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Abstract: We consider wavelet based method for estimating derivatives of a density
via block thresholding when the data obtained are randomly right censored. The
proposed method is analogous to that of Hall and Patil (1995) for density estimation
in the complete data case that has been extended recently by Li (2003, 2008). We
find bounds for the L2-loss over a large range of Besov function classes for the re-
sulting estimators. The results of Hall and Patil (1995), Prakasa Rao (1996) and Li
(2003, 2008) are obtained as special cases and the performance of proposed estimator
is investigated by numerical study.

Keywords: Adaptive estimation; Block thresholding; Censored data; Nonparamet-
ric estimator of derivative of a density; Rates of convergence.
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1 Introduction

In various applications, estimation of a density and its derivatives may be required,
for example, for the evaluation of modes and inflection points, for estimation of the
derivatives of a regression function and for evaluation of the density scores. There are
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many excellent texts that are now available on the subject dealing with theoretical
aspects and applications. In this context the reader may be referred to the texts by
Silverman (1986), Devroye (1987), Wand and Jones (1995), concentrating more on
kernel methods (Rosenblatt (1956) and Parzen (1962)) and its variants. For a more
theoretical treatment of the general topic of nonparametric functional estimation, one
may consult for Prakasa Rao (1983). There are two excellent texts originating from
the discipline of econometrics that provide an excellent review of various nonparamet-
ric methods for estimation of a density and its derivative (see Pagan and Ullah (1999)
and Li and Racine (2006)). In most of these applications the kernel method is more
popular and as a result many software packages include this method as a member of
their toolbox, for example, one may see Wand and Ripley (2009) for the details of
the KernSmooth package in R that is becoming a powerful tool for statisticians lately.

Estimation of derivatives of densities was featured in Bhattacharya (1967) in esti-
mating the Fisher’s information from a sample of i.i.d. observations and this theme
was carried out in Singh (1977) highlighting many other applications using the esti-
mators of density derivatives. Härdle et al. (1990) discussed the issue of the band
width choice, specifically for density derivatives.

Initially, after the advent of the kernel method most of the investigations were
with complete data until the paper by McNichols and Padgett (1984) that presented
a modified kernel estimator for the density based on the right censored data. Padget
and McNichols (1984) provided the status of density estimation for censored data until
1984. Further, Diehl and Stute (1988) considered hazard rate estimation using the
kernel method. For a recent review on smooth functional estimation under censored
data the reader may be referred to Chaubey et al. (2007).

This is the subject matter of the present paper where the data typically represent
the survival times that are incomplete in some way due to the presence of a number
of events which potentially censor the event of interest. Withdrawals from a clinical
trial, deaths unrelated to the disease under study, individuals still alive at the end of
a follow-up study, and so on, are examples of censoring issues.

Currently, wavelet based methods for estimation of density and derivatives are
becoming increasingly popular as an alternative to the usual kernel method. These
methods offer fast computations and easy updating in addition to being easily adapted
to the design (Delouille et al. (2001)), and specific smoothness (Donoho and John-
stone (1995)). Donoho et al. [DJKP](1995) proposed wavelet based methods for
density estimation for the i.i.d. data which were subsequently adapted to estima-
tion of derivatives by Prakasa Rao (1996). Hall and Patil (1995) used a modification
of DJKP estimator adapting to a specific smoothness parameter and obtained an
asymptotic formula for the mean integrated squared error of the corresponding den-
sity estimator. Further work in this context may be referred, specifically for density
estimation by Hall et al. (1999), Antoniadis et al. ( 1999), Cai (1999) and Li (2003)
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and for nonparametric regression function estimation by Dabrowska (1995) and Cai
(2002). Recently, Li (2002, 2003) has extended Hall and Patil’s (1995) analysis to
hazard rate and density estimation under right random censorship model, respec-
tively. We may mention here that Patil (1997) also considered estimation of hazard
rate based on orthogonal wavelets, however, under uncensored data. In this paper,
we follow a similar plan as in Li (2003, 2008) for analyzing the block thresholding
wavelet estimator for the d−th (d ≥ 0) derivative of a density using censored data.
Our analysis parallels to that of Li (2008) dealing with density estimation in provid-
ing an upper bound on L2 -loss for the resulting estimator. Naturally, for d = 0, we
get the result in Li (2008) that optimal convergence rates for density estimation are
achieved over a large range of Besov function classes.

The organization of the paper is as follows. In Section 2 we describe some pre-
liminary notions about the wavelet system and Besov spaces. In Section 3, the form
of block thresholding wavelet estimator for the d−th derivative of a density is given
along with the main result that gives an upper bound on the L2− loss for the estima-
tor. In section 4, we study the performance of various wavelet threshold estimators.
Details of the steps in the sketch of the proof are relegated to the Appendix.

2 Preliminaries on Wavelets and Besov Spaces

Here we provide a brief introduction to the wavelet system and Besov spaces that
have become essential to the statistical literature. For the details of the theory and
applications of wavelets, the reader may refer to the excellent text by Vidakovic (1999)
or to the excellent survey by Antoniadis (2007). For properties of the Besov spaces,
the reader is referred to Meyer (1992) and Triebel (1992) (cf. Leblanc (1996), Härdle
et al. (1998)).

