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Abstract

Arc-Length Parameterized NURBS Tool Path Generation and Velocity

Profile Planning for Accurate 3-Axis Curve Milling

Yangtao Li

In modern industrial CNC (Computer Numerical Control) machining processes,
the pursuing of higher accuracy and efficiency has always been one of the most
important tasks to be discussed and studied. A lot of proposed algorithms are
developed in order to optimize the machining performance in either of the above
focused domains. Nevertheless, there is forever a trade-off between gaining less
machining error and providing higher feed rate. As for machining a free-shaped curve
(e.g., Bezier curves, B-splines and NURBS) in a three-dimensional space, a better
manner to balance out the aforementioned trade-offs turns out to be even more
critical and essential.

The conventional iterative function used for tool path generation could cause
feed rate fluctuation during the actual machining, and it thus might lead to failure on
constraining the error within the machining accuracy requirement. Another potential
problem occurs when the machining process comes across into a relatively high
curvature segment with the prescribed high feed rate, due to the machine axial
acceleration limit, the machine may not be able to maintain the tool tip trajectory

within the error tolerance. Therefore, a new approach to NURBS tool path generation



for high feed rate machining is proposed. In this work, several criterions are set for

checking the viability of the prescribed feed rate and adjusting it according to the

actual shape of the objective curve and the capability of the machine. After the

offline feed rate viability check and readjustment, a new iterative algorithm based on

the arc-length re-parameterized NURBS function would be implemented to calculate

the tool path in real-time.

By using this proposed method, the feed rate fluctuation is diminished and the

overall efficiency of the machining process would have been optimized under the

condition of accuracy guaranteed.
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Chapter1 Introduction

1.1 Research Problems

For advanced functions and appealing shapes, many parts are designed with
free-form curves and surfaces and they are required to be efficiency machined with
high accuracy and smoothness. The machining accuracy requirements of these
components are becoming higher and higher. To achieve this goal, the cutting tool
should cut the workpiece in high feed rate, and its trajectory in machining should
comply with the preplanned tool path. The freeform curves and surfaces can be
represented with B-splines and non-uniform rational B-splines, namely NURBS. To
understand NURBS tool path better, the basics of the NURBS are introduced in this

section.

1.1.1. B-spline and NURBS Curve

A general B-spline curve of pth-degree can be represented as:
Sw=) N, Wp (a<u<b) (1.1)
i=0

where

1 (u,<u<uy,
0 (otherwise)

+1)

Ni,O(u) :{

(1.2)
u—u; Uipa— U
N, ()= ﬁNi,pfl(u) + LNHLP*I(U)

i+p i ui+p+1 —Yin



and the control points P; are given in the form of (x,,y,z) coordinates in a
three-dimensional space. A knot vector generally consists n+k+1 non-decreasing
elements with the first and last k elements equal to the lower and upper boundaries
of the parameter range respectively, where k=p+1. For example, a knot vector of a

kth-order B-spline curve with its parameter u varies from a to b can be defined as

U= {a,...,a,uk, ..... ,un,b,...,b}.
7_4 —

k

The iteration functions of Eq. (1.2) are the blending functions of the B-spllines.
B-splines are a special type of NURBS, they use the same rules of defining knot
vectors and same blending functions. The mainly difference between NURBS and
B-splines is that a NURBS has a weight specified for each control point. The equation

of NURBS curves is:

SN, WP
S==——— (a<u<bh) (1.3)

ZN,., , (u)w,
i=0

where w; is the weight of point P; and the blending functions N, (u) are derived
from Eq. (1.2).
B-splines and NURBS have the following main properties:

1. A popular B-spline curve starts and ends at the first and last control points
respectively, namely if u varies from 0 to 1, then we have S5(0)=PF, and
S(1)=P,.

2. Each curve segment only affected by k control points. A control point affects at

most the number of k curve segments in its neighborhood.



3. For a NURBS curve, the weight function affects the same neighboring curve

segments.

S(u)
P: 5

P,

Figure 1.1 A typical NURBS curve with its control polygon

1.1.2. Arc-length Approximation

A curve can be approximated with a polygon that formed by connecting a finite
number of points on that curve. The total arc length of the curve can be
approximated with the sum of the lengths of all the polygon edges. By increasing the
number of line segments on the curve with smaller lengths, a better approximation

result could be obtained.

Figure 1.2 lllustration of multiple linear segments arc length approximation



Figure 1.3 lllustration of multiple linear segments arc length approximation with
more dividing segments
To improve the approximation accuracy, a maximum displacement between each
polygon segments and the curve can be defined as d in the Figure 1.4(a) and 1.4(b).

The smaller d, the higher approximation accuracy is obtained.

(a) (b)
Figure 1.4 Approaching method of arc length approximation
However, using this method to approximate the length of a curve is inaccurate
due to the randomness, roughness and inflexibility when segmenting the curve. A

more accurate way of calculating arc lengths will be proposed in the Chapter 3.

1.1.3. NURBS Tool Path Interpolation
In CNC machining, the tool path interpolation is to calculate cutter locations on

the tool path and the tool moves linearly from cutter locations to cutter locations.



After a theoretical NURBS tool path is fed into a CNC controller, with the desired
machining feed rate, a large number of cutter locations are interpolated on the given
tool path, and the tool moves along the cutter locations linearly, forming the tool

trajectory.

Theoretical tool path in
NURBS form

o CL points

———— Tool trajectory

Figure 1.5 Actual tool trajectory after implementing NURBS interpolation
The deviation between the actual tool trajectory and the theoretical tool path is
called trajectory error or machining error. This error can be diminished or bounded
within the smaller prescribed tolerance by choosing a more proper, in our case,

NURBS interpolation method.

1.2 Literature Review

There are a lot of technical articles and relative researches can be found in the
field of tool path generation strategies for CNC machining. Feng et al. [5] took axial
acceleration into consideration and developed an NURBS tool path interpolation
method. However, the tangent acceleration varies along the curve too often and

causes feed rate fluctuations that could affect the machining accuracy. Chen and Li



[6] proposed several methods to control the feed rate fluctuation in actual CNC
machining. Basically, this method is considered as an add-on algorithm which
recursively check for feedrate fluctuation error and maintains it within the prescribed
tolerance in real-time. Heng and Erkorkmaz [7] presented a method that fits multiple
polynomials and keep the mean squared error of the parameter prediction within a
tolerance, to decreases the feed fluctuations. Zhang et al. [8] introduced their NURBS
interpolator algorithms with ‘look-ahead’ control modules. With these strategies, the
real-time feedrate is checked and manipulated in a look-ahead buffer, in order to
ensure the machining constrains. Emami and Arezoo [9] developed a synchronized
look-ahead and real-time parametric interpolator for NURBS curves. The look-ahead
module determines the consecutive feedrate blocks in advance to smooth the tool
motion. Lee et al. [10] studied an off-line feedrate scheduling method, which divides
the original tool path into several NURBS pieces according to its curvature, and also
uses a feedrate compensation method to smooth the actual feedrate profile.
Meanwhile, a feedrate adjustment method according to the
acceleration/deceleration was developed by Wang et al. [11] in 2009. In their work, a
direct digital convolution method is proposed for velocity planning of NURBS
interpolator. Annoni et al. [12] published another article on NURBS interpolation
method, which uses a real-time configurable NURBS interpolator to easily set or
change multiple constrains, such as accuracy, acceleration and jerk before the real
machining. These constrains are ensured within their limits during real-time

calculations of machining process. Ki N.Y. [13] studied a velocity profile generation



methodology and improved the CNC machining efficiency. The feedrate does not
need to decrease to zero during the changing procedure of two adjacent tool
motions. Also, this method has an added jerk control option when generating the
velocity profile. Yeh and Hsu [14] developed an adaptive-feedrate interpolation for
parametric curves, which can bound the chord error within the tolerance by
decreasing the feedrate. An integrated NURBS path interpolation is presented by Lei
et al. [15], in which, the trade-offs between less feedrate fluctuations and less
computing time has been balanced through the introduction of their pre-processing
module. Similarly, Yong and Narayanaswami [16] introduced another parametric
interpolator with confined chord errors, but they also took acceleration and
deceleration in to their considerations. However, a FPGA-based motion controller is
introduced by Yau et al. [17]. The calculation of basic functions and derivatives of
NURBS curve are completed separately by the FPGA chip. Therefore the time
consumption during the real-time machining is shortened. X. Zhiming et al. [18]
presented a real-time interpolation algorithm for NURBS curves. In which, the
contour error and feedrate fluctuation can be constrained and stabilized within the
prescribed tolerances. In addition, the feedrate components, acceleration
components and the driving force of the servomotor of each axis are pre-calculated
before real machining process. Luan et al. [19] developed a pre-scheduled NURBS
interpolation method, which calculates the feedrate off-line according to cutting path
and machine-tool capability. The acceleration and jerk are effectively reduced and

the contour precision is enhanced.



On the other hand, some arc-length parameterized NURBS tool path generation
algorithms had also been developed. Wang et al. [20] presented an abstract
arc-length parameterized spline path theory which pointed out the relationship
between the parameter variable and the curve length is generally non-linear. Khan
M.A. [21] presented an arc-length parameterized tool path generation method and a
gouging-free NURBS theoretical tool path interpolation algorithm. The feedrate can

now also adaptive to the local shape of the curve.

1.3 Objective of the Research

The objective of this thesis can be concluded by the two following central
aspects:

1) Propose a new approach to accurately calculating the arc-length of the NURBS
tool path.

2) Generate arc-length NURBS tool paths to maintain the high accuracy during
machining process with less feed rate lose and computational time.

3) After the re-parameterization, a feasible feed rate profile need to be found
according to machining error tolerance and the acceleration limit of the machine.
Finally all the cutter locations can moves with a more stable and smoother feed
rate in real time.

Based on the three main components of my work from above, a new 3-axis NURBS

tool path generation method is proposed.



1.4 Thesis Outline

This thesis comprises of seven chapters. Chapter one gives a general
introduction of some relative concepts of this work, followed by reviewed literatures
on this topic, and points out the research objectives. Chapter two reveals the
properties and differences between the arc-length NURBS tool path generation and
the traditional method. Chapter three introduces several arc length calculation
methods and proposes a new curvature-based NURBS arc-length calculation method.
Chapter four presents a new arc-length NURBS tool path generation method that is
global axial acceleration and accuracy bounded. The new strategy for feed rate
profile generation is also shown in this chapter. Chapter five conducts a test of
generating an actual tool path. Comparison between the traditional method and the
proposed method based on the gathered date from the example will be shown and
analyzed. Chapter six concludes the central work of this thesis and proposes some

possible future works. In Chapter seven, references are listed.



