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Abstract

Development of Piezoresistive Tactile Sensors and a Graphical Display

System for Minimally Invasive Surgery and Robotics

Masoud Kalantari, PhD

Concordia University, 2013

This PhD work presents a new tactile and feedback systems for minimally invasive

surgery (MIS)and robotics. The thesis is divided into two major sections: the tactile

sensing system, and the graphical display system.

In the tactile sensing system, piezoresistive materials are used as measuring ele-

ments. The first part of the thesis is focused on the theoretical modeling of piezore-

sistive sensing elements, which are semiconductive polymer composites. The model

predicts the piezoresistive behavior in semiconductive polymer composites, including

their creep effect and contact resistance. A single force sensing resistor (FSR) is, then,

developed by using the semiconductive polymer composite materials. The developed

FSR is used in the structure of a novel tactile sensor as the transduction element.

The developed tactile sensor is designed to measure the difference in the hardness

degree of soft tissues. This capability of the sensor helps surgeons to distinguish dif-

ferent types of tissues involved in the surgery. The tactile sensor is integrated on the

extremity of a surgical tool to provide tactile feedback from the interaction between

surgical instruments and the tissue during MIS. Mitral valve annuloplasty repair by

MIS is of our particular interest to be considered as a potential target for the use of

the developed tactile sensor. In the next step, the contact interaction of the tactile

sensor with soft tissues is modelled, parametrically. Viscoelastic interaction is consid-

ered between the tactile sensor and atrial tissue in annuloplasty mitral valve repair;

and a parametric solution for the viscoelastic contact is achieved.

In addition to the developed sensor, a novel idea regarding measuring the inden-

tation rate, in addition to measuring force and displacement is implemented in a new

design of an array tactile sensor. It is shown that the indentation-rate measurement is
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an important factor in distinguishing the hardness degree of tissues with viscoelastic

behaviour.

The second part of the thesis is focused on the development of a three-dimensional

graphical display that provides visual palpation display to any surgeon performing

robotic assisted MIS. Two matrices of the developed piezoresistive force sensor are

used to palpate the tissue and collect the tactile information. The collected data

are processed with a new algorithm and graphically rendered in three dimensions.

Consequently, the surgeon can determine the presence, location, and the size of any

hidden superficial tumor/artery by grasping the target tissue in a quasi-dynamic way.
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Chapter 1

Introduction

The invasive form of surgery is being gradually replaced by laparoscopic surgery—

also referred to as Minimally Invasive Surgery (MIS)—which is rapidly becoming the

more preferred method of surgery for almost any possible surgical operations. MIS is

a special surgical procedure that employs non-invasive techniques. During this form

of surgery, small incisions are made in which plastic tubes, or ports are inserted.

Slender incising instruments and a miniature camera, that provides images of organs

inside the body, are then inserted through these tubes to conduct surgery.

Since the past three decades, MIS has offered several advantages for both sur-

geons and patients [1, 2]. Benefits of MIS procedures include: less post operative

discomfort, quicker recovery time, shorter hospital stay, earlier return to full activi-

ties, much smaller scars, and less internal trauma. However, despite the progress of

MIS techniques during these three decades, there are still various unsolved inadequa-

cies involved with such techniques. In fact, one of these unsolved problems is the

1
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lack of providing tactile feedback to surgeons [3]. As an example, surgeons who use

the da Vinci surgical system, developed by Intuitive Surgical Inc., do not feel tactile

information while surgical tools interact with the internal organs of patients [4]. As

another example, during Catheter-based Techniques (CBT), cardiac surgeons also do

not feel such tactile information while catheters interact with blood vessel walls or

cardiac tissues. Due to this inadequacy, numerous surgical operations cannot still

be performed with available MIS techniques or CBT. The focus of the current PhD

thesis is to provide surgeons with artificial tactile sensing and feedback during MIS

or CBT. In the literature, force and pressure sensors are the objects of a majority

of research projects in tactile applications [5]. However, some tactile sensors that

can sense hardness or detect lumps have also been introduced by researchers [6]. In

the first part of this work, two tactile sensors are designed and developed. They can

measure the relative hardness degree of soft tissues by using piezoresistive sensing

principle.

Semiconductive polymer composites are used in the structure of the tactile sensors

as piezoresistive sensing elements. The electrical resistivity of piezoresistive elements

changes as the result of the application of force to their structure. To the best of

author’s knowledge, the available models in the literature are not accurate enough

to show the piezoresistive behaviour of semiconductive polymer composites inside

the structure of a force/pressure sensor. Therefore, in this thesis the piezoresistive
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behaviour of these sensing elements are fully tested, analyzed, and modelled para-

metrically. By using the piezoresistive sensing elements in the structure of the tactile

sensor, the behaviour of the sensor is predicted for any type of force applied to its

structure. Section 1.0.1 discusses the latest literature on the modeling of polymer

composites and their shortcomings. Further, the advantages of the developed model

over other available models are discussed and elaborated.

As stated, a novel tactile sensor is developed, which includes two piezoresistive

force sensors as sensing elements. The modelled semiconductive materials are used

in the structure of the tactile sensor. The developed piezoresistive tactile sensor has

significant advantages over currently available sensors, which makes it unique for both

MIS and CBT. The state of the art tactile sensors are discussed in Section 1.0.2. In

addition, the drawbacks and inadequacies of the available sensors are stated.

The tactile sensor is placed on the extremity of a surgical tool to provide tactile

feedback from the interaction between surgical instruments and the tissue during

surgery. The interaction feedback allows surgeons to gain information similar to

what they gain with their finger during the touch.

The developed tactile sensor can be used in MIS and CBT. Further, The developed

sensors can be used in robotics area for the purpose of human-robot interaction.

However, it is of particular interest to use the tactile sensor in percutaneous mitral

valve regurgitation repair. The left atrioventricular valve of the heart, the mitral
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valve, controls the blood flow between the left atrium and the left ventricle as a one-

way valve. The opening and closing dynamics of the mitral valve is governed by the

blood pressure gradient and the complex force balance between the annulus, leaflet,

atrium, and chordae tendineae [7]. Any malfunction of the mitral valve can lead to a

cardiac trauma and can affect the heart ability to pump properly. Mitral regurgitation

(MR) is a disorder in which blood flows back into the left atrium instead of being

pumped into the body. Conventionally, open-heart surgery is the choice of treatment

of MR, in which the surgeon uses tactile perception in the patient’s body.

Following multiple meetings and brainstorming sessions, a novel concept for the

repair of mitral valve regurgitation was reached by an expert team from McGill and

Concordia Universities. This team included a leading heart surgeon from McGill

University (Dr. Renzo Cecere), three members of the faculty of engineering at McGill

University, and a faculty member from the department of mechanical and industrial

engineering at Concordia University. The proposed idea was to install interrelated

anchors around the mitral annulus by using a computer-controlled catheter; and then

to tighten the connecting element of the anchors to reduce the size of annulus [8,

9]. Although the computer-controlled catheter is equipped with different mapping

systems such as 3D ultrasound imaging systems, the exact recognition of the mitral

valve annulus from surrounding tissues is nearly impossible without having tactile

feedback from inside the heart [10]. Consequently, to localize the mitral annulus, it
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would be advantageous to have resources to intelligent tactile sensing with a display

during the operation. Mitral annulus is differentiable from the surrounding tissues,

the leaflet and the atrium, because of its differences in geometry and hardness. The

mitral annulus has a hinge point situation between the atrium at the top and the

leaflet at the bottom. Both the leaflet and the atrium are softer than the annulus.

The position of the mitral valve in a veal heart is shown in Fig. 1.1. The mitral valve

of a veal heart is quite similar to the mitral valve of a human heart.

The annulus can be distinguished from the adjacent tissues, which are relatively

softer, if an appropriate tactile sensor existed. Figure 1.2 shows a schematic view of

the proposed MR surgery using a computer-controlled catheter. Several experiments

have been conducted to prove the proposed technique, manually on ex-vivo veal and

porcine hearts. Experiments have shown the validity of the overall idea. Figure 1.3

shows the experiment results, which indicate that the size of the mitral valve is

reduced by installing anchors and tightening the connecting wire.

As shown in Fig. 1.2, the surgical catheter touches the heart tissue to perform

surgery. Furthermore, the tactile sensor can differentiate different kinds of tissue by

touching them. Understanding tool-tissue interaction is required to provide tactile

and haptic feedback to the surgeon [11]; Hence, the contact mechanic between the

tactile sensor and the tissue needs to be studied and modelled, appropriately. In the

thesis, the contact interaction between the sensor and heart tissue is discussed and



6

Leaflet

AtriumAnnulus

(a)

Leaflet

Annulus

(Hinge zone)

Atrium

(b)

Figure 1.1: (a) The top view of the mitral valve: it consists of three main tissues, i.e.,
Annulus, Atrium, and Leaflet. The black line shows the annulus perimeter. (b) The
cross section of mitral valve: the cross section of mitral valve shows that the atrium is
surrounding the annulus ring from the top, and Leaflet is hanging from the annulus.



7

explained. The tissue is considered to be viscoelastic; and a viscoelastic contact model

was developed parametrically for the tool-tissue interaction. Section 1.0.3 discusses

the available contact models for surgical tools including the need for developing a

parametric model. The developed model for viscoelastic contact can also be also used

in surgical simulators to show the behaviour of soft tissues in contact with surgical

catheters.

Figure 1.2: Schematic view of the proposed surgery technique

Since tissues show viscoelastic behaviour, the strain rate can also affect the stress-

strain behaviour of tissues. This effect is more amplified when having several tissues

with similar softness/hardness degrees. In other words, the softness/hardness per-

ception for tissues can be changed without considering strain rate effect. Hence, the

idea for the strain rate measurement during tactile sensing is proposed for the first

time; and the idea is implemented in a new design of array tactile sensor. Available

array sensors are discussed in Section 1.0.4.
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Generally, the research on the tactile sensing side includes: (1) modeling of piezore-

sistive sensing element to use it as the force sensing element; (2) developing a new

tactile sensor for MIS and CBT; (3) modeling the interaction of the sensor with atrial

tissue during mitral annuloplasty repair surgery; and (4) developing a new array

tactile sensor for tissues with viscoelastic behaviour.

The second part of the thesis is aimed at developing a three-dimensional tactile

display that provides palpation capability to any surgeon performing robotic assisted

MIS. In the literature, some research works were conducted to develop new techniques

for finding hidden anatomical features during surgical operations [12, 13]. Surgeons

in the course of open surgery commonly detect masses or stiffened tissues. Various

diseases change the composition and consistency of biological tissues [14]. Tissue

surrounding malignant tumours, for example, is generally softer than the tumours.

Therefore, surgeons need to detect and precisely identify the location and size of

all growths, whether cancerous or benign, that are present within surrounding tis-

sue in order to assess the extent and nature of any future treatment plan. In the

developed tactile display system, data is collected from two force/pressure matrices

and processed with a new algorithm and graphically rendered. Consequently, the

surgeon can determine the presence, location, and the size of any hidden superficial

tumour/artery by grasping the target tissue in a quasi-dynamic way. Section 1.0.5

discusses the literature on available graphical display systems for MIS.
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Figure 1.3: Reducing the mitral valve size of a porcine heart manually, for the proof
of the proposed technique
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1.0.1 Piezoresistive Sensing

The recent literature on modeling of semiconductive polymer composites are dis-

cussed in this section. Semiconductive polymer composites are used in a wide range

of sensors and measurement devices, since early 1990s [15–22]. Recently, Nicola et al.

proposed a biomimetic-fabric-based sensing glove, which is used for monitoring hand

posture and gesture. They used a network of piezoresistive force sensors based on

semiconductive polymer composites [23]. In another research work, Kawasaki et al.

used distributed tactile sensors with 624 detecting points as the sensing element of a

robot hand, named Gifu II [24]. Their distributed tactile sensor consists of a matrix

of piezoresistive force sensors with semiconductive polymer composite elements. At

the National Taiwan University, another similar robotic hand (the NTU hand) was

developed by Lin and Huang who used the same type of sensors for robotic tactile

perception [25]. Semiconductive polymer composites are suitable for use as pressure

distribution sensors because of their simple structure in different applications [26,27].

Semiconductive polymer composites exhibit change in electrical resistivity caused by

change in the force applied to their structure. Semiconductive polymer composites

consist of impregnated nanoscale conductor particles inside the structure of a non-

conductive material. The microstructure of conductor-filled polymer composites can

be classified among the random whisker composites [28]. This is due to the fact that

the conductive particles or fillers are randomly dispersed inside the structure of a
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nonconductive matrix. The change of electrical resistance in semiconductive polymer

composites occurs while changing the distance between conductor particles inside

the matrix [29]. Wang et al. proposed a mathematical model for piezoresistivity of

carbon-black-filled silicone rubber based on differences in carbon black contents [30].

They proposed a model of a piezoresistivity curve, which varies with different carbon

black contents based on a shell model and tunneling current. Xie et al. [31] proposed

a model for carbon-black-filled polymers under elongations. Hall et al. [32] proposed

a calibration method for eliminating drift in force-sensing resistors (FSRs). In their

proposed method, the drift of a force sensor was compensated by signal conditioning.

However, they did not provide the theoretical basis for the drift of FSRs. Zhang

et al. [33] proposed a model for predicting time dependency and piezoresistivity of

conductor-filled polymer composites using interparticle separation change under ap-

plied pressure. Their developed piezoresistance model, however, does not take into

account contact resistance. In addition, their proposed method for modeling creep is

not suitable for polymer composites with viscoelastic behavior. In this work, a para-

metric model for semiconductive polymer composites is developed. Since polymeric

materials have viscoelastic behaviour, they show creep as a result of application of

pressure to their structure. The creep behaviour of semiconductive polymer compos-

ites is modelled and included in the general developed model. Further, the electrical
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contact of the semiconductive polymer with electrodes are also developed and con-

sidered in the model. More details of the model is available in Chapter 2.

1.0.2 Tactile Sensing for CBT and MIS

The state of the art tactile sensors are elaborated in this section. Here, the main

focus is the application of the tactile sensor for treatment of MR with CBT.

Nowadays, surgeons cannot use MIS or CBT with tactile feedback to perform

mitral valve annuloplasty surgery, which is a common treatment of choice for MR [34].

In such surgical operation, surgeons must characterize three different types of cardiac

tissues available at the site of operation. These tissues are mitral valve annulus,

mitral valve leaflet, and atrium. The aim is to localize the annulus and perform

the annuloplasty surgery, as is done in open surgery in which, surgeons use their

visual and tactile perceptions to characterize these tissues. However, during CBT,

surgeons suffer from a near total loss of visual perception and a total loss of tactile

perception. Consequently, one solution would be to integrate tactile sensors with

the tips of surgical tools, such as catheters, to mimic the tactile perception of the

fingertips of surgeons by providing tactile feedback from the tool-tissue interaction.

Recently, several tactile sensors have been reported for use in MIS [35, 36]. More

specifically, among such sensors, some designs have been proposed for use in CBT [37–

39]. However, these sensors mainly measure only the contact force interacting between



13

surgical tools and tissues, and they cannot measure the relative hardness of contact

tissues. For instance, an optical fiber-based sensor has been proposed to measure

only the contact force interaction between catheters and the heart tissues without

rendering any tactile information such as hardness [37]. Howe et al. has proposed a

sensor to accurately measure the contact forces for use in beating heart intracardiac

surgery [38,40]. More recently, in 2010, Polygerinos et al. [39] provided an overview of

available sensors for use in cardiac catheterization procedures. All of these sensors are

either a pressure or a force sensor that can only measure the contact forces between

blood vessel walls and the catheter tip. The proposed tactile sensor in the present

thesis is capable of measuring both the contact force and the relative hardness, which

is required for mitral valve repair via CBT.

Generally, providing the force and tactile feedback is useful for both cardiac sur-

geons, who use CBT, and any other surgeon, who conducts MIS or MIRS. In fact, such

artificial feedback enhances the performance of MIS and MIRS by helping the sur-

geons to characterize the contact tissues, and also to investigate the hidden anatomical

structures of tissues. For such purposes, a wide range of force and tactile sensors have

been introduced. For instance, king et al. have integrated a force feedback system

with the da Vinci surgical robot [35, 41]. In their proposed system, a commercially

available FlexiForce sensor and a pneumatic physical force display have been used to

investigate the effects of only force feedback on grasping performance during MIRS.
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The commercial force sensor used in their work can measure only the contact force.

Other sensors have been proposed to measure both the contact force and the dis-

tributed tactile information. Nevertheless, these sensors have been designed to be

integrated with MIS and MIRS tools or surgical catheters. For example, Omata et

al. [6] developed a tactile sensor that was able to detect the hardness/softness of

an object impressed upon it. The principle behind the sensor is that the resonance

frequency of a piezoelectric element would change if the element comes into contact

with an object. In addition, measuring the stiffness of the tissue can provide use-

ful information for tumour characterization [42–45]. As an example, Sokhanvar et

al. [46,47] proposed a tactile sensor for tissue characterization in MIS. However, their

proposed sensor, which is a piezoelectric-based one, can perform only under dynamic

loading conditions. This inadequacy of their sensor can be improved by using a sens-

ing element that can perform under both static and dynamic loading conditions. In

addition, recently proposed force and tactile sensors for providing tactile feedback

in MIS and MIRS have been discussed by Puangmali et al. [36], and Schostek et

al. [48], respectively. Their reviews confirm that there is a need to develop robust

tactile sensors for tissue characterization in MIS especially in CBT.

A various number of these recently proposed sensors consist of moving parts, which

might negatively affect the reliability of such sensors. The moving parts of the sensors

tend to break in the case of any accidental misuse during operations, including the
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application of excessive force to the sensor. Consequently, the development of a tactile

sensor without having moving parts will address a lot of challenges involved in CBT.

Further, such a tactile sensor must perform under both static and dynamic loading

conditions similar to the tactile perception of the fingertips of surgeons. Chapter 3

discusses the details for the design, fabrication, test, and analysis of the developed

tactile sensor that can address most of available mentioned problems.

1.0.3 Tool-tissue Modeling and Interaction

As mentioned before, treating MR with CBT technique is of particular interest.

Therefore, understanding tool-tissue interaction is required to provide tactile and

haptic feedback to the surgeon [11]; for example, to treat MR via CBT, the interaction

of surgical device and heart tissue should be investigated [49]. Therefore, a contact

model between tactile sensor and tissue becomes a key factor for the optimum design

of surgical instruments and tactile sensors [50]. To develop the contact model, tissue

behaviour should be investigated, first.

The knowledge of tissue behaviour has many applications in different areas, such as

surgical simulations and haptic feedback in Robotic-assisted Surgeries (RAS) [51,52].

Researchers have long been aware that soft tissues exhibit viscoelastic behaviour [53].

Lumped-parameter models are often used for the modeling of tissue by virtue of

their simplicity and fast response with relatively realistic deformation replication
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[54,55]. For example, three- and four-parameter constitutive models are widely used

to represent the viscoelastic behaviour of different kinds of soft tissue [56, 57].

To model the interaction of the sensor with heart, atrial tissue of heart was mod-

elled first, by using the concept of generalized Kelvin model, which gives a good

representation of tissue behaviour. Hence, a generalized Kelvin model with 17 pa-

rameters was used in this work to model the atrial tissue of a porcine heart, as

the three-parameter model cannot accurately represent the atrial tissue behaviour.

In vitro experiments were also conducted on the atrial tissue of a porcine heart by

means of dynamic mechanical analysis (DMA) to characterize tissue properties. A

genetic algorithm was used to find the constants of the viscoelastic model, which is

populated with data from DMA tests. Then, the viscoelastic model of the tissue was

embedded in the contact model.

With regards to contact modeling methods, mass-spring and finite element mod-

els are widely adopted for analyzing the tool-tissue interaction in biomechanics. For

example, Nedel et al. used a mass-spring model that can give rise to a natural and

smooth deformation in the simulation of muscle [58]. Another mass-spring mesh

model was used in the analysis of the suturing of small blood vessels [59]. Although

the mass-spring model has some advantages, such as easy construction and low com-

putation demands, it is difficult to express realistic contact properties using this

model. Some researchers have used the finite element analysis (FEA) to have more
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realistic models contact analysis [60]. For example, FEA was used in the contact

modeling of tissue in surgery simulation [61], needle insertion [62], and soft-tissue

cutting model [63]. For articular cartilage and other hydrated tissue, biphasic finite

elements were used by Yang and Spilker [64]. Since the discretization involved in

the FEA framework, the analysis performed on each nodal point of the finite ele-

ment mesh can lead to discontinuity problems [65]. Additionally, FEA involves heavy

computation demands, which do not allow for realtime computations.

For special problems, researchers have derived parametric closed-form solutions

that overcome the above-mentioned disadvantages of mass-spring and models based

on FEA. A mathematical model for frictionless elastic contact was used for joint

articulation [66]. An approximation of a closed-form solution was also obtained for

contact of two biphasic cartilage layers [67]. Recently, a closed-form solution of a

contact problem between subchondral bone and articular cartilage was reported [68].

To the best of our knowledge, there are only limited parametric models available for

contact of viscoelastic tissue with surgical tools that have annular shape, the case for

some surgical catheters and tactile sensors.

Due to the considerable hardness difference between tissue and tactile sensor,

tool-tissue interaction is modelled as a problem of a rigid indentor in contact with

viscoelastic tissue. Similar to elastic contact, two categories exist in the presence of

viscoelastic materials, complete and incomplete contact. Several viscoelastic contact
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models have been developed by researchers for the indentation of viscoelastic mate-

rials [69, 70]. However, most of the models pertain to the indentation of tissue with

conical or spherical indentors for incomplete contact problems [71]. In complete con-

tact, the corresponding principle is mainly used to convert viscoelastic contact into

elastic contact [72]. Chapter 4 discusses the details of the developed contact model

for the interaction of tactile sensor with soft atrial tissue.

1.0.4 Array Tactile Sensor Configuration

The general review of literature for tactile sensor designs and drawbacks inspired

the idea for the development of a new generation of tactile sensors, based on array

sensors. As mentioned earlier, the developed array tactile sensor can measure the

rate of applied force and the rate of applied displacement, in addition to force and

displacement measurement. The measurement of force rate and displacement rate

plays an important role in distinguishing different types of soft tissues with viscoelastic

behaviour. This property can be helpful in robotic hands [73, 74] and in surgical

applications.

