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Abstract

In this thesis, we study the problem of optimal search and coverage with hetero-

geneous team of unmanned aerial vehicles (UAVs). The team must complete the

coverage of a given region while minimizing the required time and fuel for performing

the mission. Since the UAVs have different characteristics one needs to equalize the

ratio of the task to the capabilities of each agent to obtain an optimal solution. A

multi-objective task assignment framework is developed for finding the best group of

agents that by assigning the optimal tasks would carry out the mission with minimum

total cost.

Once the optimal tasks for UAVs are obtained, the coverage area (map) is parti-

tioned according to the results of the multi-objective task assignment. The strategy is

to partition the coverage area into separate regions so that each agent is responsible for

performing the surveillance of its particular region. The decentralized power diagram

algorithm is used to partition the map according to the results of the task assignment

phase. Furthermore, a framework for solving the task assignment problem and the

coverage area partitioning problem in parallel is proposed. A criterion for achieving

the minimum number of turns in covering a region a with single UAV is studied for

choosing the proper path direction for each UAV. This criterion is extended to develop

a method for partitioning the coverage area among multiple UAVs that minimizes

the number of turns.

We determine the “best” team for performing the coverage mission and we find

the optimal workload for each agent that is involved in the mission through a multi-

objective optimization procedure. The search area is then partitioned into disjoint



subregions, and each agent is assigned to a region having an optimum area resulting

in the minimum cost for the entire surveillance mission.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) are power driven aircraft without flight crew

members on board that carry sensors, cameras, and communication equipment. The

early motivation for developing the UAVs was due to the concern of the United States

Air Force regarding loosing pilots in hostile country. The use of UAV over a manned

air vehicle has significant advantages such as superior maneuverability, lower risk to

human operators, weight savings, and lower development costs.

Unmanned aerial vehicles operate in various environments including but not

limited to: atmospheric research [1], animal biodiversity and wildlife tracking [2],

border patrol and reconnaissance [3], assessment of power lines and pipelines, traffic

and accident surveillance [4], emergency and disaster monitoring [5], search and rescue

[6], aerial photography [7], among others.

The use of groups of unmanned aerial vehicles (UAVs) for performing complex

tasks has been an area of signicant interest recently. In the past decade, the focus

of researchers has changed from developing control strategies and algorithms for a

single UAV performing a mission to development of practical strategies that will allow
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a group of UAVs to cooperate and perform multiple tasks. The research effort in

both civilian and military domains have been focused on the development of effective

multi UAVs control algorithms in order to exploit the full potential of a team of

UAVs performing various tasks and reaching the mission objective. The potential

advantages of multi-agent systems such as reduction of the operating time and cost,

and robustness to single agent failures are the motivating factors justifying their use

in performing a desired mission.

One of the applications of multi-agent UAV systems is complete coverage of

an area of interest. Recent natural disasters such as the Haiti earthquake and the

Indonesian Tsunami have highlighted the need for an efficient and timely applicable

search and rescue strategy. Accurate and timely information regarding the place of

injured people are crucial for effective search and rescue missions. Use of a team of

UAVs is among the best options for these problems since the UAVs can perform their

tasks in minimum amount of time, and can be utilized in dangerous environments

without endangering a human pilot.

The main objective of research into the cooperative UAV control problem is

to develop and evaluate strategies (algorithms) for a team of UAVs working together

to perform mission specific tasks in an extended area under varying operating con-

ditions and constraints. Collecting and processing data under constrained resources

such as limitations in the fuel, restrictions in time, and constraints in the search region

should be reflected in developing a strategy for cooperative coverage by multi-agent

UAVs. For a given mission scenario, the cooperative UAV control problem formu-

lation encompasses the following common sub-problems: Path Planning, Trajectory

Generation, and Task Allocation. The complexity of these sub-problems depends on

the chosen mission scenario, the capabilities of the UAVs, the complexity of mission
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environment, and the constraints added by the mission designer.

The research in multiple UAV search and coverage problem is aimed at de-

veloping and evaluating strategies for a team of UAVs searching an environment of

known dimensions for (stationary and/or mobile) targets under varying operating

conditions and constraints. Searching an area of interest using a group of vehicles

is a problem that finds applications in both military and civilian domains. Some of

the possible missions that could benefit from multiple UAVs conducting search are:

search-and-rescue operations [6], search-and-destroy missions for previously detected

enemy targets, seek-destroy missions for land mines, and surveillance missions such as

border patrol.

The problem of searching an unknown environment has been actively studied in

classical search theory, where problems such as optimal distribution of resources, max-

imization of the probability of revealing static targets, and establishment of optimal

values of various search parameters have been concentrated on. Moreover, additions

have been made to the search theory literature by inclusion of mobile, multiple, and

intelligent targets in the problem formulation, however, solution strategies have only

been developed for a single searcher, and hence are not applicable to multiple searchers.

1.1 Literature Review

A multiple UAV search problem can be formulated in a number of different ways. The

variations in the problem formulation are due to the different objectives of the UAV

team, the imposed constraints under which the UAVs are operating, the assumptions

made about the UAVs’ capabilities, and the varying criteria in location of operation.

These variations in the problem formulation necessitate unique solution strategies
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based on the problem formulation.

The capabilities of UAVs are important elements in deciding how to allocate

the tasks between individual UAVs. The solution strategies that are developed for

homogeneous team of UAVs are often not applicable (or not optimal) in missions that

involve heterogeneous UAVs. Hence, existence of heterogeneous UAVs necessitates

efficient task assignment strategies.

The operation setting is a deciding factor on the dynamics of the solution strategy.

The search environment may have obstacles and no fly zones such as mountains, that

makes it a non-convex region for UAVs. Existence of multiple, stationary and/or

mobile, intelligent, known and/or unknown targets and threats can dictate whether

static or dynamic solution strategy is suitable for solving the search problem.

Some of the prominent constraints in the UAV literature are constraints on

a vehicle’s maneuverability, range of speed, fuel bank, endurance time, and commu-

nication abilities. Examples of assumptions made are the following: (1) Vehicles

may or may not be capable of wireless communication, (2) The information base

of the vehicles, representing the vehicles state, might be centralized or decentral-

ized, (3) The sensors of the vehicles might have the same or different accuracy and

ranges, and the vehicles may or may not be identical in terms of their abilities

to perform tasks (homogenous or heterogeneous), and (4) The vehicles may or may

not be autonomous (capable of independent decision making without human guidance).

There are two types of search and coverage problem in the literature. One

is the static coverage where the problem is to locate a set of sensors to cover the

entire region [8], [9], [10], [11]. In this type of coverage the range of sensors are usually
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comparable with the area of workspace, and the goal is to find the optimal position

for a team of sensors to maximize a reward function. In [12] authors have proposed

a decentralized control strategy for placing the agents in their optimal position. A

generalized Voronoi diagram (Power diagram) is applied to partition the workspace

into subregions where workload is equal among all subregions.

The second type of coverage is dynamic coverage, where the agents move and visit

the non-surveyed areas in order to cover every point in the workspace [13], [14]. The

area of sensor footprint in the dynamic coverage is much less than the total area of the

workspace. In [15], the authors addressed the problem of coverage with guaranteed

collision avoidance. In [16], the authors proposed a coverage algorithm by covering the

area or the map with disks of radius equal to the radius of the UAVs’ sensor footprints.

Another area in multi-agent search literature is persistent coverage. The problem

of persistent coverage is a special type of dynamic coverage and it is distinct from

most other sweeping and monitoring scenarios in the literature because in persistent

coverage problem every point in the area must be revisited every T ∗ units of time

by at least one agent. In this type of coverage the team of vehicles consistently

re-covers a given area and the agents must persistently move to satisfy the objective.

A survey of sweep coverage is given in [17]. The challenge in the persistent coverage

is in controlling the vehicles to move so that their footprints cover all points in

the environment consistently. The vehicle must spend more time in those positions

where the environment changes quickly, without ignoring the locations where the

environment changes more slowly. The authors in [18] consider the situation in which

robots are constrained to move on fixed paths and their speed must be controlled. In

other related works, a region is persistently covered in [13] and [19] by controlling the

robots to move at constant speed along predefined paths.
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The problem of dynamic coverage with heterogeneous agents is an interesting

research subject [20], [21]. Most of the literature in dynamic coverage that assumed to

have homogeneous agents cannot be extended for scenarios including heterogeneous

team of agents. Given that these algorithms use sensor’s footprint radius or the

speed of the homogenous UAVs as an important component and information of the

algorithm, they fail when agents have different characteristics [15]. Another major

limitation of the existing algorithms on dynamic coverage with heterogeneous UAVs

is that of assigning optimal workload to UAVs based on their capabilities [22].

The search coverage problem for non-homogeneous vehicles can be divided into

sub-tasks that are then assigned to each vehicle. The space of possible sub-tasks

grows with an increase in the size of the search space, the number of vehicles, and

the levels of changes in their capabilities. Complexity of the coverage region such

as the existence of obstacles, or the non-convexity of the map has direct impact on

complexity of the solution to the problem.

In [24], the authors have addressed the problem of multiple UAVs carrying out a

search and surveillance mission based on the uncertainty map of a given unknown

environment. The uncertainty map represents the a priori knowledge of the location

of targets, and is comprised of real numbers between 0 and 1. The search environment

is divided into identical hexagonal cells, where each cell has an associated uncertainty

value, which represents the extent of the lack of information about a cell. The UAVs

are directed to fly multiple sorties (or missions). For each mission, the objective of the

UAVs is to maximize the reduction in uncertainty of the environment under a limited

fuel constraint, which also constrains the length of the search path each vehicle takes

since the vehicles have to return to their respective base stations for re-fueling at the
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end of each mission. The search algorithm, based on the k-shortest path algorithm [25],

directs individual UAVs to search (independently of their team members) through

the area of maximum uncertainty in the environment while satisfying constraints on

their endurance time and on the search path.

In [26], the authors introduced a game theoretical model in which each agent

updates its uncertainty map through the mission by using the current position and

route information of the other UAVs. Therefore, the UAVs always have the same

uncertainty map, and they are aware of the past path and present position of their

team members. At each time step, the UAVs aim to select their future paths such

that the reduction in uncertainty of the environment is maximized. The authors have

proposed three game theoretical search strategies to direct the UAVs to choose their

future paths to maximize the reduction in uncertainty in the environment.

In [27], an agent based negotiation scheme was presented. The agents can only

communicate with their neighboring vehicles and they have a limited sensor range.

The objective of each UAV in the team is to coordinate with its neighboring UAVs

to select search routes such that the reduction in uncertainty of the environment is

maximized. Every agent selects the next cell in its search route after sharing the

information with its neighbors at each time step and performing a negotiation process.

This process continues until the search area is entirely explored.

In [28], a search-theoretic approach based on the concept of rate of return maps

was used to develop cooperative search plans for a team of UAVs. The rate of return

map shows the benefit of searching a cell with a small increment of effort. The UAVs

in [28] are exploring a given environment, divided into cells, for stationary targets.

The objective in this search theoretic problem is to find the optimal amount of effort
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in the environment within a given constraint on effort.

Voronoi diagram [29] plays an important role in multi-agent missions in search

and coverage. Suzuki and Okabe [30] have discussed various applications of Voronoi

diagrams. Some static algorithms aim to divide the region by using established

shapes such as triangles and polygons, while other approaches use Voronoi diagrams

positioned on various points in the region to perform a space partitioning. Voronoi

diagram is also adopted to solve a coverage problem in [32]. However, the strategy

does not completely cover the environment. The authors in [9] develop a strat-

egy for dividing a polygonal region into sub-regions of equal area by using Voronoi

diagrams. Their work would result in optimal workload sharing for homogenous agents.

The authors in [31] consider the problem of locating M facilities on the unit

square. The facilities must meet the demands of customers. In this scenario when a

customer has a demand it will utilize the closest facility. The capacity of each facility

must be sufficient to satisfy all accepted demand. Given the assumption that all the

facilities are similar, the capacity of each facility will be determined by the busiest

facility. Therefore, any facility having less demand than the busiest one will have

some unused capacity. By using this assumption the authors addressed the problem

of selecting the locations to minimize the total cost by finding locations that minimize

the demand at the busiest facility.

One of the most significant research conducted into the use of Voronoi diagrams in

multi-agent coverage is in [11]. The authors have proposed a gradient descent control

law that depends only on the information of position of the robot and of those robots

that are located in the neighboring Voronoi cells. Their proposed control law can be

computed without global synchronization and it leads to optimal coverage for a group
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of homogenous vehicles.

The work in [34] has used vehicle positions as the set of generators for the

Voronoi diagram and it analyzed the Voronoi partitioning based on energy functions.

The authors developed a Voronoi partition that requires the minimum energy for a

vehicle to move from one point to another in a constant flow environment. They also

used Voronoi partition to design efficient task allocation algorithms. Each vehicle is

assigned to targets that fall into its Voronoi region. By properly controlling vehicles

motion the group requires minimum average energy in servicing stochastic tasks with

slow-rate Poisson distribution arrival.

Moarref and Sayyadi in [35] addressed the problem of optimal facility positioning

on a continuous plane. They proposed an asynchronous, multi-agent robotic system

approach that minimizes the weighted sum of the Euclidean distances of a set of

target points to their nearest facility. In their approach, when the target points move

to other locations, the position of each facility moves toward the geometric median of

its corresponding Voronoi cell.

Existence of mobile, intelligent targets and threats in the search environment

imposes the need for developing dynamic solution strategies. In the presence of

uncertain and adverse environment with intelligent targets and threats, dynamic

modification of the team mission strategy and adjustments in individual UAV plans

need to be considered. The authors in [36] considered the problem of dynamic reas-

signment of tasks among a cooperative group that exchanges relevant information

asynchronously. In [37] sensor relocation in mobile sensor networks is discussed. The

authors propose relocating redundant mobile sensor nodes to fill the coverage holes.

They used a cascade movement method to balance the energy cost and the repairing
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time in the team. In [39] the use of a small team of mobile robots is discussed to

replace failed sensors in a large-scale static sensor network.

Developing robust strategies is another important area in multi-UAV missions.

The authors in [40] have considered the effects of uncertainty in the data for task

assignment problem. They have developed a strategy that integrates two approaches

for improving the robustness of the assignment algorithm. One approach is to design

task assignment plans that are robust to the uncertainty in the data in order to

reduce the sensitivity to errors. A second approach is to re-assign the tasks each time

that the data is updated, which leads to the best plan given the current information.

However, this approach may cause instability if the updates are performed rapidly.

In [45], the authors studied the performance of a team of UAVs in attack and destroy

missions subject to actuator faults in one or more agents. The effect of fault on the

performance of the team is studied by comparing the results of completing the mission

with a faulty agent and the result of dropping out the faulty agent from the available

resources for completing the mission.

Another important aspect in a real set-up is that the region of interest may

possibly contain some obstacles, i.e., the region is a non-convex environment. Some

works have been devoted to deal with this issue. In [44] Breitenmoser et al. have

suggested a two stage control strategy to drive the agents to the nearest point to the

center of their partition. This method uses the classical Voronoi coverage with the

local path-planning algorithm TangentBug [41], to handle the motion of the robots

around obstacles and corners. They used Lloyd algorithm [42] to update the goal

position of vehicles at each step, while TangentBug determines the path to the goal

position. The authors in [43], [44] have suggested transforming a special form of

non-convex region into the convex region, and then using the methods for convex
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region for covering the region. They have shown how a diffeomorphism can be used to

transform a non-convex problem into a convex one. The drawback for this work is that

there is no control on the partitioned area in non-convex region, as when transforming

the equally partitioned area in transformed convex region into the original non-convex

map, there is no general way to predict the regions.

Surveillance problem is a variation of search mission. In search missions, the

goal is to locate targets that are present in the search environment. However, for a

surveillance mission, the UAVs have the information about the location of the targets

and their goal is to closely observe the given target (a geographical region for border

patrol, a region of specified radius in open-ocean for maritime surveillance, the perime-

ter of a wildfire, etc.) by utilizing their resources (camera, sensor, information of other

UAVs). Civilian applications of surveillance missions include monitoring oil fields,

pipelines, forest fires, oil spills, and tracking wildlife, whereas military and homeland

security applications include border patrol, maritime surveillance, monitoring the

perimeter of nuclear power plants.

Perimeter surveillance is collecting and processing information at all points of the

perimeter. The team of agents is set to cooperatively collect data about the state of

the perimeter. For example, in case of forest fire monitoring [47] the team of UAVs

attempt to capture images along the perimeter of the fire and then distribute them

among the team members to upload the data about the location of the changing fire

perimeter to a base station as frequently and with as little delay as possible. In [48],

perimeter surveillance algorithms have been developed for a team of UAVs, which

is set to cooperatively monitor and track the spread of a forest fire. The authors

measured the performance of the proposed centralized and decentralized monitoring

algorithms by comparing the frequency and time delay of information being updated
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at the base station.