Chapter 2  Non-arc-length NURBS Tool Path and
Arc-length NURBS Tool Path

Generation

2.1 Introduction

For a general B-spline or NURBS curve, its parameter u is unit-free. This indicates
non-arc-length equally spaced parametric values of u do not represent equally
spaced points on the curve. These kinds of curves are called non-arc-length B-splines

and non-arc-length NURBS.

Figure 2.1 An example of 14 chosen points with equal parametric intervals

Figure 2.2 An example of 14 chosen points with equal arc length intervals
10



2.2 Algorithm of Non-arc-length NURBS Tool Path

In 3-axis CNC machining, the actual cutter locations are illustrated in a

procedure shown in Figure (2.3).

Reference .
NURBS Prescr::teed Feed
tool path

CNC controller
(NURBS interpolator module)

Cutter Location
(Tool Path)

Figure 2.3 lllustrative scheme for traditional NURBS tool path generation

A reference tool path (also called theoretical tool path) in the form of NURBS

expression and a prescribed feed rate are sent to the NURBS interpolator of the CNC

controller. The CNC interpolator then generates the accordingly feed rate profile and

instantaneously calculates the cutter locations in real time.

Considering the feed rate profile generated in Figure (2.3) is V(t), to a

non-arc-length NURBS reference tool path

SN, (uw
Sw)=[x(w) yl) zu)] =E——— (a<u<b)

ZN,‘ p(u)w,,
i=0

with the given knot vectors

(2.1)



and the control points P;, the feed rate function V(t) can be expressed as

Vi =B (2.2)
dt
We can re-write the above equation into
vie = |24 24 2.3)
du | dt
hence, we can deduce
du_ Vi) (2.4)
dt ds(u)
du

By using the first order approximation of Taylor expansion formula, the Eq. (2.4) can
be processed as follows.

vt )T
u..,=u_+ (t,) T,

m+1 m ‘ dS(U) (25)

du

u=uy,

where u, and T, denote the instant value of parameter u at the time t=t, and

the machine sampling period, respectively. The parametric value u of the next

m+1
sampling period can be found. Normally, Eq. (2.5) is adequate to be applied on curve

segments with small curvatures. However, for relatively high curvature segments, the

second order approximation is more properly for use.

Vit )T Vit )-T?
um+1 :um + ( m) —— ( m) : (26)
dS(u) d’S(u)
du u=uy, . du2

'm

In Eqg. (2.5) and (2.6), the first derivative of S(u) can be computed as

12



dsi) 2 Vel 2 N w3 N

i—0

du n n 2
ZN,,,, (u)w, [E N, (u)w,]
i=0 i=0

P (2.7)

i i

as well as the second derivative can be computed as

n

N, (w SN @wp SN w, - SN, (uw P
dzs(u)_; l,p( ) i ; l,p( ) it _; 1,p( ) i ; /,P( ) it
dl,l2 B n 2 n 2
ZNi,p(“)W;] ZN,-IP(U)W,.]
=0 i=0

ZZH: Ni/,p (uw, - ZH: Ni,p (U)w, Zn: Nf/:ﬂ (uw.F,
i=0 i=0 i=0 _

- ; (2.8)
[ZN,,p(u)W,}
i=0
ZZN,'IP (uw, 'ZN"" (uw,P 'ZN"/"’ (uw,
i=0 1:0 ; i=0
ZNW(U)W’.]
i=0
where the kth order derivative of N, (u) is
k—1 k-1
N () = | Neoal) i) (2.9)
* ui+p71 -y ui+p —U

Thus, all the CL points can be calculated by substituting a series of u values
which are found iteratively using the Taylor expansion approximation of (2.5) or (2.6),

into Eqg. (2.1). As the real-time coordinates of all CL points

x(uy)| |X(u,) x(u,,)
CL(U,')L,::L - y(ul) ’ y(uz) AR y(um) (210)
2(uy)| | 2(u,) Z(u,)

are calculated (where m denotes the number of the CL points) in the CNC controller
iteratively, the tool moves from the current position directly to the next position in

the coordinate sequence of Eq.(2.10). The actual tool path is finally formed.

13



2.3 Algorithm of Arc-length NURBS Tool Path

2.3.1 Properties of Arc-length NURBS Curve

To understand arc-length NURBS tool path well, the main properties of the paths
are introduced here. The arc-length NURBS uses the actual arc length s as its
parameter instead of u. For example, considering a point A=|x(u,) y(u,) z(uA)]T is
on the curve C(u). This point can also be found as

;
A=[x(s,) y(s,) zs,)]
where the parameter s, denotes the arc-length measuring from the starting point
of the curve to the point A. An arc-length NURBS tool path can be represented as:

iH,lp(s)h,.Q,
Cls)=[x(s) yls) 2(s)] =2—— (0<s<l),  (2.11)

> H,,(s)h,
i=0
in which the parameter s is the genuine arc length between the initial point of the

curve and the current point, and L is the total length of the curve. H,,,

h, Q are
the corresponding base function, weights and control points, respectively. Ideally, the

main properties of an arc-length NURBS can be easily recognized as

vl c(0) I
Ic’ts)|= . =1 (2.12)

and

|¢"w)|=0 (2.13)
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Unit tangent vector P, =C'(s,)

Random point A

"7~ Arc-length NURBS C(s)

Figure 2.4 The unit tangent vector at a arbitrary point A
This indicates the value of its first order derivative with respect to s at any point on

the curve is the coordinate of the unit tangent vector P of that point (Figure 2.4).

2.3.2  Arc-Length NURBS Interpolation

By inputting the arc length NURBS into the CNC controller, the feed rate profile
V(t) is generated. The iterative interpolation function of parameter u in Eg. (2.5) and
(2.6) are replaced by
Smi1 =Sy TVI(E,) T, (2.14)
where s, denotes the value of parameter s at the moment of t=t _, and T, is
the machine sampling period. Then, a cluster of CL points can be found. According to
Eq. (2.14), the following equation holds.

Eu(sl \eus,, )

Since the sampling period T, is constant, the lower the prescribed feed rate is

lim
V(t)T,—0

—lcis,,)cLs,,,,)| =0 (2.15)

set, the closer the tool trajectory can get to the reference tool path. In another word,

for any two neighboring CL points, the chord and the arc length in between are

15



approximately equal to each other if the given feed rate is not high.
Therefore, by finding a valid feed rate profile that can bound the machining
error within the tolerance, the final tool path is formed by connecting all the CL

points.

2.4 Comparison of Non-Arc-Length and Arc-Length NURBS Tool Path

Generation Methods

As aforementioned, the basic procedures of generating the machining tool path
from using either conventional NURBS or arc-length NURBS are similar. Only that the
NURBS interpolation algorithms are different. Then the question why bother to use
arc-length NURBS may arise. In fact, there are two main differences between these
two algorithms that would explain the advantages of using arc-length NURBS tool

paths.

2.4.1 Comparison on Tool Path Error and Feed Rate Error

First, when conducting conventional NURBS interpolation, due to the highly
non-linear relationship between the increments of parameter u and the

corresponding displacements along curve

Au
As

Orizlz 2 . B (2.16)

0 1

the chord length |CL(u,.)CL(u,+1)| oscillates globally. This will lead to a feed rate

16



fluctuation over the whole machining process, resulting unpredictable acceleration
and deceleration in tool motion. In addition, the tool trajectory error may fatally
violate the prescribed tolerance at some times even with a normal or low feed rate

(Figure 2.5).

Ineligible F4 /

Relative feed rate EF . trajectory error ,’
) ’

F, onchord CLCL,

Figure 2.5 An exaggerated, illustrative tool trajectory of a non-arc-length NURBS
scrap with the unit free parameter u

The local feed rate for each sampling period can be calculated by

F=l|cLeL,,|/T, (2.17)
According to the example shown in Figure (2.5), the instantaneous feed rates F;, F5,
F3; and F4 truly varies rapidly causing fluctuation. However, with the arc-length
parameterized NURBS, this problem is eliminated in favor of all the neighboring
chords are with equally lengths.

Second, the governing functions of Eqg. (2.5) and Eq. (2.6) of non-arc-length
NURBS are actually approximations from Taylor expansion. The neglect of the residue
from Taylor expansion would more or less cause inaccuracy during the approximation.
On contrary, the iteration function of Eq. (2.14) from the arc-length NURBS
interpolation algorithm does not have such problem.

17



2.4.2 Comparison on Computational Efficiency
By comparing the interpolation functions of non-arc-length NURBS and

arc-length NURBS as follows

Table 2.1 Comparison on governing functions of non-arc-length and arc-length NURBS

u .. =u vit,) T,
m+1 m dS(U)
u =u V(tm) Ts du u=u
. . m+1 ~ Y'm ds "
Governing S, =S, +V(t,) T H (u) Vit )-T?
Function du |-, - 2 T
" d-S(u
2 Jes
dU u=u
Velocity
. V(t) V(t) V(t)
Profile
Need of First
order
o No Yes Yes
derivative
evaluation
Need of
Second order
ey No No Yes
derivative
evaluation

it is reasonable to believe the CNC controller could suffer a much heavier
computational burden when embedded with the conventional NURBS interpolation
algorithm. Consequently, when both the NURBS interpolators calculate in real time,
the one with the arc-length NURBS interpolation algorithm turns out can run

potentially faster. Hence, a higher computational efficiency is gained.
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Chapter 3  Arc length Calculation Using
Quadrature Methods

3.1 Introduction

Apart from the general approach which had been brought up in Section 1.1.2,
there are still many ways to approximate curve lengths. In this chapter, several
qguadrature methods are introduced for evaluating the arc lengths of free-form curves
in @ numerical way. For mathematical equations are applied when evaluating the
actual arc lengths, by using these methods, the approximation accuracy can be easier
and better controlled. In fact, quadrature methods are a typical set of ways to find
numerical evaluation of definite integrals. These methods are basically referring to
the elementary technique for approximating the enclosed area that underneath the
objective curve within a certain interval. There is not only one but a series of
methods of quadrature. Every which of them provide us with certain accuracy

according to our demands.