Recently, many types of tactile sensors are developed for robotic arms and graspers.

Recently, Dahiya et al. developed a PVDF matrix of tactile sensors for robotic grasp-

ing application [75]. Their developed tactile sensing chip can measure the dynamic
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contact force in robotic application. Aoyagi et al. in a similar research work devel-

oped a matrix of capacitance sensors—embedded in PDMS for flexility—for robotic

application. They used a neural network algorithm to compare the output of different

sensors to estimate the components of the contact force in x, y, and z direction [76].

In another study, Hu et al. developed a piezoresistive array of tactile sensors to

monitor the pressure rate of foot for wearable smart device application. Their sensor

measured the local pressure versus time. In all of these developed tactile sensors,

only the contact force/pressure is measured during the touch; and the sensors fail to

extract any data about the softness of materials being touched.

In a recent two review articles of Dahiya et al. and Tiwana et al., there is lack

of tactile sensors that are suitable for determining the difference between two soft

material, e.g. tissues, with viscoelastic properties [77,78]. Our new developed tactile

sensor is capable of distinguishing the difference between several soft tissues with

viscoelastic behaviour.

The details of the design and the concept of the tactile sensor is explained in

Chapter 5.

1.0.5 Tactile Display

The human hand performs many tasks during surgery, which is hard to reproduce

in robotic surgery. For example, during complex abdominal surgery, the surgeon may
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frequently be required to place his/her hand into the abdominal cavity, which is not

possible during laparoscopic surgery. Although computed tomography (CT) or mag-

netic resonance imaging (MRI) provide surgeons with images from area with tumors,

the surgeon must still actively palpate the tissue to detect and localize tumours. In

addition to locating tumours, it is important that the surgeon be able to detect the

presence of arteries hidden under covering tissue in order to prevent accidental dissec-

tion and internal bleeding [79]. Currently, different methods are used by surgeons to

localize tumours and arteries, but each technique has certain shortcomings and can

often cause confusion necessitating a full thoracotomy. The usual method is to use

a long metal rod inserted through a port to feel the presence of hard nodules within

the soft tissue [80]. For tumours located in deeper areas, this technique is not very

effective so, in order to confirm the existence and location of a tumour, the surgeon

may insert a finger inside the incision to palpate the tissue [80]. In some methods,

before surgery, a marker is inserted near the tumour by using CT guidance [81]. In

recent years, however, researchers have presented new techniques for tumour detec-

tion and localization. Kawahara et al. [82] proposed a method whereby the tissue was

deformed by using air bursts; the extent of the deformation was measured by means of

a laser detection system. Peine [83] developed a tactile display system integrated into

a hand-held surgical probe in which a shape display regenerates the contact pressure

measured by a tactile sensor. Dargahi et al. proposed a laparoscopic tactile sensor
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with piezoelectric softness sensors [84, 85]. Takashima et al. [86] proposed a tactile

sensor in which the relative motion between a transparent window and the end of an

endoscope is measured using image-processing methods. In this work, an advanced

feature is developed that renders the presence of a possible lump/artery in realtime

3D. The developed 3D rendering system is discussed in more detail in Chapter 6.

1.1 Thesis Objective and Scope

To summarize the introduction, the objective of this thesis is to develop tactile

sensor and a feedback system for MIS and MR treatment by MIRS. To this end, the

specific objectives of this thesis is classified in four main categories as below:

1. Modeling the piezoresistive sensing behaviour of force sensing resistors, which

includes:

(a) Review of available models for semi-conductive polymer composites and

their drawbacks

(b) Electrical contact resistance of the force sensor in the developed model

(c) A model for the creep behaviour of Linqstat as the sensing element of force

sensor based on experimental tests

(d) Several tests and experiments on linqstat material, e.g. the results of scan-

ning electron microscopy (SEM) and Thermogravimetric Analysis (TGA)
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(e) A novel parametric model for piezoresistive force sensors

2. Developing a new tactile sensor for MIS and CBT application, which includes:

(a) Review of available tactile sensors for MIS and CBT and their drawbacks

(b) Methods of testing and fabrication

(c) Finite element modeling of the sensor and phantom tissues

(d) A new tactile sensor for MIS and CBT

3. Developing a viscoelastic model for contact interaction of the tactile sensor and

tissue, including:

(a) Review of available techniques for contact modeling

(b) Contact problem definition

(c) Combination-of-harmonics method to solve the contact problem

(d) A viscoelastic model of tissue based on dynamic mechanical analysis and

test experiments

(e) A new parametric model for the viscoelastic contact

4. Developing a new array tactile sensor for distinguishing tissues with viscoelastic

behaviour, including:

(a) Review of available array tactile sensors



23

(b) Tissue-testing experimental setup

(c) New sensing algorithm development

(d) Design and fabrication of the array tactile sensor

5. Developing a 3D graphical tactile display system for visualizing embedded lumps

and arteries during MIS, including:

(a) Review of the available graphical tactile rendering methods

(b) Fabrication and calibration of two piezoresistive force sensor matrix

(c) Development of a 3D lump localization algorithm in LabView

(d) Finite element modeling of different conditions for embedded lumps and

arteries

(e) A new 3D graphical display for MIS

1.2 Contributions of Authors

The present thesis is presented in manuscript-based format in six chapters. The

thesis is composed of four published journal articles, one to be submitted journal

article, and four published conference articles. This thesis is organized and formatted

based on “Thesis Preparation and Thesis Examination Regulations (version-2011) for

Manuscript-based Thesis” of the School of Graduate Studies at Concordia University.
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The motivation of the thesis, literature survey, and thesis objectives and scope

are addressed in Chapter 1. The literature review includes a comprehensive but

brief survey on the piezoresistive sensing, tactile sensing in MIS and CBT, tool-tissue

modeling and interaction, and tactile graphical displays.

Chapter 2 presents a novel parametric model for piezoresistive force sensor based

on the following published journal article in the IEEE/ASME Transaction on Mecha-

tronics [87]:

1. Kalantari, M., Dargahi, J., Kövecses, J., Mardasi, M., and Nuri, S., 2011. “A

new approach for modeling piezoresistive force sensors based on semiconductive

polymer composites”. IEEE/ASME Transactions on Mechatronics, 17(03), pp.

572–581

The contribution of M. Mardasi and S. Nuri was in electrical contact modeling and

viscoelastic modeling of Linqstat.

Chapter 3 presents the novel design of a tactile sensor based on the following

published journal article in the International Journal of Medical Robotics and Com-

puter Assisted Surgery, and two conference papers published in Proceedings of IEEE

Haptics Symposium and Proceedings of IEEE 37th Annual Northeast Bioengineering

Conference [88–90], as below:

1. Kalantari, M., Ramezanifard, M., Ahmadi, R., Dargahi, J., and Kövecses, J.,

2011. “A piezoresistive tactile sensor for relative tissue characterization during
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catheter-based cardiac surgery”. International Journal of Medical Robotics and

Computer Assisted Surgery, 7(4), pp. 431–440

2. Kalantari, M., Ramezanifard, M., Ahmadi, R., Dargahi, J., and Kövecses,

J., 2010. “Design, fabrication, and testing of a piezoresistive hardness sensor

in minimally invasive surgery”. In Proceedings of IEEE Haptics Symposium,

Boston, USA, March 2010, pp. 431–437.

3. Kalantari, M., Shen, J., Dargahi, J., Kövecses, J., and Zadeh, M., 2011. “Lo-

calization of annulus with a tactile sensor”. In 2011 IEEE 37th Annual North-

east Bioengineering Conference (NEBEC), pp. 1–2.

The contribution of M. Ramezanifard, R. Ahmadi and J. Shen was in conducting

experiments.

Chapter 4 presents a parametric model for the viscoelastic contact of the developed

tactile sensor with biological tissues, based on a published journal article in IEEE

Transaction on Biomedical Engineering and a published conference article in 2011

CCToMM Symposium on Mechanisms, Machines, and Mechatronics [91,92] as below:

1. Shen, J., Kalantari, M., Kövecses, J., Angeles, J., and Dargahi, J., 2011.

“Viscoelastic modeling of the contact interaction between a tactile sensor and

atrial tissue”. IEEE Transactions on Biomedical Engineering, 59(6), pp. 1727–

1738
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2. Shen, J., Kalantari, M., Kövecses, J., Angeles, J., and Dargahi, J., 2011.

“Measuring the properties of heart tissue with dynamic mechanical analysis

method”. In Proceedings of the 2011 CCToMM Symposium on Mechanisms,

Machines, and Mechatronics (2011 CCToMM M3), Montral, Qubec, Canada.

The contribution of J. Shen was in the contact modeling part of the paper.

Chapter 5 presents a novel array tactile sensor design based on piezoresistive

sensing elements for soft tissue. The new idea of displacement rate measurement

is introduced by this array sensor. This chapter is to be submitted to as a journal

article.

1. Kalantari, M., Dargahi, and J., and Kövecses, J., “A novel array tactile sensor

for hardness measurement of viscoelastic tissue”. To be submitted

Chapter 6 presents a new 3D graphical tactile display for MIS based on a published

journal article in the ASME Journal of Medical Devices, and a published conference

article in the proceedings of ASMEs 2010 Frontiers in Biomedical Devices Confer-

ence [93, 94], as below:

1. Kalantari, M., Ramezanifard, M., Dargahi, J., and Kövecses, J., 2011. “3D

graphical rendering of localized lumps and arteries for robotic assisted MIS”.

Journal of Medical Devices, 5(2), p. 021002.

2. Kalantari, M., Ramezanifard, M., Ahmadi, R., Kövecses, J., and Dargahi, J.,
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2010. “2D lump/artery detection by using piezoresistive force sensors”. In

ASMEs 2010 5th Frontiers in Biomedical Devices Conference & Exhibition,

ASME Press.

The contribution of M. Ramezanifard was the LabView code development, and

the contribution of R. Ahmadi was in conducting experiments.

Chapter 7 presents a comprehensive conclusion for all of the chapters, contribu-

tions, and suggested future works.



Chapter 2

Modeling Piezoresistive Force

Sensors Based on Semiconductive

Polymer Composites

This chapter discusses the development of a model and a new theoretical formu-

lation for predicting piezoresistive behavior in semiconductive polymer composites.

In addition, the contact resistance is considered between the electrodes and polymer

composites in the formulation. The relationship between electrical resistance and

force applied to the piezoresistive force sensor can be predicted by using the proposed

theoretical formulation. In order to verify the proposed formulation, the piezoresis-

tive behavior of Linqstat, a carbon-filled polyethylene, was modeled mathematically.

28
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Further, some experimental tests, such as thermo gravitational analysis and Scanning

electron microscope (SEM), have been performed on Linqstat to find the volume frac-

tion and size of carbon particles, which are essential for modeling. On a fabricated

force sensor using Linqstat, a force-resistance curve was obtained experimentally,

which verified the validity and reliability of the proposed formulation.

Semiconductive polymer-composite force sensors show drift in their output. The

reason for drift in such force sensors could be due to the creep behavior of the semi-

conductive polymer composite used as the sensing element. If a polymer composite

such as Linqstat (a patented name) is subjected to a constant force, it exhibits creep

behavior, which causes the drift in the output of the force sensor [33]. In order

to include the drift of the force sensor in the formulation, a viscoelastic model is

used to represent semiconductive polymer composites based on their creep behavior.

Hence, the strain rate of semiconductive polymer composites is formulated and used

in the proposed formulation. To verify the validity of the proposed formulation, an

experimental setup was prepared and various tests were performed. Linqstat, as an

industrial semiconductive polymer composite, was selected to be tested. Further-

more, an accurate force sensor, made from Linqstat material, was developed and

calibrated. The force-resistance curve of the sensor was determined and compared

with the proposed formulation. In addition, a creep test was conducted on Linqstat

and the results were compared to the model predictions.
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2.1 Development of the Proposed Formulation

2.1.1 Review of Related Formulation

In semiconductive polymer composites, the matrix is selected from nonconductive

polymers, while the filler is selected from conductive materials. By subjecting the

polymer composite to compressive stress, the filler particles inside the matrix start

to display micro-Brownian motion [30]. The fillers move closer to each other because

of the strain in the matrix, which causes a change in the electrical resistance of the

polymer composite. There are two main types of resistances that cause a change in

resistivity within the composite, namely, constriction resistance and tunneling resis-

tance. It was shown [29] that the total resistance of the polymer composites can be

given as

R =
(L− 1)Rm + LRc

S
(2.1.1)

where Rm is the resistance between two adjacent filler particles, Rc is the resistance

across a single filler particle, L is the number of particles forming one conductive

path, and S is the total number of effective conduction paths. The tunneling current

would flow through a gap between adjacent particles [95]. The tunneling current at

low applied voltages [96] can be written as:

J =
3
√
2mϕ

2s

( q

h

)2

V e−(
4πs
h

√
2mϕ) (2.1.2)
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where q and m are electron charge and mass respectively, ϕ is the height of the

potential barrier between two adjacent filler particles, h is Plank’s constant, V is

the applied voltage, and s is the thickness of the insulating film. The height of the

potential barrier can be extracted from the work function of the polymer. The ϕ

between adjacent particles in a composite can be calculated by subtraction of the

polymer (matrix) work function from the filler work function. In this current project,

carbon black and polyethylene is used as the filler and matrix, respectively. Therefore,

the required potential height of carbon black and polyethylene is considered as 0.05

(eV) [97]. The tunneling resistivity is proportional to area a2 [33] of the contact

between two filler particles,

Rm =
V

a2J
=

8πs

3a2γq2
eγs (2.1.3)

where J is the tunneling current, and

γ =
4π

h

√

2mϕ (2.1.4)

By putting Rm in eq.(2.1.1), and equating L− 1 ∼ L, [33] the total resistance can be

introduced as

R =
L

S

[
8πs

3a2γq2
eγs
]

+
L

S
Rc (2.1.5)

In this current research work, carbon black is selected to be the filler particle inside

the matrix. The matrix is selected to be a nonconductive material with high resis-

tance. Therefore, the resistance of carbon black, Rc, which is highly conductive can
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be considered negligible. So, L
S
Rc in the above equation is omitted for the coming

derivations. By dividing the actual resistance with the initial resistance [33], the

following formula is obtained.

R

R0
=

s

s0
e−γ(s0−s) (2.1.6)

where R0 is the initial resistance of the composite, and s0 is the initial distance be-

tween two adjacent filler particles. As a result of application of stress to the composite,

it is also assumed that only the polymer (matrix) would carry the load. The defor-

mation of the filler particles is in the range of a few nanometers, which is negligible in

comparison with that of the matrix. The inter-particle separation distance [33] can

be simply shown as

s = s0 (1− ε) (2.1.7)

where ε is the strain of the polymer matrix which could be considered time dependent.

Wu [98] showed that the inter-particle separation between two spherical fillers can be

calculated from the following relation

s0 = D

[(
π

6φ

)1/3

− 1

]

(2.1.8)

where D is the filler particle diameter, and φ is the volume fraction of filler particles.

By substituting eqs.(2.1.7) and (2.1.8) into eq.(2.1.6), similar to that shown in [33],

it can be written that

R

R0
= (1− ε) e

−γDε

[

( π
6φ)

1/3
−1

]

(2.1.9)
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As mentioned earlier, R0 is the initial resistance of the polymer composite which can

be measured by precise measurement techniques.

2.1.2 Working Principle of a Piezoresistive Force Sensor

In a typical force sensor that uses polymer composites, a thin layer of the polymer

composite is sandwiched between two layers of electrode. The electrodes are then

covered with two layers of polyester films. Figure 2.1a shows the schematic view of

the components of such a sensor.

When a compressive force is applied to the surface of the force sensor, its resistance

drops due to a decrease in the resistance of the piezoresistive polymer, and also

due to a slight decrease in the contact resistance between the conductors and the

piezoresistive polymer. In other words, applying force causes a decrease in distance

between filler particles inside the matrix, and an increase in the number of conductive

paths which leads to a decrease in the resistance of polymer composites. Because there

is no adhesive between the electrodes and the polymer in the fabrication process, when

force is applied air between the electrode and polymer would leave from the air vent in

the tail of the sensor. This results in a sudden decrease in contact resistance between

the electrodes and the polymer composite. As shown schematically in Fig. 2.2, the

average distance between conductor particles would decrease by applying force to the

sensor.
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Figure 2.1: (a) View of the fabricated force sensor using Linqstat and its components
(b) The schematic view of current flow geometry
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Figure 2.2: Schematic view of the piezoresistive force sensor based on semiconductive
polymer composites materials. The figure shows the working principle of the sensor.
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2.1.3 Contact Resistance

In order to obtain an accurate reading of the force sensor output, the contact

resistance between electrodes and the polymer composite was taken into account. It

has been shown that the effective contact area between two adjacent members is only

a small fraction of the apparent macroscopic area of contact [99]. Looking at the

contact interface on a microscopic scale, the roughness of surfaces would be evident.

Therefore, the electrical contact would take place on both separable mating surfaces

through asperities, or a-spots [100]. In the present work, it is assumed that there

is no film resistance caused by thin oxide layers on the contact surfaces since the

polymer, polyethylene, does not oxide in the room temperature. Therefore, based on

this assumption total resistance of the force sensor which is read by a measurement

system attached to the sensor can be written as

Rtotal = 2RCon +RPol (2.1.10)

where Rtotal is the total resistance of the sensor, RCon is the contact resistance between

each electrode and polymer composite, and RPol is the resistance of the polymer com-

posite which is to be determined. Figure 2.1b shows the schematic view of the total

electrical resistance of the sensor. By using the Holm and Greenwood formula [101],

the contact resistance can be written as

RCon =
ρ1 + ρ2
4na

(2.1.11)
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where ρ1 and ρ2 are the electrical resistivity of the two materials in contact, a is

the radius of a-spot, and n is the number of a-spots. The number and the radius of

a-spots increase when force is applied to the contact surfaces. Figure 2.3 shows the

change in the number of electrical contacts and the change of the interface of two

adjacent members upon applying force. All of the a-spots can be assumed as having

a)a)

Upper 

Surface

Lower

Surface

Electrical Contact

(a)

F

b)b)

Electrical Contact

(b)

Figure 2.3: The schematic view of current path through contact (a) unloaded contact
area (b) loaded contact area

an effective contact area which is affected by the applied force [102]. An increase in

this applied force results in a larger effective area. From Fig. 2.3, it can be seen that

when force is applied, there still exists some area between the two surfaces which are
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not in contact, known as ineffective regions. The effective area could be written as

the summation of all a-spots. Holm [99] presented a formula about contact resistance

between different members with contact forces of 0 to 100N as

RCon =
ρ1 + ρ2

4

√

πH

F
(2.1.12)

where ρ1 and ρ2 are the electrical resistivity of the two materials, F is the applied

force, and H is the Meyer hardness of the softer member.

2.1.4 Resistance of Semiconductive Polymer Composite by

Considering Contact Resistance

The equivalent resistance of a piezoresistive sensor can be derived using the for-

mulation presented in the previous sections. The following shows the total change

in resistance of a semiconductive polymer composite caused by applied load. By

substituting eqs.(2.1.9) and (2.1.12) into eq.(2.1.10), we can write

Rtotal = 2RCon +RPol =
ρ1 + ρ2

2

√

πH

F
+R0 (1− ε) e

−γDε

[

( π
6φ)

1/3
−1

]

(2.1.13)

RCon =
ρ1 + ρ2

4

√

πH

F

RPol = R0 (1− ε) e
−γDε

[

( π
6φ)

1/3
−1

]

γ =
4π

h

√

2mϕ
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Volume fraction of carbon particles 0.2873
Diameter of carbon particles (nm) 500

Thickness of Linqstat (mm) 0.2
Resistivity of Linqstat (Ω·cm) 500

Hardness (Meyer) 52
Active area of the force sensor (mm × mm) 15×15
Resistivity of Copper electrodes (Ω·cm) 0

Table 2.1: Some of mechanical and electrical properties of Linqstat

where ρ1 and ρ2 are the electrical resistivity of two materials in contact , H is the

Meyer hardness of the softer member, F is the applied force, R0 is the initial resistance

of the semiconductive polymer composite, ε is the strain, D is the filler particle

diameter, φ is the volume fraction of the filler particles, h is Plank’s constant, m is

electron mass, and ϕ is the height of the potential barrier between two adjacent filler

particles. The measured parameters are listed in Table 2.1.

2.1.5 Modeling Creep Behavior

After reviewing the total resistance results from eq.(2.1.13), it is clear that the

total resistance of the sensor is a function of the material properties of the semicon-

ductive polymer composite, the applied force, and the induced strain. The strain in

eq.(2.1.13) is considered constant for constant forces. However, in a real situation,

the strain changes slightly with time while having a constant force on the material.

In other words for a constant force, the strain is not constant due to the creep, and
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changes with time. The reason is that when a constant force is applied, semicon-

ductive polymer composites show creep behavior due to the viscoelastic properties

inherent within all polymers. The creep of the polymer composites appears as drift in

the force sensor output. Therefore, by applying a constant force to the force sensor,

the resistivity decreases with time. For the prediction of creep behavior in semicon-

ductive polymer composites a model is developed based on spring-damper elements.

Polymers behave as an elastic solid in some instances, and as a viscous fluid in other

cases; they can generally be considered using viscoelastic material models [103]. A

single Maxwell or a single Kelvin-Voigt element cannot represent the transient and

instantaneous response of polymers accurately. Hence, using a combination of the

two elements is recommended [104–107]. The strain in a creep test of semiconductive

polymer composites, such as Linqstat which is used when fabricating a force sensor,

tends towards a constant value after a longer period of time. In fact, the impregnated

carbon particles inside the polyethylene matrix, which is a thermoplastic polymer,

change the mechanical properties of the composite similar to those of thermosets.