Solving path planning problem is an important part of search mission with un-

manned aerial vehicles. The problem in path planning is to generate a straight-line

waypoint path from a UAV’s current position to its desired position while satisfying

the mission objectives and cooperation constraints. By considering the kinematic

constraints of a UAV, such as constraints on velocity range, minimum turning radius

and their effect on UAVs maneuverability, one can no longer use simple straight lines

for generating the path of UAV(s) and it becomes necessary to solve a Trajectory

Generation problem. In trajectory generation problem the objective is to develop a

real-time trajectory that allows a UAV to travel through a series of waypoints in

a time optimal, and that satisfies the kinematic and dynamic constraints of a UAV [49].

A path planning algorithm and a centralized cooperation scheme has been de-

veloped in [47], which is extended in [48] to include a decentralized cooperative

surveillance scheme, and a real-time tracking algorithm that allows the team of UAVs

to track the perimeter of a fire. The number of agents in the team and the perimeter

of fire are known to each UAV in the mission. The proposed approach is capable

of monitoring a changing fire perimeter, and the ability to transfer and update the

collected data with maximum frequency/time delay ratio to the base station.

In [50], different path planning and trajectory generation algorithms were com-

pared based on the following criteria: avoidance of generated trajectories from known

threats, consideration of dynamic constraints of a UAV, and computational efficiency

of algorithm. The path planning and trajectory generation methods that have been

investigated are Rectilinear Grid [51], Voronoi Grid, Mass-Spring-Damper System

[52], Chain-Link System [53], Voronoi Grid Approximation [54], Polynomial Basis
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Functions, Cubic Spline Basis Functions [55], and Voronoi Decomposition Approach.

In [54], the Voronoi Grid approach is utilized to create multiple waypoint paths that

satisfy the mission objectives and cooperation constraints. These paths are generated

from a vehicle’s current position to its goal. After generating waypoint paths graph

search algorithms, such as A* [56], Dijkstra [57], or k-best path algorithms [58] are

used to search the Voronoi diagram and find the optimal path with respect to the

mission objective. In [59] a decentralized algorithm for cooperative movement of a

team of autonomous vehicles is suggested to minimize the waiting time/service ratio

of stochastically-generated targets. The vehicles have a limited range of velocity

and travel within a convex environment, and the targets were generated by using a

spatio-temporal Poisson models.

Performing the missions efficiently is a crucial factor when the agents have some

constraints on the amount of fuel or the mission should be completed in certain amount

of time. The authors in [33] addressed the problem of static coverage optimization

with networks of mobile sensors. The objective of the mission is to locate sensors

in the environment so as to minimize the team servicing cost. The probability of

an event occurring in a region is given by a density function and is available to all

the sensors. Furthermore, the cost to service a location is known to all the agents.

Furthermore, the area of the assigned region to each robot is a pre-specified value

because of load balancing considerations.

In [38] the authors propose a strategy for minimizing the number of sensors

for coverage task. The environment is divided into equal-size square cells which is

either open or occupied by a static obstacle. The location of obstacle is not known

to the agents and the agents should travel around the environment to discover

and respond to obstacles. The optimum number of mobile sensors is determined
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by selecting robots speed which is calculated based on the remaining fuel and re-

maining time before a deadline. The rule for determining the robots speed is that

the robot should move with the most energy efficient speed if it has sufcient time

to complete the coverage, and the robot should travel faster if the deadline is imminent.

Ahmadzadeh et al. studied coverage aerial surveillance in [60], [63]. The mission

goal is to maximize the amount of covered area within pre-set deadline. The authors

addressed restrictions in sensor range that is imposed by body-fixed cameras. In

[64] and [65] a decentralized strategy is proposed for determining the path of UAVs

in the search mission. The objectives for the UAVs in determining their paths are

to avoid approaching neighboring UAVs, distance from search boundaries, avoid

re-visiting an area, and maintain the current heading. However, they have not pro-

vided any proof on the performance of the team in a mission. In other words, They

have not shown that with this strategy the team can cover the whole region of interest.

The reference [66] presents a method to deploy multiple robots into a field for

exploration purposes by considering the energy and time constraints of the mission.

They presented a deployment strategy to increase the average covered area among

the team of robots. Their method assigns a rectangle area to each robot to cover

and keeps the minimum covered area in different groups. The authors extend their

strategy in [67] by relaxing the constraint on the similarity of speed among the robots

and including the existence of obstacles in the environment.

The work in [68] studied the problem of optimal task allocation in multi-agent

networks. The agents have different sets of capabilities that are suitable to perform

different tasks. The team objective is divided into a set of sub-problems and the

optimal group of agents is allocated to each sub-problem in order to complete it in
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shortest amount of time.

In [22], a team of heterogeneous mobile robots is set to cover a region. The

robots are considered to be heterogeneous in that the sensor footprints are different.

The proposed strategy generates the trajectory for the robots to travel to their final

positions without colliding with other robots. The authors use a power diagram for

partitioning the region, and they use the radius of the robot sensors as the weight of

Voronoi generators. The drawback of this method is that the generated partitions do

not have equal area/capability for the agents; thus, it does not lead to the best position-

ing for the mobile sensors. Bazler [8] considered the problem of capacity-constrained

Voronoi diagram in the continuous space. The problem is to partition a map into

different sub-partitions with predefined areas. Bazler proposed two approaches with

ordinary Voronoi diagram and additive and multiplicative Voronoi diagrams.

1.2 Problem Statement

Heterogeneous robot cooperation technologies have special importance in the multi-

robot research. In real world applications, the agents of a robot team are often different

in design, structure, and sensor configuration as well as intelligence. Hence, they

are not homogeneous systems. In presence of heterogeneous agents the problem of

task assignment is more complicated than the scenarios when all agents have similar

characteristics. When a homogeneous team of agents is tasked to do a mission an

efficient way to carry out the mission is to assign each agent the same workload as

those assigned to others. However, this would not lead to an efficient solution when

heterogeneous agents are involved in the mission. In fact, utilizing all the agents in a

mission may not be the best strategy in some scenarios. Based on agent capabilities,
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some might not be required to participate in the mission.

In this thesis, we address the problem of dynamic coverage of an area of in-

terest by a team of heterogeneous UAVs. A team of heterogeneous UAVs is tasked to

visit a region of interest (Ω ⊂ <2) and perform a complete coverage search. Every

point in the region of interest should be visited by at least one of the agents during

the mission. A point is visited if it is inside the sensor footprint of a UAV at any

time during the mission. Each UAV has a sensor, which collects data about the

environment in which it is traveling. The UAVs are heterogeneous in the sense that

they have different sensor footprints and different range of speeds. The mathematical

formulation of the problem includes the following components and constraints:

• m Non-Homogenous UAVs: each vehicle has a range of forward speed vimin <

vi < vimax, where vimin and vimax denote the minimum and maximum speed of

UAVi respectively.

• Coverage Region Ω ⊂ <2: is a compact and convex subset of <2, and has a total

area of D.

• Assigned Region Ωi: is the UAVi coverage region which is a subset of Ω.

• Radius of Sensor Footprint ri: each UAV is equipped with a sensor. The sensor

footprint for UAVi has a radius of ri.

There are two important factors in the mission. First, the time each UAV needs to

complete its search, and second the amount of fuel that is consumed for each UAV. The

goal of the team of UAVs is to completely visit the given region while minimizing the

cost incurred by the team. The mission cost includes two cost functions representing

the fuel cost Jf and the time cost Jt. The fuel cost of the team is equal to the sum of
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the fuel cost for each UAV Jfi , which is a function of UAV’s fuel consumption rate and

the length of the path covered by the UAV. The fuel consumption rate is proportional

to the aerodynamic drag force, which is proportional to the velocity squared. Hence,

the fuel required by the ith UAV to search its assigned region, is given by Jfi = v2
i li.

We use the sum square of all UAVs’ finishing time for determining the time cost of

the team. Therefore, the costs Jf and Jt can be expressed as:

Jf =
m∑
i=1

v2
i li

Jt =
m∑
i=1

t2i

where vi, li, ti are the velocity, the length of path, and the mission time of UAVi,

respectively.

1.3 Proposed Solution

The problem of searching an unknown environment has been actively studied in

classical search theory, where problems such as optimal distribution of mobile sensors,

maximization of the probability of detection of stationary targets, and establishment

of optimal values of various search parameters have been concentrated on [17]. While

other considerations have been made to the search theory literature by inclusion of

mobile, multiple, and intelligent targets in the problem formulation, solution strategies

have only been developed for a single search, and hence are not applicable to multiple

searches. Developing strategies for multiple searches requires that one takes into

consideration all the agents in the scenario. This will lead to huge computational cost

in time critical missions where the time optimality is a big concern. In optimal case of

search with multiple UAVs, one needs to minimize the amount of overlapped coverage
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among the agents. Hence, the trajectory generation of each agent has direct effect

on the path of other agents. The best way to minimize this redundant coverage is

to isolate each agent task from the others. This has been addressed in the literature

for homogenous teams of agents [19]. However, these methods would not produce

optimal results when the agents have different capabilities. The idea in this thesis is

to develop a framework that make single search strategies possible to use in multiple

searches scenarios. We propose a task assignment framework that will simultaneously

assign an optimal task to all the UAVs, and to isolate their task from the rest of the

team.

The problem of dynamic coverage can be divided into 3 sub-problems, namely (i)

task allocation, (ii) space decomposition, and (iii) path generation. We address the

region decomposition and the task allocation of the coverage mission in two phases.

In the first phase, the objective is to find the optimal speeds and coverage areas for

all the UAVs via a multi-objective optimization strategy. The use of multi-objective

optimization makes considering different goals and costs for the mission, and gives

the mission designer the possibility to choose from a set of possible solutions based

on the importance or priority of each objective in the mission. Another advantage

of using multi-objective optimization is that adding and removing an objective from

the set of objectives does not change the solution strategy. The multi-objective

optimization results in a set of different possible assignments for the team and the

mission designer can determine the favorite assignment based on the mission criteria

and also past experiences. Following the optimization phase and after choosing a

solution as the preferred result of the optimization phase, the second phase would

divide the region of interest into subregions according to the mission designer favorite

set of task assignments. This phase assigns each UAV a subregion of Ω that matches

with the solution of the first phase, i.e. each agent’s area of coverage is equal to
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its optimal coverage area from the first phase. By the end of the second phase all

the UAVs are assigned to known regions and the optimal speeds for surveying the

assigned regions are also prescribed to them. Hence, both task allocation and space

decomposition subproblems are solved. For the path generation we can use any single

search path generation algorithm since each agent’s, subarea is isolated from the rest

of the agents and one agent’s trajectory does not affect the generation of the other

trajectories.

1.4 Contributions of the Thesis

The focus of the research in this thesis is the wide-area coverage, which includes tasks

such as search and rescue, security patrols, forest-fire monitoring, aerial mapping and

reconnaissance missions. In search and rescue missions it is very important to search

the entire region in minimum time, while in applications such as aerial mapping other

costs such as fuel might be more important to the user. The framework presented

here attempts to minimize the mission cost while searching and covering the entire map.

This thesis presents a new decomposition strategy that can be used to solve

coverage problems with different objectives in presence of multiple heterogeneous

agents. Multi-objective optimization techniques were chosen to model the task as-

signment problem to generate optimal tasks and also due to the intuitive nature of

modeling these problems as a set of objective functions with a set of constraints.

The research presented in this thesis implements a task assignment strategy

for heterogeneous aerial vehicles that is especially suited for large area surveillance

problems. The system chooses optimal area for each vehicle and finds the optimal

speed corresponding to the assigned area that minimizes the mission cost. Afterwards,
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the system partitions the map based on the optimal areas for each UAV. The output

of the system is a subregion with determined speed of coverage for each vehicle that is

assigned to the coverage task. The advantages of using this framework are described

below.

We should point out that our method is capable of handling different types

of UAVs for performing the coverage task. The UAVs have different range of speed

and their sensor footprints are also different. Another advantage of our method is its

consideration of multi-objective functions, which allow the mission designer to make

decisions based on all the important factors in the mission. Our map partitioning

method prevents UAVs from having overlaps in their path coverage. Furthermore, we

use area decomposition after determining the optimal share of each UAV. Performing

the area decomposition before determining the capacity of each UAV leads to forcing

the UAVs to choose between the generated regions and thus results in an non-optimal

shares for agents. Determining the optimal workload for each agent according to the

mission objectives allows us to perform the mission with minimum cost. Thus, the

optimality of the proposed strategy makes it suitable for implementation it in the

coverage missions.

This dissertation details the following contributions:

• The decomposition of coverage mission into task allocation, space decomposition

and path generation presented in this thesis offer cost optimality and the possi-

bility for real-time implementation that most existing coverage algorithms lack.

The current coverage algorithms in the literature can be divided into two parts.

One is focused on generating the optimal solutions for the coverage mission.

However, the drawbacks of these methods are their huge computational cost.

Thus, these algorithms cannot be implemented on a real UAV. The optimality of
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coverage strategies can be understated when the focus is on developing real-time

algorithms. By decoupling the UAVs paths from one another in our method,

we improve the computational complexity of the UAV paths. Furthermore,

isolating UAVs area of coverage guarantees that no redundant visits is made by

any UAV in the mission. Thus, this helps in generating optimal solutions.

• The framework developed in this thesis makes use of a single agent search

literature. Although the coverage problem is extensively studied in the single

agent literature, however, these algorithms cannot be extended into multiple

agent scenarios. With isolating the UAVs area of coverage and consequently

their paths, we can use the literature that is related to a single agent coverage

to select a suitable trajectory-planning algorithm for our method. The trajectory

planning in our framework is the final phase of the coverage mission. In our

framework after performing the multi-objective optimization and space parti-

tioning each agent has the information about its travel speed and the sub-region

of the map that it should search and cover. Thus, at this point the problem has

been reduced to trajectory generation of single agent that is well researched in

the literature.

• Using a multi-objective optimization problem formulation to address the task

assignment problem makes it possible to change the objective functions and

add/remove objectives based on the requirement of the mission and concerns of

the user. In this thesis we considered the completion time of the mission and

the overall fuel used to perform the mission as the two main objectives of the

mission. However, it is possible to add more objectives or constraints to the

scenario, such as limiting the fuel of each vehicle to its fuel bank or having some
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constraints on the finishing time of one or more UAVs.

• Another advantage of using the multi-objective optimization for the task as-

signment is the selectivity of most suitable agents for the mission. Using all

the UAVs to perform the mission would not always result in the best solution

with regards to the mission objectives. When the agents are homogeneous one

is more likely to have better performance by involving all the agents in the

mission, however, in scenarios containing heterogeneous UAVs the best team for

performing the mission varies by the changes in the mission objectives. When

the importance of the mission is to complete its task as fast as possible it is best

to utilize more agents than when the priority of the mission is to minimize the

fuel.

The above contributions and attributes are shown to be satisfied through extensive

computer simulation results.

1.5 Conclusions

In this chapter, we have presented and reviewed the multiple UAV coverage problem

in detail. The multiple UAV search and coverage problem is aimed at developing

and evaluating strategies for a team of UAVs searching an environment of known

dimensions for (stationary and/or mobile) targets under varying operating conditions

and constraints. The problem of searching an unknown environment has been actively

studied in classical search theory, where most of the strategies have been developed for

a single search agent. However, recent development in multi-agent systems and their

potential advantages such as reduction of the operating time and cost, and robustness

to single agent failures has motivated many researchers to develop algorithms for

multi-agents search and coverage problem.
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A literature review on different types of search and coverage problems is presented

in this chapter. A multiple UAV search problem can be formulated in a number of

different ways. The variations in the problem formulation are due to the different

objectives of the UAV team, the imposed constraints under which the UAVs are

operating, the assumptions made about the UAVs capabilities, and the varying criteria

in the location of the operation.

The focus of this thesis is on developing a new framework for the coverage problem

with heterogeneous UAVs. In our strategy the problem is broken down into 3

subproblems: task assignment, space decomposition, and path generation. In the task

assignment phase the best agents are selected and are tasked to cover a specific share

of the entire region with specified speed. Then the region of coverage is partitioned

into subareas based on the results of the task assignment phase. Finally, for path

generation the paths with minimum turn are selected for the UAVs.
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Chapter 2

Background Information

In this chapter we review some basic concepts from multi-objective optimization,

space partitioning, and path generation that are used throughout this thesis.

