

Supporting Uncertainty in

Standard Database Management Systems

Dian Wei Chen

A Thesis

In the Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

June 2012

© Dian Wei Chen, 2012

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Dian Wei Chen

Entitled: Supporting Uncertainty in Standard Database Management Systems

and submitted in partial fulfillment of the requirements for the degree of

 Master of Computer Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair

 Dr. Rene Witte

 ______________________________________ Examiner

 Dr. Bipin C. Desai

 ______________________________________ Examiner

 Dr. Dhrubajyoti Goswami

 ______________________________________ Supervisor

 Dr. Nematollaah Shiri

Approved by__

 Chair of Department or Graduate Program Director

__

Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Date __

iii

ABSTRACT

Supporting Uncertainty in

Standard Database Management Systems

Dian Wei Chen

Management of uncertain data in numerous real life applications has attracted the

attention of database and artificial intelligent research communities. This has resulted

in development of new database management systems (DBMS) in which uncertainty

is treated as first class citizens. We follow a different approach in this thesis and

develop a system (DBMS with Uncertainty, or UDBMS) which is capable of

representing and manipulating uncertain data at the application level on top of a

standard relational DBMS. Compared to the first approach which treats uncertainty as

its first class citizens, the proposed approach may be considered as “light weight”

because it is built upon existing database technologies. As the underlying uncertainty

formalism, we consider the Information Source Tracking (IST) method, which is

essentially probabilistic. We extend the standard SQL language with uncertainty (to

which we refer as USQL), to express queries and transactions in our context. The

query processing and optimization techniques are extended accordingly to take into

account the presence of uncertainty. To evaluate the performance of UDBMS, we

conducted extensive experiments using USQL queries and IST relations obtained by

extending the standard TPC-H benchmark queries and generated data. We compare

and discuss the two approaches mentioned for uncertainty management. Our results

indicate that the performance of the proposed UDBMS is reasonably good when the

relations involved can be loaded completely into the main memory.

iv

Acknowledgements

First of all and most important, I would like to express my sincerest gratitude to my

supervisor, professor Nematollaah Shiri. His continuous guideance and support

helped me throughout my master studies. I thank him for his patiance and his valuable

advices in doing researches and preparing this thesis document. Without his help, I

could not achieve this far. I have learnt a lot from him and I consider myself belessed

to work under his supervision.

I would like to thank Concordia University for providing me easy and convenient

access to the computing facilities in the DB research labs and the university library.

I would also like to thank Ali Kiani and all other fellow graduate students in the

database research labs for their technical helps and advice whenever I needed.

Finally, I wish to thank my parents from my heart. Their supports, both financially

and emotionally, have been the main factors for me to purse my studies and face the

challenges during the master‟s program.

v

Table of Contents

List of Figures ... viii

List of Tables ... x

1 Introduction .. 1

1.1 Uncertain Data in Applications .. 2

1.2 Approaches to Uncertain Data Management Systems 2

1.3 Thesis Contributions ... 5

1.4 Thesis Outline ... 6

2 BackGround and Related Works ... 8

2.1 Modeling Uncertainty ... 8

2.2 Existing Systems .. 10

2.3 The IST Model to Uncertainty .. 11

2.4 Manipulations of Source Vectors.. 13

2.5 Extended Relational Algebra Operations in IST ... 14

2.6 Reliability Calculation Algorithms ... 15

3 Extending SQL with Uncertainty ... 17

3.1 Data Definition Component of USQL .. 18

3.2 Data Manipulation Component of USQL ... 19

3.2.1 INSERT ... 19

3.2.2 DELETE .. 20

3.2.3 UPDATE ... 20

vi

3.2.4 SELECT .. 21

3.3 Limitations of USQL .. 23

4 Query Evaluation ... 25

4.1 Modeling Uncertain Data ... 25

4.2 A Generalized Technique for Query Evaluation .. 27

4.3 Evaluation of DDL Commands .. 28

4.3.1 CREATE .. 29

4.3.2 SHOW and DESCRIBE Commands ... 30

4.4 Evaluation of DML Commands ... 30

4.4.1 UPDATE ... 30

4.4.2 INSERT ... 32

4.4.3 SELECT .. 33

4.5 Case Study .. 42

5 System Architecture and Implementation ... 47

5.1 GUI Module ... 49

5.2 Pre-processing Module ... 52

5.3 Post-processing Module ... 54

5.3.1 Naïve Approach ... 55

5.3.2 Improved Approach ... 60

5.4 Supports for the Conventional Databases .. 65

6 Experiments, Results, and Analysis ... 66

6.1 The Platform Setup ... 66

6.2 Data Generation .. 67

vii

6.3 Queries Selection .. 72

6.4 Performance Evaluation ... 76

7 Conclusion and Future Research ... 86

References .. 88

Appendix .. 95

viii

List of Figures

Figure 1. The employee relation .. 23

Figure 2. Query evaluation in UDBMS ... 27

Figure 3. Evaluation plan for the “CREATE DATABASE” command 29

Figure 4. Evaluation plan for the “CREATE TABLE” command 30

Figure 5. Evaluation plan for the “SVUPDATE” command................................. 31

Figure 6. Evaluation plan for the “RELIABILITYUPDATE” command 32

Figure 7. Evaluation plan for the “INSERT” command 33

Figure 8. Rewriting plan for simple queries ... 35

Figure 9. Evaluation plan for the simple queries .. 36

Figure 10. Evaluation plan for the exclusive queries .. 38

Figure 11. Evaluation plan for the type-S nested queries 40

Figure 12. Evaluation plan for queries with the “(MAX | MIN) RE” keyword ... 42

Figure 13. Entity-Relationship of the TPC-H Database Schema 43

Figure 14. UDBMS System architecture ... 47

Figure 15. “CREATE DATABASE” command in the GUI 49

Figure 16. “RELIABILITYUPDATE” command in the GUI 50

Figure 17. The formatted output of query results with source vectors 51

Figure 18. The formatted output of query results with reliability values 52

Figure 19. Naïve internal representations of data tuples and data sets 56

Figure 20. An algorithm for “ISTtuple_buildup” operation 57

Figure 21. An algorithm for “ISTtuple-group” operation 58

Figure 22. Improved internal representations of data tuples and data sets 61

Figure 23. An algorithm for “ISTtuple_minus” operation 63

ix

Figure 24. An algorithm for “SV_dependencecheck” operation 64

Figure 25. An algorithm for “testdata_extend” operation 68

Figure 26. Evaluating conventional query in UDBMS/ MySQL DBMS 77

Figure 27. Performance differences between the naïve and the improved

UDBMSs .. 79

Figure 28. Experiment results of running test queries 0 to 4 in the improved

UDBMS on test databases with 2 information sources 81

Figure 29. Experiment results of running test queries 0 to 4 in the improved

UDBMS on test databases with 10 information sources 82

Figure 30. Experiment results of running test queries 5 to 7 in the improved

UDBMS .. 84

Figure 31. Evaluating all test queries in the improved UDBMS 85

x

List of Tables

Table 1. Experiment environment ... 66

Table 2. Reliability values for the 10 information sources 71

Table 3. Evaluating conventional query in UDBMS/ MySQL DBMS 77

Table 4. Evaluating test query 1 in the naïve UDBMS ... 78

Table 5. Evaluating test query 1 in the improved UDBMS 78

Table 6. Experiment results of running test queries 1 to 4 in the improved

UDBMS .. 81

Table 7. Experiment results of running test queries 5 to 7 in the improved

UDBMS .. 83

Table 8. Evaluating all test queries in the improved UDBMS 85

 1

Chapter 1

Introduction

Uncertainty arises when people are not sure about the “true” state of the things. For

example, stock traders are uncertain about the profits they will make when buying

stocks; police are uncertain about the next moves the criminal will make; and we are

uncertain about what the weather will be like tomorrow. As described in [Bos 02], the

world itself is an uncertain place.

Uncertain data are data with uncertainty. We do not distinguish between imprecise and

uncertain, and we use the term uncertain for simplicity. However it is worth noticing

that data with uncertainty are different from data with error [Bell 99], while error is

the difference between the measured value and the “true value” of the thing being

measured, uncertainty is a “quantification of the doubt” we may have about the

measurement result. And to be precise [Zhan 08], imprecise means information

available is not specific enough, and the uncertainty indicated it is impossible to

determine whether information available is true or not.

In the rest of this chapter, we first list examples of the applications with uncertain data.

We then discuss current approaches to support uncertain data using conventional

database management systems (DBMSs). This is followed by a list of successful such

projects. Finally, we list the main contributions of this thesis which adopts a different

approach to develop a system to manage uncertainty and we present the thesis

 2

organization.

1.1 Uncertain Data in Applications

In what follows we list examples of real-world application systems that deal with

uncertain data [Ge 09], [Sarm 09], [Shir 04]:

1. Information Extraction Systems: the extracted entities, relationships and

attributes are associated with uncertainty when they are extracted from

unstructured information sources.

2. Data Integration Systems: as these systems use schema mapping techniques,

they usually estimate whether the data records from multiple information

sources refer to same entity.

3. Sensor Networks: physical factors, such as noise and battery, usually add

uncertainty to the sensor data generated in such systems.

4. Other Sources: the complex data evaluation plans used in applications such as

weather forecasts require associating the generated answers with uncertainty.

1.2 Approaches to Uncertain Data Management Systems

Limited supports are provided by conventional DBMSs to support incompleteness in

data, represented as null values. Along with imprecision, inconsistency, and

uncertainty, incompleteness is a form of deficiency in data studied extensively in AI

and database research. A survey of approaches to handling imperfect information in

 3

data and knowledge base systems can be found in [Pars 96]. For current approaches

to uncertainty in logic programming and deductive databases, interested readers are

referred to [Laks 01].

There are two approaches in general to model and manipulate uncertainty in database

management systems. The first approach is to developing new DBMSs that treat

uncertainty as first-class citizens. We will refer to this as “heavy weight” approach

since such systems are built from scratch. Almost every issue in conventional

databases needs to be reinvestigated with uncertainty semantics since the uncertainty

nature introduces new challenges to be dealt with [Zhan 08]. In an alternate approach,

to which we refer as “light weight”, current DBMSs are extended to support

uncertainty, hence treating uncertainty data as second-class citizens. While the latter

approach is criticized in [Sarm 09] for imposing “a significant burden on

applications”, it is “faster” and “cheaper” to build. The former approach, on the other

hand, as it considers a fixed underlying formalism, greatly limits the power of the

resulting DBMSs.

Examples of database management systems in which uncertainty data are treated as

first-class citizens include the Trio system developed at Stanford university [Benj 06],

[Benj 08], [Sarm 06], [Agra 09], the MayBMS system at Cornell [Anto 07a], [Anto

07b], [Anto 08], and the Orion system at Purdue [Chen 03], [Sing 08].

In what follows, we compare these two approaches to uncertain data management

systems and we list their advantages and disadvantages in terms of extendibility,

 4

usability and portability.

1. Extendibility. As new advanced technologies and formalisms for uncertainty

which may require efficient managements of large amount of uncertain data

are likely to show up in near future, systems that support such data should be

easy to extend and deploy. As the DBMSs that follow the first approach are

hard-coded, they cannot be extended easily. In this case, systems developed

following the “light weight” approach are better choices in practice to be

extended and deployed;

2. Portability. There are already numerous uncertainty formalisms available. If

the developers follow the “heavy weight” approach, they have to build new

DBMSs for all uncertainty formalisms from scratch. Although this approach

provides developer with more opportunities for query optimization, lots of

time, money, and labor are required. On the other hand, if the developers

follow the “light-weight” approach, they can support new uncertainty

formalisms more conveniently and faster by extending an existing standard

DBMS or an extended one;

3. Usability. Though users mainly need DBMS to process their uncertain data, it

is likely that they may need tools to manage their conventional data as well.

We believe that while following the “light weight” approach, it will be more

convenient to the users to deal with standard and uncertain data within the

same extended DBMS for the supports for standard data may be at

 5

disadvantage as the system that is developed by the “heavy weight” approach

is optimized for manipulating uncertain data;

Because of the above, we in this thesis follow the “light weight” approach to build a

new DBMS with uncertainty on top of a conventional DBMS that supports uncertain

data at the application level.

1.3 Thesis Contributions

In what follows, we list the main contributions of this thesis. For each contribution,

we also point to the chapter or section it is discussed.

1. We introduce an extension of the standard database language SQL with

uncertainty, called USQL, to formulate queries and transactions over uncertain

data (Chapter 3).

2. We extend a conventional relational database model to model and process

uncertain data based on the IST formalism (Section 4.1). We develop a generic

framework for parsing and generating plans for evaluating queries and

transactions expressed in USQL (Chapter 4).

3. We build a running prototype of our proposed DBMS with uncertainty, called

UDBMS, to manipulate uncertain IST data (Chapter 5). We discuss different

designs and options we considered in building the UDBMS prototype with

respect to efficiency and ease of implementation and maintenance (Section

5.4).

 6

4. To evaluate the system performance, we adapted the TPC-H benchmark data

and queries in our context. We report the results of our experiments, which

indicate the performance of our UDBMS is reasonably good in particular when

the target databases and relations fit in the main memory (Chapter 6).

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we review the related

works and we provide a background knowledge about the IST model [Sadr 91a], [Sadr

91b], [Sadr 94], [Sadr 95]. This includes a classification of the types of uncertain data

in database systems, a brief introduction of the Trio, the MayBMS and the Orion

systems, a review of the definition of the terminologies used in the IST model, the

source vectors manipulation, the relational algebra, and the reliability calculation

method.

In Chapter 3, we introduce the new database query language, SQL with uncertainty

(USQL). We explain why a different database query language is required to formulate

queries and transactions in our context. We introduce our extensions to the DDL and

DML components of SQL. We address that some SQL features, such as aggregation

operations, are not supported in USQL, and we explain the reasons.

Chapter 4 describes how the USQL queries are evaluated in the UDBMS. This

includes a description of the steps in the query evaluation processes, and a case study

that demonstrates how a USQL query can be processed in the UDBMS. The system

architecture and modules together with their implementation details are presented in

 7

Chapter 5. Specially, we highlight the different options we considered to improve the

efficiency of the query evaluation in the UDBMS.

In Chapter 6, standard TPC-H benchmark is extended and used in our work to

evaluate the ideas and techniques used to develop the UDBMS. We describe the

parameters we considered for generating IST relations and USQL queries used in our

experiments. We report on the experiment results and we analysis the performance of

the UDBMS we proposed.

Finally, concluding remarks and future work are provided in Chapter 7.