These results were obtained after several accurate creep tests on Linqstat using a

BOSE ELECTROFORCE 3200 device. Therefore, a standard linear solid model with

three-parameters, shown in Fig. 2.4a, is used for modeling the creep in semiconductive

polymer composites such as Linqstat. In fact the creep curves of both the Linqstat

and standard linear solid model are very similar to each other, due to the fact that
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the strain in both of them tends toward a constant value with time. Since the creep

behaviour of the Linqstat is being modeled, the standard linear solid model becomes

the best fit for this purpose. Figure 2.4a illustrates the selected lumped-parameter

model and the creep curve for the standard linear solid model as well. The consti-
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DAQ
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Figure 2.4: (a) Three parameters solid model and the creep behavior of it (b) The
electric circuit of a single force sensor connected

tutive equation of the standard linear solid model, governing the behaviour of the
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element, is written as [103]

σ +
µ1

E0 + E1
σ̇ =

E0E1

E0 + E1
ε+

µ1E0

E0 + E1
ε̇ (2.1.14)

where ε is the induced strain, σ is the applied stress, is the strain rate, is the stress

rate, E0 and E1 are elastic modulus of the springs, and µ1 is viscosity of the damper

element as shown in Fig. 2.4a. In this work only the compressive stress component

is of interest which is normal to the plane of the sensor as shown in Fig. 2.4a. Thus,

other stress and strain components would not be taken into consideration and the

main stress or force component would be in the z direction. To find E0, E1, and µ1,

the creep test conditions are applied to the constitutive eq.(2.1.14). The equation can

then be solved and the coefficients determined according to experimental data. In a

creep test, a constant stress is applied to the sample and maintained for the duration

of the test. Therefore, the stress is constant and the stress rate is zero. So by inserting

these two conditions into eq.(2.1.14), the constitutive equation is changed to a first

order differential equation of strain. By solving the first order differential equation

and by converting the stress to the corresponding force element [103], the induced

strain as a function of time is written as

ε(t) =
F

AE0

+
F

AE1

(

1− e
− µ1

E1
t
)

(2.1.15)

where ε(t) is the induced strain, and A is the corresponding area of the force sensor,

F is the applied force, E0 and E1 are elastic modulus of the springs, µ1 is viscosity of
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the damper element, and t is the time. The stress is converted to force in eq.(2.1.15).

The coefficients E0, E1, and µ1 are then determined experimentally and are calculated

from the creep curve of semiconductive polymer composites.

2.1.6 Modeling of the Total Resistance

By considering time dependency of strain, eq.(2.1.15) could be substituted into

eq.(2.1.9) resulting in a new time dependent expression for the resistance of polymer.

In this expression, the creep behaviour is modeled and included in the formulation as

discussed before. The new formula for the resistance of polymer, including the creep

effect could be written as

RPol∗ = R0

[

1−
(

F

AE0
+

F

AE1
(1− e

− µ1
E1

t
)

)]

e
−γS0

[

F
AE0

+ F
AE1

(

1−e
−

µ1
E1

t
)]

(2.1.16)

where S0 can be found from eq.(2.1.8), and γ can be found from eq.(2.1.4). Therefore,

the final relationship between the resistance of a semiconductive polymer composite

and the applied force taking into account the effects of contact and creep can be

written as

Rtotal∗ = 2RCon +RPol∗ =

=
ρ1 + ρ2

2

√

πH

F
+R0

[

1−
(

F

AE0

+
F

AE1

(1− ee
−

µ1
E1

t

)

)]

e
−γS0

[

F
AE0

+ F
AE1

(

1−e
−

µ1
E1

t
)]

(2.1.17)
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2.2 Experiments

2.2.1 Experimental Setup

In order to verify the validity of the proposed formulation, creep tests were per-

formed on Linqstat from which, a force sensor was subsequently fabricated with the

intention of its being used. The fabricated force sensor is intended to be used as

an element of a force sensor array in minimally invasive surgery applications. The

resolution of the fabricated force sensor is 0.1 N. The formulation proposed above can

be used to optimize the sensor by eliminating drift and obtaining a better output.

The fabricated force sensor, as shown in Fig. 2.1a, has one input/output port. The

sensor must be fed by a constant DC voltage supply. The input voltage to the sensor

was set to 5V. The sensor was then connected to a buffer circuit which, in turn, was

connected to a PC via a Data Acquisition (DAQ) board. The buffer circuit was used

to reduce the loading effect of the force sensor on the DAQ amplifiers. Consequently,

the cross talk between the different input channels of the DAQ system was minimized.

To relate the force sensor output, measuring DC voltage, to the sensed force, a cal-

ibration procedure was implemented. Experimental data showed that the force (F )

applied to the sensor has a linear relationship with the conductance (C), Fig. 2.5b

shows the force and conductance relationship in which C = mF +n , where m and n

are constants [89]. The circuit in Fig. 2.4b was used to find the relationship between
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conductance and force. In order to apply accurate normal forces to the piezoresistive

force sensors during calibration, an ELECTROFORCE 3200 BOSE device was used

to apply a normal force to the sensor plane. As shown in Fig. 2.4b, a simple formula

can be obtained [89] for the input-output voltage relationship as

Vo =
R

R + r
V + ⇒ C =

1

r
=

1

(V
+

Vo
− 1)R

C=mF+n−−−−−−→
Substitute

F =
1

(V
+

Vo
− 1)R.m

− n

m
(2.2.1)

where F is the force, C is the conductance, R is the resistance, and m and n are

constants. The LabView program measures Vo for the known force applied to the

sensor. Therefore, by knowing the input voltage V +, and the connected resistance R,

and by reading F and Vo from the Bose device and the LabView software, the two

unknowns m and n can be found with a simple curve fitting as shown in Fig. 2.5.

The force sensor was calibrated in the range of 0 to 5N which is sufficient for the

intended applications. Moreover, the creep test for the sensor is also performed in

this same range. Figure 2.5a shows the curve of the output of the force sensor for

different applied loads. The output of the force sensor was gathered one second after

application of the force at each step of the experimentation.
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2.3 Tests and Discussions

As mentioned earlier, several creep tests were performed on four standard samples

using the ELECTROFORCE 3200 BOSE device. Figure 2.6a shows the results for

the creep tests. By using creep data, the viscoelastic coefficients in eq.(2.1.15), E0,

E1, and µ1 were determined for 2, 4, 6, and 8 N, respectively.

Finally, three lines were fitted to each set of coefficients using the least square

method. Figure 2.6b shows the extracted coefficients from creep data, and fitted lines

to each set of coefficients. By substituting the three expressions in eq.(2.1.14), the

final relation between force and resistance can be extracted for Linqstat as

Rtotal =
ρ1 + ρ2

2

√

πH

F
+

(

R0(
F

A
(
e(−

(449900F+397700)t
1208200F + 2892800 ) − 1

449900F + 397700
− 1

60900F + 651200
) + 1)

)

× e
−F

A





γS0
60900F+651200

+ 1−e
(− t(449900F+397700)

1208200F+2892800 )
449900F+397700





(2.3.1)

From this formulation, the curve for the change of resistance based on applied force

can be calculated for Linqstat, eq.(2.3.1). Various properties such as volume fraction

and size of impregnated carbon particles, hardness of the polymer composite, and the

resistivity of the polymer composites are all required parameters for this formulation.

These required data were determined using different tests. Thermogravimetric Anal-

ysis (TGA) was performed on Linqstat samples in order to find the volume fraction

of carbon particles in the polymer. A specimen was cut from a Velostat sheet and
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Figure 2.6: (a) Creep test result of Linqstat samples (b) Viscoelastic coefficients for
Linqstat using creep data
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was placed inside a platinum pan of the TGA device. The sample weight of Linqstat

was 21.1580mg. The test range was from 25◦C to 1000◦C with a 20◦C/min increase

in the heating rate. In some methods of thermogravimetric analysis, nitrogen gas is

introduced as a purge between the temperature range of 25◦C to 650◦C, and then the

nitrogen is switched to air from 650◦C to 1000◦C which results in complete oxidation

of residual carbon [108]. In this case, almost no ash remains at the end. However,

in the current TGA analysis, nitrogen gas was only introduced to the sample in or-

der to preserve the residual carbon, so that it could be used later as a sample for

Scanning Electron Microscopy to determine the size of the carbon particles. The

result showed that Linqstat contained 19.89% of carbon, and 80.11% of polyethylene

with additives. So, the weight of carbon particles inside the composite was equal

to 4.2083mg, and the weight of the matrix, polyethylene, was 16.9496mg. By con-

sidering the mass density of polyethylene as an amorphous structure having a mass

density of 0.910gr/cm3 , which is suitable for low density polyethylene, the volume of

polyethylene was 0.0186cm3 . Also, by considering the mass density of carbon black

as 0.56gr/cm3, the volume of carbon was calculated as 0.0075cm3. So, the volume

fraction of the carbon inside the Linqstat was φ = 0.2873, which can be placed in

eq.(2.1.8).

The size of impregnated filler particles inside the nonconductive polymer is another

important parameter that had to be taken into account. The size of the carbon
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black used in this present research was measured using Scanning Electron Microscopy

(SEM). A sample of Linqstat was prepared for SEM testing by coating it with gold-

palladium alloy with the thickness of 250nm. Then, the sample was analyzed by

SEM. Figure 2.7 shows the carbon particles inside the sample. Carbon particles are

Figure 2.7: Carbon black particles inside polyethylene matrix (Linqstat)

dispersed inside the polymer like large connected colonies and it was determined that

their diameter is D = 500nm. By having D and φ, the interparticle separation

between two adjacent carbon particles in Linqstat can be determined from eq.(2.1.8).

As mentioned earlier, different devices were used to test the Linqstat and the force

sensor. Figure 2.8 shows three of the main devices used in the current research work.

The first is the ELECTROFORCE 3200 BOSE used for testing the force sensor and

for testing the creep behaviour and is shown in Fig. 2.8a. The second is the TA

Q50 Thermogravimetric Analyzer was used for TGA tests, and is shown in Fig. 2.8b.
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The third is the Hitachi S-4700 scanning electron microscope, used to find the size of

carbon particles inside the Linqstat and as shown in Fig. 2.8c.

The hardness of the Linqstat was also measured by using the Meyer hardness test-

ing procedure. The overall mechanical and electrical properties of Linqstat together

with the dimensions of the fabricated force sensor based on experimented data are

presented in Table 2.1. The output of the sensor was collected one second after the

application of the force during experimentation. So, by plotting the predicted output

of the sensor at t = 1s, and plotting the experimental results for Linqstat it can be

seen that the proposed formulation closely match the sensor response. Figure 2.9a

compares the experimental results and the theoretical results. As can be seen from

Fig. 2.9a, taking into account the contact resistance in the formulation proved to

have a significant effect on the results. The net result was that the experimental data

closely matched the model readings, for low resistance values. The slight difference

between the computed response and experimental data are due to inaccuracies in

the measurement procedures. In addition, another set of experiments was conducted

to verify the improvement in the proposed model due to the inclusion of the creep

behavior of Linqstat as a viscoelastic material. In this test, several constant forces

with different magnitudes were applied to the force sensor. Then, the change in the

resistance of the force sensor over time was recorded for each of the forces to show
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the creep behavior in the sensor output. The gathered data for each force were fi-

nally compared to the theoretical model prediction for that specific force as shown in

Fig. 2.9b.

To include all the comparison results together, the chart was drawn in logarithmic

scale for the resistance. As can be seen from the test results of the comparison in

Fig. 2.9b, the model predictions closely match the experimental results of the test.

The proposed theoretical model contains three variables namely, resistance, force,

and time. The relationship of these three variables is shown in Fig. 2.10 as a three

dimensional surface.

The piezoresistive behaviour of other kind of semiconductive polymer composites,

such as Velostat, can be predicted by the developed model. Linqstat and Velostat have

some differences in the size and the volume fraction of carbon black particles, and in

the type of the nonconductive polymer, resulting in different hardnesses for Velostat

and Linqstat. Hence, the model can be also used for another type of semiconductive

polymer composites by populating the model with appropriate parameters.
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Figure 2.10: Graphical representation of the proposed model.



Chapter 3

A New Tactile Sensor for MIS and

CBT

This chapter discusses the development of an innovative tactile sensor for use in

both MIS and CBT. Two piezoresistive force sensors are used in the structure of the

tactile sensor, which can easily be miniaturized and integrated into surgical catheters.

The tactile sensor is fabricated and tested to characterize different elastomers, as the

phantom of cardiac tissues. Based on a developed finite element analysis (FEA) of

the elastomers, the interaction between the sensor and those materials are modelled

to validate the output of the sensor. The sensor measures the difference of hardness

of soft objects. This capability of the sensor helps surgeons to distinguish different

types of cardiac tissues involved in mitral valve annuloplasty.

55
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Most of tactile sensors in the literature that are developed for MIS cannot be

used in CBT by virtue of their incompatible configuration. However, the developed

tactile sensor has a simple and circular configuration that can be easily integrated on

the tip of surgical catheters with circular shape. The proposed sensor may also be

used in magnetic-resonance-guided environment by changing the piezoresistive force

sensors to piezoelectric force sensors, which can be performed by using Polyvinylidene

Fluoride (PVDF) sheets as the sensing elements [109,110]. However, by using PVDF

material, the sensor can work only under dynamic force condition. The developed

tactile sensor may also be used in some other surgical applications, such as catheter

ablation. Determining tissue contact force has been shown as a determinant factor

for determining lesion size during catheter ablation [37, 111]. Low contact pressure

would cause a long ablation procedure, while the high contact pressure would increase

the risk of tissue perforation [112].

The sensor structure, fabrication and display are described in the first section

of the chapter. In the modeling and analysis section, two elastomers with different

degree of softness are modelled as hyperelastic materials to verify the concept of

the sensor design using FE method. Three different test setup are designed in the

results section to verify the performance of the sensor, which are (1) testing with

durometer; (2) testing with sensor; and (3) psychophysical test. All of the test results

are compared together in the results section. The overall conclusion about the sensor
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is presented in the discussion section.

3.1 Materials and Methods

3.1.1 Description of the sensor

The proposed sensing architecture consists of two circular force sensors with differ-

ent diameters, and one plastic filler plate (Fig. 3.1). The inner and outer diameters

of the latter are identical to the diameters of the smaller and larger force sensors,

respectively, as shown in Fig. 3.1. The smaller force sensor is placed inside the hol-

low part of the filler plate, and over the larger force sensor, which then becomes the

surface in contact with the material. Figure 3.2 shows a schematic view of a section

Filler Plate

Smaller Force Sensor

Larger Force Sensor

Figure 3.1: Schematic view of the sensor and the filler plate

of the tactile sensor in contact with soft material [89]. All forces, applied to the filler

plate along the normal direction are recorded by the larger force sensor. A is the inner

diameter of the filler plate and T1 represents the thickness of the larger force sensor.
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Similarly, T2 and T3 represent the thicknesses of the smaller force sensor and the filler

plate. Therefore, L represents the distance the material needs to be displaced until

touching the smaller sensor, which is L = T3 − T2. The L = 0.8mm in the tactile

sensor; this is found experimentally. The degree of the hardness of the object being

Hollow Space

Tissue

A

Smaller Sensor

T3

T2
T1

Filler Plate

Larger Sensor

L

x
z

Figure 3.2: Section view of the tactile sensor

tested determines the optimal diameter of the hollow part of the filler plate and the

optimal thickness of the filler plate. For instance, the ratio A/L should be larger for

harder materials than for softer materials. If a material is touched by the filler plate,

the force applied by the sensor onto the material is detected by the larger sensor.

However, this output is not taken into account until the smaller sensor begins to send

an output signal. As the surface of the material comes into contact with the filler

plate, the part of the material touching the plate becomes constrained. Then, as force

is progressively applied to the material, the material starts to penetrate the hollow

center of the filler plate, finally reaching the smaller sensor inside. At this point, this

smaller sensor begins to send an output signal. At the moment of contact between the
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smaller sensor and the material, the output of the larger force sensor shows the force

required for a given displacement L of that specific material. This force/pressure,

which is called threshold, can be used as a the measure of material hardness. The

larger the threshold force, the harder the material. In fact, the threshold force for

the displacement L of the material is a measure of elastic property of materials. This

elastic property is in direct relation with the hardness and in inverse relation with

the softness of materials, respectively. Figure 3.3 shows two steps of applying force

to a material until it reaches the smaller sensor, thus resulting in the measurement of

the threshold force. When dealing with samples of different size and area during ex-

periments, the threshold force can be converted to threshold pressure instead. From

the design of the sensor it is apparent that the sensor has the limitation of sensing

tissues with the thickness values larger than L. However, the value of L is very small,

L = 0.8mm in the proposed design, to be a noticeable limitation.

3.1.2 Sensing Principle and Fabrication

Piezoresistive force sensors are used in miniature size to prove the viability of the

concept in the fabrication process due to their low thickness (less than 200µm), quick

response, low noise, and small size. The measuring element of the piezoresistive force

sensor is semiconductive polymer composite. The performance, theoretical modeling
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Tissue
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Contact
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Smaller Sensor

Larger Sensor

Figure 3.3: Schematic exaggerated view of measuring the threshold force



61

of output and the characteristics of piezoresistive force sensors based on semiconduc-

tive polymer composites is published in [87]. However, some other characteristics of

the piezoresistive force sensors are addressed in the present chapter.

The output of the piezoresistive sensor is linear within the 0 to 25N force range,

which is acceptable in MIS [4], with resolution of ±0.1N . As the displacement of the

tissue is equal to 0.8mm, it means that the sensitivity of the sensor to the stiffness

is ±125N/m. In addition, the accuracy of the sensor is 2.5% of full scale with an

appropriate static and dynamic response. The diameters of the large and small sensors

are 6mm and 3mm, respectively. Each force sensor has one input/output port which

is fed by a constant supply of DC voltage of 0.5V .

A calibration procedure was implemented for converting the voltage output of the

sensor to the sensed force. Experimental data shows that the force applied to the

force sensor has a linear relation with the conductance which is explained in detail

in [87]. Figure 3.4 shows the output of the larger force sensors from experimental

data and the linear relation of the force F with conductance C. In addition, the

accuracy of the sensor is also specified in terms of the sensor linearity [113], as shown

in Fig. 3.4. The least-square straight line F = 20.94C−0.132 determines the nominal

output of the sensor, and the accuracy is determined in terms of the linear output. As

a percentage of the sensor readings, the accuracy is shown to be +3.9% and −6.15%

of the full scale. To characterize the dynamic response of the piezoresistive sensor
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Figure 3.4: The curve of Conductance-Force for the larger force sensor, and the
accuracy limits of the sensor

to applied forces, 0.1 − 2.6N sinusoidal force chirps from 0.2 − 2Hz was applied to

the sensor by ElectroForce 3200 BOSE device (ElectroForce Systems Group of Bose

Corporation, Minnesota, USA). Both sensors were sampled at 200Hz. Figure 3.5a

shows the output of the piezoresistive sensor plotted with the applied force from the

ElectroForce device. The amplitude and the phase of both signals match together

with the root mean square error value (RMS) of 0.611, indicating a good match. To

test the linearity of the piezoresistive sensor for dynamic applied loads, a square force

from 0.1 to 2.5N with 0.1N interval and the frequency of 1Hz was applied to the

sensor, as shown in Fig. 3.5b. In this figure, the response of the piezoresistive sensor

is plotted with the applied dynamic force. Interestingly, the filtered and unfiltered



63

outputs of the sensor are following each other with almost no considerable noise,

as opposed to the readings from the measurement device, ElectroForce 3200 BOSE.

However, using the filtered output of the sensor results in more accurate data for

harmonic loads with high frequency. The low level of noise shows that the sensor has

significantly large signal-to-noise ratio if being micro-fabricated. Furthermore, the

output of the sensor has a good agreement with the applied force.
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Figure 3.5: (a) Input force and response for sinusoidal chirp force to the sensor (b)
Input force and response for applied dynamic square force to the sensor
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A signal processing code is developed by using LabView software to analyze the

output data from the two force sensors and to display the calculated threshold force.

Moreover, a buffer circuit is used to reduce the loading effect of the tactile sensor

on Data Acquisition (DAQ) amplifiers and to minimize the cross talk between the

different input channels of the DAQ. The tactile sensor is connected to the buffer

circuit which, in turn, is connected to the DAQ board, and to the developed LabView

code. The processing software in the LabView environment, calculates the applied

and the threshold force values according to the input voltages. At the instant when

the smaller sensor is activated, the output of the larger force sensor is recorded by

using the LabView code. The output of the smaller sensor triggers the recording of

the output of the larger force sensor, at the threshold force.

Figure 3.6a shows the fabricated tactile sensor and the required buffer circuit in

the left image; while the right image shows a miniaturized version of the tactile sensor

on the tip of an annular tube, representing a catheter, which is attached to the end

effector of CRS Catalysit 5 axis robot arm form Quanser Inc. Figure 3.6b shows the

graphical display of the software. A first-order Butterworth low pass filter is used

to filter out the 60Hz noise from input signal. Since the attenuation factor for the

first order filter is not very high, the cut-off frequency at 10Hz was chosen in order

to have enough attenuation for the 60Hz noise. If a higher-order filter was used, the

cut-off frequency could be moved to 40−50Hz. However, a higher-order filter reduces
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(a)

(b)

Figure 3.6: (a) Miniaturized tactile sensor on the tip of CRS Catalysit robot (b) The
graphical display
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the speed of the software which causes delay in detecting the threshold value, and

consequently the value representing the hardness. Since the sensor is intended to be

used in realtime operations, the delay in the output of the sensor is to be avoided.

To manufacture the tactile sensor, two force sensors and a filler plate are fabricated

and integrated together. Each force sensor is consisted of two conductive plates, two

polyester films, and a piezoresistive sensing element as shown in Fig 3.7a. The radii of

the small and the large piezoresistive sensor are 1.5mm and 3mm, respectively. The

electrodes are covered with two layers of polyester film, or silicone tape (Fig. 3.7b).

The thin layer of the polymer composite is then sandwiched between the two layers

of electrode (Fig. 3.7c). The filler plate is cut from a rigid plastic plate and polished.

Then, the two sensors and the filler plate are adhered together to form the tactile

sensor as shown in Fig. 3.7d.