2.1 Wavelet System

A wavelet system is composed of an infinite collection of functions that are obtained
by dilation and translation of two basic functions ϕ(.) and ψ(.) called the scaling
function and mother wavelet, respectively. The function ϕ is assumed to satisfy∫ ∞

−∞
ϕ(x)dx = 1 (2.1)

and is obtained as the solution from the equation

ϕ(x) =
∞∑

k=−∞

Ck ϕ(2x− k), (2.2)
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for a given sequence of constants {Ck}, and the function ψ(x) is given by

ψ(x) =
∞∑

k=−∞

(−1)kC−k+1 ϕ(2x− k). (2.3)

Define
ϕi,j(x) = 2i/2ϕ(2ix− j), −∞ < i, j <∞ (2.4)

and
ψi,j(x) = 2j/2ϕ(2ix− j), −∞ < i, j <∞. (2.5)

Suppose that the coefficients {Ck} satisfy

∞∑
k=−∞

CkCk+2l = 2 if l = 0 (2.6)

= 0 if l ̸= 0. (2.7)

It is known (cf. Daubechies (1992)) that under some additional conditions on ϕ(.),
the collection {ψi,j;−∞ < j < ∞,−∞ < k < ∞} forms an orthonormal basis for
L2(R), and {ϕi0,j;−∞ < j <∞} constitute an orthonormal basis for L2(R), for every
fixed i0 ∈ Z, as well.

Definition 2.1. The scaling function ϕ is said to be r−regular for an integer r ≥ 1,
if for every nonnegative integer ℓ ≤ r, the ℓ−th derivative of ϕ(.), ϕℓ(.) is such that
for any integer k ≥ 1,

|ϕℓ(x)| ≤ ck(1 + |x|)−k,−∞ < x <∞. (2.8)

for some ck ≥ 0 depending only on k.

Definition 2.2. A multiresolution analysis of L2(R) consists of an increasing se-
quence of closed spaces {Vj} of L2(R) such that

(i)
∩∞

j=−∞ Vj = {0};

(ii)
∪∞

j=−∞ Vj = L2(R);

(iii) there is a scaling function ϕ ∈ V0 such that {ϕ(x− k),−∞ < k <∞} forms an
orthonormal basis for V0;

(iv) for all h(.) ∈ L2(R),−∞ < k <∞, h(x) ∈ V0 =⇒ h(x− k) ∈ V0; and

(v) h(x) ∈ Vj =⇒ h(2x) ∈ Vj+1.
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Mallat (1989) has connected the multiresolution analysis to wavelet theory by
showing that given any multiresolution analysis, it is possible to construct a function
ψ(.), (called the mother wavelet), such that for any fixed j,−∞ < j <∞, the family
{ψj,k, j,−∞ < k <∞} constitutes a basis of the orthogonal complement Wj of Vj in
Vj+1 so that {ψj,k,−∞ < j, k <∞} is an orthonormal basis of L2(R) (cf. Daubechies
(1992)). The corresponding multiresolution analysis is said to be r−regular if the
scaling function ϕ(.) is so.

Suppose that both the functions ϕ and ψ belong the space of functions with r
continuous derivatives denoted by Cr, for some r ≥ 1, and have compact supports
included in [−L,L], for some L > 0. It follows, from Corollary 5.5.2 in Daubechies
(1988), that the mother wavelet ψ is orthogonal to polynomials of degree ≤ r, i.e.∫

ψ(x)xldx = 0,∀l = 0, 1, ..., r.

Any function f ∈ L2(R) can be expanded in the form (cf. Daubechies (1992)):

f(x) =
∑
j∈Z

ai0,jϕi0,j(x) +
∑
i≥i0

∑
j∈Z

bi,jψi,j(x)

= Pi0f(x) +
∑
i≥i0

Dif(x) (2.9)

for any integer i0 ∈ Z. The so called wavelet coefficients ai0,j and bi,j are given by

ai0,j =

∫
f(x)ϕi0,j(x)dx (2.10)

and

bi,j =

∫
f(x)ψi,j(x)dx. (2.11)

respectively.
For the later analysis, we choose i0 = 0 and use the notation

aj ≡ ai0,j and ϕj ≡ ϕi0,j (2.12)

2.2 Besov Spaces

Besov spaces are normed spaces defined for weakly-differentiable functions belonging
to L2(R). We present the following definition of a weakly differentiable function f
from Härdle et al. (1998).
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Definition 2.3. Let f ∈ L2(R) be an integrable function on every bounded interval.
It is said to be weakly differentiable if there exists a function g defined on the real line
which is integrable on every bounded interval such that∫ y

x

g(u)du = f(y)− f(x).

The function g is defined almost everywhere and is called the weak derivative of f.

Then it is known that for any ϕ ∈ D(R),∫ ∞

−∞
f(u)ϕ′(u)du = −

∫ ∞

−∞
g(u)ϕ(u)du

where D(R) denotes the space of infinitely differentiable functions, on the real line,
with compact support.