This chapter is organized as follows. The multi-objective optimization problem

and the methods for solving these problems are presented in Sections 2.1 and 2.2,

respectively. The space partitioning with Voronoi diagrams are then reviewed in

Sections 2.3. In Section 2.4, we present the minimum turn trajectory planning for

multiple agent systems.

2.1 Multi-Objective Optimization

Multi-objective optimization is concerned with solving problems that have two or

more, often conflicting, criteria. In the single objective optimization problem there is

only a single globally optimal minimum or maximum as the solution and every two

points are comparable to one another, i.e. one solution is either better, worse or equal

in comparison to another solution. However, in the multi-objective optimization all

the points are not always comparable and there may not exist the best solution with

respect to all the objectives.
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The goal in the multi-objective optimization is to find a set of solutions known

as Pareto set [97], [98]. None of the solutions in Pareto set are better than others

and all are considered as viable and acceptable solutions. For a Pareto point when

one attempts to enhance one of the objectives, other objectives will suffer as a result.

Multi-objective optimization problems can be found in various fields: product and

process design, finance, aircraft design, oil and gas industry, automobile design, and

actually wherever optimal decisions need to be taken in the presence of trade-offs be-

tween two or more conflicting objectives. Maximizing profit and minimizing the price

of a product; maximizing performance and minimizing fuel consumption of a vehicle;

and minimizing weight while maximizing the strength of a particular component are

examples of multi-objective optimization problems.

If a multi-objective problem is well formed, there should not be a single solu-

tion that simultaneously minimizes each objective to its fullest [98]. In each case

an objective must have reached a point such that when attempting to optimize the

objective further other objectives suffer as a result. Finding such a solution, and

quantifying how much better this solution is compared to many other such solutions,

is the goal that one attempts to satisfy when setting up and solving a multi-objective

optimization problem.
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2.1.1 Multi-Objective Optimization Problem Formulation

In mathematical terms, we can write a multi-objective optimization problem as:

min
x

F (x) = [f1(x), f2(x), ..., fk(x)] (2.1)

s.t.

gt(x) ≤ 0 t = 1, 2, ...,m

hs(x) = 0 s = 1, 2, ..., p

xl ≤ x ≤ xu

where x ∈ Rn is a vector of design variables (also called decision variables ), n is the

number of independent variables xi, F (x) is a vector of objective functions where

fi(x) : Rn → R is the ith objective function (also called criteria, pay-off functions,

cost functions, or value functions), k is the number of objective functions, xl and

xu are the lower and the upper bounds of the decision vector, respectively, gt and

hs correspond to the inequality and the equality constraints, respectively, m is the

number of inequality constraints, and p is the number of equality constraints.

The feasible design space X is the set of points where the conditions for the

constraints are not violated, that is

X = {x | G(x) ≤ 0 and H(x) = 0 and xl ≤ x ≤ xu} (2.2)

where G(x) = {g1(x), ..., gm(x)} and H(x) = {h1(x), ..., hp(x)}.

The feasible criterion space Z (also called the feasible objective space) is the map of
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feasible design space in the objective space, that is

Z = {F (x)|x ∈ X} (2.3)

For the rest of this thesis, we use the term “design space” for the feasible design

space and “objective space” for the feasible objective space, unless explicitly expressed

otherwise.

2.1.2 Basic Concepts

The objective in solving the multi-objective optimization problem in equation (2.1)

is to find the optimal points in the design space where their corresponding points

in the objective space have the minimum value. In single objective optimization

the criteria for optimality is the value of one objective function and one can always

compare the value of one point to another, one solution is either better, worse or

equal in comparison to another solution. Often, in multi-objective optimization there

is no single global solution where all the objective functions attain their optimum.

Therefore, it is necessary to determine a set of points that satisfy a preset definition for

an optimality. The definition for an optimal point is the concept of Pareto optimality

[100], and is defined as follows:

Definition 1. Pareto Optimality: A decision vector in the design space x ∈ X is

Pareto optimal iff there does not exist another vector y ∈ X such that fi(y) ≤ fi(x)

for all i = 1, ..., k and fj(y) < fj(x) for at least one index j.

There is another type of optimality for a decision vector in the multi-objective

optimization known as “weak Pareto Optimality”. The algorithms for solving the

multi-objective optimization problems usually provide points that may not be Pareto
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optimal but are weakly Pareto optimal. The definition for the weakly Pareto optimality

is as follows:

Definition 2. Weak Pareto Optimality: A decision vector in the design space x ∈ X

is weakly Pareto optimal iff there does not exist another vector y ∈ X such that

fi(y) < fi(x) for all i = 1, ..., k.

The difference between Pareto optimal point and weakly Pareto optimal point is

that for a point to be weakly Pareto optimal there should not exist another point in

design space that improves all of the objective functions simultaneously. However,

the condition for Pareto optimality is that there should not exist a point that im-

proves at least one objective function without detriment to another objective function.

Pareto optimal points are weakly Pareto optimal, but the reverse is not always correct.

Definition 3. A point x1 ∈ X is a solution of multi-objective optimization problem

(2.1) if there is no other x2 ∈ X where

fi(x2) ≤ fi(x1) ∀i ∈ {1, 2, ..., k} (2.4)

∃ j ∈ {1, 2, ..., k} fj(x2) < fj(x1)

Each point in the solution set is a Pareto point, and the set of all the solution points

is often called Pareto front. All the Pareto optimal points map into the boundary of

the objective space Z [101].

In Figure 2.1 the Pareto point and the Pareto front in the 2-D objective space
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are shown. As shown the thick line contains all the Pareto optimal objective vectors.

Figure 2.1: Pareto front and Pareto point in the 2-D objective space.

The concept of Pareto optimality is coupled with the solution of multi-objective

optimization, however in practical applications one may not always need to find

Pareto optimal solution. Therefore, the concept of dominance is introduced. The

concept of dominance is very similar to Pareto optimality, however, it is used more

generally, and is specially useful in algorithms that try to find multiple Pareto optimal

points at once. The concept of dominance is defined as follows.

Definition 4. Dominance: A vector of objective functions in the objective space

F (x) ∈ Z is non-dominated iff there does not exist another vector F (y) ∈ Z such that

F (y) ≤ F (x) with at least one Fi(x) < Fi(y). Otherwise, F (X) is dominated.

In multi-objective optimization one tries to optimize all the objective functions

simultaneously, however often the objective functions are conflicting and when one

function attains its minimum, the other functions have values higher than their
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minimum. This has led us to define the point in the entire objective space where all

the objectives reach their optimal value. This point is called the utopia point (also

called as ideal point) and is defined as follows [106].

Definition 5. Utopia point: A point in the objective space F o is an utopia point iff

f o
i = minx { fi(x) | x ∈ X } for each i = 1, ..., k.

F o is generally infeasible. However, many algorithms for finding the solution of

the multi-objective optimization try to find a Pareto point as close as to the utopia

point. Utopia point has also some applications in transforming the objective function

into more useful form which we will discuss later in this section.

2.1.3 Multi-Objective Optimization Methods

The term “min” in the multi-objective optimization problem (2.1) indicates that we

aim to minimize all the objective functions simultaneously, i.e. we want to find a point

where every objective function achieves its optimum. If there is no conflict among

the objective functions, then finding such a solution is possible. However, in general

the objective functions are conflicting and there may not exist the best solution with

respect to all the objectives. Hence, the solution to the problem (2.1) is usually a set of

Pareto points. Thus, instead of being a unique solution to the problem, the solution to

a multi-objective problem is a possibly an infinite set of Pareto points. In this case by

attempting to enhance one of the objectives, other objectives will detriment as a result.

Having more than one objective function in an optimization problem results

in additional degrees of freedom. Without constraining these degrees of freedom,

instead of having a single optimal point, the solution of the optimization problem
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would be a set of solution points. However, in practical applications we often have to

decide between the solutions of the multi-objective problem and have only one of the

Pareto points as the final solution. For choosing one point between the Pareto points

we need to determine a preference criteria between solution points. Determining these

preferences is done by a Decision Manager (DM) who is assumed to have in depth

knowledge about the problem and is able to provide preference information related to

the objectives and/or different solutions in some form.

The role of the DM can be articulated in different phases of the solution pro-

cess. Accordingly, the method for solving the multi-objective optimization can be

categorized into four classes based on responsibility of the DM in the solution process:

1. If DM specifies its preference information before obtaining the Pareto points the

method is called a priori method [104].

2. If the information about the preference of DM is obtained after solving the

multi-objective problem and presenting the Pareto solutions, the method is

called a posteriori method [103].

3. When the DM has no-preference toward any of the Pareto points the method

for solving the multi-objective optimization is called no-preference method [99].

4. If the DM interacts and changes/adopts its preference information when an iter-

ative algorithm is used to find the Pareto points in the multi-objective problem,

the method is called interactive method [105].

2.1.3.1 Methods with a priori Articulation of Preference

In the a priori methods, the user must provide preference information prior to

obtaining the Pareto set. The user provides its preference in terms of goals or the
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relative importance of different objectives. The solution process attempts to find a

Pareto optimal solution satisfying the user preference as best as possible. This is a

straightforward approach, however, its drawback is that the DM has to choose its

preferences before knowing its options and possible solutions. The weighted global

criterion method, weighted sum method, lexicographic method, weighted min-max

method, exponential weighted criterion, weighted product method, and bounded

objective function method are example of the a priori methods [104].

2.1.3.2 Methods with a posteriori Articulation of Preference

If a general representation of the set of Pareto points is generated and then the user is

asked to select the most preferred one among them, the method is called a posteriori

[103]. In some cases, it is hard for the DM to determine a clear approximation of its

preference. Therefore, it is advantageous to allow the DM to choose from a general

representation of the solutions and view the options before making a decision. In

these methods instead of putting preference on the objective functions, the DM only

considers which solution is most appealing. The DM can select the most appealing

solution based on the objective function values in the criterion space or design variable

values in the design space.

The weighted methods are common in generating a representation of the Pareto

optimal set by solving multiple sequential optimization problems with different param-

eters. Other algorithms such as physical programming, normal boundary intersection

method, normal constraint method, and genetic algorithms are also useful for a poste-

riori articulation of the DM preference. Regardless of the method that is used for

generating the Pareto points, the solution must be presented to the DM in graphical

or tabular form. Both of the graphical and tabular representations of a solution give

an overview of different solutions to the DM. However, graphical presentation of
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solutions is generally limited to three-dimensional representation of Pareto surface.

Furthermore, in tabular representation of solution it may be hard to select the final

solution if the number of objectives, variables, and the solution points are large.

Choosing the number of points to represent the Pareto set to the DM is

an important factor in a posteriori methods. Selecting more solution points would

provide a better representation of the Pareto set for the DM, however it requires

additional computational time. Using fewer points for representing the Pareto set in

tabular form makes it more user-friendly for the DM, however, it may result in an

incomplete representation of the Pareto set and omitting possibly better solutions.

2.1.3.3 No - Preference Methods

In the no-preference method the DM has no favoritism toward any of the points in the

solution set and takes no part in the solution process. In this case, the task is to find

some unbiased solution without any preference information. In no-preference method

the final solution is selected based on some assumption about a reasonable compromise

between the objectives instead of asking the user for preference information [99]. In all

the other classes, the user is assumed to take part in the solution process. Most of the

no-preference methods are special cases of the a priori methods, where the preference

parameters are set to be the same value for all objectives. Global criterion methods,

Nash arbitration, and Rao’s method are among the methods in this category [103].

2.1.3.4 Interactive Methods

In interactive methods [105], an iterative solution algorithm is formed and repeated.

After each iteration, the current information and the current solution points are

given to the DM and it is asked to provide preference information for the next

iteration. Methods in this class gives the DM the possibility of specifying and adjusting
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preferences information between iterations while at the same time the DM learns

about the solution patterns in the problem as well as about ones own preferences.

2.1.4 Normalization of Objective Functions

In order to find the Pareto points the objective functions do not need to be transformed,

however, it is often beneficial to transform the objective functions into more useful

forms. Usually the objective functions have very different ranges for their values, thus

this makes it hard for the DM to compare their values and put accurate significance

on the objective functions. The goal of the function transformation is to assume

that all the objective values take place within some comparable range. The function

transformation is specially utilized in a priori methods that scalarize the objective

functions. Here, we present some of most frequent function transformations within

the multi-objective optimization framework.

One possible way to transform the objective functions is to normalize each function

by its absolute highest value in the design space [107]:

f t
i (x) =

fi(x)

|fmax
i |

(2.5)

where |fmax
i | is the absolute maximum of fi(x) in the design space (note that it is

assumed fmax
i 6= 0). This approach produces non-dimensional objective functions

bounded between 1 and −1.

Another method for transforming the objective functions is by using the utopia

point. This method calculates the relative deviation of each objective from its minimum

value, that is
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f t
i (x) =

fi(x)− f o
i

|f o
i |

(2.6)

This method provides a non-dimensional objective function with the lower value of

zero. However, the upper value for the transformed objective is unbounded [113].

A variation of the previous method is to divide each objective value by its minimum

value which results in non-dimensional objective functions with a lower limit of one

[108], that is

f t
i (x) =

fi(x)

f o
i

f o
i > 0. (2.7)

The last method for objective function transformation that we introduce here is

to normalize each objective function by using its minimum and maximum value. As

a result the transferred objective functions have a range of zero and one [109], [110],

[112], that is

f t
i (x) =

fi(x)− f o
i

fmax
i (x)− f o

i

(2.8)

The utopia point is often approximated in these methods. Therefore, the accuracy

of the range of the transferred objective function is dependent on the accuracy of the

approximation.

Following the introduction to the general categories of multi-objective optimization

methods we will introduce two methods that are selected for solving the multi-objective

optimization problem in this thesis. In the following the weighted sum method and

the genetic algorithm are presented.
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2.1.5 Weighted Sum Method

To solve a multi-objective optimization problem, a standard method is to transform

the problem into a single objective problem. This is done by assigning a weight to each

objective function and adding all the objectives to form a new single objective function.

This method is known as the weighted sum (WS) [111], [98], and it allows one to use a

single objective optimization algorithm. However, its drawback is that the WS method

can only find one point in the Pareto front for every set of weights. It also requires that

the user decides on the importance of each objective function prior to determining the

possible solutions. This method is used to convert the problem into a form where one

objective function can be optimized by a single objective optimization solvers available.

In the weighted sum method, we solve the following problem

min
~x

k∑
i=1

ωi f
t
i (x) (2.9)

s.t.

gt(x) ≤ 0

hs(x) = 0

xl ≤ x ≤ xu

where ωi ≥ 0 for all i = 1, ..., k, and typically
∑k

i=1 ωi = 1.

The solution to the above minimization problem can be shown to be weakly

Pareto optimal and, furthermore, Pareto optimal if ωi > 0 for all i = 1, ..., k if the

solution is unique [98]. It is advisable to normalize the objective functions so that

their different magnitudes do not bias the method. The weighted sum method is often

used as a priori method when the DM is asked to provide the information about the

preference in terms of weight parameters. However, it can be utilized as a posteriori
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method by calculating the solution points for different weights to depict the Pareto set.

It is important in multi-objective optimization problems that the solution method

would be able to find all the Pareto points. In this respect, the WS method has a

shortcoming in solving non-convex problems, where it can not find any Pareto point

in the non-convex part of the Pareto front. The reason behind this is the fact that the

weighted sum method is usually implemented as a convex combination of objectives

(where the weights are non negative and their sum is one). Thus, it may happen that

some Pareto optimal solutions of non-convex problems cannot be found no matter

how the weights are selected. To address this shortcoming the authors in [115] have

developed a variation of WS method that will find the Pareto points in the non-convex

parts of the Pareto front. To find these Pareto points in each of the non-convex parts

of the Pareto front, their method will add a constraint to the optimization problem

that will restrict the feasible objective space to a region that only has that specific

non-convex part of the Pareto front. This method is known as adaptive weighted sum

(AWS). As shown in Figure 2.2, the regular WS method only finds the Pareto points

in the boundary sections 1, 3 and 5, and it is incapable of finding any Pareto points in

the non-convex parts of the boundaries 2 and 4. Figure 2.3 shows how the adaptive

weighted sum method finds the Pareto points in the regions 2 and 4. For the region

2, the AWS method attempts to find the Pareto optimal points by restricting the

objectives to be in the region 2. This can be done by adding two constraints to the

optimization problem that restricts the first objective to be less than the value of the

first objective at the point p2 and the second objective to be greater than the value of

the second objective at the point p1.
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Figure 2.2: Boundary of the non-convex objective space. WS method can only find
the Pareto points that are in the convex part of the boundary [115].

