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ABSTRACT

Concentration of Measure and Ricci Curvature

Ryan Benty

In 1917, Paul Lévy proved his classical isoperimetric inequality on the N-dimensional

sphere. In the 1970’s, Mikhail Gromov extended this inequality to all Riemannian

manifolds with Ricci curvature bounded below by that of SN . Around the same time,

the Concentration of Measure phenomenon was being put forth and studied by Vitali

Milman. The relation between Concentration of Measure and Ricci curvature was

realized shortly thereafter.

Elaborating on several articles, we begin by explicitly presenting a proof of the

Concentration of Measure Inequality for S
N , as the archetypical space of positive

curvature, followed by a complete proof extending this result to all Riemannian man-

ifolds with Ricci curvature bounded below by that of SN . In the process, we present

a detailed technical proof of the Gromov-Lévy isoperimetric inequality.

Following Yann Ollivier, we note and prove a Concentration of Measure inequality

on the discrete Hamming cube {0, 1}N , and discuss his extension of Ricci curvature to

general metric spaces, particularly discrete metric measure spaces. We show that this

coarse Ricci curvature on {0, 1}N is positive, and present Ollivier’s Concentration

of Measure inequality for all spaces admitting positive coarse Ricci curvature. In

addition, we calculate the coarse Ricci curvature for several discrete metric spaces.
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Chapter 1

Concentration of Measure and
Isoperimetric Inequalities

Let (X,M, ν, d) be a probability space, with Borel σ-algebra M and probability

measure ν, endowed with a metric d. Consider the collection of sets Ma = {A ∈ M;

ν(A) = a}, a ∈ (0, 1). One isoperimetric problem is minimizing the measure of the

t-neighbourhoods of such sets: given a ∈ (0, 1), and given t > 0, find

inf{ν(At); A ∈ Ma} (1.1)

where At = {x ∈ X; d(x,A) ≤ t}, and, if possible, characterize the minimizer(s).

Explicit answers to this isoperimetric problem are often difficult to obtain. It is

thus useful, and often in applications it suffices, to find a good lower bound for the

measures of the sets At.

In the realm of concentration of measure, our equation is closely related to equation

(1.1). Specifically, we are interested in the case a =
1

2
. However, instead of restricting

ourselves to sets of measure exactly
1

2
, we look at this as a lower bound. Namely, we

are looking for an upper bound of:

sup{1− ν(At) : ν(A) ≥
1

2
, A ⊂ X,A Borel}, (1.2)

as seen in [12]. Note that equation (1.2) allows this function to be defined in any
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probability metric space; it is an extension of equation (1.1).

A classic example is that of the N -sphere S
N in R

N+1, where N > 1. More

specifically, consider (SN , BSN , ν, d), where BSN is the collection of Borel sets on S
N

with the induced topology from R
N+1, ν the normalized volume measure (so that

ν(SN) = 1), and d the geodesic metric in which distances are realized by curves

which extend to great circles. Paul Lévy proved that among all Borel sets of measure

a ∈ (0, 1), spherical caps, synonymous with a geodesic ball centred about a point,

are those with neighbourhoods of least volume. As a specific example, consider any

Borel set A on the unit sphere S
N such that ν(A) = 1/2. Then, if B is a half sphere

(ν(B) = 1/2), we have that ν(At) ≥ ν(Bt). Since B is a half-sphere, it is much easier

to obtain concentration lower bounds on ν(Bt) which will therefore hold for ν(At). If

we take, for example, A such that ν(A) = 1/2, then, as we will see shortly in the proof

of Proposition 1.1, computing ν(Bt) above yields ν(At) ≥ 1− e−(N−1)t2/2. This shows

that for spheres in high enough dimension, almost all of the volume of the sphere lies

within a small distance ǫ of any set containing at least half the volume of the sphere.

The results obtained on subsets of SN may also be used to obtain concentration

bounds on Lipschitz functions on S
N . Specifically, if f : SN → R is a 1-Lipschitz

function, then for some m in R:

ν({x ∈ S
N : |f(x)−m| ≥ t})

has an explicit upper bound (dependent on the dimension N and on the value t)

which will be proven using Paul Lévy’s isoperimetric inequality. Specifically, we will

show that

ν({x ∈ S
N : |f(x)−m| ≥ t}) ≤ 2e−(N−1)t2/2. (1.3)

Concentration of measure may also be deduced for products of metric probability
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spaces. Along this idea, we will show that a concentration inequality exists for the

Hamming Cube {0, 1}N . We consider ({0, 1}N ,P({0, 1}N), ν, δ), where ν is the uni-

form probability measure on the space, and the distance between two points is the nor-

malized Hamming distance: δ(x, y) = δ((x1, . . . , xN), (y1, . . . , yN)) =
1

N

N
∑

i=1

|xi − yi|.

we will prove the following later in this chapter: if f is a 1-Lipschitz function on this

space, then there exists m such that

ν({x : |f(x)−m| ≥ t}) ≤ 2e−2Nt2 . (1.4)

1.1 Paul Lévy’s Isoperimetric Theorem for S
N

Theorem 1.1 (Paul Lévy’s Isoperimetric Inequality). Let Sc denote the collection of

all Borel sets in S
N with fixed normalized measure c, where c ∈ (0, 1). Then, for any

t > 0 sufficiently small and any set E ∈ Sc, we have that ν(Et) ≥ ν(Ct), where C

denotes a spherical cap of measure c.

In preparation for the proof of the theorem for which we will follow Schechtman

[11], we will start with a few preliminaries. Given a hyperplane H in R
N+1 passing

through the origin, we denote by S0 := S
N ∩ H and by S+ and S− the two open

half spheres in Hc, where the sign of each will be later specified. Let σ = σH be the

reflection with respect to H. Note that σ preserves geometric distances of points on

the sphere, and it is thus an isometry with respect to the sphere’s geodesic metric.

The following claim will be used:

Claim 1.1. Suppose that a Borel set A of the sphere belongs to S+ and that a point

x ∈ S−. Then d(σ(x), A) ≤ d(x,A), where d(y, B) := inf{d(y, b); b ∈ B}.

Proof of Claim. Note that we are working with Borel sets, which implies that d(x,A) =

d(x, Ā) where Ā denotes the closure of A. We may therefore assume that our set A
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is closed, so that d(x,A) = d(x, a) is realized by some a ∈ A. We assume σ(x) /∈ A

or else the proof is trivial.

If x, σ(x) and a all lie on the same great circle, then the geodesic segment xa

contains σ(x) which belongs to S+, so d(σ(x), a) ≤ d(x, a) thus d(σ(x), A) ≤ d(x,A).

Suppose that they do not lie on the same great circle. Consider the geodesic

lines xa and σ(x)σ(a). These geodesics intersect at some point z ∈ S0, and the

spherical (geodesic) triangles△σ(x)az and△xσ(a)z are congruent to one another. By the

triangle inequality, and the congruency of the triangles, we conclude that d(σ(x), a) ≤

d(σ(x), z) + d(z, a) = d(x, z) + d(z, a) = d(x, a). Therefore d(σ(x), A) ≤ d(x, a) =

d(x,A) which concludes the proof of the claim.

Given A ⊂ S
N , let us split this set into three disjoint subsets:

A = [A ∩ (S+ ∪ S0)] ⊔ [A ∩ S− \ (σ(A ∩ S+))] ⊔ [A ∩ S− ∩ σ(A ∩ S+)],

which we will denote, respectively, by:

A = A1 ⊔ A2 ⊔ A3.

Note that A2 and A3 belong to S−. Let us, using σ, attempt to reflect as many of

the elements of A as possible into S+ while preserving the total measure of A. Since

σ(A3) ⊂ A1, we cannot bring up A3 by reflection into H without compromising the

size of the set. However σ(A2) ∩ A1 = ∅, so we define the two point symmetrization

of A, denoted A∗, as follows:

A∗ = A1 ⊔ σ(A2) ⊔ A3,

by bringing up as many elements of A into S+ as possible. Since these subsets are

disjoint, and σ is an isometry, ν(A∗) = ν(A), provided A is Borel. The following

claim is that (A∗)t ⊂ (At)
∗; this will prove that ν((A∗)t) ≤ ν((At)

∗) = ν(At). In
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other words, sets which have undergone two-point symmetrizations admit smaller

t-neighbourhoods.

Lemma 1.1. (A∗)t ⊆ (At)
∗.

Proof of Lemma. Explicitly written out, these two sets look as follows:

(A∗)t = (A1)t ∪ (σ(A2))t ∪ (A3)t

(At)
∗ = (At)1 ∪ σ((At)2) ∪ (At)3.

We will show that each of the subsets of (A∗)t belong to (At)
∗.

• x ∈ (A1)t = [A ∩ (S+ ∪ S0)]t:

First, note that A1 ⊂ A ⇒ (A1)t ⊂ At, so either x ∈ [At ∩ (S+ ∪ S0)] (ie.

x ∈ (At)1, so we are done) or x ∈ (At ∩ S−); if x ∈ S−, then d(x, (A ∩ S+)) ≤

t ⇒ d(σ(x), (A ∩ S+)) ≤ t (it was shown in Claim 1.1 that if a set belongs

to S+ and x in S−, the reflection of x into S+ is closer to A than x was), so

x ∈ σ(At ∩S+) ⇒ x ∈ [At ∩S− ∩ σ(At ∩S−)] = (At)3. Therefore (A1)t ⊂ (At)
∗.

• x ∈ (σ(A2))t = [σ(A ∩ S− \ σ(A ∩ S+))]t:

Suppose x ∈ S0. Then x = σ(x) ∈ [A ∩ S− \ σ(A ∩ S+)]t, which implies

x ∈ At ⇒ x ∈ [At ∩ (S+ ∪ S0)].

Suppose x ∈ S+. Then σ(x) ∈ [A∩S−\σ(A∩S+)]t ⇒ σ(x) ∈ (At∩S−). If σ(x) /∈

σ(At ∩S+), then σ(x) ∈ [At ∩S− \σ(At ∩S+)] ⇒ x ∈ [σ(At∩S− \σ(At ∩S+))];

if σ(x) ∈ σ(At ∩ S+) ⇒ x ∈ [At ∩ (S+ ∪ S0)].

Suppose x ∈ S−. We know σ(x) ∈ [A∩S−\σ(A∩S+)]t ⇒ x ∈ [A∩S−\σ(A∩S+)]t

(by the reflection reducing the metric distance, Claim 1.1) ⇒ x ∈ At ∩ S−.
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Moreover, x must belong to σ(At ∩ S+), otherwise σ(x) /∈ (At ∩ S+), but we

have already seen that σ(x) ∈ [A ∩ S− \ σ(A ∩ S+)]t ⊂ At ⇒ σ(x) ∈ (At ∩ S+).

Therefore x ∈ σ(At ∩ S+) ⇒ x ∈ [At ∩ S− ∩ σ(At ∩ S+)] = (At)3.

• x ∈ (A3)t = [A ∩ S− ∩ σ(A ∩ S+)]t:

Suppose x ∈ S−. Clearly x ∈ At ⇒ x ∈ (At ∩ S−). We also know that

d(x, σ(A ∩ S+)) ≤ t ⇒ d(σ(x), (A ∩ S+)) ≤ t ⇒ σ(x) ∈ (At ∩ S+) (since σ(x)

certainly belongs in S+), so x ∈ σ(At∩S+) ⇒ x ∈ [At∩S−∩σ(At∩S+)] = (At)3.

Suppose x ∈ S0. Then x ∈ At ⇒ x ∈ [At ∩ (S+ ∪ S0)].

Suppose x ∈ S+. Then we know d(x, σ(A ∩ S+)) ≤ t ⇒ d(σ(x), (A ∩ S+)) ≤

t ⇒ d(x, (A ∩ S+)) (again by Claim 1.1) ⇒ x ∈ (At ∩ S+) ⇒ x ∈ (At)1.

Therefore we have that (A∗)t ⊆ (At)
∗ ⇒ ν((A∗)t) ≤ ν((At)

∗) = ν(At).

Proof of Lévy’s Theorem. Consider the metric space C consisting of all closed subsets

of SN with the Hausdorff metric. Fix A ∈ C and consider the collection of sets B ∈ C

satisfying:

ν(B) = ν(A)

ν(Bt) ≤ ν(At) (1.5)

for all t > 0. Denote this collection of sets by B. We will conclude the isoperimetric

inequality by showing that a closed spherical cap whose measure is equal to ν(A)

belongs to B.

Note that B is closed: suppose B′ is a limit point of B and consider a sequence

{Bj} ⊂ B which converges to B′. For all j ∈ N, ν(Bj) = ν(A) ⇒ limj→∞ ν(Bj) =

ν(B′) = ν(A). Also ν((Bj)t) ≤ ν(At) for all j, thus limj→∞ ν((Bj)t) = ν(B′
t) ≤ ν(At).
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Fix a point x0 ∈ S
N and let C be the closed cap of measure ν(A) whose center is

at x0. If H is a hyperplane centered at the origin such that x0 /∈ H, denote by S+ the

open half-sphere with contains x0. Consider the function from C to R which sends

B ∈ C to ν(B ∩ C). This function is upper semi-continuous:

Indeed, suppose that Bj → B in C. For any ǫ > 0 we may find a set Bj, for

some j ∈ N, such that ν(Bj \ B) < ǫ. Then ν(Bj ∩ C) = ν((Bj ∩ B) ∩ C) +

ν((Bj \ B) ∩ C) < ν(B ∩ C) + ǫ. Since ǫ was arbitrary, we may conclude that

limj→∞ ν(Bj ∩ C) ≤ ν(B ∩ C), which therefore proves the upper semi-continuity.

From this, we infer that the upper semi-continuous function B → ν(B ∩ C) will

attain its maximum on the compact set B, and we will denote this maximum by B.

We shall show that C ⊂ B which will certainly ensure that C ∈ B. If C is not

included in B, since they are both closed sets, there exist points of density in B \ C

and C \ B, respectively, such that ν(B \ C) > 0 and ν(C \ B) > 0. Let x ∈ B \ C,

y ∈ C \B be points of density and let H be the hyperplane which is perpendicular to

the geodesic line segment [x, y] and crossing at the midpoint (x+y)/2. Let B(x, r) be

a ball centered at x such that ν(B(x, r)∩ (B \C)) ≈ ν(B(x, r)) (set r so that B(x, r)

is almost entirely contained in (B \ C)). Applying the two-point symmetrization to

B will send most of B(x, r) into B(y, r) while any point in B ∩ C is sent to a point

in C and therefore B∗ ∩ C. Therefore ν(B∗ ∩ C) > ν(B ∩ C), contradicting the fact

that B∗ ∈ B. Therefore C ⊂ B. From the proof, it is not hard to see that only

spherical caps are minimizers. Indeed, spherical caps are the sets which satisfy the

property C∗ = C for all H, under the condition that ν(C ∩ S+) ≥
1

2
ν(C) (ie. under

the correction orientation), which allows us to say that B ∩ C is sent to B∗ ∩ C.