Definition 2.4. Let 1 ≤ p ≤ ∞ and m ≥ 0 be an integer. A function f ∈ Lp(R)
belongs to the Sobolev space Wm

p (R), if it is m−times weakly-differentiable and the

m−th weak derivative f (m) ∈ LP (R). The space Wm
p (R) is equipped with the norm

∥f∥Wm
p
, called the Sobolev norm, where ∥f∥p denotes the norm for Lp(R).

Let f ∈ Lp(R) for some 1 ≤ p ≤ ∞. Let ∆hf(x) = f(x + h) − f(x) and define
∆2

hf = ∆h(∆hf). For t ≥ 0, let

ω1
p(f, t) = sup

|h|≤t

∥∆hf∥p

and
ω2
p(f, t) = sup

|h|≤t

∥∆2
hf∥p.

Let 1 ≤ q ≤ ∞. Suppose there exists a function ϵ(t) on [0,∞) such that ∥ϵ∥∗p < ∞
where

∥ϵ∥∗q =

(∫ ∞

0

t−1|ϵ(t)|qdt
)1/q

, if 1 ≤ q <∞,

= ess sup
t

|ϵ(t)|, if q = ∞. (2.13)

Definition 2.5. Let 1 ≤ p, q ≤ ∞ and s = m + α where m ≥ 0 is an integer and
0 < α ≤ 1. The Besov space Bs

p,q is the space of all functions f such that f ∈ Wm
p (R)

and ω2
p(f

(m), t) = ϵ(t)tα where ∥ϵ∥∗q <∞.
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The norm on the Besov space is induced by the corresponding Sobolev space that
can be written as

∥f∥Bs
p,q

= ∥P0f∥p + (
∑
i≥0

(∥Dif∥p 2is)q)1/q,

where
P0f =

∑
j∈Z

ajϕj

represents the orthogonal projection of f on the space spanned by functions ϕj, j ≥ 0
and

Dif =
∑
j∈Z

bi,jψi,j

represents that on the space spanned by functions ψi,j, j ∈ Z. Suppose that f belongs
to the Besov class (see Meyer (1992), §VI.10),

F s
p,q(M,L) = {f ∈ Bs

p,q, ∥f∥Bs
p,q

≤M, suppf ⊂ [−L,L]}

for some 0 ≤ s ≤ r + 1, p ≥ 1 and q ≥ 1. Then in view of the representation (2.9), it
can be shown (cf. Härdle et al. (1998)) that the function say f ∈ Bs

p,q if and only if

∥ai0,.∥ℓp <∞, and
∑
i≥i0

(∥bi,.∥ℓp2iσ)q)1/q <∞, (2.14)

where σ = s+ (1/2)− (1/p), and ∥γj, .∥ℓp represents the following norm for a double
sequence {γj,k} :

∥γi,.∥ℓp = (
∑
k∈Z

γpi,k)
1/p.

Let ϕ(.) be the scaling function as defined earlier. Define

θϕ(x) =
∞∑

k=−∞

|ϕ(x− k)|.

Suppose the following conditions hold:

(C1) The ess supx θϕ(x) <∞ where

ess sup
x
g(x) = inf{y : λ(|x : g(x) > y]) = 0}

and λ is the Lebesgue measure on the real line.

7



(C2) There exists a bounded nondecreasing function Φ(.) such that |Φ(u)| ≤ Φ(|u|)
almost every where and ∫ ∞

0

|u|rΦ(|u|)du <∞

for some integer r ≥ 0.

Then the Besov norm can be written (here we take i0 = 0) (cf. Härdle et al.
(1998), p. 123) in terms of the wavelet coefficients:

∥f∥Bs
p,q

= ∥a0.∥p + (
∑
j≥0

(2jσ∥bj,.∥p)q)1/q. (2.15)

3 Block Thresholding Estimator of the d−th Deriva-

tive of a Probability Density Function

Let {X1, X2, ...} and {Y1, Y2, ...} be two sequences of random variables. The first
sequence may be regarded as representing survival times (or failure times), having a
common unknown distribution function F (.) and density function f(.) and the second
sequence as the censoring times as a result of random right censoring. The censoring
times are assumed to be distributed according to a common distribution function
G(.). In this set up we may only observe

Zi = min(Yi, Xi) := Yi ∧Xi and δi = I(Xi ≤ Yi), (3.1)

where I(.) denotes the indicator function. In this random censorship model, we
assume that the survival times {Xi} are independent of the censoring times {Yi}.
Following the convention in the survival analysis literature, we assume that both
Xi and Yi are nonnegative random variables. In contrast to statistics for complete
data, that are based on the sequence {X1, X2, ...}, the estimation for the censored
data depends on the pairs (Z1, δ1), (Z2, δ2), ..., (Zn, δn). For example the Kaplan-Meier
estimators of the distribution functions F and G are defined, respectively, by

F̂n(x) = 1−
n∏

i=1

[1−
δ(i)

n− i+ 1
]I(Z(i)≤x), (3.2)