Figure 2.3: Example of how the AWS method finds the Pareto points in the non-convex
part of the boundary [115].
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2.1.6 Genetic Algorithm

Most of the methods in the a priori, a posteriori, and no-preference categories formu-

late the multi-objective optimization problem into the single objective optimization

problem and then solve it using the standard optimization techniques. However, there

are other approaches such as the genetic algorithms (GA) that are capable of solving

the multi-objective problems directly. The genetic algorithm is introduced by Holland

[117] and is used in many applications to solve optimization problems. Since the

GA does not use the gradient information in solving the optimization problem its

effectiveness is emphasized in problems that have non-smooth or non-differentiable

objective functions and constraints. The basic idea behind the GA comes from the

Darwin’s theory of natural selection and uses the language of microbiology in process

of producing the solutions.

Genetic algorithm starts the optimization with a population of decision vectors

usually created at random within a specified lower and upper bounds on each variable.

Afterwards, the GA performs an iterative operation of creating a new population from

the current population. This iterative procedure consists of 4 main operators, namely:

selection, crossover, mutation and elite-preservation. The GA stops the optimization

when one or more termination criteria are met.

For solving the multi-objective optimization problems, GA attempts to give

an idea on the extent and shape of the Pareto front by finding a set of well-distributed

Pareto-optimal points. One must note that multi-objective genetic algorithm opti-

mization principles are different from the classical optimization methodologies. GA is

a direct search procedure that does not use gradient information in its search process.

Thus, this allows it to be applied to a wide variety of optimization problems. Due to

this reason, for a structured and well-behaved optimization problems it is better to use
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a more standard approaches such as linear or quadratic programming as the GA has

higher computational time and is not competitive with gradient-based optimization

procedures.

GA is among the global optimization techniques; i.e. when GA is utilized to

solve a single objective optimization it converges to the global solution in contrast

to the gradient based methods that might find a local solution. The advantage of

GA over other global optimization techniques for multi-objective optimization such

as [118], [119], [120] is in its capability to work with a population of points. Most of

the classical optimization algorithms update one solution in each iteration, however,

the GA works with a population of points and uses more than one solution in each

iteration which enables it to find multiple optimal solutions. This advantage makes

GA very effective in finding the solution of multi-objective optimization problems.

Another advantage of GA is that it has the ability to normalize objective functions

within an evolving population using the population-best minimum and maximum

values. The drawback of utilizing the GA is the memory and computational cost

associated with performing each iteration. In this regard it is suitable for depicting

the Pareto set for the DM, and thus, it is categorized as a method with a posteriori

articulation of preference. The most popular method in the GA is the Fast and Elitist

Nondominated Sorting Genetic Algorithm (also known as the NSGA-II) [121].

2.2 Map Partitioning

A commonly used resource allocation strategy for multi-agent systems is the par-

titioning policy. Partitioning policy is to divide the general task of mission into

subtasks and then assign each agent to one of the subtasks. While other methods

for resource allocation are available [122], [123], [124], [125], the partitioning policy
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has the advantage of efficiency, ease of design and ease of analysis as a result of

isolating the task of each agent from other agents. In search and coverage applications

the partitioning policy comes in the form of dividing the area of interest, i.e. map

partitioning. Map partitioning can be done by trivial methods that work in simple

regions such as square or circular regions [31]. An alternative method for partitioning

the region of interest is to decompose the map by small units such as squares or

hexagons, and then assign a group of these units to each agent [16]. The method

that we use for map partitioning in this thesis is by using the Voronoi and the power

diagrams. These methods divide the region of interest into the exact number of agents

in the mission. When using these methods a priori information about the area of

each region is needed. In the following the basic concepts on the Voronoi and the

power diagrams are presented and reviewed.

2.2.1 Voronoi Diagram

Voronoi diagram [127] partitions a plane into convex polygons by using some points as

generators. Each of the resulting polygons contains exactly one generating point and

the distance of each point in a given polygon to its generator is smaller than to any

other generator. The concept of the Voronoi diagram was introduced by Descartes in

1644. Dirichlet also used it in 1850. However, it was Voronoi who studied and extended

these concepts to higher dimensions. Voronoi diagram is also known as the Dirichlet

tessellation [129]. The polygons are also called Dirichlet regions, Thiessen polytopes,

or Voronoi polygons. The mathematical definition of the Voronoi diagram is as follows:

Definition 6. Assume that G = (g1, ..., gm) is a set of distinct points in the region

Ω. The Voronoi diagram of Ω generated by the points G, denoted by V (G) =
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(
V1(G), ..., Vm(G)

)
, is defined by

Vi(G) = {x ∈ Ω | ‖x− gi‖ ≤ ‖x− gj‖, j 6= i} (2.10)

In other words, the Voronoi diagram divides the region Ω into m cells where if gi

is the nearest point in G to x∗ ∈ Ω then x∗ is in the Voronoi cell of gi. Voronoi cells

and their generators are shown in Fig. 2.4.

Figure 2.4: Example of a Voronoi diagram partitioning the 2-D space into five regions

One can easily show that each Voronoi cell is a convex set, and thus a Voronoi

diagram of Ω is a convex partition of Ω. Two Voronoi cells are called neighbor if they

have more than one points in their boundary that belongs to both cells. In Fig. 2.4

the Voronoi cells 1 and 2 are neighbors but the Voronoi cells 1 and 3 are not neighbors.

For gi, gj ∈ G, j 6= i, we define the bisector between gi and gj as

b(gi, gj) = { x ∈ Ω | ‖x− gi‖ = ‖x− gj‖ } (2.11)

The face b(gi, gj) bisects the line segment joining gi and gj, and this line segment

is orthogonal to the face (Perpendicular Bisector Property). The boundary of each

Voronoi cell is either the boundary of Ω or the bisector of two generators.
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The Voronoi diagram has found many applications in multi-agent systems. For

example, it is used in optimal sensor allocation problem where the position of sensors

are the generators of the Voronoi diagram. It is also used in the attack and destroy

missions by multi-agent UAVs in presence of static radar sites, where the location of

the radar sites are generators of the Voronoi diagram and the UAVs routes are the

boundary of the Voronoi cells to avoid all of the radar sites equally.

2.2.2 Power Diagram

The only control element in Voronoi diagrams is the position of generators. If one

wants to change the Voronoi partitions, the only solution is to change the location of

the generators. This is a shortcoming in problems where the location of generators are

fixed but the resulting Voronoi diagram are not satisfactory. Thus, a generalization of

the Voronoi diagram is developed which is known as Power diagram. It adds weights

to each generator which makes it possible to alter the Voronoi cells without changing

the location of the generators. The mathematical definition of the power diagram is

as follows:

Definition 7. We refer to the pair (gi, ωi) as a power point and define

GW =
(

(g1, ω1), ..., (gm, ωm)
)

(2.12)

Assume that each point gi ∈ G has assigned an individual weight ωi ∈ <. Let

W = (ω1, ..., ωm). We define the power distance as

dp(x, gi, ωi) = ‖x− gi‖2 − ωi (2.13)
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The power diagram of Q generated by power points GW , V (GW ) =
(
V1(GW ), ..., Vm(GW )

)
,

is defined by

Vi(GW ,Ω) =
{
x ∈ Ω|‖x− gi‖2 − ωi ≤ ‖x− gj‖2 − ωj, j 6= i

}
(2.14)

We refer to GW as the set of power generators of V (GW ), and Vi(GW ) as the

power cell or region of dominance of the i-th power generator. Moreover, we call gi

and ωi the position and the weight of the power generator (gi, ωi), respectively. The

power diagram is a convex partition of Ω. Note that when all the weights are the

same the power diagram coincides with the Voronoi diagram.

A geometric interpretation of the power diagram for positive weights is as follows.

A weighted point (gi, wi) is a circle with gi as its center and wi as its radius. For a

point x outside this circle dp(x, gi, ωi) > 0, and it represents the square of the length

of the tangent line from x to the circle. Example of a power diagram is shown in

Figure 2.5.

One of the applications of power diagrams is in the map partitioning. In [12] the

authors have shown that for any given convex region Ω, and any set of points G in Ω,

there exists a set of weights W to partition the map with equal area in each partition.
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Figure 2.5: Example of a power diagram partitioning the 2-D space into five regions.

2.2.3 Conclusions

We have reviewed some basic concepts and methods on multi-objective optimization

problem. The material that is reviewed in this chapter are used in Chapter 3 for

solving the task assignment problem in coverage mission. As mentioned in the

proposed solution section in Chapter 1, after solving the task assignment for a team of

heterogeneous UAVs in the coverage mission, we partition the map to determine the

share of each UAV on the map. We have introduced some basic concepts and methods

on the space decomposition problem. Two partitioning methods are reviewed, namely

the Voronoi diagram and the Power diagram, which divide the map into convex and

disjoint subregions. The materials reviewed in this chapter are used in Chapter 4 for

solving the map partitioning problem in coverage mission.
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Chapter 3

Task Assignment in a Team of

Heterogeneous UAVs

Mobile and static sensor networks have large number of applications for exploration,

environmental monitoring, safety and recovery operations. Small low power mobile

devices are expected to be the next generation of networks. Regardless of their field

of application it is always important to maximize the field of coverage by these sensor

networks. However, as a result of the size of sensors, these network agents have

limited resource to communicate, compute, and move. Thus, power management

is a key factor in developing these systems. Time management is also crucial in

mobile sensor applications. When mobile sensor networks are utilized in safety and

recovery operations, or in search and rescue missions the time is the most important

factor in the mission. When the team agents have different capabilities, balancing the

workload for each agent based on its capability significantly affects the mission time

cost. However, limited work has considered both the power and the time management

in heterogeneous multi-agent networks.

In this thesis we address the problem of dynamic coverage of an area of in-

46



terest by a team of heterogeneous UAVs. The UAVs are heterogeneous in the sense

that they have different sensor footprints and different ranges of speeds. The team

is tasked to visit a region of interest (Ω ⊂ <2) and perform a coverage search. A

point is visited if it is inside the sensor footprint of an UAV at any time during the

mission. Every point in the region of interest should be visited by at least one of the

agents during the mission. The mathematical formulation of the problem includes the

following components and constraints:

• Nv Heterogeneous UAVs: each vehicle has a range of forward speed vimin <

vi < vimax, where vimin and vimax denote the minimum and maximum speed of

UAVi, respectively.

• Coverage Region Ω ⊂ <2: is a compact and convex subset of <2, and has the

total area of D.

• Assigned Region Ωi: is the UAVi coverage region which is a subset of Ω, and

has the area of di.

• Radius of Sensor Footprint ri: each UAV is equipped with a sensor. The sensor

footprint for UAVi has a radius of ri.

The solution methodology that is developed in this thesis divides the problem into

2 phases. In the first phase, the objective is to find the best group of UAVs that are

able to finish the mission with the minimum time and fuel. This is done by performing

a multi-objective optimization process. The decision variables of optimization problem

are the speeds of the UAVs and their coverage area.

The result of the multi-objective task assignment optimization is a set of dif-

ferent possible assignments for the team. The user or the mission designer must
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determine the favorite assignment based on the mission criteria and also past experi-

ences. Since the UAVs are different and have do not have the same capability, some

of the UAVs may not be included in the solution of the task assignment optimization

problem. Choosing the final solution of the task assignment determines the optimal

amount of coverage area for the UAVs, but their coverage region is not determined

yet. The coverage region is determined through the map partitioning phase. After

solving the task assignment optimization and choosing a solution as the preferred task,

the map partitioning algorithm would divide the region of interest into subregions

according to the mission designer priority set of task assignments. This phase assigns

a subregion of Ω to each UAV that matches with the solution of the task assignment

phase. The task assignment optimization phase is studied in this chapter, and the

map partitioning is presented in Chapter 4.

This chapter is organized as follows. The mathematical formulation of mission

objectives is presented in Section 3.1. The task assignment problem formulation

and the solution methodology are presented in Sections 3.2 and 3.3, respectively. In

Section 3.4, the simulation and results are presented. In Section 3.5, the chapter

conclusion is provided.

3.1 Defining the Objective Functions

The first step in the multi-objective optimization problem is to determine all the

objectives and constraints. In this thesis we are interested in search and coverage

missions by a team of heterogeneous UAVs. The goal is to cover the entire region

in minimum time, while minimizing the amount of fuel in the mission. Hence, there

are two objectives in the mission: one is concerned with the cost of fuel (Jf ), and the
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other is addressing the time it takes for the team to perform the mission (Jt), that is

Jteam = [Jf , Jt] (3.1)

Due to the conflict between performing the mission in minimum time and using

the minimum amount of fuel, one cannot find a set of task assignments that fully

satisfies both of these objectives.

The following conditions are assumed for the surveillance mission:

(I) No point is visited more than once by one UAV.

(II) No point is visited by more than one UAV.

Condition (I) implies that each UAV investigates its region efficiently, i.e. it

visits each point once. From this condition one can conclude that the area covered

by the ith agent can be expressed as the total length of its path multiplied by the

diameter of its sensor footprint, that is di = 2 li ri, where di is the coverage area of

UAVi, li is the length of its path and ri is its sensor’s footprint radius.

While condition (I) focuses on the optimality of the coverage for each UAV

individually, condition (II) addresses optimality of the team’s assignment by making

sure that UAV assignments do not overlap with one another. In other words, the

sum of the coverage areas for all agents must be equal to the total area of the search

space. By assuming the above conditions one can formulate an optimization problem

with UAVs’ speed and coverage area as its decision variables. In the following, the

objectives are defined assuming these two conditions hold.
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3.1.1 First Objective Function: Minimizing Fuel

The fuel consumption rate for each UAV is proportional to the aerodynamic drag

force, which is proportional to the velocity squared. Hence, the fuel required by the

ith UAV to search its assigned region is a function of the vehicle’s velocity and the

length of the path covered by the vehicle through the mission. We denote the fuel

objective for each UAV as Jfi . The function Jf is the fuel cost of the team and it

is equal to the sum of the fuel cost for each UAV. The individual fuel cost can be

expressed as:

Jfi = v2
i li (3.2)

where:

vi : The velocity of the ith UAV constraint to be between vimin < vi < vimax.

li : The length of the ith UAV path.

Therefore, for the entire team the fuel cost function is

Jf =
Nv∑
i=1

Jfi (3.3)

The length of the ith UAV path (li) can be calculated based on its sensor radius and

the total area of its coverage, that is

li =
di
2ri

(3.4)

where:

di : The area of region assigned to the ith UAV.

ri : The range of sensor footprint of the ith UAV.
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Therefore, the fuel cost for each UAV and the entire team are:

Jfi =
div

2
i

2ri
(3.5)

Jf =
Nv∑
i=1

div
2
i

2ri
(3.6)

3.1.2 Second Objective Function: Minimizing Time

The function Jt is the time cost incurred by the team of UAVs for carrying out

its surveillance and coverage mission. A suitable time cost function must have the

following criteria:

a) Two missions with different total time of coverage should have different time

costs, and the mission with longer mission time should have higher cost.

b) Two missions with the same total time of coverage but different individual

mission time should have different time costs, e.g. If there are two UAVs to perform

the coverage mission, one prefers to finish the mission in 10 second (both UAVs take

10 second to finish their coverage) in comparison to one UAV finish the mission in 15

second and the other one finish the mission in 5 second.

One should note that the average UAVs completion time (Jt =
∑Nv

i=1
ti
Nv

) lacks the

second criteria, while choosing the maximum mission completion time (Jt = maxNv
i=1 ti)

lacks the first condition.

We will use the mean square of UAVs completion time for calculating Jt. The cost

used for this purpose can be written as

Jt =
Nv∑
i=1

t2i
Nv

(3.7)
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Each UAV’s mission time, ti, depends on the length of its path, li, and the speed of

UAV, vi, that is

ti =
li
vi

(3.8)

The length of each UAV’s path is a function of its assigned region’s area and the

radius of its sensor, namely

li =
di
2ri

(3.9)

ti =
di

2rivi
(3.10)

Therefore, the time cost for the entire team is:

Jt =
Nv∑
i=1

d2
i

4Nvr2
i v

2
i

(3.11)

3.2 Problem Statement

Following the definition of the objective functions we can now formulate the problem

as follows:

Problem 3.1: Given a team of Nv heterogeneous UAVs and a region Ω with a

total area D, determine the best group of UAVs along with their optimal speeds and

coverage areas that minimizes both the fuel and the time objective functions in the

coverage mission.

The Problem 3.1 can be stated as the following optimization problem:

min
~v,~d

[
Nv∑
i=1

div
2
i

2ri
,

Nv∑
i=1

d2
i

4Nvr2
i v

2
i

]
(3.12)
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subject to:

vimin
≤ vi ≤ vimax

Nv∑
i=1

di = D, di ≥ 0

where di is the coverage area of UAVi, and vimin
and vimax are the vectors containing

the lower and the upper bounds of UAV’s speeds, respectively.