3.1.3 Modeling and Analysis

In order to model the sensor, and illustrate the difference in the hardness degree

of elastomers, two elastomers are selected to be modelled. In fact, the hardness of the

selected elastomers is similar to the hardness of tissues; the two elastomers were se-

lected to represent hard and soft tissues. The stress-strain curve of the two elastomers

was established by compression test, which caused a displacement of mm in both sam-

ples. The obtained stress-strain data were used to verify the concept of the tactile
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Figure 3.7: The steps of fabricating the tactile sensor



68

sensor design using finite element analysis (FEA). For this purpose, the interaction of

the tactile sensor and the elastomers was modelled. The elastomers were considered

as nearly incompressible and isotropic hyperelastic materials by virtue of their large

deformation under applied force. Concepts for nonlinear stress-strain behaviour of

hyperelastic materials can be found in [114–116]. In hyperelastic material, there exists

the second Piola-Kirchhoff stress tensor, which is derivative of scalar strain energy

function to strain components. The second Piola-Kirchhoff stress tensor relates forces

in the reference configuration to area in the reference configuration, which is written

as

S = 2
∂W (ε)

∂B
(3.1.1)

where W (ε) is the strain energy function, and B is the right Cauchy-Green deforma-

tion tensor. The second Piola-Kirchhoff stress is also related to Cauchy stress tensor

σ by S = JF−1 ·σ ·F−T , where F is the deformation gradient tensor and J = detF .

In addition, the right Cauchy-Green deformation tensor is written in terms of defor-

mation gradient as B = F T · F . So, by mathematical and physical manipulation,

Cauchy (true) stress elements is expressed as

σij = −pδij + 2
∂W (εij)

∂I1
Bij − 2

∂W (εij)

∂I2
B−1

ij (3.1.2)

where p is the hydrostatic pressure, δij is kronecker delta, I1 and I2 are invariants

of right Cauchy-Green deformation tensor, and Bij is the component of it. The

hydrostatic pressure in the present research is zero. The three invariants of the B
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tensor are

I1 = λ2
1 + λ2

2 + λ2
3 = tr(B) (3.1.3)

I2 = (λ1λ2)
2 + (λ2λ3)

2 + (λ1λ3)
2 =

1

2
[I21 − tr(B2)] (3.1.4)

I3 = (λ1λ2λ3)
2 = det(B) (3.1.5)

where λ1, λ2, and λ3 are the principal stretches (equal to λi = 1 + εi). For incom-

pressible materials, it can be written that I3 = (λ1λ2λ3)
2 = 1. Mooney-Rivlin [117]

proposed strain energy function W as a general polynomial in I1 and I2 in the form

of

W (I1, I2) =
∞∑

i=0

∞∑

j=0

cij(I1 − 3)i(I2 − 3)j (3.1.6)

where cij are Mooney-Rivlin constants. The constants of cij do not have any physical

meaning as they are only curve fitting parameters. It should be noted that in stress

free condition, the strain energy is equal to zero. Therefore, by setting i = 0, j = 0, the

c00 constant is equal to zero either. In the present paper, the elastomers were modelled

with three parameter Mooney-Rivlin constants. Therefore, by setting i = 0, j = 1;

i = 1, j = 0; and i = 1, j = 1 in eq.(3.1.6), the three terms Mooney-Rivlin equation

is obtained as

W (I1, I2) = c10(I1 − 3) + c01(I2 − 3) + c11(I1 − 3)(I2 − 3) (3.1.7)

For the present study, the compression test was conducted on two elastomers to char-

acterize their stress-strain curve, and the Mooney-Rivlin model for the compression
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test of elastomers was used for modeling. Uniaxial compression is identical to equi-

biaxial tension due to the property of the incompressibility of the elastomers. In other

words, the deformation of the material does not change with adding a tensile or com-

pressive hydrostatic stress on the incompressible hyperelastic material [118,119]. So,

for an elastomer with an isotropic material property in an unconstrained compression

test, the applied stretches is considered as λ1 = λ2, λ3 = λ. So, the deformation

gradient, and the right Cauchy-Green deformation tensor are

F =








λ−1/2 0 0

0 λ−1/2 0

0 0 λ








⇒ B = F T · F =








λ−1 0 0

0 λ−1 0

0 0 λ2








(3.1.8)

which makes the first and the second invariant as I1 = λ2+2λ−1 and I2 = 2λ+2λ−2

while I3 = 1. So, according to eq.(3.1.2), the principal stresses are shown as

σ33 = −p + 2

(
∂W (εij)

∂I1

)

λ2 − 2

(
∂W (εij)

∂I2

)

λ−2 = 2(λ2 − λ−1)(c10 + c01λ
−1)

σ11 = σ22 = −p+ 2

(
∂W (εij)

∂I1

)

λ−1 − 2

(
∂W (εij)

∂I2

)

λ = 0 (3.1.9)

One soft and one hard elastomers, B1-A and ICF (from PROFOM Co., Quebec,

Canada), were selected to be modelled for the FE analysis. Using curve-fitting tech-

niques, different Mooney-Rivlin models such as 2-, 3-, and 5-parameters were fitted

to the obtained stress-strain curves of the elastomers, and constants were calculated.

The compressive stress-strain curve for the two elastomers and the fitted Mooney-

Rivlin models are shown in Fig. 3.8, from which it can be seen that the third order
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Mooney-Rivlin model fits best to the experimental data for both elastomers. The

normalized error norm for the three-parameter Mooney-Rivlin model for B1-A and

ICF is eB1−A = 1.134 and eICF = 0.098, respectively.
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Figure 3.8: A typical fitting of Mooney-Rivlin model with 2-, 3-, and 5-parameters
to the uniaxial compression data of the two elastomers (a) B1-A elastomer (b) ICF
elastomer

The Mooney-Rivlin Constants for B1-A and ICF are shown in Table 3.1.
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elastomers C10 C01 C11

B1 −129700 173670 55812
ICF −8598.8 10284 5143.6

Table 3.1: Constants of the three parameter Mooney-Rivlin model

FE analysis was performed to validate the output of the tactile sensor for the de-

termination of the difference in hardness of materials. The calculated constants from

modeling of the two elastomers were entered as the hyperelastic material properties.

To examine the performance of the sensor, and compare it with FEA results,

the sensor was experimentally tested with seven elastomers of different hardnesses, as

phantom of tissues. The tactile sensor and the materials were placed between the jaws

of ElectroForce 3200. A normal force was applied to the materials by device until they

had a displacement of L = 0.8mm, reaching the inner force sensor. Since the stress-

strain behaviour of the elastomers is nonlinear, a constant value of young modulus

or stiffness cannot be assigned for them; and the value for the stiffness would vary in

each displacement point. However, it can be written that the ratio of the measured

threshold force to the length of displacement L = 0.8mm is proportional to the tissue

stiffness, for 0.8mm of displacement. To validate the results of the experiments with

tactile sensor, the hardness degree of the elastomers was also tested with two other

methods; (1) by a durometer; and (2) by a psychophysical test. A durometer of

type OO—a standard device for hardness measurement of soft materials—was used

to characterize the initial hardness of the seven elastomers according to ASTM D2240
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Standard. Since the tactile sensor is designed to be mounted on a tip of a surgery

catheter to play the role of the surgeon’s finger, the output of the tactile sensor should

be similar to that of a human. Therefore, a comparison between the outputs of the

tactile sensor with the hardness feeling of humans was also performed by designing a

psychophysical test. Hence, a group of 20 engineering students were selected to report

their feeling of hardness of the seven elastomers. The students were asked to press

the elastomers with their index finger, and report their feelings about the degree of

hardness/softness of the elastomers. As the elastomers are pressed by the sensor for

hardness detection, the students were asked to close their eyes, and similarly press

the elastomers with their index finger without sliding finger on the elastomers. By

closing their eyes, students were able to concentrate only on their tactile perception.

Then, they were asked to assign a relative hardness number to elastomers, starting

from one for the softest and seven for the hardest material.

3.2 Results

The elastomers and the tactile sensor were modelled in ANSYS using appropri-

ate elements which are formulated on the basis of finite deformation theories. The

tactile sensor was modelled with 2D 3-node structural solid element (PLANE 42).

Also, 2D 6-node structural solid element (PLANE 183) was selected to model the hy-

perelastic elastomers. This element has capability of large deformation which makes
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Method Pressure for B1-A (KPa) Pressure for ICF (KPa)
FEA 17.25 0.375

Sensor Experiments 22.28 0.4

Table 3.2: Comparison of the results for the two elastomers between the FEA and
the tactile sensor outputs

it suitable for modeling nearly incompressible hyperelastic materials [120]. The 2D

contact elements (TARGET 169 and SURFACE 172) were selected to model contact

between tactile sensor and elastomer. The coefficient of friction between the upper

surface of the tissue and the tactile sensor was set to 0.4 [121]. In addition, the lower

surface of the tissue was considered to be fixed. The range of applied pressure on

elastomers started from small amounts and increased until contact of elastomer and

the smaller sensor. Then the applied pressure on the total area, on the larger sensor,

was calculated.

Figure 3.9a and Fig. 3.9b shows FE analysis for both B1-A and ICF materials,

respectively. The elastomers were constrained in FEA from the bottom, while the

sensor was displaced toward the material. The outer and the inner radii of the sensor

were considered equal to 3mm and 1.5mm, respectively. The sensor was displaced

1.4mm to allow the materials reach into the hollow part by 0.8mm displacement.

Table 3.2 compares the results of the FE analysis with the real testing outputs for

the same elastomers. In this table, the recorded threshold pressure is listed for both

elastomers in FE and experimental test.
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Figure 3.9: The normal stress in Y-direction for both elastomers to displace 0.8mm
and reach the smaller sensor (a) Normal stress for B1-A elastomeric material (b)
Normal stress for ICF elastomeric material
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From Table 3.2, it can be seen that the required pressure value by B1-A material

to reach the inner surface of the smaller sensor is much greater than that for the ICF

material in both experimental and FEA tests. The difference between results of FEA

and experimental test can be attributed to few parameters. Considering elastomers

as incompressible can introduce inaccuracy since the elastomers are not completely

incompressible. In addition, the resolution and the drift of the force sensor cause

some inaccuracies for the data extracted from the experimental test.

Figure 3.10 shows the result for the psychophysical test of the seven elastomers by

20 engineering students. The results show that students have different feeling about

materials with similar degree of hardness, such as H1-N, B1, and EVA elastomers.

Table 3.3 shows the comparison between results of the sensor, the durometer, and

the psychophysical test. The elastomers in this table are arranged in accordance to

their decreasing hardness/increasing softness from left to right. In order to have a

feeling of the hardness of elastomers indicated in shore scale and their relation with

the hardness of tissues, the hardness of a porcine atrial tissue was measured, which

was 25 shore type OO.

As shown in Table 3.3, the relative hardness of the elastomers that are estab-

lished by the tactile sensor agrees to the relative hardness established by the standard

durometer, and the group of the 20 people.

The results of Table 3.3 shows that for a relatively small increase in the measured
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Figure 3.10: Comparison of the hardness feeling of 20 people on the seven elastomeric
materials

Elastomeric Materials H1-N B1 EVA B1-A A2FR A2 ICF
Hardness (Shore OO) 48 45 42 36 13 4 1
Psychophysical test 7 6 5 4 3 2 1

Threshold Pressure (KPa) 89.8 52.0 39.3 22.3 2.8 0.9 0.4
by Sensor

Table 3.3: Comparing the results for the hardness measurement of the elastomers
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hardness from B1 to H1-N, from 45 to 48 Shore OO, the threshold pressure by the

tactile sensor shows a large increase, from 52 to 89.8Kpa. The reason for this differ-

ence is due to the metallurgical structure of the two elastomers. B1 elastomer has a

homogeneous structure, while the H1-N elastomer has a nonhomogeneous structure

with a relatively compressed and dense material near its surface. Therefore in the

test with a durometer, the major part of the deformation of H1-N occurs in the mid-

dle area of the elastomer which is softer in comparison to its surface. However, by

virtue of the design of the tactile sensor, the hard surface of the H1-N elastomer is

deformed during the measurement. Hence, the records of the sensor output show a

higher change in the threshold pressure. The tests result of Table 3.3 can be also

used in calculating the required force to be applied by a surgical catheter to cause

sufficient tissue deformation for hardness measurement by the sensor. The outer and

the inner radii of the tactile sensor in Fig. 3.7d are 3mm and 1.5mm, respectively.

Hence, the required force for the hardness detection by this sensor would fall in the

range of 0.01N to 1.9N for the softest to the hardest tissue. This range can be easily

tuned by changing the contact area of the sensor with tissue, which can be achieved

by changing the ratio of the inner to the outer radii of the tactile sensor, and by

changing the thickness of the filler plate. In other word, by changing the ratio of

A/L, in Fig. 3.2, the range of required force to be applied to the tissue can be tuned.

Therefore, the range of required force can be adjusted for each catheter to fall within
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the limits of the catheter for applying force.



Chapter 4

Viscoelastic Modeling of the

Contact Interaction of the Tactile

Sensor

Modeling and parameter identification of soft tissue are essential in establishing

an accurate contact model for tool-tissue interaction, which can be used in the devel-

opment of high-fidelity surgical instruments. This chapter discusses the interaction

between tissue and the developed tactile sensor in minimally invasive surgery, the

focus being a novel technique for robotic-assisted mitral valve repair, in which tactile

sensors are used to distinguish between different kinds of tissue by their relative soft-

ness. A discrete viscoelastic model is selected to represent the tissue behaviour. To

80
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populate the model of the tissue with actual data, a set of tissue-testing experiments

is designed and implemented on the atrial tissue of a swine heart by analyzing its

dynamic response. By means of a genetic algorithm, data of the complex compliance

are extracted and used to find the coefficients of the model. Further, a viscoelastic

contact model is developed to model the interaction between tissue and the tactile

sensor with annular shape. Finally, the relation among the indentation displacement,

the ratio of the radii, and the applied force are established parametrically.

Recently, a number of heart interventions have been conducted by means of

robotic-assisted surgery (RAS). In current robotic-surgery systems, surgeons face

problems such as lack of tactile and haptic feedback during the operation. To treat

MR with RAS, the surgeon needs tactile feedback from the patient organ. Integrat-

ing a tactile sensor into the tip of surgical tools can provide tactile feedback from

interaction between surgical instrument and tissue during surgery. In this case, a

computer-controlled catheter can conduct the operation while the heart is beating

and the blood is flowing [8]. The surgeon moves the catheter through the femoral

vein to the inside of the heart. Although the computer-controlled catheter is equipped

with different mapping systems such as 3D ultrasound imaging systems, the recog-

nition of the mitral annulus from the surrounding tissue is limited, without having

tactile feedback from inside the heart [122]. The reason here is that the localization

of the moving annulus—while the heart is beating and blood is flowing—needs more
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advanced techniques than those that are currently available. Consequently, to localize

the mitral annulus, it would be advantageous to have access to tactile sensing during

the operation.

This chapter discusses the identification of viscoelastic properties of heart tissue

in contact with a tactile sensor, currently under design for minimally invasive surgery

applications [88], with focus on MR repair by RAS [8]. The tactile sensor is fabricated

at the tip of a surgical catheter; it distinguishes different kinds of tissue by their rela-

tive softness or hardness for that matter. A parametric model for annular viscoelastic

contact of the tactile sensor and the atrial heart tissue is developed to investigate the

tool-tissue interaction and to optimize the design of the sensor. According to the an-

nular geometry of the sensor, some simplifications are made in the analysis: the tissue

is modelled as a viscoelastic half-space; the sensor is rigid; and the interface between

tissue and sensor is frictionless. Under these assumptions, the contact problem falls

into the complete category. The model includes the indentation depth of the tissue

into the hollow space of the tactile sensor in terms of the applied force, the inner and

outer radii of the tactile sensor, and time. The contact model can be used to simulate

the behaviour of the tissue being touched by the sensor. In addition, the model can

be used to optimize the design of tactile sensors and catheters with annular shape.

Furthermore, as the model is parametric, it can simulate the tool-tissue interaction

for surgical training systems in real-time applications.
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The tactile sensor structure is described briefly in Section 4.1. After describing

the contact problem in Section 4.2.1, the solution of the contact problem is elaborated

in elasticity in Section 4.2.2. The viscoelastic behaviour of the tissue is modelled in

Section 4.3. DMA experiments are outlined in Section 4.4, while the actual data from

experiments are used in a parameter identification process, employing a genetic algo-

rithm, to obtain the model parameters in Section 4.5. The solution of the viscoelastic

contact model of the tissue and the tactile sensor is implemented in Section 4.6.

4.1 Sensor Structure

The proposed sensing architecture consists of two circular force sensors with differ-

ent diameters, and one plastic filler plate (Fig. 3.1). The inner and outer diameters

of the latter are identical to the diameters of the smaller and larger force sensors,

respectively, as shown in Fig. 3.1. The sensor design and development procedure is

explained in details in Chapter 3. Figure 4.1 shows a schematic view of a section of

the tactile sensor in contact with soft material in Cartesian coordinates (x, y, z) [89].

The tactile sensor is axisymmetric with respect to the z-axis. The origin of the coor-

dinate system is denoted by O, the y-axis not being shown, as it is normal to the xz

plane in Fig. 4.1. All forces applied to the filler plate along the normal direction are

recorded by the larger force sensor.

Figure 4.2 shows the difference in the design of the sensor for two groups of
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Figure 4.1: CAD model of the tactile sensor

materials with different levels of hardness. For example, the length L distance should

be higher for soft materials. In this case, it would be easier to distinguish the difference

between recorded forces of soft materials, and compare their hardness.

L

Hard Material

Smaller Sensor

Larger Sensor

Filler Plate

(a)

LL

Soft Material

Smaller Sensor

Larger Sensor

Filler Plate

(b)

Figure 4.2: Section view of the tactile sensor in contact with (a) a hard and (b) a soft
material
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4.2 The Elastic Boundary-value Problem

As shown in Fig. 4.1, the contact model can be formulated as a boundary-value

problem, with the boundary conditions defined piecewise: (1) the exterior of the large

sensor radius; (2) the interior of the small sensor radius; and (3) the contact area.

This problem is called the three-part boundary-value problem. The boundary-value

problem thus arising, in the realm of linear elasticity, is formulated and solved in this

section. A few researchers have discussed the three-part boundary-value problem in

elasticity since the 1960s, [71, 123]. Many methods were used in an attempt to solve

the problem, each with its own merits and demerits; however, none of them led to

a closed-form solution. A combination-of-harmonics method is used in the present

chapter for solving the problem at hand. The flowchart in Fig. 4.3 shows the detailed

steps toward solving the contact problem for the three-part boundary-value problem

at hand.

4.2.1 Problem Formulation

By defining the variable r =
√

x2 + y2, the boundary conditions for the contact

between the sensor and the tissue can be represented in Cartesian coordinates depicted
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Interaction between sensor and tissue

In mechanics

Three-part boundary-value problem
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Elasticity solution

Correspondence principle

Viscoelasticity solution Material parameters identification

sub-problemsub-problemsub-problemsub-problem

Viscoelasticity experiments

Figure 4.3: The step-by-step flowchart for solving the three-part boundary-value prob-
lem
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in Fig. 4.1 as,

σzz(x, y, 0) = 0, 0 ≤ r ≤ ri, ro ≤ r (4.2.1)

uz(x, y, 0) = ǫ0, ri ≤ r ≤ ro (4.2.2)

σxz(x, y, 0) = σyz(x, y, 0) = 0, 0 ≤ r (4.2.3)

where ǫ0 is the sensor displacement, σzz is the normal stress of the tissue in the z

direction, uz is the tissue displacement in the z direction, σxz and σyz are the shear

stresses of the tissue in the xy plane, ri and ro being the inner and outer radii of

the annular contact area, respectively. In addition, the tissue is considered as a half

space. For three-dimensional problems in the absence of body forces, a useful result

is the Papkovich-Neuber solution [124],

2Gu = −4(1− ν)ψ +∇(r ·ψ + φ) (4.2.4)

where ν is the Poisson ratio and G is the shear modulus of the tissue, while ψ and

φ are harmonic functions. Only appropriate harmonic functions ψ and φ are needed

to satisfy the specified boundary conditions. For axisymmetric contact problems,

two particular Papkovich-Neuber solutions were developed by Green and Zerna [125].

The first one considers ∆φ = 0 and ∆ψ = 0, where ∆ is the harmonic operator.

The second one considers φ = 0, ∆ψ = α[0 0 1]T and ∆α = 0. If the harmonic

functions α and φ satisfy the relationships

φ = (1− 2ν)ϕ, α =
∂ϕ

∂z
, ∆ϕ = 0 (4.2.5)
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where ϕ is an arbitrary harmonic function, the sum of α and φ will produce the

deformed state below:

2Guz = 2(1− ν)
∂ϕ

∂z
− z

∂2ϕ

∂z2
(4.2.6)

σzz = −∂2ϕ

∂z2
− z

∂3ϕ

∂z3
, σxz = z

∂3ϕ

∂x∂z2
, σyz = z

∂3ϕ

∂x∂z2
(4.2.7)

From eq.(4.2.7), it is apparent that σxz and σyz are zero for z = 0. Hence, the

frictionless condition, expressed in eq.(4.2.3) at the contact area is satisfied. In order

to satisfy the boundary condition (4.2.1), the harmonic function α, through eqs.(4.2.5)

and (4.2.7), must satisfy

−∂2ϕ

∂z2
= −∂α

∂z
= 0 0 ≤ r ≤ ri, ro ≤ r (4.2.8)

Similarly, for the boundary condition (4.2.2), the harmonic function α, through

eqs.(4.2.5) and (4.2.6), must satisfy

2(1− ν)
∂ϕ

∂z
= 2(1− ν)α = 2Gǫ0 ri ≤ r ≤ ro (4.2.9)

These equations show the relation between α and ǫ0. Since α in eqs.(4.2.8) and (4.2.9)

satisfies the boundary conditions, an appropriate value for α is sought in the next

Sections.

4.2.2 Combination-of-harmonics Method

Oblate spheroidal coordinates forms 3D orthogonal coordinate system. These

coordinates result from rotating a 2D elliptic coordinate system about the non-focal
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axis of the ellipses [126]. In this section, spheroid coordinates are used to solve the

boundary-value problem at hand.

rc

Tissue

η = 0

ξ = 0

Cylindrical Indentor

η = 0

Figure 4.4: The cylindrical indentor in the oblate coordinate system

First, a piecewise-boundary value problem is considered in the oblate spheroidal

coordinate system (ξ, η, θ), as shown in Fig. 4.4. The relation between the spheroidal

coordinates (ξ, η, θ) and the Cartesian coordinates (x, y, z) is recalled:

r =
√

x2 + y2 = rc
√

(1 + ξ2)(1− η2), z = rcξη (4.2.10)

where rc is the contact radius, −1 ≤ η ≤ 1 and ξ ≥ 0. From eq.(4.2.10), the surfaces

ξ = 0 and η = 0 are, respectively, the interior and exterior of the circle r = rs, z = 0.