Ĝn(x) = 1−
n∏

i=1

[1−
1− δ(i)
n− i+ 1

]I(Z(i)≤x), (3.3)

where Z(1) ≤ Z(2) ≤ ... ≤ Z(n) denote the order statistics of Z1, Z2, ..., Zn,and is the

concomitant of Z(i), i.e., δ(m) = δk if Z(m) = Zk. Note that δk/n(1 − Ĝ(Z−
m)) is the

jump of the Kaplan-Meier estimator F̂n at Zm.
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We are interested in estimating f (d), the d−th (d ≥ 0)derivative of f based on
(Zi, δi), i = 1, 2, ..., n. Note that the case d = 0 refers to estimation of density itself.
Let T < τH be a fixed constant, where τH = inf{x : H(x) = 1} ≤ ∞ is the least upper
bound for the support of H, the distribution function of Z1 and f1(x) = f(x)I(x ≤
T ). We would like to estimate the d−th (d ≥ 0) derivative of f over the interval

x ∈ (−∞, T ), or equivalently we estimate f
(d)
1 (x), for x ∈ (−∞, T ). To motivate the

estimator, we consider the wavelet expansion of f1 as in Hall and Patil (1995) (see
their §2.2 with s = 0) (cf. Li(2008)),

f1(x) =
∑
j∈Z

ajϕj(x) +
∑
i≥0

∑
j∈Z

bijψij(x),

aj =

∫
f1(x)ϕj(x)dx, bij =

∫
f1(x)ψij(x)dx.

The non-linear wavelet estimator of f1, as given below (see Li (2008), Eq (2.5)) may
be motivated by the plug-in method resulting in:

f̂1(x) =
∑
j∈Z

âjϕj(x) +
∞∑
i=0

∑
j∈Z

b̂ijI(|b̂ij| > η)ψij(x), (3.4)

where η > 0 is a “threshold” parameter ; the constants âj and b̂ij are defined as

âj =

∫
I(x ≤ T )ϕj(x)dF̂n(x) =

1

n

n∑
i=1

δiI(Zi ≤ T )ϕj(Zi)

1− Ĝ(Z−
i )

,

b̂ij =

∫
I(x ≤ T )ψij(x)dF̂n(x) =

1

n

n∑
i=1

δiI(Zi ≤ T )ψij(Zi)

1− Ĝ(Z−
i )

,

For estimators of the derivatives we use the generalized Fourier coefficients of f
(d)
1

(see §2.5 of Hall and Patil (1995)), namely,

α
(d)
j =

∫
f
(d)
1 ϕj = (−1)d

∫
f(x)ϕ(d)(x− j)dx,

β
(d)
ij =

∫
f
(d)
1 ψij = (−1)d2i(d+(1/2))

∫
f(x)ψ(d)(2ix− j)dx.

Using plug-in estimators of α
(d)
j and β

(d)
ij , the nonlinear wavelet thresholding estimator

of f
(d)
1 is given by

f̃
(d)
1 (x) =

∑
j∈Z

α̂jϕj(x) +
∞∑
i=0

∑
j∈Z

β̂ijI(|β̂ij| > λ)ψij(x), (3.5)

9



where we have suppressed the superfix (d) from the estimators of the wavelet coeffi-
cients, i.e.

α̂j = (−1)d
∫
ϕ
(d)
j (x)I(x ≤ T )dF̂n(x)

= (−1)d
n∑

m=1

δmI(Zm ≤ T )ϕ
(d)
j (Zm)

n(1− Ĝn(Z−
m))

, (3.6)

β̂ij = (−1)d
∫
ψ

(d)
ij (x)I(x ≤ T )dF̂n(x)

= (−1)d
n∑

m=1

δmI(Zm ≤ T )ψ
(d)
ij (Zm)

n(1− Ĝn(Z−
m))

. (3.7)

Note that δm/n(1− Ĝn(Z
−
m)) is the jump of the Kaplan-Meier estimator F̂n at Zm.

The above estimator in Eq. (3.5) is known as a ‘hard-thresholding’ wavelet esti-
mator and may not achieve the optimal convergence rate (see Li (2008)) for wavelet
density estimation. Hence a block thresholding method (see Cai (1999, 2002) and
Chicken and Cai (2005) for details) as described in Li (2008) may be employed. This
method provides the following form of the wavelet estimator of f (d)(x),

f̂
(d)
1 (x) =

∑
j∈Z

α̂jϕj(x) +
R∑
i=0

∑
k∈Z

∑
j∈Γik

β̂ijψij(x)I(B̂ik > Cn−1), (3.8)

where R is a smoothing parameter, Γik = {j : (k − 1)l + 1 ≤ j ≤ kl},−∞ < k < ∞
represents consecutive, nonoverlapping blocks of length l for each resolution i and
B̂ik(= l−1

∑
j∈Γik

β̂2
ij) represents the average estimated squared bias for the block Γik.

This may be presented in a simplified form as

f̂
(d)
1 (x) =

∑
j∈Z

α̂jϕj(x) +
R∑
i=0

∑
k∈Z

d̂ik(x)I(x ∈ Jik)I(B̂ik > Cn−1), (3.9)

where d̂ik(x) =
∑

j∈Γik
β̂ijψij(x) and

Jik =
∪

j∈Γik

{x : ψij ̸= 0} =
∪

j∈Γik

{supp ψij}.