From equation (3.12), one can note that manipulation of the velocity and coverage

area determine the total cost of the mission. An increase in the velocity would result

in an increase in the fuel cost but a decrease in the mission time. Similarly, an increase

in the coverage area would result in increase in the distance covered by an UAV,

which in turn increases its fuel and time cost, but this increase in the area of one

vehicle would result in decrease of another UAV(s) area(s), therefore the cost of fuel

and time of another vehicle would decrease.

3.3 Solution Methodology

The solution for Problem (3.1) is a set of Pareto points. For having one final solution a

mission designer must choose between the set of Pareto points based on the importance

of each cost function. For example, if the mission is search and rescue then minimizing

mission time should have more importance than conserving fuel. However, when the

mission is delivering a product, the mission cost is set in favor of the fuel cost. In

choosing the methods for solving the optimization problem (3.12), we have selected

the multi-objective genetic algorithm (GA) and the weighted sum (WS) methods.
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Solving using the GA has the advantage of finding multiple solutions at once. The

disadvantage of the GA is its long computational time in comparison to the WS

method. Since in the GA the representation of the Pareto front is obtained there is

no need to redo the optimization when the preference of the mission designer changes

throughout different times.

There is no single solution to the optimization problem (3.12) that minimizes all

the cost functions. Hence, the final solution must be chosen through involvement

of a user/decision manager. The final solution can be selected according to the

preference information given by the user. If the preference information is provided

before obtaining any of the Pareto solutions, the method is called a priori, and it

would search for the final solution without finding any other Pareto solution. On the

other hand, the user may not be able to provide the preference information before

evaluating the possible solutions. This usually happens when the user has not enough

insight about the problem and possible solutions. In this case, a posteriori method is

utilized to obtain a representation of the Pareto set for the user/decision manager.

In a posteriori methods the final solution is no longer chosen based on the relative

importance of the objectives, instead it is chosen directly by the decision manager by

evaluating the solutions in the Pareto set.

The weighted-sum method is the most widely used a priori approach in solv-

ing multi-objective optimization problems. Its extensive usage is due to being easy

to understand and simple to implement. Furthermore, the weights in this approach

reflect the preference of the decision manager in its simplest form by putting relative

importance among the objectives. The WS method is mostly used as a priori method,

i.e., before obtaining the possible solutions of the problem, the decision manager

is asked to provide the preference information regarding the relative importance of
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objective functions. In this regard the WS method will find the optimal solution,

which satisfies the decision managers preference.

The WS method could also be utilized as a posteriori method in which it is

employed to find a representation of the Pareto points. This representation is pre-

sented to the decision manager, and s/he will choose the suitable Pareto solution

as the final answer of the problem. If the problem is convex, the WS method is a

suitable choice to depict the Pareto set. However, the WS method has a disadvantage

in depicting the Pareto set in non-convex multi-objective optimization problems. The

WS method cannot find the Pareto points that are lying in the non-convex part of the

objective space. Since the time objective function (Jt) in problem (3.12) is non-convex,

we will use another a posteriori method to depict the Pareto front.

In choosing the a posteriori methods for solving the above optimization problem

we have selected the multi-objective genetic algorithms (GA) method [121]. Using the

GA has the advantage of determining the Pareto front. Hence, there is no need to

re-solve the optimization problem when the preference of mission designer changes at

different mission times.

GA solves the optimization problem with the concept of domination and crowding

distance. A solution a dominates solution b if all the objective values for a are better

than corresponding objective values for b. At each iteration of the algorithm the

population is split into multiple fronts. The first front contains individuals that are

not dominated by any other individuals in the population. The individuals in the ith

front are only dominated by the individuals in the 1, 2, ..., i− 1 fronts. After sorting

the population into different fronts, each individual is assigned a rank equal to its

front, i.e. the individuals in the first front are assigned with rank 1, and the individuals
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in the ith front are assigned with rank ith.

Fig. 3.1 shows an illustrative example of domination in the 2-D objective space.

The circle individuals are not dominated by any individual, hence they form the first

front and their rank is 1. The square individuals are only dominated by the individuals

in the first front. They form the second front and have a rank 2. The third front

consists of remaining two star individuals which have a rank 3. Note that individuals

in the third (last) front are dominated by the first and second fronts.

Crowding distance measures how close an individual is to the other individu-

als with the same rank. A set of solutions with large average crowding distance

indicates large diversity in the population.

Figure 3.1: Grouping the individuals into different fronts [121].

Since GA does not work with the variables of the multi-objective problem directly,

one must convert the decision variables into chromosomes with a binary code. Each
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generation consists of N individuals that are represented in binary code as:

Ind1 = {110...0...1} (3.13)

Ind2 = {101...1...1} (3.14)

... (3.15)

IndN = {011...0...1} (3.16)

The bit-string in each individual contains the values of the decision variables. To form

a chromosome, the value of each decision variable is converted into a fixed length

binary number and then the binary codes of the decision variables are concatenated.

The constellation chromosome structure is shown in Figure 3.2.

Figure 3.2: Data structure of the chromosomes used in the GA, where di s and vi s
denote the decision variables of the optimization problem.

After creating a random parent population (P0) with N individuals, at each

iteration of the GA we assign a rank to each individual equal to its front number.

For selecting the pairs of individuals for reproduction, the tournament selection is

used with the criterion based on the rank and the crowding distance, i.e. we prefer

the individual with a lower rank, and in case of having equal ranks, the individual

with higher crowding distance is preferred. After selecting the pairs of parents, the

child set, Qt, is produced by performing mutation and recombination [121]. The next

step is to combine the sets of parent and child populations Rt = Pt ∪ Qt. The size

of Rt is 2N . The new parent population Pt+1 is then formed by selecting the best

N individuals among the population of Rt. The criterion in selecting the population
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Pt+1, is the same as the criterion for the tournament selection. Furthermore, the

proposed approach of Deb et al. in [121] is used for handling the constraints of the

multi-objective optimization problem. Figure 3.3 shows the multi-objective genetic

algorithms that is used in this chapter.

Figure 3.3: The multi-objective genetic algorithm [121].

The solution of the multi-objective optimization problem is a set of Pareto points.

The decision manager will choose the final solution based on its preference. We have

modeled the preference of the decision manager in the form of relative importance of

the objective functions. This can be accomplished by selecting the percentage of each

objective’s importance in the final decision, that is through

Jtotal = ωfJf + ωtJt (3.17)

0 ≤ ωf , ωt ≤ 1

ωf + ωt = 1
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In forming the total mission cost in equation (3.17), it is important to normalize the

objective functions, so that both of the objectives have the same order of magnitude.

There are various methods for normalization as presented in Section 2.1.4. After

normalizing the objective functions, the final solution is the Pareto point which has

the minimum Jtotal for the mission.

It should be noted that the task assignment optimization problem is only nec-

essary in presence of heterogeneous UAVs. If the UAVs are homogenous (that is,

ri = rj, vimin
= vjmin

, vimax = vjmax), the optimal coverage area for all of the UAVs

would be the same (i.e., d = D
m

). Similarly, the optimal speed has to be the same

for all the UAVs. Consequently, there would be only a single variable (v) and the

multi-objective optimization problem reduces to:

min
v

[
Dv2

2r
,

D2

4mr2v2

]
(3.18)

s.t.

vmin ≤ v ≤ vmax

For any set of vmin ≤ v1 < v2 ≤ vmax we can write:

Dv2
1

2r
<

Dv2
2

2r
→ Jf (v1) < Jf (v2) (3.19)

D2

4mr2v2
1

>
D2

4mr2v2
2

→ Jt(v1) > Jt(v2) (3.20)

As can be seen from the above equations, neither of the objective sets [ Jf (v1) , Jt(v1) ]

and [ Jf(v2) , Jt(v2) ] dominates the other. Therefore, all the points in this multi-

objective optimization are Pareto points, and the minimization phase is redundant.

In coverage scenarios involving heterogeneous team of UAVs, it is important
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to balance each UAV’s share based on its capabilities. The task assignment framework

that is developed in this chapter assigns optimal tasks to the best group of UAVs

that ensure the minimum cost for the mission. It also handles time and power critical

coverage missions effectively. It balances the task of all the agents, by selecting the

amount of UAVs’ coverage areas based on their capabilities.

The methods that are selected for solving the task assignment provide flexibility

for the decision manager. If the decision manager is aware of the relative importance

of the objective functions, the weighted sum method can be utilized to directly find

the optimal set of assignments. On the other hand, the decision manager may pre-

fer to study the possible solutions before choosing the final set of task assignments.

In this case the multi-objective genetic algorithms can be employed to calculate a

representation of the solutions, and the decision manager can make its decision by

comparing among the results of the GA. Hence, the optimal set of tasks could be

assigned to the agents using both methods.

3.4 Simulation Results

In this section, we apply the methodology that is presented in this chapter to two

coverage scenarios. In the first scenario four UAVs are tasked to cover an area of

square of 20km ∗ 20km. For selecting the optimal speeds and coverage areas for each

UAV, the user must choose a Pareto point based on the importance of the objective

functions. We use the GA as a posteriori and the weighted sum method as a priori

method for obtaining the Pareto front. The focus of the first scenario is on the effect

of the heterogeneity of the UAVs on their assignments.

60



In the second scenario 10 UAVs are assigned for the same task. The multi-

objective optimization is used to determine the optimal task assignment solution.

Both the GA and WS methods are used to obtain the best group of UAVs along with

the optimal tasks for the UAVs that cooperate in the mission. In this scenario, it will

be demonstrated that using all the UAVs for the coverage mission would not result in

the optimal solution in all scenarios. The characteristics of the UAVs corresponding

both scenario are listed in Table 3.1.

Table 3.1: UAVs specifications for both scenarios.

Scenario No. Speed Range Radius of Sensor Footprint

# 1

80 m/s < v1 < 100 m/s r1 = 35m

80 m/s < v2 < 120 m/s r2 = 56m

70 m/s < v3 < 150 m/s r3 = 49m

60 m/s < v4 < 140 m/s r4 = 84m

# 2

80 m/s < v1 < 110 m/s r1 = 63m

70 m/s < v2 < 115 m/s r2 = 56m

90 m/s < v3 < 125 m/s r3 = 49m

75 m/s < v4 < 130 m/s r4 = 70m

85 m/s < v5 < 120 m/s r5 = 77m

50 m/s < v6 < 80 m/s r6 = 42m

60 m/s < v7 < 85 m/s r7 = 63m

70 m/s < v8 < 90 m/s r8 = 77m

90 m/s < v9 < 110 m/s r9 = 28m

95 m/s < v10 < 120 m/s r10 = 28m

3.4.1 Scenario 1: Surveying with Four UAVs

The mission scenario consists of four UAVs surveying a large region with the goal of

minimizing the time and the fuel cost for the mission. The range of speed for UAV1 is

80m/s < v1 < 100m/s, the radius of its sensor footprint is 35 m, r1 = 35m, for UAV2
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the range of speed is 80m/s < v2 < 120m/s, and the radius of its sensor footprint

is 56 m, r2 = 56m, for UAV3 the range of speed is 70m/s < v2 < 150m/s, and the

radius of its sensor footprint is 84 m, r3 = 49m, and for UAV4 the range of speed is

60m/s < v2 < 140m/s, and the radius of its sensor is 84 m, r3 = 84m. The total area

of coverage is 400km2.

The optimization phase is solved by using the WS and GA methods. The GA

method is utilized as a posterior method. Hence, it tries to compute the Pareto

front in its most general and diverse form as it does not have any information on

the preference of one objective over another. To obtain a detailed representation of

the Pareto front we have selected 160 individuals as the initial number of parents

population in the GA method. Therefore, the number of population in each generation

is also 160. At the final iteration of the GA, some of the individuals might not be in

the first front, so by selecting 160 individuals, we make sure that the first front has

enough population to spread through the entire Pareto front. However, this number

directly affects the computational time of the GA procedure. In our simulations, the

number of individuals in the first front in the last iteration of GA method was 56.

Figure 3.4 shows the first front of the GA solution.
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Figure 3.4: First front of the multi-objective genetic algorithms for Scenario 1. Both
the fuel cost and the time cost are normalized by using equation (2.7).

Figure 3.5: First front of the WS method for the Scenario 1. Both the fuel cost and
the time cost are normalized by using equation (2.7).

The weighted sum method is also used to obtain the Pareto points for 21 differ-

ent set of weights, where the weight for the fuel cost (ωf in equation (3.17)) starts
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as 1, while the weight for the time was set to 0, and the weight for the fuel de-

creases by 0.05, and hence the weight for the time increases by 0.05, in the next set

of weights. Fig. 3.5 shows the first front of the WS solution. The corresponding

values of the UAVs speeds and area of coverage for these points are shown in Table 3.2.

When the importance of the fuel is set to 1 (and accordingly importance of

the time is 0), the entire map is assigned to UAV4 which has the largest sensor foot-

print and the lowest minimum speed. However, when we incorporate the importance

of the time in the mission cost, the optimal result requires cooperation of more than

1 UAV. The lowest share of the area is always assigned to UAV1, because UAV1 is

the least capable between the four UAVs, due to the fact that its range of speed is a

subset of the range of speed of all the other UAVs, and it has the smallest sensor radius.

To compare the results of the WS method in Fig. 3.5 and the GA method

in Fig. 3.4, one can observe that both methods have depicted the Pareto front very

well. The only difference between these two graphs is in the extreme cases where only

one of the two objectives is important in the mission (the cases where either of ωf or

ωt is zero). The WS method can easily find these Pareto points, however, the GA only

search for the Pareto points where both objectives are important. As it can be seen

in Fig. 3.5, the WS method can be exploited as a posteriori method in this scenario

because it has found the Pareto front by only finding the solution of the problem to

21 set of different weights.

Figure 3.6 shows optimal coverage areas among the UAVs with different im-

portance of the fuel and the time costs. One can see that by increasing the importance

of the time in the objective of mission, the UAVs tend to cooperate more. The reason is

for achieving the minimum time it is best that all the UAVs participate in the coverage
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mission regardless of their fuel efficiency among the team. On the other hand, when

the fuel is the main concern of the mission, the larger part of the area is given to the

more efficient member of the team. Here, UAV4 is more fuel efficient as the minimum

speed of UAV4 is less than other UAVs and its sensor has larger coverage as compared

to the three other UAVs in the team, and when the importance of the fuel is set to 1, all

of the region of interest is assigned to UAV4. However, when the focus of the mission

is to complete it as quickly as possible, the area assignment is based on the maximum

speed of the UAVs, and the radius of the sensor footprint. In the first scenario the

UAV4 has the largest sensor footprint and it is the second fastest UAV among the team.

Figure 3.6: Changes in the area of coverage for each UAV corresponding to the
changes in importance of the time cost.
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Table 3.2: Optimization results obtained by using the WS method for Scenario 1

ωt ωf d1(km2) d2(km2) d3(km2) d4(km2) V1(m/s) V2(m/s) V3(m/s) V4(m/s)

0.00 1.00 0.0 0.0 0.0 400.0 80 80 70 60

0.05 0.95 0.0 0.0 0.0 400.0 80 80 70 60

0.10 0.90 0.0 21.1 8.7 370.2 80 80 70 60

0.15 0.85 0.0 68.6 35.4 296.0 80 80 70 60

0.20 0.80 0.0 88.2 43.6 268.2 80 80 70 64

0.25 0.75 0.0 98.8 47.0 254.2 80 80 70 68

0.30 0.70 2.2 81.8 57.5 258.5 80 80 70 73

0.35 0.65 8.7 83.0 56.2 252.0 80 80 70 76

0.40 0.60 13.2 82.9 54.7 249.2 80 80 70 80

0.45 0.55 16.4 81.9 53.0 248.7 80 80 70 84

0.50 0.50 18.6 80.3 51.1 250.0 80 80 70 89

0.55 0.45 20.0 77.8 50.0 252.2 80 80 72 94

0.60 0.40 20.6 76.9 49.4 253.1 80 80 76 98

0.65 0.35 20.6 75.2 50.4 253.8 80 85 80 104

0.70 0.30 20.4 76.8 49.6 253.2 80 93 82 110

0.75 0.25 19.8 80.8 47.0 252.5 80 101 86 117

0.80 0.20 19.8 86.5 44.3 249.4 83 107 90 128

0.85 0.15 18.1 80.5 47.8 253.6 88 115 104 137

0.90 0.10 19.7 72.4 62.7 245.1 100 120 126 140

0.95 0.05 19.9 68.4 87.4 224.4 100 120 150 140

1.00 0.00 19.9 67.4 101.8 210.9 100 120 150 140

Figure 3.7 shows different optimal speeds among the UAVs with respect to different

importance of the fuel and the time costs. By emphasizing on the mission time in the

objective of the mission, the UAVs are assigned with faster speeds for coverage of their

regions. Furthermore, when conserving fuel is the main objective of the mission, the

UAVs use lower speeds in their mission. Note that all the UAVs use their maximum
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speeds when the importance of time is set to 1 and importance of fuel is set to 0.