3.2 Derivation of Mathematical Equations for Arc Length

Approximation

To derive a more accurate and formulated method for calculating the length of

general curves, By letting the displacement d in Figure (1.4) tends to be zero, the
19



length of each polygon segment can be measured as equal to the length of the
corresponding arc of the actual curve.
. : / dy . I .
Consider a real function f(x) such that f(x) and f (x):d— , its derivative with
X
respect to x, are continuous on geometric interval [a,b} . The length s of the curve f(x)
within the interval [a,b] can be found as follows:

According to Pythagoras' theorem, an infinitesimal part of the polygon segment

ds is shown in Figure (3.1).

(]
[}
[}
0
[}
[ ]
[}
0
0
r} [}
. . dy
[}
0
[}
[}
0
[}
0
[}
4

\/

Figure 3.1 Approximation of the arc length based on Pythagoras' theorem
Since the equation
ds’ = dx* + dy’ (3.1)
holds, so that by processing the above equation throughout from Eq. (3.2) to Eq.
(3.5),

ds’ dy’
W: 1“‘? (3.2)
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ds? dy |
d—$z=1+[di (33)
X X
2
Z—S: l—l—[j—y] (3.4)
X X
2
ds=,[1+ ? dx (3.5)
X

the final expression of arc length approximation function is derived as Eq. (3.6).

s= [+ /0] ox 36)

Instead of segmenting the curve and summing them up, the arc length in certain

intervals can be calculated if the representation equation of the curve and its first

order derivative were acquired. However, for parameterized curves, the arc length

approximation function is slightly different.

Let C(t) to be a parameterized curve with respect to t. An infinitesimal curve

segment from point C(T) to C(T + At)is shown as Figure (3.2). Similarly,

As =+Dx* + Dy . (3.7)

C(T+At)

\J

Figure 3.2 A microscopic view on parameterized curve length approximation
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Assuming the whole objective parametric interval [a,b] is divided up into n pieces,

the approximation of the curve length S from point C(a) to C(b) can be written as:

S~ i«mxf + A4y (3.8)
i=1

At
By letting n— oo and multiplying m to the right-side of Eq. (3.8), then

Szn”l‘;z\/[%] +[%] At (3.9)

Eq. (3.9) can eventually be written in the form of

s:j;b [%2

+ [d—y] -dt (3.10)
dt

or

ssz\c’(t)\-dt (3.11)

where ‘C’(t)‘ indicates the norm of the vector C'(t).

3.3 Common Quadrature Methods

3.3.1 Midpoint Rule and Trapezoid Rule
On one hand, as one of the most basic quadrature rules, the Midpoint Rule

b
approximate the integral f f(x)dx by the area of a rectangle with its base length

equals to the span of the target interval, namely |b—a

, and its height equals to

integrand value at the midpoint of the above interval. The result can be written as Eq.

(3.12), where h=b—a.

a+b
2

[ £odx = e

) (3.12)
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flx)

a (a+b)/2 b

Figure 3.3 An illustrative diagram of Midpoint Rule’s principle
On the other hand, The Trapezoid Rule approximates the same integral by the
area of a trapezoid with its base length set as same as the Midpoint Rule, and sides
equal to the integrand values at the two endpoints which are f(a) and f(b)
respectively. The approximation result can be written as
f fx)dx —hf(a)+f(b) (3.13)

wherestill h=b—a.

fx)

Figure 3.4 An illustrative diagram of Trapezoid Rule’s principle
Apparently, both of the methods above are capable for evaluating linear

23



functions, but neither of them could achieve an expected accuracy when

implemented on a quadratic function.

3.3.2 Simpson’s Method

The Simpson’s rule is also a method for numerical integration approximation for
definite integrals. This method approximates the integrand f(x) with a quadratic
function, namely the P(x) profile in Figure (3.5), which passes through both the

end-points and the point f(aT—i_b).

iz
v

a (a+b)/2 b

Figure 3.5 An illustrative diagram of Simpson’s Rule’s principle
The approximation result can be written as Eq. (3.14), where S is the approximation
b
of the integral f f(x)dx .
a

b—a
6

S—

f(a)+4f("2ib)+f(b) (3.14)

3.3.2.1 Derivation of Simpson’s Rule
As a matter of fact, Simpson’s rule is a combination of the previous two basic

quadrature rules, namely Midpoint rule and trapezoid rule. By implementing the
24



approximation equations of Eq. (3.12) and Eq. (3.13) of these two methods to tons of
test examples, it turns out the approximation error of Midpoint rule is always roughly
-2 times of that from Trapezoid rule. Therefore, by representing the approximation
results from Midpoint and Trapezoid rule with M and T respectively, it can be found
the exact value S of the integral would have the relationship of
S—T=-2(5—M) (3.15)
if the aforementioned errors had exactly -2 times difference from each other. Thus,
by solving S in Eq. (3.15), a more accurate approximation is obtained:
S:zMJrlT. (3.16)
3 3
By substituting M and T with the right-hand side of the Eq. (3.12) and Eq. (3.13)
respectively, the Simpson’s method is derived.
5 = Ifla)-+4(0)+ o) .17
where ¢ denotes the midpoint of the interval [a,b].
If the whole objective interval [a,b} were equally divided into two parts, d and e are
found as the midpoints of the two new subintervals [a,c| and [c,b] respectively. By
individually performing the procedure of Eq. (3.17) over the two subintervals, a
closer approximation result S’ of composite Simpson’s method can be found as
s’ Z%[f(a)+4f(d)+2f(6)+4f(e)+f(b)]- (3.18)
In most cases, the result from the composite Simpson’s rule of Eq. (3.18) tends to be

more accurate than the result from Eq. (3.17).
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Figure 3.6 Composite Simpson’s Rule’s principle

Since at least both the end points and the midpoint of the objective interval are

required for the implementation of the Simpson’s rule. The most basic Simpson’s

formula of Eq. (3.17) is called the Three Point Simpson’s Rule.

Therefore, in order to implement more steps or, in another word, a composite

Simpson’s rule, we may need a number of 2W+1 points to carry out W steps of

Simpson’s rule, e.g. the above Eq. (3.18) is a five points double Simpson’s rule.

Now by assuming that the known interval [a, b] has been divided into a number

of 2W sub-intervals, and h = b - a. The general composite Simpson’s rule can be

written as:
b h
J, 1= =) A1)+ 2£06)+8£0) 4+
+2f(X2W_2) +4f(X2W_1)+f(sz)]
or
fabf(X)dX = &%ﬁ(ﬂxzm) +4£(x,, )+ flx,,)
where x2k1:X2k+—XZk, X,=0a, X, =b.

26
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Thus, by keep sub-dividing the objective interval, also as know as to increase the

recursive counts W, higher approximation accuracy could be obtained.

3.3.2.2 Error Estimation for Simpson’s Rule
Since the Eq. (3.17) and Eq. (3.18) are approximating the same integral over
[a,b], the error can be denoted as:
E=(A—A) (3.21)
where A; and A, stand for the approximation result from Eq. (3.17) and Eq. (3.18),
respectively. As comparing Figure (3.6) from Figure (3.5), the step size of Eq. (3.18) is
recognized as half as that of Eq. (3.17). Therefore, the approximation result A, can be
considered as roughly 2* accurate as A;. Therefore by solving the ideal accurate value
R in the following equation
16(R—A,)=R—A, (3.22)
a more accurate approximation based on the existing integral evaluation results is
derived.
R=A +(A —A)/15 (3.23)
Due to both R and A, were approximating over the same interval [a, b], the
relatively approximation error of R, thus, can be found as
E.=(R—-A) (3.24)
Therefore, the approximation accuracy can be easily controlled by keeping
(Eq )max <e, (3.25)
where g, isthe prescribed accuracy tolerance.

27



3.4 Arc length calculation for B-splines and NURBS

Assuming we have a B-spline curve
Cw)=> N, WP (a<u<b) (3.26)
i=0
with its knot vector defined as

U:'(a"”’a’upﬁ»l’.”'umpl’b’“.’b
p

p

where p is the degree of the curve, P,---P, are the control points. The blending

function N, (u) is defined as

1 (u,<u<u
0 (otherwise)

i+1)

N,-,o(”) = {
(3.27)

u—u. u.,,—u
N, (u)=——"=N, ,(u)+—2"—N_, .
Uip— U Uitpra — Ui

Now that, according to the Eq. (3.11), the curve length S measured from u=c to
u=d (c>a,d<b,c<d)can befound as
d
S =f IC'(u)- du (3.28)

where the derivative of the B-spline is calculated from

n—1
C'w)=>_N,,,uQ (3.29)
i=0
P, —P
Qi — p# (3.30)
Uiipr = Ui

with its knot vector

b, b (3.31)
%/_/
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The blending functions N, (u) are computed on U'. By implementing W-steps

Composite Simpson’s rule from Eq. (3.19) or Eq. (3.20) on the definite integral of Eq.
(3.28) has been found as

:;MC/ i (1€ )|+ 41C (W )| +[C ()] (3.32)

S=

3.5 Curvature-adaptive based Arc Length Calculation for Parametric

Curves Using Composite Simpson’s Method

3.5.1 Rough Tempt on Optimizing Calculation Efficiency
To calculate the curve length of C(t) in section (3.2) within the interval [a,b},
the result is given by Eq. (3.11). However, according to the properties of integrals, Eq.

(3.11) can also be written as

szf: C’(t)\-dt+fcb\c’(t)\-dt (3.33)
where a<c<b.

When trying to reach the same accuracy, the total time consumption during the
calculation could be shortened by dividing the objective interval into several
segments according to the curvature and continuity of the curve instead of directly
setting the integrated interval to define the upper and lower boundaries of the

integral. The following example using the function f(x)=>5-sin(8-x) illustrates the

idea.
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Figure 3.7 Function f(x)=5-sin(8-x)
As it appears, the shape of the curve is more twisted at the peaks and troughs,
which means the curvature is greater at these parts than the rest of the curve.
Then, a rough segmenting procedure is implemented here which divides each

period of the wave into 6 equal pieces as Figure (3.8) shows.