 8

Chapter 2

Background and Related Work

In this chapter, we will review major recent achievements on uncertain data

management. We will also review the concepts and techniques regarding the

Information Source Tracking (IST) model to provide a background for our work in

this thesis.

2.1 Modeling Uncertainty

There are a number of formalisms proposed for uncertainty, including fuzzy model

based on the fuzzy set theory [Zade 65] and probabilistic model. While fuzzy model

uses fuzzy entities, fuzzy attributes, fuzzy relationship, fuzzy aggregations, and fuzzy

constraints, probabilistic model uses the associated probability values to model such

data. The probabilistic models are widely used, and we explore them in a more

detailed level.

As discussed in [Zhan 08], [Ge 09], there are three types of data uncertainty in the

probabilistic databases: table-level, tuple-level, and attribute-level uncertainty. In

table-level uncertainty, we concern the “coverage” of the group such as how much

percent of objects in the group is present. In tuple-level uncertainty, a probability

number (confidence) is associated with each tuple. And in attribute-level uncertainty,

an attribute is uncertain and we model each value of the attribute as a probabilistic

distribution.

 9

Tuple-level uncertainty is more attractive mainly because it results in relations that are

in 1NF and that it is easier to store and operate on. These are the reasons explained in

[Zhan 08], which considered tuple-level uncertainty and used probability

independence mode to aggregate multiple derivations of the same ground tuple.

Independent Model: Suppose in an uncertain data set D, an object (tuple) R has

probability P(R), where P(R) > 0, to occur and all objects are independent. A possible

world W is a subset of D and includes every object R Dɴ with P(R) = 1. Clearly, the

occurrence probability of a possible world is P(W) = БR WɴP(R) × БR Wɵ(1 P(R)).

Let ר be the set of all possible worlds of D and N be the number of objects with

occurrence probability less than 1. Then ȿרȿ=2
N
. The sum of the membership

probabilities of all possible worlds in W is 1, i.e., В P(W)W ɴר = 1.

General Model: In a general case, records in a data set may be correlated. A set of

records R1, ..., Rm are exclusive if at most one of them could appear in a possible

world and В P Ri1 i m 1, where P(Ri) is the probability of occurrence of Ri. A set

of exclusive records are also called a generation rule ד. Occurrence probability of a

generation rule ד is the sum of probabilities of all the records in ד, i.e., P(R) =

В P Rד ɴד . Note that a generation rule (virtually regarded as an object) could contain

only one record and different generation rules are independent. Given a set of ּה

generation rules D꞉ = {ד ,… ,1דm}, a possible world W is defined as an element in

В Rɴד ᴂ꞉ , where ᴂ꞉ is a subset of D꞉ and contains every generation rule ד such that

P(ד) = 1. Let jȿדȿ be the number of records in ד. The number of all possible worlds

 10

with respect to D꞉ is as follows:

ȿרȿ= ȿדȿ

ɴד D꞉ ,P R = 1

(ȿדȿ+ 1)

ɴד D꞉ ,P R < 1

Occurrence probability of a possible world W is defined as:

P W = P(᷊דW) ×

ɴד D꞉ ד᷊, W ᶮ

(1 P ד)

ɴד D꞉ ד᷊, W=ᶮ

where P(᷊דW) refers to the occurrence probability of records which belong to

both ד and W.

2.2 Existing Systems

In this section, we review research prototypes of database management systems such

as Trio, MayBMS, and Orion, which treat uncertain data as first-class citizens.

1. Trio Database Management System

Developed in 2005, Trio supports and manages databases with both uncertainty and

lineage. The Uncertainty Lineage DataBase (ULDB) [Benj 06] is developed by

extending the standard SQL and is identical to the independent tuple-level uncertainty

[Zhan 08]. Trio uses an extended SQL, called TriQL, to handle queries, uncertainty,

and lineage. It is a three-layer system and it is implemented on top of PostgreSQL,

which is a conventional relational DBMS. Its core system is implemented in Python

and it mediates between the underlying relational DBMS and Trio interfaces and

applications [Agra 06].

 11

2. MayBMS Database Management System

Developed in 2005, MayBMS is based on the U-relations to model uncertain data.

The U-relations are standard relations extended with condition and probability

columns to encode correlations between the uncertain values and probability

distribution for the set of possible words. Notice that the U-relations support

attribute-level uncertainty through vertical decompositions and the use of an

additional (system) column to store tuple ids and undo the vertical decomposition on

demand [Huan 09]. Standard SQL is extended and used as the query and update

language in the MayBMS system. With 2.1-beta as the most recent version, the

system is built entirely inside PostgreSQL with the major changes lie in the system

catalog, parser, and executor [Huan 09].

3. Orion Database Management System

Developed in 2003, Orion is a database management system that can be used to

handle uncertain data in moving object environments. With 2.0 as the most recent

version, the system supports both attribute and tuple uncertainty with arbitrary

correlations. Orion is a two-layer system and it is built on traditional relational DBMS.

It uses probabilistic queries to manipulation uncertainty data, and it includes new

components to cope with such data. [Orion].

2.3 The IST Model to Uncertainty

As proposed in [Sadr 91a], the IST model is a probabilistic model for relational data

 12

which models uncertainty at the tuple-level. Data tuples in the IST model are gathered

from “various sources with known reliabilities”. Let I1, …, Iּד be the information

sources and t be a data tuple in the IST model. Then an information source Ii (1 i (דּ

is said to be contributing to t if Ii contributes positively or negatively to t. Note that

not every information source has to be contributing to every tuple

The IST model uses “0” to indicate a noncontributing information source to tuple t, “1”

to indicate a source that contributes positively to t, and “-1” to indicate that a source

contributes negatively to t. When the number of contributing information sources is

 to indicate the relationship between the information דּ we use vectors of length ,דּ

sources I1, …, Iּד and the data tuple t, indicating the kind of contribution each source

had to tuple t. The collection of all vectors of length ּד is called the information

source vectors, or source vectors for short, and is defined as follows:

 {<e1,…, eּד> | ei (ɴ0, +1, -1), 1 i .{ דּ

Intuitively, an information source either contributes positively to a tuple in a base

relation or it is noncontributing to the tuple. Normally associated with each tuple in

the base relations in an IST database is a single source vector. As we will see, in

general, associated with each tuple is a set of source vectors in derived relations when

evaluating queries. Also source vectors with entries “-1” are usually associated with

data tuples in derived relations.

Formally, an extended relation schema R in the IST model is a set of attributes

{A1,…,An, I}, where A1,…,An are normal attributes of R and I is a special “source

 13

vectors” attribute. Suppose DI is a set that contains all the source vectors in the

database, and D1, …, Dn are the domains of the normal attribute A1, …, An,

respectively. Then an extended relation (instance) r on the extended schema R is

defined as a finite subset of D1×…×Dn×DI.

A data tuple in the IST model is formally denoted as t@u, where t is the “pure” part of

the tuple correspondent to the normal attributes A1, …, An, and u, u DɴI, is the value of

the tuple correspondent to the source vector attribute I.

2.4 Manipulations of Source Vectors

The IST model introduces three operations to manipulate source vectors: “3OR”,

“negation”, and “union”. Consider the contribution values “-1”, “0”, “1” forming a

partially ordered set (a poset) with the orders 0Ṋ1 and 0Ṋ-1, with “lub” as least upper

bound operator.

Consider two source vectors u=(a1, …, an) and v=(b1,…,bn). Then the “3OR” of u and

v, denoted as u||v, is a source vector w=(c1, …, cn) such that ci is calculated as

lub(ai,bi). As a special case, if ci=ɬ, where ɬ indicates inconsistency is obtained

when a source I contributes both negatively and positively to a tuple w. In general,

“3OR” of two sets of source vectors x={u1, …, up} and y={v1, …, vq}, denoted by x||y,

is the set of source vectors, each of which is a “3OR” of ui and vj, i.e., x||y =

{u1||v1, …, u1||vq, …, up||vq}.

The “negation” of a source vector u=(a1, …, an), denoted as #u, is a source vector

 14

(c1, …, cn) such that ci is “1” if ai=-1, ci is “-1” if ai=1, and ci is “0” if ai=0. The

“negation” of a set of source vectors x={u1, …, up} is defined as #x = #u1|| …|| #up.

Finally, the “union” of two sets of source vectors, x={u1, …, up} and y={v1, …, vq},

denoted as x y᷾, is defined as {u1, …, up, v1, …, vq}.

2.5 Extended Relational Algebra Operations in IST

Using the above three operations on source vectors, the extended relational algebra

operations in the IST model are formally defined as follows:

σc(r)={t@u rɴ, t satisfies condition C};

Πx(r)={t[X]@u rɴ};

r s᷾={t@u|t@u rɴ or t@u sɴ}.

Moreover, other standard relational operations extended to the IST model, include the

“intersection”, “Cartesian product”, and “natural join” are defined as follows using

the “3OR” operation to manipulate source vectors [Sadr 91b].

r s᷊={t@(u1||u2) | t@u1 rɴ and t@u2 sɴ};

r× s={t1ẗt2@(u1||u2) | t1@u1 rɴ and t2@u2 sɴ};

rẚs={t1 tʐ2@(u1||u2) | t1@u1 rɴ, t2@u2 sɴ, and t1 join t2};

Finally, the “set difference” operation in standard relational algebra is extended in the

IST model, defined as follows which uses the “3OR” and “negation” operations to

manipulate source vectors.

r s={t@u | t@u rɴ and t sɵ, or t@x rɴ, t@y sɴ, u=x||(#y)};

 15

2.6 Reliability Calculation Algorithms

In what follows, we review the procedure proposed to calculate the reliability of

answers to a query based on the reliability of the information sources assuming that

“different information sources are independent” [Sadr 91a]. Let re(i) be the reliability

of the information source i.

Suppose t@u is a tuple in a query result that u is a source vector. Let u[i] denote the

value of the i
th

 element of u, where u[i1]= …= u[ip] =1 and u[j1]= …= u[jp]= -1. Then

the reliability rel(t) of tuple t@u may be calculated as follows:

rel(t) = re(i1)× …× re(ip)× (1-re(j1)) ×…× (1-re(jp)).

Now suppose a set x of source vectors is associated with a tuple t in a query result.

That is t@x is returned as an answer, where x={u1, …, up}. In order to calculate the

reliability of tuple t, we consider the independent mode, described as follows. Two

source vectors u1 and u2 in x are said to be independent if for no source j, they both

have a nonzero entry [Sadr 91a]. Under the independence assumption, the reliability

value associated with tuple when the source vectors in x are independent is calculated

as follows:

rel(t) = 1 (1 rel(t@u1)) × …× (1 rel(t@up).

As can be seen from the above, when the source vectors in the set x are

inter-dependent, the set x of source vectors is converted into an equivalent set of

source vectors by including all “1”, “-1” combinations of information sources with

entry 0 and eliminating duplicates in the resulting source vectors. Finally, if we have

 16

source vectors v1,…, vq in the equivalent set, we can calculate the reliability of tuple

t@x as follows:

rel(t) = rel(t@v1)+ …+ rel(t@vq).

 17

Chapter 3

Extending SQL with Uncertainty

Relational database query languages such as SQL, Quel, and .QL are insufficient to

formulate queries and transactions over uncertain data, because they address only

particular properties of standard data. Other query languages such as PSQL and TriQL,

which are capable of handling uncertain data, cannot support uncertain data in the IST

model as well. Therefore we need to develop a new database query language using

which a user can manage and retrieve uncertain data to support IST.

Instead of building an entire new query language from scratch, we consider the

standard SQL language and extend it with uncertainty. We will refer to the resulting

language as USQL (SQL with Uncertainty), and we will refer to the new database

management system as UDBMS (DBMS with Uncertainty). Similar attempts of

extending existing query languages with new concepts have been made in different

context [Dey 97], [Egeh 94], [Lore 97], [Sard 90], etc. For instance, SQL is extended

to HSQL to manage data in the historical databases; SQL is extended to Spatial SQL

to manage spatial data; and SQL is extended to IXSQL to manage interval data.

The decision to use SQL as the foundation for the new query language is driven by

the “recognition of efforts to standardize SQL as the database query language” [Egeh

94]. The reason for extending an existing query language, as opposed to developing a

new one, is also influenced by the recognition that both conventional databases and

 18

uncertain databases are the subjects of user queries.

We identify three requirements for USQL which are not supported in SQL, as follows:

1. New data manipulation commands are needed for users to manage the

information sources associated with IST databases.

2. New commands are required for users to manage the source vectors associated

with the data tuples.

3. New features are required for users to query the reliability of the resulting

tuples; sort the result tuples in increasing or decreasing order of their

reliabilities; and find the most or least reliable data tuples in a query result.

3.1 Data Definition Component of USQL

In this section, we introduce the data definition component of the USQL language. As

most of these commands are the same as in the standard case, we will focus more on

those data definition commands in USQL that are different from the corresponding

SQL commands.

Detailed description is required for the “CREATE DATABASE” command for it

includes a new optional “HAVING” clause (HAVING <number> SOURCES). The

syntax of the “CREATE DATABASE” in USQL is as follows:

CREATE DATABASE <database_name> [HAVING <number> SOURCES];

A user should always use the “CREATE DATABASE” command with the “HAVING”

 19

clause to create a new IST database because he can only initial the number of the

information sources for an IST database in the “HAVING” clause, and he should use

the “CREATE DATABASE” command without the “HAVING” clause to create a new

conventional database.

For example, the following statement creates an IST database named “example_DB”

with 4 information sources:

CREATE DATABASE example_DB HAVING 4 SOURCES;

3.2 Data Manipulation Component of USQL

The data manipulation commands in SQL include “INSERT”, “DELETE”,

“UPDATE”, and queries. Theses commands are extended in USQL to manipulate IST

tuples and relations. We introduce these commands below.

3.2.1 INSERT

The syntax of the “INSERT” command in USQL is as follows:

INSERT INTO <table_name> (<column_list>) VALUES <value_list>

[WITH SV <source_vector>];

The new “WITH SV” clause (WITH SV <source_vector>) is optional in an “INSERT”

statement. But as each tuple in the base relations in IST is associated with at least one

source vector and the “WITH SV” clause is the only place where a user can introduce

the associated source vectors with the inserted tuple, the “INSERT” command should

be used together with the clause “WITH SV” in order to insert a new IST tuple into an

 20

IST relation.