7



1.2 Concentration of Measure on S
N

Using Paul Lévy’s isoperimetric inequality on S
N , we will now present a concentration

of measure inequality on the sphere. Its proof will be a natural corollary of the

following proposition:

Proposition 1.1. [4] Let Et be the t-neighborhood of a great circle of SN , N ≥ 2.

Then

ν(Ec
t ) ≤ 2 exp [−(N − 1)t2/2],

where Ec
t denotes the complement of Et relative to S

N .

Proof. To evaluate the measure of these subsets of SN , we will use hyper-spherical

coordinates :

x1 = cos(φ1)

x2 = sin(φ1) cos(φ2)

...

xN = sin(φ1) sin(φ2) . . . sin(φN−1) cos(φN)

xN+1 = sin(φ1) sin(φ2) . . . sin(φN−1) sin(φN),

where φi ∈ [0, π), 1 ≤ i ≤ N − 1, φN ∈ [0, 2π).

The volume form with respect to the coordinates (φ1, φ2, . . . , φn) is

dVSN = sinN−1(φ1) sin
N−2(φ2) . . . sin

2(φN−2) sin(φN−1)dφ1 . . . dφN .

Note that calculating the normalized measure of SN with respect to hyper-spherical

coordinates yields:
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1 = ν(SN) =
1

V (SN)

∫

SN

dVSN

=
1

V (SN)

∫ 2π

0

∫ π

0

...

∫ π

0

sinN−1(φ1) sin
N−2(φ2)... sin(φN−1)dφ1dφ2...dφN

=
1

V (SN)
V (SN−1)

∫ π

0

sinN−1 dφ1

= s−1
N

∫ π

0

sinN−1(φ1)dφ1,

where V (·) represents the spherical measure induced from R
N+1 and sN :=

V (SN)

V (SN−1)
=

∫ π

0

sinN−1(θ) dθ.

Therefore if we wish to find the normalized volume of a spherical cap C of radius

φ (in the case of half-sphere φ = π/2), we may use the formula:

ν(C) = s−1
N

∫ φ

0

sinN−1(θ) dθ.

Hence the measure of the t-neighborhood of a half-sphere A can be calculated as

follows:

ν(At) = s−1
N

∫ π/2+t

0

sinN−1(θ) dθ, (1.6)

and the measure of the complement of this set, Ac
t , is

1− s−1
N

∫ π/2+t

0

sinN−1(θ) dθ = s−1
N

∫ π

π/2+t

sinN−1(θ) dθ

= s−1
N

∫ π/2

t

cosN−1(θ) dθ.

We seek an upper bound of Ac
t by finding an upper bound of the above inte-

gral. We will use the inequality cos(u) ≤ e−u2/2, 0 ≤ ∀u ≤ π/2, and the fact that
∫ ∞

0

e−u2/2du =

√
π√
2
. To deal with sN , integration by parts gives us:

sN =

∫ π

0

sinN−1(θ) dθ =
N − 2

N − 1

∫ π

0

sinN−3(θ) dθ =
N − 2

N − 1
sN−2.

9



Note that (N−1)/(N−2) ≥
√
N − 3/

√
N − 1 ⇒

√
N − 1sN ≥

√
N − 3sN−2 ≥ 2,

so sN ≥ 2/
√
N − 1. Using the above inequalities, along with the change of coordinates

θ = τ/
√
N − 1, yields:

∫ π/2

t

cosN−1(θ) dθ =
1√

N − 1

∫ (π/2)
√
N−1

t
√
N−1

cosN−1(
τ√

N − 1
)dτ

≤ 1√
N − 1

∫ ∞

t
√
N−1

e−τ2/2 dτ

=
1√

N − 1

∫ ∞

0

e−(τ+t
√
N−1)2/2 dτ

=
1√

N − 1

∫ ∞

0

e−(τ2+2τt
√
N−1+t2(N−1))/2dτ

≤ 1√
N − 1

e−(N−1)t2/2

∫ ∞

0

e−τ2/2dτ

=

√
π

√

2(N − 1)
e−(N−1)t2/2.

Hence

s−1
N

∫ π/2

t

cosN−1(θ) dθ ≤ s−1
N

√
π

√

2(N − 1)
e−(N−1)t2/2

≤
√
N − 1

2

√
π

√

2(N − 1)
e−(N−1)t2/2

≤ e−(N−1)t2/2.

We have shown that ν(Ac
t) ≤ e−(N−1)t2/2. Consider B = S

N\A, the complementary

half-sphere. The symmetry of SN allows us to conclude that ν(Bc) ≤ e−(N−1)t2/2, and

therefore ν(Ac
t ∪Bc

t ) ≤ 2e−(N−1)t2/2. But if E is the great circle corresponding to the

boundary of A and B, and we consider Et, then Ec
t = (At ∩ Bt)

c = Ac
t ∪ Bc

t , and

therefore ν(Ec
t ) ≤ 2e−(N−1)t2/2.

Corollary 1.1 (A Concentration of Measure Theorem on S
N). [9] Let SN ⊂ R

N+1

be the N-dimensional unit sphere of the Euclidean space and let f : SN → R be a

1-Lipschitz function. Then there exists m ∈ R such that for any t ≥ 0,
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ν({x ∈ SN , |f(x)−m| ≥ t}) ≤ 2 exp− t2

2D2
,

where D = 1/
√
N − 1 and ν is the natural volume measure on S

N , normalized so that

ν(SN) = 1.

Proof. We say that m is a median of f if ν({x : f(x) ≤ m}) ≥ 1/2 and ν({x :

f(x) ≥ m}) ≥ 1/2. Let us denote by A′ := {x : f(x) ≥ m} and B′ := {x :

f(x) ≤ m}. Let A′
t and B′

t be the t-neighbourhoods of A′ and B′ respectively, and

define the following sets

A′
f,t := {x : f(x)−m ≥ −t}

B′
f,t := {x : f(x)−m ≤ t}.

Claim 1.2. A′
t ⊂ A′

f,t and B′
t ⊂ B′

f,t.

Proof of Claim. Suppose x ∈ A′
t ∩ A′c (if x belongs in A′, then we are done), which

means f(x) < m, and d(x,A′) ≤ t. Because f is Lipschitz and therefore continuous,

we may assume that A′ is a Borel set, and we can assume that A′ is closed so that

d(x,A′) is realized by some value y ∈ A′. Then 0 ≤ f(y) − f(x) ≤ d(x, y) ≤ t, but

f(y) ≥ m ⇒ m − f(x) ≤ f(y) − f(x) ≤ t, so x ∈ A′
f,t. By a similar argument,

B′
t ⊂ B′

f,t.

We define a set C ′
f,t := {x : |f(x) −m| ≤ t} = A′

f,t ∩ B′
f,t. By the isoperimetric

inequality, we know that ν(At) ≤ ν(A′
t) ≤ ν((A′)f,t), where A is a half-sphere and At is

its t-neighborhood. Therefore by Proposition 1.1, ν((A′
f,t)

c) ≤ ν((A′
t)

c) ≤ ν((At)
c) ≤

e−(N−1)t2/2. Similarly, ν((B′
f,t)

c) ≤ e−(N−1)t2/2, so

ν({x ∈ S
N ; |f(x)−m| ≥ t}) = ν((C ′

f,t)
c) = ν((A′

f,t)
c ∪ (B′

f,t)
c) ≤ 2e−(N−1)t2/2,

concluding the proof.
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1.3 Concentration on the Hamming Cube

In this section, we prove a concentration of measure inequality on the Hamming Cube

{0, 1}N . More precisely, we consider the space ({0, 1}N ,P({0, 1}N), ν, δ), where ν is

a normalized uniform measure on this space and δ is the rescaled Hamming metric:

δ(x, y) =
1

N

N
∑

i=1

|xi − yi|, so that the maximal distance between points is 1 and the

distance between neighbours (points which differ by exactly one value) is 1
N
. We will

make use of the Laplace functional which we define below.

Definition 1.1. Let (X, d) be a metric space, and let ν be a probability measure on

the Borel sets of (X, d). The Laplace functional of ν is

E(X, d, ν)(λ) = sup
f

∫

X

eλfdν, (1.7)

where the supremum is taken after all 1-Lipschitz functions on X of mean zero.

In our context however, f is not restricted to have mean zero, so we consider

instead

sup
f

∫

eλ(f−Ef)dν, (1.8)

where f is a 1-Lipschitz function. The following lemma will help us prove a concentra-

tion inequality. Note the similarity between the inequality below and the analogous

inequality on the sphere, Corollary 1.1.

Lemma 1.2. [4]

Let X be a metric space equipped with a probability measure ν. Let f : X → R be

a 1-Lipschitz function. Assume that there exists a D > 0 such that, for any λ ∈ R,

one has

Eeλ(f−Ef) ≤ eD
2λ2/2 (1.9)
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where E denotes the mean of f with respect to ν. Then, for any t > 0,

ν({x ∈ X, f(x)− Ef ≥ t}) ≤ e−t2/2D2

.

Proof. The proof of this lemma makes use of the Chebyshev’s inequality: Given a

real non-negative measurable function f on a measure space (X,M, µ), the following

inequality holds for any positive number t

µ({x ∈ X|f ≥ t}) ≤ 1

t

∫

X

f(x)dµ.

Since the exponential function x → exp(x) on R is increasing, by taking t > 0,

and any real number D > 0, the following sets are equal:

{x ∈ X | f(x)− Ef ≥ t}

= {x ∈ X | t

D2
(f(x)− Ef) ≥ t2

D2
}

= {x ∈ X | e
t

D2 (f(x)−Ef) ≥ e
t2

D2 }.

Applying Chebyshev’s inequality to the latter set with respect to ν, and assuming

(1.9), we obtain:

ν

(

{x ∈ X|e t

D2 (f(x)−Ef) ≥ e
t2

D2 }
)

≤ e
−t2

D2 E(e
t

D2 (f−Ef))

≤ e
−t2

D2 eD
2( t

D2 )
2/2

= e−t2/2D2

.

Note that the result relies on the following assumption on the Laplace functional

E(X, d, ν)(λ) = sup
f1-Lipschitz

∫

eλ(f−Ef)dν ≤ eD
2λ2/2.

13



We will show that, in the case of the Hamming cube, such an estimate on the Laplace

functional holds for D =
1

2
√
N
.

Consider the metric space ({0, 1}, d) with probability measure ν, and the metric

d rescaled by
1

N
(d(1, 0) = d(0, 1) =

1

N
). The rescaling is specific to the dimension

N for which we wish to prove the inequality. Let us find an upper bound for the

Laplace functional E({0, 1}, d, ν). If f is a 1-Lipschitz function on this space, then

∫

{0,1}
eλ(f−Ef)dν

= 1 +

∫

λ(f − Ef)dν +

∫

λ2

2!
(f − Ef)2dν +

∫

λ3

3!
(f − Ef)3dν + · · · . (1.10)

However, for any k ≥ 1,

∫

{0,1}
(f − Ef)kdν =

∫

{0}
(f − Ef)kdν +

∫

{1}
(f − Ef)kdν

=

∫

{0}

(

f(0)− f(0) + f(1)

2

)k

dν +

∫

{1}

(

f(1)− f(0) + f(1)

2

)k

dν

=
1

2

[

f(0)− f(1)

2

]k

+
1

2

[

f(1)− f(0)

2

]k

,

so if k is odd, then
∫

{0,1}(f − Ef)kdν = 0. If k is even, then

∫

{0,1}
(f − Ef)kdν ≤ 1

2

(

1

2N

)k

+
1

2

(

1

2N

)k

=

(

1

2N

)k

, (1.11)

since f is 1-Lipschitz and d(0, 1) = 1/N . Applying this to (1.10), we obtain:

∫

{0,1}
eλ(f−Ef)dν ≤ 1 +

λ2

2!

1

(2N)2
+

λ4

4!

1

(2N)4
+ · · ·

=
∞
∑

i=0

λ2i

(2i)!(2N)2i
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≤
∞
∑

i=0

λ2

8N2

i!
= eλ

2/8N2

, (1.12)

hence E({0,1},d,µ) ≤ eλ
2/8N2

.

Note again that the metric d was rescaled as though we were working in {0, 1}N .

This is due to viewing the Hamming Cube as a product space {0, 1} × {0, 1} × · · · ×

{0, 1} whose metric δ is the sum of metrics, so that δ(x, y) = d(x1, y1)+· · ·+d(xn, yn).

The following proposition defines an upper bound of the Laplace Functional on a

product space.

Proposition 1.2. [4] Let (X, d, µ) and (Y, δ, ν) be metric spaces endowed with prob-

ability measures. Then E(X×Y,d+δ,µ⊗ν) ≤ E(X,d,µ)E(Y,δ,ν).

Proof. Suppose that F is a 1-Lipschitz function on (X × Y, d + δ) with mean zero,

and consider the functions F y(x) = F (x, y) and G(y) =
∫

F ydµ. These functions are

1-Lipschitz in their respective spaces, since |F y(x1)−F y(x2)| = |F (x1, y)−F (x2, y)| ≤

d(x1, x2) + δ(y, y), and |G(y1) − G(y2)| = |
∫

F y1(x) − F y2(x)dµ| ≤ |
∫

δ(y1, y2)dµ| =

|δ(y1, y2)µ(X)| = δ(y1, y2). Therefore

∫

eλFdµ⊗ ν =

∫

eλG(y)

(
∫

eλ[F
y(x)−

∫
F ydµ]dµ(x)

)

dν(y)

≤ E(X,d,µ)(λ)

∫

eλGdν ≤ E(X,d,µ)E(Y,δ,ν). (1.13)

Corollary 1.2. If f is a 1-Lipschitz function on the N-dimensional Hamming Cube,

then
∫

{0,1}N
eλ(f−Ef)dν ≤ E({0,1}N ,δ,ν)

≤ (E({0,1},d,µ))
N = eλ

2/8N (1.14)
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We will now state and prove the Theorem of Concentration of Measure on the

cube.

Theorem 1.2. [9] Let X = {0, 1}N be the Hamming Cube equipped with the uni-

form probability measure ν and the rescaled Hamming metric defined by δ(x, y) =

1

N

N
∑

i=1

|xi − yi|, where x = (x1, x2, . . . , xN), xi ∈ {0, 1}. Let f : X → R be a 1-

Lipschitz function. Then there exists m ∈ R such that, for any t ≥ 0,

ν({x ∈ X, |f(x)−m| ≥ t}) ≤ 2e−t2/2D2

where D = 1/2
√
N .