Ak
P

X 0802

i
-
1

Y. 06638
[

Figure 3.8 One sample period of Function f(x)=>5-sin(8-x) after
being segmented
The curve pieces within the shaded interval can be considered to be relatively more
curved than the other parts of the curve. Now by calculating the length of all these
shaded segments and the rest un-shaded parts separately, the sum of all these
sub-results from above will be the length of the curve.
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When attempting to reach the same accuracy using the composite Simpson’s
method to solve this, this method consumes less time than doing direct calculation
over the whole objective interval.

This is because the calculations within the shaded interval need more recursive
steps to reach the expected accuracy due to its relatively high curvature, while the
rest pieces of the curve need not. Consequently, redundant computations may occur
while calculating those other relatively smoothed pieces of the curve. The following
test function f(x)=A-sin(8-x) demonstrates this (where A and N denotes the
amplitude coefficient of the function and the number of the periods that is being
calculated respectively in the upcoming contents).

While A=1, accuracy=1.0x10"®:

Table 3.1 Performance comparison on function f(x)=sin(8- x)

N=1 4.1238 0.578266 0.656773 0.078507 0.078507
N=5  20.6188 1.765949 2.102958 0.337009 0.067402
N=20 82.4753 6.163200 7.325077 1.161877 0.058094
N=40 164.9505 12.014090 14.310630 2.296540 0.054135
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While A=5, accuracy=1.0x10"®:

Table 3.2 Performance comparison on function f(x)=5-sin(8- x)

N=1 20.0348 0.750659

0.801483 0.050824 0.050824

N=5 100.1742 2.639361

3.022017 0.382656 0.076531

N=20 400.6969 9.750296

11.022530 1.272234 0.063612

N=40 801.3937 19.131970

21.772795 2.640825 0.066021

While A=10, accuracy=1.0x10"®:

Table 3.3 Performance comparison on function f(x)=10-sin(8- x)

N=1 40.0196 0.803874

0.860551 0.056677 0.056677

N=5 200.0979 2.918330

3.140983 0.222653 0.045306




N=20 800.3918 10.920671 11.734121 0.813450 0.040672

1.6008
N=40 s 21.507276 23.198515 1.691239  0.042281
X

Even though the Simpson’s method and its initialization steps are repeatedly
executed within this method, the total time consumed is still shorter comparing with
the direct approximation method. That clearly shows the calculation time is saved
during the effective calculation, in another word, the overall number of recursive
operations is decreased.

The result has proved the theory of this method is credible, but since the way of
segmenting the objective interval is random and rough, it still could save more time

by choosing the dividing points to be more dependent on the property of the curve.

Table 3.4 Average time saved on each period with different value of A

0.078507
0.067402
A=1 0.058094
0.054135
Average (s) 0.064535
0.050824
0.076531
A=5 0.063612
0.066021
Average (s) 0.064247
0.056677
0.045306
A=10 0.040672
0.042281
Average (s) 0.046234
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According to the statistics above, the average time saved on each period is
decreasing as the amplitude of the wave A increases. This is due to the curvature
within each sub-intervals is changing more severely when near the peaks. In this case,
we should adjust the dividing points to re-narrow down those intervals that

corresponding to the segments with relatively high curvature.

3.5.2 Curvature-recognition based B-spline arc length approximation

Based on the previous rough idea, which indicates that those curve segments
with relatively high curvature would somehow have a hold back effect on the
arc-length calculation efficiency over the entire objective interval, a way to recognize
those segments is introduced.

A threshold value, denoted as ‘DP’ in the following contents, is set to divide the
whole curve into several segments according to the curvature of the curve. That
means, if the curvature of some parts of the curve is greater than the pre-set value
‘DP’, then these segments will be extracted from the rest of the curve and be
calculated separately.

A general B-spline curve C(u) from Eq. (3.26) and its first order derivative
C'(u) is computed as shown before. Since C’(u) is also a B-spline curve, the second
order derivative C”(u) can also be found.

If we write x'(u) and y'(u) as the value of x component and y component

respectively of the first order derivative value C’(u) atu,

x'(u)

C'(u)=
Y=l

(3.34)
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and write x”(u) and y”(u) as the value of x component and y component

respectively of the second order derivative value C”(u) atu,

X/I(u)

C// —
W=

(3.35)

The curvature «k at point u can be expressed as:

. x'(w)y" () —y'(u)x" (u) (3.36)

(x'(w) +y'()y)”?

Assuming a general B-spline curve ‘C’ shown in (Figure 3.9), with its relative

parameters defined in Table 3.5,

1.5 | ‘u |

0.5} . .

Figure 3.9 Shape of the B-spline curve ‘C’
by drawing out the curvature of ‘C’ using Eq. (3.36), and visualizing the threshold line

y==1DP in red (Figure 3.10), the segments with their curvature value exceeded the
threshold limit will be pulled out from the original curve, shown in (Figure 3.11).
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Table 3.5 An example B-spline curve ‘C’

(0, 0) 0
(3,1) 0
(4, 1) 0
(4.5, -4) 0.5
(5, 4) 1
(5.5, -4) 1.5
(6, 1) 2
(8, 0) 2.5
3

3

3

After finding out each end points of those selected curve segments and marking

them out with the blue circles in (Figure 3.11), the whole curve has been segmented

60

40

20

0 0.5 1 1.5 2 2.5 3

Figure 3.10 Curvature profile of ‘C’ and with the threshold lines ‘y = +DP"’
(where DP was preset to be 1 in this case)

into several individual parts with each part either to be believed as relatively smooth
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or relatively curved. Considering the very end points of the whole objective interval,
namely C(0) and C(3) in this specific example, along with the points that | marked

out, these points are recognized as the Dividing Points.

1.5+ [ il

0.5+ — \ | | -

1

N
T

|

Figure 3.11 Corresponding selected curve segments in ‘S’
If the corresponding parameter value u of these dividing points are denoted as
udivid ={u,,u,,u;,--u, }, (3.37)

the total curve length within the objective interval

s:f"

C’(u)‘~du (3.38)
can also be written in the form of
S= f “lc’w)-du+ f “lc/)]-du+-- f " cw)-du (3.39)

As for this specific curve ‘C’, nis equal to 12.
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Since the dividing points are selected out based on the curvature features, the
calculation efficiency of this algorithm for obtaining the curve length should be even
higher comparing to the previous rough segmentation algorithm in Section 3.5.1. It is
indubitable that the total curve length of ‘C’ is fixed, as been found as 20.868231
units long in this case. However, the time consumption from using Eqg. (3.38) and
Eq.(3.39) are different:

Table 3.6 Efficiency comparison of finding the arc length of ‘C’ using traditional way and
curvature-based algorithm (Accuracy is set to be 1.0x10°)
I o o e e
S:j;uz C’(u)‘-du+ﬁu3‘c’(u)‘-du-|—---

---+fuu" |C’(u)|-du

un
Functions S= f
U

C'(u)-du

Time
0.5011 (s) 0.3622 (s)
Consumed

Time
0.1275 (s)
saved

As expected, the calculation time has been shortened for around 30%, even a
lot of initialization code lines in the program has been executed repeatedly. In
another word, the core algorithm from curvature based method could be even more

effective and speedy than it looks like from this example.
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3.6 A New Approach to Arc-length Approximation for NURBS Curves

with Sharp Corners

As a matter of fact, it is common that for some industrial designs, the contour of
some parts with sharp corners may also be represented by the presence of repeated
knots as aforementioned. To evaluate the total length of such a curve, the traditional
adaptive Simpson’s rule could be used. However, for these kinds of special cases, by
simply apply the traditional adaptive Simpson’s rule over the entire objective
parametric interval might either consume longer computational time or lose
approximation accuracy. To elaborate this, an illustrative example is presented as
follows.

A general NURBS curve C(u) of order three with the knot sequence

0,0,0,1,1,2,3,3,3] is shown in (Figure 3.12).

NURBS Curve

ffffffffffffff Control Polygon
2.5+ ve —

o Control Points

0.5

Figure 3.12 The shape of the example NURBS curve C(u)

39



According to Eq. (3.11), the total length of C(u) can be written as:
3
_ .
S— fo C'(w)]-du (3.40)
For a clearer understanding, Figure (3.13) shows the shape of the integrand of Eq.

(3.40), namely

flu)=|c'w). (3.41)

1
0.5 1 1.5 2 2.5 3
Unit free parameter u

1.5 ‘ ‘
0

Figure 3.13 Image of the Integrand f(u)= ‘C/(u)‘
According to the aforementioned approximation technique of the adaptive Simpson’s
method, the whole objective parametric interval will keep bisecting into more
sub-intervals until the determination condition is met. As Figure (3.5) shows, a
parabola is always passing through those three points, namely f(a), f(b) and

f(a+b

), on the objective function to fit and approximate the curve of the integrand
over its corresponding parametric sub-interval [a, b].
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Guided by this basic principle, the arc-length approximation procedure of the
example above can be carried out by directly implementing the adaptive Simpson’s
rule over the entire parametric interval. The final approximation result would be
obtained when the iteration procedure automatically stopped by the determination
condition. Surely the error of the result can be controlled within the prescribed
tolerance, for the determination condition was set based on accuracy demand.
However, with this traditional way, a considerable computational redundancy
situation may occur. The following Figure (3.14) illustrates step-by-step how the
algorithm bisects its current parametric interval and when it determines to move on

to the next section during the actual process.

60 -

L D)

50 -

40t

30

Iteration counts

20

o® | * ‘ \Xr'
0 0.5 1 1.5 2 2.5 3

Unit free parameter u

L
D,

Figure 3.14 Detailed computational steps during the actual

approximation of the traditional method
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As shown above, for each iteration count, the blue circles indicate the lower and
upper parametric boundary of the current sub-interval which is under the evaluation
procedure. While the red ‘x’ cross at the same horizontal level marks out the
corresponding parametric mid-point. Noticeably, a considerable amount of iteration
counts has been found when the algorithm try to approximate the curve length at
the neighborhood of the parametric value 1. The actual point C(1) is located exactly
at the only sharp corner on the example NURBS curve C(u). And consequently, to
approximate the total length of this NURBS curve, the basic three-point Simpson’s
method has been executed 55 times when using the traditional way.