Our basic aim is to extend the results of Li (2008) that deals with density estima-
tion to derivatives of compactly supported densities. For completeness we reproduce
some of his notations that will be useful for further analysis. Define the reproduc-
ing wavelet kernel K(x, y) = (−1)d

∑
j ϕj(x)ϕ

(d)
j (y) (see Müller and Gasser (1979)).
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By self-similarity of multiresolution subspaces, Ki(x, y) = 2i(s+1)K(2ix, 2iy), i =
0, 1, 2, ..., is a reproducing kernel on the space spanned by functions ϕj, j ∈ Z. Now,
we may define

Kif
(d)(x) =

∫
Ki(x, y)f(y)dy, (3.10)

Dif
(d)(x) =

∫
Di(x, y)f(y)dy (3.11)

where Di(x, y) = (−1)d
∑

j ψij(x)ψ
(d)
ij (y).In terms of the above notation wavelet ex-

pansion of f
(d)
1 ∈ L2, may be written as

f
(d)
1 (x) = K0f

(d)
1 (x) +

∞∑
i=0

Dif
(d)
1 (x) (3.12)

where K0f
(d) represents the orthogonal projection of f (d) on the space spanned by

functionsϕj, j ∈ Z, and Dif
(d) represents that on the space spanned by functions

ψij, j ∈ Z.
Noting thatDi(x, y) = Ki+1(x, y)−Ki(x, y) and there exists an integrable function

Q such that |K(x, y)| ≤ Q(x− y) for all x, y, which implies that for all integers i and
all 1 ≤ p ≤ ∞,

∥Kif
(d)∥p ≤ ∥Q∥1∥f∥p and ∥Dif

(d)∥p ≤ ∥Q∥1∥f∥p

We will also use the following estimators for Kif
(d)(x) and Dif

(d)(x) as suggested
by Equations (3.10) and (3.11):

K̂(d)
i (x) =

1

n

n∑
m=1

Ki(x,Xm), (3.13)

D̂(d)
i (x) =

1

n

n∑
m=1

Di(x,Xm) (3.14)

In what follows we consider wavelets ϕ and ψ as those in Cohen, Daubechies and
Vial (1993), i.e. we assume that ϕj and ψij are compactly supported in [−L, T ]
and form a complete orthonormal basis of L2(−L, T ). Li (2008) considered a subset
of densities in Besov class Bs

p,q for s > 1/p; p, q ∈ [1,∞). Our choice of the subset
of the Besov class is different in that it depends on the order of the derivative to
be estimated. For example, for p ∈ [2,∞), we assume that s > max(d, 1/p). This
obviously gives the same subset as in Li (2008) for d = 0. Since, F s

p,q(M,L) is a
subset of the space of bounded functions, we study the wavelet estimator for densities
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belonging to F s
p,q(M,L)

∩
B∞(A) where B∞(A) is the space of all densities f such

that ∥f∥∞ ≤ A.
The following theorem extends Theorem 3.1 of Li (2008) for the wavelet estimators

of the derivatives of densities over certain Besov spaces.

Theorem 3.1. Assume that the wavelets ϕ and ψ are (r+d)-regular and have d

bounded derivatives. Let f̂
(d)
1 be the block thresholding wavelet estimator (3.8) where

the block length l = log n, and R = ⌊log2(nl−2)⌋ and the thresholding constant C is
given as

C =
112.5A(C2∥Q∥2 +

√
2C

−1/2
1 ∥Q∥1)2

([1− F (T )][1−G(T )])2

with C1 and C2 being universal constants as given in Talagrand (1994) (see also Li
(2008), pp 1535). Then there exists a constant C0 such that for all M,L ∈ (0,∞)
and q ∈ [1,∞]:

(i) For p ∈ [2,∞] and s ≥ max(d, 1/p),

sup
f (d)∈F s

p,q(M,L))
∩

B∞(A)

E

∫
(f̂

(d)
1 − f

(d)
1 )2 ≤ C0n

−2(s−d)/(1+2s),

(ii) For p ∈ [1, 2) and s ≥ max( (2d+1)+(2−p)/2
p

, 1/p),

sup
f (d)∈F s

p,q(M,L))
∩

B∞(A)

E

∫
(f̂

(d)
1 − f

(d)
1 )2 ≤ C0(log2 n)

(2−p)(2d+1)
p(1+2s) n−2(s−d)/(1+2s),

Remark 3.1: This study can be considered as an extension from complete data to
randomly right censored data. If we assume that there is no censoring, i.e.,G ≡ 0 on
(−∞,∞), then δi ≡ 1, for all i = 1, 2, . . . , n and we get the same result in Hall and
Patil (1995), Prakasa Rao (1996) and Chaubey et al. (2006, 2008). Also, assuming
d = 0, we get the same result as in Li (2008) based on censored data.

Remark 3.2: Since the choice of block size l and thresholding constant C largely
determines the performance of the resulting estimator, it is important to study in
detail the effect of l and C on the properties of the estimator and derive the optimal
l and C if such values exist. Between the two parameters l and C, the block size l
is more important and plays a similar role as the bandwidth in the traditional ker-
nel estimation. Here we can consider the block thresholding estimator in (3.8) with
general block size l = (log n)s with some s ≥ 0, but based on Cai (2002), we know
that to achieve the optimal global adaptivity, the block size must be at least of the
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order O(log n). On the other hand, to achieve the optimal local adaptivity, the block
size must be no more than O(log n). Therefore no block thresholding estimator can
achieve simultaneously the optimal global and local adaptivity if the block size is not
of order O(log n).