Obviously, ξ and η are also functions of the Cartesian coordinates (x, y, z). The

stress and the strain at infinity within the tissue region are assumed to be negligibly
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small. This assumption requires that the harmonic function α be finite at infinity.

Additionally, in accordance with the cylindrical symmetry of the sensor, α is also

cylindrically symmetric. With the symmetry of the harmonics, the general harmonic

function α in spheroidal coordinates can be expressed as [127]

α = ̺Pm
n (η)Qm

n (iξ) (4.2.11)

where ̺ is an arbitrary constant, and i is the imaginary unit. Also, Pm
n and Qm

n are

Legendre polynomials of the first and the second kind, respectively. After express-

ing α in Cartesian coordinates (x, y, z), for the piecewise boundary-value problem,

four types of problems, interior Dirichlet, interior Neumann, exterior Dirichlet, and

exterior Neumann, are orderly classified as

α(x, y, 0) = ς1 0 ≤ r ≤ rc ;
∂α

∂z
(x, y, 0) = 0 rc < r (4.2.12)

∂α

∂z
(x, y, 0) = ς2 0 ≤ r ≤ rc ; α(x, y, 0) = 0 rc < r (4.2.13)

∂α

∂z
(x, y, 0) = 0 0 ≤ r ≤ rc ; α(x, y, 0) = ς3 rc < r (4.2.14)

α(x, y, 0) = 0 0 ≤ r ≤ rc ;
∂α

∂z
(x, y, 0) = ς4 rc < r (4.2.15)

where ς1, ς2, ς3 and ς4—ς is to be read “varsigma”—are prescribed functions of x and

y. Figure 4.4 refers to the interior Dirichlet problem.

From the properties of the Legendre polynomial, Gladwell [128] gave the solutions

to the four problems. If the scripts m and n are of the same parity, eq.(4.2.11) is

the solution for the interior Dirichlet problem, and ς1 is a polynomial of degree n in
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r. When m and n are of opposite parity, eq.(4.2.11) is the solution to the interior

Neumann problem. For the exterior Dirichlet problem, the solution is

α = (1 + ξ2 − η2)−
1
2Pm

n [ξ(1 + ξ2 − η2)−
1
2 ]Qm

n [iη(1 + ξ2 − η2)−
1
2 ] (4.2.16)

where m and n are of the same parity, and ς3 is a polynomial of degree n + 2 in

r−1. If m and n are of the opposite parity, eq.(4.2.16) becomes the solution to the

exterior Neumann problem. With respect to the axisymmetric contact problem, the

superscript m of the Legendre polynomial is assumed to be 0 [129]. The boundary

conditions of the contact between sensor and tissue cannot be defined as the Dirichlet

or Neumann problem, since the shape of the sensor is similar to an annular inden-

tor. Therefore, a combination of four Dirichlet and Neumann boundary problems,

eqs.(4.2.12–4.2.15), is used to define the contact between sensor and tissue.

For the boundary-value problem, eqs.(4.2.10) are used to establish the oblate

spheroidal coordinate systems (ξ1, η1, θ1) shown in Fig. 4.5a, by replacing rc with ro.

In the said coordinate system, the solution α1iD of the interior Dirichlet problem and

the solution α1eN of the exterior Neumann problem can be obtained.

Similarly, the oblate spheroidal coordinate system (ξ2, η2, θ2), shown in Fig. 4.5b,

can be established by replacing rc with ri. In the latter, the solution α2eD of the

exterior Dirichlet problem and the solution α2iN of the interior Neumann problem

can be obtained. After transforming α1iD and α2eD into cylindrical coordinates, one
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Figure 4.5: Oblate coordinate system for (a) Oblate coordinate system for outer
radius and (b) Oblate coordinate system for inner radius
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part of the harmonic function α, which is named α1, is written as

α1 = α1iD + α2eD (4.2.17)

From eqs.(4.2.12) and (4.2.14), if

ς1iD + ς2eD =
2Gǫ0
1− ν

(4.2.18)

where ς1iD is a prescribed function related to α1iD, while ς2eD is related to α2eD, then

α1 is a harmonic function that satisfies eq.(4.2.9).

Further, α1eN and α2iN are expressed in Cartesian coordinates. By considering

eqs.(4.2.13) and (4.2.15), the sum α1eN +α2iN +α1 is found to be also a function that

satisfies eq.(4.2.9). Additionally, the stress condition in eq.(4.2.8) can be satisfied by

adjusting the coefficients ̺ in α1eN and α2iN to obtain

∂(α1eN + α2iN + α1iN )

∂z
= 0,

∂(α2iN + α2eN)

∂z
= 0 (4.2.19)

Thus,

α = α1eN + α2iN + α1iD + α2eD (4.2.20)

For the flat annular elastic contact problem in our case, an approximate result

that relates the applied force p and the indentation displacement ǫ0 is obtained as

(1− ν)p

4Groǫ0
= 1− 4β3

3π2
− β4

8
, β =

ri
ro

(4.2.21)

where p is the total load on the sensor, and β is the ratio of the inner to the outer

radius. Equations (4.2.21) will be extended to include viscoelasticity in Section 4.6.
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4.3 A Viscoelastic Model of Tissue

σ E0

E1

C1

En

Cn

σ

Figure 4.6: The generalized Kelvin model

To model the viscoelastic behaviour of the heart tissue, the generalized Kelvin

model is selected, as shown in Fig. 4.6 [130]. By writing the related equations for

the spring and dashpot elements, the constitutive equation for the generalized Kelvin

model with one Kelvin unit is derived as [70, 103]

Σ+
C1

E0 + E1
Σ̇ =

E0E1

E0 + E1
E +

C1E0

E0 + E1
Ė (4.3.1)

where E0 is the instant elastic modulus at the start of excitation, E1 is the elastic

modulus in the Kelvin unit, C1 is its viscous counterpart, while Σ and E are the

stress and strain tensors applied on the generalized Kelvin model, respectively. E0

and E1 contribute for the elastic modulus in the equilibrium of the generalized Kelvin

model. The complex modulus and compliance can be calculated from the response of

the material to sinusoidal stress and strain inputs. By expressing the stress and strain

in exponential form, and by substituting them into the constitutive equation (4.3.1),

the expression for complex modulus or compliance is derived. The exponential form
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of strain and stress can be written, respectively, as

E(ω) = E0e
iωt = E0[cos(ωt) + i sin(ωt)] (4.3.2)

Σ(ω) = Σ0e
i(ωt+δ) = Σ0[cos(ωt+ δ) + i sin(ωt+ δ)] (4.3.3)

where E0 = E

∣
∣
∣
t=0

, Σ0 = Σ

∣
∣
∣
t=0

. Practically, only the real part of eqs.(4.3.2)

and (4.3.3) is applied to the specimen during the dynamic test. However, writing

the stress and the strain in exponential form makes it simpler to derive the equations

for complex compliance or modulus. By substituting eqs.(4.3.2) and (4.3.3) into the

constitutive equation (4.3.1), one obtains

Σ0e
iωt+δ +

C1

E0 + E1
iωΣ0e

iωt+δ =
E0E1

E0 + E1
E0e

iωt +
C1E0

E0 + E1
iωE0e

iωt (4.3.4)

Upon factoring and rearranging of terms, the componentwise solution for complex

compliance in the z-direction, as shown in Fig. 4.1, can be written as

D∗(ω) =

iω

E0
+

E0 + E1

C1E0

iω +
E1

C1

(4.3.5)

Further, upon multiplying both sides of this equation by their complex conjugates,

and then simplifying the result, an expression for the complex compliance is derived

in the form

D∗(ω) = Dg +
D1

ω2τ 21 + 1
− i

ωD1τ1
ω2τ 21 + 1

(4.3.6a)

with τ1 =
C1

E1
and D1 =

1

E1
(4.3.6b)
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where τ1 is a time delay due to the presence of dashpot elements. It should be

noted that the expression 1/E0 is substituted by Dg, which is known as the Glassy

compliance. According to eq.(4.3.6), the elastic and the viscous compliances are

defined as the real and imaginary parts of the complex compliance, respectively. It

should be noted that the negative sign of the imaginary part in the expression for

the loss compliance is dropped, as the function is positive. Hence, the compliance

equations are

D∗(ω) = De(ω)+Dv(ω) , De(ω) = Dg+
D1

ω2τ 21 + 1
, Dv(ω) =

ωD1τ1
ω2τ 21 + 1

(4.3.7)

where De(ω) is the elastic compliance and Dv(ω) is the viscous compliance.

It is not advisable to use the generalized Kelvin model with one Kelvin unit for

modeling the time-dependent behaviour of the atrial tissue. In fact, the generalized

Kelvin model with n Kelvin units yields higher-order differential equations and mod-

els the behaviour of the tissue accurately. In addition, the constitutive equation of

the generalized Kelvin model can be written in the form of a Prony Series, which is a

more suitable representation of the behaviour of viscoelastic materials when perform-

ing Finite Element Analysis (FEA). Figure 4.6 shows the generalized Kelvin model

elements. The constitutive equation derived for a generalized Kelvin model with one

Kelvin unit can be expanded as a model with n Kelvin units [131]. The elastic and

viscous compliance for the generalized Kelvin model with n Kelvin units is expressed
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as

De(ω) =
1

E0
+

n∑

i=1

1

Ei(ω2τ 2i + 1)
, Dv(ω) =

n∑

i=1

ωτi
Ei(ω2τ 2i + 1)

(4.3.8)

4.4 Experiments

In Section 4.2.2, a mathematical model was developed to model the contact be-

tween tactile sensor and viscoelastic tissue. The model needs to be populated with

compliance data of the tissue, which can be found experimentally. Researchers use

different techniques, such as dynamic testing, to measure the viscoelastic behaviour

of tissue [132,133]. Dynamic Mechanical Analysis (DMA) is a technique for studying

and characterizing the behaviour of viscoelastic materials such as tissue. To find the

tissue compliance, a test setup was designed to conduct DMA on heart tissue using

a Bose ElectroForce 3200 device. First, the left atrial tissue of a swine heart was

selected for testing, as it was easier to cut in the required shape. Since the left atrial

tissue is constrained inside the heart, the same boundary conditions should be recre-

ated in the testing procedure to obtain accurate results. However, for simplification,

these boundary conditions were not applied to the sample tissue during DMA. The

tissue was only constrained from the top and the bottom. Figure 4.7 shows the po-

sition of the tissue between the jaws of the ElectroForce device. The temperature of

the jaws and the tissue during tests was considered constant. To test the tissue dy-
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atrial tissue

moving jaw

fixed jaw

ElectroForce 3200

output and plots

Figure 4.7: The position of the sample tissue between the two jaws of the device

namically, harmonic load and displacement were applied to the tissue. Measurement

of the response of the tissue to periodic deformation or load shows that the stress and

strain are not in phase. The strain lags the stress by a phase angle δ, namely,

tan[δ(ω)] =
Ev(ω)

Ee(ω)
(4.4.1)

where Ee(ω) and Ev(ω) are the elastic and viscous moduli, respectively. The elastic

complex modulus can also be defined as

E∗(ω) = Ee(ω) + iEv(ω) (4.4.2)

To conduct DMA, a series of test conditions is defined and applied to the test proce-

dure systematically. A range of different frequencies, between 1 Hz and 36 Hz, was

applied to the sample in eight different cycles. The frequency was increased by 5 Hz
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for each subsequent cycle, starting from 1 Hz. Figure 4.8 shows the scope image of

two successive test cycles.

Ramp to
Mean Level

Mean
Level

1st Frequency

1st Cycle 2nd Cycle

Amplitude

Corrected
Mean Level

Load

2nd Frequency

Displacement

Figure 4.8: The graphical view of the two consecutive test cycles with different fre-
quencies

The upper jaw first ramps to a specified load hold level, which is again held for

a predefined time to allow the dimensions of the specimen and fixture to adjust to

the temperature. This reading is used as a relative zero position for all subsequent

commands and force feedback. The system then ramps to the specified mean level,

which is held again for a specified time to allow for any creep or relaxation to occur

prior to dynamic testing. Once the dynamic cycling has begun, the specimen is pre-

cycled a user-specified number of cycles to allow for amplitude control and specimen
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stabilization prior to data being taken.

Data are taken at an optimum acquisition rate for analysis. The dynamic cycling

is then stopped and the system again ramps to the original load condition while

data are stored to minimize dynamic cycling of the specimen and prepare for the

next test condition. The WinTest software package then calculates the output data

automatically, according to the size of the specimen, which has been input to the

package. Figure 4.9 shows the recorded response of the specimen to the applied

displacement to show the phase difference between the two scope data curves.
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Figure 4.9: The scoped signals of load and displacement to represent the phase dif-
ference between two signals

Upon conducting DMA tests at different frequencies, the complex, the viscous, and

the elastic moduli were converted from the recorded response data to the frequency
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domain, as shown in Fig. 4.10. The next step is to populate the viscoelastic model of
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Figure 4.10: Complex modulus, elastic modulus, viscous modulus, and tanδ for swine
heart atrial tissue

the tissue with the DMA test data, which requires using an optimization method.
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4.5 Parameter Identification via a Genetic Algo-

rithm

By using optimization techniques, the data obtained can be fitted to the consti-

tutive equations. A genetic algorithm (GA) is used to obtain the constants of the

generalized Kelvin model formulated in Section 4.3. A brief description of the GA is

included below.

Genetic algorithms are based on Darwin’s theory of evolution, survival of the

fittest [134]. GAs search the solution space of a function by creating a simulated

evolution. A population of solutions is created, then mated with different techniques

to create new generations. The fittest individuals of any population tend to survive

by becoming parents to the next generation. The chromosomes of each population are

selected randomly from the solution space. Each individual is assigned a fitness value

according to the predefined fitness function. Those having stronger chromosomes and

higher fitness value have a greater chance of being selected for the next generation.

When they unite with others, in a process called crossover, the child they create will

likely posses an even greater fitness value than the parents. In addition, the individual

chromosome genes can be randomly changed in a process called mutation in order to

search the wider space of the solution and to avoid falling into local minima. GAs

do not require exact knowledge of the search space, as in the case of deterministic
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Constants Fitness Values (MPa) Constants Fitness Values (s)
E0 56.45258219 τ1 2.455236432
E1 0.003942097 τ2 2.405097351
E2 0.007498926 τ3 0.021752025
E3 0.060282772 τ4 2.440387389
E4 0.002390291 τ5 2.416770843
E5 0.006842171 τ6 2.392975402
E6 0.005091904 τ7 0.021876111
E7 0.093982545 τ8 2.438807782
E8 0.001876492

Table 4.1: Constants for the compliance of generalized Kelvin model

methods [135].

The objective function f(χ) to be minimized is defined as the square of the Eu-

clidean norm of the error in the approximation of both the elastic and viscous compli-

ance, De(ω) and Dv(ω), respectively, as defined in eq.(4.3.8), each comprising eight el-

ements, i.e., with n = 8. To construct the objective function f(χ), two 8-dimensional

arrays g and v are defined as

gi = Dnum
e (ωi)−Dexp

e (ωi) vi = Dnum
v (ωi)−Dexp

v (ωi) i = 1, . . . , 8

where Dnum
e (ωi) and Dnum

v (ωi) denote the fitting values for the elastic and viscous

compliances, while Dexp
e (ωi) and Dexp

v (ωi) are their counterpart experimental values,

and ωi is the frequency. The best fitness with the experimental data was found under

these conditions, with a total of 17 unknown parameters, namely,

χ = [E0, E1, . . . , E8, τ1, . . . , τ8] (4.5.1)
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The fitness function is thus

f(χ) = ‖g‖+ ‖v‖ → min
χ

(4.5.2)
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Figure 4.11: Comparison of the experimental results and the model results for the
compliance of the atrial tissue

The compliance constants obtained by the GA are summarized in Table 4.1. Fig-

ure 4.11 shows a comparison of the compliance of the tissue and the model developed

with the generalized Kelvin model with 17 constants. Apparently, the model can

fairly replicate the elastic and viscous compliance of the atrial tissue.
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4.6 Results

For solving a viscoelastic boundary-value problem, the time-dependent constitu-

tive equation poses many challenges. However, in situations with fixed boundary

conditions, elasticity results can be extended into the viscoelastic realm upon invok-

ing the correspondence principle [136]. Although the integral constitutive equation

offers many advantages at this stage, its differential counterpart is used because of

its simplicity. Hence, the generalized form of eq.(4.3.1) can be expressed by using

linear time derivative operators P d
1 , Q

d
1, P

d
2 , and Qd

2 to express the viscoelastic model

of springs and dashpots, as

P d
1Σe = Qd

1Ee, P d
2Σv = Qd

2Ev (4.6.1)

where Σe is the stress deviator, Σv the hydrostatic stress, Ee the strain deviator

and Ev the hydrostatic strain. Furthermore, P̄ d
i and Q̄d

i denote P d
i and Qd

i , for

i = 1, 2, in the domain of the Laplace variable s. According to the correspondence

principle, by replacing 2G with Q̄d
1/P̄

d
1 , and 3K with Q̄d

2/P̄
d
2 in the elastic solution,

the corresponding viscoelastic solution in the Laplace domain can be found. The

viscoelastic solution in the time domain is obtained by means of the inverse Laplace

transform.

Most kinds of tissue can be assumed to be incompressible [137]. Hence, in the case

at hand, the Poisson ratio ν of the tissue is assumed to be 0.5. The shear constitutive

relation is also represented by the generalized Kelvin model shown in Fig. 4.12, its
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differential constitutive equation being

8∑

k=0

mk
dkΣe

dt
=

8∑

k=0

hk
dkEe

dt
(4.6.2)

where mk and hk are functions of the constitutive parameters.

σ E0

E1

C1

E8

C8

σ

Figure 4.12: The eight-element generalized Kelvin model

Thus, the extension of eq.(4.2.21) to viscoelasticity can be achieved by setting ν

to 0.5 and replacing G with

G =

8∑

n=0

hns
n

2
8∑

k=0

mksk
(4.6.3)

After introduction of the inverse Laplace transform and substitution of the constitu-

tive parameters obtained in Section 4.5, the relation between force and indentation

displacement is obtained as

ǫ0 =
p

4roκ
(1708.08− 10.64e−4.29t − 16.58e−2.77t − 133.35e−0.0031t − 146.15e−0.0028t

− 196.39e−0.0021t − 253.67e−0.0016t − 418.36e−0.00098t − 532.91e−0.00077t) (4.6.4)

κ = 1− 4β3

3π2
− β4

8
(4.6.5)

where ro is the radius of the larger force sensor, κ is a function of the ratio of the

inner to the outer radius, t is time, and p is the force applied to the sensor. This
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equation can be used for the contact between the atrial tissue and a tactile sensor

or a surgical catheter having annular shape with various inner and outer radii. The

indentation displacement for various ratios and forces are plotted in Fig. 4.13. This

figure shows the relation between the indentation displacement, the force applied to

the sensor, time, and the ratio of the inner to the outer radius.
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Figure 4.13: The indentation displacement for various ratios and forces

4.7 Discussion

The model for annular viscoelastic contact here derived reveals significant infor-

mation about the tool-tissue interaction. The contact model can be used in several

applications, as: (1) to analyze the tissue indentation depth inside the hollow space
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of the tactile sensor, and to select the optimum dimensions for the sensor; (2) to

optimize the design of surgical catheters by analyzing the indentation depth of the

tissue, as robotic catheters usually have an annular shape; and (3) to simulate the

real-time response of tissue being touched by a surgical catheter under quasi-static

loading conditions. In addition, since the contact model developed here is parametric,

the simulation of the tissue behaviour is much faster and simpler when compared to

other modeling techniques such as FEA. Hence, the contact model can be used in

real-time graphical and haptic-based training simulators to replicate the viscoelastic

behaviour of tissue in contact with catheters and surgical instruments.

According to Fig. 4.13, the difference in the ratio of the inner to the outer radius

of the tactile sensor has a higher influence on the indentation displacement for larger

applied forces. In reality, the applied force on tissue during RAS should be limited

and minimized in order to avoid any possible damage to the heart tissue. It is rec-

ommended to keep the force applied to the heart tissue lower than 2 N, if possible,

without exceeding 3 N [138]. In addition, since the tissue may have a convex/concave

surface, this may lead to pre-penetration of the bulge of tissue inside the hollow space

of the tactile sensor. In order to reduce those effects, the ratio of the inner to the

outer radius of the tactile sensor should be decreased; alternatively the diameter of

the small sensor should be reduced to avoid pre-penetration of the tissue. Further-

more, less sensing time is of interest in RAS. Therefore, the optimum dimensions of
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the tactile sensor should obey ri/ro = 0.1 and L = 0.7 mm, according to Fig. 4.13. In

this case, by applying a 1N force for a duration of 0.5 s, the atrial tissue penetrates

and touches the surface of the smaller sensor.

The same discussion of the optimum dimensioning of tactile sensor can be used

in size optimization of surgical catheters, based on the conditions for which they are

intended.

The contact model can be also used in quasi-static conditions to replicate the

response of the tissue to dynamic loads. For example, if a constant static load F1 =

−0.2 N is applied to the tissue, and a harmonic load F2 = 0.2 sin(2πt) is added to

the constant load after 2 s, the tissue shows different behaviour for each condition.