The reason why the traditional adaptive Simpson’s method requires a relatively
greater number of recursive procedures at the sharp corner is that the norm of the

derivative function of the original NURBS curve, namely ‘C’(u)

, is discontinues at
that point. Therefore, to avoid such redundant computational loads, a new piecewise
adaptive Simpson’s method is proposed.

By applying the proposed new method, the overall computational load could be
decreased significantly. Since the cause of the redundant iterations has been
revealed, the new proposed algorithm will be illustrated as follows.

If there is any sharp corner in the designed curve, according to the given
information of the objective NURBS, namely the knot sequence and the control
points, the corresponding parametric value of the exact points of those sharp corners
can be found. Subsequently, instead of approximating the full length of the curve
directly, the entire objective parametric interval is actually spitted up by the

42



afore-obtained parametric values. However, the parametric boundaries of the new
sub-intervals are not simply defined by the exact dividing parametric values but the
infinite close values from both left and right sides of the dividing points.

As in this example, the corresponding parametric value at the only sharp corner
isu=1. To illustrate the abovementioned method and for better comparison
purpose, the entire objective parametric interval is firstly divided into two parts by

the exact valueu=1. Therefore, the arc-length approximation equation of C(u) can

be found as:
1 / 3 !/
s= [ lc@]-du+ [ |c'w)]-du (3.42)
0 1
35¢ ®
®
®
%
30+ ®
®
®
®
®
25+ ®
®
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Unit free parameter u
Figure 3.15 Detailed computational steps during the actual

approximation when setting the dividing pointas u=1
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By drawing out the illustrative Figure of the detailed iteration procedure, it can
be found that the redundant computational loads for approximating the arc-length at
point C(1) and its neighborhood remain still.

However, according to the proposed dividing method, the resultant
sub-parametric intervals are [0, 1), and (1, 3] respectively. Thus, instead of using the
traditional arc-length approximation method of Eq. (3.40) and the dividing method

from Eq. (3.42), the new approach can be written as:

1-p 3
s=[ 'l -dut [ |c'w)-au (3.43)
0 1+u
where u— +0.
1M O x O C x >
10+ O x O O x O
9+ 0 x D x )
8* Ox0O) X
42 7r )% ( O x
>3
8
c 6! « ) C X
RS
©
o 5 Ox D x (
4 ) x O
3G x ) X e
2¢ x ) ) x
1% - — ‘ . ‘ o)
0 0.5 1 1.5 2 2.5 3

Unit free parameter u

Figure 3.16 Detailed computational steps during the actual

approximation using the proposed method
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By implementing this new method of Eq. (3.43), the calculation efficiency can be
significantly increased compare to either of the two methods above. This fact is
illustrated by Figure (3.16), which shows the detailed computation steps during the
actual approximation.

Clearly, According to Figure (3.16), the iteration count has been significantly
reduced, especially at the neighborhood of the sharp corner point C(1).

Table 3.7 Comparison between the aforementioned algorithms when approximating the

arc-length of the example NURBS curve C(u). (Accuracy is set to be 1.0x10 °)

Traditional method 55 0.067 8.4634987

Direct-dividing
46 0.056 8.4634986
method

Proposed method 22 0.029 8.4634882

Evidentially, in the shown example, the proposed method eliminates the
redundant iterations by about 60% of that from the traditional method, and shortens
the computational time by more than 50%. Nevertheless, the application of this new
approach can only benefit to certain kinds of situations.

Generally, there are two ways to make sharp corners appear in a NURBS curve.
To a NURBS curve with order k, one way to form sharp corners in the curve, is to have

repeated knots in its knot sequence besides the first and the last k elements.
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Furthermore, the number of those repeated knots N,

nots

should satisfy:
nots —K—1 (3.44)
The other way to achieve so is to have consecutive repeated control points along
with the NURBS curve. Similarly, to form a sharp corner in this way, the number of
those repeated control points N, has also the following prerequisite to meet:

N, >k—1 (3.45)

However, our proposed method may not be such effective or to have notable
advantages upon the NURBS curves that use repeated control points to generate
sharp corners. For better understanding, a typical NURBS example of such case is
presented as follow.

Assuming the specifications of a NURBS curve S(u), which uses repeated control
points to form the designed sharp corner, is defined in Table (3.8) with its actual
curve shape shown in Figure (3.17). (The corresponding weights for all the control
points are set to be 1.)

Table 3.8 Specifications of the example NURBS curve S(u)

P, P, P3 P, Ps P; P; Ps
0 0.5 2.0 2.0 2.0 3.0 4.0 5.0
0 2.5 3.0 3.0 3.0 0.0 0.5 2.0

Up uy u, U3 Uy us

0 0 0 0 1 2

Ug u; ug Uy Uiz Uiz

3 4 5 5 5 5
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NURBS Curve
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Figure 3.17 The shape of the example NURBS curve S(u)
To calculate the arc-length of this curve, the traditional adaptive Simpson’s
method is directly implemented over the entire parametric interval. The detailed

computational step has also been traced:

35

30+

Iteration counts

@)
x
L

0<) | | | | | | | | <T)
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Unit free parameter u

Figure 3.18 Detailed computational steps of the example

NURBS curve S(u) using the traditional method
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As shown in Figure (3.18), the overall trend of the collected data turns out to be
relatively smooth and evenly distributed along the entire parametric range. There is
no such serious computational redundancy as Figure (3.14) shown from the previous
example. This is due to the different shape of the functions: f(u)= ‘C’(u)‘ and

glu)= ‘S’(u)‘ derived from those two different cases.

|
2 2.5 3 3.5 4 4.5 5
Unit free parameter u

Figure 3.19 Image of the Integrand g(u) = ‘S'(u)‘

By comparing Figure (3.19) to Figure (3.13), it is not difficult to recognize the
major difference between these two dominating integrands. Unlike the function f(u),
g(u) is continuous over the whole parametric interval. According to the previous
deduced explanation that pointed out the cause of the computational redundancy is
due to the discontinuity of the dominating integrands, the presence of the difference
while implementing the same traditional method on these two NURBS cases has now
been given a reasonable explanation. This means, although both the NURBS curve
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C(u) and S(u) have the presence of a sharp corner geometrically, the norm functions
of their tangent vector f(u) and g(u) can be essentially different. Consequently, the
arc-length approximation procedure could be totally diverse.

Fortunately, with our proposed method, the arc-length calculation procedure for
NURBS curve can now be treated more efficient, especially for those special cases

that may cause the abovementioned computational redundancy.

3.7 A Potential Problem in NURBS Arc-Length Approximation When

Using Adaptive Simpson’s Method

Generally, the adaptive Simpson’s rule is applicable to approximate arc-lengths
for most kind of successive curves. However, for some NURBS curves (Bezier and
B-splines as well) with enormous changes of knot spans, unexpected errors may
occur during the mathematical approximation procedure of this quadrature method.
To demonstrate this, an example NURBS curve with its weight vector [1, 1,1, 1, 1, 1,
1, 1, 1] is specified in Table (3.9) and plotted in Figure (3.20).

Table 3.9 The specifications of the example NURBS curve C(u)

P, Ps Py Ps Ps [ Ps Py
100 100 200 200 100 100 100 0
0 0 0 100 100 100 100 100
Ug uz u; us U, Us
0 0 0 199.975 199.980 199.985
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Ug u; Us Ug Ui Ujg

199.990 199.995 200 400 400 400

By implementing the traditional Simpson’s rule, the final approximation result
for the arc-length of this curve is 200.000 mm. However, this result can be easily
identified and geometrically proved to be wrong by Figure (3.20). This is due to the

presence of the short knot spans from usto us.
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Figure 3.20 The example NURBS curve C(u) and its control points
As introduced earlier in this Chapter, the Simpson’s rule needs to bisect the
objective parametric interval and evaluates the corresponding value of the function
to approximate the curve length. In this given example, however, it appears that the
midpoints of all the sub-intervals do not fall into the knot span [u; ug], but the

determination condition of the algorithm is met. As a result, the actual curve length
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within this parametric interval is neglected, which indubitably would lead us to an
incorrect result. To solve this, an improved composite Simpson’s method with
marking technique is proposed here.

As shown in Figure (3.21a), instead of directly using the Simpson’s method, a
mark ‘O’ would be attached to each knot span before implementing the core
quadrature algorithm. Then the traditional Simpson’s method is applied over the
entire parametric interval. During this procedure, not only the current approximation
result, denoted as S;, would be stored but also the midpoints of all the parametric
sub-interval at each iteration step would also be recorded in a vector V. Subsequently,
as shown in Figure (3.21b), our proposed algorithm would check each knot span and
change the original mark ‘0’ into ‘1’ for those who has at least one element from

vector V falls into their knot span.

0 0 0 0 0 0 0
| L1 1 1 1 1 |
Uy u; u; u; u; Us ug u; Uug Ug Ujzg Uiz
(a)
1 0 0 0 0 0 1
| ] ] ] ] |1 |
Up u; u; u; u; Us us u; Ug Ug Ujg Uiz
(b)
1 1 1 1 1 1 1
| L1 1 1 1 1 |
uy u; u; us u; Us Us u; ug Ug Uzp Uzg

Figure 3.21 An illustration of marking technique over the exaggerated and
disproportional parametric interval of the example NURBS curve C(u)
Once the previous steps were done, the core quadrature algorithm is

implemented over the ignored knot span separately, which can be simply recognized
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by their unchanged mark ‘0. Ultimately, in order to make sure that the
approximation algorithm does not skip or ignore any knot span no matter how close
the knots are, the proposed algorithm would be stopped by not only the
determination conditions from the traditional Simpson’s rule, but also on the
condition that all the marks turn to ‘1’, as Figure (3.21c) shows.

To better illustrate this, the detailed bisect points of both the proposed method

and the traditional method has been recorded and visualized as follows:

X Proposed method

O  Traditional method

] ]

2 1

1 1 1 \ i
0 50 100 150 200 250 300 350 400
Unit free parameter u

Figure 3.22 An illustration of recorded bisect points when using the
proposed method and the traditional method
Figure (3.22) shows the global view of all the bisect points during the whole
process, while Figure (3.23) provides a zoomed view of the marked parametric
sub-interval (199.975, 200.000) in Figure (3.22), to better demonstrate and compare

the difference between the aforementioned two algorithms.
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Figure 3.23 A zoomed view of the marked sub-interval (199.975, 200.000)

As shown above, it is intuitive that the traditional algorithm does not have any
bisect points landed within the parametric interval (199.975, 200.000), as a
consequence, the previous mistaken result is derived. On contrary, our proposed
method solved this problem and came up with the accurate result.