3.2.2 DELETE

Similar to the SQL “DELETE” command, the following USQL “DELETE” command

deletes all the data tuples in an IST relation satisfying the conditions expressed in the

query:

DELETE FROM <table_name> WHERE <predicate>;

3.2.3 UPDATE

The USQL “UPDATE” command follows the syntax of the SQL “UPDATE”

command to update the data tuples satisfying the given conditions in the clause:

UPDATE <table_name> SET <attr_list>=<exp_list> WHERE <predicate>;

A variation of the “UPDATE” command, called the “SVUPDATE” command, is

introduced in USQL to update the source vectors associated with the data tuples.

Following is the syntax of a USQL “SVUPDATE” command which updates the

source vectors to “new_source_vector”, for the tuples satisfying the conditions

expresses in the query.

UPDATE <table_name> SET SV=<new_source_vector> WHERE <predicate>;

A second variation of the “UPDATE” command, called the “RELIABILITYUPDATE”

command, is introduced in USQL to update the reliability values for the information

sources. The syntax of the USQL “RELIABILITYUPDATE” statement that updates

the reliability of information source with the identifier “source_identifier” to

 21

“new_reliability_value” is as follows:

UPDATE RE OF SOURCE <source_identifier> TO <new_reliability_value>;

3.2.4 SELECT

In this section, we introduce the “SELECT”, “WHERE”, “HAVING”, and the

“ORDER BY” clauses, which are frequently used in queries. To begin with, we list

the main three classes of USQL queries as follows:

1. Conventional queries: These are typical user queries in SQL. An example of

such query is: “What is the unit price of Sofa?”;

2. Queries on Source Vectors: new uncertain queries which ask the conditions

under which the answer tuples are valid. An example of such query would be:

“What is the unit price of Sofa? And what are the conditions under which the

answer is valid?”;

3. Queries on Reliability Values: new uncertain queries that ask the reliability of

the answer tuples. For example: “What is the unit price of Sofa? And how

reliable are the results?”;

Conventional queries are supported in our UDBMS as long as we keep the

“SELECT-FROM-WHERE” structure in USQL. Uncertain queries, on the other hand,

are supported in USQL by including the following four new features:

1. A new clause, “WITH (SV | RE)”, is introduced in USQL. While queries with

 22

the “WITH SV” clause are queries on source vectors that ask for the

conditions under which the query results are valid, queries with clause “WITH

RE” are queries on reliability values that ask for the reliability value

associated with every tuple in the query result;

2. A new “ORDER BY RE” predicate is introduced to sort and display the query

results in order by their reliability;

3. Instead of being interested in the results that are valid under certain conditions,

a user is more likely to be interested in the results whose reliability value is

greater than 0.5, for example, thus a new “RE (<|<=|=|>=|>) <value>”

keyword is introduced together with the “HAVING” predicate in USQL;

4. A “(MAX|MIN) RE” keyword is introduced together with the “HAVING”

predicate in USQL on the basis that user may be interested in the most or least

reliable result tuples;

Finally we have the syntax of the queries in USQL as follows:

 SELECT <attr_list>

 [WITH (SV | RE)]

 FROM <table_list>

 WHERE <predicate>

 [ORDER BY RE]

 [HAVING ((MAX | MIN) RE |RE (<|<=|=|>=|>) <value>)];

 23

3.3 Limitations of USQL

Although our goal has been to provide as much functionality as possible in USQL, we

have to mention that currently no support is provided by USQL for the “sum”, “count”

and “average” aggregation operations. The following example is borrowed from [Sadr

94] and it explains why we do not support these aggregation opeartions in USQL.

Example 3-1: Consider the relation Employee (Salary) shown in Figure 1.

Figure 1. The Employee(Salary) relation

The alternate world for relation Employee(Salary) consists of four relations, the empty

relation r1 when none of the employee records are valid, plus relation r2 and r3 when

only tuples corresponding to employees “a” and “b” are valid, respectively, and r4

when both employee records are valid. The query sumsalary(Employee) can be

evaluated against the four regular relations r1 to r4 using the alternate world of relation

Employee(Salary). The query answer returned would be 0, 40,000, 60,000, and

100,000, respectively.

Obviously there are more situations to consider when answering queries with

aggregation operations on IST relations. For details of problems in answering such

queries, interested readers can refer to [Sadr 94]. It has been shown that the time

complexity to find all possible answers to such queries over IST relations is

 24

exponential in the number of tuples in the argument relations, hence eliminating any

hope of finding an efficient algorithm [Sadr 94].

Instead of listing all possible answers, Sadri focuses more on four particular queries

that involve aggregate operations as follows:

P1. Determining the probability of a specific outcome of an aggregate query;

P2. Finding the largest (or smallest) possible outcome;

P3. Determining whether the outcome could be greater than or equal to (or less

than or equal to) a given value;

P4. Finding the expected-value of the outcome of an aggregate query;

It has been shown that problems P1, P2 and P3 are NP-complete [Gare 79] for the

“sum”, “count”, and “average” aggregation operations, and hence it is highly unlikely

that an efficient algorithm can be found for these problems. Therefore, based on the

reasons illustrated above, we do not provide supports for these aggregation operations

in USQL.

 25

Chapter 4

Query Evaluation

In this chapter, we present details of evaluating USQL queries. We will use “query” to

mean requests for information or changes to data. The surrounding context will make

it clear whether the term query used refers to retrieving information and/or modifying.

We describe how a conventional DBMS relational model is extended to modeling and

processing uncertain data based on the IST formulism at the beginning of this chapter.

Following that we present a general technique for query evaluation, based on which

we introduce the correspondent evaluation plans for the USQL queries. A query

example is given at the end of this chapter to illustrate how it can be evaluated by

UDBMS using the proposed evaluation plans.

4.1 Modeling Uncertain Data

Different from conventional databases, IST databases contain additional information

of the source vectors and the information sources. Suitable mechanisms must be

designed in order to build the IST formulism based UDBMS on top of a conventional

DBMS.

First of all let us consider how we can extend the modeling capacity of a relational

DBMS to internally store the source vectors associated with the IST tuples in our

UDBMS. These additional source vectors, as suggested by IST model, are stored in a

 26

special attribute “I”. We denote this special attribute the “_sourcevector” attribute in

UDBMS for easier access purpose (an under-score “_” is added in its name to

distinguish it from normal attributes). Each value correspondent to the “_sourcevector”

attribute is a source vector associated with the tuple, and each tuple in the base

relations in our extended data model can only be associated with one source vector.

This special attribute “_sourcevector” is managed automatically by the system. The

system appends it to each new relation created in the IST database, and every

operation on source vectors is re-directed to this attribute.

Secondly, a relation called “_sourcereliability” with attributes “ID” and

“reliability_value” is used by the UDBMS to store the information about sources in an

IST database. The “ID” attribute, whose value is set to auto increment, stores the

identifier of the information source; the “reliability_value” attribute, whose range is

constrained to [0.0,1.0], stores the reliability value of that information source.

Information sources with reliability 0.0 are not reliable, and sources with reliability

1.0 are fully reliable, respectively.

Similar to the “_sourcevector” attribute, the “_sourcereliability” relation is also

managed automatically by the system. The system creates it for every new IST

database generated; and the system re-directs all the operations on information

sources to this relation.

 27

4.2 A Generalized Technique for Query Evaluation

An accurate definition of the results to a query is required before we can start to

introduce a generalized technique for evaluating queries in UDBMS.

Definition 4.1 (Results to a Query): The results to a query Q on a database D, denoted

by Q(D), is either a “Success / Failure” or a set of tuples satisfying the specified

conditions. The results to all the DDL commands and “INSERT”, “UPDATE” and

“DELETE” commands are “Success / Failure”, and the result to a USQL query a set

of data tuples.

In what follows we present a generalized technique for evaluating USQL queries.

Q(D)

D

Execution(E)

Q

EQ1,ŀ,EQn

Rewrite(R)

EQ1(D),ŀ, EQn(D)

Post-processing

Operations(P)

Q

Analysis(A)

OperationsĽ

Queue (OQ)

Figure 2. Query evaluation in UDBMS

 28

Suppose Q is a USQL query and D is a (standard or IST) database. Then the result of

evaluating Q against D, denoted by Q(D), is computed as follows:

1. we analyze Q and D, and depending on the types of D, the predicates and

keywords in Q, we select the corresponding query evaluation plan for Q;

2. when query rewriting is necessary:

a) we rewrite Q to a set of equivalent SQL queries (EQ1, …, EQn),

denoted as R(Q) = {EQ1, …, EQn};

b) we execute EQ1, …, EQn in the back-end DBMS and we obtain

EQ1(D), …, EQn(D), respectively;

c) we check Q‟s evaluation plan and we perform the corresponding

post-processing operations on EQ1(D), …, EQn(D);

3. when Q can be directly evaluated in the back-end DBMS, the result set

returned from the back-end DBMS is then the desired set Q(D);

4.3 Evaluation of DDL Commands

We describe the query evaluation plans for the “CREATE”, “SHOW TABLE”, and

“DESCRIBE TABLE” commands in this section. Other DDL commands, as they are

similar to the corresponding commands in SQL, can be evaluated in UDBMS in the

same way they are evaluated in conventional DBMSs. Hence we do not further

discuss the evaluation plans for these commands here.

 29

4.3.1 CREATE

UDBMS needs to pay special attention to the system-owned relation

“_sourcereliability” and attribute “_sourcevector” when evaluating the USQL

“CREATE” command. The evaluation plan for the “CREATE DATABASE” and the

“CREATE TABLE” commands are shown in Figure 3 and 4, in which we clearly

illustrate that the relation “_sourcereliability” is created for every new IST database

and the attribute “_sourcevector” is appended to every new IST relation.

procedure: “CREATE DATABASE” command evaluation

if the “CREATE DATABASE” command contains the “HAVING” clause

1. create the new database;

2. create the “_sourcereliability” relation in that new database;

 end if

 else

3. create the new database;

end else

 end procedure

Figure 3. Evaluation plan for the “CREATE DATABASE” command

procedure: “CREATE TABLE” command evaluation

if the target database is an IST database:

1. append the “_sourcevector” attribute to the new relation;

2. create the new relation;

 30

 end if

 else

3. create the new relation;

end else

 end procedure

Figure 4. Evaluation plan for the “CREATE TABLE” command

4.3.2 SHOW and DESCRIBE Commands

Different evaluation plans are required to process the USQL “SHOW TABLE” and

“DESCRIBE TABLE” commands although they can be executed directly in the

back-end DBMS. This is because since the “_sourcereliabilty” relation and the

“_sourcevector” attribute are managed and maintained automatically by the system,

they should not be shown to the users. This is done by additional screening and

blocking operations on the information related to “_sourcereliability” and

“_sourcevector” in the query results of these two commands.

4.4 Evaluation of DML Commands

We describe the evaluation plans for the DML commands of USQL in this section.

More specifically, we will present the evaluation plans for the “UPDATE”, “INSERT”,

and “SELECT”.

4.4.1 UPDATE

Since a USQL “UPDATE” command can be evaluated in UDBMS in the same way it

 31

is evaluated in conventional DBMSs, efforts are paid to study the evaluation plans for

the “SVUPDATE” and “RELIABILITYUPDATE” commands. As all the operations

on the source vectors are re-directed to the “_sourcevector” attribute, and all the

operations on the information sources are re-directed to the “_sourcereliablity”

relation; we have the evaluation plans for the “SVUPDATE” and the

“RELIABIITYUPDATE” commands shown in Figure 5 and 6.

procedure: “SVUPDATE” command evaluation

if the target database is an IST database

1. update on the value correspondent to the “_sourcevector” attribute;

 end if

 else

2. throw an exception to users indicating that the required “SVUPDATE”

command cannot be evaluated;

end else

 end procedure

Figure 5. Evaluation plan for the “SVUPDATE” command

procedure: “RELIABILITYUPDATE” command evaluation

if the target database is an IST database

1. update the value correspondent to the “reliability” attribute in the

“_sourcereliability” relation;

 end if

 else

 32

2. throw an exception to users indicating that the required

“RELIABILITYUPDATE” command cannot be evaluated;

end else

 end procedure

Figure 6. Evaluation plan for the “RELIABILITYUPDATE” command

4.4.2 INSERT

Although UDBMS allows users to set the source vector associated with an IST tuple

with the “WITH SV” clause introduced to the “INSERT” command in USQL, the

system has to extract the source vector out from the “WITH SV” clause and set it as

the value correspondent to the “_sourcevector” attribute when evaluating this kind of

command.

Formally express this idea in algorithm and we have the evaluation plan for the

“INSERT” command as follows:

procedure: “INSERT” command evaluation

if the “INSERT” command contains the “WITH SV” clause

 if the target database is an IST database

1. insert the new tuple;

2. set the source vector specified in the “WITH SV” clause as the values

correspondent to the “_sourcevector” attribute;

 end if

 else

 33

3. throw an exception to users indicating that the required “INSERT”

command cannot be evaluated;

 end else

 end if

 else

if the target database is an IST database

4. throw an exception to users indicating that the required “INSERT”

command cannot be evaluated;

 end if

 else

5. insert the new tuple

 end else

end else

 end procedure

Figure 7. Evaluation plan for the “INSERT” command

4.4.3 SELECT

All uncertain USQL queries have to be rewritten before they can be evaluated in the

back-end DBMS. However, there are some uncertain USQL queries, such as queries

that are asking for data records with the largest reliability value, require more than

just a rewriting operation. Since we do not store the reliability values of the tuples in

the databases, we cannot have standard SQL queries that can directly retrieve the data

 34

records with the largest reliability value. But as we can sort the result tuples in

increasing or decreasing order by their reliability values to find the data records with

the largest reliability value, and we can calculate the reliability values for the result

tuples from their associated source vectors, the problem of evaluating the uncertain

USQL queries on reliability values comes down to the problem of how we can

calculate the source vectors associated with the result tuples. Therefore in what

follows, we will mainly focus on studying how we can evaluate the different kinds of

uncertain USQL queries on source vectors.

Recall that a USQL query has the syntax as follows:

 SELECT <attr_list>

 [WITH (SV | RE)]

 FROM <table_list>

 WHERE <predicate>

 [ORDER BY RE]

 [HAVING ((MAX | MIN) RE |RE (<|<=|=|>=|>) <value>)];

Suppose Ri is a relation in the database D, Ck is the k
th

 normal attribute of the relation

Ri, X is a constant or a list of constants, op is a scalar comparison operator (=, >, >=,

<, <=) or a set membership operator (IN, NOT IN), then the predicates in the USQL

queries can be denoted by [Ri.Ck op X].

Depending on the conditions (predicates) in the “WHERE” clause, a USQL query Q

could be a simple query, an exclusive query or a nested query, defined as below.