Proof. By Lemma 1.2 and Corollary 1.2, taking m = Ef , we have that ν({x ∈ X,

f(x) − Ef(x) ≥ t}) ≤ exp−t2N/8 = exp−t2D2/2. Similarly, ν({x ∈ X, Ef(x) − f(x) ≥

t}) ≤ exp−t2D2/2, since (Ef − f) is also a 1-Lipschitz function on X with mean zero.

Therefore ν({x ∈ X, |f(x) − m| ≥ t}) = ν({x ∈ X, f(x) − Ef(x) ≥ t} ∪ {x ∈ X,

Ef(x)− f(x) ≥ t}) ≤ 2 exp−t2D2/2 which concludes the proof.
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Chapter 2

Ricci Curvature and Concentration
inequalities

We will now turn our attention to finite dimensional Riemannian manifolds. The

first part of this chapter will introduce the definitions and concepts of Riemannian

geometry which we will need later. The second part of the chapter will deal with

concentration inequalities on Riemannian manifolds with Ricci curvature bounded

from below. This will be a natural, yet non-trivial, extension of the concentration of

measure phenomenon on the sphere.

2.1 Riemannian Manifolds

A Riemannian manifold (M, g) is a differentiable manifold M such that, at each point

p ∈ M , there exists a positive definite inner product gp : TpM × TpM → R. The

family g of all such inner products gp is known as the Riemannian metric tensor

on M . The presence of an inner product on these tangent spaces allows for many

convenient properties, such as angles between vectors, lengths of curves, and others.

Most importantly, it allows us to view these manifolds as metric spaces, a fact which

will be looked at shortly.
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2.1.1 The Levi-Civita Connection, Christoffel Symbols, and
the Riemann Curvature Tensor

Let M be a smooth manifold, and let T M denote the space of vector fields on the

tangent bundle TM . A linear connection

∇ : T M × T M → T M

(X, Y ) 7→ ∇XY

is a map which satisfies the following properties:

∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g in C∞(M,R) (2.1)

∇X(aY1 + bY2) = a∇XY1 + b∇XY2 for a, b in R (2.2)

∇XfY = f∇XY + (Xf)Y. (2.3)

where (2.3) is the known as the product, or the Liebniz, rule. The definition of a

connection makes it apparent that they form a vast family of maps. We are fortunate

to be working in Riemannian manifolds where connections with convenient properties

exist.

If X is a vector field on M , we may view it as a differential operator on smooth

functions on M . Given a local coordinate system xi, i = 1, 2, . . . , N , the tangent

vectors ei =
∂

∂xi
define a basis of the tangent space of M at each point. Here and for

the rest of the chapter, unless otherwise stated, N is the dimension of the manifold

M . If f ∈ C∞(M,R) and X = xiei ∈ T M is a vector field with local coordinates

ei, then X(f) = xi ∂f

∂xi

, using Einstein summation notation. Given two vector fields

X and Y , we may define a new vector field denoted [X, Y ] which acts on smooth
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functions on M by

[X, Y ](f) = X(Y (f))− Y (X(f)).

This is known as the Lie bracket of X and Y . A linear connection ∇ is said to be

torsion free if [X, Y ] = ∇XY − ∇YX. Working with torsion free connections allow

us to study the curvatures of manifolds with greater ease.

If (M, g) is a Riemannian Manifold, a linear connection ∇ is said to be compatible

with g if

∇Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

for all vector fields X, Y and Z in T M . Compatibility implies that the metric tensor

g is preserved under parallel transport which will be introduced later on.

If a connection on a Riemannian manifold is torsion free and compatible with its

metric tensor, it is given a special name and it is in fact unique, by the following

classical theorem whose proof can be found, for example, in [5]:

Theorem 2.1 (The Fundamental Theorem of Riemannian Geometry). Given a Rie-

mannian manifold (M, g), there is a unique connection ∇ which is torsion free and

compatible with g, called the Levi-Civita connection associated to g.

On Riemannian manifolds, in light of the Levi-Civita connection, the Christoffel

symbols often make an appearance. Given a local basis ei =
∂

∂xi
of the tangent space

of M , as earlier, the Christoffel symbols are the unique coefficients Γk
ij such that

∇eiej = Γk
ijek. In terms of the coordinates of the metric tensor g = [gij],

Γk
ij =

1

2
gil
(

∂gli
∂xj

+
∂glj
∂xi

− ∂gij
∂xl

)

,

where [gij] denotes the inverse matrix of [gij].

We will also require the use of the Riemann curvature tensor. In terms of the

Levi-Civita connection it is the tri-linear map R : T M × T M × T M → T M given
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by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Intuitively, the curvature tensor measures the following [9]: suppose we are at a point

p ∈ M and we take three tangent vectors U, V,W ∈ TpM . Parallel translate U along

V and then along W , and parallel translate U along W and then along V . The

difference between the endpoints of the two translations is given by the curvature

tensor. In other words, the difference between the path VWU and WV U is given by

R(V,W )U .

2.1.2 Geodesics and the Exponential Map

Now that we have introduced the Levi-Civita connection and the Christoffel symbols,

we are ready to discuss geodesics, which can roughly be thought of as the equivalent

of straight lines on Riemannian manifolds.

Suppose that γ : [a, b] → M is a smooth curve in M from p = γ(a) to q = γ(b).

Then at each point γ(t) ∈ M , the derivative γ̇ =
dγ(t)

dt
is an element of Tγ(t)M , so,

by taking the inner product g(γ̇, γ̇) = ||γ̇||2, we may define the length of the curve as

l(γ) :=

∫ b

a

||γ̇|| dt. (2.4)

With this we may view M as a metric space by defining the distance between two

points p and q as the infimum of the lengths of all such smooth curves γ(t) such that

γ(a) = p, γ(b) = q. These curves are realized by geodesics. However, geodesics are a

larger family of curves which are in fact critical points of the length functional.

We say that a smooth curve γ is a geodesic if it satisfies the equation ∇γ̇ γ̇ = 0

at each point along the curve. In the Euclidean space, with the standard metric, the

ordinary differential equation amounts to the second derivative of γ being identically

zero, whose solutions are precisely straight lines.
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Let us observe that the coordinate functions of γ(t) = (x1(t), x2(t), . . . , xn(t)) are

subject to ∇γ̇ γ̇ = 0 if and only if they satisfy

ẍk(t) + Γk
ij(x(t))ẋ

i(t)ẋj(t) = 0,

where ẋi(t) =
dxi

dt
and the summation convention has been employed. This is known

as the geodesic equation. The following theorem, for which we refer again to [5], will

be relevant later.

Theorem 2.2 (Existence and Uniqueness of Geodesics). For any p ∈ M , any v ∈

TpM , and t0 ∈ R, there exist an open interval I ⊂ R containing t0 and a geodesic

γ : I → M satisfying γ(t0) = p, γ̇(t0) = v. Any two such geodesics agree on their

common domain.

The proof relies on the existence and uniqueness of solutions to second-order ODE

systems (namely the geodesic equation) given initial conditions. Let the maximal

geodesic associated to the given initial conditions be the geodesic curve γ : I → M

such that γ(0) = p, γ̇(0) = v, on some maximal interval I containing 0: allow I

to be the union of all intervals which are domains of geodesics satisfying the initial

conditions. This maximal geodesic will be useful in defining the exponential map.

For a Riemannian manifold (M, g), the exponential map exp : E ⊆ TM → M maps

(p, v) 7→ γv(1), where γv(t) is the maximal geodesic satisfying γv(0) = p, γ̇v(0) = v.

For each p ∈ M , expp is the restriction of exp to TpM .

We may define the entire geodesic γv(t) using the exponential map, given by

γv(t) = expp(tv)

for all t such that the geodesic is defined. The most important part of the exponential

map is that it defines a local diffeomorphism between an open neighborhood of the

origin of each tangent space TpM and a neighborhood of p, as one can see, for example,

in [5]:
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Theorem 2.3 (Normal Neighborhood Lemma). For every p ∈ M , there is a neighbor-

hood V of the origin of TpM and a neighborhood U of p in M such that expp : V → U

is a diffeomorphism.

As a useful consequence of the above lemma, we can define geodesic balls around

any point p of M as follows. We know that there exists an ǫ > 0 such that Bǫ(0) ⊂

TpM maps diffeomorphically to M , thus call expp(Bǫ(0)) ⊂ M the geodesic ball in M

of radius ǫ, centered at p.

2.1.3 Variations and Jacobi Fields

Given a smooth curve γ : [a, b] → M , a variation of γ is, in our context, a smooth

map Γ : (−ǫ, ǫ)× [a, b] → M such that Γ0(t) = Γ(0, t) = γ(t). The variation field V of

Γ is the vector field V (t) =
∂Γ

∂s
|(0,t) which describes the way γ varies with respect to s

at each point γ(t). Suppose now that γ is a geodesic. Then we say that a variation Γ

is a variation through geodesics if each of the curves Γs(t) = Γ(s, t) is itself a geodesic.

Consider a geodesic γ(t) and suppose that J(t) is a vector field along γ. We will

call J(t) a Jacobi field if it satisfies the Jacobi equation:

∇γ̇(t)∇γ̇(t)J(t) +R(J(t), γ̇(t))γ̇(t) = 0.

Intuitively, Jacobi fields describe the difference between a geodesic γ and an infinites-

imally close geodesic which is shifted according to J(t). Indeed, variations through

geodesics satisfy the Jacobi equation:

suppose that we have a variation of geodesics Γ(s, t) such that Γ(0, t) = γ(t) and

Γs(t) = Γ(s, t) are geodesics for all s. Denote by Y (t) the variation field
∂Γ(s, t)

∂s
|s=0

and T (t) = γ̇(t). Since γ is a geodesic, we know that ∇TT = 0. Because we may view

s and t as local coordinates, we have by symmetry ∇TY = ∇Y T . One consequence

of symmetry is that [Y, T ] = 0, so a direct calculation of the Riemann tensor shows
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us

R(Y, T )T = ∇Y∇TT −∇T∇Y T −∇[Y,T ]T.

But the first and third terms are both zero, and by symmetry we have

R(Y, T )T = −∇T∇TY,

which proves the earlier claim.

2.2 Curvature in Riemannian Manifolds

Sectional and Ricci curvatures are two ways to describe the curvature of a manifold,

and offer up different information about the shape of the manifold. We will begin

by describing the sectional curvature and then define the Ricci curvature, which we

will be using frequently for the rest of this chapter. We will also introduce the shape

operator and mean curvature of hypersurfaces of Riemannian manifolds, as they will

play a major role in our generalization of Lévy’s theorem.

2.2.1 Sectional Curvature

Take a point p in a Riemannian manifold M , and two linearly independent vectors

v, w ∈ TpM . The sectional curvature K(v, w) is the Gauss curvature of the surface

on M formed by the image of the plane spanned by v and w under expp. It can be

calculated by

K(v, w) =
〈R(v, w)v, w〉

〈v, v〉〈w,w〉 − 〈v, w〉2 ,

where R is the Riemann curvature tensor. In the case that v and w are orthonormal,

〈v, v〉 = 〈w,w〉 = 1 and 〈v, w〉 = 0, so

K(v, w) = 〈R(v, w)w, v〉.

Sectional curvature does not play a significant role in the remainder of this chapter,

but we will see a more intuitive description in Theorem 3.1 when generalizing the

Ricci curvature to arbitrary metric spaces.
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2.2.2 Ricci Curvature

Like the sectional curvature, the Ricci curvature is obtained from the Riemann

curvature tensor. Given a point p, and v, w ∈ TpM , the Ricci curvature tensor

Ric(v, w) is defined by the trace of the map u 7→ R(u, v)w. If {ei}i is an orthonor-

mal basis of TpM , then Ric(v, w) =
∑

i〈R(ei, v)w, ei〉. Suppose now that v is an

arbitrary unit tangent vector. The Ricci curvature in the direction of v, denoted

Ric(v), is determined by Ric(v, v) =
∑

i〈R(ei, v)v, ei〉. Furthermore, if v = ej, then

Ric(ej) =
∑

i 6=j〈R(ei, ej)ej, ei〉 =
∑

i 6=j K(ei, ej), so we may think of Ricci curvature

in the direction of v as N − 1 times the average of all sectional curvatures K(v, .),

where N = dim(M).

2.2.3 Hypersurfaces and the Shape Operator

Given an (N + 1)-dimensional Riemannian manifold (M, g), a hypersurface (H, h) of

M is an N -dimensional Riemmanian manifold embedded by the inclusion function

i : H →֒ M such that i preserves the metric h. That is, given p ∈ H for v, w ∈ TpH,

h(v, w) = g(i∗(v), i∗(w)), where i∗ : TpH → TpM is the push-forward of i. For the

sake of simplicity, we will identify i(p) ∈ M with p, as well as i∗(v) with v. Given

p ∈ H, there exists νp ∈ TpM such that g(νp, v) = 0 for all v ∈ TpH. This vector

νp is said to be normal to H. A normal vector field is a vector field on H consisting

of vectors normal to H. The hypersurface H is said to be orientable if there exists

a smooth, non-vanishing normal vector field ν defined on all of H. Suppose that we

restrict our attention to unit normal vector fields. Then, in fact, only two such vector

fields exist, depending on our “direction”. Indeed, suppose νp ∈ TpM is a unit normal

vector. Then −νp is also a unit normal vector, but points in the opposite direction.

These two vectors belong in two uniquely determined unit normal vector fields.

Fix a unit normal vector field ν. The shape operator Sν at the point p is the map

Sν : TpH → TpH mapping v to ∇vνp. The shape operator describes the change of the
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normal unit vector field in the direction v at the point p, and therefore the curvature

of H in M . Given an orthonormal basis {ei}N1 of H, the mean curvature of H at p is

1

N

N
∑

1

g(Sν(ei), ei), the trace of the shape operator normalized by N . We also require

the definition of an umbilical hypersurface.

Definition 2.1. A hypersurface H ⊂ M is said to be totally umbilical if at each

point p ∈ H, given an orthonormal basis {ei}N1 , g(Sν(ej), ej) = g(Sν(ek), ek) for all j

and k from 1 to N .

2.3 Lévy-Gromov Isoperimetric Inequality

In this section, we will discuss Gromov’s extension of Paul Lévy’s isoperimetric in-

equality and its application to concentration of measure on Riemannian manifolds.

We have seen Lévy’s isoperimetric inequality on the sphere in the previous chapter.