By denoting S, as the approximation result derived from the later
complementary quadrature procedure in this example, the final arc length of C(u) can
be found as

S,=S$,+5,=200.000+262.323=462.323(mm), (3.46)

by our proposed method.
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Chapter 4 Proposed Arc-Length Parameterized
NURBS Tool Path Generation

4.1 Introduction

Assuming a set of points P=[P, P, --- P.] are sampled from the genuine

1

NURBS tool path curve S(u), the corresponding arc length S, =[S, S, --- S, ]

that measures from the starting point of the curve to the sample points can be

calculated using the aforementioned Curvature-based Simpson’s Method. By

minimizing Z(C(S,.)—F’i)2 from using the least square method, an arc-length NURBS

i=1
C(s) can be found as

x(s) ]
Cs)=|y(s)|=D>_N,,(s)-Q (0<s<l) (4.1)

2(s) i=0

where the parameter s is the actual arc-length.

After deriving the theoretical arc-length NURBS tool path, another indispensable
procedure for finding all the cutter locations is the feed rate profile generation. In
this chapter, a new feed rate profile generation algorithm in the CNC interpolation
module is proposed. In which, both the accuracy demand and machine axial
acceleration limit are globally bounded. Finally, a more smooth and accurate tool

trajectory can be determined via using this new method.
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4.2 Accuracy Bounded Piecewise Feed Rate Adjustment

When performing a high prescribed feed rate machining, it is possible that the
expected feed rate may not be appropriate during the entire machining process for
the accuracy demand could be violated. This is mainly because the machine sampling
period T, might not be short enough to refresh and change the current tool motion
status under such a high feed rate over those segments. Consequently, due to this
kind of lagging, those curve segments with relatively high curvatures could suffer
from accuracy loss as Figure (4.1) shows. Therefore, to maintain the tool trajectory
error within the machining tolerance, the feed rate must be revised according to the

machine properties and the paths’ local curvatures.

Intolerable large error

—— Theoretical NURBS tool path \/
7 S~ \
74 / ~ \

——————— Actual tool trajectory /,; SN\
/// N A
o CL points / \\
/ \
/ \
/ \
/ \
\
P \
P Vs \
7 \

Figure 4.1 An exaggerated demonstration of Large chord errors at high

curvature parts

4.2.1 Principle of Finding Maximum Valid Feed Rate According to Machine
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Properties and Curvature of the Curve
Assuming a circular shaped curve with its curvature radius R is known as the
theoretical tool path that is about to be processed. The relative machine
configuration and the machining accuracy requirement are denoted as follows.
Table 4.1 Declaring list of the Parameters

Machine Sampling Time T,

Accuracy Tolerance E,,

Since the radius of the curve is constant, the largest machining error occurs at half
way between the two adjacent CL points. An exaggerated illustrative actual tool

trajectory during one machine sampling period is shown in Figure (4.2).

Cl &€ — — — — e e — — cL

i+1

— — — — Tool Trajectory

Theoretical Tool
Path

Figure 4.2 An exaggerated illustration of machining error during

one sampling period
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According to Figure (4.2), the relationship between the actual machining error

Err and the chord length L of |CL,‘CL,,+1

, or also as known as the step-size in the

following contents, can be found as
L 2
(R—Err)’ +[5] =R, (4.2)

since the step-size can not be negative, thus,

L :‘2\/R2 —(R—Err)’ I (4.3)

In order to assure the accuracy is bounded as required, the machining error Err can
be no larger than ¢, . Thus, by letting

Err=¢,, (4.4)
In Eq. (4.3), the maximum valid step-size L, can be founded. Therefore, the

maximum valid feed rate can be calculated:

2\ R*—(R—¢_Y
Fmax—L;a* } (R-e.) ‘ (4.5)

- T,
4.2.2 Curvature-Based Segmentation with Afterwards Feed Rate Adjustment
. . 1 .
Since the radius of the curvature R can also be replaced by ;, where k is the
curvature of the curve, the function that specifies the relationship between the valid
feed rate and the local curvature of the curve for general cases can be written as,
2 2
2 [1 - 1_8617]
k k

F= (4.6)
T,

S

where T, and ¢, are treated as constant for they were given and fixed before
machining.
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According to Eq. (4.6), and let the expected feed rate be denoted by F, a
corresponding curvature k. can be found. This k.  indicates the maximum
curvature value that the theoretical tool path curve can reach without violating the
accuracy requirement at the machining speed of F .. In another word, k, is the
threshold value that separates the unprocesseable curve segments which can not be
machined at the prescribed feed rate F. from the feasible ones.

For example, when interpolating the following curve C(t), shown as Figure (4.3),
with its curvature profile shown as Figure (4.4), the highlighted red parts are the

non-machinable curve segments when processing with the prescribed feed rate F .

800 F /"-.& e
N

700} / \ §

600 / 4

500 - / \ g

400} ,
// : \ /
300 \V/ .

200} 1

100 / 4

L L L L L
0 100 200 300 400 500 600

Figure 4.3 Shape of the example curve C(t)
The corresponding parameter value at each end point of the segments
P, =|PD, PD, - PD,] (4.7)
are recognized as the dividing points (n=6 in this example). They divide the original

parametric interval into several sub-intervals if there were curve segments with their
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curvature higher than the threshold value k. .

0.07
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Figure 4.4 Curvature profile of the curve C(t) with the threshold line
k=k_ inred
After identifying those segments that the prescribed feed rate is considered
unqualified and over-high for them, new local feed rates need to be assigned to each
of those segments individually. Since the curvature profile is known, as well as the
dividing points, the highest curvature k_ within the parameter interval

PD., PD. .|can be evaluated.

i i+1
By substituting k_ into the Eq. (4.6), the maximum valid feed rate F, over

this part of the curve is finally determined. Now that, the overall feed rate profile has

been piecewisely re-adjusted to ensure the machining accuracy.

4.3 Pre-machining Valid Feed Rate Adjustment with Bounded Axial
Acceleration
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4.3.1 Derivation of Axial Acceleration Functions for Each Axis
let one of the theoretical arc-length NURBS tool path segments from the

previous step to be denoted as

x(s)
C(s)=|y(s) (a<s<b) (4.8)

z(s)
and also the appropriate constant feed rate within the corresponding interval [a, b]
as F,. According to the aforementioned arc-length NURBS properties in section
2.3.1, the unit tangent vector at any point on the curve can be found by evaluating

the first order derivative of Eq. (4.8) with respect to the arc-length s

dx(s) dy(s) dz(s)]"
ds ds ds

C'(s)= =[x(s) y'(s) 2(s)] . (4.9)

Now, since both the direction and the magnitude of the Feed rate were known, the

velocity function over [a, b], therefore, can be derived as

V.(s)] [X'(s)-F,
Faa(S)=|V,(5)| =|y(s)-Fy (@<s<b) (4.10)
V.(s)| |Z(s)-F,,

Assuming that t, represents any arbitrary moment during the machining
process of this curve segment, and

t, =t +At (4.11)

is the upcoming moment, where At is set to be an infinitesimal time increase. For

x-axis, the instantaneous velocities at t; and t,, in this occasion, are denoted as

v, and v, respectively. Since the time increase At is way more shorter than the

machine sampling period T , the axial acceleration a, during the time t, to

t, ,thus, can be considered as uniform. Therefore, the uniform rectilinear kinematic
60



equation can be applied here as Eq. (4.12) shows.

vi—vi=2-a(l,—1) (4.12)
In which, I, and [, are the corresponding displacement of the tool along x-axis at
moment t, and t,. By solving a, in the above equation, the acceleration

provided by x-axis during this time span can be found as

a =—2"" (4.13)
2-(L,—1)
The Eq. (4.13) can be simply expanded two steps further into
ety —vi) (4.14)
2-(,—1)
g —Watv) dv (4.15)

) 2 dl

d
By post-multiplying d_s to the right hand side of the above equation, it becomes
s

X = (4.16)
2 ds dl

For better demonstration purpose, an illustrative example curve which lies in XY
plane is shown in Figure (4.5). P, and P, are the two tool location points at time
t, and t, respectively. Since the time span is extremely short, the chord length
PP,

|P1Pz| is considered to be equivalent to the arc-length , and the unit tangent

vector at point P, is also considered as aligned with PP,.

Therefore, if the unit tangent vector at point P, is found as

Xp
P=y,l|, (4.17)
Z,

According to the geometric ratio relationship shown in Figure (4.5), the following Eq.
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(4.18) holds.

0 ! ) X
Figure 4.5 Geometric relationship between the tool locations at the two
sampling moments
Since At — 0, then from equation
v, =v, +a At (4.19)

the first factor in Eq. (4.16) can be approximated as

b, +v,) S (4.20)
2
Finally, by substituting Eq. (4.18) and (4.20) into Eq. (4.16), the axial acceleration

function of x-axis with respect to parameter s is derived as

1
x'(s)

a (s)=V.(s)-V.(s)- (4.21)

As the fact that the feed rate F, is not changing along the curve over the
interval [a, b], the resultant acceleration a(s)= [ax(s) a,(s) az(s)]r at any point s is

exactly the centripetal acceleration a_ (s) at that point. Similarly, by finding out the
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axial acceleration of y-axis and z-axis, the acceleration at point s can be written as

V,(s)V, (s) —
a(s) x(s)
als) =|a, (s)| = |V, () (5)- ,t ) (4.22)
S
a,(s) ]
V,(s)-V,'(s)-—
Z'(s)

where V. (s), V,(s) and V,(s) can be found from Eq. (4.10). Therefore, the axial

acceleration is now represented as a function of s.

4.3.2 Feed Rate Re-adjustment Method According to the Machine Axial
Acceleration Limit

After deriving the axial acceleration functions for each axis from the previous

procedure, for some part of the theoretical tool path could still not be processed at

the current feed rate due to the limit of the machine axial acceleration. By denoting

A, A and A, as the maximum axial acceleration and deceleration limit of each

axis, the current feed rate F, over parametric interval [a,b} can be found

applicable if
a,(s) <A,
a,(s)<A (a<s<b) (4.23)
a,(s) <A,

holds.

