on �ω has been proposed [16], to be
discussed later in connection with Eq. (2).

When A is the main control parameter the numerical values
assigned to the parameters in Eq. (1) are the following [13,16]:
ε = 0.137, ε̄ = 8.00, a = 4.17, b = 0.85, and Ā = 3.50.
These values indicate that there is a fast variable, I , and two
slow variables, U and W . The variable Ū is seen to be a
very fast variable and typically it is eliminated from Eq. (1)
via a quasisteady state approximation to simplify the study.
Furthermore, time integration of Eq. (1) suggests that the
dynamics switches between slow and fast motion and small
and large amplitudes. Systems with these features are known
as mixed mode oscillations (MMOs) and are the subject of
substantial current research [28]. MMOs are ubiquitous in
nature and have been observed in diverse systems such as
in surface chemical reactions, electrochemical systems, and
neural systems, to name just a few fields [28].

The basic stationary solution

I = 0, U = W = A

1 − b
, Ū = Ā,

is stable when A < (1 − b)(1 + Ā). It loses stability at A =
(1 − b)(1 + Ā) as a result of a transcritical bifurcation where
the basic solution family and a secondary stationary solution
family intersect. Thus for our parameter values the basic
solution loses stability at A = 0.675. One leg of the bifurcating
family of secondary stationary solutions (I > 0) consists of
unstable solutions until a Hopf bifurcation is reached at
A ≈ 2.8, beyond which these equilibria become stable. The
latter can be seen in the basic bifurcation diagram in Fig. 1(a).

The numerical computations, carried out with AUTO [29],
sensitively depend on how small I gets. For this reason,
it is better to use a new variable c, where I = ec. The
basic solution, I = 0, then corresponds to c = −∞. Due to
this transformation the basic solution cannot be seen in the
bifurcation diagrams, most of which show the L2 norm versus

FIG. 1. (Color online) (a) The bifurcation diagram, with norm versus A, showing the stationary family with Hopf bifurcation (small square),
the one-pulse family �(1) (labeled 1), and a period-doubled family �(2) of two-pulse orbits (labeled 2), which connects two period-doubling
bifurcations (open diamonds) on the one-pulse family. (b) The bifurcation diagram, also showing the isolas In, n = 3,4, . . . ,50. (c) A detail
of (b), showing part of isolas I3–I8 (labeled 3–8). (d) A further detail of (b), showing part of the isolas In n = 3,4, . . . ,50, close to their
right-hand folds near A = 2.88. Not indicated are period doublings that are extremely close to these folds.
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A. For stationary solutions (I > 0), this norm is√
c2 + U 2 + W 2 + Ū 2,

while for periodic solutions of period T we use

1√
T

[ ∫ T

0
c(t)2 + U (t)2 + W (t)2 + Ū2(t)2dt

]1/2

.

We note that bifurcation diagrams are intended to give a
schematic representation of the bifurcation behavior of a
system. Towards this purpose the choice of the vertical axis
is not so important, the main criterion for its choice being
the clarity of the diagram. Although the L2 norm, as defined
above, may not be of physical interest in the current context,
it was found to give diagrams that are quite clear compared to
other choices.

III. ISOLAS OF PERIODIC PQS SELF-PULSATIONS

In the framework of the 3-2LM we show that isolas of
PQS periodic self-pulsations, �(n), arise when either the
incoherent pump parameter A in the amplifier or the cavity
frequency detuning, �ω, is changed. The former case is
considered in detail, while the latter is briefly mentioned
as any qualitative information about it can be obtained
from the former case. We discuss both physical situations
because period-adding cascades of �(n) arise when either
A [13,20] or �ω [16] is changed in an experiment. We
explain the origin of these cascades as being the result of the
peculiar coexistence of stable intervals for �(n) along different
isolas.