 35

Definition 4.2 (Simple Query): a USQL query Q is called simple if Q does not use

any sub-queries nor set operators, such as the set membership operator “NOT IN”, in

its “WHERE” clause.

Definition 4.3 (Exclusive Query): Q is an exclusive query if there is at least one

membership operator “NOT IN” used in its “WHERE” clause.

Definition 4.4 (Nested Query): Q is a nested query if there is at least one sub-query

used in its “WHERE” clause. Furthermore, we say Q is a type-S nested query if its

sub-query is a simple uncertain query, and we say Q is a type-C nested query if its

sub-query contains other sub-queries.

Evaluation of Simple USQL Queries

Based on the definitions of the extended relational algebra operations in the IST

formalisms, we formally express the rewriting plan for the simple queries as follows

(refer to Figure 8, ʎ is the extended selection operation, Б is the extended

projection operation, A1, …, An are normal attributes on which the query projects, and

t1, …, tm are the extended IST relations in the database on which we evaluate the

query).

Figure 8. Rewriting plan for simple queries

Since our UDBMS is built on top of a conventional DBMS, we just need to focus on

 36

the operations that have to be carried out by our UDBMS. If we use a queue to store

these operations, the order of them in the queue will be the same order they should be

performed by the UDBMS to evaluate Q. This queue, called the operations‟ queue, is

Q‟s evaluation plan and it is formally defined as below.

Definition 4.6 (Operations Queue, OQ): For every query Q, we associate a queue of

post-processing operations OP1, …, OPn, which the UDBMS performs in order they

appear in the queue. This queue, referred to as the operations‟ queue, is the evaluation

plan for Q.

The query evaluation plan (OQ) for simple queries is shown in Figure 9.

procedure: simple queries evaluation

1. rewrite Q to the equivalent SQL query EQ;

2. execute EQ at the back-end DBMS;

forall t returned from the back-end DBMS

3. perform the “3OR” operation on the values correspondent to the

“t1._sourcevector”, …, “tm._sourcevector” attributes (known as the

“ISTtuple_buildup” operation);

end forall

4. group the source vectors associated with the value-equivalent tuples together

(known as the “ISTtuple_group” operation);

 end procedure

Figure 9. Evaluation plan for the simple queries

 37

Evaluation of the Exclusive Queries

Based on the definition of the extended set difference operation, we present the query

rewriting plan for an exclusive query Q that:

 SELECT <attr_list>

 WITH SV

 FROM <table_list>

 WHERE <predicate> <Ri.Ck NOT IN X>;

to two simple queries Q1 and Q2 as follows:

Q1:

SELECT <attr_list>

 WITH SV

 FROM <table_list>

 WHERE <predicate>;

Q2:

SELECT <attr_list>

 WITH SV

 FROM <table_list>

 WHERE <predicate> <Ri.Ck IN X>;

Both Q1 and Q2 can be evaluated in our UDBMS and we have the evaluation plan for

the exclusive queries as follows:

procedure: exclusive queries evaluation

 38

1. find the predicate whose op is the “NOT IN” set membership operator;

2. expand it to two new simple queries Q1 and Q2;

3. execute Q1 and Q2 at the back-end DBMS;

4. refer to the OQ for the simple queries to evaluate Q1 and Q2;

5. “minus” the results to Q2 from the result to Q1 (known as the “ISTtuple_minus”

operation);

 end procedure

Figure 10. Evaluation plan for the exclusive queries

Evaluation of the Nested Queries

Similar to how conventional DBMSs evaluate a nested query, UDBMS also starts the

evaluation from the sub-query. And the system recursively performs the following

operations till it has evaluated the whole nested query: it checks the corresponding

evaluation plans and it calculates the result set for that sub-query, it uses the

calculated result set and it tries to evaluate the outer query.

Consider a type-S nested query Q as follows:

 SELECT <attr_list>

 WITH SV

 FROM <table_list>

 WHERE <predicates> <Ri.Ck [IN | NOT IN] sQ>;

and suppose the result tuples of sQ are t1@x1, …, tn@xn.

Sub-query sQ is replaced with t1, …, tn, when the original nested query Q becomes a

 39

new USQL query Q‟ as follows:

 SELECT <attr_list>

 WITH SV

 FROM <table_list>

 WHERE <predicates> <Ri.Ck [IN | NOT IN] t1, …, tn>;

We evaluate Q‟ and we get tuples t1‟@x1‟, …, tm‟@xm‟ as the results to Q‟. But are

t1‟@x1‟, …, tm‟@xm‟ the answers to the nested query Q? Notice that as the source

vectors associated with the data records t1‟, …, tm‟ fail to illustrate the fact that the

tuples we use to replace sQ are uncertain tuples, t1‟@x1‟, …, tm‟@xm‟ are not the

answers to the nested query Q.

That is to say, different from how the conventional DBMSs evaluate a nested query,

UDBMS has to consider the presence of the uncertainty in the data and it needs to

keep track of where the result data tuples are derived from to correctly calculate the

conditions under which the result data tuples are valid. This is done by an additional

modifying operation on Q‟ so that it also projects on the Ri.Ck attribute (shown in

italic as follows).

 SELECT <attr_list>, Ri.Ck

 WITH SV

 FROM <table_list>

 WHERE <predicates> <Ri.Ck [IN | NOT IN] t1, …, tn>;

These ideas are formally expressed as the evaluation plan (OQ) for the type-S nested

 40

queries, shown in Figure 11:

procedure: type-S nested queries evaluation

1. find the predicate that contains a sub-query (denoted by sQ);

2. refer to the OQs we have studied to calculate the result set of sQ;

3. generate a new USQL query Q‟ by replacing sQ with its result tuples;

4. rewrite Q‟ by including “Ri.Ck” in its “SELECT” statement;

5. refer to the OQs we have studied to evaluate Q‟;

forall t‟ in the results to Q‟

6. find the t in the result set of sQ that t[Ri.Ck]=t‟[Ri.Ck];

7. perform the “3OR” operation on the source vectors associated with t and t‟;

8. set the calculated source vectors as the associated source vectors for t‟;

end forall

 end procedure

Figure 11. Evaluation plan for the type-S nested queries

The evaluation plan for the type-C nested queries is almost the same as the one for the

type-S nested queries and hence not further discussed here.

Evaluation of the Queries on Reliability Values

On user‟s demand, we may need to convert the source vectors associated with each

result tuple into a reliability value. We may also need to sort the result tuples by their

reliability values, or to find the result tuples with the largest or smallest reliability

value, etc. The evaluation plans for the queries on reliability values are analogs to

 41

each other, and for simplicity, we use the queries with the “(MAX | MIN) RE”

keyword as examples to explain their evaluation plans. Since we have to calculate the

source vectors associated with the answer tuples in order to successfully evaluate

these queries on reliability values and in order to reuse as much as we can from the

evaluation plans we presented for the queries on source vectors, we rewrites the

following query with the “(MAX | MIN) RE” keyword Q1 to Q2, known as its

corresponding queries on source vectors, as follows.

Q1:

 SELECT <attr_list>

 FROM <table_list>

 WHERE <predicate>

HAVING MAX RE;

Q2:

 SELECT <attr_list>

 WITH SV

 FROM <table_list>

 WHERE <predicate>;

We can now refer to the evaluation plans we have presented for the query on source

vectors to evaluate Q2, we convert the source vectors associated with the answer

tuples to reliability values, we sort the answer tuples by their reliability values, and we

find the tuples with the largest or smallest reliability value. Formally express these

 42

ideas and we have the evaluation plan for the queries with the “(MAX | MIN) RE”

keyword in Figure 12.

procedure: queries with the “(MAX | MIN) RE” keywords evaluation

1. rewrite the query to its corresponding query on source vectors;

2. calculate the source vectors associated with the answer tuples;

forall t in the result set

3. calculate its reliability value (known as the “SV2RE” operation);

end forall

4. sort the result tuples in order by their reliability values (known as the

“ISTtuple_sort” operation);

5. find the result tuples with the largest or the smallest reliability value;

 end procedure

Figure 12. Evaluation plan for queries with the “(MAX | MIN) RE” keyword

4.5 Case Study

An example is presented in this section to show how UDBMS can use the evaluation

plans we have introduced to evaluate queries. This example and the test queries

(described in Section 6.3) are based on a sample database defined in the TPC-H

benchmark described as follows.

The components of the TPC-H database are defined to consist of the “PART”,

“SUPPLIER”, “NATION”, “REGION”, “PARTSUPP”, “CUSTOMER”, “LINEITEM”

and “ORDERS” base tables, and the relationships between columns of these base

 43

tables are illustrated in Figure 13.

LINEITEM(L_)

PK ORDERKEY

PK LINENUMBER

 PARTKEY

 SUPPKEY

 QUANTITY

 EXTENDEDPRICE

 DISCOUNT

 TAX

 RETURNFLAG

 LINESTATUS

 SHIPDATE

 COMMITDATE

 RECEIPTDATE

 SHIPINSTRUCT

 SHIPMODE

 COMMENT

ORDERS(O_)

PK,FK1 ORDERKEY

 CUSTKEY

 ORDERSTATUS

 TOTALPRICE

 ORDERDATE

 ORDER-PRIORITY

 CLERK

 SHIP-PRIORITY

 COMMENT

PARTSUPP(PS_)

PK,FK1 PARTKEY

PK,FK1 SUPPKEY

 AVAILQTY

 SUPPLYCOST

 COMMENT

PART(P_)

PK,FK1 PARKEY

 NAME

 MFGR

 BRAND

 TYPE

 SIZE

 CONTAINER

 RETAILPRICE

 COMMENT

SUPPLIER(S_)

PK,FK1 SUPPKEY

 NAME

 ADDRESS

 NATIONKEY

 PHONE

 ACCTBAL

 COMMENT

CUSTOMER(C_)

PK,FK1 CUSTKEY

 NAME

 ADDRESS

 NATIONKEY

 PHONE

 ACCTBAL

 MKTSEGMENT

 COMMENT

NATION(N_)

PK,FK1,FK2 NATIONKEY

 NAME

 REGIONKEY

 COMMENT

REGION(R_)

PK,FK1 REGIONKEY

 NAME

 COMMENT

Figure 13. Entity-Relationship of the TPC-H Database Schema

Let Q be a USQL query that:

 SELECT L_QUANTITY,

 (L_EXTENDEDPRICE*(1-L_DISCOUNT) AS

DISC_PRICE,

(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS

 CHARGE

 FROM LINEITEM

 WHERE L_SUPPKEY IN (

SELECT S_SUPPKEY

FROM SUPPLIER, NATION

 44

WHERE S_NATIONKEY = N_NATIONKEY AND N_NAME=ñchinaò)

 AND L_SHIPDATE >= DATE „1995/05/01” AND

L_SHIPDATE <= DATE „1995/07/01‟

 HAVING MAX RE;

The UDBMS first analyzes Q and it determines that Q is a type-S nested query. Also

among the resulting tuples, Q only selects those with the largest reliability values

(shown in italic).

Based on the results from the query analysis, UDBMS rewrites Q into a corresponding

query on source vectors, denoted by Q1, as follows:

 SELECT L_QUANTITY, (L_EXTENDEDPRICE*(1-L_DISCOUNT) AS

 DISC_PRICE, (L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS

 CHARGE

 WITH SV

 FROM LINEITEM

 WHERE L_SUPPKEY IN (

SELECT S_SUPPKEY

FROM SUPPLIER, NATION

WHERE S_NATIONKEY = N_NATIONKEY AND N_NAME=“china”)

 AND L_SHIPDATE >= DATE „1995/05/01” AND

 L_SHIPDATE <= DATE „1995/07/01‟

 HAVING MAX RE;

 45

UDBMS checks the evaluation plan for Q1 and it starts to calculate the source vectors

associated with the result tuples from the most inner sub-query, denoted by sQ, as

follows:

1. UDBMS rewrites sQ to its equivalent SQL query:

SELECT S_SUPPKEY, SUPPLIER_sourcevector, NATION._sourcevector

FROM SUPPLIER, NATION

WHERE S_NATIONKEY = N_NATIONKEY AND N_NAME= “china”;

2. UDBMS executes the rewritten query in the back-end database server;

3. UDBMS performs the “3OR” operation on the values that corresponds to

“SUPPLIER._sourcevector”, the “NATION._sourcevector” attributes and

associates the calculated source vectors with each tuple returned from the

back-end database server;

4. UDBMS groups together the source vectors associated with the

value-equivalent tuple.

(Suppose the resulting tuples are t1@x1, …, tn@xn)

Then UDBMS replaces sQ with its result tuples (t1, …, tn) and it modifies the

generated query so that it projects on the “L_SUPPKEY” attribute. The modified

query, denoted by Q2, is shown as follows:

 SELECT L_QUANTITY, (L_EXTENDEDPRICE*(1-L_DISCOUNT) AS

 DISC_PRICE, (L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS

 CHARGE, L_SUPPKEY

 WITH SV

 46

 FROM LINEITEM

WHERE L_SUPPKEY IN (t1, …, tn) AND L_SHIPDATE >=DATE „1995/05/01”

AND L_SHIPDATE <= DATE „1995/07/01‟;

UDBMS checks the evaluation plan for Q2 and suppose its result tuples are

t1‟@x1‟, …, tm‟@xm‟. For every tuple ti‟@xi‟ (1 i m) in the result set, UDBMS

searches all the tuples in the result set of sQ until it finds a tuple ti@xi (1 i n) such

that ti[L_SUPPKEY] = ti‟[L_SUPPKEY]. It then performs the “3OR” operation on

the source vectors associated with ti and ti‟ to calculate the source vectors associated

with tuple ti‟ in the result set of Q.

Finally, UDBMS calculates the reliability for every tuple in the result set of Q. The

system sorts the resulting tuples in decreasing order of their reliability values, and

displays the tuples with the largest reliability.

 47

Chapter 5

System Architecture and Implementation

The proposed database management with uncertainty UDBMS is a single-user,

three-tier system that is made up of four main modules: graphical user interface

module, pre-processing module, post-processing module, and the back-end DBMS

module. The graphical user interface acts as the system‟s presentation tier, the

pre-processing and the post-processing modules form the system‟s application tier,

and the back-end DBMS module is the system‟s data tier. Figure 14 shows the

architecture of the UDBMS.

UDBMS

Conventional DBMS

Graphics User

Interface

User

pre-

Processing

post-

Processing

Figure 14. UDBMS System architecture

 48

The four modules of the UDBMS interact with each other and as a whole they

guarantee efficient manipulation of uncertain data.