4 A Simulation Study

In this section we study the performance of proposed estimator (3.9) and compare it
with various other threshold wavelet estimators as available in the WaveLab package
developed by Buckheit et al. (1995) at Stanford University. It may also be better to
refer to Antoniadis et al. (2001) for a detailed description of the procedures. In the
following two examples, we generate two sets of random variables and find the average
norm criterion (ANorm) calculated for several thresholding estimators, including (3.9)
for different sample sizes n. We show in detail the results for (ANorm) and the total
number of replications N = 100 and d = 1; the ANorm criterion is defined as

ANorm =
1

N

N∑
l=1

(
n∑

i=1

(f̂
(d)
l (xi)− f

(d)
l (xi))

2)1/2.

In this simulation study, we used Daubechiess compactly supported wavelet Symmlet
4 (see Daubechies, 1992, p. 198) and Coiflet 2 (see Daubechies, 1992, p. 258), and
primary resolution level j0 = 3. The code was written in MATLAB environment using
WaveLab software.

Example 1. Here we generate the random samples Xi, 1 ≤ i ≤ n from a Beta
distribution with parameters α = 2, β = 5 along with the independent random sam-
ple Yi, 1 ≤ i ≤ n from the uniform distribution on the interval (0, 1). Table 1, shows
the values of ANorm for several wavelet estimators of derivative of beta density func-
tion in different sample size. Block thresholding estimator has better performance in
comparing other wavelet estimators. When sample size increases the performance of
other estimators come closer to the performance of our proposed estimator. Figure 1
shows the original derivative of pdf of Xi with black line, Block thresholding estimator
with red line, hard thresholding estimator with blue line and linear estimator with
dotted line respectively.

Example 2. For this example we consider the simulated data from an exponen-
tial family. We generate our sample, Xi, 1 ≤ i ≤ n from exponential distribution

13



Table 1: Computed values for ANorm and simulated standard errors for Example 1
for various sample sizes
Estimation Methods ANorm and (Simulated standard error)

n=256 n=512 n=1024 n=2048

Block Thresholding 33.378(6.670) 24.103(4.318) 19.186(2.651) 16.627(1.994)
NeighBlock 33.558(6.716) 24.149(4.312) 19.160(2.674) 16.578(1.998)
Minimax 32.891(5.499) 24.046(3.507) 19.180(2.398) 16.731(1.878)
SureShrink 39.544(5.204) 28.454(3.893) 21.895(2.579) 18.378(1.893)
Hard threshold 39.858(5.609) 27.842(4.158) 21.374(2.687) 17.769(2.051)
Linear 45.061(4.684) 32.446(2.934) 24.824(2.381) 20.485(1.803)

with mean 1. The sample , Yi, 1 ≤ i ≤ n is generated from exponential density with
mean 5. Table 2 and Figure 2 give similar results as in Example 1.

Table 2: Computed values for ANorm and simulated standard errors for Example 1
for various sample sizes
Estimation Methods ANorm and (Simulated standard error)

n=256 n=512 n=1024 n=2048

Block Thresholding 22.786(10.100) 16.043(5.525) 11.455(4.221) 9.814(2.206)
NeighBlock 23.117(10.193) 16.202(5.658) 11.611(4.241) 9.928(2.181)
Minimax 25.873(8.366) 18.419(4.483) 13.193(3.502) 10.863(1.100)
SureShrink 30.733(11.608) 21.032(6.865) 13.893(5.087) 11.873(3.249)
Hard threshold 31.721(10.529) 21.557(6.290) 14.3871(4.900) 11.555(2.936)
Linear 44.839(7.547) 32.707(4.126) 23.687(3.458) 17.871(2.100)

In Table 2, the simulation results show that the average norm for the block threshold-
ing estimator is usually slightly smaller than those for other thresholding estimators.

Remark 4.1: Similar numerical study for density function pdf estimation was carried
out in Li (2008) where ANorm values are smaller than those in our study. However,
we should note that the values in Li (2008) are for estimation of the probability den-
sity functions whereas in our case these are for the estimation of its derivative. Note
that the rate of convergence for estimating the pdf is not the same as the rate of
convergence for estimating its derivative.
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Figure 1: Derivative estimation for Beta density
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Figure 2: Derivative estimation for exponential density
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Figure 1,2. The original derivative of density function (solid line), block
thresholding estimator (red line), hard thresholding estimator (blue line)
and linear estimator (dotted line) respectively.
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Appendix: Proof of Theorem 3.1

First we sketch the basic steps of the proof that follows along the lines of Li (2008).
First we state a version of Lemma 5.1 of Li (2008) for wavelet density derivatives,
that compares the estimators of the wavelet coefficients to those for the complete
data case. Its proof can be provided basically by mimicking the steps of the proof of
Li (2008), hence it is omitted.