Gromov noticed that a similar inequality holds on any manifold whose Ricci curvature

is greater than that of a sphere of equal dimension properly normalized. Therefore,

concentration inequalities on manifolds of positive Ricci curvature are implied by the

extension of the isoperimetric inequality. Let us first state the main theorem which

we will prove in details not found in the literature. We will then present the results

on concentration of measure as a corollary of this theorem.

Theorem 2.4. [6] Let M be an (N + 1) - dimensional manifold, and let Ric(M) :=

infv Ric(v, v) where v runs over all unit tangent vectors in TM . Suppose Ric(M) ≥

N = Ric(SN+1) where S
N+1 ⊂ R

N+2 is the unit sphere. Let M0 ⊂ M be a domain

with smooth boundary, and define α :=
V ol(M0)

V ol(M)
. Let Bα be a ball in S

N+1 such that

V ol(Bα)

V ol(SN+1)
= α. Then

V ol(∂M0)

V ol(M)
≥ V ol(∂Bα)

V ol(SN+1)
, (2.5)

where V ol(∂M0) denotes the N-dimensional volume of the hypersurface which bounds

M0, and similarly for ∂Bα. Applying (2.5) to ǫ neighbourhoods (M0)ǫ, and integrating
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over ǫ, we also have

V ol((M0)ǫ)

V ol(M)
≥ V ol((Bα)ǫ)

V ol(SN+1)
. (2.6)

The first step in proving this theorem is to compare hypersurfaces onM and S
N+1,

following the work of Ernst Heintze and Hermann Karcher, [7]. Note also that we

will be simplifying notation for this section: as g is an inner product of TpM for all

p ∈ M , we will denote g(·, ·) as 〈·, ·〉.

2.3.1 Heintze-Karcher Comparison Theorem

Suppose that M is an (N+1)-dimensional Riemannian manifold with Ricci curvature

≥ δN everywhere. Let H ⊂ M be a smooth hypersurface with ν a smooth normal

unit vector field. Suppose also that we have M and H, a corresponding “model” pair

such that dim(M) = N +1, M has constant sectional curvature δ, dim(H) = N , and

H is totally umbilical with mean curvature η.

Consider a point p ∈ H and a corresponding unit normal vector νp, p ∈ H and a

corresponding unit normal vector νp in the model pair, such that tr(Sνp) ≤ tr(Sνp),

where S and S denote the shape operators of H and, respectively, H. Let {ei}Ni=1 be

an orthonormal basis of TpH so that {νp, e1, . . . , eN} forms an orthonormal basis of

TpM .

Our goal is to compare the volume “distortions” of H and H, in the following

sense: Take a point p ∈ H and the corresponding unit normal νp ∈ TpM , part of

the orthonormal basis {νp, e1, e2, . . . , eN}. Given the geodesic γ(t) = expp(tνp) in

M , consider the vector fields Ei(t), 1 ≤ i ≤ N , along γ such that Ei(0) = ei, and

∇γ′(t)Ei(t) = 0 (ie. the parallel vector field along γ(t) corresponding to ei). These

vector fields Ei(t) will form the basis of comparison for a specific type of Jacobi field

called an H-Jacobi field, denoted Yi(t), which describes the change of H when shifted

for a time t along γ.
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Definition 2.2. If H is a hypersurface of M and γ is a geodesic normal to H such

that γ(0) = p ∈ H, an H-Jacobi field Y is a Jacobi field on M which also satisfies

the following conditions:

Y (0) ∈ TpH and Y ′(0) = Sνp(Y (0)),

where Sν is the shape operator of H with respect to the unit normal vector field ν.

An H-Jacobi field thus describes a variation of geodesics normal to H, which are

determined by the principal curvatures. Let Yi therefore be the H-Jacobi fields with

initial conditions

Yi(0) = Ei(0) and Y ′
i (0) = Sνp(Ei(0)).

We may analogously consider at a point p ∈ H the “model” H-Jacobi fields Yi(t)

along a geodesic γ(t) corresponding to νp and the parallel Ei(t) constructed in the

same manner as above. Since we took H to be totally umbilical with mean curvature

η, the initial conditions of Y i(t) will be

Y i(0) = Ei(0) and Y
′
i(0) = ηEi(0),

so the H-Jacobi fields are quite easily constructed.

As mentioned, we are interested in volume distortions, and will therefore consider

the maps

f(t) =
|Y1(t) ∧ Y2(t) ∧ · · · ∧ YN(t)|
|E1(t) ∧ E2(t) ∧ · · · ∧ EN(t)|

and

f(t) =
|Y 1(t) ∧ Y 2(t) ∧ · · · ∧ Y N(t)|
|E1(t) ∧ E2(t) ∧ · · · ∧ EN(t)|

so that we may calculate the volume form of the space spanned by the Yi’s (respec-

tively the Y i’s) at a time t given a basis Ei(t) (respectively Ei(t)).

Claim 2.1 (Main Result of Heintze-Karcher Comparison Theorem). f(t) ≤ f(t).
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Proof of Claim. Since lim
t→0

f(t) = lim
t→0

f(t) = 1, (log f)′ ≤ (log f)′, ∀t > 0, implies

f ≤ f as x 7→ log(x) is an increasing function. It therefore suffices to prove (log f)′ ≤

(log f)′. Note that |E1(t) ∧E2(t) ∧ · · · ∧EN(t)| and |E1(t) ∧E2(t) ∧ · · · ∧EN(t)| are

constant by construction, so it suffices to prove (log |Y1(t) ∧ Y2(t) ∧ · · · ∧ YN(t)|)′ ≤

(log |Y 1(t) ∧ Y 2(t) ∧ · · · ∧ Y N(t)|)′.

Fix r (smaller than the focal distances along γ and γ). After appropriate lin-

ear combinations, assume that Y1(r), . . . YN(r) are orthonormal, and similarily for

Y 1(r), . . . , Y N(r).

By the orthonormality of the basis {Yi(r)},

(log |Y1 ∧ Y2 ∧ · · · ∧ YN |)′(r)

=
|Y1 ∧ Y2 ∧ · · · ∧ YN |′
|Y1 ∧ Y2 ∧ · · · ∧ YN |

(r)

= |Y1 ∧ Y2 ∧ · · · ∧ YN |′(r) =
N
∑

1

(
√

〈Yi, Yi〉)′(r)

=
N
∑

1

2〈Yi, Y
′
i 〉

2
√

〈Yi, Yi〉
(r)

=
N
∑

1

〈Yi, Y
′
i 〉(r),

since |Y1 ∧ . . . YN |(r) =
N
∏

1

√

〈Yi, Yi〉(r).

Using integration by parts,

∫ r

0

〈Y ′
i , Y

′
i 〉dt = 〈Yi, Y

′
i 〉(r)− 〈Yi, Y

′
i 〉(0)−

∫ r

0

〈Yi, Y
′′
i 〉dt

⇒
N
∑

1

〈Yi, Y
′
i 〉(r) =

N
∑

1

(

〈Yi, Y
′
i 〉(0) +

∫ r

0

(〈Y ′
i , Y

′
i 〉+ 〈Yi, Y

′′
i 〉)dt

)

,

but since for all i, Yi is an H-Jacobi field, we conclude that

N
∑

1

〈Yi, Y
′
i 〉(r) =

N
∑

1

(

〈Yi, Sγ′(0)Yi〉(0) +
∫ r

0

(〈Y ′
i , Y

′
i 〉 − 〈Yi, R(Yi, γ

′)γ′〉)dt
)

. (2.7)
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Let Ir denote the index form of γ|[0,r] with respect to H. Equation (2.7) reduces

to
N
∑

1

Ir(Yi, Yi),

which means we must compare the index forms of M and M . An important property

of this index form is the following: if Y is an H-Jacobi field, X any continuously

differentiable vector field along γ such that X(r) = Y (r) and X(0) ∈ TpH, then

Ir(Y, Y ) ≤ Ir(X,X), with equality if and only ifX = Y (see Appendix B). We will use

this property to prove the theorem; it will suffice to show that Ir(Yi, Yi) ≤ Ir(Y i, Y i).

To compare these two index forms, choose a linear isometric injection

ir : TpM → TpM satisfying

ir(γ
′(0)) = γ′(0),

ir(TpH) = TpH and

ir(V r) = Vr,

where Vr (respectively, V r) is the N -dimensional subspace of TpM (TpM) obtained by

parallel translation along γ to γ(0) (γ to γ(0)) the span of Yi(r) (Y i(r)), 1 ≤ i ≤ N .

Define the vector fields Wi along γ as follows:

Wi(t) = Pt ◦ ir ◦ P−t ◦ Y i(t), t ∈ [0, r],

where Pt denotes parallel translation along γ from γ(0) to γ(t) and P−t denotes

parallel translation along γ from γ(t) to γ(0).

As ir is isometric, we have that

|Wi(t)| = |Y i(t)| and |W ′
i (t)| = |Y ′

i(t)|.

From the property ir(V r) = Vr, a suitable linear combination will give us Yi(r) =

Wi(r), for all i, since these two sets span the same space. Also, since Y i(0) ∈ TpH,
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we have that Wi(0) ∈ ir(TpH) = TpH. Therefore for all i, Wi is a vector field along

γ satisfying Wi(r) = Yi(r), which implies that

N
∑

1

Ir(Yi, Yi) ≤
N
∑

1

Ir(Wi,Wi).

If we prove that
N
∑

1

Ir(Wi,Wi) ≤
N
∑

1

Ir(Y i, Y i), then we are done.

By construction, the Y i are orthonormal, hence the Wi are as well. By the as-

sumption tr(Sνp) ≤ tr(Sνp), we have that

N
∑

1

〈Wi, SWi〉(0) ≤
N
∑

1

〈Y i, SY i〉(0).

By the assumption that the Ricci curvature on M is everywhere ≥ δN , while it is

equal to δN at all points of M , we may conclude that

N
∑

1

(
∫ r

0

(|W ′
i |2 − 〈Wi, R(Wi, γ

′)γ′〉dt)
)

=

∫ r

0

(

N
∑

1

|W ′
i |2 −Ric(γ′)

)

dt

≤
N
∑

1

(
∫ r

0

(|Y ′
i|2 − 〈Y i, R(Y i, γ

′)γ′〉dt)
)

.

Hence, we obtain Ir(Wi,Wi) ≤ Ir(Y i, Y i) concluding the proof of the claim.

The functions f and f are in fact the Jacobians of the corresponding normal

exponential map defined as follows: given a hypersurface H of a Riemannian manifold

M and a normal unit vector field ν, define the normal exponential map

expH : H × R → M

by expH(p, t) = expp(tνp). Given the vector fields Ei along γ(t) = expp(tνp), the

vector fields Yi are simply the pushforward of Ei by the normal exponential map (ie.
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Yi = d expH Ei). Therefore the Jacobian at p and at time t, denoted J(p, t), is given

as follows:

|Y1(t) ∧ · · · ∧ YN(t)|
|E1(t) ∧ · · · ∧ EN(t)|

.

So the Heintze-Karcher comparison theorem tells us that

|J(p, t)| ≤ |J(p, t)|,

as we have proven Claim 2.1.

Before proceeding, let us compute |J(p, t)|. From now on, our model space M is

the space of constant sectional curvature 1, ie. the (N + 1)-dimensional unit sphere.

Recall that the H-Jacobi fields satisfy the initial conditions Y i(0) = Ei(0) = ei and

Y
′
i(0) = ηEi(0) = ηei, so, since we are in a space of constant curvature δ = 1,

the Jacobi equation for these fields reduces to Y
′′
i + Y i = 0. Therefore solving this

second order ODE with the given initial conditions as above, we find that Y i(t) =

(cos(t)− η sin(t))Ei(t), which implies that

|J(p, t)| = (cos(t)− η sin(t))N .

2.3.2 Proof of Theorem 2.4

Let us now turn our attention to hypersurfaces which divide our manifold M into two

parts which we will denote M0 and M1. Fix α ∈ (0, 1), and consider all hypersur-

faces which divide M into two parts, M0 and M1, such that the relative volume, or

V ol(M0)

V ol(M)
, is α and, respectively,

V ol(M1)

V ol(M)
= (1 − α). Among all such hypersurfaces

there exists one with minimal N -dimensional volume. Such a hypersurface, which

we will call H, has constant mean curvature. To see this, consider a (small) smooth

function f on H, and consider the hypersurface Hf parametrized by

p ∈ H 7→ expp(f(p)νp).
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Conversely, any hypersurface H̃ close enough to H can be written as Hf for some

small function f on H. If we consider the N -volume functional

A(f) =

∫

Hf

dvolHf
,

then the differential of this map when f = 0 is described as (see [8]):

DA|f=0(V ) = −
∫

H

SνV dvolH ,

where S is the shape operator of H with respect to the normal unit vector field ν.

Now given any small function f on H, consider the decomposition f = f+ − f−,

where f± := max(±f, 0). Consider the (N + 1)-dimensional spaces

Bf± := {expp(tνp) : ±t ∈ (0, f±)},

which are precisely the domains between H and Hf± , and define the (N +1)-volume

functional

V(f) :=
∫

B
f+

dvolM −
∫

B
f−

dvolM ,

so that volumes are counted positively when f > 0 and negatively when f < 0. The

differential of this function at f = 0 is given by

DV(V ) =

∫

H

V dvolH .

From the above equations, the goal is to minimize A while keeping V constant, a

classical Lagrange multiplier problem. Therefore, we wish to find the critical points

of

E := A+ λV ,

but

DE|f=0(V ) =

∫

H

(λ− Sν)V dvolH ,

and is thus critical when Sν = λ or, equivalently, H has constant mean curvature.

Further analysis of this problem can be found in [8].
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With this in mind, we will prove that
V ol(H)

V ol(M)
≥ V ol(∂Bα)

V ol(SN+1)
, where H is the

hypersurface which minimizes the N -dimensional volume. Consequently, for any hy-

persurface H ′ dividing M into two parts with relative volumes α and (1 − α), we

have V ol(H ′) ≥ V ol(H) as H has minimal N -dimensional volume among all such

hypersurfaces, and so
V ol(H ′)

V ol(M)
≥ V ol(∂Bα)

V ol(SN+1)
, proving the theorem.

Let η denote the value of the constant mean curvature of H relative to the normal

vector field which is in the direction of M0. Since |J(p, t)| ≤ (cos(t) − η sin(t))N ,

and this latter function is independent of p, we may apply Fubini’s theorem and

integrate over our hypersurface H first, followed by the integration with respect to t,

and conclude:

V ol(M0) ≤ V ol(H)

∫ r

0

(cos(t)− η sin(t))Ndt, (2.8)

where r is the first zero of cos(t) − η sin(t), as we only wish to take the domain

on which this function is positive which corresponds to the domain on which the

exponential map expp is a diffeomorphism onto its image. Note that the zero occurs

when cos(r)− η sin(r) = 0, or η = cot(r).