1. The user interacts with the UDBMS through the GUI module: he submits the

query Q to the GUI module and the GUI module passes Q to the

pre-processing module;

2. The pre-processing module validates the syntax and semantics of Q, and

reports an error if Q is not a valid USQL query. Otherwise, the pre-processing

module analyzes Q. And depending on the analysis results, the module checks

the corresponding evaluation plan for Q, based on which the module rewrites

Q if necessary and submits the (rewritten) query to the back-end DBMS

module for further evaluation.

3. The back-end DBMS module executes the submitted query, and it passes the

results to the post-processing module;

4. The post-processing module receives the results form the back-end DBMS

module, and based on the evaluation plan chosen by the pre-processing

module, further calculations are performed in the post-processing module;

5. The GUI module gets the raw query results, reformats them, and displays them

to the user;

More detailed descriptions of the design and implementation of the system‟s modules

are discussed below.

 49

5.1 GUI Module

We design the GUI module so that the works on the users‟ side can be minimized.

Take the “CREATE DATABASE” command for example (shown in Figure 15): a user

only need to provide the name of the new database and the number of the information

sources to create a new IST database, as the GUI module will help he to complete the

whole “CREATE DATABASE” command in the background.

Figure 15. “CREATE DATABASE” command in the GUI

Also consider the “RELIABILITYUPDATE” command as an example: a user does

not have to use separate “RELIABILITYUPDATE” commands if he wants to update

the reliability values for multiple information sources as an interactive table (the

interactive table for an IST database with 4 information sources is shown in Figure 16)

is provided by the GUI module to the user to simultaneously update the reliability

values for the information sources.

 50

Figure 16. “RELIABILITYUPDATE” command in the GUI

Moreover, we try to add as many extra useful functions as we can to the GUI module

to increase the functionality of the UDBMS. For example, a new “Save the results AS”

function is added to the “QUERY” command in the GUI module so that the users can

store the results of a USQL query permanently to an external file.

The GUI module is constructed using the JAVA Swing Toolkit and every USQL

command has its corresponding frame in the GUI module. Three components are

common throughout all the GUI‟s frames, and they are:

1. Menu bar, where users can find all the USQL commands currently supported

by the system;

2. Title bar, where users can find the name of the current command;

3. Operation window, where users submit the USQL queries and the formatted

query results are displayed.

Formatted Output of the Query Results

We introduce how the GUI module formatted outputs the query results using the

 51

following IST tuples as examples:

data tuple 1: {t1@x1 | x1=(SV11, SV12)} or {t1@RE1};

data tuple 2: {t2@x2 | x2=(SV21)} or {t2@RE2};

data tuple 3: {t3@x3 | x3=(SV31, SV32, SV33)} or {t3@RE3};

Only one source vector is allowed to be shown each row in order to better illustrate

the conditions under which the result tuples are valid; and for the tuples that are

associated with multiple source vectors, the additional source vectors are shown in the

adjacent rows below. Figure 17 below demonstrates how the formatted output of the

query results with source vectors looks like in the GUI module. As tuple t1 is

associated with more than one source vector, the additional source vector, SV12, is

shown in the adjacent row below.

Pure Tuple Source Vector

t1 SV11

SV12

t2 SV21

t3 SV31

SV32

SV33

Figure 17. The formatted output of query results with source vectors

The formatted output of the tuples with reliability is much simpler than the formatted

output of the tuples with source vectors for each tuple has only one corresponding

reliability value. Figure 18 below shows how the formatted output of query results

with reliability looks like in the GUI module.

 52

Pure Tuple Reliability

t1 rel(t1@x1)

t2 rel(t2@x2)

t3 rel(t3@x3)

Figure 18. The formatted output of query results with reliability values

5.2 Pre-processing Module

We employ the ANTLR Parser Generator tool in the pre-processing module to help us

validate and analyze the input USQL commands. Although we have introduced the

syntax rules of the USQL commands in Chapters 3, ANTLR, however, requires

stricter rules, called the language validation grammars, to validate the USQL

commands.

We use the “RELIABILITYUPDATE” command as an example to show how we can

translate the syntax rules of the USQL commands to language validation grammars.

(Interested readers can find the full set of language validation grammars for the USQL

commands in the Appendix.)

We can tell from its syntax that a valid “RELIABILITYUPDATE” command must

satisfy the following two conditions:

1. All the tokens must be in the exact order that (include the semi-colon):

UPDATE RE OF SOURCE <source_identifier> TO <reliability_value> ;

2. The “source_identifier” must be an integer and the “reliability_value” must be

a float number.

 53

The definition of the integer and the decimal numbers are borrowed from other

ANTLR application [Antlr], and finally we have the language validation grammar for

the “RELIABILITYUPDATE” command as follows:

1. UPDATE RE OF SOURCE integer TO float ;

2. integer: '0'..'9'+;

3. float: integer '.' integer;

Example 5-1: Determine which ones of the following commands are valid

“RELIABILITYUPDATE” commands.

Input A: UPDATE RE OF SOURCE 1 TO 0.6;

Input B: UPDATE SOURCE 1 TO 0.6;

Input C: UPDATE RE OF SOURCE 2 TO 2.0;

Analyze: The first input, input A, is a valid “RELIABILITYUPDATE” command.

Input B is not a valid “RELIABILITYUPDATE” command because tokens such as

“RE” and “OF” are missing. Note that the third command, input C, is also a valid

“RELIABILITYUPDATE” command as it satisfies the language validation grammar

of the “RELIABILITYUPDATE” command.

As the ANTLR parser generator tool only checks the syntax rules of the USQL

commands, further semantics checking are required in the pre-processing module

before it can refer to the query evaluation plan and rewrite the USQL commands. Also

take the input C in Example 5-1 as an example, after Input C has been broken down to

tokens by the ANTLR parser generator tool, the pre-processing module detects that

 54

the value corresponding to the “reliability_value” is 2.0, which is out of the range [0.0,

1.0], and the pre-processing module reaches a conclusion that Input C is not a valid

USQL “RELIABILITYUPDATE” command.

5.3 Post-processing Module

Although not every evaluation plan involves post-processing operations in the

post-processing module, the post-processing module is still considered the core of our

system. As the number of the data tuples the post-processing module has to consider

usually reaches high magnitude, suitable and efficient storing mechanisms and

algorithms must be carefully designed in order to achieve high performance from the

UDBMS.

Two important properties are found for the IST data tuples:

1. The number of the elements that the IST data tuples contain may be different

among different query evaluation processes, and the number of the elements

that an IST data tuple contains may also be different as the number of the

source vectors associated with the IST tuple may change in a query evaluation

process;

2. The data types for the elements that an IST data tuple contains may be varied

for it is common for a tuple to have some elements that are integers and some

elements that are strings;

 55

And two important properties are found for the data sets:

1. The number of the IST data tuples that the data sets contain may be different

among different query processing processes, and the number of the IST data

tuples that a data set contains may also be different as the value-equivalent

tuples are grouped together in a query processing process;

2. Frequent random access to the IST data tuples in the data sets are possible for

the system may have to group some of the data tuples together and sort the

data tuples in increasing or decreasing order by their corresponding reliability

values;

Simple data storage structures such as Array are then not suitable to internally

represent the data tuples and the data sets in the UDBMS since it is hard to find a

suitable size for the Array, the size may be so small that the Array may encounter

“overflow”, and the size may be so large that much of the space is never used.

5.3.1 Naïve Approach

As the ArrayList data structure supports run-time “add” and “remove” functions, it

can be used to internally represent the data tuples and the data sets in the UDBMS.

Suppose ד is a data set with n data tuples, ti@xi (1 i n) is a data tuple in ד with ti

{V1, …, Vp} as its the pure tuple and xi {SV1, …, SVq} as its associated source

vectors, then the ArrayLists that are used represents by the UDBMS to internal

represent the data tuple ti@xi and the data set ד are constructed as follows:

 56

ti@xi: {ALi.add(V1); ...; ALi.add(Vp); ALi.add(SV1); …; ALi.add(SVq);}

R: {AL.add(AL1); …; AL.add(ALn);}

Figure 19 shows how the data set ד and the data tuples are internally represented in

the UDBMS.

... ti@xi ti+1@xi+1

V1

. . .

Vp

SV1

. . .

SVq

...

Data Set

Data Tuple

Figure 19. Naïve internal representations of data tuples and data sets

The ñISTtuple_buildupò Operation

The idea of the “ISTtuple_buildup” operation is formally expressed as an algorithm

shown in Figure 20. The input of this algorithm is a set ד of raw data records passed

from the back-end DBMS, and the output is a set דᴂ of calculated IST tuples.

procedure: “ISTtuple_buildup” operation

forall t returned from the back-end DBMS

1. perform the “3OR” operation on the values correspondent to the

 57

“t1._sourcevector”, …, “tm._sourcevector” attributes;

2. set the calculated results as the associated source vectors for t;

3. add t to the output data set דᴂ;

end forall

 end procedure

Figure 20. An algorithm for “ISTtuple_buildup” operation

Analysis: We can see from the algorithm that the performance of this

“ISTtuple_buildup” operation is directly related to the number (q) of the source

vectors associated with the data tuples and the number (n) of the data tuples passed

from the back-end DBMS. As q is usually several magnitudes smaller than n, we can

say that this “ISTtuple_buildup” operation reaches linear time complexity with

respect to n, the number of the data tuples that are passed from the back-end DBMS.

The ñISTtuple_groupò Operation

The idea of the “ISTtuple_group” operation is formally expressed as an algorithm

shown in Figure 21. The input of this algorithm is a set ד of IST tuples which may

share same pure tuples, and the output is a set דᴂ of IST tuples which do not share

same pure tuples.

procedure: “ISTtuple_group” operation

1. add the first data tuple t1 in ד to the output data set דᴂ;

forall t in ד (except t1)

2. find a tuple t‟ in דᴂ that is a value-equivalent tuple for t;

 58

 if t‟ ɲ

3. perform the “s-conjunction” operation on the source vectors associated

with t‟ and t;

4. set the calculated results as the associated source vectors for t‟ in דᴂ;

 end if

 else

5. add t to the output set דᴂ;

 end else

end forall

 end procedure

Figure 21. An algorithm for “ISTtuple-group” operation

Analysis: We have to compare all the tuples in ד against each other in the worst case

when none of the tuples in ד share same pure tuples. There is a little trick the

UDBMS will perform: it omits this “ISTtuple_group” operation in the query

evaluation process whenever there is a “distinct” keyword in the USQL query Q. But

it is still possible to have distinct result tuples for a query Q that does not contain the

“distinct” keyword. As this operation has runs at quadratic time to the number of the

IST data records in ד and as the number of the IST data records in ד is in large

order of magnitude in real-life scenarios, the performance of this “ISTtuple_group”

operation turns out to be far from being acceptable.

So far we have introduced the algorithms for the “ISTtuple_buildup” and the

 59

“ISTtuple_group” operations for the UDBMS, and from their analysis we find that

their performances are far from satisfaction, especially the “ISTtuple_group”

operation. Reasons for these bad performances lay in the data storage mechanisms we

designed for the data tuples and the data set:

1. Although the ArrayList structure supports run-time “add” and “remove”

operations, it introduces new problems to the system. For example, the “add”

operation requires all the elements in the ArrayList to be shifted backwards and

the “remove” operation requires all the elements in the ArrayList to be shifted

forwards in the worst case. Since the “add” and “remove” operations are

commonly used to group the data tuples in the data sets, ArrayList is not the

suitable storing structure for the data sets in the UDBMS;

2. Extra time is spent on separating the pure tuple from the source vectors since we

use a single ArrayList to internally represent an IST tuple. And because we usually

treat the pure tuple and the associated source vector separately in the

post-processing operations, the single ArrayList structure may not be suitable to

internally represent the IST data tuples in the UDBMS;

Therefore, it is impossible to find more efficient algorithms for the “ISTtuple_buildup”

and the “ISTtuple_group” operations, and we do not consider the 3 other operations in

this naïve approach as it is also impossible to find efficient implementations for them.

 60

5.3.2 Improved Approach

We stated in Section 4.4.3 that the ordered sequence of the data tuples in the data sets

is not required unless the USQL queries contain the “ORDER BY RE”, the

“(MAX|MIN) RE” and the “RE (<|<=|=|>=|>) <value>” keywords. In other words, the

ordered sequence of the data tuples is not required before the system has calculated

the associated source vectors and the corresponding reliability values for the data

tuples in the data sets. Other structure, the HashSet, is hence a more suitable storing

structures for the data sets in our UDBMS since it offers constant time performance

for the basic “add”, “remove” operations and it guarantees duplicate-free collection of

the elements it keeps. Moreover, the nested ArrayList structure is used to internal

represent the IST data tuples in the UDBMS since we usually treat the pure tuple and

the source vectors separately in the post-processing module,.

Suppose ד is a data set with n data tuples, ti@xi (1 i n) is a data tuple in ד with ti

{V1, …, Vp} as its the pure tuple and xi {SV1, …, SVq} as its associated source

vectors, then the storing structure used by the UDBMS to internally represents the IST

tuple ti@xi is constructed as follows:

ti@xi: {{Pure_Tuple.add(V1); ...; Pure_Tuple.add(Vp);};

 {Source_Vectors.add(SV1); …; Source_Vectors.add(SVq);}}

In order to use the HashSet to internally represent the data sets in the UDBMS, we

must first study how we can generate the hash code for the IST data tuples in the data

sets. If we calculate the hash code of an IST data tuple ti@xi as the hash code of its

 61

pure tuple ti, denoted by hashcode(ti@xi) = hashcode(ti), and we define the operation

to be taken when two data tuples share same hash code as the “s-conjunction”

operations on their associated source vectors, we do not have to perform the

“ISTtuple_group” post-processing operation to make sure that all the data tuples in

the data sets contain distinct pure tuples. Figure 22 shows how the data set ד and the

data tuple ti@xi are internally represented in the improved approach.

Data Set

Data Tuple

ti@xi

ti+1@xi+1

...

...

Pure

Tuple

Source

Vectors

V1

. . .

Vp

SV1

. . .

SVq

Figure 22. Improved internal representations of data tuples and data sets

The ñISTtuple_buildupò Operation

Implementation of the “ISTtuple_buildup” operation is much the same as the one in

the naïve approach, and it also runs at linear time with respect to the number of the

data tuples passed from the back-end DBMS.

The ñISTtuple_minusò Operation

The UDBMS performs the “ISTtuple_minus” operation on the data sets Q1(D) and

Q2(D) to calculate a data set Q(D) that Q(D)=Q1(D)-Q2(D). As the methods of how

we can calculate the source vectors associated with the result data tuples in Q(D)

 62

differs on whether the data tuples from Q1(D) also appear in Q2(D), we have to decide

for each IST tuple in Q1(D) if there exists a value-equivalent tuple for it in Q2(D).