If not, the expected feed rate turns out to be unsuitable, and has to be
re-adjusted to meet the machine settings. Otherwise, intolerable trajectory error
could be gained during the machining. Assume that an example axial acceleration
function of x-axis has been visualized as Figure (4.6) shows.
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Figure 4.6 An example acceleration profile of x-axis

As fore-mentioned, the feed rate F, is recognized to be qualified over those
curve segments whose axial acceleration curves are caught in the region formed by
the two red dash lines, a, =A, and a,=—A, . However, the shaded parts shown in
Figure (4.6) indicate the intervals that the curve segments within them can not be
processed by the machine at such a high feed rate. Therefore, in order to guarantee
the accuracy and viability of the actual machining, the following method is
introduced to correct the unfeasible feed rate.

Since the axial acceleration functions for each axis have been found, the
maximum absolute value a,,, within the relative interval [a, b] can also be

calculated by finding the maximum value of

fls)=

a,(s) (4.24)
over se[a,b] using linear search algorithms. Similarly, after finding a and

ymax

a,..« for y-axis and z-axis, it can be found that the maximum axial acceleration of
each axis exceeds their corresponding limits by the percentages of (1—a), (1—9)

and (1—y) respectively, where
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a=—2>--100% (4.25)
axmax
A

6=—"--100% (4.26)
a
ymax

and

Y= A, -100% . (4.27)

a

zmax

If the value of a, & and yare all greater than 1, the current feed rate then
need not to be changed. Otherwise, in order to make sure the machine has the
capability to maintain the tool trajectory on its path, the valid feed rate Fa'b over [a,
b] is actually computed by

Fl=JW-F, (4.28)
where W denotes the lowest percentage value among o, 6 and y. The derivation
of Eq. (4.28) is as follows.

Since the feed rate over this objective interval [a, b] is constant, which in
another word, is indicating that there are no acceleration or deceleration motions
along the tool path. The resultant acceleration provided by all the three axes is
actually works only as the centripetal acceleration. Therefore, according to the
formula

a, =F; -k (4.29)
where a, is the centripetal acceleration and k is the relative local curvature, we
multiply the percentage W to both sides of the Eq. (4.29):

W-a, =W-F} -k (4.30)

in which, the curvature k is fixed for the theoretical tool path is known. So that the Eq.
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(4.30) can be re-written into

W-a W-a
L— L —k (4.31)

2 2
N
This means, if the original centripetal acceleration is scaled by the factor W, the

original feed rate needs to be scaled by \/W Consequently, by reconfigure the feed

rate into Fa'b, the previous unviable axial acceleration profile of Figure (4.6) would

now be qualified to the machine configuration as shown in Figure (4.7).

Figure 4.7 Acceleration profile of x-axis after feed rate adjustment

With this method, an appropriate feed rate over this sub-interval [a, b] can be found

to prevent the axial acceleration from exceeding the machine’s capability.

4.4 Feed Rate Profile Derivation During the Speed Change Procedure

between Adjacent Sub-intervals

Now that the whole arc-length parameter interval [O, L} (L is the total length
of the theoretical tool path) has been divided into several sub-intervals through the

previous steps, and also assigned with their matching feed rates. As Figure (4.8)
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shows, the feed rate profile is actually in the shape of discontinuous staircases.
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Figure 4.8 The ‘Staircase-Shaped’ feed rate profile
In order to avoid unpredictable trajectory error and to improve machining
efficiency, the feed rate profile at the joint of each two adjacent sub-intervals need to
be confirmed before feed this velocity profile into the NURBS interpolator. In
traditional machining strategy [137pp-(29-30) "the tool movement has to be completely
stopped before the next starts. The final feed rate profile gained according to this

method is given as Figure (4.9).

Fa
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Figure 4.9 Feed rate profile result from traditional method
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Since the feed rate has to decrease to zero by the end of the current interval
and re-accelerate to the subsequently expected value after entering the next, a
waste of machining time is caused due to the redundant acceleration and
deceleration procedures. Therefore, a new method is proposed to compensate the

aforesaid time lose as follows.

A
F _ ___ __ Traditional
Method
Proposed
Movement 1 Method
Fab_ - : \ '"':
| |
| |
| \ |
| |
| |
. \ O\
| |
£ : \ : Movement 2
I
bc 1
| A /' |
| |
|
| \ :
| \| / :
| |
| ] ! s
a b o S

Figure 4.10 Comparison on feed rate profile of traditional method and proposed
method during deceleration procedure

Basically, this proposed method can be known consist of the two following cases.
For the first case, whenever the tool is finishing the current movement and about to
enter the next interval whose relative feed rate is lower than the recent one, a
deceleration procedure is carried out within the present interval. Instead of
completely halt the tool motion at the end point of the present parameter interval,
the feed rate directly decreases to the expected value of to the next parameter
interval before the next movement takes place. As shown in Figure (4.10), the feed
rate would have been already decreased to the expected value of F,_, when the tool

starts the movement of the next interval [b, c].
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For the other case, the feed rate changing procedure would be conducted after
the tool passes the boundary of the two adjacent intervals if the prescribed feed rate
of the upcoming interval is higher than that at current. As Figure (4.11) shows, the
tool moves at its prescribed speed over the whole span of [a, b], but starts to
accelerate the moment it enters the next interval [b, c] until the feed rate meet the

expected feed rate F,.
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Figure 4.11 Comparison on feed rate profile of traditional method and proposed
method during acceleration procedure
This proposed method can also be described as a ‘postponed-accelerated and
pre-decelerated’ method based on its characteristic. Because the feed rate changing
procedure always take place within the interval that with a higher expected feed rate.
By using this method, the feed rate profile of Figure (4.9) which is resulted from the

traditional method is now optimized as Figure (4.12) shows.
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Figure 4.12 Feed rate profile result from proposed method

However, the feed rate profile gathered from actual machining can still be
different from what has shown in Figure (4.12) due to the acceleration and
deceleration motions along the curve may not turn out to be uniform. This is because
not only does each axis need to provide the acceleration or deceleration along the
curve, but in the meantime, they also need to give the relative centripetal
acceleration as well.

As shown in Figure (4.13), a theoretical tool path C(s) lies in XY-plane, and the
tool moves from A to B along the curve. A random point P with its instant centripetal
acceleration and linear acceleration along the curve denoted by a and cTF
respectively is marked out. According to the equation for calculating centripetal
acceleration:

a,=V*/R or a,=V*-k (4.32)
where R is the local radius of the curve and k is the corresponding curvature, it is
clear that the centripetal acceleration is determined by both the tangential velocity

and curvature at any reference point.
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) X
Figure 4.13 lllustration of the actual acceleration at a random point P on the curve
By combining the two vectors a, and a,, the resultant acceleration vector a, at

point P can also be drown. By using the notations declared in Table (4.2),

Table 4.2 Declaring list of the notations

Machine Sampling Time T,

Feed rate at current sampling period F
Feed rate at next sampling period F,
Curvature at present location k

Centripetal acceleration at

an

current location
Linear acceleration at current location a,
Resultant acceleration of a, and a, a,

the following equations hold:
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a =F’k (4.33)

F.=F, +a.-T, (4.34)
a, =40’ +a,’ (4.35)

From the equations above, it is clear that the higher the feed rate is at the
current location, the greater centripetal acceleration is going to be needed.
Consequently, the linear acceleration a, is always changing along with the change
of the curvature.

Assuming that m and n are the projection of g on x-axis and y-axis
respectively, the machine is only capable to keep the tool trajectory within the error
tolerance if

‘E‘ <A (4.36)
and

n<A,, (4.37)
where A . isthe axial acceleration limit of the machine.

Since m and n are perpendicular to each other, the magnitude of vector GT,

is always either greater than ‘5‘ and ‘;1

, or equal to one of them. Thus, by
assigning

a =A (4.38)
and solving the equations of Eq. (4.33), Eq. (4.34) and Eq. (4.35) simultaneously, the
maximum valid feed rate F, during next sampling period can be found iteratively.
Therefore, a valid feed rate profile that with bounded axial acceleration is finally
generated as Figure (4.14) shows. The acceleration and deceleration procedures for
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each sub-interval are actually not identical because of the required centripetal
acceleration during each sampling period is constantly changing due to the variation
of the curvature along the tool path. And thus, the linear acceleration and

deceleration need to adapt itself according to Eq. (4.35)

F 4

Figure 4.14 An finalized illustrative feed rate profile with bounded

axial acceleration

4.5 Arc-length Parameterized NURBS Tool Path Generation Method

After deriving the feasible feed rate profile from the aforementioned method,
the cutter locations can now be generated in the new arc-length NURBS interpolation
module. According to the iteration function for generating the arc-length NURBS tool
cutter locations,

Smi1 =S, TVI(E,) T, (4.39)
where s_ denotes the value of parameter s at the moment of t=t_, and V(t) is
the final feed rate function, the overall flowchart for implementing this arc-length
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NURBS tool path generation method is shown in Figure (4.15)

Input the original non-arc-length NURBS

theoretical tool path ‘C(u)’

l

Find out the curvature of the curve

)

Calculate curve length using the curvature

based NURBS arc-length calculation method

i

Re-parameterize the known tool path

into arc-length NURBS form

A

Arc-length NURBS theoretical tool
Prescribed feed rate

path ‘C(s)’

Inside CNC controller

Feed rate profile
generation module

A

Find out a valid feed rate profile according to

accuracy demand and machine configurations

)

v

Implement arc-length NURBS interpolation using the new
dominating function’s,,,, =S, + V(s,,)- T

\
v

Actual tool trajectory

End

Figure 4.15 Flowchart of the arc-length NURBS tool path generation method

In which, the feed rate profile was generated within a separate module inside

the CNC controller. The flowchart for the feed rate profile generation module is
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shown in Figure (4.16).
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Calculate the maximum curvature
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Check
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Find a new feasible feed rate for
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}

Obtain the feed rate profile during
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adjacent sub-intervals by
implementing the proposed method

Yes

-

Find out the feed rate profile during the
acceleration progress at start and
deceleration progress at the end

)

Generate the final feed rate profile over
the whole parameter interval

Figure 4.16 Flowchart of feed rate profile generation module
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A simplified illustrative flowchart of this arc-length NURBS tool path generation

method drown as Figure (4.17)

Theoretical Arc-
length NURBS
tool path

Prescribed feed
rate
N

CNC controller with the new feed
profile generation module
(Arc length NURBS interpolator)

Cutter Location
(Tool Path)

Figure 4.17 A simplified illustrative flowchart for arc-length NURBS
tool path generation
Comparing the traditional NURBS tool path generation method shown in Figure
(2.3), my proposed method not only changes the source NURBS tool path into the
form of arc-length parameterized NURBS, but also uses a different interpolation

algorithm in the CNC controller that comply with my new feed rate profiles.
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Chapter 5 Applications

5.1 Introduction

By implementing the previous introduced tool path generation method, the
actual feed rate during real time machining process can be considered adaptive to
the curve shape and machine capabilities under the condition of the prescribed
accuracy requirement could be fairly assured.