The basic bifurcation diagram displayed in Fig. 1(a) also
shows the family of periodic solutions �(1) that emanates
from the Hopf bifurcation at A ≈ 2.8 as the incoherent pump
parameter A changes. Note that this family contains a fold,
as well as two period-doubling bifurcations, namely, near
A ≈ 1.83 and A ≈ 2.88, of which the latter is near the fold.
The periodic solutions are stable to the left of the period-
doubling bifurcation near A ≈ 1.83. Figure 1(a) also shows
that the two period-doubling bifurcations are connected by a

single period-doubled family �(2), which contains a region
of stability that is bordered by secondary period-doubling
bifurcations, namely, near A ≈ 1.67 and A ≈ 2.39. These
secondary period-doubling bifurcations can lead to more
complicated stable dynamics that, as we have found, is mostly
confined to very small intervals in parameter space. We note
that periodic orbits reported in this paper are computed by
boundary-value algorithms, as implemented in AUTO [29].

The origin of the period-adding cascades stems from the
coexistence of the stable periodic PQS self-pulsations �(n),
and for this reason we consider the organization of their
stability regions. To this end, first note that �(2) in Fig. 1(a)
corresponds to the period-doubled orbit, which emanates from
the main periodic PQS self-pulsation �(1).

Figure 1(b) shows that there are additional periodic solution
families �(n) that cannot be reached directly by periodic
solution bifurcations from the families found in Fig. 1(a),
at least not by only varying the parameter A. Specifically,
Fig. 1(b) shows a number of isolated families (isolas) of
periodic solutions. We shall refer to these isolas as In,
n = 3,4,5,6, . . . . Enlarged views of Fig. 1(b) are shown in
Figs. 1(c) and 1(d).

In Fig. 2(a) the isolas I3, . . . ,I9 are shown with the period
of their orbits as the vertical axis. It is this diagram that
most convincingly displays the isolated nature of the solution
families In. Figure 2(b) also shows these isolas, but with the
maximum of the solution component c(t) as vertical axis.

The periodic self-pulsation �(n) belongs to the isola In, n =
3,4,5,6, . . . . Figure 2(a) shows that each isola In contains fold
and period-doubling bifurcations. On each isola the periodic
self-pulsations �(n) are stable in an A interval bounded on the
left by a fold, and on the right by a period-doubling bifurcation,
as most clearly seen in Figs. 1(c) and 2(a). In the figures we can
observe that stable self-pulsations �(n), for different n, coexist
before the Hopf bifurcation at A ≈ 2.8; see, e.g., Figs. 1(b) and
2(a). When the incoherent pump A is changed, this peculiar
coexistence of periodic attractors �(n) is the reason for the
origin of systematic hysteresis jumps observed experimentally
[13,20], namely, the period-adding cascades.

FIG. 2. (Color online) The isolas I3, . . . ,I9, showing (a) period versus A, and (b) max c versus A. Open diamonds represent period-doubling
bifurcations. Solid/dashed curves represent stable/unstable solutions. Not indicated are period doublings that are extremely close to the right-hand
folds. Note that the periods of the orbits along the isola In are smaller than those along the isola In+1; instead the intervals of stability along
the isola In are larger than those along the isola In+1.
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FIG. 3. (Color online) Loci of period-doubling bifurcations
(dashed) and loci of folds (solid) for isolas I3–I8. The minimum
of the solid line corresponding to isola In is smaller than that for
isola In+1. The same argument holds for the dashed lines.

For higher values of n the stability regions along the isolas
In, delimited by a period-doubling bifurcations and a fold,
tend to contract, as seen in Figs. 1 and 2. This contraction can
also be seen in Fig. 3, which shows the loci of period doublings
and folds in the two parameters A and Ā. Figure 3 also shows
that the isolas themselves shrink and disappear one by one as
Ā decreases.

Extremely small regions of stability along the isolas In

also occur near the right-hand folds of the isolas, of which a
blowup is shown in Fig. 1(d). More precisely, there are period
doublings very close to these right-hand folds, which AUTO

fails to detect, as they are so close to the fold that a real
multiplier moves into the unit circle through +1 (the fold),
interacts with a multiplier that is already inside the unit circle
(becoming complex, and “circling” around the origin), and
leaves the unit circle through −1 (the period doubling), or
conversely. All this occurs “in one continuation step.” The
existence of these right-hand period doublings is best verified
by two-parameter continuation, as shown in Fig. 3. However,
since the stable region between these period doublings and the
right-hand folds is typically very small, we consider them to be
less physically relevant. Along each isola we also found that
the family that bifurcates from the indicated period-doubling
bifurcation in, for example, Fig. 2(a), connects directly to the
period-doubling bifurcation (not shown) near the right-hand
fold of the isola. These families contain even smaller regions
of stability, which we also choose not to describe in detail
here.