To find the response of the tissue to the dynamic load, the equation of applied force

is written in the Laplace domain as

p̄ = −0.2

s
+

π

2e2s(s2 + 4π2)
(4.7.1)

By substituting eq.(4.7.1) in the Laplace domain eq.(4.2.21), and by applying the

inverse Laplace transform, the equation of the indentation of tissue for the dynamic

load is derived as

ǫ0 = [H(t− 2)(−2.86e7.07t cos(6.28t) + 6679.99e2.78t + 391.05e4.31t + 0.06e7.07t+

1.52e7.07t sin(6.28t)) + 2.12e2.78t + 3.31e4.30t − 5.46e7.07t]/(4r0κe
7.07t) (4.7.2)

where H(t − 2) is the Heaviside step function. Based on eq.(4.7.2), the indentation
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depth of the tissue for different ratios of the outer to the inner radii is plotted in

Fig. 4.14. As can be seen, the tissue shows a combination of creep and harmonic

deformation to the force applied. For the first 2 s, the tissue deforms and shows creep

behaviour due to the constant load; after adding the harmonic load to the previous

one, the tissue shows the dynamic indentation, while having the creep behaviour

due to the constant load. Therefore, Fig. 4.14 shows that the contact model here

developed can replicate the tissue viscoelastic behaviour for dynamic loads.
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Figure 4.14: The response of the tissue for quasi-static loading conditions



Chapter 5

A New Array Sensor for Soft

Tissues with Time-Dependant

Behavior

This chapter describes the development of a new type of tactile sensors for use in

MIS, where the interaction with soft tissue is dominant. Review articles show that

tactile sensors are being developed with various designs and transduction methods,

e.g., piezoelectric, piezoresistive, optic, pneumatic, etc. Although many types of

tactile sensors are being developed by researchers, the variety of data being collected

with these sensors are very limited and similar to each other. Many of tactile sensors

being used in either industry or academic areas can only read the pressure/force
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mapping during the touch. Other newly developed tactile sensors can extract force

and displacement data during touch. The force and displacement data can relatively

convey the concept of young modulus, compliance, or hardness based on the design of

the sensor and based of the way measurements were conducted. The developed tactile

sensors measure the degree of softness/hardness with acceptable accuracy. However,

in tissue related applications, extra parameters about viscoelastic behavior of tissue

can be measured to add more certainty to the sensor output, where tissues show

similar properties. The new parameters that can be measured are the force rate and

displacement rate, in addition to force and displacement measurements. The force

rate and displacement rate can be taken into account by virtue of time-dependent

response of the tissue to stress or strain. If timing is taken into account during touch

mechanism, different tissues can be touched with the same displacement rate by the

tactile sensor, resulting in more accurate comparison. Our experiments show that a

single tissue shows different force-displacement behaviour for different displacement

rates application. Therefore, in measuring the degree of hardness, the same strain

rate should be maintained to all of tissues during touch. So, it becomes crucial to

record the time for the force rate and the displacement rate measurements.
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5.1 Sensor Structure Design

In this chapter a new design of tactile sensor is introduced based on piezoresistive

sensing principle. The sensor is capable of measuring time-dependent behavior of

tissues in addition to hardness measurement. In detail, force, displacement, and the

average displacement rate can be measured with this new array tactile sensor, which

is composed of two piezoresistive array sensors and one piezoresistive force sensor.

The piezoresistive array sensors act as tactile switches to trigger recording the output

of the single force sensors. The schematic exploded configuration of the tactile sensor

is shown in Fig. 5.1

Exploded View 

of Array Sensor

Exploded View 

of Large Force Sensor
Piezoresistive Sensing

Element (Linqstat)

5 mm

Figure 5.1: Schematic exploded view of the sensor and its components

The piezoresistive sensing array on the left side of the sensor has two sensing
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elements, while the sensing array on the right side has three sensing elements. The

arrangement of the sensing elements on each side of the sensor is in a way that the

summation of the two arrays together can cover the total height of the sensor with

sensing elements. Together, the two array sensors have five sensing elements, tactile

switches, to cover the 5mm indentation depth of the sensor.

5.1.1 Sensor Fabrication

To manufacture the sensor—similarly to fabrication method in chapter 3—two

array sensors, one force sensor, and a trapezoidal plate are fabricated and integrated

together. Each of the array sensors consists conductive electrodes, polyester films,

and piezoresistive sensing elements, see Fig. 5.2. One of the electrodes is commonly

used by all of sensing elements. The electrodes are covered with two layers of polyester

film, or silicone tape from top and bottom. The thin layer of the polymer composite

is then sandwiched between the two layers of electrodes. The trapezoidal plate is

manufactured from steel.

After fabrication of the individual components of the array tactile sensor, Fig. 5.3a,

the elements are adhered together to form the tactile sensor as shown in Fig. 5.3b.

The electrical circuit of the array sensors is similar to those in Chapter 3, but in array

format.

In both array sensors, there are total of five tactile switches, which have 1mm
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Linqstat
Electrodes

(a)

(b)

Figure 5.2: (a) Components of array sensor (b) The fabricated array sensor size
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Array Force sensors

as tactile switch

Large 

Force SensorTrapezoidal Force SensorTrapezoidal

Body

(a)

(b)

Figure 5.3: (a) Manufactured components of the array tactile sensor (b) Fabricated
tactile sensor
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perpendicular distance from each other. Therefore, during the indentation of tactile

sensor into the tissue, tactile switches send five separate signals for force and time

recording purpose in each 1mm indentation depth for the total length of 5mm. The

trapezoidal plate has a 20◦ angle on each side, which was found experimentally.

5.2 Sensing Algorithm

A novel sensing algorithm is developed for the tactile sensor. The algorithm is

relatively simple and has several features for measuring different tissue properties.

Figure 5.4 shows the flowchart for the sensing algorithm. As shown in the flowchart,

the output of the large force sensor is being continuously measured to ensure that the

tissue is in touch with the force sensor. A threshold value can be also assigned for

the large sensor output, in presence of noise. For piezoresistive sensors, this threshold

value is set to zero by virtue of the low noise generation in their structure. If the

output signal of the sensor becomes larger than the threshold value, here zero, then

it means that the sensor is touching the tissue and the time recording process starts

from that moment. Following the application of force, the sensor penetrates inside the

tissue, therefore reaching the tactile switches on the sensor in each 1mm indentation

depth. At the instant of tissue contact with tactile switches, the force output of the

large sensor and the time is recorded. Therefore it can be considered that
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F = Fi, and δT = Ti − Ti−1 (5.2.1)

where Fi is the measured force at each instant i = 1 · · ·5, and δT is the time during

which the tissue is displaced for 1mm in the ith step. So, for each complete inden-

tation depth, five different δT is being recorded. By taking the average of these five

displacement timing, the average displacement rate can be achieved for each complete

touch, as

V̄ =
5

∑5
i=1 Ti

(mm/sec) (5.2.2)

where V̄ is the average displacement rate, i.e., average velocity.

During touch, first, the tissue is pressed by the sensor, and then the tissue is

released. The recorded force, time, and displacement measurements during loading

is of interest in tactile sensing. However, the tactile switches of the sensor are in

contact with the sensor both during loading and unloading, continuously sending

data to the program. To distinguish useful data—those extracted during loading—

shift registers are used, i.e., the recorded output from a tactile switch in time N is

compared with both previous data in time N − 1 and a pre-defined threshold value.

If the data is greater than those two latter, then it means that data is being taken

during loading part of the touch, otherwise data is ignored. Since the tactile switches

has the same structure of force sensor, therefore its output voltage has direct relation
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Figure 5.4: The sensing flowchart for the tactile sensor
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with the applied force. So, the increase in the output signal has direct relation with

the increase in force. In the case of the large force sensor, its output is calibrated;

and the output data is converted to the force in the program based on the calibration

process, as stated in previous chapters.

The depicted algorithm in Fig. 5.4 is developed in LabView environment as shown

in Fig. 5.5.
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5.3 Experiments

To test the output of the sensor, three different types of tissue with different

softness degrees were selected. The three tissues were diced and cut into cubic shape

with the same size. The sensing principle of the array tactile sensor is the same with

the tactile sensor in Chapter 3. Therefore, explanation about the sensor characteristic

and connecting array tactile sensor to the written code is avoided in this chapter

(Please refer to Section 3.1.2 for more details and explanations). The sensor is placed

on the upper jaw of the ElectroForce Bose 3200, and the tissue is place on the lower

jaw. Constant displacement 5mm is applied to the same type of tissue samples

progressively. As shown in Fig. 5.6, the tactile sensor penetrates inside the tissue for

measuring its properties.

(a) (b) (c)

Figure 5.6: Progressive indentation of the tactile sensor into the tissue

In the experiment, the tissues are selected and diced into cubic shape with the
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same size. Then the sensor is pressed on the tissue, as shown in Fig. 5.6, several times

each time with a different displacement rate. The average velocity, displacement, and

force is measured by the tactile sensor. The results showed that the force-displacement

behaviour of tissue changes with different displacement rates. Figure 5.7 shows the

measured data for one tissue with different displacement rate. It shows that displace-

ment rate can change the tissue response to force or displacement.
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Figure 5.7: Force-displacement response of tissue for different displacement rates

The same type of test with other tissues also resulted in similar tissue response,

confirming the different force-displacement behaviour for one type tissue. In a differ-

ent experiment, the tactile sensor is used to distinguish the softness degree of three

different tissues with several indentation rates. First, all of the three tissues were
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tested with 1mm/s displacement rate, as shown in Fig. 5.8. The results show that

tissue 2 is harder than tissue 1; and tissue 1 is harder than tissue 3 for 1mm/s dis-

placement rate. Interestingly, the three tissues show very similar behaviour during

the first 1mm indentation. It is hard to clearly distinguish the difference in the hard-

ness degree between the three tissues; The behaviour of tissue 1 and 2 is similar,

even for 2mm indentation. By increasing the indentation depth, tissue 2 shows a

higher hardness degree. In fact this situation is the same in reality, i.e., one tries to

push more with his finger, if it becomes difficult to distinguish between the softness

degree of two objects with similar response. In the experiments, the tissues behaviour

changes drastically by changing the displacement rate. For example, the behaviour of

tissue 1 and 3 varies by changing the displacement rate to 0.5mm/s. Tissue 1 shows

softer property while tissue 3 shows harder property, even harder than tissue 1 with

1mm/s displacement rate. However, tissue 3 shows higher hardness with increasing

the displacement rate to 3mm/s. Therefore, it can be said that tissue 2 is generally

harder than tissue 1 and 3. However, the hardness difference of tissue 1 and 3 can

be decided based on the displacement rate. This shows that displacement rate is a

determining factor in distinguishing the hardness degree for materials with similar

viscoelastic properties.
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Chapter 6

3D Graphical Display of Localized

Lumps and Arteries

Detection of hard inclusions within soft tissue in MIS, also referred to as laparo-

scopic surgery, is of great importance, both in clinical and surgical applications. In

surgical applications, when any solid matter is being removed, it is important to avoid

accidental injury to surrounding tissues and blood vessels since, were this to occur,

it could then necessitate the need to resort to open surgery. This chapter describes

a new system for localizing small masses during MIS procedures and shows how tac-

tile sensors can now be integrated into a laparoscopic grasper in order to measure

the applied pressure that is placed on the tissue [94, 139, 140]. In fact, two matrices

of piezoresistive force/pressure sensors, which are described in Chapter 2, are being
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used in order to show any embedded lump or arteries inside tissue in 3D. The tactile

system, as shown in Figure 6.1, allows surgeons to explore the operation site in a

more thorough and exact manner. Section 6.1 describes the major components of the

tactile system. The sensor, probe mechanics, and image processing are explained in

detail in Sections 6.2 and 6.3. Section 6.4 describes the experiment used to validate

the performance of the system in a dry lab setting. Section 6.5 describes the results

of the finite element simulations. Section 6.6 discusses the results of simulation and

experiments.

TACTILE DISPLAY

SURGEO

DAQ

GRASPER MIS

SIG AL 

PROCESSI G

SE SOR 

MATRIX

Figure 6.1: Schematic view of the relation between components

6.1 System Design

In this research work, the system we propose to employ uses an MIS grasper that is

equipped with two matrices of piezoresistive pressure/force sensors on its jaws, a Data
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Acquisition (DAQ) interface, and signal processing algorithms. The miniaturized

scale of the piezoresistive sensors can be integrated on the tip of a variety of MIS

laparoscopic and robotic graspers. When the surgeon uses a grasper and touches

tissue that possibly contains a lump or an artery, the sensor matrices measures the

pressure/force applied to the tissue at the grasping areas. Based on these pressure

readings, electrical outputs of the sensor matrices are then transferred to the DAQ as

a voltage input from which a program will confirm the location and presence of either

a lump or artery in a three-dimensional display using LABVIEW software. Therefore,

the system is capable of providing the surgeon with a visual display of arteries and

lumps, in both dynamic and static modes, during the operating procedure.

6.2 Sensor Elements

In this current research work, piezoresistive force sensors fabricated from Linqs-

tat (a semi-conductive polymer composite from CAPLINQ Corporation) are used to

measure the applied force [87]. Semi-conductive polymer composites exhibit a de-

crease in electrical resistivity when a change in force is applied to their structure [87].

To fabricate the force sensor, a thin (200µm) layer of Linqstat is sandwiched between

two layers of copper electrodes. The electrodes are then covered with two layers of

polyester film. Figure 6.2a shows a view of the fabricated force sensor. Figure 6.2b
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shows the inside view of the sensor and its electrical model [87]. Although the rela-

tionship between the resistance and the applied force is not linear, the conductance

of the sensor has a linear relationship with force. Thus, in the calibration setup,

the conductance is measured and converted to force according to their linear rela-

tionship. After conducting simple calibration tests [89], the relationship between the

conductance and applied force to the sensor can be determined.

In this work, 18 different force sensors were used in two 3 × 3 matrices of force

sensors. Calibration was performed on each sensor and all 18 force sensors were

calibrated individually in the range of 0 to 20N . The resolution of each fabricated

force sensor is 0.1N and the repeatability of the sensor is ±2.5% of full scale with an

appropriate static and dynamic response.

After calibration of sensors, the sensor matrix was assembled on a piece of plexi-

glass to perform experiments. The ElectroForce 3200 BOSE device was used to apply

a normal load to the piezoresistive force sensor plane. In order to read the outputs,

sensors were connected to a buffer circuit which, in turn, was connected to a DAQ

board and finally to a PC. The buffer circuit was used to reduce the loading effect of

the tactile sensors on the DAQ amplifiers in order to prevent crosstalk.
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Figure 6.2: Schematic view of the relation between components (a) View of the
fabricated force sensor using Linqstat and its components (b) Schematic view of
the current flow geometry (c) Photograph of the elastomers, lump, and artery (d)
Photograph of a sensor matrix
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6.3 Lump Detection Algorithm

The output from an array of force sensors was fed into the DAQ which contained an

algorithm that converted the location of lumps and arteries into a color band display.

The color was proportional to the pressure registered by the corresponding sensing

element. In [139], the algorithm for a one-dimensional lump detection, presented

in [140], was extended for two-dimensional localization of lumps. Two arrays of

sensing elements were used on both sides of simulated tissue. In this research work,

two elastomeric materials B1 and ICF400 (from PROFOM Company), with different

stiffness were used to simulate the behaviour of soft tissue to localize the lumps. A

three-dimensional lump detection algorithm, presented in this work, is the extension

of the algorithm used for two-dimensional lump detection. In order to understand the

three-dimensional lump detection algorithm, the one and two dimensional detection

algorithms should be studied in enough details, which is given in Appendix A. For a

full discussion of these algorithms, please refer to [139, 140]. As shown in Fig. 6.2c

(left), lumps were simulated by hard balls inserted inside elastomers. These balls

have a much higher module of elasticity than elastomers. The existence of these hard

balls inside elastomers can be detected by finger touch whereas arteries, on the other

hand, are simulated by hard plastic tubes implanted inside elastomers as shown in

Fig. 6.2c (right).



131

6.3.1 Lump Localization in Three Dimensions

Figure 6.3 shows the sensor array design for three-dimensional lump detection.

Both upper and lower jaws of an endoscopic grasper are equipped with matrices of

sensors. Two matrices are used to localize lumps in three dimensions. Each matrix

consists of an array of 3 × 3 force sensing elements. The sensing elements on the

upper and lower matrices are called U and L elements. The sensing elements have

two indices that show the row and column of the sensing element in the matrix. For

instance, U2, 1 is the sensing element located on the upper matrix on the second row

and first column, and L1, 3 is the sensing element located on the lower matrix on the

first row and third column. A lump in three dimensions is shown by using front view,

left view, and top view. These views are shown in Fig. 6.3a. The algorithm, which

is used to show the front view and left view in 3D, is very similar to the algorithm

explained in 2D, the main difference is the arrangement of the sensing elements for

each view. For the tactile image of the front view, only the column in which a lump

is located is important. Figures 6.3aand 6.3b show the idea. In this arrangement,

it does not matter if a lump is located on the first, second, or third row. Only the

column in which a lump is located would affect the front view image. For example,

if a lump is located on L1, 2, the image is no different to that of an image of a

lump located on L2, 2 or L3, 2. In fact, for the front view, the output signals of the

force sensors of different rows in each column are added together. Figure 5.b shows
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(a)

(b)

(c)

(d)

Figure 6.3: (a) Three views of the upper and lower sensor matrices (b) The output
signals for the front view (c) The output signals for the left view (d) The output
signals for the top view
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the arrangement of output signals for the front view of the sensor. There are three

outputs for each of the upper and lower matrices. Each output is the summation

of three sensing elements located on the same column. For instance, the upper left

output is the addition of signals from sensing elements U1, 1 + U2, 1 + U3, 1 and the

lower middle output is the addition of signals from L1, 2 + L2, 2 + L3, 2.

Similarly, for the intensity display of the left view, the output signal of the force

sensors of different columns in each row are added together, since the column in which

a lump is located is not important (Fig. 6.3a). Figure.6.3c shows the output signals of

the left view of the sensor. Here, similar to the front view, there are three outputs for

each of the upper and lower sensors. Each output is the summation of three sensing

elements on the same row. For example, the upper left output is the addition of

signals from sensing elements U3, 1 + U3, 2 + U3, 3 and the lower middle output is

the addition of signals from L1, 1 + L1, 2 + L1, 3.

For the top view, on the other hand, both row and column of lumps are important.

In this case the output signal of the force sensors of upper and lower sensing elements,

located on the same row and column, are added together. Figure 6.3d shows the

output signals of the top view of the sensor where there are a total of nine outputs.

Each output is the addition of two sensing elements on the same row and column.

For example, the upper left output is the addition of signals from sensing elements

L3, 1+U3, 1 and the lower middle output is the addition of signals from L1, 2+U1, 2.
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Since there are nine outputs here, it is not possible to use the two-dimensional

algorithm. In fact, an extended version of that algorithm is needed in this case. In

the extended version, the 2D algorithm is used twice. First, an intensity display is

calculated for the sensing elements of the first and second row. Another display is

calculated for the sensing elements of the second and third rows. Finally the two

displays are added together and a complete display is provided.

The corresponding matrix of output voltages is in the following form

V =








VU3,1 + VL3,1 VU3,2 + VL3,2 VU3,3 + VL3,3

VU2,1 + VL2,1 VU2,2 + VL2,2 VU2,3 + VL2,3

VU1,1 + VL1,1 VU1,2 + VL1,2 VU1,3 + VL1,3








(6.3.1)

This 3× 3 matrix is divided into two 2× 3 matrices as below:

V1 =




VU3,1 + VL3,1 VU3,2 + VL3,2 VU3,3 + VL3,3

VU2,1 + VL2,1 VU2,2 + VL2,2 VU2,3 + VL2,3



 (6.3.2)

and

V2 =




VU2,1 + VL2,1 VU2,2 + VL2,2 VU2,3 + VL2,3

VU1,1 + VL1,1 VU1,2 + VL1,2 VU1,3 + VL1,3



 (6.3.3)

H1 andH2, which are M×N matrices, can be calculated from V 1 and V 2 by using

the relationship in eq.(.2.6). Matrix H , which is the intensity distribution matrix for

V , is calculated as

H =




H1

H2



 (6.3.4)

Figure 6.4d shows an artery that is located at the front-right of an elastomers sample.

Figures 6.4a, 6.4b, and 6.4c show the intensity displays calculated for the front view,
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left view and top view of the sample. The location of the lump can be confirmed by

comparing these three views.

(a) Front View (b) Left View 

Front View

Left View

Top View

(C) Top View (d)

Figure 6.4: A lump located at the front-right of an elastomer sample and its 3D tactile
image

6.4 Experiments

An experimental setup was used to generate graphical tactile information. The

setup includes an ElectroForce 3200 BOSE device for applying dynamic and statics

loads to simulated soft tissue containing artery and cancerous lump. Two elastomers,

B1 and ICF400, with different stiffness were selected as the simulated tissue. To

behave in a similar way to biological tissues, the elastomers were selected among

those materials that undergo large deformation. The elastomers also were modelled
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as hyperelastic materials in the FE modeling. The matrices of the force sensor were

positioned between the jaws of the BOSE device. The elastomer containing the

embedded lump or artery was sandwiched between two matrices of the force sensors.

Plastic balls and soft plastic tubes with known Young’s modulus were used as lump

and artery, as shown in Fig. 6.2c. To change the depth of lumps and artery inside

the elastomers, several layers of elastomers were cut into the same dimensions, but

with different thicknesses. Lumps or arteries were placed inside one of the layers. A

dynamic load was applied by the BOSE device to the jaws, and to the elastomers.

The output of the sensors was fed into the buffer circuit, to DAQ (NI PCI 6225), and

to the developed algorithm in the LabView software to localize the place of the artery

and the lump in three dimensions. A low-pass filter with a cutoff frequency of 40Hz

was used to remove the 60Hz line noise. Another experimental setup was used to

acquire the stress-strain curve of the two selected elastomers in a uniaxial compression

test by using a BOSE device. The compression test caused a displacement of 5.5mm

in both samples. The accuracy of the BOSE device in displacement measurement is

0.01mm, and in force measurement is 0.01N . The obtained data for the stress-strain

were used to model the elastomers as hyperelastic materials in the FEA.
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elastomers C10 C01 C11

B1 −129700 173670 55812
ICF −8598.8 10284 5143.6

Table 6.1: Constants of the three parameter Mooney-Rivlin model

6.5 FE Modeling

Different FE models were developed to analyze the validity of the output of the

3D graphical display. The soft tissue, the lump, and the artery were all considered

as isotropic elastic materials. The Young’s modulus of the lump and the artery

were considered to be 18KPa and 130KPa respectively [141–145]. The stress-strain

relation of B1 and ICF elastomers were found in compression tests using the BOSE

device for modeling the elastomers as incompressible hyperelastic materials. Concepts

for nonlinear stress-strain behavior of hyperelastic materials can be found in [114–116].