It remains to calculate the value of the integral

∫ r

0

(cos(t)− η sin(t))Ndt which is

the object of the following lemma.

Lemma 2.1. The geodesic ball B(r) of radius r in S
N+1 has boundary ∂B(r) of

constant mean curvature η = cot(r) and

V ol(B(r))

V ol(∂B(r))
=

∫ r

0

(cos(t)− η sin(t))Ndt. (2.9)

Proof. Consider a point p ∈ ∂B(r) and an orthonormal basis {fi}N1 . Let νp be the

unit vector normal to ∂B(r) at p in the direction away from B(r). Let {Fi(t)}N1 be

the vector fields generated by parallel translation of fi’s along the geodesic γ given

by γ(0) = p, γ′(0) = νp. We wish to consider the ∂B(r)-Jacobi fields {Yi}N1 such

that Yi(0) = fi and Y ′
i (0) changes according to the mean curvature. But ∂B(r)

33



is exactly an N -dimensional sphere of radius sin(r) embedded in S
N+1, so setting

Yi(t) =
sin(r+t)
sin(r)

Fi(t) will be the ∂B(r)-Jacobi fields. Therefore

Yi(0) =
sin(r)

sin(r)
Fi(0) = fi and Y ′

i (0) =
cos(r)

sin(r)
fi = Sνp(fi),

so Sνp(fi) = cot(r)fi for all i. Therefore ∂B(r) is totally umbilical with mean curva-

ture η = cot(r).

Taking this mean curvature value into account, equation (2.9) becomes

∫ r

0

(cos(t)− cot(r) sin(t))Ndt

=

∫ r

0

(sin(r) cos(t)− cos(r) sin(t))N

sinN(r)
dt

=

∫ r

0

sinN(r − t)

sinN(r)
dt,

and after making a change of variable t′ = r − t, this equation reduces to

1

sinN(r)

∫ r

0

sinN(t′)dt′.

This is exactly the ratio
V ol(B(r))

V ol(∂B(r))
, as is easily seen from the fact that these volumes

are defined by:

V ol(B(r)) = V ol(SN)

∫ r

0

sinN(t)dt

and

V ol(∂B(r)) = V ol(SN) sinN(r),

as was shown in our presentation of coordinates in Section 1.2.

Let us denote by a(r) :=
V ol(∂B(r))

V ol(B(r))
. By rearranging, and dividing by V ol(M),

we may rewrite inequality (2.8) as

V ol(H)

V ol(M)
≥ a(r)V ol(M0)

V ol(M)
.
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Note that if we will replace M0 by M1, and insured that the normal vector field at

the separating boundary was pointing in the direction of M1 now, we will obtain the

same result, only the ratio would be 1 − α instead of α. Therefore by replacing M0

with M1, η with −η, and r with π − r, we also have

V ol(H)

V ol(M)
≥ a(π − r)V ol(M1)

V ol(M)
,

so

V ol(H)

V ol(M)
≥ max{αa(r), (1− α)a(π − r)}

≥ inf
x∈[0,π]

max{αa(x), (1− α)a(π − x)}.

Claim 2.2. On [0, π], the function a(x) is decreasing.

Recall that
1

a(x)
=

V ol(B(x))

V ol(∂B(x))
=

∫ x

0

(cos(t) − cot(x) sin(t))Ndt. Let f(x, t) =

cos(t) − cot(x) sin(t). Note that for x ∈ [0, π], t ∈ [0, x], f(x, t) ≥ 0, and for x′ ≥ x,

f(x′, t) ≥ f(x, t). Therefore f(x′, t)N ≥ f(x, t)N , so integrating over t gives us

∫ x′

0

(cos(t)− cot(x′) sin(t))Ndt ≥
∫ x

0

(cos(t)− cot(x′) sin(t))Ndt

≥
∫ x

0

(cos(t)− cot(x) sin(t))Ndt.

Therefore
1

a(x)
is increasing and, consequently, a(x) is decreasing.

✷

If a(x) is decreasing, then a(π − x) is increasing so that the infimum of

max{αa(x), (1− α)a(π − x)} is attained for some x0 ∈ [0, π] where

αa(x0) = (1− α)a(π − x0).

By symmetry, V ol(∂B(x0)) = V ol(∂B(x0 − π)), so that solving for α, we get

α =
V ol(B(x0))

V ol(SN+1)
,

35



so B(x0) = Bα, implying that B(x0) gives our desired inequality. Therefore we

conclude

V ol(H)

V ol(M)
≥ V ol(∂Bα)

V ol(SN+1)
.

As a consequence of this inequality, for any Borel subset M0 ⊂ M such that

α =
V ol(M0)

V ol(M)
=

V ol(Bα)

V ol(SN+1)
, we have that

V ol(∂M0)

V ol(M)
≥ V ol(∂Bα)

V ol(SN+1)
. Fix t > 0

sufficiently small and consider the t-neighbourhoods of M0 and Bα. We would again

have the same inequality for the boundaries of (M0)t and (Bα)t:
V ol(∂((M0)t))

V ol(M)
≥

V ol(∂((Bα)t))

V ol(SN+1)
. Therefore, integrating with respect to t from 0 to ǫ, we conclude the

inequality (2.6):

V ol((M0)ǫ)

V ol(M)
≥ V ol((Bα)ǫ)

V ol(SN+1)
.

2.4 Concentration Results

As a Corollary to the Lévy-Gromov isoperimetric inequality, we have the following

concentration result:

Corollary 2.1. Let M be an N-dimensional manifold and suppose that its Ricci

curvature is everywhere greater than that of SN . Let f : M → R be a 1-Lipschitz

function. Then there exists m ∈ R such that, for any t ≥ 0,

ν({x ∈ M, |f(x)−m| ≥ t}) ≤ 2e−
t2

2D2 ,

where D = 1√
N−1

and ν is the natural measure on M , normalized so that ν(M) = 1.

Proof. Let m be a median of f , such that ν({x, f(x) ≥ m}) ≥ 1
2
and ν({x, f(x) ≤

m}) ≥ 1
2
. Denote by M0 the set {x, f(x) ≥ m} and by M1 the set {x, f(x) ≤ m}.

As in the case of Chapter 1, because f is 1-Lipschitz, the set {x, f(x) − m ≥ t}

contains (M0)t, where (M0)t denotes the t-neighborhood of M0. By the Gromov-

Lévy inequality, we know that ν((M0)t) ≥ ν ′(At), where ν ′ denotes in this case the
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normalized measure on S
N and A is a half-sphere. So ν((M0)

c
t) ≤ ν ′(Ac

t) ≤ e−
(N−1)t2

2 ,

by Proposition 1.1. Similarly, ν((M1)
c
t) ≤ e−

(N−1)t2

2 . Combining the two, we obtain

the desired result.

In conclusion, due to the Lévy-Gromov isoperimetric inequality, we have an exten-

sion of the concentration of measure phenomenon from the N -sphere to all Rieman-

nian manifolds with Ricci curvature greater than that of theN -sphere. We will further

investigate if such a phenomena can be extended to other metric measure spaces lack-

ing the rigid Riemannian structure. In fact, we will go to the other extreme, when

such spaces are discrete, showing that a generalized notion of Ricci curvature plays a

similar role in the latter context, implying a concentration of measure.
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Chapter 3

A Generalization of Ricci
Curvature

The goal of this chapter is to introduce a generalization of Ricci curvature to metric

spaces. For this chapter, we work under the assumption that (X, d, ν) is a separable

and complete metric space with a probability measure ν. The main idea of this

generalization is as follows: take a point x ∈ X and a neighboring point y ∈ X.

Imagine shifting a ball Bx of a fixed radius centered at x into a ball B′
y of the same

radius centered at y. In R
N , the average distance between the points of the two balls

would be d(x, y). In S
N , however, the average distance between the points would in

fact be less than d(x, y). On a general Riemannian manifold, this average distance

would vary according to the Ricci curvature. We note that we can consider average

distances between balls on an arbitrary metric space, thus one can consider defining

Ricci curvature in a more generalized setting by observing the effects on average

distances between points in two nearby balls. The tools behind this generalization,

however, are probabilistic in nature and therefore do not appear at first to always

match that of the classical Ricci curvature. In an attempt to show that there is a good

fit between the two, let us present first a visual geometric definition of the classical

Ricci curvature after which we will proceed with the definition of the generalized Ricci

curvature.
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3.1 Alternative Definition of the Classical

Sectional and Ricci Curvature

Suppose that (M, g) is an N dimensional Riemannian manifold, and suppose that x ∈

M . Take two orthogonal unit vectors v, w ∈ TxM , and suppose that for some small

δ > 0, y = expx(δv). Consider the parallel transport of w along v to y, and denote this

vector w′ ∈ TyM . Now define two points: x′ = expx(ǫw), y
′ = expy(ǫw

′). In Euclidean

space, the points x,y,x′,y′ would form a quadrilateral, and the distance between x′

and y′ would be δ = d(x, y). However, in the case of a Riemannian manifold this

distance depends on the curvature of the space: in this case the sectional curvature

K of the plane spanned by v and w. As seen in [9], d(x′, y′) can be approximated as

follows.

Theorem 3.1 (Sectional Curvature). Let (M, g) be a smooth complete Riemannian

manifold. Let v, w be unit orthogonal tangent vectors at x ∈ X. Let ǫ, δ > 0. Let

y = expx(δv) and let w′ be the tangent vector at y obtained by parallel transport of w

along the geodesic from x to y. Then

d(expx(ǫw), expy(ǫw
′)) = δ(1− ǫ2

2
K(v, w) +O(ǫ3))

as ǫ, δ → 0. Here K(v, w) is the sectional curvature of the plane spanned by v, w.

Proof. To prove the theorem, we will construct an appropriate Jacobi field along

the curve c
(x)
w (t) = expx(tw). Let Y be the Jacobi field along c

(x)
w with the initial

conditions:

Y (0) = v and Y ′(0) = ∇TY | 0 = 0

where T denotes the tangent to c
(x)
w (t). We are basically taking the curve which

connects x an y and parallel translating it along w for a time ǫ, which is why we take

Y ′(0) = 0.
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Let us take the third order Taylor expansion of ||Y (t)|| = 〈Y (t), Y (t)〉1/2 about 0.

The first two derivatives of the length of Y (t) at t = 0 are:

(〈Y (t), Y (t)〉1/2)′|0 =
〈Y ′(0), Y (0)〉
〈Y (0), Y (0)〉1/2 = 0

〈Y (t), Y (t)〉′′|0 =
〈Y ′′(0), Y (0)〉+ 〈Y ′(0), Y ′(0)〉

〈Y (0), Y (0)〉1/2 − 〈Y ′(0), Y (0)〉2
〈Y (0), Y (0)〉3/2

=
〈Y ′′(0), Y (0)〉
〈Y (0), Y (0)〉1/2 .

It can easily be checked that after simplification, the only term of the third derivative

〈Y (t), Y (t)〉′′′|0 that does not vanish is

〈Y ′′′(0), Y (0)〉
〈Y (0), Y (0)〉1/2 .

As Y is a Jacobi field, it satisfies the Jacobi equation Y ′′ = ∇T∇TY = −R(Y, T )T ,

so we may rewrite the second derivative at zero as

−〈R(Y, T )T, Y 〉|t = 0

〈Y (0), Y (0)〉1/2 .

Since Y (0) = v and T (0) = w are both of unit length, we have

〈R(Y, T )Y, T 〉
〈Y, Y 〉1/2|0

=
K(Y, T )|0(||Y ||0 · ||T ||0 − 〈Y, T 〉2|0)

||Y ||0

= K(Y, T )|0||T ||0

= K(v, w)||w||

= K(v, w),

where the orthonormality of v and w was used.

As for the third derivative, it suffices to see that

〈Y ′′′(0), Y (0)〉
〈Y (0), Y (0)〉1/2 =

∇(〈R(Y, T )T, Y 〉)
〈Y (0), Y (0)〉1/2 .

The Taylor expansion of ||Y (t)|| will therefore look as follows:

〈Y (t), Y (t)〉1/2|t=0 = 〈Y (0), Y (0)〉1/2 + 1

2!

−〈R(Y, T )T ), Y 〉|0
〈Y (0), Y (0)〉1/2 ǫ2 +O(ǫ3)
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= 〈v, v〉1/2 − 1

2!
K(v, w)ǫ2 +O(ǫ3),

and integrating from zero to δ, we obtain

d(expx(ǫw), expy(ǫw
′)) = δ

(

1− ǫ2

2
K(v, w) +O(ǫ3)

)

.

We can therefore see that for K(v, w) > 0, x′ and y′ are closer to one another than

x and y. Indeed, imagine two points x and y on an equator of S2, and transporting

these points along longitudinal lines. The further one travels along these lines (up to

a distance π/2), the closer these points become. Also, if K(v, w) < 0, the points x′

and y′ are growing further apart.

Recall that the Ricci curvature in the direction of a unit tangent vector v at a

point is the average of all sectional curvatures K(v, w) after all tangent vectors w at

the point orthonormal to v. Hence, similarly with Theorem 3.1, an analogous view

can be obtained for the Ricci curvature in the following way: suppose that we have a

point x ∈ M , v ∈ TxM a unit vector, ǫ, δ > 0 and y = expx(δv). Let Sx denote the

sphere of radius ǫ in the tangent plane at x, and Sy the ǫ-sphere on TyM . If we map

the Sx to Sy via parallel transport, the points travel an average distance of

δ

(

1− ǫ2

2(N − 1)
Ric(v) +O(ǫ3)

)

, (3.1)

where N denotes the dimension of the manifold. This property of the Ricci curvature

is what we will use to generalize it to an arbitrary metric space.

3.2 Markov Chains, Random Walks, and

Transportation Distances

We will now present the probabilistic and measure-theoretic background necessary

to define the “coarse” Ricci curvature. Let (X, d, ν) be a complete separable metric
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space endowed with a probability measure. A random walk {mx}x∈X is defined by

the following data: let mx be a probability measure on X dependent, in a measurable

way, on the point x, and define the generated Markov chain to be the jumps from

x to a random point with probability corresponding to mx. The n-step transition

probability, or the probability of traveling from x to y in n steps, is given as follows:

dm∗n
x (y) :=

∫

z∈X
dm∗(n−1)

x (z)dmz(y),

where m∗1
x = mx.