Lemma: Let α̂j and β̂ij be defined as in equations (3.6) and (3.7). Also, let

φ
(d)
j (x) = ϕ

(d)
j (x)I(x ≤ T ) j = 0,±1,±2, ... (4.1)

φ
(d)
ij (x) = ψ

(d)
ij (x)I(x ≤ T ) i = 0, 1, ..., R; j = 0,±1,±2, ..., (4.2)

ᾱj =
(−1)d

n

n∑
m=1

δmφ
(d)
j (Zm)

1− Ĝ(Zm)
, j = 0,±1,±2, ..., (4.3)

β̄ij =
(−1)d

n

n∑
m=1

δmφ
(d)
ij (Zm)

1− Ĝ(Zm)
, i = 0, 1, ..., R; j = 0,±1,±2, ..., (4.4)

Then the following equations hold.

α̂j = ᾱj + W̄j +Rn,j, E(R2
n,j) = O(

1

n2
)

∫
(φ

(d)
j )2dF. (4.5)

β̂ij = β̄ij + W̄ij +Rn,ij, E(R2
n,ij) = O(

1

n2
)

∫
(φ

(d)
ij )2dF. (4.6)

where

Wj(Zm) = Uj(Zm)− Vj(Zm), Wij(Zm) = Uij(Zm)− Vij(Zm),

W̄j = n−1

n∑
m=1

Wj(Zm), W̄ij = n−1

n∑
m=1

Wij(Zm), (4.7)
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Uj(Zm) =
(−1)d(1− δ(m))

1−H(Zm)

∫ τH

Zm

φ
(d)
j (ω)F (dω).

Uij(Zm) =
(−1)d(1− δ(m))

1−H(Zm)

∫ τH

Zm

φ
(d)
ij (ω)F (dω).

Vj(Zm) = (−1)d
∫ τH

−L

∫ τH

−L

φ
(d)
j (ω)I(ν < Zm ∧ ω)

(1−H(ν))(1−G(ν))
G(dν)F (dω).

Vij(Zm) = (−1)d
∫ τH

−L

∫ τH

−L

φ
(d)
ij (ω)I(ν < Zm ∧ ω)

(1−H(ν))(1−G(ν))
G(dν)F (dω). (4.8)

As in Li (2008), we decompose E∥f̂1
(d)

− f
(d)
1 ∥22 into several parts, in view of (3.9)

and (3.12):

E∥f̂1
(d)

− f
(d)
1 ∥22 ≤ 4(I1 + I2 + I3 + I4) (4.9)

where

I1 = E∥K̂0 −K0f
(d)∥22,

I2 = E∥
is∑
i=0

[
∑
k

d̂ikI(Jik)I(B̂ik > Cn−1)−Dif
(d)]∥22,

I3 = E∥
R∑

i=is+1

[
∑
k

d̂ikI(Jik)I(B̂ik > Cn−1)−Dif
(d)]∥22,

I4 = E∥
∞∑

i=R+1

Dif
(d)∥22, (4.10)

Next, we obtain the upper bounds for I1, I2, I3 and I4, as follows:

I1 = O(n−1);

I2 ≤ C(log2 n)
2−p

p(1+2s)n−2(s−d)/(1+2s);

I3 ≤ Cn−2(s−d)/(1+2s);

I4 = o(n−2(s−d)/(1+2s)),

proofs of which are detailed subsequently.
Using the above bounds in Eq (4.10) the proof is completed.

Bound for I1: Using orthogonality of wavelets ϕj, we have

I1 = E

∫
(
∑
j

α̂jϕj −
∑
j

αjϕj)
2 = E

∫
(
∑
j

(α̂j − αj)ϕj)
2 =

∑
j

E(α̂j − αj)
2.
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From the lemma given earlier and the fact that

3(a2 + b2 + c2)− (a+ b+ c)2 ≥ 0,

we have

I1 ≤ 3{
∑
j

E(ᾱj − αj)
2 +

∑
j

EW̄ 2
j +

∑
j

ER2
n,j}

=: 3(I11 + I12 + I13). (4.11)

Noting that

E(ᾱj − αj)
2 = E{(−1)d2i0(d+1/2)n−1

n∑
m=1

δmφ
(d)(2i0Zm − j)

1−G(Zm)
}2 − n−1α2

j

= (−1)2d2i0(2d+1)n−1

∫
(φ(d))2(y)

f
(d)
1 ((y + j)/2i0)

1−G((y + j)/2i0)
dy − n−1α2

j ,

we obtain∑
j

E(ᾱj −αj)
2 = 2i0(2d+1)n−1

∫
(φ(d))2(y)

∑
j

2−i0
f1((y + j)/2i0)

1−G((y + j)/2i0)
dy−n−1

∑
j

α2
j .

Since ∑
j

2−i0f1((y + j)/2i0)/(1−G((y + j)/2i0)) →
∫
f1/(1−G)

and ∑
j

α2
j = O(

∫
f 2
1 )

∫
(φ

(d)
j )2,

we get E
∑

j(ᾱj −αj)
2 = 2i0(2d+1)n−1

∫
f1/(1−G)

∫
(φ(d))2 + o(2i0(2d+1)n−1),therefore

I11 = O(2i0(2d+1)n−1) = O(n−1).