The values of constants and the method of experiments are already discussed in

Chapter 3. The compressive stress-strain curve for the two elastomers and the fitted

Mooney-Rivlin models are shown in Fig. 3.8, from which it can be seen that the third

order Mooney-Rivlin model fits best to the experimental data for both elastomers.

The Mooney-Rivlin Constants for B1-A and ICF are shown in Table 6.1. The

radius of the lump was selected to be 5mm, while the inside radius of the artery was

selected to be 4mm with a wall thickness of 0.6mm [146]. The tissue was modelled in

ANSYS by using 3D, 10 node tetrahedral elements, which is suitable for hyperelastic
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materials. Modeling of the embedded lump and the artery inside the tissue was

performed in two sections: the lump with the tissue, and the artery with the tissue.

The applied load to the tissue was considered in the form of displacement in the

modeling due to the same situation in real operations.

The pressure distribution in the upper and the lower surface of the tissue which

comes into contact with the sensors was plotted. In addition to the explained model,

another model was developed for the artery and the tissue. In this model, blood

pressure was considered to exist inside the artery, with and without application of

displacement to the tissue. The aim of this modeling was to see if the sensors can also

localize the artery only with the existing heart pressure pulse. The blood pressure

inside the artery replicated a pulse having a minimum and maximum pressure of

80 and 120mmHg. The cross section of the pressure distribution of both lump and

artery models is shown in Fig. 6.5.

6.6 Results and Discussion

Different lengths and combinations of arteries and lumps were embedded inside

the tissue and tested by the developed 3D display. In the experimental tests, there was

no pressure inside the arteries. Instead, arteries were selected from harder materials

to have more stiffness compared with tissue. The output of the developed program

in LabView in the 3D display is shown in Fig. 6.4a, 6.4b, and 6.4c. Fig. 6.4d shows
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a)

(a)

(b)

c)

(c)

Figure 6.5: Cross section of the FEM of the embedded lump and artery inside tissue
(a) Embedded lump inside the tissue, ICF elastomer, while applying 1mm displace-
ment to the upper and the lower jaws (b) The embedded artery inside tissue, B1
elastomer, while having only 12mmHg pressures in the artery (c) The embedded
artery inside tissue, ICF elastomer, while applying 1mm displacement to the upper
and the lower jaws, and having 8mmHg pressure in the artery
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the 3D schematic of the tissue and the embedded artery inside. As can be seen,

the display shows the three main engineering views (front, top, and left) of the tissue

with the embedded artery. The tissue is placed between the two force sensor matrices.

The system is capable of measuring in both dynamic and static modes which makes

it suitable for showing these objects while a surgical operation is being performed.

The same configuration of Fig. 6.4d was modelled by FEM using ICF elastomer.

The pressure distribution on the upper and the lower surface is shown in Fig. 6.6.

In the upper and lower surfaces of the tissue, more pressure is applied to the places

with an artery inside. More details about the 2D pressure distribution can be found

in [139]. As can be seen from both Figures 6.4 and 6.6, when the location of an

artery or a lump becomes closer to the upper or the lower surface of the tissue, the

pressure is increased at that surface as opposed to the other. This difference in the

upper and the lower pressure map can also be seen from the results of the 3D display

which shows that the sensors have enough sensitivity to detect different variations of

stiffness in the tissue. The coefficient of friction between the upper/lower surface of

the tissue and the grasper was set to 0.6 [121]. Figure 6.7 shows different results for

the experiments of embedded lumps and arteries inside tissue. These configurations

may not exist in reality; however, they have been tested to verify the ability of the

3D display in localizing different objects inside the tissue. From Fig. 6.7c, it can be

seen that the artery completely covers sensors L1, 2 and L1, 3, but sensor L1, 1 is only
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a)

(a)

b)

(b)

Figure 6.6: Cross section of the FEM of the embedded lump and artery inside tissue
(a) Embedded lump inside the tissue, ICF elastomer, while applying 1mm displace-
ment to the upper and the lower jaws (b) The embedded artery inside tissue, B1
elastomer, while having only 12mmHg pressures in the artery (c) The embedded
artery inside tissue, ICF elastomer, while applying 1mm displacement to the upper
and the lower jaws, and having 8mmHg pressure in the artery
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half-covered. Therefore, sensor L1, 1 shows less force amplitude in comparison with

sensors L1, 2 and L1, 3 both of which result in the same 3D display. Since surgeons

a)

(a)

(b)

c)

L1,3L1,2L1,1

(c)

Figure 6.7: Results of the 3D software for different configurations (a) Two embedded
lump inside the tissue (b) Two embedded artery inside tissue (c) One embedded artery
inside tissue and the position of the upper and the lower sensor matrixes according
to the position of the artery

are the end-user of the 3D display technique, the three individual 2D engineering

drawings of lumps and arteries can be changed to only one 3D image of the tissue
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including lumps or arteries. This conversion to 3D makes it easier for surgeons to

visualize the objects inside tissues. Hence, the three individual drawing were sent

to CATIA software to recreate one 3D image. Figure 6.8 shows the created 3D

image in CATIA. Although the recreated 3D image is not exactly the same as actual

configuration of lumps or arteries, but it can show the location of the embedded lumps

and arteries. By increasing the number of sensors, the resolution of the created image

can be improved and the image can become more close to the actual situation. The

future work is to increase the number of sensing elements to increase the accuracy

of the created 3D image. In addition, facilitating the view of the 3D image in the

LabView software is beneficial, as in this case there is no need to write a code between

different software to connect them together which results in lower speed in real-time

viewing of the 3D image.
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a)

(a)

b)

(b)

Figure 6.8: Results of the 3D Image (a) Location inside the tissue (b) Recreation of
the two arteries in a 3D image



Chapter 7

summary and conclusions

7.1 Conclusions

In this thesis, a novel formulation was developed for modeling the behaviour of

electrical resistivity of semiconductive polymer composites on an applied load. The

proposed formulation, in Chapter 2, includes a viscoelastic model that shows the creep

behavior of semiconductive polymer composites. Moreover, the contact resistance is

also included in the proposed formulation. Although contact resistance is not a large

factor at high resistances, it turns out that it has a significant effect in the lower

range of resistance. This is very important given the fact that the working range of

the sensor needs to be accurate from 0.5N to 5N .

Linqstat as a semiconductive polymer composite was selected to verify the validity

145
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of the proposed formulation by means of experiments. Creep tests were performed

on Linqstat samples and the viscoelastic parameters were determined. In addition,

by using Linqstat, an accurate force sensor was fabricated; and the results obtained

from the formulas corresponded very closely to the actual output readings from the

sensors.

By using the principle of the developed force sensor with Linqstat, an innovative

tactile sensor was designed, fabricated, simulated, and tested for use in both CBT

and MIS in Chapter 3. The experimental tests results of the study confirmed that the

tactile sensor successfully characterized seven elastomers. Such elastomers resemble

different biological tissues with different degrees of hardness involved in surgical oper-

ations. For instance, among those seven materials, the hard ones could be a tumorous

lump, an artery, or a ureter surrounded by a background tissue; whereas the soft ones

could be the background tissue. As another example, the hard materials could be

mitral annulus tissue while the soft ones could be mitral leaflet tissue or left atrial

tissue.

The sensor was used to detect the differences in the hardness degree for different

elastomers. In order to validate the performance of the sensor, its output was com-

pared to the results of three different techniques as follow: (1) FEA of the interaction

between the sensor and elastomers; (2) Hardness measurement of the same elastomers
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with a durometer device; and (3) a psychophysical test of relative hardness measure-

ment for the same materials. In the first technique, compression tests were conducted

on the elastomers to obtain their stress-strain information. The test data was used

to develop a FE model of the materials based on a three-parameter Mooney-Rivlin

hyperelastic model. These models were used to simulate the interaction between the

sensor and the elastomers. In the second technique, the hardness of the elastomers

was tested by a standard durometer device. In the third technique, a group of twenty

students from the faculty of engineering at Concordia University were asked to report

their tactile perception on the degrees of hardness, relatively, for the same materials.

The comparison between the output of the sensor and the results of three techniques

validates the design concept and the performance of the sensor.

In the literature, most of the sensors developed for MIS have either complicated

designs or incompatible configurations to be used in CBT. However, the present

sensor offers various key features that enhance its performance for use in both MIS

and CBT applications. Such key features of the sensor are its ability to perform such

measurements with the following characteristics: (1) it consists of a flexible design

with single solid piece without any moving parts; (2) it performs under both static

and dynamic loading conditions; and (3) it can easily be micro-fabricated due to the

simple design of the sensor.

The first innovative feature of the sensor eliminates the risk of physical damage
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to the sensor before and during the surgical operations. In other words, the single

solid piece of the sensor tolerates excessive forces that might be applied to the sensor

unintentionally. In the mean time, the circular configuration of the sensor facilitates

its integration with the narrow spaces available at the tips of surgical catheters.

Furthermore, the external shape of the tactile sensor can be also reconfigured to square

shape, without any change in the principle of the sensing mechanism. This flexibility

in the shape of the sensor allows it to be fabricated on the jaws of a surgical grasper in

MIS. Hence, the developed sensor can be used in both MIS and CBT applications for

the palpation of tissues. In addition, the tactile sensor can be fabricated on robotic

manipulators and end-effectors for other purposes, e.g. teletouch applications.

The second feature of the sensor helps surgeons to maintain a stable contact

between the tips of catheters and tissues. The third feature of the sensor allows

the cost-effective batch production of the sensor in a miniaturized scale. As the

tactile sensor is composed of a piezoresistive layer and a filler plate, they both can

be cut into small pieces by using accurate laser cutting technology; and be assembled

by micro-manipulators. Moreover, the piezoresistive-based sensing principle of the

sensor provides a low noise signal, which requires a simple signal processing for the

hardness measurements.

After development of the tactile sensor, the interaction of the tactile sensor with

soft tissues was investigated in Chapter 4. A novel contact model was developed
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for the interaction between developed tactile sensor and viscoelastic tissue. Several

in-vitro DMA tests were conducted on the tissue to extract the coefficients of the

viscoelastic model for the atrial tissue of swine heart. The complex compliance of

the atrial tissue was determined with DMA method for harmonic loading conditions,

starting from 1 Hz to 36 Hz. Using a genetic algorithm, the 17 constants of the

viscoelastic model of the tissue were obtained. The viscoelastic model of the atrial

tissue could successfully replicate the response of the tissue under dynamic loading

conditions.

The tissue model data were entered in the contact model; the relation between

the indentation displacement, the ratio of the radii, time, and the applied force were

established. The contact model has several applications, e.g, in selecting the optimum

dimensions of the tactile sensor and surgical catheters, and in simulating the real-time

tissue interaction with catheters in surgical simulators for training purposes. As the

contact model is based on parametric representation, the simulation of the tissue

behaviour is much faster and simpler when compared to other modeling techniques

such as FEA. In addition, under quasi-static loading conditions, a dynamic load was

applied to the tissue and the response of the tissue was simulated in real-time. It

was shown that the model can replicate the quasi-static behaviour of the tissue to

the applied load as well as the creep effect for a constant load.

The new idea of recording time during touch was also provided in the form of a new



150

array tactile sensor in Chapter 5. The array tactile sensor was designed, developed,

and fabricated for use in MIS. A new algorithm was also developed to run the array

sensor. In the array sensor, force, displacement, and displacement rate were also

measured during touch. It was shown that the new sensor can differentiate between

the hardness degree of soft tissues with viscoelastic behaviour. The change in the

force-displacement response of the tissue for different displacement rate application

validated the design concept of the new array tactile sensor. These changes in force-

displacement value showed that there is a need to measure the displacement rate

while conducting touch with the sensor to the tissue.

In the second section of the thesis, the piezoresistive force sensors were used in

a matrix form for artery and tumour localization in MIS. In the proposed system,

using the piezoresistive force matrix, any lumps or masses within tissue were detected,

located, features extracted, and visually displayed. The utilized sensor matrix were

associated with a new approach for the graphical display of lumps and inclusions

embedded in a soft object. The displayed images are easily recognizable by the

surgeon. When an array of these sensors is placed in one jaw of the endoscopic

grasper, the location of the lump along the grasper can be detected and displayed.

By using sensor matrices in both the upper and lower jaws of the grasper, it is possible

to find and graphically represent inclusions in the grasped object in three dimensions.

Therefore, using the proposed system, surgeons can detect the presence or absence
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of a lump and obtain useful information on its size and location by simply grasping

the target organ with the smart endoscopic grasper and view the resulting processed

information on a visual display.

7.2 Contributions

This thesis presents some studies and development on the use of tactile sensors

and graphical displays in surgical applications. The contribution of the theses can be

classified as below:

1. A new approach is proposed for parametric modeling of piezoresistive force

sensors based on polymer composite materials. Electrical contact and creep

behaviour of Linqstat is modelled and implemented in the parametric model.

2. By development of a novel piezoresistive tactile sensor, a new method is pro-

posed for softness/hardness feedback from surgical catheter.

3. It is shown that the developed miniaturized sensor is capable of hardness mea-

surement under different loads and frequencies.

4. Nonlinear hyper elastic model of several tissues is developed for the sensor

performance validation.

5. A viscoelastic model is developed for atrial tissue of porcine heart by using
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DMA method and a GA code.

6. The viscoelastic contact between tissue and tactile sensor, or a possible catheter,

is developed parametrically.

7. A new generation of array tactile sensors was developed, which measures the

displacement rate during the touch for tissues vis viscoelastic behaviour.

8. A novel technique is developed for 3D graphical rendering of tactile information

to surgeons. The graphical display is capable of rendering any inclusions inside

the tissue such as lumps or artery.

Some of the original contributions are already published as conference papers [89,

90, 94] and journal articles [87, 88, 91, 93].

7.3 Future Works

An array of micro-fabricated version of the proposed tactile sensor is proposed to

be integrated into the tip of a catheter. This project is currently under investigation

in our laboratory. In real surgical setup, the middle part of the catheter should

be reserved for the anchoring system of the mitral valve. Furthermore, the output

signal from only one sensor on the tip of a catheter is not enough for localizing

and positioning the mitral annulus from its surrounding tissues. Hence, more tactile

sensors may be used for comparing their output signals together to localize the hardest
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atrium

annulus

leaflet

catheter

tactile sensor

Figure 7.1: Localizing the position of mitral annulus by comparing the output of the
tactile sensors on the tip of catheter

tissue, annulus. In the next step, several tactile sensors, at least four, should be

fabricated on the extremity of the catheter circumferentially as shown in Fig. 7.1.

Then, each of the sensors would have different output signal by establishing a suitable

contact between the catheter tip and heart tissue. By graphical rendering of the

difference in the relative hardness, the surgeon can localize the position of the mitral

annulus. The graphical interface for the sensors is already developed. The future

work is to miniaturize the sensors and to integrate them into the extremity of the

catheter, followed by clinical tests.



Bibliography

[1] Camarillo, D., Krummel, T., Salisbury, J., et al., 2004. “Robotic technology in

surgery: past, present, and future”. The American Journal of Surgery, 188,

pp. 2–15.

[2] Bicchi, A., Canepa, G., De Rossi, D., Iacconi, P., and Scillingo, E., 1996. “A

sensor-based minimally invasive surgery tool for detecting tissue elastic prop-

erties”. In IEEE 1996 International Conference on Robotics and Automation

Proceedings, Vol. 1, IEEE Press, pp. 884–888.

[3] Dargahi, J., and Najarian, S., 2005. “Advances in tactile sensors de-

sign/manufacturing and its impact on robotics applications–a review”. Indus-

trial Robot: An International Journal, 32(3), pp. 268–281.

[4] King, C., Culjat, M., Franco, M., Bisley, J., Carman, G., Dutson, E., and

Grundfest, W., 2009. “A multielement tactile feedback system for robot-assisted

minimally invasive surgery”. IEEE Transaction on Haptics, 2, pp. 52–56.

[5] Kane, B., Cutkosky, M., and Kovacs, G., 1996. “Cmos-compatible traction

stress sensor for use in high-resolution tactile imaging”. Sensors and Actuators

A: Physical, 54(1–3), pp. 511–516.

154



155

[6] Omata, S., Murayama, Y., and Constantinou, C., 2004. “Real time robotic

tactile sensor system for the determination of the physical properties of bioma-

terials”. Sensors and Actuators A: Physical, 112(2-3), pp. 278–285.

[7] Padala, M., Sacks, M., Liou, S., Balachandran, K., He, Z., and Yoganathan, A.,

2010. “Mechanics of the mitral valve strut chordae insertion region”. ASME

Journal of Biomechanical Engineering, 132(8), pp. 081004–0810013.

[8] Azar, T., Rajagopalan, S., Cecere, R., Kovecses, J., and Angeles, J., 2008. “A

concept for a novel procedure for mitral valve repair by percutaneous annulo-

plasty”. In ASME 3rd Frontiers in Biomedical Devices Conference & Exhibition,

Vol. 2008, pp. 33–34.

[9] Cecere, R., and Azar, T., 2010. Instrument including a movement sensor and

method of using same, Dec. 17. US Patent App. 12/926,915.

[10] Fundaro, P., Tartara, P., Villa, E., Fratto, P., Campisi, S., and Vitali, E., 2007.

“Mitral valve repair: Is there still a place for suture annuloplasty?”. Asian

Cardiovascular & Thoracic Annals, 15(4), pp. 351–358.

[11] Misra, S., Ramesh, K., and Okamura, A., 2008. “Modeling of tool-tissue inter-

actions for computer-based surgical simulation: a literature review”. Presence:

Teleoperators and Virtual Environments, 17(5), pp. 463–491.

[12] Fearing, R., Moy, G., and Tan, E., 1997. “Some basic issues in teletaction”. In

1997 IEEE International Conference on Robotics and Automation Proceedings,

Vol. 4, IEEE, pp. 3093–3099.

[13] Eklund, A., Bergh, A., and Lindahl, O., 1999. “A catheter tactile sensor for

measuring hardness of soft tissue: measurement in a silicone model and in

anin vitro human prostate model”. Medical and Biological Engineering and

Computing, 37(5), pp. 618–624.



156

[14] Miyaji, K., Furuse, A., Nakajima, J., Kohno, T., Ohtsuka, T., Yagyu, K.,

Oka, T., and Omata, S., 1997. “The stiffness of lymph nodes containing lung

carcinoma metastases”. Cancer, 80(10), pp. 1920–1925.

[15] Wolffenbuttel, M., and Regtien, P., 1991. “Polysilicon bridges for the realization

of tactile sensors”. Sensors and Actuators A: Physical, 26(1-3), pp. 257–264.

[16] Hu, N., Karube, Y., Yan, C., Masuda, Z., and Fukunaga, H., 2008. “Tunnel-

ing effect in a polymer/carbon nanotube nanocomposite strain sensor”. Acta

Materialia, 56(13), pp. 2929–2936.

[17] Knite, M., Teteris, V., Kiploka, A., and Kaupuzs, J., 2004. “Polyisoprene-

carbon black nanocomposites as tensile strain and pressure sensor materials”.

Sensors and Actuators A: Physical, 110(1–3), pp. 142–149.

[18] Qu, S., and Wong, S., 2007. “Piezoresistive behavior of polymer reinforced by

expanded graphite”. Composites science and technology, 67(2), pp. 231–237.

[19] Wang, L., Ding, T., and Wang, P., 2008. “Effects of compression cycles and

precompression pressure on the repeatability of piezoresistivity for carbon black-

filled silicone rubber composite”. Journal of Polymer Science Part B: Polymer

Physics, 46(11), pp. 1050–1061.

[20] Mahmoud, W., El-Lawindy, A., El Eraki, M., and Hassan, H., 2007. “Butadiene

acrylonitrile rubber loaded fast extrusion furnace black as a compressive strain

and pressure sensors”. Sensors and Actuators A: Physical, 136(1), pp. 229–233.

[21] Luheng, W., Tianhuai, D., and Peng, W., 2007. “Effects of conductive phase

content on critical pressure of carbon black filled silicone rubber composite”.

Sensors and Actuators A: Physical, 135(2), pp. 587–592.

[22] Melchiorri, C., 2000. “Slip detection and control using tactile and force sensors”.

IEEE/ASME Transactions on Mechatronics, 5(3), pp. 235–243.



157

[23] Vanello, N., Hartwig, V., Tesconi, M., Ricciardi, E., Tognetti, A., Zupone, G.,

Gassert, R., Chapuis, D., Sgambelluri, N., Scilingo, E., et al., 2008. “Sensing

glove for brain studies: Design and assessment of its compatibility for fmri with

a robust test”. IEEE/ASME Transactions on Mechatronics, 13(3), pp. 345–

354.

[24] Kawasaki, H., Komatsu, T., and Uchiyama, K., 2002. “Dexterous anthropomor-

phic robot hand with distributed tactile sensor: Gifu hand ii”. IEEE/ASME

Transactions on Mechatronics, 7(3), pp. 296–303.

[25] Lin, L., and Huang, H., 1996. “Integrating fuzzy control of the dexterous

national taiwan university (ntu) hand”. IEEE/ASME Transactions on Mecha-

tronics, 1(3), pp. 216–229.

[26] Nilsson, M., 2000. “Tactile sensors and other distributed sensors with minimal

wiring complexity”. IEEE/ASME Transactions on Mechatronics, 5(3), pp. 253–

257.

[27] Tan, H., Slivovsky, L., and Pentland, A., 2001. “A sensing chair using pres-

sure distribution sensors”. IEEE/ASME Transactions on Mechatronics, 6(3),

pp. 261–268.

[28] Lee, W., Son, J., Kang, N., Park, I., and Park, Y., 2009. “Finite-element analy-

sis of deformation behaviors in random-whisker-reinforced composite”. Scripta

Materialia, 61(6), pp. 580–583.

[29] Ruschau, G., Yoshikawa, S., and Newnham, R., 1992. “Resistivities of conduc-

tive composites”. Journal of applied physics, 72(3), pp. 953–959.

[30] Luheng, W., Tianhuai, D., and Peng, W., 2009. “Influence of carbon black con-

centration on piezoresistivity for carbon-black-filled silicone rubber composite”.