When the importance of fuel is 1 the most fuel efficient UAV is assigned to cover the

entire region with its minimum speed.

Figure 3.7: Variations in the optimal speed of each UAV corresponding to change in
the importance of the time cost.
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Figure 3.8: 3D plot of the optimization variables (speed and area of the coverage)
with respect to different ωt.

3.4.2 Scenario 2: Surveying with Ten UAVs

Ten heterogeneous UAVs with different sensor footprints and varying ranges of speeds

are set to cover an area of square region of size 20Km ∗ 20Km. The first UAV is

able to fly with a speed in the range of 80 to 110 m/s, and its sensor footprint has a

radius of 63m. The speed for the second UAV is limited between 70 and 115 m/s,

and its sensor has a 56m radius footprint. The third UAV can fly with a varying

speed between 90 and 125 m/s. The span of its sensor is 49m. The fourth and fifth

UAVs have a minimum speed of 75 and 85 m/s, respectively. Their maximum speed

is also 130 and 120m/s, and they have sensors with 70m and 77m footprint radius,

respectively. The sixth UAV has the lowest minimum and maximum speed of 50 and

80 m/s, and its radius of sensor footprint is among the smallest one in the team with

42m. The seventh UAV is able to fly with a speed in the range of 60 to 85 m/s, and

its sensor footprint has a radius of 63m. The eighth UAV is able to fly with a speed

in the range of 70 to 90 m/s, and it has a sensor footprint with 63m radius. Both the
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ninth and the tenth UAVs have the lowest radius of sensor footprint with only 28m.

The range of the speed for UAV9 is 90 to 110 m/s, and it is 95 to 120 m/s for the UAV10.

For this scenario we have solved the optimization phase only by using the WS

method. The weighted sum method is used 21 times with different level of importance

for each objective, with the weight for fuel cost (ωf in equation (3.17)) starts as 1,

while weight for the time was zero, and the weight for the fuel decreases by 0.05, and

hence the weight for time increase by 0.05, in the next set of weights. Figure 3.9

shows the Pareto front of the WS solution. The corresponding values of the UAVs

area and speed of coverage for these points are shown in Table 3.3 and Table 3.4,

respectively.
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Table 3.3: Optimal area of coverage that is obtained by using the WS method with
different values of (ωf , ωt).

ωf ωt

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

(km2) (km2) (km2) (km2) (km2) (km2) (km2) (km2) (km2) (km2)

0 1.00 48.2 41.7 38.2 80.2 85 11 26.9 48.3 9.7 10.8

0.05 0.95 49 41.3 35.4 78 86.9 11.7 30.1 52.9 7.3 7.4

0.1 0.90 49.9 39.4 27.5 76.2 91 12.6 33.9 58.6 5.4 5.5

0.15 0.85 50 35.7 23.6 70.6 93.9 13.6 38.2 64.4 5 4.9

0.2 0.80 48.3 33 24.7 67.3 90.7 14.5 41.8 71.4 4.5 3.9

0.25 0.75 47.4 33.1 24.6 65.3 87 14.3 44.9 77.4 3.5 2.5

0.3 0.70 47.1 32.9 24.7 65.1 84.9 13.8 46.3 82.5 2.2 0.5

0.35 0.65 47 32.7 24.2 64.9 86 14.1 47.1 83.4 0.6 0

0.4 0.60 49.4 32.3 22.1 64.4 87.5 13.8 47.2 83.3 0 0

0.45 0.55 49.6 33.4 20.9 64.1 89.5 13.5 46 83 0 0

0.5 0.50 50.6 34.4 16.8 65.7 90.1 13.4 45.8 83.1 0 0

0.55 0.45 50.6 35.7 12.8 67.8 91.8 13.3 44.7 83.5 0 0

0.6 0.40 50.3 36.7 7 69.9 91 13.5 45.2 86.4 0 0

0.65 0.35 49.7 35.2 0 72.6 89 14.3 46.6 92.5 0 0

0.7 0.30 47.4 34.5 0 73 84.1 15.2 49.8 96.1 0 0

0.75 0.25 42.7 33 0 73.6 79.6 16.3 53.8 101.1 0 0

0.8 0.20 35 29.9 0 74.1 73.4 18 60.5 109 0 0

0.85 0.15 19.9 25.1 0 75.2 62.5 21.3 73.1 122.8 0 0

0.9 0.10 0 18.1 0 74.5 34.2 26.5 91.3 155.4 0 0

0.95 0.05 0 0 0 38.1 0 35.6 127.4 199 0 0

1.00 0.00 0 0 0 0 0 146.2 253.8 0 0 0
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Table 3.4: Optimal speed of the UAVs that is obtained by using the WS method with
different values of (ωf , ωt).

ωf ωt

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

(m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s)

0 1.00 110 115 125 130 120 80 85 90 110 120

0.05 0.95 110 115 125 130 120 80 85 90 107 108

0.1 0.9 110 113 113 130 120 80 85 90 90 95

0.15 0.85 106 101 95 113 118 80 85 90 90 95

0.2 0.8 96 91 90 103 108 79 85 90 90 95

0.25 0.75 89 84 90 95 99 74 85 90 90 95

0.3 0.7 85 79 90 89 93 69 84 90 90 96

0.35 0.65 80 75 90 84 88 66 80 87 90 0

0.4 0.6 80 70 90 81 85 63 76 82 0 0

0.45 0.55 80 70 90 75 85 58 71 78 0 0

0.5 0.5 80 70 90 75 85 55 67 75 0 0

0.55 0.45 80 70 90 75 85 52 64 71 0 0

0.6 0.4 80 70 90 75 85 50 61 70 0 0

0.65 0.35 80 70 0 75 85 50 60 70 0 0

0.7 0.3 80 70 0 75 85 50 60 70 0 0

0.75 0.25 80 70 0 75 85 50 60 70 0 0

0.8 0.2 80 70 0 75 85 50 60 70 0 0

0.85 0.15 80 70 0 75 85 50 60 70 0 0

0.9 0.1 0 70 0 75 85 50 60 70 0 0

0.95 0.05 0 0 0 75 0 50 60 70 0 0

1.00 0 0 0 0 0 0 50 60 0 0 0
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Figure 3.9: Pareto front that is obtained by the WS method for the Scenario 2. Both
the fuel cost and the time cost are normalized by using equation (2.7).

When the importance of the fuel is set to 1 (and accordingly the importance of

time is zero), the entire map is assigned to UAV6 and UAV7 which have the lowest

minimum speed and have comparably good sensor footprint. However, when we

incorporate the importance of the time in the mission cost, the optimal result requires

cooperation of more UAVs. Figure 3.10 shows different optimal divisions of area of

the interest among the UAVs with different importance of the fuel and the time costs.

One can see that by increasing the importance of the time in the objective of the

mission, the UAVs tend to cooperate more. The reason for getting the minimum time

is that all the UAVs would participate in the coverage mission regardless of their fuel

efficiency among the team. On the other hand, when the fuel is the main concern of

the mission, the larger part of the area is given to the more efficient member of the

team. Here, UAV6 and UAV7 are more fuel efficient as their minimum speed is less

than the other UAVs. Accordingly, when the importance of the fuel is set to 1, all of

the region of interest is assigned to UAV6 and UAV7. However, when the focus of the
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mission is to complete it as quickly as possible, the area assignment is based on the

maximum speed of the UAVs, and the radius of their sensor footprints.

Figure 3.10: Variations in the area of coverage for each UAV corresponding to changes
in the importance of the time cost.

Figure 3.11 shows different optimal speeds among the UAVs regarding the different

importance levels of the fuel and the time costs. By emphasizing on the finishing time

in the objective of the mission, the UAVs would be assigned with faster speed for

coverage of their regions. Furthermore, when conserving fuel is the main objective of

the mission, the UAVs use lower speed in their mission. Note that all the UAVs use

their maximum speed when the importance of time is set to 1 and the importance of

fuel is zero. When the importance of fuel is 1 the most fuel efficient UAV is assigned

to cover the entire region with its minimum speed.
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Figure 3.11: Variations in the optimal speed of each UAV corresponding to the changes
in the importance of the time cost.

Figure 3.12: 3D plot of optimization variables (speed and area of the coverage) with
respect to different ωt.
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Figure 3.13: Number of the agents participating in the coverage mission for getting
optimal result with respect to the priority of the fuel and importance of the time.

Figure 3.13 shows the optimal number of the UAVs for different priorities of the

two objectives in the coverage mission. As the priority of time increases, more UAVs

should participate in the mission in order to complete the coverage sooner. However,

when the time is not the main concern in the mission, only the UAVs with higher fuel

efficiency should do the coverage. It is interesting to note that if ωt < 0.7 there is no

need to utilize all the ten available UAVs for carrying out the coverage. Note that

this criterion is determined by the capabilities of the UAVs. If the UAVs have the

same capabilities then there is no difference between them and for getting the optimal

result one needs to always utilize all the UAVs in the mission. However, when the

UAVs are heterogeneous, their differences results in performing the mission with the

best suitable group among them. The UAVs with small radius of sensor footprint and

large minimum of speed have higher fuel cost for covering a region in comparison with

UAVs with large radius of sensor footprint and smaller minimum of speed. Hence,

when the importance of conserving fuel is more than the importance of completing the
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mission as fast as possible, it is likely that fuel efficient UAVs will handle the mission.

3.5 Conclusions

In this chapter, the problems of determining the best group of UAVs (in a team of

heterogeneous UAVs) and finding their optimal speeds and coverage areas have been

studied. A team of heterogeneous UAVs must cover a region of interest while the

mission time and fuel consumption of the team should be minimized. Multi-objective

optimization methods are used for solving the problem. The multi-objective genetic

algorithm is used as a posteriori method to obtain the Pareto front when the impor-

tance of each objective is unknown. The weighted sum method is employed as a priori

method. The methods in this chapter are employed on two example scenarios involving

a team of heterogeneous UAVs, which must cover an square area of 20km ∗ 20km

obtaining the minimum mission cost for different importance levels of the fuel cost

and the time cost.

Two cases are simulated. One is the mission with 4 UAVs in which the ef-

fects of the heterogeneity are studied on the area of each UAV’ coverage mission. The

collaboration among the team members is associated with the minimum combined

time and the fuel cost of the team (team cost). In the second case, 10 UAVs are

available for carrying out the coverage mission. In this case, it is demonstrated that

for most sets of the fuel and the time importance levels the best team of agents does

not include all the available UAVs. This is solely for the heterogeneous teams of

UAVs, as in the homogeneous teams of agents, the team cost is always minimum

when employing all the agents in the mission.
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Chapter 4

Map Partitioning

Capabilities of UAVs are important elements in deciding how to allocate the tasks

between individual UAVs. The solution strategies for dynamic coverage are mostly de-

veloped for homogeneous agents and they cannot be extended for heterogeneous team

of agents. Given that these algorithms use sensors footprint radius or the speed of the

homogenous UAVs as an important component and information of the algorithm, they

are often not applicable (or not optimal) in missions that involve heterogeneous UAVs.

In this chapter we address the problem of map partitioning for a team of heterogeneous

UAVs. Two solution methods are presented for solving area specified map partitioning

problem. The presented strategies along with the materials in Chapter 3, make a

suitable framework for optimal coverage of a map with a heterogeneous team of agents.

This chapter is organized as follows. The problem formulation is presented

in Section 4.1. A decentralized algorithm is introduced in Section 4.2 which uses

the power diagrams to partition the map. In Section 4.3 the optimization phase in

Chapter 3 is exploited in parallel with the decentralized map partitioning algorithm.

A second approach for map partitioning is introduced in Section 4.4 which divides

the map into area specific regions which causes the UAVs to make the minimum
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number of turns during the mission. The simulations and results are presented and

the performance of two methods are compared in Section 4.6. The chapter conclusion

is also provided in Section 4.7.

4.1 Problem Formulation

After solving the multi-objective optimization and selecting one of the Pareto points

as the final solution for the optimization phase, each UAV is assigned with an optimal

speed and area of coverage. The next step is to divide the surveillance region Ω into

m subregions [Ω1, ...,Ωm] with areas equal to [d1, ..., dm] where di (i = 1, ...,m) are the

final results of the optimization phase obtained in Chapter 3.

We are using partitioning method to assign each UAV a region with a per-specified

area. The area of each region is considered as the workload of its corresponding agent.

In this respect the partitioning method can be viewed as a workload sharing policy.

The total workload for the team (that is the total area of the region of interest) must

be divided between the UAVs in the mission. This is done through partitioning the

region of interest Ω ⊂ <2 into m disjoint subregion Ωi (i ∈ [1, ...,m]) whose union is

Ω, where m is the number of agents.

As mentioned above in the coverage mission the workload of any region is its area.

Hence, we can model the workload function Λ : Ω → < that returns the area of a

region, that is

Λ(Ω) =

∫
Ω

dx (4.1)
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The mathematical formulation of the problem is as follows:

Problem 4.1:

Having a positive vector ~d = [d1, d2, ..., dm] and a convex region Ω with a total area

equal to D (Λ(Ω) = D =
∑m

1 di), divide the region into m disjoint convex subregions

Ωi, i ∈ [1, ...,m] with
⋃m

i=1 Ωi = Ω and Λ(Ωi) = di.

Note that in the multi-objective optimization problem there might be cases where

some UAVs have been assigned with an area of coverage equal to zero. For handling

this case we omit all the UAVs with zero area of coverage. The map partitioning

considers only the positive values for the area of coverage.

4.2 Map Partitioning Using Distance Functions

In the previous chapter, a multi-objective optimization was performed to select the

best team of UAVs for covering the map which results into least total cost of the

mission. As a result, the participating UAVs in the mission were assigned with the

optimal speed and the area of coverage. The next step is to partition the map and

divide it into subregions according to the results of multi-objective optimization.

There are a number of choices in selecting the method for the map partitioning. The

required criteria for an applicable method in our case is the capability to partition the

map into subregions with specified area. It is also desired that the shape of sub-regions

to be convex, as large number of single search path planning methods are suitable

for convex regions. One should note that as long as the map partitioning method

is capable of dividing the map into disjoint areas with specific areas (according to

the results of task assignment optimization) the optimality of the mission is guaranteed.
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The Voronoi and the power diagrams are natural candidates for the partitioning

Problem 4.1 due to their ability to partition the map into disjoint convex subregions.

The researcher have used both of these two methods in multi-agent systems in dif-

ferent missions, such as the rendezvous, sensor placement, and attack and destroy

missions. These two partitioning methods can also be used for partitioning the map

into area specified regions. For every convex map Ω and for every positive vector

~d = [d1, d2, ..., dm] with the condition of
∑
di = Λ(Ω), there is a set of generators

that divide the map into subregions with desired area. The partitioning can be also

performed by power diagrams. In the following we review these methods briefly and

compare the advantages of each method to choose the proper one for our scenario.

4.2.1 Voronoi Diagram

When a Voronoi diagram is used for partitioning a map the subregions are decided

solely on the position of the Voronoi generators. One must change the position of the

Voronoi generators in order to change the subregions, and consequently the areas of

subregions. Hence, if we start from an initial locations for the generators we have

to change the position of generators to get the desired partitioning. This can be

formulated as an optimization algorithm where the optimization variables are the

generator’s positions.

For a set of generators position G = (g1, ..., gm), the Voronoi diagram parti-

tions the map into m subregions. Consider the function Ψ : (Ω, G)→ < that computes

the mean square of the desired area for each generator over the actual area resulting

from the current position of generators. Hence, Ψ(Ω, G) is defined as

Ψ(Ω, G) =
m∑
i=1

d2
i

mΛ(Vi(G))
(4.2)

80



where G = {g1, ..., gm}, gi ∈ Ω, gi 6= gj.

The Ψ assigns a positive value to every Voronoi partition. However, it gets

its minimum value in special case. This is stated in the following lemma.

Lemma 1: The global minimum of Ψ(Ω, G) is obtained when Λ(Vi(G)) = di.

Proof. The proof is straightforward by noting that
∑m

i=1 Λ(Vi(G)) =
∑m

i=1 di = D

[12].

From Lemma 1, one can conclude that Ψ(Ω, G) obtains its minimum value only in

the case of partitioning the map with the conditions in the Problem 4.1. Therefore, we

can formulate a minimization problem on the value of Ψ function to find the location

of the Voronoi generators that produce suitable partitions. Note that in order to

change the value of Ψ(Ω, G) one must change the position of the Voronoi generators.