Since we have defined the hash code of the data tuples be the hash code of their pure

tuples, we can try to “add” all the tuples in Q2(D) to the HashSet that represents the

Q1(D) to check whether the tuples in Q2(D) are the value-equivalent tuples for the

tuples in Q1(D) based on the foundation that the “add” operation fails if there exists a

tuple that share same hash code with the to-be-inserted tuple.

These ideas of the “ISTtuple_minus” operation are formally expressed as an

algorithm shown in Figure 23. The inputs of this operation are two sets Q1(D) and

Q2(D), and the output is a set Q(D) whose data tuples satisfies Q(D)= Q1(D)- Q2(D).

procedure: “ISTtuple_minus” operation

forall t in Q2(D)

1. add t to the HashSet that represents Q1(D);

 if there exists a t‟ in Q1(D) that hashcode(t)=hashcode(t‟)

2. perform the “s_negation” operation on the source vectors associated

with t;

3. perform the “3OR” operation on #t and the source vectors associated

with t‟;

4. set the calculated results as the source vectors associated with t‟ in

Q1(D);

 end if

 63

 else

5. proceed to the next tuple in Q2(D);

 end else

end forall

 end procedure

Figure 23. An algorithm for “ISTtuple_minus” operation

Analysis: The performance of this “ISTtuple_minus” operation only depends on the

number of the data tuples in Q2(D) and the number of the associated source vectors

for the data tuples in Q1(D) and Q2(D). Since the number of the source vectors

associated with the data tuples in Q1(D) and Q2(D) is usually several magnitudes

smaller than the number of the data tuples in Q2(D), this “ISTtuple_minus” operation

will run in linear time with respect to the number of the data tuples in Q2(D).

The ñSV2REò Operation

We have presented how we can convert a set of source vectors to a reliability value

for a tuple when we reviewed the IST formulism in Chapter 2, and hence we do not

repeat the process in this section and we only consider how we can detect whether the

source vectors are independent source vectors.

Suppose we have a tuple t that is associated with a set of source vectors SV1, …, SVn

when we evaluate a USQL query Q on an IST database D with k information sources,

and we can perform the following operations to check whether SV1, …, SVn are

independent source vectors:

 64

procedure: “SV_independentcheck” operation

1. create a k-size array and initial its values to 0;

forall SV in SV1, …, SVn

2. find the positions (pi, … pj) that contain the non-zero bits in SV;

 if there exists a p in (pi, … pj) whose value is 1

3. SV1, …, SVn are interdependent source vectors;

 end if

end forall

end procedure

 else

4. update the values of the array at the positions (pi, …, pj) to 1;

 end else

5. SV1, …, SVn are independent source vectors;

end forall

 end procedure

Figure 24. An algorithm for “SV_dependencecheck” operation

The ñISTtuple_sortò Operation

We cannot continue to use the HashSet to internally represent the data sets whose data

tuples are sorted in increasing or decreasing orders by their correspondent reliability

values because no order is supported by the HashSet structure, and we cannot use the

ArrayList structure to internal represent the data sets in the UDBMS as well. The

 65

TreeSet structure, as it guarantees ordered sequence of the elements is keeps and

offers log(n) time cost for the “add”, “remove” and “contains” operations, is a suitable

alternative storing structure for the UDBMS to internally represents these data sets.

In order to use the TreeSet as the storing structure for the sorted data sets in the

UDBMS, we must first design a comparator that defines the rule of the ordered

sequence of the data tuples in the data sets. For our post-processing module, the data

tuples with larger correspondent reliability values should be placed after other data

tuples if the data tuples are to be sorted in increasing order; and vice versa. Then we

initiate a TreeSet that uses the pre-defined comparator and we add the data tuples to

the TreeSet structure. Finally the data tuples will be in increasing or decreasing order

by their reliability values.

5.4 Supports for the Conventional Databases

An obvious difference between our UDBMS and other uncertain data supported

DBMSs is that our UDBMS provides supports for the conventional databases

managements. Since most of the SQL features are inherited and are continue to be

supported in the USQL, users can create, manipulate and query data in the

conventional databases in our UDBMS as they do in conventional DBMSs.

 66

Chapter 6

Experiments, Results, and Analysis

We conducted a number of experiments to evaluate the performance of the query

evaluation techniques we introduced for our UDBMS. In what follows, we describe

the experiment environment in Section 6.1. We describe how the data generated by

the TPC-H benchmark are extended with uncertainty and how the test databases are

constructed in Section 6.2. The selection of the test queries are discussed in Section

6.3. Finally we report on the experiment results and we analyze the performance of

the different UDBMSs that are implemented by the naïve and the improved

approaches in Section 6.4.

6.1 The Platform Setup

Specifications of the hardware and software on which the experiments are conducted

are shown in Table 1.

Operating system UBUNTU 11.04

CPU Intel® Core™ i7 CPU M 620

@ 2.67GHz 2.67GHz

Main Memory 4.00 GB

Eclipse Vesion 3.6.2

Mysql-connector mysql-connector-java Version 5.1.14

ANTLR Parser Generator Version 3.3

UDBMS Version 1.0 and Version 1.1

Table 1. Experiment environment

 67

6.2 Data Generation

Currently there does not exist a common rule on how the test data should be generated

for performance experiments for new DBMSs. However, the TPC-H benchmark is

widely used for its easy accessibility on the internet and the high quality of the data it

generates. For example, the MayBMS system uses the TPC-H benchmark to generate

the test data, and it controls the scale (s), uncertainty ratio (x), correlation ratio (z),

and maximum alternatives per field (m) when generating the test data. We also use the

TPC-H to generate the test data for our UDBMS but the generated test data must be

extended with uncertainty. We refer to this test data extending operation, the

“testdata_extend” operation. Inputs to the “testdata_extend” operation are a set of data

tuples generated by the TPC-H benchmark, and the outputs are the extended IST

tuples that can be used for our experiments.

As there is one “1” entry in the source vector associated with the data tuple in the base

relation, the source vectors that the “testdata_extend” operation generates for the data

tuple in an IST database with k information sources must be made up of p “0”s, one

“1”, and q “0”s, denoted by “0{p} 1{1} 0{q}”, where p+1+q=k.

Formally present the ideas and we have an algorithm for the “testdata_extend” as

follows:

procedure: “testdata_extend” operation

forall ti in (t1, …, tn)

1. generate a random number r;

 68

2. r‟ = r%k;

if r‟=0

3. set (0{k-1} 1{1}) as the associated source vector for ti;

 end if

 else if r‟=1

4. set ({0{k-2} 1{1} 0{1}) as the associated source vector for ti;

 end else if

 …

 end else

end forall

 end procedure

Figure 25. An algorithm for “testdata_extend” operation

The Databases

All together, 7 test databases are constructed for the experiments, and they are:

TDB_A, TDB_B, TDB_C, TDB_D, TDB_E, TDB_F and TDB_G. While the pure

tuples in the TDB_A and TDB_D test databases are identical, the numbers of the

information sources associated for the two test databases are different: 2 for TDB_A

and 10 for TDB_D (same rules applied to TDB_B and TDB_E, TDB_C and TDB_F).

While the number of the information sources associated for the TDB_A, TDB_B and

TDB_C test databases is the same, the sizes of the test databases are different: 1 GB

for TDB_A, 2 GB for TDB_B, and 3.6 GB for TDB_C (same rules applied to TDB_D,

 69

TDB_E and TDB_F). TDB_G is a special test database for it only contains one

“LINEITEM” base relation whose size is 4.66 GB.

More specially, we list the detailed information for the 7 test databases as follows:

1. TDB_A (size: 1GB; number of information sources: 2)

 6001215 tuples in “LINEITEM” relation;

 1500000 tuples in “ORDERS” relation;

 800000 tuples in “PARTSUPP” relation;

 200000 tuples in “PART” relation;

 150000 tuples in “CUSTOMER” relation;

 10000 tuples in “SUPPLIER” relation;

 25 tuples in “NATION” relation;

 5 tuples in “REGION” relation;

2. TDB_B (size: 2GB; number of information sources:2)

 11997996 tuples in “LINEITEM” relation;

 3000000 tuples in “ORDERS” relation;

 1600000 tuples in “PARTSUPP” relation;

 400000 tuples in “PART” relation;

 300000 tuples in “CUSTOMER” relation;

 20000 tuples in “SUPPLIER” relation;

 25 tuples in “NATION” relation;

 5 tuples in “REGION” relation;

3. TDB_C (size: 3.6GB; number of information sources:2)

 70

 18820846 tuples in “LINEITEM” relation;

 4705347 tuples in “ORDERS” relation;

 3200000 tuples in “PARTSUPP” relation;

 800000 tuples in “PART” relation;

 600000 tuples in “CUSTOMER” relation;

 4000 tuples in “SUPPLIER” relation;

 25 tuples in “NATION” relation;

 5 tuples in “REGION” relation;

4. TDB_D (size: 1GB; number of information sources:10)

 6001215 tuples in “LINEITEM” relation;

 1500000 tuples in “ORDERS” relation;

 800000 tuples in “PARTSUPP” relation;

 200000 tuples in “PART” relation;

 150000 tuples in “CUSTOMER” relation;

 10000 tuples in “SUPPLIER” relation;

 25 tuples in “NATION” relation;

 5 tuples in “REGION” relation;

5. TDB_E (size:2GB; number of information sources:10)

 11997996 tuples in “LINEITEM” relation;

 3000000 tuples in “ORDERS” relation;

 1600000 tuples in “PARTSUPP” relation;

 400000 tuples in “PART” relation;

 71

 300000 tuples in “CUSTOMER” relation;

 20000 tuples in “SUPPLIER” relation;

 25 tuples in “NATION” relation;

 5 tuples in “REGION” relation;

6. TDB_F (size: 3.6 GB; number of information sources:10)

 18820846 tuples in “LINEITEM” relation;

 4705347 tuples in “ORDERS” relation;

 3200000 tuples in “PARTSUPP” relation;

 800000 tuples in “PART” relation;

 600000 tuples in “CUSTOMER” relation;

 4000 tuples in “SUPPLIER” relation;

 25 tuples in “NATION” relation;

 5 tuples in “REGION” relation;

7. TDB_G (size: 4.66 GB; number of information sources:2)

36000148 tuples in “LINEITEM” relation;

And we list the reliability value for the information sources 1 to 10 as follows:

Information Source No. Reliability Information Source No. Reliability

S1 0.343 S2 0.59

S3 0.49 S4 0.52

S5 0.623 S6 0.734

S7 0.765 S8 0.81

S9 0.85 S10 0.67

Table 2. Reliability values for the 10 information sources

 72

6.3 Queries Selection

Similar to the test data generation case, there does not exist a common rule on how

the test queries should be selected. But based on the test queries suggested by the

TPC-H benchmark, 7 queries (listed as below) are selected and extended as the test

queries for our experiments. Queries 1 to 4 are the simple queries that Query 1 is

interested the conditions under which the data tuples are valid, Query 2 is interested in

the reliability of data tuples, Query 3 sorts and displays the data tuples in decreasing

order by their reliability values and Query 4 is interested in the data tuples that have

the largest reliability value. Queries 5 and 6 are exclusive queries, and Query 7 is a

type-S nested query.

Query 1: List the details of the line items that are ordered by the customer from Asia

between August 1
st
, 1995 and December 31

st
, 1995 and the conditions under which

the results are valid.

 SELECT L_EXTENDEDPRICE, L_DISCOUNT, L_ORDERKEY,

L_SHIPDATE

 WITH SV

 FROM CUSTOMER, ORDERS, LINEITEM, NATION, REGION

 WHERE O_ORDERKEY = L_ORDERKEY AND R_NAME =”Asia” AND

R_REGIONKEY = N_REGIONKEY AND C_NATIONKEY =

N_NATIONKEY AND C_CUSTKEY = O_CUSTKEY AND

O_ORDERDATE >= DATE „1995/08/01” AND O_ORDERDATE <= DATE

 73

„1995/12/31‟;

Query 2: List the details of the line items that are ordered by the customer from Asia

between August 1
st
, 1995 and December 31

st
, 1995 along with their reliability values.

 SELECT L_EXTENDEDPRICE, L_DISCOUNT, L_ORDERKEY,

L_SHIPDATE

 WITH RE

 FROM CUSTOMER, ORDERS, LINEITEM, NATION, REGION

 WHERE O_ORDERKEY = L_ORDERKEY AND R_NAME =”Asia” AND

R_REGIONKEY = N_REGIONKEY AND C_NATIONKEY =

N_NATIONKEY AND C_CUSTKEY = O_CUSTKEY AND

O_ORDERDATE >= DATE „1995/08/01” AND O_ORDERDATE <= DATE

„1995/12/31‟;

Query 3: List and sort the details of the line items that are ordered by the customer

from Asia between August 1
st
, 1995 and December 31

st
, 1995 by their reliability

values.

 SELECT L_EXTENDEDPRICE, L_DISCOUNT, L_ORDERKEY,

L_SHIPDATE

 FROM CUSTOMER, ORDERS, LINEITEM, NATION, REGION

 WHERE O_ORDERKEY = L_ORDERKEY AND R_NAME =”Asia” AND

R_REGIONKEY = N_REGIONKEY AND C_NATIONKEY =

N_NATIONKEY AND C_CUSTKEY = O_CUSTKEY AND

 74

O_ORDERDATE >= DATE „1995/08/01” AND O_ORDERDATE <= DATE

„1995/12/31‟

ORDER BY RE;

Query 4: List the details of the line items with the largest reliability value that are

ordered by the customer from Asia between August 1
st
, 1995 and December 31

st
,

1995.

 SELECT L_EXTENDEDPRICE, L_DISCOUNT, L_ORDERKEY,

L_SHIPDATE

 FROM CUSTOMER, ORDERS, LINEITEM, NATION, REGION

 WHERE O_ORDERKEY = L_ORDERKEY AND R_NAME =”Asia” AND

R_REGIONKEY = N_REGIONKEY AND C_NATIONKEY =

N_NATIONKEY AND C_CUSTKEY = O_CUSTKEY AND

O_ORDERDATE >= DATE „1995/08/01” AND O_ORDERDATE <= DATE

„1995/12/31‟

HAVING MAX RE;

Query 5: List and sort the details of the line items that have not been returned and are

shipped between October 1
st
, 1995 and October 31

st
, 1995 by their reliability values.