Near the right-hand folds of the isolas the periodic PQS
self-pulsations �(n) with a large number of undulations, i.e., for
large n, appear to approximate a homoclinic connection from
a basic periodic orbit �(1) to itself. At the folds these periodic
orbits, again for large n, then correspond to approximate ho-
moclinic tangencies. The existence of homoclinic tangencies
has been supported both by experimental investigation of the
time series in the CO2 LSA [13,16,30] and theoretical studies
of the 3-2LM [13,16,31,32]. More precisely, the association of
the flow dynamics of Eq. (1) or the experimental time series
with suitable multibranched maps as a secure identification
method for the presence of homoclinic tangencies has been

FIG. 4. (Color online) The isolas I3, . . . ,I50, showing period
versus A. Open diamonds represent period-doubling bifurcations.
Solid/dashed curves represent stable/unstable solutions. Not indicated
are period doublings that are extremely close to the right-hand folds.
The labels 1 and 2 on isola I40 point at the period-doubling bifurcation
and at the right-hand fold, respectively. For a comparison see Fig. 2(a).

considered in several studies [13,16,30,33]. As a manifestation
of the possible presence of a homoclinic tangency, Figs. 2(a)
and 4 show that the period of the orbits along the isola
In increases as n increases. This holds in particular for the
periodic solutions at the right-hand folds of the isolas. The
fact that these solutions approximate a homoclinic orbit, and
hence a homoclinic tangency, is illustrated for I40 in Figs. 5(b)
and 5(c). Specifically, solution 2 at the right-hand fold of
I40 is approximately homoclinic to a periodic solution at
A ≈ 2.8857 along the lower part of the basic family �(1) that
emanates from the Hopf bifurcation in Fig. 1(a).

Figure 4 also shows that as n becomes larger the A values
of the folds that delimit the isolas on the right approach a
limit, namely the value where the homoclinic tangency occurs.
Figure 5(b) shows the sinusoidal shape of the undulations of
solution 2. In fact, these observations are also at the heart of
our procedure to construct starting solutions along isola In for
larger values of n. More precisely, splicing in an additional
undulation in a solution near the right-hand fold of �(n)

provides an approximate starting solution near the right-hand
fold of �(n+1), which is then refined by Newton iteration,
and subsequently continued in order to trace out the entire
isola In.

In general, the origin of isolas has been associated to
resonance zones close to the tip where the Arnold tongues
emerge [34], to cusp bifurcations and Shilnikov homoclinic
connections [17], to a neighborhood of a homoclinic tangency
to a periodic orbit [35], and to a neighborhood of a Shilnikov-
Hopf bifurcation [36]. In particular, the latter paper contains
bifurcation diagrams with isolas that resemble those found
in our model. However, in the parameter regime that we
consider, we have not yet encountered a Shilnikov-Hopf point.
We do find that, as the secondary parameter Ā is decreased
and the isolas shrink and sequentially disappear (see Fig. 3),
the bifurcation scenario changes to a period-doubling route
in the form of a period-doubling bubble, such as in the case
of the CO2 with modulated cavity losses, whose frequency is
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FIG. 5. (Color online) Two periodic solutions along the isola I40, for ε = 0.137, ε̄ = 8.00, a = 4.17, b = 0.85, and Ā = 3.50. Each PQS
self-pulsation along I40 has a leading spike (the reinjection), and 39 undulations (relaxations). (a) Solution 1 at the period-doubling bifurcation
at A = 2.786. Time has been scaled to the unit interval; the actual period is 588.0. The large negative value of c, down to less than −15,
corresponds to a very small value of I , where I = ec. (b) Solution 2 at the right-hand fold at A = 2.885, where the sinusoidal undulations are
apparent. Time has been scaled; the actual period is 627.6. (c) A three-dimensional representation of solution 2.

changed [37]. A more detailed two-parameter numerical study
of this transition would be of mathematical interest in future
work.