Due to the arc-length NURBS tool path generation method, as mentioned, can
provide a smoother tool motion during the actual machining than the traditional way
could, the chance of encountering unexpected big errors caused by inaccurate
approximation from Taylor expansion is eliminated. Furthermore, even if an add-on
method were conducted during the real time interpolation to compensate part of the
feed rate fluctuation, the calculation time could be way longer than our proposed
method.

In this chapter, a series of statistics are gathered from simulation results of a
3-axis machining example to demonstrate this new approach of tool path generation
method. And also analysis and comparison will be included afterwards between the
proposed method and the traditional one. The chosen theoretical tool path is a
random 3-D NURBS curve in the general form; also the accuracy requirement and the
machine configurations are set in a practical way.
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5.2 Example of 3-Axis Arc-length NURBS Tool Path Generation

Considering a general NURBS tool path with its weights equal to 1, and control

points listed in Table (5.1),

Table 5.1 Control points of the example NURBS tools path

Py P; Ps Py Ps Ps P, Ps

o

1.8734  40.3782  30.2134 41.1982 54.0097 70.1092 77.0922
51.4502 19.2108 40.0112  18.8291 3.0021 0.1109  14.1209
5.7707 29.31815 69.9741 59.3641 1.51535 -30.1169 62.0139

P9 PJO P11 P12 P13 P14 P15 P16

84.1902 92.2918 95.8217 127.8190 126.7021 129.4502 131.7289 140
28.6765 50.1144 64.2100 124.1012 60.0010 42.5002  26.8745 0
64.3768 74.5015 32.0989 11.9117 49.9851 41.2281  33.3931 0

Is about to be machined under the following prescribed tolerances and machine

configurations shown in Table (5.2).

Table 5.2 Prescribed tolerances and machine configurations

Arc-length approximation accuracy & 1.0x10° mm
Tool trajectory error tolerance € 0.005 mm
Expected feed rate F, 400 mm/s
Machine sampling period T, 0.002 s
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Machine axial acceleration limit A__, 1g (9800 mm/s’)

The actual shape of this tool path is shown in Figure (5.1).

Figure 5.1 The shape of the given general NURBS tool path in space

First, the general NURBS curve is re-parameterized into an arc-length NURBS form by
using the curvature-based Simpson’s method to evaluate all the arc-lengths
measuring from the starting point of the curve to all data points respectively. Then
the least square method is implemented to derive the arc-length NURBS that fits to
all these data points.

Second, by using the segmentation algorithm given in Section 4.2.2, three curve
segments are isolated from the original curve as shown in Figure (5.2) and assigned
with new valid feed rates. These segments are corresponding to the curvature profile
that exceeds the threshold value in Figure (5.3).
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Figure 5.2 Recognition of the curve segments that cannot be machined

with the prescribed feed rate
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Figure 5.3 Curvature profile of the theoretical tool path with the threshold line

Take the first segment for example, its corresponding parameter varies from 0 to

243.7806, and the expected feed rate over this sub-interval is at 400 mm/s. By using

the method introduced in Section 4.3.1, the acceleration profile of each axis can be

found as Figure (5.4).
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Figure 5.4 Acceleration profile of each axis at the current invalid feed rate

Apparently, the axial acceleration on Y-axis would exceed the machine axial

acceleration limit if the tool were moving at its prescribed feed rate. In another word,

the machine could not provide sufficient centripetal acceleration to maintain the tool

trajectory error within the machining accuracy under such a high feed rate. Therefore,

the feed rate over this curve segment has now been re-adjusted according to the
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method introduced in Section 4.3.2, which is shown in Figure (5.5).

4
x 10

max|

0.5

Axial acceleration (mm/s?)
o

-0.5

—A

max

——— Z-axis

1 1 1 1
0 50 100 150 200 250
Arc length Parameter (mm)

Figure 5.5 Acceleration profile of each axis after implementing the feed
rate re-adjustment method
Similarly, by carrying out this procedure over all the parametric sub-intervals, the
valid feed rate for each segments are listed in Table (5.3)

Table 5.3 Appropriate Feed rates over each curve segments after the adjustment

[0, 243.7806) 351 mm/s
[243.7806, 253.2825) 141 mm/s
[253.2825, 346.1469) 396 mm/s
[346.1469, 351.9481) 372 mm/s
[351.9481, 425.5877) 400 mm/s
[425.5877, 434.2540) 183 mm/s
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434.2540, 553.6312 345 mm/s
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Figure 5.6 Actual feed rate profile during the machining process using the

arc-length NURBS interpolation
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Figure 5.7 Actual feed rate profile using the traditional NURBS interpolation
Finally, after all the cutter location points were generated using arc-length NURBS
interpolation iteration function of Eq. (4.39), the actual feed rate during the
machining is shown in Figure (5.6).

As shown in Figure (5.7), when using the traditional NURBS interpolation
method, the actual feed rate fluctuates as anticipated due to the inaccurate
approximation of the iteration function of Eq. (2.5) with the unit free parameter.
Although this kind of feed rate fluctuation can somehow be compensated with some
method that had been developed, such as the one that introduced in ‘NURBS
Interpolation Method with Feedrate Correction in 3-axis CNC System’ by Chen and Li,
the computational time during the real-time machining could be significantly
increased. By using their compensation method, the feed rate fluctuation would
decrease within a prescribed tolerance e by implementing an additional search
procedure to find the next parameter more precisely. Indubitably, The following Table
(5.4) shows the computational time of different interpolation method during the

actual machining of this particular example.

Table 5.4 Comparison on Computational time using different interpolation method

Traditional NURBS interpolation with

feed rate compensation tolerance at 6.03s
e=1(mm/s)
Traditional NURBS interpolation with
feed rate compensation tolerance at 8.15s
e=0.5 (mm/s)
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Arc-length NURBS interpolation 132s

As Table (5.4) shows, the calculation time is almost 5 to 8 times longer than the
arc-length NURBS interpolation method when the traditional methods try to ease
this kind of fluctuation. However, the machine can only execute its next movement
after the sequential cutter location had been calculated. Therefore, the increased
calculation time makes it more likely to cause unexpected halts, which are another
source of fluctuation, if the machine has finished its current movement but waits on
the next instruction being generated.

Since either the feed rate fluctuation or axial acceleration exceedance during
the machining could cause intolerable trajectory errors, the machining quality would
be degraded if such situation occurs when using the traditional method. However,
with the proposed method in this work, these problems are solved. The tool
trajectory error along the whole tool path is shown in Figure (5.8) and the bounded

axial acceleration profile of each axis is shown in Figure (5.9).
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Figure 5.8 Trajectory error curve of proposed method
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Figure 5.9 The limit-bounded axial acceleration profile using the proposed

arc-length NURBS tool path generation method
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5.3 Summery

According to the results given in the above example, it is reasonable to believe
that this proposed arc-length NURBS tool path generation method has better
performance than the traditional non-arc-length NURBS method. Not only because
the axial acceleration is globally bounded to their limits, so that the machine can
actually finish the assigned task without encountering unpredictable problems; but
also a potential tool trajectory error source that comes with the traditional NURBS
tool path generation method is eliminated, due to the feed rate fluctuation caused by
inaccurate approximations from the traditional iteration function has been avoided.
Moreover, the real-time cutter location calculation procedure during each machine
sampling period is faster than the traditional one, which means, comparing to the
traditional method, the requirement of the minimum central processor’s calculation
speed is somehow lowered when trying to conduct a same machining task and

achieve a similar performance.
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Chapter 6 Conclusions and Future work

6.1 Conclusions

In this work, an accurate arc-length calculation algorithm is introduced, followed
by its implementation in a new parameterized NURBS tool path generation method.
Instead of using the unit free parameter, arc-length parameterized source data are
fed into the CNC controller that with the proposed arc-length NURBS interpolation
algorithm, to generate the machining tool path in real-time process. Comparing to
the traditional NURBS tool path generation method, the major improvements and

contributions of this thesis can be summed up in the following aspects:

* An advanced approach to NURBS arc-length calculation is developed. In
which, both the calculation efficiency and accuracy has been improved
in addition to the elimination of the potential problems that may cause
mistaken results.

* A piecewise feed rate adjustment strategy has been implemented in this
research. All the corresponding feed rates over each parametric
sub-interval are checked for feasibilities. This ensures the machine is
fully capable for accomplishing the task with a valid feed rate profile.
The axial acceleration limit and the tool trajectory error are globally

bounded to their tolerances according to the machine properties and
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the curvature of the theoretical tool path.

Since the traditional theoretical NURBS tool path has been replaced by
the arc-length NURBS, the feed rate fluctuation caused by the
inaccurate approximation on finding tool locations from the traditional
NURBS interpolation method has been avoided. And thus, these
resultant unpredictable tool trajectory errors will no longer exist when
using the proposed method.

The calculation time for finding the next tool location during real-time
machining is shorter than the traditional method. The difference
between the time consumption of these two methods turns out to be
more and more significant when the traditional method tries to
compensate the aforementioned feed rate fluctuation with other linear

search algorithms.

6.2 Future work

For future research, the following topics can be considered to expand the

present work:

During acceleration or deceleration procedure along the curve, another
factor ‘jerk’ can be taken into consideration.

Develop a jerk bounded method to provide better machine kinematics
and better machining quality.
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* Take tool angel into consideration and try developing an arc-length
parameterized NURBS tool path generation method for 5-axis
machining.

* Try to improve and reorganize the feed rate adjustment method to be
more flexible, and then develop a pre-machining feed rate correction

module based on the arc-length NURBS machining.
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