 SELECT L_QUANTITY, (L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS

 DISC_PRICE, (L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX))

AS CHARGE

 WITH RE

 75

FROM LINEITEM

 WHERE LINEITEM.L_RETURNFLAG NOT IN (“r”) AND L_SHIPDATE >=

DATE „1995/10/01” AND L_SHIPDATE <= DATE „1995/10/31‟;

Query 6: List the details of the orders which do not involve customers from china

between May 1
st
, 1995 and July 31

st
, 1995 along with their reliability values.

 SELECT O_ORDERSTATUS, O_TOTALPRICE, O_CLERK

 WITH RE

 FROM ORDERS, CUSTOMER, NATION

 WHERE C_NATIONKEY = N_NATIONKEY AND NATION.N_NAME NOT

IN (“china”) AND O_CUSTKEY = C_CUSTKEY AND

O_ORDERDATE >= DATE „1995/05/01” AND O_ORDERDATE <=

DATE „1995/07/31‟;

Query 7: List the details of the line items with the largest reliability value that are

mostly liked to be supplied by supplier from china and are shipped between May 1
st
,

1995 and May 31
st
, 1995.

 SELECT L_QUANTITY, (L_EXTENDEDPRICE*(1-L_DISCOUNT) AS

 DISC_PRICE, (L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS

 CHARGE

 FROM LINEITEM

 WHERE L_SUPPKEY IN (

SELECT S_SUPPKEY

 76

FROM SUPPLIER, NATION

WHERE S_NATIONKEY = N_NATIONKEY AND N_NAME=“china”)

AND L_SHIPDATE >= DATE „1995/05/01” AND L_SHIPDATE <= DATE

„1995/07/01‟

 HAVING MAX RE;

6.4 Performance Evaluation

Strictly speaking, we cannot compare the performances between our UDBMS and the

conventional DBMSs as the relational data models they are based on are different. But

as our UDBMS provides supports for the conventional databases managements,

experiments can be conducted to study the overhead (if any) posed by our UDBMS to

the conventional queries. More particularly, test databases TDB_A, TDB_B, TDB_C

and the test query 1 are chosen for experiments.

Uncertainty associated for the three test databases are removed (and the new test

databases are TDB_A‟, TDB_B‟, TDB_C‟) and the test query 1 is modified to a

conventional query, called the test query 0, as follows:

 SELECT L_EXTENDEDPRICE, L_DISCOUNT, L_ORDERKEY,

L_SHIPDATE

 FROM CUSTOMER, ORDERS, LINEITEM, NATION, REGION

 WHERE O_ORDERKEY = L_ORDERKEY AND R_NAME =”Asia” AND

R_REGIONKEY = N_REGIONKEY AND C_NATIONKEY =

N_NATIONKEY AND C_CUSTKEY = O_CUSTKEY AND

 77

O_ORDERDATE >= DATE „1995/08/01” AND O_ORDERDATE <= DATE

„1995/12/31‟;

Table 3 and Figure 26 below show the experiment results of evaluating the test query

0 on the 3 test databases in both the UDBMS and the MySQL DBMS. Although our

UDBMS does the additional query validation, parsing and analysis, little overhead

(about 5%) is posed compared to the conventional DBMSs for the conventional

queries.

 TDB_A‟ TDB_ B‟ TDB_C‟

Number of

result tuples

77184 151911 240400

Evaluation Time

(in sec) in UDBMS

12.97 36.52 91.34

Evaluation Time

(in sec) in MySQL

11.73 33.47 82.88

Table 3. Evaluating conventional query in UDBMS/ MySQL DBMS

Figure 26. Evaluating conventional query in UDBMS/ MySQL DBMS

As we only implement the “ISTtuple_buildup” and the “ISTtuple_group” operations

0

10

20

30

40

50

60

70

80

90

100

0.5 1.5 2.5 3.5 4.5

E
va

lu
a

tio
n

 T
im

e
 (

in
 s

e
c
)

Database Size (in GB)

UDBMS

MySQL DBMS

 78

in the naïve approach (discussed in Section 5.3.1), exclusive queries, nested queries

and queries with the “WITH RE”, “(MAX|MIN) RE”, “ORDER BY RE”, “RE

(<|<=|=|>=|>) <value>” keywords are therefore cannot be evaluated in the naïve

UDBMS (UDBMS that is constructed by following the naïve approach).

As for our test queries set, only the 1
st
 test query can be evaluated and the experiment

results of evaluating the test query 1 in the naïve UDBMS are shown in Table 4.

 TDB_A TDB_B TDB_C TDB_D TDB_E TDB_F

Evaluation Time (in

sec) on the original test

databases

245.28 632.12 2145.28 273.07 692.53 2535.85

Table 4. Evaluating test query 1 in the naïve UDBMS

In order to compare the performance differences between the naïve UDBMS and the

improved UDBMS (UDBMS that is constructed by following the improved approach),

we present the experiment results of running the test query 1 in the improved UDBMS

in Table 5. We also present the experiment results of running the test query 1 on the 6

test databases when the information sources associated with the test databases are

fully reliable sources (with reliability 1.0) in Table 5.

 TDB_A TDB_B TDB_C TDB_D TDB_E TDB_F

Evaluation Time (in sec)

on the original test

databases

19.63 41.56 102.36 29.51 56.75 115.45

Evaluation Time (in sec)

on test databases with

fully reliable sources

18.39 43.87 102.85 31.12 55.64 116.59

Table 5. Evaluating test query 1 in the improved UDBMS

 79

Figure 27. Performance differences between the naïve and the improved UDBMSs

Studies of Figure 27, which graphically shows the performance differences between

the naïve and the improved UDBMSs, tell us that the performance of the UDBMSs do

not rely on the reliability values of the information sources and the performance of the

improved UDBMS is far better than the naïve UDBMS in two ways:

1. The evaluation time required by the improved UDBMS is less than the

evaluation time required by the naïve UDBMS for the same test query and test

database. For instance, the evaluation time (245.28 seconds) of the test query 1

on the test database TDB_A in the naïve UDBMS is almost 10 times over the

evaluation time (25.56 seconds) of the test query 1 on the test database

TDB_A in the improved UDBMS;

2. The evaluation time required by the improved UDBMS for the same test query

increases more slowly than the naïve UDBMS when the size of the database

and the number of the associated information sources increase. For instance,

while the evaluation time for a test query on a 3.6GB test database is 9 times

over the evaluation time for the same test query on a 1GB test database in the

0

500

1000

1500

2000

2500

0.5 1.5 2.5 3.5

E
va

lu
a

tio
n

 T
im

e
 (

in
 s

e
c
)

Database Size (in GB)

Naïve approach(S2)

Improved approach(S2)

Naïve approach(S10)

improved
approach(S10)
improved approach(S2-
1.0)
improved
approach(S10-1.0)

 80

naïve UDBMS, the time only increases 6 times over the 1GB test database‟s

case in the improved UDBMS;

Reasons for these huge performance differences between the naïve and the improved

UDBMS, as we have discussed in Section 5.3, lie in the fact the time-consuming

“ISTtuple_group” operation is not longer required by the improved UDBMS for the

HashSet structure that is used to internally represent the data sets guarantees

duplicate-free collection of the elements it keeps.

In what follows, we study the performance of the improved UDBMS in a more

detailed level.

If we regard the experiment results of evaluating the test query 0 as the basis for

comparison, we can then study the performance of the source vectors‟ calculations by

evaluating the test query 1 in the system, we can study the performance of the

reliability calculations by evaluating the test query 2 in the system, we can study the

performance of the “ISTtuple_sort” operation by evaluating the test query 3 in the

system, and we can study the largest overhead that may be posed by our improved

UDBMS to the USQL queries by evaluating the test query 4 in the system.

Table 6 below shows the experiment results of running the test queries 1 to 4 in the

improved UDBMS (we list the experiment results of running test query 0 in Table 5

again for comparison purpose).

 81

Query No. TDB_A TDB_B TDB_C TDB_D TDB_E TDB_F

0 11.73 33.47 82.88 11.73 33.47 82.88

1 15.14

41.56 102.36 29.51 56.75 115.45

2 19.63 47.79 108.21 42.41 76.66 120.47

3 21.34 50.25 116.54 49.45 85.05 122.82

4 23.54 53.74 120.36 54.84 88.92 131.61

Table 6. Experiment results of running test queries 1 to 4 in the improved UDBMS

Graphically comparing the experiment results of running test queries 0 to 4 in the

improved UDBMS on the test databases with 2 information sources and 10

information sources, we have:

Figure 28. Experiment results of running test queries 0 to 4 in the improved UDBMS

on test databases with 2 information sources

0

20

40

60

80

100

120

140

0.5 1 1.5 2 2.5 3 3.5 4

E
va

lu
a

tio
n

 T
im

e
 (

in
 s

e
c
)

Database Size (in GB)

TQ0

TQ1

TQ2

TQ3

TQ4

 82

Figure 29. Experiment results of running test queries 0 to 4 in the improved UDBMS

on test databases with 10 information sources

Analysis of the Figures 28 and 29 tell us that:

1. As we have to calculate the source vectors associated with the result tuples to

calculate their reliability values and we have to sort the result tuples by their

reliability values to find the data tuples with the largest reliability value, more

time is required to evaluate the test query 4 than the test queries 3, 2, 1, and 0.

But the calculations of the source vectors associated with the result tuples, the

calculations of the reliability values for the result tuples, and the

“ISTtuple_sort” operation all reach high performance so that the time required

to evaluate the test query 4 only increases by 50% over the time required to

evaluate the test query 0 in the test database with 3.6 GB size and 10

information sources;

2. More time is required to evaluate the queries on the test databases with more

information sources, but the increment of the time is not so obvious, for

0

20

40

60

80

100

120

140

0.5 1 1.5 2 2.5 3 3.5 4

E
va

lu
a

tio
n

 T
im

e
 (

in
 s

e
c
)

Database Size (in GB)

TQ0

TQ1

TQ2

TQ3

TQ4

 83

instance, the time required to evaluate the test query 4 in the improved

UDBMS on the test databases TDB_F (test database with 10 information

sources) is only 10% more over the time required on the test databases

TDB_C;

Experiment results of running test queries 5, 6 and 7 in the improved UDBMS are

shown in Table 7 as below.

Query No. TDB_A TDB_B TDB_C TDB_D TDB_E TDB_F

5 10.76 23.49 35.53 17.93 29.58 43.71

6 6.89 74.05 143.19 9.66 102.54 173.83

7 45.28 93.06 143.89 68.39 109.89 159.01

Table 7. Experiment results of running test queries 5 to 7 in the improved UDBMS

Although the time required by the UDBMS to evaluate these queries is longer than the

time required by the UDBMS to evaluate the simple queries on average, supports for

the exclusive and the nested queries are quite good in the improved UDBMS. From

what we can see in Figure 30, the time required to evaluate the nested and the

exclusive queries grows linearly with respect to the number of the tuples and

information sources.

 84

Figure 30. Experiment results of running test queries 5 to 7 in the improved UDBMS

Finally, efforts are paid to study the scalability of our UDBMS. As large amount of

disk I/Os are required to read data from the databases when the they cannot be loaded

completely into the main memory and the “add” operation for the HashSet becomes

extremely expensive when the operating system could not cache the hash codes for all

the elements of the HashSet in the main memory, we believe that our proposed

UDBMS can only be used to answer queries on the databases (relations) when they

can be loaded completely to the main memory.

Experiments are conducted accordingly to study the performance of the improved

UDBMS when the test databases cannot be loaded completely into the main memory.

Test database TDB_G is chosen, and the test queries are evaluated in the improved

UDBMS on TDB_G. Unfortunately we fail to measure the time required for the

improved UDBMS to evaluate the test queries as our system terminates when the

operating system runs out of memory.

0

20

40

60

80

100

120

140

160

180

200

0.5 1 1.5 2 2.5 3 3.5 4

E
va

lu
a

tio
n

 T
im

e
 (

in
 s

e
c
)

Database Size (in GB)

TQ5(S2)

TQ5(S10)

TQ6(S2)

TQ6(S10)

TQ7(S2)

TQ7(S10)

 85

To sum up, we list the experiment results of running the 7 test queries in the improved

UDBMS on the test databases in Table 7 and Figure 31 and we present our

observations as follows.

TDB_A TDB_B TDB_C TDB_D TDB_E TDB_F TDB_G

SUM

(in sec)
142.58 383.94 770.08 272.19 549.39 866.90 UN-KNOWN

Table 8. Evaluating all test queries in the improved UDBMS

Figure 31. Evaluating all test queries in the improved UDBMS

Our observation is less than conclusive, but these experiment results convinced that

although more time is required to evaluate the queries when there are more data tuples

and information sources to consider, the time required to evaluate the queries

increases linearly as long as the databases (relations) can be loaded completely to the

main memory.

 86

Chapter 7

Conclusion and Future Research

Our motivation in this work laid in the lack of efficient uncertain database

management systems in the database and the artificial intelligence fields. Our goal

was to primarily develop an efficient database management system for manipulation

with uncertain data.

To reach our goal, we classified the two existing approaches to build DBMS for

uncertain data, we explained their differences and we justified why we choose the

“light weight” way to construct the new system. We reviewed the IST formulism

proposed by Sadri, and we extended SQL to USQL to define the transaction rules in

the new UDBMS. New query parsing, analyzing and evaluation techniques were

introduced, and for the purpose of further enhancing the evaluation efficiency,

different data storing mechanisms and algorithms were proposed.

Two UDBMS prototypes were built and a bunch of experiments were conducted to

study the performance of our proposed techniques. Our experiment results show that

the improved UDBMS yields faster evaluation than the naïve UDBMS. And although

more time is required by the improved UDBMS to evaluate the queries on bigger

databases and databases with more information sources, the time required increases

linearly.

 87

Despite the facts that our UDBMS is based on the IST formulism and it uses MySQL

DBMS as its back-end DBMS, the techniques and approaches we have studied in this

thesis can be easily modified and adapted to build new uncertain database

management systems that are based on other uncertain theories or use other

conventional DBMSs as the back-end DBMS.

Note that since the proposed UDBMS is an in-memory, single-user system, supports

for large size databases are inadequate. As databases can get really huge and usually

they cannot be loaded completely in the main memory, future researches can be

dedicated to study the problem of efficient evaluating queries on large size databases.

Another research direction is to provide full supports for the SQL features in the

USQL. Until now, our UDBMS only provides portions of the supports for the

uncertain data, thus the future works can be done to provide full supports for the

“LIKE” operator, the “index” mechanisms in the USQL language.