Thus, the decision variables in the optimization problem should be the generators

position

min
G

Ψ(Ω, G) (4.3)

where G = {g1, ..., gm} and gi ∈ Ω.

In the above optimization the decision variables are the generators location,

and during the optimization the generators are relocated to find the position that

results into the solution of the problem. The result of the above optimization problem

generates a Voronoi partition where Vi(G) = Ωi, and Λ(Vi(G)) = Λ(Ωi) = di. Thus, it

is a solution for map partitioning Problem 4.1.

An interesting solution strategy is proposed in [79] where a decentralized al-
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gorithm is used to obtain the desired Voronoi generators which partition the map into

regions with areas equal to (d1, d2, ..., dm).

4.2.2 Power Diagram

The other option for map partitioning is to use power diagrams. In using a Voronoi

diagram for every set of generators there is only a single partitioned map as a solution.

However, in Power diagrams due to having a degree of freedom in the weights of the

power diagram, one can generate unlimited different partitions in a map by changing

the weights of the power diagram and without changing the location of the generators.

Hence, the advantage of using the power diagram over Voronoi diagram is that one

can choose between the generators position and their associated weights to change

the subregions and consequently the area of the subregions.

For a set of power generators GW = {(g1, ω1), ..., (gm, ωm)}, the power dia-

gram V (GW ,Ω) partitions the map into m subregions ({V1(GW ,Ω), ..., Vm(GW ,Ω)}

or {Ω1, ...,Ωm}). Consider the function Γ : (Ω, GW )→ < that yields the mean square

of the desired area for each generator over the actual area resulting from the power

diagram. Hence, Γ(Ω, GW ) is defined as

Γ(Ω, GW ) =
m∑
i=1

d2
i

mΛ(Vi(GW ,Ω))
(4.4)

where GW = {(g1, ω1), ..., (gm, ωm)} , gi ∈ Ω, gi 6= gj, and Vi(GW ,Ω) is the power

diagram partitions of Ω.

Therfore Γ assigns a positive value to every power diagram partition. However,

its minimum value is a special case. This is stated in the following lemma.
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Lemma 2: The global minimum of Γ(Ω, GW ) is obtained when Λ(Vi(GW ,Ω)) = di.

Proof. The proof is straightforward by noting that
∑m

i=1 Λ(Vi(GW ,Ω)) =
∑m

i=1 di

[12].

One may note that Γ(Ω, GW ) obtains its minimum value only in the case of

partitioning the map with the conditions of the Problem 4.1. Therefore, one can

formulate a minimization problem on the value of the Γ function to find the proper

values for the set of power generators (GW ). In order to change the value of Γ(Ω, GW )

one may change the position of power generators or the values of their associated

weights. Therefore, if one formulates the optimization problem to minimize the value

of the Γ function, the decision variables are the generators position and their weights.

Specifically, we have

min
W

Γ(Ω, GW ) (4.5)

where G = {g1, ..., gm}, gi ∈ Ω , gi 6= gj and W = (ω1, ..., ωm), ωi ∈ <.

Thus, the result of the above optimization problem would generate the proper

power diagram that satisfies the conditions for solution of Problem 4.1.

The power diagram can partition the map into regions with pre-specified ar-

eas only by changing the weights. This allows one to change the generators’ positions

during the process of the map partitioning. Having this degree of freedom is very

useful in satisfying other constraints of the desired solution such as the shapes, and

the approximate positions.

The power diagram V (GW ∗ ,Ω) is a solution to the optimization problem (4.5)
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if Γ(GW ∗ ,Ω) =
∑m

i=1 di = D, representing the global minimum of Γ(GW ,Ω).

The result of the optimization Problem 4.5 is a suitable set of power weights

W ∗ = {ω∗1, ..., ω∗m} for our map partitioning problem.

For large sets of partitions the high dimensionality of the parameter vector en-

tails a prohibitive runtime and numerical problems during the optimization. Not

optimizing all the partition weights at once, but rather iteratively optimizing only

one partition weight at a time improves the solution to the problem of optimization

high dimensionality. This is conducted in [8] where an iterative method optimizes one

sub-region at a time. Consequently, the dimensionality of the individual optimization

problem is reduced. This enables a reliable and fast convergence of the optimization

even for large sets of partitions. However, the convergence of the algorithm is not

assured due to the fact that the optimization is performed on one sub-region at a time,

and not on the global function Γ(Ω, GW ).

An alternative approach for solving the minimization Problem 4.5 is to opti-

mize all the partition weights at once. The reference [12] employs this approach to

find the suitable weights for the power diagram. By using the following gradient law

the suitable power weights can be obtained, that is

ω̇i = −∂Γ(Ω, GW )

∂ωi

(4.6)

The advantage of this approach over the first approach is in its guaranteed conver-

gence [12]. However, the dimension of the problem is m in contrast to the dimension

of the first approach which is 1.
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The gradient of Γ(Ω, GW ) is computed as

∂Γ(Ω, GW )

∂ωi

=
1

2mD2(Ω)

∑
j∈Ni

δij
ζij

(
d2
j

Λ(Vj(GW ,Ω))2
− d2

i

Λ(Vi(GW ,Ω))2
) (4.7)

where Ni is the power cell that shares a face with the power cell Vi(GW ,Ω), δij is the

length of the shared segment of Vi(GW ,Ω) and Vj(GW ,Ω), and ζij is the Euclidean

distance between the generators’ positions of Vi(GW ,Ω) and Vj(GW ,Ω), D is the total

area of the map, D = Λ(Ω), and di and dj are the desired values for the areas of the

ith and jth power cells, respectively.

Remark 1: It is noteworthy to mention that in equation (4.7), the gradient

of Γ with respect to the weight of the ith generator (ωi) depends only on the ith power

cell and its neighbors (power cells which share a face with the ith power cell).

Remark 2: When the location or the weights of a power generator changes

it only affects the shape of its power cell and its neighbors. In other words, changing

the parameters of a power generator does not affect the outcome of the other power

cells except its neighbors.

Equation (4.7) can be solved by using decentralized calculations. Since in this

method the power generators locations are fixed, the only information that each agent

needs to share with its neighbors is its current power weights and the area of its

power cell. Consequently, each agent needs to receive these information from its

neighbors. By having this information each agent is able to update its power weights

and generate a new power cell. Equation (4.7) always converge to its optimal value

[12]. The algorithm for a decentralized implementation of equation (4.7) is as follows.
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Figure 4.1: Pseudo code for a decentralized calculation of the optimal power weights

The decentralized implementation of this method requires a low computational

cost. The agents can share the value of the power weights (ωi) easily, and for sharing

the required information about the area of the power cells each agent needs to calculate

the boundary of its power cell from the power generators information of its neighboring

power cells. That is, this calculation requires a low computational capability embedded

in each agent as opposed to solving equations (4.5) and (4.7) in a centralized platform.

The solution to equation (4.7) results in a power diagram V (GW ∗ ,Ω) that divides

the map into m parts, (Ω1, ...,Ωm) with areas equal to (d1, ..., dm), obtained from the

optimization phase
(
Λ(Ωi) = di

)
.
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4.3 Parallel Map Partitioning and Task Assign-

ment

In Chapter 3, we formulated a multi-objective optimization problem for determining

the optimal share of the area of the map for each UAV. The solution candidates of

the multi-objective optimization problem should be presented to a decision manager

to select the final solution. This solution of the optimization phase is then used in

the map partitioning algorithm described in the previous section. In scenarios where

the importance of the objective functions are given as a priori, one can combine the

procedure of obtaining the optimal area for each UAV through the multi-objective

optimization and map partitioning using decentralized power diagram. When the

importance of the objective functions is known a priori for the multi-objective opti-

mization, the problem can be transferred into a single objective optimization by using

the weighted sum method. An iterative algorithm can then be utilized to solve the

optimization problem by updating the desired speed and area of coverage for each UAV.

The computational time of solving the task assignment optimization in this case

is much less than the computational time that is required for calculating the power

weights. Therefore, it is possible to run both algorithms at the same time, and

send the transient results of the multi-objective optimization to the map partitioning

algorithm. The task assignment algorithm updates the desired area of coverage for

each UAV as it solves the optimization problem and these real-time results are then

sent as parameters to the map partitioning algorithm. It is expected that by running

both algorithms simultaneously the overall computational time will be reduced. The

algorithm for the parallel task assignment and the map partitioning is as follows.
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Figure 4.2: The flowchart of the parallel map partitioning and the task assignment.

4.4 Partitioning with Minimum Sum of Width

Performing a turn requires more power and is more time consuming than travelling in

a straight path. For example, in the case of helicopters, it must slow down its speed,

stay in hovering, perform the turn, and accelerate again to execute a successful turn.
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Since the objectives of our coverage mission in this thesis are to minimize both the

fuel cost and the time cost, choosing a partitioning method that imposes less turns for

the agents is desirable.

In this section, we present an alternative method for partitioning the map for the

coverage missions. The method used in this section partitions the map by considering

the most suitable coverage path. The coverage mission in this thesis is divided into

three sub-problems: task assignment, map decompositioning, and path generation.

Following the solution to the task assignment problem the coverage speed and the

amount of coverage area for all the UAVs are determined. From the condition (I) in

Section 3.1 the length of the coverage path for each UAV can be calculated based on

the radius of its sensor footprint, and its assigned area of coverage. Hence, regardless

of the path generation strategy the length of the path is constant.

There are two factors that affect the total number of turns in covering specific area.

The first factor is the topology of the region of coverage. As shown in Fig. 4.3 the

minimum number of turns in two regions with the same area are different. Different

map partitioning methods generate different subregions, and the minimum number of

turns varies based on the topology of each subregion. The second factor that affects

the number of turns is the path that each UAV selects to cover its region. As shown

in Fig. 4.4 the total length of the two possible path generations is approximately the

same, however, the number of turns is different. Hence, the path generation method

directly affects the number of turns the UAVs require to perform.
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Figure 4.3: Effect of the shape of coverage region on the total number of turns. The
area of coverage in both regions is equal but the number of turns in region (a) is less
than the number of turns in region (b).

Figure 4.4: Effect of the coverage path on the total number of turns. The length of
the path in both regions is equal but the number of turns in region (a) is more than
the number of turns in region (b).

For any convex and bounded region in 2D space one can define a diameter function.

The diameter of a region in direction (θ = θ∗) is the minimum distance between 2

parallel lines with the slope tan θ∗ that has the interior of the polygon in between. An

example of a diameter function is shown in Fig. 4.5.
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Figure 4.5: Example of a diameter of a polygon with θ = 90.

The minimum diameter of a region is called the span or width of the region. For a

single agent covering a polygon region, the path with the minimum number of turns is

perpendicular to the direction of the minimum diameter of the polygon [95]. Therefore,

to find the optimal direction for path of coverage, it is required to determine the

width of the coverage region. The width of a polygon is always the distance between

a vertex and an edge [92]. The maximum distance of each edge to all of the vertexes

is its corresponding diameter of the polygon. For example in Fig. 4.6 the diameter

of polygon with respect to V1 is the distance(V1 E34), and with respect to V2 is the

distance(V2 E45). Among all the diameters associated with the edges, the minimum

value is the width of the polygon, that is

width = min
i

max
k

distance(Ei,i+1, Vk) (4.8)

where i = {1, ..., n} and k = {1, ..., n}, k 6= i, k 6= j
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Figure 4.6: Example of a diameter of a polygon with θ = 90.

For example to find the width of the polygon in Fig. 4.6, one should first determine

the maximum distance of each vertex from all the edges. the

If an UAV uses a sweep method for its path and sweeps the region in perpendicular

to the direction of the region’ width, the total number of turns is minimized. Therefore,

by selecting the proper sweep direction, the total number of turns in the coverage

mission can be reduced. However, the sweep direction is not the only factor affecting

the total number of turns. In order to minimize the total number of turns one must

generate the subregions that need less turns. In Fig. 4.7, both of the coverage regions

are partitioned into two subregions with the same area. For each subregion the proper

direction of sweep is determined and the only difference between these 2 coverage

scenarios is the map partitioning part. However, covering the region in Fig. 4.7 (a)

requires less number of turns and thus is more efficient. Hence, partitioning the map

properly is important in minimizing the number of turns for the mission.

93



Figure 4.7: Effects of the map partitioning in the total number of turns in the coverage
mission. The left region needs two turns to be covered by the two agents, and the
right region needs 6 turns to be covered by the two agents.

When partitioning a map into multiple subregions, the aggregate widths of the

subregions are greater or equal than to the width of the entire map. The equality

occurs when the width direction of each subregion is parallel to the width direction

of the entire map. Therefore, to minimize the total number of turns in the cov-

erage mission one need to generate subregions that have the same width direction

as the width of the entire map. Furthermore, in order to use this method for the

coverage scenario in this thesis, the generated subregions must have pre-specified areas.

In the following the minimum sum of width partitioning method for obtaining the

minimum total number of turns in the coverage mission is presented. We have assumed

that the map is polygon in this scenario. The coverage area in real applications is

also usually a polygon area, however, most of the convex non-polygon areas can be

transformed into polygons by the polygonal approximation [149], [148].

The first step in the minimum sum of width method is to calculate the width of

the entire map. This is to determine the direction of the sweep for the agents and also

the direction of the map partitioning line. After determining the width direction, the

map can be partitioned by a line perpendicular to the direction of the polygon’s width.

This partitioning line is parallel to at least one of the polygons sides. We assign the

line on this side and move it towards the polygon so that this line is dividing the
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polygon into two subregions. The first partition is generated when the area of the

polygon between the two parallel lines (edge of the polygon and the partitioning line)

is equal to the largest in the desired areas for the subregions. The same procedure

is repeated for the second largest and this is continued until all the subregions are

determined. Consequently, by utilizing this method for partitioning the map, the

agents would need to perform the minimum number of turns when they are sweeping

their respective coverage areas. The minimum number of turns that each agent needs

to perform depends on the width of its coverage region and the radius of its sensor

footprint, that is

Nturn(Ωi) = dwidth(Ωi)

2ri
e (4.9)

where dxe is the smallest integer that is not less than x. The total number of the

turns of the team of UAVs in the mission is now given by

Nturn(Ω) =
m∑
i=1

dwidth(Ωi)

2ri
e (4.10)

4.5 Simulation Results

In this section, we apply the methodologies developed in this chapter to partition the

coverage map of the second scenario presented in Chapter 3. In all the simulated

scenarios it is assumed that the mission is to cover a square of 20km ∗ 20km using a

team of 10 heterogeneous UAVs. The UAVs specifications can be found in Table 3.1.

In Section 4.5.1, the decentralized algorithm shown in Fig. 4.1 is used to partition

the map among the UAVs. The convergence of the algorithm is demonstrated along

with the transient results of this algorithm as presented in Section 4.5.2. The results

for the parallel computing of the task assignment and map partitioning are presented
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in Section 4.5.3. The results for obtaining the minimum total turns is presented in

Section 4.5.4 and the advantages and disadvantages of the methods are discussed in

Section 4.5.5.

4.5.1 Map Partitioning with Power Diagram

In this section, we investigate the scenario of covering a square map of 20km ∗ 20km

with ten UAVs that are available to participate in the mission. Each UAV’s share

from the total area of Ω is assumed to be available after solving the multi-objective

optimization task assignment problem (refer to Chapter 3). The solution of the

optimization problem for determining the optimal area of coverage for each UAV can

be found in Table 3.3. The optimal speed of coverage for each UAV is included in

Table 3.4. After determining the optimal area of coverage for each UAV, the map

partitioning phase must assign a subregion of Ω to each UAV with an area equal to its

share obtained from the optimization phase. In the following we present the results of

the map partitioning using decentralized power diagram algorithm in as shown Fig.

4.1 for different relative priorities of the time and the fuel in the mission goal.
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Figure 4.8: Map partitioning using the power diagram. The numbers show the assigned
UAV for covering the subregions, a) Division of Ω into 10 parts. The areas are the
result of the multi-objective optimization for ωf = 0 and ωt = 1, b) Division of Ω into
10 regions for ωf = 0.2 and ωt = 0.8.

Fig. 4.8 (a) shows the results of the map partitioning when ωf = 0 and ωt = 1).

The mission has only one objective in this case which is the time cost. Consequently,

all the UAVs are cooperating in the mission and are flying with their maximum

speeds because the fuel cost is not important. The area of coverage for each UAV is

determined based on its maximum speed and the range of its sensor footprint, i.e. the

UAVs with faster maximum speeds and larger sensor footprints have larger areas as

compared to the UAVs with slower maximum speeds and smaller sensor footprints.

In this case UAV5 and UAV4 have the largest areas of coverage as they are the most

time efficient agents for completing the coverage mission.