The presence of a homoclinic orbit biasymptotic to an
unstable periodic orbit has also been found in the context of
the CO2 LSA in experimental studies [13,16,30], as well as in
simulations with different LSA models [13,16,31,32]. These
models are compatible with the topological organization of the
periodic orbits extracted from the experimental chaotic time
series [38].

In the present paper, however, our focus is on the study
of invariant objects in phase space and their bifurcations, a
description that may help to better understand the dynamics
of Eq. (1) in its full complexity. To support our findings, we
have recently also studied [39] an alternative model for the
CO2 LSA [40] for the case of a fast saturable absorber [39]. In
this model a bifurcation structure with features qualitatively
similar to those discussed in the current paper has been found
as the incoherent pump parameter changes [39].

In order to compare our findings with those of experiments
[9,10,13,14,20], we also numerically integrated Eq. (1). In
Fig. 6, as A is decreased, a period-adding cascade, �(n+1) →

�(n) with n = 3,4,5,6, . . ., is visible. The cascades are evident
by comparing Fig. 6 to, for example, Figs. 1(c) and 2(a),
with the understanding that A is being decreased. Note that in
Fig. 6, just before the onset of chaotic behavior near A = 2.8,
the system is in its stable equilibrium. The stability of the
secondary stationary solution is lost as a result of the Hopf
bifurcation at A ≈ 2.8, as is evident by comparing Fig. 6 and,
for example, Fig. 1(a). The periodic time evolution of the PQS
self-pulsations, �(n), is shown in Fig. 7 for n = 3,4,5,6, each
of which arises for a different value of A.

We also have considered the bifurcations that the CO2 LSA
system undergoes as the cavity frequency detuning changes.
Within the framework of the 3-2LM in Eq. (1), a theoretical
dependence of the laser parameters A, Ā, and a on the cavity
frequency detuning relative to that of the atomic frequency,
�ω, has been suggested [16,41]. In this model the lasing
transition frequencies of both the homogeneously broadened
amplifier and absorber are the same, and the laser frequency is
assumed to be that of the optical cavity. For suitable parameter
values a qualitative agreement between the results of this
model and those of the experiment has been shown [16]. Within
this framework [16] we have found that as �ω changes and for
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FIG. 6. Plot of c versus A taken from the Poincaré section,
where ε = 0.137, ε̄ = 8.00, a = 4.17, b = 0.85, Ā = 3.50, and
A decreases. Observe the period-adding cascades of PQS stable
self-pulsations, �(n). The Hopf bifurcation occurs at A ≈ 2.8, just
to the right of where the chaotic motion ceases in the figure.

fixed n the periodic self-pulsations �(n) are organized along
isolas In, n = 3,4,5,6, . . . . Indeed, most of the qualitative
information obtained by changing �ω can be found from
the previous case, when A is the control parameter. For the
sake of completeness, we give the aforementioned parameter
dependence on �ω [16]:

Ā(�ω) = α

1 + (
�ω

�̄

)2 , A(�ω) = β

1 + (
�ω
�

)2 ,

2100 2300
−20

−10

0

c

Time t

(a)
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−10
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Time t

(b)
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(c)
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(d)

FIG. 7. Plot of c versus time t , where ε = 0.137, ε̄ = 8.00,
a = 4.17, b = 0.85, and Ā = 3.50. for the stable PQS self-pulsations,
�(n), n = 3,4,5,6. The large negative value of c, down to less
than −15, corresponds to a very small value of I , where I = ec,
(a) �(3) for A = 2.40; (b) �(4) for A = 2.55; (c) �(5) for A = 2.60;
(d) �(6) for A = 2.65. For each stable PQS self-pulsation, �(n), we can
see the reinjection (leading spike) and n − 1 undulations (undamped
relaxations).

a(�ω) =
(

1 + (
�ω
�

)2

1 + (
�ω

�̄

)2

)
a(0), (2)

where � is an effective parameter.