 88

References

[Adar 07] Eytan Adar and Christopher Re. “Managing Uncertainty in Social

Networks”. In: IEEE Computer Society Technical Committee on Data

Engineering (TCDE), 2007.

[Agra 06] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T.

Sugihara, and J. Widom. “TRIO: A System for Data, Uncertainty and

Lineage”. In: Proc. 32nd Intl. Conf. on Very Large Data Bases (VLDB),

pages 1151-1154, 2006.

[Agar 09] Charu C. Agarwal, and Philip S. Yu. “A survey of Uncertain Data

Algorithms and Applications”. In: IEEE Transactions on Knowledge and

Data Engineering (TKDE), Vol. 21, No. 5, 2009.

[Antlr] “ANTLR Homepage”. http://www.antlr.org.

[Anto 07a] L. Antova, C. Koch, and D. Olteanu. “From Complete to Incomplete

Information and Back”. In: Proc. of ACM SIGMOD Intôl. conf. on

Management of data, 2007.

[Anto 07b] L. Antova, C. Koch, and D. Olteanu. “10^(10^6) Words and Beyond:

Efficient Representation and Processing of Incomplete Information”. In:

Proc. 23rd IEEE Intôl Conf. Data Eng. (ICDE), 2007.

[Anto 08] L. Antova, T. Jansen, C. Koch, and D. Olteanu. “Fast and Simple

 89

Relational Processing of Uncertain Data”. In: Proc. 24th IEEE Intôl Conf.

Data Eng. (ICDE), 2008.

[Bell 99] S. Bell. “A Beginner's Guide to Uncertainty of Measurement”. In:

Measurement Good Practice Guide, No. 11, Issue 2, 2001.

[Benj 06] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. “ULDBs:

Databases with Uncertainty and Lineage”. In: Proc. 32nd Intôl Conf.

Very Large Data Bases (VLDB), 2006.

[Benj 08] O. Benjelloun, A. Das Sarma, A. Halevy, M. Theobald, and J. Widom.

“Databases with Uncertainty and Lineage”, In: Intôl Conf. on Very Large

Data Bases (VLDB), Vol. 17, Issue 2, 2008.

[Bos 02] Kees van den Bos and E. Allan Lind. “Uncertainty Management by

Means of Fairness Judgments”. In: Advances in Experimental Social

Psychology, Vol.34, pp. 1-60, 2002.

[Chen 03] R. Cheng, Dmitri V. Kalashnikov, and S. Prabhakar. “Evaluating

Probabilistic Queries over Imprecise Data”. In: Proc. of the 2003 ACM

SIGMOD Intôl Conf. on Management of Data, 2003.

[Das 92] Amar K. Das, Samson W. Tu, Gretchen P. Purcell, and Mark A. Musen.

“An Extended SQL for Temporal Data Management in Clinical

Decision-Support Systems”. In: Proc. of the Annual Symposium on

Computer Application in Medical Care (SCAMC), 1992.

 90

[Dey 97] D. Dey, and S. Sarkar. “Extended SQL Support for Uncertain Data”, In:

Proc. of the 16th Intôl Conf. on Conceptual Modeling (ERô97), 1997.

[Egeh 94] Max. J. Egehofer. “Spatial SQL: A Query and Presentation Language”.

In: IEEE Transactions on Knowledge and Data Engineering (TKDE),

Vol. 6, 1994.

[Gare 79] M. R. Garey, and D. S. Johnson. “Computers and Intractability, A Guide

to the Theory of NP-Completeness”. Computers and Intractability; A

Guide to the Theory of NP-Completeness, W. H. Freeman & Co.,

ISBN:0716710455, 1979.

[Ge 09] Tingjian Ge. “Query Processing on Uncertain Data”, Ph.D. Thesis,

Brown University, 2009.

[Gotz 09] M. Gotz, and C. Koch. “A Compositional Framework for Complex

Queries over Uncertain Data”. In: '09 Proceedings of the 12th Intôl Conf.

on Database Theory (ICDT), pp. 149-161, 2009.

[Heuv 07] Gerard Heuvelink. “Error-aware GIS at work: real-world applications of

the Data Uncertainty Engine”. In: Intôl Workshop on Uncertainty in

Environmental Modeling, 2007.

[Kian 05] A. Kiani, and N. Shiri. “A Framework for Information Integration with

Uncertainty”. In: Lecture Notes in Computer Science, Vol. 3563/2005,

194-206, DOI: 10.1007/11533962_17, 2005.

 91

[KieB 02] W. KieBling, and G. Kostler. “Preference SQL – Design,

Implementation, Experiences”. In: Proc. of the 28th Intôl Conf. Very

Large Data Bases (VLDB), 2002.

[Laks 01] Laks V.S. Lakshmanan and Nematollaah Shiri, "Logic Programming and

Deductive Databases with Uncertainty: A Survey". In: Encyclopedia of

Computer Science and Technology, Vol. 45, pp 155-176, Marcel Dekker,

Inc., 2001.

[Lore 97] Nikos A. Lorentzos, and Yannis G. Mitsopoulos. “SQL Extension for

Interval Data”. In: IEEE Transactions on Knowledge and Data

Engineering (TKDE), Vol. 9, No. 3, 1997.

[Mano 01] I. Manolescu, D. Florescu, and D. Kossmann. “Answering XML Queries

over Heterogeneous Data Sources”. In: Proc. of the 27th Intôl Conf. Very

Large Data Bases (VLDB), 2001.

[Motr 94] A. Motro. “Management of uncertainty in database systems”. Modern

database systems: The Object Model, Interoperability, and Beyond,

1994.

[Motw 03] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G.

Manku, C. Olston, J. Rosenstein, and R. Varma. “Query Processing,

Resource Management, and Approximation in a Data Stream

Management System”. In: Proc. of the Conf. on Innovative Data Systems

 92

Research (CIDR), 2003.

[Orion] “The Orion 2.0 Documentation”. http://orion.cs.purdue.edu/doc.html.

[Pars 96] S. Parsons. “Current Approaches to Handling Imperfect Information in

Data and Knowledge Bases”. In: IEEE Transactions on Knowledge and

Data Engineering (TKDE), 8(3):353--372, 1996.

[Pira 92] H. Pirahesh, Joseph M. Hellerstein, and W. Hasan. “Extensible/Rule

Based Query Rewrite Optimization in Starburst”. In: Proc. of ACM

SIGMOD Intôl. conf. on Management of data, 1992.

[Riez 03] S. Riezler, and Yi Liu. “Query Rewriting using Monolingual Statistical

Machine Translation”. In: Journal of Computational Linguistics, Vol. 36,

No. 3, 2003.

[Sadr 91a] F. Sadri. “Reliablity of Answers to Queries in Relational Database”. In:

IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 3,

No.2, pp. 245-251, 1991.

[Sadr 91b] F. Sadri. “Modeling Uncertainty in Databases”. In: 7th Intôl Conf. on

Data Engineering (ICDE), pp. 122-131, 1991.

[Sadr 94] F. Sadri. “Aggregate Opertaions in the Information Source Tacking

Method”. In: Theoretical Computer Science. Vol. 133, Issue 2, pp.

421-442, 1994.

 93

[Sadr 95] F. Sadri. “Integrity Constraints in the Information Source Tracking

Method”. In: IEEE Transactions on Knowledge and Data Engineering

(TKDE), Vol. 7, No. 1, 1995.

[Sard 90] Nandlal L. Sarda. “Extensions to SQL for Historical Databases”. In:

IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 2,

No. 2, 1990.

[Sarm 06] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. “Working

Model for Uncertain Data”. In: Proc of 22nd IEEE Intôl Conf. on Data

Engineering (ICDE), 2006.

[Sarm 09] Anish Das Sarma. “Managing Uncertainty Data”. Ph.D. Thesis, Stanford

University, 2009.

[Shir 04] N. Shiri and Z.H. Zheng. “Challenges in Fixpoint Computation with

Multisets". In Proc. of 3rd Intôl Symposium on Foundations of

Information and Knowledge Systems (FoIKS), pp. 273-290, LNCS 2942,

2004.

[Sing 08] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne

Hambrusch, Rahul Shah. “Orion 2.0: Native Support for Uncertain

Data”. In: Proc. of ACM SIGMOD Intôl. conf. on Management of data,

2008.

[X Ch 03] Cindy X. Chen, J. Kong, and C. Zaniolo. “Design and Implementation of

 94

a Temporal Extension of SQL”. In: 19th Intôl Conf. on Data Engineering

(ICDE), ISBN: 0-7803-7665-X, 2003.

[Yan 01] Qi Yang, Weining Zhang, Jing Wu, H. Nakajima, and Naphtali D. Rishe.

“Efficient Processing of Nested Fuzzy SQL queries in a Fuzzy

Database”. In: IEEE Transactions on Knowledge and Data Engineering

(TKDE), Vol. 13, No. 6, 2001.

[Yao 03] Yong Yao, and J. Gehrke. “Query Processing for Sensor Networks”, In

Proc. of the Conf. on Innovative Data Systems Research (CIDR), 2003.

[Yu 04] Cong Yu, and L. Popa. “Constraint-Based XML Query Rewriting for

Data Integration”. In: Proc. of the ACM SIGMOD Intôl Conf. on

Management of Data, 2004.

[Zade 65] L. Zadeh. “Fuzzy sets”. In: Information and Control, Vol. 8, pp. 338–353,

1965.

[Zhan 08] Wenjie Zhang, Xuemin Lin, Jian Pei, and Ying Zhang. “Managing

Uncertain Data: Probabilistic Approaches”. In Proc. of the 9
th

 Intôl Conf.

on Web-Age Information Management, 2008.

[Zhen 04] Zhi hong Zheng, “On Efficient Fixpoint Computation of Deductive

Databases with Uncertainty”. Masterôs Thesis, Concordia University,

2004.

 95

Appendix

The language grammars used for validating the input USQL commands are shown as

follow:

createtable

 : 'CREATE' 'TABLE' IDENTIFIER

'(' IDENTIFIER type (notnullconstraint | defaultconstraint)? (auto_increasement)?

 (',' IDENTIFIER type (notnullconstraint | defaultconstraint)?

(id11=auto_increasement)?)*

 ',' constraint (',' constraint)* ')'

 ';'

 ;

insert

 : 'INSERT' 'INTO' IDENTIFIER

 ('(' IDENTIFIER (',' IDENTIFIER)* ')')?

 'VALUES' '(' expression (',' expression)* ')'

 ('WITH' 'SV' '(' expression (',' expression)* ')')? ';'

 ;

update

 : 'UPDATE' IDENTIFIER

 'SET' IDENTIFIER '=' expression

 (',' IDENTIFIER '=' expression)*

 96

 ('WHERE' expression)? ';'

 | 'UPDATE' IDENTIFIER

 'SET' 'SV' '=' '\"' expression (',' expression)* '\"'

 ('WHERE' expression)? ';'

 ;

alter

 : 'ALTER' 'TABLE' IDENTIFIER

 ('RENAME' IDENTIFIER

 | 'MODIFY' 'COLUMN' IDENTIFIER type

 | 'CHANGE' IDENTIFIER IDENTIFIER type

 | 'ADD' 'COLUMN' IDENTIFIER type ('AFTER' IDENTIFIER | 'FIRST')

 | 'ADD' 'COLUMN' '(' (','IDENTIFIER type)* ')'

 | 'ADD' constraint

 | 'DROP' 'COLUMN' IDENTIFIER)

 ;

type

 : 'INT'

 | 'BOOLEAN'

 | 'FLOAT'

 | 'DATE'

 | 'DATETIME'

 | 'VARCHAR' '(' I_NUMBER ')'

 97

 ;

constraint

 : primarykeyconstraint

 | uniqueconstraint

 | foreignkeyconstraint

 | checkconstraint

 | 'CONSTRAINT' IDENTIFIER primarykeycombo

 | 'CONSTRAINT' IDENTIFIER uniquecombo

 | 'CONSTRAINT' IDENTIFIER checkcombo

 ;

primarykeyconstraint

 : 'PRIMARY' 'KEY' '(' IDENTIFIER ')'

 ;

uniqueconstraint

 : 'UNIQUE' '(' IDENTIFIER (',' IDENTIFIER)* ')'

 ;

foreignkeyconstraint

 : 'FOREIGN' 'KEY' '(' IDENTIFIER ')'

 'REFERENCE' IDENTIFIER '(' IDENTIFIER ')'

 ;

checkconstraint

 : 'CHECK' '(' expression ')'

 98

 ;

primarykeycombo

 : 'PRIMARY' 'KEY' '(' IDENTIFIER (',' IDENTIFIER)* ')'

 ;

uniquecombo

 : 'UNIQUE' '(' IDENTIFIER (',' IDENTIFIER)* ')'

 ;

checkcombo

 : 'CHECK' '(' expression (',' expression)* ')'

 ;

selection

 : query_clause

 (('UNION' ('ALL')? | 'INTERSECT' | 'MINUS') query_clause)*

';'

;

query_clause

 : 'SELECT' expression (with_clause)?

'FROM' expression

('WHERE' expression)?

('ORDER BY RE')?

('HAVING' (('MAX' | 'MIN') RE | RE ('<'|'<='|'='|'>='|'>') D_NUMBER)?

 99

;

with_clause

 :'WITH'

 ('SV'|'RE')

 ;

term

 : IDENTIFIER

 | STAR

 | I_NUMBER

 | D_NUMBER

 | '\"' IDENTIFIER '\"'

 | '(' expression ')'

 | '(' query_clause ')'

 | 'DATE' '\'' I_NUMBER '/' I_NUMBER '/' I_NUMBER '\''

 ;

unary

 : ('-'| '+')* term

 ;

mult

 : unary (('*'| '/'| 'MOD') unary)*

 ;

add

 100

 : mult (('+'| '-') mult)*

 ;

relation

 : add

 ('=' add

 | '<>' add

 | '>' add

 | '>=' add

 | '<' add

 | '<=' add)*

 ;

logic

 : relation

 ('AND' relation

 | 'OR' relation

 | 'IN' relation

 | 'NOT IN' relation)*

 ;

expression

 : logic ('.' (IDENTIFIER| STAR))? ('AS' IDENTIFIER)?

 (',' logic ('.' (IDENTIFIER | STAR))? ('AS' IDENTIFIER)?)*

 ;

 101

STAR: '*';

IDENTIFIER: ('_'|'a'..'z'|'A'..'Z')+ (I_NUMBER)?;

WS: (' ' | '\t' | '\n' | '\r' | '\f')+ {$channel = HIDDEN;};

I_NUMBER: '0'..'9'+;

D_NUMBER: I_NUMBER '.' (I_NUMBER)*;