To give an example, suppose that X = {0, 1}N , d is the rescaled Hamming metric

(d(x, y) =
1

N

N
∑

i=1

|xi − yi|), and that ν is the uniform measure on this space, such

that ν({x}) =
1

2N
for all x ∈ X. We may define a random walk on this space as

follows: each point x ∈ X has N neighbors, implying that a ball Bx(
1

N
) would contain

exactly N + 1 elements. Define mx to be the measure such that mx(y) =
1

N + 1
for

each y ∈ Bx(
1

N
), and mx(y) = 0 otherwise. The corresponding random walk is the

process of jumping from x to a point y in Bx(
1

N
) randomly, and then from y to a

point in By(
1

N
) randomly, etc. Note that these measures mx are proportional to ν:

indeed, mx =
ν|Bx(

1
N
)

ν(Bx(
1
N
))
; however, it is not always necessary that this be true. Indeed,

one can consider the lazy random walk on the cube defined as follows: mx(x) =
1

2
,

mx(y) =
1

2N
for any neighbor y of x, and mx(z) = 0 for all other z ∈ X.

This set of measures can be thought of as a natural replacement for balls cen-

tered at a point x. The advantage of the random walk is that we may define these

measures mx to suit specific needs. Indeed, the difference between the measures mx

corresponding to the uniform measure and the lazy random walk only can imply dif-

ferent properties for the metric space. We will return to the case of the discrete cube

from this perspective at a later time.
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3.2.1 Transportation Distances

The notion of transportation distances comes up in the problem of optimizing the

transport of a given quantity from one location to another. The most popular example

is that of moving a pile of sand from one place to another in the most cost-effective

way. This is often modeled by a transference plan from a measure ν1 to another

measure ν2 of equal mass. Formally, a transference plan is a measure π on X × X

such that
∫

y
dπ(x, y) = dν1(x) and

∫

x
dπ(x, y) = dν2(y). Let Π(ν1, ν2) be the set of

all transference plans, and define the L1 transportation distance W1(ν1, ν2) to be the

optimal transference plan:

W1(ν1, ν2) = inf
π∈Π(ν1,ν2)

∫ ∫

d(x, y)dπ(x, y).

We do not wish to delve deeper into the subject of transportation distances and

optimal transference plans. We will only mention the Kantorovich duality property

which is essential in our further discussion:

W1(ν1, ν2) = sup
f :X→R

{
∫

fdν1 −
∫

fdν2 ; f 1-Lipschitz

}

.

Using Kantorovich duality, it is easy to prove a triangle inequality for the transporta-

tion distance.

Proposition 3.1. Given three measures ν1, ν2, ν3 of equal mass, then the following

inequality holds

W1(ν1, ν2) ≤ W1(ν1, ν3) +W1(ν3, ν2).

Proof. Indeed, by the definition of the supremum,

sup
f :X→R

{
∫

fdν1 −
∫

fdν2 ; f 1-Lipschitz

}

= sup
f :X→R

{(
∫

fdν1 −
∫

fdν3

)

+

(
∫

fdν3 −
∫

fdν2

)

; f 1-Lipschitz

}

≤ sup
g:X→R

{
∫

gdν1 −
∫

gdν3 ; g 1-Lipschitz

}

+ sup
h:X→R

{
∫

hdν3 −
∫

hdν2 ; h 1-Lipschitz

}
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3.3 Coarse Ricci Curvature

Equipped with a set of measures {mx}x∈X and transportation distances W1(mx,my),

we are now ready to define the coarse Ricci curvature on X.

Definition 3.1. [10] Let (X, d) be a metric space with a set {mx}x∈X of probability

measures on X. Let x and y be points in X. The coarse Ricci curvature κ(x, y) of

X along xy is the value which satisfies:

W1(mx,my) = (1− κ(x, y))d(x, y).

Note the similarity with equation 3.1. Notice also that, by definition, κ(x, y) ≤ 1

for all x and y. Let us look again at X = {0, 1}N with the set mx of probability

measures such that mx(y) =
1

N + 1
for y ∈ Bx(

1

N
), 0 otherwise, and let us focus on

the neighboring points x = (0, 0, . . . , 0), y = (1, 0, . . . , 0). The neighbors of x are the

points x1 = y = (1, 0, . . . , 0), x2 = (0, 1, 0, . . . , 0), . . . , xN = (0, 0, . . . , 0, 1), while for

y they are y1 = x = (0, 0, . . . , 0), y2 = (1, 1, 0, . . . , 0), y3 = (1, 0, 1, 0, . . . , 0), . . . , yN =

(1, 0, . . . , 1). Notice that for 2 ≤ i ≤ N , d(xi, yi) =
1

N
, and d(x1, y) = d(x, y1) = 0.

Let us now compute W1(mx,my) via the Kantorovich duality.

First, note that if f : X → R, then

∫

fdmx =
f(x) + f(x1) + · · ·+ f(xN)

N + 1

and
∫

fdmy =
f(y) + f(y1) + · · ·+ f(yN)

N + 1
.

After rearranging,
∫

fdmx −
∫

fdmy

=
(f(x)− f(y1)) + (f(y)− f(x1)) + (f(x2)− f(y2)) + . . . (f(xN)− f(yN))

N + 1

=
(f(x2)− f(y2)) + (f(x3)− f(y3)) + · · ·+ (f(xN)− f(yN))

N + 1
.
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By taking the supremum after all such 1-Lipschitz functions f , we note that sup(f(xi)−

f(yi)) = d(xi, yi) =
1

N
for all i, so that

sup

[
∫

fdmx −
∫

fdmy

]

=
(N − 1)/N

N + 1
=

N − 1

N(N + 1)
,

which implies thatW1(mx,my) =
N − 1

N(N + 1)
. Therefore

N − 1

N(N + 1)
= (1−κ(x, y))d(x, y) =

(1−κ(x, y))
1

N
and, consequently, the coarse Ricci curvature ofX along xy is κ(x, y) =

1− N − 1

N + 1
=

2

N + 1
> 0.

To give another example, let us look at ΠN , the symmetric group of permutations

of {1, . . . , N}, N ≥ 2, equipped with the following normalized metric: for x, y ∈ ΠN ,

d(x, y) =
1

N
Card{i; x(i) 6= y(i)}. We will use the following notation to represent

elements of ΠN : if x acts as follows: x(1) = j1, x(2) = j2, . . . , x(N) = jN , then

x = (j1, j2, . . . , jN), so that the identity element is (1, 2, . . . , N).

Given x ∈ ΠN , the minimal distance to any other element of the group is
2

N
;

indeed, any other permutation y which differs from x will differ by the images of at

least two of the objects 1, . . . , N , otherwise it will not be a permutation/bijection.

Furthermore, any element x has exactly

(

N

2

)

=
N(N − 1)

2
neighbors of (minimal)

distance
2

N
, so let us define mx as the measure which assigns mass

1
N(N−1)

2
+ 1

=

2

N(N − 1) + 2
to each point in the ball Bx(

2

N
).

Before calculating the coarse Ricci curvature of this space, let us first analyze the

structure of these neighbourhoods. We will concentrate on the neighborhood of the

identity (1, 2, 3, . . . , N), and through symmetry, or the homogeneity of the space, we

claim that the structure of the ball around the identity will be similarly throughout.

The neighboring points of the identity will be the following: The first N − 1 points

will be permuting only 1 to 2, 1 to 3, etc.. The next N − 2 will be permuting only 2

to 3, 2 to 4, etc.. So, the ball Bx(
2

N
) will consist of all the transpositions

(1, 2, 3, . . . , N − 1, N)
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(2, 1, 3, . . . , N − 1, N)

...

(N, 2, 3, . . . , N − 1, 1)

...

(1, 2, 3, . . . , N,N − 1, N − 2)

(1, 2, 3, . . . , N − 2, N,N − 1).

Consider the neighboring point y = (1, 2, 3, . . . , N − 2, N,N − 1). The Table 3.1

reflects that all of the points in Bx(
2
N
) have neighbors in By(

2
N
).

Claim 3.1. If x, y ∈ ΠN such that d(x, y) =
2

N
, then κ(x, y) =

4

N(N − 1) + 2
.

Proof of Claim. By symmetry, it is enough to prove it for the above points x and y.

Let n =
N(N − 1)

2
. We see from the table that xn = y, yn = x. Given f : ΠN → R,

∫

fdmx =
(f(x) + f(y) + f(x1) + · · ·+ f(xn−1))

n+ 1

and
∫

fdmy =
(f(y) + f(x) + f(y1) + · · ·+ f(yn−1))

n+ 1
,

Table 3.1: Neighbors of x Vs. Neighbors of y

i xi yi

- (1,2,3,. . . , N-1,N) (1,2,3,. . . ,N,N-1)
1 (2,1,3,. . . , N-1,N) (2,1,3,. . . ,N,N-1)
...

...
...

N-1 (N-1,2,3,. . . ,1,N) (N,2,3,. . . ,1,N-1)
N (N,2,3,. . . ,N-1,1) (N-1,2,3,. . . ,N,1)
...

...
...

N(N−1)
2

− 1 (1,2,3,. . . ,N,N-1,N-2) (1,2,3,. . . ,N-1,N,N-2)
N(N−1)

2
(1,2,3,. . . ,N,N-1) (1,2,3,. . . ,N-1,N)
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so
∫

fdmx −
∫

fdmy =
(f(x1)− f(y1)) + · · ·+ (f(xn−1)− f(yn−1))

n+ 1
.

For each pair xi, yi, d(xi, yi) =
2

N
, so that, by taking the supremum after all 1-

Lipschitz functions, we will obtain that

W1(x, y) =

(

n− 1

n+ 1

)

2

N
=

(

N(N − 1)− 2

N(N − 1) + 2

)

2

N
,

so
(

N(N − 1)− 2

N(N − 1) + 2

)

2

N
= (1− κ(x, y))

2

N
⇒ κ(x, y) =

4

N(N − 1) + 2
.

Note that for both of these examples, we only computed the coarse Ricci curvature

between neighbouring points. It turns out however that this is sufficient in a major

class of examples, called ǫ-geodesic spaces:

Definition 3.2. [10] A metric space (X, d) is said to be ǫ-geodesic if, for any two

points x and y ∈ X, there exist an integer n and a sequence x = x0, x1, . . . , xn = y

such that d(x, y) =
∑n−1

0 d(xi, xi+1) = d(x, y) and d(xi, xi+1) ≤ ǫ.

Both of the examples we have seen are ǫ-geodesic. Indeed, by construction the

Hamming cube with a rescaled metric is
1

N
-geodesic, and the symmetric group ΠN

is
1

2N
-geodesic.

Proposition 3.2. [10] Suppose (X, d) is ǫ-geodesic and κ(x, y) ≥ κ0 for any x,y ∈ X

such that d(x, y) ≤ ǫ. Then κ(x, y) ≥ κ0 for any pair x, y ∈ X.

Proof. Fix x and y in the space and let {xi} be a sequence of points as in the definition

of the ǫ-geodesic space. Then, by the triangle inequality for transportation distances

(3.1),

(1− κ(x, y))d(x, y) = W1(mx,my) ≤
n−1
∑

0

W1(mxi
,mxi+1

)
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≤
n−1
∑

0

(1− κ0)d(xi, xi+1) = (1− κ0)d(x, y).

3.4 Coarse Ricci Curvature and Concentration of

Measure

As we saw in the previous chapter, on smooth manifolds, positive Ricci curvature im-

plies concentration of measure. We aim for a similar conclusion to hold for the coarse

Ricci curvature on arbitrary metric measure spaces. To investigate this question, let

us introduce some notation following Ollivier [10].

In this section, we let (X, d, ν) be a probability space with metric d, ν a probability

measure and {mx}x∈X be a random walk. We say that ν is invariant with respect to

the random walk {mx} if for all x ∈ X, dν(x) =
∫

y
dν(y)dmy(x). In the examples seen

so far, ν was invariant with respect to our random walks. Throughout this section,

we assume that the coarse Ricci curvature κ0 > 0 and that ν is an invariant measure.

Define

D2
x :=

sup{V armx
f, f : Supp mx → R 1-Lipschitz}

κ0

,

where V armx
f :=

∫

(f − Emx
f)2dmx, and set

D2 := EνD
2
x.

Let σ∞(x) :=
1

2
diam Supp mx and σ∞ := sup σ∞(x). Also, let the averaging operator

M act on the space of L2 functions of (X, d, ν) as follows:

Mf(x) :=

∫

y

f(y)dmx(y).

A very important property of the averaging operator is the following: for any x ∈ X,

lim
k→∞

Mkf(x) = Eν(f).
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Indeed,

lim
k→∞

Mkf(x) =

∫

z

∫

y

f(y)dmz(y)dν(z)

=

∫

y

f(y)dν(y)

by the invariance of ν.

We establish two lemmas before we state and prove the main theorem on concen-

tration under assumptions on coarse Ricci curvature.

Lemma 3.1 (Lipschitz Contraction). [10] If the coarse Ricci curvature of X is at

least κ0, then for every k-Lipschitz function f : X → R, the function Mf is k(1−κ0)-

Lipschitz.

Proof. Suppose that the coarse Ricci curvature is at least κ0. Given a k-Lipschitz

function f , we have

Mf(x)−Mf(y) =

∫

z

f(z)dmx −
∫

z

f(z)dmy

≤ k · sup
g 1−Lipschitz

∫

z

gd(mx −my)

= kd(x, y)(1− κ0(x, y)).

Lemma 3.2. Let φ be an α-Lipschitz function with α ≤ 1. Assuming λ ≤ 1

3σ∞
, we

have, for ∀x ∈ X,

Meλφ(x) ≤ eλMφ(x)+λ2α2κ0D2
x .

Proof. The Taylor expansion of g(φ(y)) = eλφ(y) about the point Mφ(x) = Emx
φ

gives us

eλφ(y) = eλMφ(x) + λeλMφ(x)(φ(y)−Mφ(x)) +
λ2

2
eλMφ(x)(φ(y)−Mφ(x))2 +O(φ(y)3).
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By integrating over mx, and applying a Lagrange remainder, we obtain

Meλφ(x) ≤ eλMφ(x) +
λ2

2

(

sup
Supp mx

eλφ
)

V armx
φ.

Since diam Supp mx ≤ 2σ∞ and φ is α - Lipschitz (α ≤ 1), thus supSupp mx
φ ≤

Emx
φ+ 2σ∞, we get

(Meλφ)(x) ≤ eλMφ(x) +
λ2

2
eλMφ(x)+2λσ∞V armx

φ.