In Fig. 4.8 (b) the relative priority of the fuel cost is set to 0.2 and the rel-

ative importance of the time cost is set to 0.8. As the primary objective of the

coverage mission is still the time cost all the UAVs are still involved in the coverage

mission. However, only UAV6, UAV7 and UAV8 are still flying with their maximum

speeds. All the other seven UAVs are flying with speeds between their minimum and

maximum speeds in order to obtain the optimal mission cost. In this case UAV5 and
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UAV8 have the largest areas of coverage.

Figure 4.9: Map partitioning using the power diagram. The numbers show the assigned
UAV for covering the subregions a) Division of Ω into 8 parts. The areas are the
result of the multi-objective optimization for ωf = 0.4 and ωt = 0.6, b) Division of Ω
into 7 regions for ωf = 0.7 and ωt = 0.3.

In Fig. 4.9 (a) the relative priority of the fuel cost is set to 0.4 and the relative

priority of the time cost is set to 0.6. It can be seen that only 8 UAVs are assigned

to the coverage subregions in this case. UAV9 and UAV10 are not involved as their

sensor footprints are very small compared to the other sensor footprints in the team.

As the priority of the fuel has increased all the UAVs are flying with speeds slower

than their maximum speeds to minimize the fuel and the time cost. In this case UAV5

and UAV8 have the largest areas of coverage.

Fig. 4.9 (b) shows the results of the map partitioning when ωf = 0.7 and

ωt = 0.3. Due to the increase in the priority of the fuel, UAV3 is also omitted from

the mission, and only seven UAVs are involved in the coverage mission.
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Figure 4.10: Map partitioning using the power diagram. The numbers show the
assigned UAV for covering the subregions a) Division of Ω into 6 parts. The areas are
the result of the multi-objective optimization for ωf = 0.9 and ωt = 0.1 b) Division of
Ω into 4 regions for ωf = 0.95 and ωt = 0.05.

In Fig. 4.10 (a) the relative priority of the fuel cost is set to 0.9 and the relative

priority of the time cost is set to 0.1. Only 6 UAVs are assigned to cover the subregions

of the map as UAV1 is also dropped from the best group of UAVs to perform the

mission. All the UAVs in the mission are flying with their minimum speeds as the

fuel cost is more important than the time cost in this case. Note that in this case

UAV8, UAV7, and UAV5 have the largest areas of coverage.

Increasing the relative priority of the fuel cost by another 5% results in dropping

2 other UAVs from the team for the coverage mission. Fig. 4.10 (b) shows the results

of the map partitioning when ωf = 0.95 and ωt = 0.05. Only 4 UAVs are assigned to

carry out the coverage mission in this case, and all of them are assigned with their

minimum speeds.
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Figure 4.11: Map partitioning using the power diagram. The numbers show the
assigned UAV for covering the subregions. Division of Ω is into 2 parts and the areas
are the result of the multi-objective optimization for ωf = 1 and ωt = 0.

Fig. 4.11 shows the results of the map partitioning when ωf = 1 and ωt = 0. The

mission has only one objective in this case which is the fuel cost. As a result, only

the most fuel efficient UAVs participate in this case which are UAV7 and UAV6. The

area of the coverage for each UAV is determined based on its minimum speed and

size of its sensor footprint. It is interesting to note that all the map is not assigned to

only one UAV, and still having more than one UAV would result in the minimum

mission cost.

4.5.2 Transient Results of the Decentralized Power Diagram

Map Partitioning

In this section, we present the transient results of partitioning the area of interest

using the decentralized power diagram. The transient results of the scenario with

ωf = 0 and ωt = 1 for the objective cost functions are presented. Given that the

objective of the mission is to complete the coverage as fast as possible (ωt = 1), all the

UAVs are participating in the mission with their maximum speeds. The decentralized

power diagrams algorithm shown in Fig. 4.1 is implemented for this scenario. Each
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agent shares the information about its power weights and the area of its power cell

with all of its neighboring UAVs (two agents are neighbor if their associated power

cells share a face) and then updates its power cell and its power weight. This process

continues until the area of each agent’ power cell reaches its desired value. Figure

4.12 shows the power weights throughout the design procedure.

Figure 4.12: Changes in the power weights in partitioning the map using the decen-
tralized power diagram algorithm.

Figure 4.13 (a) shows the power cells at the start of the process (iteration 25). The

coverage regions of UAV1, UAV2, UAV4, UAV5 are smaller than the desired regions

which is the result of the task assignment optimization problem in the first row of

Table 3.3. The coverage regions of the remaining UAVs in the team are bigger than

the desired regions. Hence, the UAV1, UAV2, UAV4, and UAV5 need to expand their

power cells, and the rest of the UAVs need to shrink their subregions.

Figure 4.13 (b) shows the power cells at iteration 150. As the agents update

their power weights using equation (4.7), their associated power cells are changing
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constantly. Figure 4.14 (a) shows the power cells at iteration 300. The area of each

power cell converges to the desired value after 420 iteration. The final power cells are

shown in Figure 4.14 (b). The graph of the area of the power cells is presented in Fig.

4.15.

Figure 4.13: The results of the map partitioning using the decentralized power diagrams
at iterations a) 25 and b) 150. The numbers show the assigned UAVs for covering
each subregion.

Figure 4.14: The results of the map partitioning using the decentralized power diagrams
at iterations a) 300 and b) 420. The numbers show the assigned UAVs for covering
each subregion.
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Figure 4.15: Changes in the area of the power cells as the agents update their power
cells using the decentralized algorithm.

4.5.3 Simultaneous Task Allocation and Map Partitioning

In coverage scenarios where the preference of the user is known, both the task as-

signment and map partitioning problems can be solved at the same time. The

computational time of the map partitioning is more than the time required for solving

the task assignment. Hence, the algorithms for solving both problems can be executed

at the same time. While the task assignment problem is executed its transient results

are used by the power diagram algorithm as the desired coverage areas for the team

of UAVs. Hence, the desired areas of coverage are changing during the early stages

of the process. Thus, it requires more time for the map partitioning algorithm to

divide the map with suitable areas. However, the total computational time for solving

the task assignment and the map partitioning problems (task assignment problem is

solved first and then its results are used for solving the map partitioning problem) is

higher than the computational time for solving both problems in parallel.

The scenario of the last section is simulated here using parallel computing of the task
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assignment problem and the map partitioning problem. Figures 4.16 and 4.17 show

the change of the power weights and the change in the area of power cells during

the procedure, respectively. As can be seen in Fig. 4.17 the line for the area of each

UAV’s subregion is non-smooth at the beginning stages, where the map partitioning

algorithm is using the transient results of the task assignment problem. However, it

does not prevent the method for partitioning the map into proper subregions. The

power cells are shown in Figs. 4.18, 4.19, and4.20 through different stages of the

solution process. As shown in Fig. 4.15 the number of iterations in this method is

approximately the same as the number of iterations in the last section.

Figure 4.16: Changes in the power weights in partitioning the map in parallel using
solving the task assignment problem.
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Figure 4.17: Changes in the power weights in partitioning the map in parallel using
solving the task assignment problem.

Figure 4.18: The partitioned map in simultaneous task allocation and map partitioning.
The power cells are obtained by using the decentralized power diagrams at iterations
a) 20 and b) 50. The numbers show the assigned UAVs for covering each subregion.
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Figure 4.19: The partitioned map in simultaneous task allocation and map partitioning.
The power cells are obtained by using the decentralized power diagrams at iterations
a) 100 and b) 200. The numbers show the assigned UAVs for covering each subregion.

Figure 4.20: The partitioned map in simultaneous task allocation and map partitioning.
The power cells are obtained by using the decentralized power diagrams at iterations
a) 300 and b) 420. The numbers show the assigned UAVs for covering each subregion.

4.5.4 Minimum Sum of Width

In order to determine the desired partitions which results in minimum number of

turns, one needs to find the width of the coverage region. The map for the simulated

scenario in this section is a square of 20km∗20km. It is trivial that a width of a square

is equal to the length of its side. Furthermore, as the coverage region is symmetrical

the direction of the sweep lines of coverage can be chosen to be parallel to each of the
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sides. In Fig. 4.21 the results of this method for the coverage scenario where the only

objective of the mission is time (ωt = 1) are presented.

Figure 4.21: The partitioned map with the minimum sum of the width method. The
numbers show the assigned UAVs for covering each subregion.

4.5.5 Discussion

The two objective functions in the developed mission scenarios in this thesis are the

time cost and the fuel cost. The parameters that affect these objectives are the area

of each UAV subregion, the speed of each UAV, and the number of turns that the

UAV has to perform in order to complete its search. The first two parameters are

considered in formulating the task assignment problem in Chapter 3. Solving the

multi-objective task assignment problem would result in determining the optimal

speeds and the coverage areas that minimize the mission costs.

The third factor in the mission cost can be optimized by selecting the proper

subregions shape and search direction for the team of UAVs. By using the equation

(4.10), one can calculate the total number of turns that each partitioning method
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requires for completing the coverage mission. The total number of turns that the

team of UAVs has to perform for covering the region in Fig. 4.21 with the minimum

sum of width method is 159. On the other hand, the UAVs have to perform 547

turns when their subregions are generated by the power diagram method (Fig. 4.8).

Since minimizing the number of turns enhances the mission time and its fuel effi-

ciency, partitioning the map with the minimum sum of width method would result in

completion of the mission in less amount of time and with less amount of fuel consumed.

Another criterion in comparing the performance of the partitioning methods is their

computational time and complexity. Partitioning the map with a minimum sum of

width requires much less computation as compared to the power diagram method. In

the minimum sum of width method the agents can determine their region of coverage

by having the information about the coverage region and the results of the task as-

signment problem and they do not need to share any information with the other agents.

One should note that although partitioning the map with minimum sum of width

method guarantees the minimum total number of turns in the mission, however, the

effect of minimizing the number of turns on the fuel and the time cost is not the same

as the effect of performing the optimization for finding the optimal tasks. In other

words, the optimization performed in chapter 3, has the most effect on minimizing

the mission cost. Moreover, one should not consider as a disadvantage of the power

diagram method solely because it leads to more number of turns. Specifically, the

power diagram has certain advantages over the minimum sum of width method. For

example, the number of the nearby agents in certain distance is an important factor

in choosing the proper partitioning method. In case of failure in one of the agents

having more agents in the nearby regions is an advantage. Furthermore, in search and

destroy missions where the agents must attack the target as a team, partitioning using

108



the power diagrams is more beneficial. In partitioning the map using the minimum

sum of width method each subregion has a maximum of two neighboring subregions.

This number is much higher in case of the power diagram partitioning method.

4.6 Conclusions

In this chapter, the problem of map partitioning for a team of heterogeneous UAVs

is studied. The area of interest is partitioned into subregions using specified areas

which are the results of the task assignment optimization problem. After determining

the optimal speeds and coverage areas for the UAVs the map should be partitioned

according to this optimal solution. Two partitioning methods are studied in this

chapter. Partitioning using distance functions are introduced in this chapter and a

decentralized power diagram algorithm is presented. In using the power diagrams both

the generators positions and their associated power weights are parameters that can be

optimized and set to partition the map. A framework for solving the task assignment

and the map partitioning in parallel is also developed. During the time that the task

assignment is still computing the optimal tasks the agents use the transient results

of the task assignment problem. Since performing a turn requires more time and

energy than moving in straight direction, it is desired to minimize the number of the

turns in the mission. A criterion for achieving the minimum number of the turns

using a single UAV in a fixed region is studied and extended to develop a method

for partitioning the map among multiple UAVs that minimize the number of the turns.

The methods in this chapter is employed on an example scenario that involves

a team of ten heterogeneous UAVs, which must cover an square area of 20km ∗ 20km

obtaining minimum mission cost for different importance levels of the fuel cost and

the time cost. All the methods successfully partition the map into subregions with
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pre-specified areas and consequently the mission can be performed while the mission

cost is minimized.
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Chapter 5

Conclusions and Future Work

The use of teams of unmanned aerial vehicles (UAVs) for performing complex tasks has

been an area of significant interest recently. The potential advantages of multi-agent

systems such as reduction of the operating time and cost, and robustness to single

agent failure are the motivating factors justifying their use in performing a required

mission. One of the applications of multi-agent UAV systems is complete coverage of

an area of interest. Recent natural disasters such as the Haiti earthquake and the

Indonesian Tsunami have highlighted the need for an efficient and timely effective

search and rescue strategy.

Use of a team of UAVs is among the best options for addressing these prob-

lems since the UAVs can perform their tasks in minimum amount of time and can

be utilized in environments that are hazardous to human operators. Collecting and

processing data under constrained resources such as under limitations in the fuel,

restrictions in time, and constraints in the search region should be considered in

developing a strategy for cooperative coverage by multi-agent UAVs. Besides search

and rescue missions, the complete coverage strategy has other applications in both

civilian and military domains such as cleaning robots, mine detection, and oil spill
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detection.

In this thesis, the problem of task assignment for a team of non-homogenous

UAVs that are set to perform a coverage mission on a given area of interest that is

convex is addressed. It is shown that the UAVs are assigned to act cooperatively to

optimize a reward/cost function. This thesis presents a new decomposition strategy

for a coverage mission using a team of heterogeneous UAVs. We addressed the area

decomposition and the task assignment problems through two stages. In the first

stage, we determined the optimal speed and the coverage area for every agent through

multi-objective optimization framework. Having the results from the optimization

step, the map is then partitioned by using the power diagrams in the second phase of

our methodology.

In Chapter 3 we addressed the problem of determining the optimal speed and

coverage area for each individual in a team of UAVs that is undertaking the search and

coverage mission. For obtaining the optimal results we employed the multi-objective

platform to tackle all the different aspects of the mission. The multi-objective evo-

lutionary algorithm is used to obtain the Pareto front when the importance of each

objective is unknown. The weighted sum method is also employed to compare with the

results of the evolutionary algorithm. Finally the methods in Chapter 3 are employed

on an example scenario involving a team of heterogeneous UAVs, which must cover an

square area of 20km ∗ 20km obtaining the minimum mission cost for different priority

levels of fuel cost and time cost.

In Chapter 4 the map partitioning problem is addressed. The required crite-

rion for an applicable method in our scenario is a method that can partition the area

of interest into sub regions with specified areas. It is also desired that the shape
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of subregions are convex in order to make the use of single-searcher path planning

methods applicable to the path planning for our scenarios. Both the Voronoi diagrams

and the power diagrams are studied in Chapter 4 and power diagram is chosen due to

its extra degree of freedom over the Voronoi diagram. The power diagram is used on

two example scenarios involving a team of heterogeneous UAVs, which must cover

an square area of 20km ∗ 20km. The desired areas for each UAV is the result of the

multi-objective optimization carried out in Chapter 3. For both cases the map is

divided into suitable sub regions and consequently the mission is performed while the

mission cost is minimized.

Comparing the results of our proposed strategy with the current strategies in

the literature, we should point out that our method is capable of handling different

types of UAVs for performing the coverage task. Another advantage of our method

is its consideration of multi-objective functions, which allow the mission designer to

make decisions based on all the high priority factors in the mission. The algorithm

also chooses the best group of UAVs in the team for performing the coverage mission.

Our map partitioning method prevents the UAVs from having overlap in their path

coverage. Furthermore, we use area decomposition after determining the optimal

share of each UAV. Performing the area decomposition before the task assignment

leads to forcing the UAVs to choose between the generated regions. Determining

the optimal workload for each agent according to the mission objectives helps one to

perform the mission with the minimum cost. Thus, the optimality of our proposed

strategy makes it very suitable for implementing it in the coverage missions.

Since the ultimate goal of research into multiple UAVs is to develop coordi-

nation algorithms for teams of UAVs in real world scenarios a possible direction for

further research could be to develop a strategy for the map partitioning algorithm that
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works in non-convex regions. Towards this end, the environment of the operation can

have multiple no-fly zones and obstacles. The first phase of our method is capable of

handling non-convex regions, as it is independent of the shape of the region of interest.

The only parameter from the map that influences the results of the multi-objective

optimization phase is the total coverage area. Hence, upon the development of a

map partitioning algorithm that is capable of partitioning the non-convex areas into

area specified sub regions, the proposed decomposition strategy in this thesis can be

deployed in the non-convex regions.

Another direction for future research is to implement the proposed task assignment

strategy in real-time. To this end, the major criterion is to develop a real time

multi-objective optimization strategy. By developing a real-time task assignment

strategy this method can be utilized as a real-time fault tolerant strategy. Upon

occurrence of a fault, the UAVs need to reset their optimization phase with the new

uncovered area in the map. Future work in this direction could be to implement the

entire strategy in a decentralized framework to minimize the overall computational

complexity and time processing.
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