Carbon, 47(14), pp. 3151–3157.



158

[31] Xie, Z., Yum, Y., and Lee, C., 2007. “Simulation of electrical resistivity of car-

bon black filled rubber under elongation”. Journal of Macromolecular Science,

Part B, 46(3), pp. 561–567.

[32] Hall, R., Desmoulin, G., and Milner, T., 2008. “A technique for conditioning

and calibrating force-sensing resistors for repeatable and reliable measurement

of compressive force”. Journal of biomechanics, 41(16), pp. 3492–3495.

[33] Zhang, X., Pan, Y., Zheng, Q., and Yi, X., 2000. “Time dependence of piezore-

sistance for the conductor-filled polymer composites”. Journal of Polymer Sci-

ence Part B: Polymer Physics, 38(21), pp. 2739–2749.

[34] Gillinov, A., and Liddicoat, J., 2006. “Percutaneous mitral valve repair”. Sem-

inars in Thoracic and Cardiovascular Surgery, 18(2), pp. 115–121.

[35] King, C., Culjat, M., Franco, M., Lewis, C., Dutson, E., Grundfest, W., and

Bisley, J., 2009. “Tactile feedback induces reduced grasping force in robot-

assisted surgery”. IEEE Transactions on Haptics, 2(2), pp. 103–110.

[36] Puangmali, P., Althoefer, K., Seneviratne, L., Murphy, D., and Dasgupta,

P., 2008. “State-of-the-art in force and tactile sensing for minimally invasive

surgery”. IEEE Sensors Journal, 8(4), pp. 371–381.

[37] Yokoyama, K., Nakagawa, H., Shah, D., Lambert, H., Leo, G., Aeby, N., Ikeda,

A., Pitha, J., Sharma, T., Lazzara, R., et al., 2008. “Novel contact force

sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion

size and incidence of steam pop and thrombus”. Circulation: Arrhythmia and

Electrophysiology, 1(5), p. 354.

[38] Yip, M., Yuen, S., and Howe, R., 2010. “A robust uniaxial force sensor for

minimally invasive surgery”. IEEE Transactions on Biomedical Engineering,

57(5), pp. 1008–1011.



159

[39] Polygerinos, P., Zbyszewski, D., Schaeffter, T., Razavi, R., Seneviratne, L., and

Althoefer, K., 2010. “Mri-compatible fiber-optic force sensors for catheteriza-

tion procedures”. IEEE Sensors Journal, 10(10), pp. 1598–1608.

[40] Yuen, S., Yip, M., Vasilyev, N., Perrin, D., del Nido, P., and Howe, R., 2009.

“Robotic force stabilization for beating heart intracardiac surgery”. Medical

Image Computing and Computer-Assisted Intervention–MICCAI 2009, pp. 26–

33.

[41] Franco, M., King, C., Culjat, M., Lewis, C., Bisley, J., Holmes, E., Grundfest,

W., and Dutson, E., 2009. “An integrated pneumatic tactile feedback actuator

array for robotic surgery”. The International Journal of Medical Robotics and

Computer Assisted Surgery, 5(1), pp. 13–19.

[42] Yen, P., Chen, D., Yeh, K., and Chu, P., 2008. “Lateral exploration strategy

for differentiating the stiffness ratio of an inclusion in soft tissue”. Medical

engineering & physics, 30(8), pp. 1013–1019.

[43] McCreery, G., Trejos, A., Naish, M., Patel, R., and Malthaner, R., 2008. “Feasi-

bility of locating tumours in lung via kinaesthetic feedback”. The International

Journal of Medical Robotics and Computer Assisted Surgery, 4(1), pp. 58–68.

[44] Trejos, A., Jayender, J., Perri, M., Naish, M., Patel, R., and Malthaner, R.,

2009. “Robot-assisted tactile sensing for minimally invasive tumor localization”.

The International Journal of Robotics Research, 28(9), p. 1118.

[45] Perri, M., Trejos, A., Naish, M., Patel, R., and Malthaner, R., 2010. “New

tactile sensing system for minimally invasive surgical tumour localization”. The

International Journal of Medical Robotics and Computer Assisted Surgery, 6(2),

pp. 211–220.



160

[46] Sokhanvar, S., Packirisamy, M., and Dargahi, J., 2007. “A multifunctional

pvdf-based tactile sensor for minimally invasive surgery”. Smart Materials and

Structures, 16, p. 989.

[47] Sokhanvar, S., Packirisamy, M., and Dargahi, J., 2009. “Mems endoscopic

tactile sensor: toward in-situ and in-vivo tissue softness characterization”. IEEE

Sensors Journal, 9(12), pp. 1679–1687.

[48] Schostek, S., Schurr, M., and Buess, G., 2009. “Review on aspects of artificial

tactile feedback in laparoscopic surgery”. Medical engineering & physics, 31(8),

pp. 887–898.

[49] Jernigan, S., Buckner, G., Eischen, J., and Cormier, D., 2007. “Finite ele-

ment modeling of the left atrium to facilitate the design of an endoscopic atrial

retractor”. ASME Journal of Biomechanical Engineering, 129(6), pp. 825–837.

[50] Greenwood, J., 2010. “Contact between an axisymmetric indenter and a vis-

coelastic half-space”. International Journal of Mechanical Sciences, 52(6),

pp. 829–835.

[51] Yamamoto, T., Vagvolgyi, B., Balaji, K., Whitcomb, L., and Okamura, A.,

2009. “Tissue property estimation and graphical display for teleoperated robot-

assisted surgery”. In Proceedings of the 2009 IEEE international conference on

Robotics and Automation, ICRA’09, IEEE Press, pp. 3117–3123.

[52] Mahvash, M., and Okamura, A. M., 2006. “Friction compensation for a force-

feedback telerobotic system”. In Proceedings of the 2006 IEEE international

conference on Robotics and Automation, ICRA’06, IEEE Press, pp. 3268–3273.

[53] Doehring, T., Freed, A., Carew, E., and Vesely, I., 2005. “Fractional order

viscoelasticity of the aortic valve cusp: An alternative to quasilinear viscoelas-

ticity”. ASME Journal of Biomechanical Engineering, 127(4), pp. 700–708.



161

[54] Kerdok, A., Ottensmeyer, M., and Howe, R., 2006. “Effects of perfusion on the

viscoelastic characteristics of liver”. Journal of Biomechanics, 39(12), pp. 2221–

2231.

[55] Basafa, E., and Farahmand, F., 2010. “Real-time simulation of the nonlinear

visco-elastic deformations of soft tissues”. International Journal of Computer

Assisted Radiology and Surgery, Online, pp. 1–11.

[56] Berglund, J., Nerem, R., and Sambanis, A., 2005. “Viscoelastic testing method-

ologies for tissue engineered blood vessels”. ASME Journal of Biomechanical

Engineering, 127(7), pp. 1176–1184.

[57] Groth, K., and Granata, K., 2008. “The viscoelastic standard nonlinear

solid model: Predicting the response of the lumbar intervertebral disk to low-

frequency vibrations”. ASME Journal of Biomechanical Engineering, 130(3),

pp. 031005–031011.

[58] Nedel, L., and Thalmann, D., 1998. “Real time muscle deformations using

mass-spring systems”. In Proceedings of the Computer Graphics International

1998, CGI ’98, IEEE Computer Society, pp. 156–166.

[59] Brown, J., 2004. “Real-time soft tissue and suture simulation”. PhD thesis,

Computer Science Department, Stanford, CA,. AAI3111693.

[60] Un, K., and Spilker, R., 2006. “A penetration-based finite element method for

hyperelastic 3d biphasic tissues in contact. part ii: Finite element simulations”.

ASME Journal of Biomechanical Engineering, 128(6), pp. 934–942.

[61] Saupin, G., Duriez, C., and Cotin, S., 2008. “Contact model for haptic medical

simulations”. In Proceedings of the 4th International Symposium on Biomedical

Simulation, ISBMS ’08, Springer-Verlag, pp. 157–165.



162

[62] DiMaio, S., and Salcudean, S., 2005. “Interactive simulation of needle insertion

models”. IEEE Transactions on Biomedical Engineering, 52(7), pp. 1167–1179.

[63] Mendoza, C., and Laugier, C., 2003. “Simulating soft tissue cutting using finite

element models”. In Proceedings of 2003 IEEE International Conference on

Robotics and Automation, Vol. 1 of ICRA’03, IEEE Press, pp. 1109–1114.

[64] Yang, T., and Spilker, R., 2007. “A lagrange multiplier mixed finite element

formulation for three-dimensional contact of biphasic tissues”. ASME Journal

of Biomechanical Engineering, 129(3), pp. 457–471.

[65] Hirota, G., Fisher, S., and State, A., 2003. “An improved finite-element contact

model for anatomical simulations”. The Visual Computer, 19, pp. 291–309.

[66] Eberhardt, A., Lewis, J., and Keer, L., 1991. “Normal contact of elastic spheres

with two elastic layers as a model of joint articulation”. ASME Journal of

Biomechanical Engineering, 13, pp. 410–417.

[67] Ateshian, G., Lai, W., Zhu, W., and Mow, V., 1994. “An asymptotic solution

for the contact of two biphasic cartilage layers”. Journal of Biomechanics,

27(11), pp. 1347–1360.

[68] Argatov, I., and Mishuris, G., 2011. “Elliptical contact of thin biphasic cartilage

layers: Exact solution for monotonic loading”. Journal of Biomechanics, 44,

pp. 759–761.

[69] Giannakopoulos, A., 2006. “Elastic and viscoelastic indentation of flat surfaces

by pyramid indentors”. Journal of the Mechanics and Physics of Solids, 54(7),

pp. 1305–1332.

[70] Vandamme, M., and Ulm, F., 2006. “Viscoelastic solutions for conical indenta-

tion”. International Journal of Solids and Structures, 43(10), pp. 3142–3165.



163

[71] Barber, J., 1976. “Indentation of the semi-infinite elastic solid by a concave

rigid punch”. Journal of Elasticity, 6, pp. 149–159.

[72] Haider, M., and Guilak, F., 2000. “An axisymmetric boundary integral model

for incompressible linear viscoelasticity: Application to the micropipette aspira-

tion contact problem”. ASME Journal of Biomechanical Engineering, 122(3),

pp. 236–244.

[73] Romano, J., Hsiao, K., Niemeyer, G., Chitta, S., and Kuchenbecker, K., 2011.

“Human-inspired robotic grasp control with tactile sensing”. IEEE Transactions

on Robotics(99), pp. 1–13.

[74] Ataollahi, A., Polygerinos, P., Puangmali, P., Seneviratne, L., and Althoefer,

K., 2010. “Tactile sensor array using prismatic-tip optical fibers for dexterous

robotic hands”. In 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), IEEE, pp. 910–915.

[75] Dahiya, R., Cattin, D., Adami, A., Collini, C., Barboni, L., Valle, M., Loren-

zelli, L., Oboe, R., Metta, G., and Brunetti, F., 2011. “Towards tactile sensing

system on chip for robotic applications”. Sensors Journal, IEEE, 11(12), dec.,

pp. 3216–3226.

[76] Aoyagi, S., Matsuda, T., Kong, T.-W., Ishimaru, T., Suzuki, M., and Inoue, K.,

2011. “Proposal and development of arrayed sole sensor for legged robot and

contact force detection using neural networks”. IEEE Sensors Journal, 11(9),

sept., pp. 2048–2056.

[77] Dahiya, R., Metta, G., Valle, M., and Sandini, G., 2010. “Tactile sensing—from

humans to humanoids”. Robotics, IEEE Transactions on, 26(1), feb., pp. 1–20.



164

[78] Tiwana, M. I., Redmond, S. J., and Lovell, N. H., 2012. “A review of tactile

sensing technologies with applications in biomedical engineering”. Sensors and

Actuators A: Physical, Accepted Manuscript(0), pp. –.

[79] Kuebler, B., Gruber, R., Joppek, C., Port, J., Passig, G., Nagel, J., and

Hirzinger, G., 2009. “Tactile feedback for artery detection in minimally invasive

robotic surgery–preliminary results of a new approach”. In World Congress on

Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich,

Germany, Springer, pp. 299–302.

[80] Miller, A., Peine, W., Son, J., and Hammoud, Z., 2007. “Tactile imaging

system for localizing lung nodules during video assisted thoracoscopic surgery”.

In 2007 IEEE International Conference on Robotics and Automation, IEEE

Press, pp. 2996–3001.

[81] Plunkett, M., Peterson, M., Landreneau, R., Ferson, P., and Posner, M., 1992.

“Peripheral pulmonary nodules: preoperative percutaneous needle localization

with ct guidance.”. Radiology, 185(1), p. 274.

[82] Kawahara, T., Toya, C., Tanaka, N., Kaneko, M., Miyata, Y., Okajima, M.,

and Asahara, T., 2006. “Non-contact impedance imager with phase differentia-

tor”. In The First IEEE/RAS-EMBS International Conference on Biomedical

Robotics and Biomechatronics, BioRob 2006, IEEE, pp. 232–237.

[83] Peine, W., 1999. “Remote palpation instruments for minimally invasive

surgery”. PhD thesis, Division of Engineering and Applied Sciences, Harvard

University.

[84] Dargahi, J., and Najarian, S., 2004. “Theoretical and experimental analysis

of a piezoelectric tactile sensor for use in endoscopic surgery”. Sensor Review,

24(1), pp. 74–83.



165

[85] Dargahi, J., Kahrizi, M., Rao, N., and Sokhanvar, S., 2006. “Design and micro-

fabrication of a hybrid piezoelectric-capacitive tactile sensor”. Sensor Review,

26(3), pp. 186–192.

[86] Takashima, K., Yoshinaka, K., Okazaki, T., and Ikeuchi, K., 2005. “An en-

doscopic tactile sensor for low invasive surgery”. Sensors and Actuators A:

Physical, 119(2), pp. 372–383.

[87] Kalantari, M., Dargahi, J., Kovecses, J., Mardasi, M., and Nouri, S., 2011. “A

new approach for modeling piezoresistive force sensors based on semiconductive

polymer composites”. IEEE/ASME Transactions on Mechatronics, 17(03),

pp. 572–581.

[88] Kalantari, M., Ramezanifard, M., Ahmadi, R., Dargahi, J., and Kövecses, J.,
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[91] Shen, J., Kalantari, M., Kövecses, J., Angeles, J., and Dargahi, J., 2011. “Vis-

coelastic modelling of the contact interaction between a tactile sensor and atrial

tissue”. IEEE Transactions on Biomedical Engineering, 59(6), pp. 1727–1738.



166
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Appendix A

.1 Lump Localization in One Dimension

To detect and localize inclusions within a soft material, an array of n force sensors

is used as shown in Fig. 2a. Initially, to represent the location of the lump graph-

ically, an image with vertical parallel bands corresponding to the sensing elements

is considered as shown in Fig. 2b. The intensity of each band is considered to be

proportional to the output of the corresponding sensing element.

The voltage distribution along the sensor array can be considered as a vector V 1×n

that is related to the intensity vector I1×n by






Ii = (Vi/α)(K − 1), Vi ≤ α

Ii = K − 1, Vi > α
i = 1, . . . , n (.1.1)

where α is the normalizing factor that determines the working range (very soft, soft,

medium, etc.), and K is the number of gray scales that are used in construction of

the graphical image (here K = 256). It can be seen from eq.(.1.1) that for a given α,

when Vi ≤ α, the scaling factor α maps the input voltage domain into interval [0, 1].
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a)

(a)

(b)

(c)

Figure 2: Locating the lump in one direction and its graphical rendering
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Using the (K − 1) factor, this value would then be mapped into the corresponding

gray level, between 0 and 255. Once Vi > α, all the values of Vi would be mapped

to the maximum intensity (i.e, Ii = 255). For instance, Fig. 2b shows the graphical

display when two lumps are detected in the grasped tissue. However, due to the

limited number of sensing elements, the quality of image shown in Fig. 2b was not

satisfactory. Therefore, by using an interpolation technique, the quality of the image

as shown in Fig. 2c was enhanced. Prior to this, the number of elements had to be

increased from n to any desired number N . To do this, N − n extra elements were

required. Therefore, (N−n)/(n−1) elements were inserted between each two original

elements. The resulting vector G1×N , is in the following form

G = {G1G2 . . . GN−1GN}
︸ ︷︷ ︸

N elements

(.1.2)

in which

G1 = V1, GN+n−2
n−1

= V2, G 2N+n−3
n−1

= V3, . . . , GN = Vn (.1.3)

The intensity values assigned to the inserted elements were calculated using the linear

interpolation relationship expressed in

Gi = Vj +

{

i− 1− (j − 1)(
N + n− 2

n− 1
)

}
V(j+1) − Vj

(N − 1)/(n− 1)
,

1 + (j − 1)
N − 1

n
< i < 1 + j

(
N − 1

n

)

(.1.4)

where j(1 ≤ j ≤ n) and i(1 ≤ i ≤ N) are indices associated with the original vector

V and the augmented vector G, respectively. The numerical example for N = 60, is
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illustrated in Fig. 2c.

.2 Lump Localization in Two Dimensions

For localizing nodules in two dimensions, two sensor arrays are required; one array

is placed on the top of the object, the other on the bottom. Figure 3a shows how

a lump is localized on the horizontal (x-axis) and vertical (y-axis) directions. This

figure demonstrates an object that contains a lump, aligned with sensing elements

U2 and L2, where U and L refer to the upper and lower sensing arrays, respectively.

The distance of the lump from the upper and lower sensing elements are shown by

a and b, respectively. Figure 3b shows the tactile image that was built using a one

dimensional algorithm as explained in Appendix Section 1. This graph consists of

two rows of color bands, which correspond to the sensor arrays, one on the top and

the other at the bottom. Consequently, this graph can be considered as a matrix

with 2 rows (color bands) and n (here n = 7) columns (sensors), i.e. 2× n cells. The

corresponding matrix, in which each element represents voltage amplitude, can be

given in the following form

V =




VU1 VU2 . . . VUn

VL1 VL2 . . . VLn



 (.2.1)

As can be seen, Fig. 3b cannot clearly provide any relevant information about

the location of the lump so, in order to show its precise location, the dimensions
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a)

(a)

b)

(b)

c)

(c)

d)

(d)

e)

(e)

Figure 3: Two-dimensional graphical rendering of the characterized lump (a) A lump
located in a soft material with the upper and lower sensor arrays (b) 2D intensity
graph associated with the sensor array outputs (c) The relationship between grasped
object and intensity matrix (d) A 7 × 7 matrix showing the location of the lump (e)
A 60× 100 matrix providing better information on location and size of the lump
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of the matrix (and consequently the number of matrix elements) were increased. It

should be noted here that the graphical enhancement in the x-direction was explained

in Appendix Section 1, so only the row operations (y-direction) are emphasized in

this section. To start, and using the technique explained in Section .1, the number

of columns was increased to N . Next, the number of rows was increased to M by

inserting (M − 2) rows of zeros between the first and second rows of matrix V which

led to a matrix of size M ×N . The resulting matrix G0 can then be shown as

G0 =







GU1 GU2 · · · GU(N−1) GUN

0 0 · · · 0 0

...
...

...
...

0 0 · · · 0 0

GL1 GL2 · · · GL(N−1) GLN







︸ ︷︷ ︸

N Columns

M Rows (.2.2)

For the graphical representation of a lump, two parameters had to be determined,

the location of the centre of lump in each column and its corresponding intensity value.

In order to designate the vertical location of the center of lump in each column, a

relationship between the thickness of the tissue and the rows of matrix G0 was used.

If a lump is located in the tissue at a distance a from the upper sensor array, it will

be mapped into row r, where r can be found from relationship:

r

M
=

a

a + b
=

GU

GL +GU
(.2.3)

in which a+ b, that is equal to the tissue thickness, was considered to be proportional
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to the number of rows M . Regardless of the existence of a lump, the above equation

was applied to all columns (see Fig. 3c). If a lump exists in a column, then a and b

are the distances of the center of the lump from the upper and lower sensor arrays,

respectively. For the columns with no lump, the associated sensor outputs are equal

and GL = GU , thus r = M/2. These cells are shown in Fig. 3c with gray color which

can be interpreted as meaning that the algorithm assigns a non-zero value to the

middle row of the columns with no lump. Although this value is not significant it can,

nonetheless, be considered as a shortcoming of the algorithm. In order to determine

the intensity values of these locations in each column, the following relation was used

Grj = GUj +GLj (.2.4)

where index Grj specifies the intensity value of the cell located in row r and column

j, showing the center of the lump in that column. The result of this operation is

matrix [G1]n×m, in which the centers of detected lumps are specified

G1 =




























GU1 GU2 · · · GUN

0 0 · · · 0

...
...

...

0 0 · · · 0

Gr11 Gr22 · · · GrNN

0 0 · · · 0

...
...

...

0 0 · · · 0

GL1 GL2 · · · GLN




























(.2.5)
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It should be noted that in the case of multiple lumps, the center of each lump will

be mapped to a row that corresponds to the lump’s original depth in the tissue so,

therefore, different GrNN members are not necessarily in the same row.

In the next step, a row interpolation procedure was implemented in which, for

each column, three values were known: GUi, Gri, and GLi. Therefore, using these

values, and through a linear interpolation, new intensity distribution was assigned to

all zeros. The final intensity matrix H can be represented as

H =















H11 H12 · · · H1N

H21 H22 · · · H2N

...
...

...

H(M−1)1 H(M−1)2 · · · H(M−1)N

HM1 HM2 · · · HMN















(.2.6)

where the intensity of each cell are calculated from following relationship







Hij = GUj + (i− 1)
Grjj

−GUj

rj−1
, 1 ≤ i ≤ rj , 1 ≤ j ≤ N

Hij = Grjj + (i− rj)
GLj−Grjj

M−rj
, rj ≤ i ≤ M, 1 ≤ j ≤ N

(.2.7)

Figure 3d shows the position of a lump and its approximate size after implementing

the mentioned algorithm when M = N = 7. Evidently, increasing the number of cells

in both directions will enhance the quality of image. Figure 3e, for instance, is the

constructed graphical image based on the same sensor’s output and enhancement of

associated matrix to M = 60 and N = 100.