By definition, V armx
φ ≤ α2κ0D

2
x, and for λ ≤ 1

3σ∞
we have e2λσ∞ ≤ 2, so

Meλφ(x) ≤ eλMφ(x)(1 + λ2α2κ0D
2
x) ≤ eλMφ(x)+λ2α2κ0D2

x .

With these two lemmas in hand, we are ready to state and prove the concentration

theorem.

Theorem 3.2. [10] Suppose that the coarse Ricci curvature of X is at least κ0 > 0

and that the function x 7→ D2
x is C-Lipschitz. Set

tmax := min

(

8D2

9σ∞
,
4D2

3C

)

.

Then for any 1-Lipschitz function f , and any t ≤ tmax, we have

ν({x, |f(x)− Eνf | ≥ t}) ≤ 2e−
t2

6D2 .

Proof. Let f be a 1-Lipschitz function, and let λ > 0. Define by induction the

sequence of functions {fk}k: f0 := f , and fk+1 := Mfk(x) + λκ0D
2
x(1 − κ0/2)

2k.

Suppose that λ ≤ 1/(2C). Then λκ0D
2
x is κ0/2-Lipschitz.

Claim 3.2. fk is (1− κ0/2)
k-Lipschitz.

Proof of claim. The function f0 = f is clearly 1-Lipschitz. Now, assume the prop-

erty true for k and consider fk+1 = Mfk(x) + λκ0D
2
x(1 − κ0/2)

2k. By hypothesis,
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and the Lipschitz contraction Lemma, Mfk(x) is (1 − κ0/2)
k(1 − κ0)-Lipschitz, and

λκ0D
2
x(1−κ0/2)

2k is κ0/2(1−κ0/2)
2k-Lipschitz, so that fk+1(x) is Lipschitz of constant

(

(1− κ0/2)
k(1− κ0) + κ0/2(1− κ0/2)

2k
)

= (1− κ0/2)
k
(

1− κ0 + κ0/2(1− κ0/2)
k
)

≤ (1− κ0/2)
k(1− κ0/2).

As a consequence of Lemma 3.2, and the fact that fk is (1− κ0/2)
k-Lipschitz, we

have that

Meλfk(x) ≤ eλMfk(x)+λ2κ0D2
x(1−κ0/2)2k = eλfk+1(x),

so that, by recursion, for all k and for all x,

(Mkeλf )(x) ≤ eλfk(x). (3.2)

Call g(x) := κ0D
2
x. By definition, if we were to break down fk, we would see that

fk(x) = (Mkf(x)) + λ
k
∑

i=1

(Mk−ig)(x)(1− κ0/2)
2(i−1).

As k → ∞, Mkf(x) → Eνf . Since κ0 ∈ (0, 1), limi→∞(1− κ0/2)
2i = 0, so

limk→∞
∑k

i=1(1− κ0/2)
2(i−1) =

1

1− (1− κ0/2)2
≤ 4

3κ0

. Furthermore,

k
∑

i=1

(Mk−ig)(x)(1− κ0/2)
2(i−1)

=

k/2
∑

i=1

(Mk−ig)(x)(1− κ0/2)
2(i−1) +

k
∑

i=k/2+1

(Mk−ig)(x)(1− κ0/2)
2(i−1).

The sequence M jg(x) is bounded above by some number M, and so

k
∑

i=k/2+1

(Mk−ig)(x)(1− κ0/2)
2(i−1) ≤

k
∑

i=k/2+1

M(1− κ0/2)
2(i−1)

= M(1− κ0/2)
k 1− (1− κ0/2)

2(k−1)

1− (κ0/2)2
,

whose limit as k → ∞ is zero. Also,

k/2
∑

i=1

(Mk−ig)(x)(1− κ0/2)
2(i−1) →

∞
∑

i=1

Eνg(1− κ0/2)
2(i−1).
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Therefore

lim
k→∞

fk(x) ≤ Eνf + λEνg
4

3κ0

.

Clearly, Mk(eλf ) tends to Eνe
λf . Therefore, by (3.2),

Eνe
λf ≤ lim

k→∞
eλfk ≤ e

λEνf+
4λ2

3κ0
κ0EνD2

x .

Let us now end the argument using Chebyshev’s inequality:

ν({x, f(x) ≥ t+ Eνf})

= ν({x, eλ(f(x)−Eν(f)) ≥ eλt})

≤ 1

eλt
Eνe

λ(f−Eν(f))

≤ 1

eλt
e
λEν(f−E(f))+ 4λ2

3κ0
κ0EνD2

x

= e
4λ2

3
D2−λt.

The minimum of this function with respect to λ occurs at λ = 3t
8D2 , so

ν({x, f(x) ≥ t+ Eνf}) ≤ e
−3t2

16D2

≤ e
−t2

6D2 .

Applying the same argument to −f gives us the desired result. Note that the restric-

tions λ ≤ 1/2C and λ ≤ 1/3σ∞, under which the reasoning was carried on, give us

the value of tmax.

3.5 Other Examples of Random Walks on the

Hamming Cube

3.5.1 The Lazy Random Walk

Let (X, d, ν) again be the discrete cube {0, 1}N with the rescaled Hamming metric d

and ν the invariant probability measure. Let the measures mx be defined as follows:
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mx(x) =
1

2
, and for each point y which is a neighbor of x (i.e. {y, d(x, y) =

1

N
}),

mx(y) =
1

2N
. Let x and y be neighboring points. Let x1 = y, x2, . . . , xN be neighbors

of x and y1 = x, y2, . . . yN be neighbors of y. Then

W1(mx,my) = sup
f1-Lipschitz

(
∫

fdmx −
∫

fdmy

)

= sup
f1-Lipschitz

(

1

2
f(x) +

1

2N
f(y)− 1

2N
f(x)− 1

2
f(y) +

1

2N

N
∑

2

(f(xi)− f(yi))

)

= sup
f1-Lipschitz

N − 1

2N
(f(x)− f(y)) +

1

2N

N
∑

2

(f(xi)− f(yi)).

Assume that the xi and yi are enumerated such that they are neighbors (ie. d(xi, yi) =

1
N

for all i). Then the supremum is attained when f(x) − f(y) = 1
N

and (f(xi) −

f(yi)) =
1
N
, so therefore

W1(mx,my) =
N − 1

2N2
+

N − 1

2N2
=

N − 1

N2
,

so solving for κ in W1(mx,my) = (1 − κ)d(x, y) gives κ =
1

N
for any two adjacent

points.

3.5.2 The Biased Cube

Consider ({0, 1}N , d, ν) as before. We wish this time to consider a random walk {mx}

with the following properties: the probability of transporting to a point closer to 0 :=

(0, 0, . . . , 0) is p, the probability of transporting to a point closer to 1 := (1, 1, . . . , 1) is

q, and that of staying put (1−p−q). The constraints in this case are that p, q ∈ (0, 1),

p+ q < 1. It can therefore be thought of as a random walk with a biased tendency to

move either toward or away from the “origin”, depending on the values of p and q.

The neighbors of an arbitrary point x ∈ {0, 1}N generally consist of two types:

those which are closer to 0 and those closer to 1. Let i denote the number of zeros

in x. We will observe the transportation distance from x to a neighbor y which is

53



closer to 1, which means we must consider three separate cases: i is between 2 and

N − 1, i = N (so that x = 0), and i = 1 (so that y = 1). This will cover all cases;

indeed, since W1(ν1, ν2) = W1(ν2, ν1), we need only to transport in one direction,

while getting the other distance for free.

Case 1: i between 2 and N-1

Now we must define the random walk {mx} for all points x ∈ {0, 1}N , given

that i does not equal 0, 1 or N . Then given x = (a1, . . . , aN), where aj ∈ {0, 1},

the neighbors of x consist of “switching” one of the aj’s with the opposite value, so

that one of the i 0’s are replaced with a 1, or one of the N − i 1’s replaced with

a 0. Therefore x consists of i neighbors which are closer to 1 and N − i neighbors

which are closer to 0. Let x1, . . . xN−i denote the points which are closer to 0 and

x′
1, . . . x

′
i the points closer to 1. Then mx is defined as follows: mx(x) = (1− p− q),

mx(xk) =
p

(N−i)
for all k between 1 and (N − i), and mx(x

′
j) =

q
i
for all j between 1

and i. This will ensure the desired probabilities.

Consider a neighbor y obtained by replacing one of the zeros in x with a 1,

ordered so that y = x′
i. y therefore has (N − i + 1) closer to 0, which shall be

named y0 = x, y1, y2, . . . yN−i, and (i− 1) neighbors closer to 1, which we shall denote

y′1, y
′
2, . . . y

′
i−1. Under the proper ordering, we can assure that for all k between 1

and (N − i), xk and yk are in fact neighbors with one another, as well as x′
j and

y′j for all j between 1 and (i − 1). my is defined as follows: my(y) = (1 − p − q),

my(x) = my(yk) =
p

(N−i+1)
for all k from 1 to (N − i), and my(y

′
j) =

q
(i−1)

for all j

from 1 to (i− 1).

Given a function f : {0, 1}N → R and the above measures mx and my, it is easy

to see that

∫

fdmx = (1− p− q)f(x) +
qf(y)

i
+

N−i
∑

k=1

pf(xk)

(N − i)
+

i−1
∑

j=1

qf(x′
j)

i
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and

∫

fdmy = (1− p− q)f(y) +
pf(x)

(N − i+ 1)
+

N−i
∑

k=1

pf(yk)

(N − i+ 1)
+

i−1
∑

j=1

qf(y′j)

(i− 1)
.

Our goal is to subtract these two integrals, and consider the supremum of this value

for all 1-Lipschitz functions. After some rearranging, note that

∫

fdmx −
∫

fdmy

= (1− p− q)(f(x)− f(y)) +
qf(y)

i
− pf(x)

(N − i+ 1)

+
N−i
∑

k=1

(

pf(xk)

(N − i)
− pf(yk)

(N − i+ 1)

)

+
i−1
∑

j=1

(

qf(x′
j)

i
− qf(y′j)

(i− 1)

)

.

Let us work for a moment with these sums.

N−i
∑

k=1

(

pf(xk)

(N − i)
− pf(yk)

(N − i+ 1)

)

=
N−i
∑

k=1

p(f(xk)− f(yk))

(N − i+ 1)
+

N−i
∑

k=1

pf(xk)

(N − i)(N − i+ 1)
,

while
i−1
∑

j=1

(

qf(x′
j)

i
− qf(y′j)

(i− 1)

)

=
i−1
∑

j=1

q(f(x′
j)− f(y′j))

i
−

i−1
∑

j=1

qf(y′j)

i(i− 1)
.

Note that
(

N−i
∑

k=1

pf(xk)

(N − i)(N − i+ 1)

)

− pf(x)

(N − i+ 1)
=

N−i
∑

k=1

p(f(xk)− f(x))

(N − i)(N − i+ 1)
,

simply by bringing pf(x)
(N−i+1)

into the sum. Similarly,

qf(y)

i
−

i−1
∑

j=1

qf(y′j)

i(i− 1)
=

i−1
∑

j=1

q(f(y)− f(y′j))

i(i− 1)
.

Combining everything,
∫

fdmx −
∫

fdmy
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= (1− p− q)(f(x)− f(y)) +
N−i
∑

k=1

p(f(xk)− f(yk))

(N − i+ 1)
+

i−1
∑

j=1

q(f(x′
j)− f(y′j))

i

+
N−i
∑

k=1

p(f(xk)− f(x))

(N − i)(N − i+ 1)
+

i−1
∑

j=1

q(f(y)− f(y′j))

i(i− 1)
.

Note that given the proper arrangement, all function differences in the above equation

are of points which are neighbors, telling us that the supremum of these differences

are all identically
1

N
as we are dealing with 1-Lipschitz functions. Therefore

W1(mx,my) =
(1− p− q)

N
+

p(N − i)

N(N − i+ 1)
+

q(i− 1)

Ni
+

p

N(N − i+ 1)
+

q

Ni

=
1

N
.

Solving for κ(x, y) in the equation W1(mx,my) = (1 − κ(x, y))d(x, y) reveals κ = 0

among any two such neighbors.

Case 2: i = 1

The case where x has only 1 zero ensures that the only neighbor “closer” to 1 is

the point 1 itself, while x has (N − 1) neighbors closer to 0, which I will again denote

x1, . . . xN−1. Therefore mx is defined as follows: mx(x) = (1 − p − q), mx(1) = q,

mx(xk) =
p

(N−1)
for all k between 1 and (N−1). Meanwhile, let x, y1, . . . , yN−1 denote

the neighbors of 1, all of which are closer to 0; assume also that these neighbors are

arranged so that xk and yk are neighbors for all k. In keeping with the text, the

likelihood of staying put and traveling toward 1 should be combined in this case, so

that m1(1) = (1− p− q) + q = (1− p), and m1(x) = m1(yk) =
p
N

for all k between 1

and (N − 1).

Let us now integrate with respect to f .

∫

fdmx = (1− p− q)f(x) + qf(1) +
N−1
∑

k=1

pf(xi)

(N − 1)
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and
∫

fdm1 =
pf(x)

N
+ (1− p)f(1) +

N−1
∑

k=1

pf(yk)

N
.

Therefore
∫

dmx −
∫

dm1

= (1− p− q)(f(x)− f(1))− pf(x)

N
+

N−1
∑

k=1

(

pf(xk)

(N − 1)
− pf(yk)

N

)

.

By similar manipulation of summations as seen in Case 1, this becomes

(1− p− q)(f(x)− f(1)) +
N−1
∑

k=1

p(f(xk)− f(yk))

N
+

N−1
∑

k=1

p(f(xk)− f(x))

N(N − 1)
.

As all of these points are neighbors, the maximum of all 1-Lipschitz functions tells us

that each of these function differences obtain maximum value
1

N
, so that

W1(mx,m1) =
(1− p− q)

N
+

p(N − 1)

N2
+

p

N2
=

1− q

N
,

which implies that κ(x, 1) = q.

Case 3: i = N

The final case we shall consider is when we are moving from 0 to a neighbor y,

which by default is closer to 1. Again, the likelihood of staying put and traveling

toward 0 must be combined, so that m0(0) = (1 − p − q) + p = (1 − q), while for

each of its neighbors, which I will denote y, x′
1, . . . , x

′
N−1, m0(y) = m0(x

′
j) =

q

N
.

Meanwhile, my(0) = p,my(y) = (1− p− q), and for the N − 1 neighbors closer to 1,

which I will denote y′1, . . . , y
′
N−1, my(y

′
j) =

q

(N − 1)
. I also assume the arrangement

such that x′
j and y′j are neighboring points for all j between 1 and (N − 1).