IV. CONCLUSIONS AND DISCUSSION

We have found that in the 3-2LM for the CO2 LSA the
periodic PQS self-pulsations �(n) are organized along isolas
In, as either the incoherent pump parameter A or the cavity
frequency detuning �ω is changed. This is a generic property
of the model, and to our knowledge is reported for the first
time for the 3-2LM. For a suitable value of the parameter Ā,
related to the population at thermal equilibrium in the absorber,
the peculiar coexistence of periodic PQS stable self-pulsations
induces the phenomenon known as period-adding cascades as
either A or �ω is changed. As for the stability of the periodic
PQS self-pulsations, a typical pattern emerges: any �(n) is
stable in an A interval, or in a �ω interval, bounded by period
doubling and fold bifurcations. We have also shown that the
size of this interval of stability becomes smaller with larger n,
and that the isolas disappear one by one as the parameter Ā

decreases.
We have implemented a method to construct the isolas In

and to approximate the homoclinic connections from basic
periodic orbits to themselves, as well as the homoclinic
tangency. Along the isolas, splicing in an additional undulation
in a solution near the right-hand fold of �(n) provides an
approximate starting solution near the right-hand fold of
�(n+1), which is then refined by a Newton iteration, and
subsequently continued in order to trace out the entire isola
In. For large n these solutions approximate homoclinic orbits,
while at the fold on the right of the isolas they approximate a
homoclinic tangency with increasing accuracy.

The presence of homoclinic orbits has been reported in
previous studies within the context of the 3-2LM. Period-
adding cascades of periodic orbits can be closely related to the
presence of homoclinic tangencies, as shown by Gaspard and
Wang [42], where a detailed numerical analysis shows how the
existence of a tangent homoclinic orbit explains the sequence
of MMOs and how symbolic dynamics with three symbols
classifies the associated periodic windows of the MMOs. As
a result of this work [42], any �(n) can be identified with a
fixed point of a map representing the flow in the vicinity of
the homoclinic tangency [31]. A comprehensive study of these
homoclinic bifurcation curves requires an extensive analysis of
codimension-2 bifurcations, as carried out for the single-mode
semiconductor laser subject to optical injection in Ref. [43].
In our system, these parameters could be either (A,Ā) or
(�ω,α). It would also be of interest to implement control
techniques in nonlinear dynamics [44] in the context of a CO2

LSA experiment. This would allow finding and tracking stable
and unstable �(n), and as a result confirm the existence of
isolas In in this versatile experimental system.

To conclude, we highlight some relevant differences be-
tween a molecular model (MM) for the LSA [39] and the
3-2LM discussed here. First, as pointed out above, the 3-2LM
assumes that the amplifier in the LSA is a three-level system,
while in the MM the amplifier is described by a refined four-
level system [39,40] that provides reasonable agreement with
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experimental results. The latter description of the amplifier
also explains experimental results in other types of CO2 lasers
[37,45]. Since the features of the MM are consistent with
previous CO2 laser models, it is appropriate to compare them
to those of the 3-2LM, which already gives surprisingly good
agreement with experimental observations [9,10,13]. Also,
the 3-2LM formally arises as a limiting case of the MM for
large vibrational-rotational relaxation rates. However, the MM
parameters do not always allow such a simplification, which
could result in wrong predictions. We also note that the PQS
self-pulsations are stable in a pump interval bounded by period
doubling bifurcations along the isolas, while in the 3-2LM
these bounds are a fold and a period doubling. Furthermore, in
the 3-2LM the origin of the isolas is the “isola formation point
mechanism” [46], as we change (A,Ā). In the MM the situation
is somewhat more complicated [39]: there the loci of folds do
not always have the form of a lobe; in fact they may contain

more than one minimum with respect to Ā in the two-parameter
(A,Ā) diagram. In this scenario the isola first breaks into
two separate isolas, which then disappear one after the other.
Nevertheless, apart from these and several other differences
in detail, the coarse grain bifurcation picture is qualitatively
similar in both models. In light of these bifurcation structures
it is of interest to use the MM in other physical settings of
experimental interest, such as the study of chaotic dynamics
and the onset of chaotic synchronization in coupled LSA, both
of which have been considered experimentally.
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