Further from (4.7)

I12 ≤ n−1
∑
j

EW 2
j (Z1) ≤ 2n−1

∑
j

(EU2
j (Z1) + EV 2

j (Z1)).

In view of (4.8), applying Cauchy-Schwarz inequality and using the compact support
of ϕ, we finally obtain

EU2
j (Z1) ≤

1

[(1−H(T ))][(1−G(T ))]
2i0(2d+1)

∫
(φ(d))2(y)f 2

1 ((y + j)/2i0)dy.
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Hence,

n−1
∑
j

EU2
j (Z1) = O(2i0(2d+1)n−1

∫
(φ(d))2(y)

∑
j

2−i0f 2
1 ((y+j)/2

i0)dy) = o(2i0(2d+1)n−1).

Similarly, we obtain

EV 2
j (Z1) ≤

1

[(1−H(T ))]2[(1−G(T ))]2
2i0(2d+1)

∫
(φ(d))2(y)f 2

1 ((y + j)/2i0)dy.

Thus, n−1
∑

j EV
2
j (Z1) = o(2i0(2d+1)n−1) and we get

I12 = o(2i0(2d+1)n−1) = o(n−1).

Using the property of E(R2
n,ij) from (4.5, we have

I13 = O(n−2)
∑
j

∫
(φ

(d)
j )2dF = O(2i0(2d+1)n−2) = o(2i0(2d+1)n−2) = O(n−2).

Now, using the bounds obtained for I11, I12 and I13 in (4.11), we have I1 = O(n−1).

Bound for I2: From similar methods as for the proof of Lemma 5.6 in Li (2008), we

get

I2 ≤ {
is∑
i=0

[E

∫
(
∑
k

d̂ikI(Jik)I(B̂ik > Cn−1)−Dif
(d))2dx]1/2}2.

Writing Dif
(d)(x) =

∑
j βijψij(x) =:

∑
k

∑
j∈Γik

βijψij(x) =:
∑

k dikf
(d), we have for

the term in the square brackets
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E
∫

(
∑
k

d̂ik(x)I(Jik)I(B̂ik > Cn−1)−Dif
(d)(x))2dx

≤ 3{E
∫
[
∑
k

(d̂ik(x)− dikf
(d)(x))I(Jik)I(B̂ik > Cn−1)]2dx

+ E

∫
Jik

[
∑
k

dikf
(d)(x)I(Bik < 2Cn−1)I(B̂ik ≤ Cn−1)]2dx

+ E

∫
Jik

[
∑
k

dikf
(d)(x)I(Bik > 2Cn−1)I(B̂ik ≤ Cn−1)]2dx}

≤ 3{E
∫
(d̂ik(x)− dikf

(d)(x))2dx

+ {E
∑
k

∫
Jik

(dikf
(d)(x))2dxI(Bik ≤ 2Cn−1)

+ {E
∑
k

∫
Jik

(dikf
(d)(x))2dxI(Bik > 2Cn−1)I(B̂ik ≤ Cn−1)}

=: 3(I21 + I22 + I23),

where I22 ≤ C2in−1 and I23 ≤ Cn−1 for all i. Also

I21 =
∑
j

E(β̂ij − βij)
2

≤ 3{
∑
j

E(β̄ij − βij)
2 +

∑
j

EW̄ 2
ij +

∑
j

ER2
n,ij}

=: 3(I211 + I212 + I213).

Applying the same arguments as for the term I1, we get

I211 = O(n−12i(2d+1)), I212 = o(n−12i(2d+1)), I213 = O(n−22i(2d+1)).

Thus, I21 ≤ C2i(2d+1)n−1 = O(n− 2(s−d)
1+2s ) and we get

I2 ≤ {
is∑
i=0

[C2i(2d+1)n−1 + C2in−1 + Cn−1]1/2}2

≤ C{
is∑
i=0

[(2i(2d+1)n−1)1/2 + (2in−1)1/2 + n−1/2]}2

≤ C(2is(2d+1)n−1 + 2isn−1 + i2sn
−1).
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Now, under the assumptions of Theorem 3.1, if p ≥ 2 and is satisfies 2
is ≃ n1/(2s+1),

then I2 ≤ Cn−2(s−d)/(2s+1). If 1 ≤ p < 2 and is satisfies 2is ≃ (log2 n)
2−p

p(1+2s)n1/(1+2s),
then

I2 ≤ C(log2 n)
2−p

p(1+2s)n−2(s−d)/(1+2s).

Bound for I3: The arguments to obtain the desired bound for I3, are similar to the

proof of Lemma 5.7 in Li (2008), hence the details are omitted.

Bound for I4: The arguments for the term I4 are also very similar to that for I4 in
Li (2008), except that the smoothing index s is different. It leads to the result that
for p < 2, I4 ≤ M22−2iσ. On the basis of the choice of R with 2R ≃ n(log2 n)

−2 and
2σ = 1 + 2(s − 1/p) > 2(s − d)/(1 + 2s), we have I4 = o(n−2(s−d)/(1+2s)). For p ≥ 2
proof goes along the similar lines.
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