Therefore given f ,

∫

fdm0 = (1− q)f(0) +
qf(y)

N
+

N−1
∑

j=1

qf(x′
j)

N

and
∫

fdmy = pf(0) + (1− p− q)f(y) +
N−1
∑

j=1

qf(y′j)

(N − 1)
.
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subtracting these two and applying similar manipulations as in the previous cases,

we see that

∫

fdm0 −
∫

fdmy = (1− p− q)(f(0)− f(y)) +
N−1
∑

j=1

q(f(x′
j)− f(y′j))

N

+
N−1
∑

j=1

q(f(y)− f(y′j))

N(N − 1)
.

Once again, taking into account that each of these points are neighbors, the maximum

difference for f being 1-Lipschitz, is
1

N
, so

W1(m0,my) =
(1− p− q)

N
+

q(N − 1)

N2
+

q

N2
=

(1− p)

N
.

Therefore κ(0, y) = p.

We have computed an example for which the coarse Ricci curvature is almost

everywhere 0, except for the “extreme” points. This example serves as a note that

while the geometry of the space did not change, the chosen measurement served to

“flatten” the normally binomial distribution of points on {0, 1}N .
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Appendix A

A Proof of the Concentration on
the Cube by Martingale Methods

As martingales are frequently used in discrete measure spaces as a tool to deal with

concentration inequalities, we will include here a proof of the concentration inequality

on the discrete hypercube (Theorem 1.2) using this method. We will recover the result

obtained using product measure spaces and we will see that, in this instance, the two

methods are nearly identical.

Definition A.1. Let (X,M, ν) be a probability space and let Mα be a σ sub-algebra

with respect to M. Then given a function f : X → R which is integrable on (X,M)

with respect to ν, the conditional expectation of f with respect to Mα, denoted

E(f |Mα), is the unique (in the probability sense) function h, integrable on (X,Mα)

with respect to ν|Mα
, such that

∫

A

hdν =

∫

A

fdν for all A ∈ Mα.

Definition A.2. Given a probability space (X,M, ν), let M0, M1, · · · ⊂ M be a

sequence, possibly infinite, of σ sub-algebras. A sequence of integrable functions f0,

f1, . . . is said to be a martingale with respect to this sequence of σ sub-algebras if

fi = E(fj|Mi), ∀i ≤ j.
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Let ({0, 1}N ,M, ν, d) be the metric space of the N dimensional discrete cube with

ν the uniform probability measure (so that ν(x) =
1

2N
for all singletons x), M the

σ-algebra consisting of all singletons of {0, 1}N , and d the rescaled Hamming metric

d(x, y) =
1

N

N
∑

1

|xi − yi|.

Consider the following partition of this space:

X0 =
{

{0, 1}N
}

X1 =
{

{0, 1}N−1 × {0}, {0, 1}N−1 × {1}
}

X2 = {{0, 1}N−2 × {0} × {0}, {0, 1}N−2 × {0} × {1}, {0, 1}N−2 × {1} × {0},

{0, 1}N−2 × {1} × {1}},
...

XN = {{x}x∈{0,1}N},

and denote by Mi the σ-algebra generated by Xi. Note that the number of elements

of each partition Xi is 2
i. Let us denote by Ai

j, 0 ≤ i ≤ N , 0 ≤ j ≤ 2i the elements of

the set Xi. For each partition i, the elements Ai
j split into two elements in the next,

(i+1), level (for example, {0, 1}N splits into {0, 1}N−1×{0} and {0, 1}N−1×{1}). If

Ai+1
j , Ai+1

k ⊂ Ai
l, then there is a “distance minimizing” correspondence between these

two sets, in the sense that there exists a bijective function φ : Ai+1
j → Ai+1

k such that

for any x ∈ Ai+1
j , d(x, φ(x)) ≤ 1/N . Indeed, the minimal distance between any two

elements from Ai+1
j and Ai+1

k , respectively, is precisely 1/N .

Let us now turn our attention to the σ-algebras generated by these partitions.

Consider an integrable 1-Lipschitz real valued function f on ({0, 1}N ,M, ν, d). De-

note by fi the conditional expectation E(f |Mi) of f with respect to Mi.

It is therefore obvious that f0 is precisely the constant function E(f), the usual

expectation (mean) of f with respect to ν. Some other properties of these functions

are:

• E(E(f |Mi)|Mj) = E(f |Mj), whenever j ≤ i (which is in fact what makes this
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sequence of functions a martingale).

• If g ∈ L∞({0, 1}N ,Mi, ν|Mi
), then E(fg|Mi) = gE(f |Mi); in particular,

E(af |Mi) = aE(f |Mi) for any a ∈ R.

Indeed, both of these properties can be seen directly from equation (1.1). Set

di := fi−fi−1. We wish to find an upper bound for these functions (ie. ||di||∞). Note

by the above properties that E(di|Mi−1) = 0.

Proposition A.1. With the above notations, we have that ||di||∞ ≤ 1/N , for all i

such that 1 ≤ i ≤ N .

Proof. Fix i between 1 and N , and consider di(x) = fi(x) − fi−1(x) for some x ∈

{0, 1}N . As Xi−1 is a partition of {0, 1}N , then there exists an Ai−1
l which contains

x, for some l, 1 ≤ l ≤ 2i−1.

Let B = Ai
j and C = Ai

k be the two elements of Xi contained in Ai−1
l . Then fi is

constant on B and C, and

fi|C = (Card(C))−1
∑

α∈C
f(α) = (Card(B))−1

∑

β∈B
f(φ(β)). (1.1)

Consequently, |fi|C − fi|B| = |(Card(B))−1∑

β∈B(f(φ(β)) − f(β))| ≤ d(φ(x), x) for

any x ∈ B, thus |fi|C − fi|B| ≤ 1/N .

On the other hand, for A := Ai−1
l = B ∪ C, we have fi−1|A = 1

2
(fi|B + fi|C) which

implies that |fi|B − fi−1|A| ≤ 1/N . As x was arbitrary, we have that ||di||∞ ≤ 1/N ,

1 ≤ i ≤ N .

The following lemma will then complete the proof of Theorem 1.2:

Lemma A.1. Let (Ω,M, ν) be a probability space and let f be a function on Ω

integrable with respect to ν. For every r ≥ 0,
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ν({|f − E(f)| ≥ r}) ≤ 2e−r2/2D2

(1.2)

where D2 =
∑N

i=1 ||di||2∞.

Proof. As exp(x) is a convex function, we have, for any λ ∈ R and any u ∈ [−1, 1],

eλu = e
1+u
2

λ+ 1−u
2

(−λ) ≤ 1 + u

2
eλ +

1− u

2
e−λ.

This is enough to imply the following inequality:

E(eλdi |Mi) ≤ cosh(λ||di||∞) ≤ eλ
2||di||∞2/2. (1.3)

Indeed,

E(eλdi |Mi) = E(e
λ||di||∞ di

||di||∞ |Mi)

≤ E(
1 + di

||di||∞
2

eλ||di||∞ +
1− di

||di||∞
2

e−λ||di||∞ |Mi))

= E(
1 + di

||di||∞
2

eλ||di||∞ |Mi) + E(
1− di

||di||∞
2

e−λ||di||∞ |Mi)

=
eλ||di||∞

2
E(1 +

di
||di||∞

|Mi) +
e−λ||di||∞

2
E(1− di

||di||∞
|Mi)

=
eλ||di||∞

2
(1 +

1

||di||∞
E(di|Mi)) +

e−λ||di||∞

2
(1− 1

||di||∞
E(di|Mi))

=
eλ||di||∞ + e−λ||di||∞

2
= cosh(λ||di||∞),

using the fact that E(di|Mi) = 0. Using Taylor series, it is easy to see that cosh(x) ≤

ex
2
, hence we have further that

E(eλdi |Mi) ≤ eλ
2||di||2∞/2. (1.4)

Let us now analyze E(eλ
∑N

1 di). The first thing to note is that
∑N

1 di = f − E(f)

and thus E(eλ
∑N

1 di) = E(E(eλ
∑N

1 di)|MN). Indeed, E(f) = E(E(f |MN)), since f is
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integrable over the largest σ-algebra. So, E(eλ
∑N

1 di) = E(E(eλ
∑N−1

1 dieλdN )|MN) =

E(eλdNE(eλ
∑N−1

1 di)|MN) Therefore, we apply (1.3) to obtain

E(eλ
∑N

1 di) ≤ E(E(eλ
∑N−1

1 di |MN−1)e
λ2||dN ||2∞/2.

Recall that eλdi ∈ L∞({0, 1}N ,Mi, ν|Mi
) and apply (1.3) successively to E(·|MN−1),

E(·|MN−2) and so on. Since
∑N

1 di = f − E(f), we will see that

E(eλ(f−E(f))) ≤ eλ
2
∑N

i=1 ||di||2∞/2. (1.5)

By applying Chebyshev’s inequality, we obtain that, for any r ≥ 0,

ν(f − E(f) ≥ r) = ν(eλ(f−E(f)) ≥ eλr)

≤ 1

eλr
E(e(f−E(f))) ≤ e−λr+λ2D2/2, (1.6)

where D2 =
∑N

i=1 ||di||2∞. Applying the previous inequality to −f , we see that

ν(|f − E(f)| ≥ r) ≤ 2e−λr+λ2D2/2,

for all λ ≥ 0.

Note that the function λ 7→ −λr + λ2D2/2, defined for λ ≥ 0, has a minimum

value of −r2/2D2 which occurs at λ = r/D2. Therefore, we conclude that:

ν(|f − E(f)| ≥ r) ≤ 2e−r2/2D2

, ∀r ≥ 0. (1.7)
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Appendix B

Index Forms of Vector Fields With
Respect to a Hypersurface

Consider an (N +1)-dimensional Riemannian manifold (M, g) and a hypersurface H

embedded in M with an oriented unit normal vector field ν. Choose a point p ∈ H

and a geodesic γ : [0, r] → M such that γ(0) = p and γ′(0) = νp. Consider a

variation through geodesics Γ : (−ǫ, ǫ) × [0, r] → M such that Γ(s, t)|s=0
= γ(t), and

Y (t) = ∂Γ
∂s
(0, t) is an H-Jacobi field, as defined earlier. Thus Y is a vector field along

γ, orthogonal to it and we will call the index form Ir(Y, Y ) of Y

Ir(Y, Y ) := 〈∇Y Y, γ
′〉|r0 +

∫ r

0

(|Y ′|2 − 〈Y,R(Y, γ′)γ′〉)dt,

where Y ′ denotes the derivative of Y with respect to
∂

∂t
. The variation is constructed

so that Γ(s, 0) stays onH and Y is an H-Jacobi field. So, we have that 〈∇Y Y, γ
′〉(0) =

〈Y, Sγ′(0)Y 〉(0). Moreover, in what follows, we will consider only variations for which

〈∇Y Y, γ
′〉(s) = 0 for s > 0. Thus, the index form of Y is entirely determined by the

hypersurface H and the restrictions of the vector field Y to it:

Ir(Y, Y ) = 〈Y, Sγ′(0)Y 〉+
∫ r

0

(|Y ′|2 − 〈Y,R(Y, γ′)γ′〉)dt. (2.1)

Given a differentiable vector field Y along γ, we will call the index form of a vector

field with respect to H at p the expression (2.1). As we noticed in the section on

the Heintze-Karcher inequality, integration by parts yielded, for H-Jacobi fields, that

Ir(Y, Y ) =< Y, Y ′ >|r.
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The property that we use primarily in our thesis is that H-Jacobi fields minimize

the quadratic form Ir among all vector fields along a geodesic. More precisely:

Theorem B.1. [1] Suppose Y is an H-Jacobi field and that X is any differentiable

vector field along γ such that X(r) = Y (r) and X(0) ∈ TpN . Then

Ir(Y, Y ) ≤ Ir(X,X),

with equality if and only if X = Y .

The following lemma will prove useful in proving this theorem:

Lemma B.1. If Y and X are any two H-Jacobi fields, then 〈Y ′, X〉 = 〈Y,X ′〉.

Indeed, 〈Y ′, X〉 = 〈SνY,X〉 = 〈Y, SνX〉 = 〈Y,X ′〉 by symmetry of the shape

operator.

Proof of Theorem. Let Y1, . . . , YN be a basis of the space of H-Jacobi fields along γ.

We can then use these vectors to represent Y and X, so that

Y = yiYi and X = xiYi,

using the summation notation. Because {Yi} forms a basis of the H-Jacobi fields, the

functions yi are constant for all i, whereas the functions xi, for all i, generally are

not. Computing the derivative of X we obtain X ′ = A + B, where A = (xi)′Yi and

B = xiY ′
i .

With this in mind, we have

I(X,X) = 〈X,Sγ′(0)X〉+
∫ r

0

(〈A,A〉+ 2〈A,B〉+ 〈B,B〉 − 〈X,R(X, γ′)γ′〉)dt.

Since 〈Yi, Y
′
j 〉 = 〈Y ′

i , Yj〉 from the lemma, it therefore follows that

〈X,B〉′ = (xi)′xj〈Yi, Y
′
j 〉+ xixj〈Y ′

i , Yj〉+ xi(xj)′〈Yi, Y
′
j 〉+ xixj〈Yi, Y

′′
j 〉

= 2〈A,B〉+ 〈B,B〉+ xixj〈Yi, Y
′′
j 〉.
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Replacing 2〈A,B〉+ 〈B,B〉 with 〈Y,B〉 − xixj〈Yi, Y
′′
j 〉 gives us:

I(X,X) = 〈X,Sγ′(0)X〉+ 〈X,B〉|r0 +
∫ r

0

〈A,A〉dt+
∫ r

0

xixj〈Yi, Y
′′
j −R(Yj, γ

′)γ′〉dt

= 〈X,Sγ′(0)X − B〉|0 + 〈X,B〉|r +
∫ r

0

〈A,A〉dt,

where we used the fact that the Yi’s are H-Jacobi fields hence the previous integral

term vanishes. Note also that Sγ′(0)X − B = xi(Sγ′(0)Yi − Y ′
i ) = 0 and therefore

〈X,Sγ′(0)X − B〉|0 = 0. Also, since X(r) = Y (r), xi(r) = yi(r), and so

〈X,B〉|r = 〈Y, xiY ′
i 〉 = 〈Y, yiY ′

i 〉|r = 〈Y, Y ′〉|r = I(Y, Y ).

Therefore

I(X,X) = I(Y, Y ) +

∫ r

0

〈A,A〉dt,

so the inequality follows since 〈A,A〉 is positive definite. Moreover, we have equality

between the two index forms if and only if 〈A,A〉 = 0 or, equivalently, if xi(t) ≡ yi(t)

for all t.
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